Sample records for qualitatively assessing sequestration

  1. Carbon sequestration pilot program : estimated land available for carbon sequestration in the national highway system

    DOT National Transportation Integrated Search

    2010-05-01

    The Federal Highway Administration (FHWA) established the Carbon Sequestration Pilot Program (CSPP) in 2008 to assess whether a roadside carbon sequestration effort through modified maintenance and management practices is appropriate and feasible for...

  2. Development of an assessment methodology for hydrocarbon recovery potential using carbon dioxide and associated carbon sequestration-Workshop findings

    USGS Publications Warehouse

    Verma, Mahendra K.; Warwick, Peter D.

    2011-01-01

    The Energy Independence and Security Act of 2007 (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2) and requested that the USGS estimate the "potential volumes of oil and gas recoverable by injection and sequestration of industrial carbon dioxide in potential sequestration formations" (121 Stat. 1711). The USGS developed a noneconomic, probability-based methodology to assess the Nation's technically assessable geologic storage resources available for sequestration of CO2 (Brennan and others, 2010) and is currently using the methodology to assess the Nation's CO2 geologic storage resources. Because the USGS has not developed a methodology to assess the potential volumes of technically recoverable hydrocarbons that could be produced by injection and sequestration of CO2, the Geologic Carbon Sequestration project initiated an effort in 2010 to develop a methodology for the assessment of the technically recoverable hydrocarbon potential in the sedimentary basins of the United States using enhanced oil recovery (EOR) techniques with CO2 (CO2-EOR). In collaboration with Stanford University, the USGS hosted a 2-day CO2-EOR workshop in May 2011, attended by 28 experts from academia, natural resource agencies and laboratories of the Federal Government, State and international geologic surveys, and representatives from the oil and gas industry. The geologic and the reservoir engineering and operations working groups formed during the workshop discussed various aspects of geology, reservoir engineering, and operations to make recommendations for the methodology.

  3. An Index-Based Approach to Assessing Recalcitrance and Soil Carbon Sequestration Potential of Engineered Black Carbons (Biochars)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Omar R.; Kuo, Li-Jung; Zimmerman, Andrew R.

    2012-01-10

    The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R{sub 50}, for assessing biochar quality for carbon sequestration is proposed. The R{sub 50} is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R{sub 50}, with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiablemore » relationship between R{sub 50} and biochar recalcitrance. As presented here, the R{sub 50} is immediately applicable to pre-land application screening of biochars into Class A (R{sub 50} {>=} 0.70), Class B (0.50 {<=} R{sub 50} < 0.70) or Class C (R{sub 50} < 0.50) recalcitrance/carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, while Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R{sub 50}, to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars.« less

  4. Trade-based carbon sequestration accounting.

    PubMed

    King, Dennis M

    2004-04-01

    This article describes and illustrates an accounting method to assess and compare "early" carbon sequestration investments and trades on the basis of the number of standardized CO2 emission offset credits they will provide. The "gold standard" for such credits is assumed to be a relatively riskless credit based on a CO2 emission reduction that provides offsets against CO2 emissions on a one-for-one basis. The number of credits associated with carbon sequestration needs to account for time, risk, durability, permanence, additionality, and other factors that future trade regulators will most certainly use to assign "official" credits to sequestration projects. The method that is presented here uses established principles of natural resource accounting and conventional rules of asset valuation to "score" projects. A review of 20 "early" voluntary United States based CO2 offset trades that involve carbon sequestration reveals that the assumptions that buyers, sellers, brokers, and traders are using to characterize the economic potential of their investments and trades vary enormously. The article develops a "universal carbon sequestration credit scoring equation" and uses two of these trades to illustrate the sensitivity of trade outcomes to various assumptions about how future trade auditors are likely to "score" carbon sequestration projects in terms of their "equivalency" with CO2 emission reductions. The article emphasizes the importance of using a standard credit scoring method that accounts for time and risk to assess and compare even unofficial prototype carbon sequestration trades. The scoring method illustrated in this article is a tool that can protect the integrity of carbon sequestration credit trading and can assist buyers and sellers in evaluating the real economic potential of prospective trades.

  5. Quantitative assessment of carbon sequestration reduction induced by disturbances in temperate Eurasian steppe

    NASA Astrophysics Data System (ADS)

    Chen, Yizhao; Ju, Weimin; Groisman, Pavel; Li, Jianlong; Propastin, Pavel; Xu, Xia; Zhou, Wei; Ruan, Honghua

    2017-11-01

    The temperate Eurasian steppe (TES) is a region where various environmental, social, and economic stresses converge. Multiple types of disturbance exist widely across the landscape, and heavily influence carbon cycling in this region. However, a current quantitative assessment of the impact of disturbances on carbon sequestration is largely lacking. In this study, we combined the boreal ecosystem productivity simulator (BEPS), the Shiyomi grazing model, and the global fire model (Glob-FIRM) to investigate the impact of the two major types of disturbance in the TES (i.e. domestic grazing and fire) on regional carbon sequestration. Model performance was validated using satellite data and field observations. Model outputs indicate that disturbance has a significant impact on carbon sequestration at a regional scale. The annual total carbon lost due to disturbances was 7.8 TgC yr-1, accounting for 14.2% of the total net ecosystem productivity (NEP). Domestic grazing plays the dominant role in terrestrial carbon consumption, accounting for 95% of the total carbon lost from the two disturbances. Carbon losses from both disturbances significantly increased from 1999 to 2008 (R 2 = 0.82, P < 0.001 for grazing, R 2 = 0.51, P < 0.05 for fire). Heavy domestic grazing in relatively barren grasslands substantially reduced carbon sequestration, particularly in the grasslands of Turkmenistan, Uzbekistan, and the far southwest of Inner Mongolia. This spatially-explicit information has potential implications for sustainable management of carbon sequestration in the vast grassland ecosystems.

  6. Risk Assessment of Carbon Sequestration into A Naturally Fractured Reservoir at Kevin Dome, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Minh; Onishi, Tsubasa; Carey, James William

    In this report, we describe risk assessment work done using the National Risk Assessment Partnership (NRAP) applied to CO 2 storage at Kevin Dome, Montana. Geologic CO 2 sequestration in saline aquifers poses certain risks including CO 2/brine leakage through wells or non-sealing faults into groundwater or to the land surface. These risks are difficult to quantify due to data availability and uncertainty. One solution is to explore the consequences of these limitations by running large numbers of numerical simulations on the primary CO2 injection reservoir, shallow reservoirs/aquifers, faults, and wells to assess leakage risks and uncertainties. However, a largemore » number of full-physics simulations is usually too computationally expensive. The NRAP integrated assessment model (NRAP-IAM) uses reduced order models (ROMs) developed from full-physics simulations to address this issue. A powerful stochastic framework allows NRAPIAM to explore complex interactions among many uncertain variables and evaluate the likely performance of potential sequestration sites.« less

  7. Rapid assessment of U.S. forest and soil organic carbon storage and forest biomass carbon-sequestration capacity

    USGS Publications Warehouse

    Sundquist, Eric T.; Ackerman, Katherine V.; Bliss, Norman B.; Kellndorfer, Josef M.; Reeves, Matt C.; Rollins, Matthew G.

    2009-01-01

    This report provides results of a rapid assessment of biological carbon stocks and forest biomass carbon sequestration capacity in the conterminous United States. Maps available from the U.S. Department of Agriculture are used to calculate estimates of current organic carbon storage in soils (73 petagrams of carbon, or PgC) and forest biomass (17 PgC). Of these totals, 3.5 PgC of soil organic carbon and 0.8 PgC of forest biomass carbon occur on lands managed by the U.S. Department of the Interior (DOI). Maps of potential vegetation are used to estimate hypothetical forest biomass carbon sequestration capacities that are 3–7 PgC higher than current forest biomass carbon storage in the conterminous United States. Most of the estimated hypothetical additional forest biomass carbon sequestration capacity is accrued in areas currently occupied by agriculture and development. Hypothetical forest biomass carbon sequestration capacities calculated for existing forests and woodlands are within ±1 PgC of estimated current forest biomass carbon storage. Hypothetical forest biomass sequestration capacities on lands managed by the DOI in the conterminous United States are 0–0.4 PgC higher than existing forest biomass carbon storage. Implications for forest and other land management practices are not considered in this report. Uncertainties in the values reported here are large and difficult to quantify, particularly for hypothetical carbon sequestration capacities. Nevertheless, this rapid assessment helps to frame policy and management discussion by providing estimates that can be compared to amounts necessary to reduce predicted future atmospheric carbon dioxide levels.

  8. Improved chemometric methodologies for the assessment of soil carbon sequestration mechanisms

    NASA Astrophysics Data System (ADS)

    Jiménez-González, Marco A.; Almendros, Gonzalo; Álvarez, Ana M.; González-Vila, Francisco J.

    2016-04-01

    The factors involved soil C sequestration, which is reflected in the highly variable content of organic matter in the soils, are not yet well defined. Therefore, their identification is crucial for understanding Earth's biogeochemical cycle and global change. The main objective of this work is to contribute to a better qualitative and quantitative assessment of the mechanisms of organic C sequestration in the soil, using omic approaches not requiring the detailed knowledge of the structure of the material under study. With this purpose, we have carried out a series of chemometric approaches on a set of widely differing soils (35 representative ecosystems). In an exploratory phase, we used multivariate statistical models (e.g., multidimensional scaling, discriminant analysis with automatic backward variable selection…) to analyze arrays of more than 200 independent soil variables (physicochemical, spectroscopic, pyrolytic...) in order to select those factors (descriptors or proxies) that explain most of the total system variance (content and stability of the different C forms). These models showed that the factors determining the stabilization of organic material are greatly dependent on the soil type. In some cases, the molecular structure of organic matter seemed strongly correlated with their resilience, while in other soil types the organo-mineral interactions played a significant bearing on the accumulation of selectively preserved C forms. In any case, it was clear that the factors driving the resilience of organic matter are manifold and not exclusive. Consequently, in a second stage, prediction models of the soil C content and their biodegradability (laboratory incubation experiments) were carried out by massive data processing by partial least squares (PLS) regression of data from Py-GC-MS and Py-MS. In some models, PLS was applied to a matrix of 150 independent variables corresponding to major pyrolysis compounds (peak areas) from the 35 samples of whole

  9. In Vitro Assessment of Uptake and Lysosomal Sequestration of Respiratory Drugs in Alveolar Macrophage Cell Line NR8383.

    PubMed

    Ufuk, Ayşe; Somers, Graham; Houston, J Brian; Galetin, Aleksandra

    2015-12-01

    To assess accumulation and lysosomal sequestration of 9 drugs used in respiratory indications (plus imipramine as positive control) in the alveolar macrophage (AM) cell line NR8383. For all drugs, uptake at 5 μM was investigated at 37 and 4°C to delineate active uptake and passive diffusion processes. Accumulation of basic clarithromycin, formoterol and imipramine was also assessed over 0.1-100 μM concentration range. Lysosomal sequestration was investigated using ammonium chloride (NH4Cl), monensin and nigericin. Impact of lysosomal sequestration on clarithromycin accumulation kinetics was investigated. Both cell-to-medium concentration ratio (Kp) and uptake clearance (CLuptake) ranged > 400-fold for the drugs investigated. The greatest Kp was observed for imipramine (391) and clarithromycin (82), in contrast to no accumulation seen for terbutaline. A concentration-dependent accumulation was evident for the basic drugs investigated. Imipramine and clarithromycin Kp and CLuptake were reduced by 59-85% in the presence of NH4Cl and monensin/nigericin, indicating lysosomal accumulation, whereas lysosomal sequestration was not pronounced for the other 8 respiratory drugs. Clarithromycin uptake rate was altered by NH4Cl, highlighting the impact of subcellular distribution on accumulation kinetics. This study provides novel evidence of the utility of NR8383 for investigating accumulation and lysosomal sequestration of respiratory drugs in AMs.

  10. Simulating carbon sequestration using cellular automata and land use assessment for Karaj, Iran

    NASA Astrophysics Data System (ADS)

    Khatibi, Ali; Pourebrahim, Sharareh; Mokhtar, Mazlin Bin

    2018-06-01

    Carbon sequestration has been proposed as a means of slowing the atmospheric and marine accumulation of greenhouse gases. This study used observed and simulated land use/cover changes to investigate and predict carbon sequestration rates in the city of Karaj. Karaj, a metropolis of Iran, has undergone rapid population expansion and associated changes in recent years, and these changes make it suitable for use as a case study for rapidly expanding urban areas. In particular, high quality agricultural space, green space and gardens have rapidly transformed into industrial, residential and urban service areas. Five classes of land use/cover (residential, agricultural, rangeland, forest and barren areas) were considered in the study; vegetation and soil samples were taken from 20 randomly selected locations. The level of carbon sequestration was determined for the vegetation samples by calculating the amount of organic carbon present using the dry plant weight method, and for soil samples by using the method of Walkley and Black. For each area class, average values of carbon sequestration in vegetation and soil samples were calculated to give a carbon sequestration index. A cellular automata approach was used to simulate changes in the classes. Finally, the carbon sequestration indices were combined with simulation results to calculate changes in carbon sequestration for each class. It is predicted that, in the 15 year period from 2014 to 2029, much agricultural land will be transformed into residential land, resulting in a severe reduction in the level of carbon sequestration. Results from this study indicate that expansion of forest areas in urban counties would be an effective means of increasing the levels of carbon sequestration. Finally, future opportunities to include carbon sequestration into the simulation of land use/cover changes are outlined.

  11. An Overview of Geologic Carbon Sequestration Potential in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron Downey; John Clinkenbeard

    2005-10-01

    As part of the West Coast Regional Carbon Sequestration Partnership (WESTCARB), the California Geological Survey (CGS) conducted an assessment of geologic carbon sequestration potential in California. An inventory of sedimentary basins was screened for preliminary suitability for carbon sequestration. Criteria included porous and permeable strata, seals, and depth sufficient for critical state carbon dioxide (CO{sub 2}) injection. Of 104 basins inventoried, 27 met the criteria for further assessment. Petrophysical and fluid data from oil and gas reservoirs was used to characterize both saline aquifers and hydrocarbon reservoirs. Where available, well log or geophysical information was used to prepare basin-wide mapsmore » showing depth-to-basement and gross sand distribution. California's Cenozoic marine basins were determined to possess the most potential for geologic sequestration. These basins contain thick sedimentary sections, multiple saline aquifers and oil and gas reservoirs, widespread shale seals, and significant petrophysical data from oil and gas operations. Potential sequestration areas include the San Joaquin, Sacramento, Ventura, Los Angeles, and Eel River basins, followed by the smaller Salinas, La Honda, Cuyama, Livermore, Orinda, and Sonoma marine basins. California's terrestrial basins are generally too shallow for carbon sequestration. However, the Salton Trough and several smaller basins may offer opportunities for localized carbon sequestration.« less

  12. Assessing carbon stocks, carbon sequestration, and greenhouse-gas fluxes in ecosystems of the United States under present conditions and future scenarios

    USGS Publications Warehouse

    Zhu, Zhi-Liang; Stackpoole, Sarah

    2011-01-01

    The Energy Independence and Security Act of 2007 (EISA) requires the U.S. Department of the Interior (DOI) to develop a methodology and conduct an assessment of carbon storage, carbon sequestration, and greenhouse-gas (GHG) fluxes in the Nation's ecosystems. The U.S. Geological Survey (USGS) has developed and published the methodology (U.S. Geological Survey Scientific Investigations Report 2010-5233) and has assembled an interdisciplinary team of scientists to conduct the assessment over the next three to four years, commencing in October 2010. The assessment will fulfill specific requirements of the EISA by (1) quantifying, measuring, and monitoring carbon sequestration and GHG fluxes using national datasets and science tools such as remote sensing, and biogeochemical and hydrological models, (2) evaluating a range of management and restoration activities for their effects on carbon-sequestration capacity and the reduction of GHG fluxes, and (3) assessing effects of climate change and other controlling processes (including wildland fires) on carbon uptake and GHG emissions from ecosystems.

  13. Carbon sequestration and its role in the global carbon cycle

    USGS Publications Warehouse

    McPherson, Brian J.; Sundquist, Eric T.

    2009-01-01

    For carbon sequestration the issues of monitoring, risk assessment, and verification of carbon content and storage efficacy are perhaps the most uncertain. Yet these issues are also the most critical challenges facing the broader context of carbon sequestration as a means for addressing climate change. In response to these challenges, Carbon Sequestration and Its Role in the Global Carbon Cycle presents current perspectives and research that combine five major areas: • The global carbon cycle and verification and assessment of global carbon sources and sinks • Potential capacity and temporal/spatial scales of terrestrial, oceanic, and geologic carbon storage • Assessing risks and benefits associated with terrestrial, oceanic, and geologic carbon storage • Predicting, monitoring, and verifying effectiveness of different forms of carbon storage • Suggested new CO2 sequestration research and management paradigms for the future. The volume is based on a Chapman Conference and will appeal to the rapidly growing group of scientists and engineers examining methods for deliberate carbon sequestration through storage in plants, soils, the oceans, and geological repositories.

  14. U.S. Geological Survey Geologic Carbon Sequestration Assessment

    NASA Astrophysics Data System (ADS)

    Warwick, P. D.; Blondes, M. S.; Brennan, S.; Corum, M.; Merrill, M. D.

    2012-12-01

    The Energy Independence and Security Act of 2007 authorized the U.S. Geological Survey (USGS) to conduct a national assessment of potential geological storage resources for carbon dioxide (CO2) in consultation with the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA) and State geological surveys. To conduct the assessment, the USGS developed a probability-based assessment methodology that was extensively reviewed by experts from industry, government and university organizations (Brennan et al., 2010, http://pubs.usgs.gov/of/2010/1127). The methodology is intended to be used at regional to sub-basinal scales and it identifies storage assessment units (SAUs) that are based on two depth categories below the surface (1) 3,000 to 13,000 ft (914 to 3,962 m), and (2) 13,000 ft (3,962 m) and greater. In the first category, the 3,000 ft (914 m) minimum depth of the storage reservoir ensures that CO2 is in a supercritical state to minimize the storage volume. The depth of 13,000 ft (3,962 m) represents maximum depths that are accessible with average injection pressures. The second category represents areas where a reservoir formation has potential storage at depths below 13,000 ft (3,962 m), although they are not accessible with average injection pressures; these are assessed as a separate SAU. SAUs are restricted to formation intervals that contain saline waters (total dissolved solids greater than 10,000 parts per million) to prevent contamination of protected ground water. Carbon dioxide sequestration capacity is estimated for buoyant and residual storage traps within the basins. For buoyant traps, CO2 is held in place in porous formations by top and lateral seals. For residual traps, CO2 is contained in porous formations as individual droplets held within pores by capillary forces. Preliminary geologic models have been developed to estimate CO2 storage capacity in approximately 40 major sedimentary basins within the United States. More than

  15. Making carbon sequestration a paying proposition

    NASA Astrophysics Data System (ADS)

    Han, Fengxiang X.; Lindner, Jeff S.; Wang, Chuji

    2007-03-01

    , including the direct injection of CO2 in deep saline aquifers, mineralization, and biomineralization, are not expected to lead to direct economic gain. More detailed studies are needed for assessing the ultimate changes to the environment and the associated indirect cost savings for carbon sequestration.

  16. Making carbon sequestration a paying proposition.

    PubMed

    Han, Fengxiang X; Lindner, Jeff S; Wang, Chuji

    2007-03-01

    options, including the direct injection of CO(2) in deep saline aquifers, mineralization, and biomineralization, are not expected to lead to direct economic gain. More detailed studies are needed for assessing the ultimate changes to the environment and the associated indirect cost savings for carbon sequestration.

  17. Assessing the effect of climate change on carbon sequestration in a Mexican dry forest in the Yucatan Peninsula

    Treesearch

    Z. Dai; K.D. Johnson; R.A. Birdsey; J.L. Hernandez-Stefanoni; J.M. Dupuy

    2015-01-01

    Assessing the effect of climate change on carbon sequestration in tropical forest ecosystems is important to inform monitoring, reporting, and verification (MRV) for reducing deforestation and forest degradation (REDD), and to effectively assess forest management options under climate change. Two process-based models, Forest-DNDC and Biome-BGC, with different spatial...

  18. When Assessment Data Are Words: Validity Evidence for Qualitative Educational Assessments.

    PubMed

    Cook, David A; Kuper, Ayelet; Hatala, Rose; Ginsburg, Shiphra

    2016-10-01

    Quantitative scores fail to capture all important features of learner performance. This awareness has led to increased use of qualitative data when assessing health professionals. Yet the use of qualitative assessments is hampered by incomplete understanding of their role in forming judgments, and lack of consensus in how to appraise the rigor of judgments therein derived. The authors articulate the role of qualitative assessment as part of a comprehensive program of assessment, and translate the concept of validity to apply to judgments arising from qualitative assessments. They first identify standards for rigor in qualitative research, and then use two contemporary assessment validity frameworks to reorganize these standards for application to qualitative assessment.Standards for rigor in qualitative research include responsiveness, reflexivity, purposive sampling, thick description, triangulation, transparency, and transferability. These standards can be reframed using Messick's five sources of validity evidence (content, response process, internal structure, relationships with other variables, and consequences) and Kane's four inferences in validation (scoring, generalization, extrapolation, and implications). Evidence can be collected and evaluated for each evidence source or inference. The authors illustrate this approach using published research on learning portfolios.The authors advocate a "methods-neutral" approach to assessment, in which a clearly stated purpose determines the nature of and approach to data collection and analysis. Increased use of qualitative assessments will necessitate more rigorous judgments of the defensibility (validity) of inferences and decisions. Evidence should be strategically sought to inform a coherent validity argument.

  19. A National Disturbance Modeling System to Support Ecological Carbon Sequestration Assessments

    NASA Astrophysics Data System (ADS)

    Hawbaker, T. J.; Rollins, M. G.; Volegmann, J. E.; Shi, H.; Sohl, T. L.

    2009-12-01

    The U.S. Geological Survey (USGS) is prototyping a methodology to fulfill requirements of Section 712 of the Energy Independence and Security Act (EISA) of 2007. At the core of the EISA requirements is the development of a methodology to complete a two-year assessment of current carbon stocks and other greenhouse gas (GHG) fluxes, and potential increases for ecological carbon sequestration under a range of future climate changes, land-use / land-cover configurations, and policy, economic and management scenarios. Disturbances, especially fire, affect vegetation dynamics and ecosystem processes, and can also introduce substantial uncertainty and risk to the efficacy of long-term carbon sequestration strategies. Thus, the potential impacts of disturbances need to be considered under different scenarios. As part of USGS efforts to meet EISA requirements, we developed the National Disturbance Modeling System (NDMS) using a series of statistical and process-based simulation models. NDMS produces spatially-explicit forecasts of future disturbance locations and severity, and the resulting effects on vegetation dynamics. NDMS is embedded within the Forecasting Scenarios of Future Land Cover (FORE-SCE) model and informs the General Ensemble Biogeochemical Modeling System (GEMS) for quantifying carbon stocks and GHG fluxes. For fires, NDMS relies on existing disturbance histories, such as the Landsat derived Monitoring Trends in Burn Severity (MTBS) and Vegetation Change Tracker (VCT) data being used to update LANDFIRE fuels data. The MTBS and VCT data are used to parameterize models predicting the number and size of fires in relation to climate, land-use/land-cover change, and socioeconomic variables. The locations of individual fire ignitions are determined by an ignition probability surface and then FARSITE is used to simulate fire spread in response to weather, fuels, and topography. Following the fire spread simulations, a burn severity model is used to determine annual

  20. Training Graduate and Undergraduate Students in Simulation and Risk Assessment for Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCray, John

    Capturing carbon dioxide (CO2) and injecting it into deep underground formations for storage (carbon capture and underground storage, or CCUS) is one way of reducing anthropogenic CO2 emissions. Gas or aqueous-phase leakage may occur due to transport via faults and fractures, through faulty well bores, or through leaky confining materials. Contaminants of concern include aqueous salts and dissolved solids, gaseous or aqueous-phase organic contaminants, and acidic gas or aqueous-phase fluids that can liberate metals from aquifer minerals. Understanding the mechanisms and parameters that can contribute to leakage of the CO2 and the ultimate impact on shallow water aquifers that overliemore » injection formations is an important step in evaluating the efficacy and risks associated with long-term CO2 storage. Three students were supported on the grant Training Graduate and Undergraduate Students in Simulation and Risk Assessment for Carbon Sequestration. These three students each examined a different aspect of simulation and risk assessment related to carbon dioxide sequestration and the potential impacts of CO2 leakage. Two performed numerical simulation studies, one to assess leakage rates as a function of fault and deep reservoir parameters and one to develop a method for quantitative risk assessment in the event of a CO2 leak and subsequent changes in groundwater chemistry. A third student performed an experimental evaluation of the potential for metal release from sandstone aquifers under simulated leakage conditions. This study has resulted in two student first-authored published papers {Siirila, 2012 #560}{Kirsch, 2014 #770} and one currently in preparation {Menke, In prep. #809}.« less

  1. Terrestrial sequestration

    ScienceCinema

    Charlie Byrer

    2017-12-09

    Terrestrial sequestration is the enhancement of CO2 uptake by plants that grow on land and in freshwater and, importantly, the enhancement of carbon storage in soils where it may remain more permanently stored. Terrestrial sequestration provides an opportunity for low-cost CO2 emissions offsets.

  2. The role of reforestation in carbon sequestration

    NASA Astrophysics Data System (ADS)

    Nave, L. E.; Walters, B. F.; Hofmeister, K.; Perry, C. H.; Mishra, U.; Domke, G. M.; Swanston, C.

    2017-12-01

    In the United States (U.S.), the maintenance of forest cover is a legal mandate for federally managed forest lands. Reforestation is one option for maintaining forest cover on managed or disturbed lands, and as a land use change can increase forest cover on previously non-forested lands, enhancing carbon (C)-based ecosystem services and functions such as the production of woody biomass for forest products and the mitigation of atmospheric CO2 pollution and climate change. Nonetheless, multiple assessments indicate that reforestation in the U.S. lags behind its potential, with continued ecosystem services and functions at risk if reforestation is not increased. In this context, there is need for multiple independent analyses that quantify the role of reforestation in C sequestration. Here, we report the findings of a large-scale data synthesis aimed at four objectives: 1) estimate C storage in major pools in forest and other land cover types; 2) quantify sources of variation in C pools; 3) compare the impacts of reforestation and afforestation on C pools; 4) assess whether results hold or diverge across ecoregions. Our data-driven analysis provides four key inferences regarding reforestation and other land use impacts on C sequestration. First, soils are the dominant C pool under all land cover types in the U.S., and spatial variation in soil C pool sizes has less to do with land cover than with other factors. Second, where historically cultivated lands are being reforested, topsoils are sequestering significant amounts of C, with the majority of reforested lands yet to reach sequestration capacity (relative to forested baseline). Third, the establishment of woody vegetation delivers immediate to multi-decadal C sequestration benefits in biomass and coarse woody debris pools, with two- to three-fold C sequestration benefits during the first several decades following planting. Fourth, opportunities to enhance C sequestration through reforestation vary among

  3. Reliability assessments in qualitative health promotion research.

    PubMed

    Cook, Kay E

    2012-03-01

    This article contributes to the debate about the use of reliability assessments in qualitative research in general, and health promotion research in particular. In this article, I examine the use of reliability assessments in qualitative health promotion research in response to health promotion researchers' commonly held misconception that reliability assessments improve the rigor of qualitative research. All qualitative articles published in the journal Health Promotion International from 2003 to 2009 employing reliability assessments were examined. In total, 31.3% (20/64) articles employed some form of reliability assessment. The use of reliability assessments increased over the study period, ranging from <20% in 2003/2004 to 50% and above in 2008/2009, while at the same time the total number of qualitative articles decreased. The articles were then classified into four types of reliability assessments, including the verification of thematic codes, the use of inter-rater reliability statistics, congruence in team coding and congruence in coding across sites. The merits of each type were discussed, with the subsequent discussion focusing on the deductive nature of reliable thematic coding, the limited depth of immediately verifiable data and the usefulness of such studies to health promotion and the advancement of the qualitative paradigm.

  4. Big Sky Carbon Sequestration Partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork ismore » in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in

  5. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan M. Capalbo

    2004-10-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources foundmore » in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and

  6. Big Sky Carbon Sequestration Partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessmentmore » framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation

  7. Community perceptions of carbon sequestration: insights from California

    NASA Astrophysics Data System (ADS)

    Wong-Parodi, Gabrielle; Ray, Isha

    2009-07-01

    Over the last decade, many energy experts have supported carbon sequestration as a viable technological response to climate change. Given the potential importance of sequestration in US energy policy, what might explain the views of communities that may be directly impacted by the siting of this technology? To answer this question, we conducted focus groups in two communities who were potentially pilot project sites for California's DOE-funded West Coast Regional Partnership (WESTCARB). We find that communities want a voice in defining the risks to be mitigated as well as the justice of the procedures by which the technology is implemented. We argue that a community's sense of empowerment is key to understanding its range of carbon sequestration opinions, where 'empowerment' includes the ability to mitigate community-defined risks of the technology. This sense of empowerment protects the community against the downside risk of government or corporate neglect, a risk that is rarely identified in risk assessments but that should be factored into assessment and communication strategies.

  8. Electricity without carbon dioxide: Assessing the role of carbon capture and sequestration in United States electric markets

    NASA Astrophysics Data System (ADS)

    Johnson, Timothy Lawrence

    2002-09-01

    Stabilization of atmospheric greenhouse gas concentrations will likely require significant cuts in electric sector carbon dioxide (CO2) emissions. The ability to capture and sequester CO2 in a manner compatible with today's fossil-fuel based power generating infrastructure offers a potentially low-cost contribution to a larger climate change mitigation strategy. This thesis fills a niche between economy-wide studies of CO 2 abatement and plant-level control technology assessments by examining the contribution that carbon capture and sequestration (CCS) might make toward reducing US electric sector CO2 emissions. The assessment's thirty year perspective ensures that costs sunk in current infrastructure remain relevant and allows time for technological diffusion, but remains free of assumptions about the emergence of unidentified radical innovations. The extent to which CCS might lower CO2 mitigation costs will vary directly with the dispatch of carbon capture plants in actual power-generating systems, and will depend on both the retirement of vintage capacity and competition from abatement alternatives such as coal-to-gas fuel switching and renewable energy sources. This thesis therefore adopts a capacity planning and dispatch model to examine how the current distribution of generating units, natural gas prices, and other industry trends affect the cost of CO2 control via CCS in an actual US electric market. The analysis finds that plants with CO2 capture consistently provide significant reductions in base-load emissions at carbon prices near 100 $/tC, but do not offer an economical means of meeting peak demand unless CO2 reductions in excess of 80 percent are required. Various scenarios estimate the amount by which turn-over of the existing generating infrastructure and the severity of criteria pollutant constraints reduce mitigation costs. A look at CO2 sequestration in the seabed beneath the US Outer Continental Shelf (OCS) complements this model

  9. Carbon Capture and Sequestration: A Regulatory Gap Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln Davies; Kirsten Uchitel; John Ruple

    2012-04-30

    Though a potentially significant climate change mitigation strategy, carbon capture and sequestration (CCS) remains mired in demonstration and development rather than proceeding to full-scale commercialization. Prior studies have suggested numerous reasons for this stagnation. This Report seeks to empirically assess those claims. Using an anonymous opinion survey completed by over 200 individuals involved in CCS, it concludes that there are four primary barriers to CCS commercialization: (1) cost, (2) lack of a carbon price, (3) liability risks, and (4) lack of a comprehensive regulatory regime. These results largely confirm previous work. They also, however, expose a key barrier that priormore » studies have overlooked: the need for comprehensive, rather than piecemeal, CCS regulation. The survey data clearly show that the CCS community sees this as one of the most needed incentives for CCS deployment. The community also has a relatively clear idea of what that regulation should entail: a cooperative federalism approach that directly addresses liability concerns and that generally does not upset traditional lines of federal-state authority.« less

  10. Coal bed sequestration of carbon dioxide

    USGS Publications Warehouse

    Stanton, Robert; Flores, Romeo M.; Warwick, Peter D.; Gluskoter, Harold J.; Stricker, Gary D.

    2001-01-01

    Geologic sequestration of CO2 generated from fossil fuel combustion may be an environmentally attractive method to reduce the amount of greenhouse gas emissions. Of the geologic options, sequestering CO2 in coal beds has several advantages. For example, CO2 injection can enhance methane production from coal beds; coal can trap CO2 for long periods of time; and potential major coal basins that contain ideal beds for sequestration are near many emitting sources of CO2.One mission of the Energy Resources Program of the U.S. Geological Survey is to maintain assessment information of the Nation’s resources of coal, oil, and gas. The National Coal Resources Assessment Project is currently completing a periodic assessment of 5 major coal-producing regions of the US. These regions include the Powder River and Williston and other Northern Rocky Mountain basins (Fort Union Coal Assessment Team, 1999), Colorado Plateau area (Kirschbaum and others, 2000), Gulf Coast Region, Appalachian Basin, and Illinois Basin. The major objective of this assessment is to estimate available coal resources and quality for the major producing coal beds of the next 25 years and produce digital databases and maps. Although the focus of this work has been on coal beds with the greatest potential for mining, it serves as a basis for future assessments of the coal beds for other uses such as coal bed methane resources, in situ gasification, and sites for sequestration of CO2. Coal bed methane production combined with CO2 injection and storage expands the use of a coal resource and can provide multiple benefits including increased methane recovery, methane drainage of a resource area, and the long-term storage of CO2.

  11. Assessment of Brine Management for Geologic Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breunig, Hanna M.; Birkholzer, Jens T.; Borgia, Andrea

    2013-06-13

    Geologic carbon sequestration (GCS) is the injection of carbon dioxide (CO 2), typically captured from stationary emission sources, into deep geologic formations to prevent its entry into the atmosphere. Active pilot facilities run by regional United States (US) carbon sequestration partnerships inject on the order of one million metric tonnes (mt) CO 2 annually while the US electric power sector emits over 2000 million mt-CO 2 annually. GCS is likely to play an increasing role in US carbon mitigation initiatives, but scaling up GCS poses several challenges. Injecting CO 2 into sedimentary basins raises fluid pressure in the pore space,more » which is typically already occupied by naturally occurring, or native, brine. The resulting elevated pore pressures increase the likelihood of induced seismicity, of brine or CO 2 escaping into potable groundwater resources, and of CO 2 escaping into the atmosphere. Brine extraction is one method for pressure management, in which brine in the injection formation is brought to the surface through extraction wells. Removal of the brine makes room for the CO 2 and decreases pressurization. Although the technology required for brine extraction is mature, this form of pressure management will only be applicable if there are cost-­effective and sustainable methods of disposing of the extracted brine. Brine extraction, treatment, and disposal may increase the already substantial capital, energy, and water demands of Carbon dioxide Capture and Sequestration (CCS). But, regionally specific brine management strategies may be able to treat the extracted water as a source of revenue, energy, and water to subsidize CCS costs, while minimizing environmental impacts. By this approach, value from the extracted water would be recovered before disposing of any resulting byproducts. Until a price is placed on carbon, we expect that utilities and other CO 2 sources will be reluctant to invest in capital intensive, high risk GCS projects; early

  12. Time-Lapse Seismic Monitoring and Performance Assessment of CO 2 Sequestration in Hydrocarbon Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta-Gupta, Akhil

    Carbon dioxide sequestration remains an important and challenging research topic as a potentially viable approach for mitigating the effects of greenhouse gases on global warming (e.g., Chu and Majumdar, 2012; Bryant, 2007; Orr, 2004; Hepple and Benson, 2005; Bachu, 2003; Grimston et al., 2001). While CO 2 can be sequestered in oceanic or terrestrial biomass, the most mature and effective technology currently available is sequestration in geologic formations, especially in known hydrocarbon reservoirs (Barrufet et al., 2010; Hepple and Benson, 2005). However, challenges in the design and implementation of sequestration projects remain, especially over long time scales. One problem ismore » that the tendency for gravity override caused by the low density and viscosity of CO 2. In the presence of subsurface heterogeneity, fractures and faults, there is a significant risk of CO 2 leakage from the sequestration site into overlying rock compared to other liquid wastes (Hesse and Woods, 2010; Ennis-King and Patterson, 2002; Tsang et al., 2002). Furthermore, the CO 2 will likely interact chemically with the rock in which it is stored, so that understanding and predicting its transport behavior during sequestration can be complex and difficult (Mandalaparty et al., 2011; Pruess et al., 2003). Leakage of CO 2 can lead to such problems as acidification of ground water and killing of plant life, in addition to contamination of the atmosphere (Ha-Duong, 2003; Gasda et al., 2004). The development of adequate policies and regulatory systems to govern sequestration therefore requires improved characterization of the media in which CO 2 is stored and the development of advanced methods for detecting and monitoring its flow and transport in the subsurface (Bachu, 2003).« less

  13. Assessing net carbon sequestration on urban and community forests of northern New England, USA

    Treesearch

    Daolan Zheng; Mark J. Ducey; Linda S. Heath

    2013-01-01

    Urban and community forests play an important role in the overall carbon budget of the USA. Accurately quantifying carbon sequestration by these forests can provide insight for strategic planning to mitigate greenhouse gas effects on climate change. This study provides a new methodology to estimate net forest carbon sequestration (FCS) in urban and community lands of...

  14. Feasibility Assessment of CO2 Sequestration and Enhanced Recovery in Gas Shale Reservoirs

    NASA Astrophysics Data System (ADS)

    Vermylen, J. P.; Hagin, P. N.; Zoback, M. D.

    2008-12-01

    CO2 sequestration and enhanced methane recovery may be feasible in unconventional, organic-rich, gas shale reservoirs in which the methane is stored as an adsorbed phase. Previous studies have shown that organic-rich, Appalachian Devonian shales adsorb approximately five times more carbon dioxide than methane at reservoir conditions. However, the enhanced recovery and sequestration concept has not yet been tested for gas shale reservoirs under realistic flow and production conditions. Using the lessons learned from previous studies on enhanced coalbed methane (ECBM) as a starting point, we are conducting laboratory experiments, reservoir modeling, and fluid flow simulations to test the feasibility of sequestration and enhanced recovery in gas shales. Our laboratory work investigates both adsorption and mechanical properties of shale samples to use as inputs for fluid flow simulation. Static and dynamic mechanical properties of shale samples are measured using a triaxial press under realistic reservoir conditions with varying gas saturations and compositions. Adsorption is simultaneously measured using standard, static, volumetric techniques. Permeability is measured using pulse decay methods calibrated to standard Darcy flow measurements. Fluid flow simulations are conducted using the reservoir simulator GEM that has successfully modeled enhanced recovery in coal. The results of the flow simulation are combined with the laboratory results to determine if enhanced recovery and CO2 sequestration is feasible in gas shale reservoirs.

  15. Assessing ocean alkalinity for carbon sequestration

    NASA Astrophysics Data System (ADS)

    Renforth, Phil; Henderson, Gideon

    2017-09-01

    Over the coming century humanity may need to find reservoirs to store several trillions of tons of carbon dioxide (CO2) emitted from fossil fuel combustion, which would otherwise cause dangerous climate change if it were left in the atmosphere. Carbon storage in the ocean as bicarbonate ions (by increasing ocean alkalinity) has received very little attention. Yet recent work suggests sufficient capacity to sequester copious quantities of CO2. It may be possible to sequester hundreds of billions to trillions of tons of C without surpassing postindustrial average carbonate saturation states in the surface ocean. When globally distributed, the impact of elevated alkalinity is potentially small and may help ameliorate the effects of ocean acidification. However, the local impact around addition sites may be more acute but is specific to the mineral and technology. The alkalinity of the ocean increases naturally because of rock weathering in which >1.5 mol of carbon are removed from the atmosphere for every mole of magnesium or calcium dissolved from silicate minerals (e.g., wollastonite, olivine, and anorthite) and 0.5 mol for carbonate minerals (e.g., calcite and dolomite). These processes are responsible for naturally sequestering 0.5 billion tons of CO2 per year. Alkalinity is reduced in the ocean through carbonate mineral precipitation, which is almost exclusively formed from biological activity. Most of the previous work on the biological response to changes in carbonate chemistry have focused on acidifying conditions. More research is required to understand carbonate precipitation at elevated alkalinity to constrain the longevity of carbon storage. A range of technologies have been proposed to increase ocean alkalinity (accelerated weathering of limestone, enhanced weathering, electrochemical promoted weathering, and ocean liming), the cost of which may be comparable to alternative carbon sequestration proposals (e.g., $20-100 tCO2-1). There are still many

  16. 100% Solids Polyurethane Sequestration Coating

    DTIC Science & Technology

    2014-04-11

    Distribution Unlimited 100% Solids Polyurethane Sequestration Coating The views, opinions and/or findings contained in this report are those of the...Papers published in non peer-reviewed journals: 100% Solids Polyurethane Sequestration Coating Report Title Report developed under Topic #CBD13-101...Final Technical Report Contract #: W911NF-13-P-0010 Proposal #: 63958CHSB1 Project: 100% Solids Polyurethane Sequestration Coating

  17. Statistical Assessment of a Paired-site Approach for Verification of Carbon and Nitrogen Sequestration on CRP Land

    NASA Astrophysics Data System (ADS)

    Kucharik, C.; Roth, J.

    2002-12-01

    The threat of global climate change has provoked policy-makers to consider plausible strategies to slow the accumulation of greenhouse gases, especially carbon dioxide, in the atmosphere. One such idea involves the sequestration of atmospheric carbon (C) in degraded agricultural soils as part of the Conservation Reserve Program (CRP). While the potential for significant C sequestration in CRP grassland ecosystems has been demonstrated, the paired-site sampling approach traditionally used to quantify soil C changes has not been evaluated with robust statistical analysis. In this study, 14 paired CRP (> 8 years old) and cropland sites in Dane County, Wisconsin (WI) were used to assess whether a paired-site sampling design could detect statistically significant differences (ANOVA) in mean soil organic C and total nitrogen (N) storage. We compared surface (0 to 10 cm) bulk density, and sampled soils (0 to 5, 5 to 10, and 10 to 25 cm) for textural differences and chemical analysis of organic matter (OM), soil organic C (SOC), total N, and pH. The CRP contributed to lowering soil bulk density by 13% (p < 0.0001) and increased SOC and OM storage (kg m-2) by 13 to 17% in the 0 to 5 cm layer (p = 0.1). We tested the statistical power associated with ANOVA for measured soil properties, and calculated minimum detectable differences (MDD). We concluded that 40 to 65 paired sites and soil sampling in 5 cm increments near the surface were needed to achieve an 80% confidence level (α = 0.05; β = 0.20) in soil C and N sequestration rates. Because soil C and total N storage was highly variable among these sites (CVs > 20%), only a 23 to 29% change in existing total organic C and N pools could be reliably detected. While C and N sequestration (247 kg C ha{-1 } yr-1 and 17 kg N ha-1 yr-1) may be occurring and confined to the surface 5 cm as part of the WI CRP, our sampling design did not statistically support the desired 80% confidence level. We conclude that usage of statistical

  18. Soil carbon sequestration and biochar as negative emission technologies.

    PubMed

    Smith, Pete

    2016-03-01

    Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large-scale deployment of negative emissions technologies (NETs) to reach the 2 °C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr(-1) ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization. © 2016 John Wiley & Sons Ltd.

  19. Going With the Flow: An Aid in Detecting and Differentiating Bronchopulmonary Sequestrations and Hybrid Lesions.

    PubMed

    Oliver, Edward R; DeBari, Suzanne E; Giannone, Mariann M; Pogoriler, Jennifer E; Johnson, Ann M; Horii, Steven C; Gebb, Juliana S; Howell, Lori J; Adzick, N Scott; Coleman, Beverly G

    2018-02-01

    To assess the ability of prenatal ultrasound (US) in identifying systemic feeding arteries in bronchopulmonary sequestrations and hybrid lesions and report the ability of US in classifying bronchopulmonary sequestrations as intralobar or extralobar. Institutional Review Board-approved radiology and clinical database searches from 2008 to 2015 were performed for prenatal lung lesions with final diagnoses of bronchopulmonary sequestrations or hybrid lesions. All patients had detailed US examinations, and most patients had ultrafast magnetic resonance imaging (MRI). Lesion location, size, and identification of systemic feeding arteries and draining veins were assessed with US. The study consisted of 102 bronchopulmonary sequestrations and 86 hybrid lesions. The median maternal age was 30 years. The median gestational age was 22 weeks 5 days. Of bronchopulmonary sequestrations, 66 had surgical pathologic confirmation, and 100 had postnatal imaging. Bronchopulmonary sequestration locations were intrathoracic (n = 77), intra-abdominal (n = 19), and transdiaphragmatic (n = 6). Of hybrid lesions, 84 had surgical pathologic confirmation, and 83 had postnatal imaging. Hybrid lesion locations were intrathoracic (n = 84) and transdiaphragmatic (n = 2). Ultrasound correctly identified systemic feeding arteries in 86 of 102 bronchopulmonary sequestrations and 79 of 86 hybrid lesions. Of patients who underwent MRI, systemic feeding arteries were reported in 62 of 92 bronchopulmonary sequestrations and 56 of 81 hybrid lesions. Ultrasound identified more systemic feeding arteries than MRI in both bronchopulmonary sequestrations and hybrid lesions (P < .01). Magnetic resonance imaging identified systemic feeding arteries that US did not in only 2 cases. In cases in which both systemic feeding arteries and draining veins were identified, US could correctly predict intrathoracic lesions as intralobar or extralobar in 44 of 49 bronchopulmonary sequestrations and

  20. Simplified predictive models for CO 2 sequestration performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Srikanta; Ganesh, Priya; Schuetter, Jared

    ) maximin Latin Hypercube sampling (LHS) based design with a multidimensional kriging metamodel fit. For roughly the same number of simulations, the LHS-based metamodel yields a more robust predictive model, as verified by a k-fold cross-validation approach (with data split into training and test sets) as well by validation with an independent dataset. In the third category, a reduced-order modeling procedure is utilized that combines proper orthogonal decomposition (POD) for reducing problem dimensionality with trajectory-piecewise linearization (TPWL) in order to represent system response at new control settings from a limited number of training runs. Significant savings in computational time are observed with reasonable accuracy from the PODTPWL reduced-order model for both vertical and horizontal well problems – which could be important in the context of history matching, uncertainty quantification and optimization problems. The simplified physics and statistical learning based models are also validated using an uncertainty analysis framework. Reference cumulative distribution functions of key model outcomes (i.e., plume radius and reservoir pressure buildup) generated using a 97-run full-physics simulation are successfully validated against the CDF from 10,000 sample probabilistic simulations using the simplified models. The main contribution of this research project is the development and validation of a portfolio of simplified modeling approaches that will enable rapid feasibility and risk assessment for CO2 sequestration in deep saline formations.« less

  1. Intro to Carbon Sequestration

    ScienceCinema

    None

    2017-12-09

    NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

  2. Dynamics and climate change mitigation potential of soil organic carbon sequestration.

    PubMed

    Sommer, Rolf; Bossio, Deborah

    2014-11-01

    When assessing soil organic carbon (SOC) sequestration and its climate change (CC) mitigation potential at global scale, the dynamic nature of soil carbon storage and interventions to foster it should be taken into account. Firstly, adoption of SOC-sequestration measures will take time, and reasonably such schemes could only be implemented gradually at large-scale. Secondly, if soils are managed as carbon sinks, then SOC will increase only over a limited time, up to the point when a new SOC equilibrium is reached. This paper combines these two processes and predicts potential SOC sequestration dynamics in agricultural land at global scale and the corresponding CC mitigation potential. Assuming that global governments would agree on a worldwide effort to gradually change land use practices towards turning agricultural soils into carbon sinks starting 2014, the projected 87-year (2014-2100) global SOC sequestration potential of agricultural land ranged between 31 and 64 Gt. This is equal to 1.9-3.9% of the SRES-A2 projected 87-year anthropogenic emissions. SOC sequestration would peak 2032-33, at that time reaching 4.3-8.9% of the projected annual SRES-A2 emission. About 30 years later the sequestration rate would have reduced by half. Thus, SOC sequestration is not a C wedge that could contribute increasingly to mitigating CC. Rather, the mitigation potential is limited, contributing very little to solving the climate problem of the coming decades. However, we deliberately did not elaborate on the importance of maintaining or increasing SOC for sustaining soil health, agro-ecosystem functioning and productivity; an issue of global significance that deserves proper consideration irrespectively of any potential additional sequestration of SOC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Final Report for the ZERT Project: Basic Science of Retention Issues, Risk Assessment & Measurement, Monitoring and Verification for Geologic Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spangler, Lee; Cunningham, Alfred; Lageson, David

    2011-03-31

    ZERT has made major contributions to five main areas of sequestration science: improvement of computational tools; measurement and monitoring techniques to verify storage and track migration of CO{sub 2}; development of a comprehensive performance and risk assessment framework; fundamental geophysical, geochemical and hydrological investigations of CO{sub 2} storage; and investigate innovative, bio-based mitigation strategies.

  4. [Assessment on the availability of nitrogen fertilization in improving carbon sequestration potential of China's cropland soil].

    PubMed

    Lu, Fei; Wang, Xiao-Ke; Han, Bing; Ouyang, Zhi-Yun; Duan, Xiao-Nan; Zheng, Hua

    2008-10-01

    With reference to the situation of nitrogen fertilization in 2003 and the recommendations from agricultural experts on fertilization to different crops, two scenarios, namely, 'current situation' and 'fertilization as recommended', were set for estimating the current and potential carbon sequestration of China's cropland soil under nitrogen fertilization. After collecting and analyzing the typical data from the long-term agricultural experiment stations all over China, and based on the recent studies of soil organic matter and nutrient dynamics, we plotted China into four agricultural regions, and estimated the carbon sequestration rate and potential of cropland soil under the two scenarios in each province of China. Meanwhile, with the data concerning fossil fuel consumption for fertilizer production and nitrogen fertilization, the greenhouse gas leakage caused by nitrogen fertilizer production and application was estimated with the help of the parameters given by domestic studies and IPCC. We further proposed that the available carbon sequestration potential of cropland soil could be taken as the criterion of the validity and availability of carbon sequestration measures. The results showed that the application of synthetic nitrogen fertilizer could bring about a carbon sequestration potential of 21.9 Tg C x a(-1) in current situation, and 30.2 Tg C x a(-1) with fertilization as recommended. However, under the two scenarios, the greenhouse gas leakage caused by fertilizer production and application would reach 72.9 Tg C x a(-1) and 91.4 Tg C x a(-1), and thus, the actual available carbon sequestration potential would be -51.0 Tg C x a(-1) and -61.1 Tg C x a(-1), respectively. The situation was even worse under the 'fertilization as recommended' scenario, because the increase in the amount of nitrogen fertilization would lead to 10. 1 Tg C x a(-1) or more net greenhouse gas emission. All these results indicated that the application of synthetic nitrogen fertilizer

  5. A Multi-Level Approach to Outreach for Geologic Sequestration Projects

    USGS Publications Warehouse

    Greenberg, S.E.; Leetaru, H.E.; Krapac, I.G.; Hnottavange-Telleen, K.; Finley, R.J.

    2009-01-01

    Public perception of carbon capture and sequestration (CCS) projects represents a potential barrier to commercialization. Outreach to stakeholders at the local, regional, and national level is needed to create familiarity with and potential acceptance of CCS projects. This paper highlights the Midwest Geological Sequestration Consortium (MGSC) multi-level outreach approach which interacts with multiple stakeholders. The MGSC approach focuses on external and internal communication. External communication has resulted in building regional public understanding of CCS. Internal communication, through a project Risk Assessment process, has resulted in enhanced team communication and preparation of team members for outreach roles. ?? 2009 Elsevier Ltd. All rights reserved.

  6. Geophysical monitoring technology for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Ma, Jin-Feng; Li, Lin; Wang, Hao-Fan; Tan, Ming-You; Cui, Shi-Ling; Zhang, Yun-Yin; Qu, Zhi-Peng; Jia, Ling-Yun; Zhang, Shu-Hai

    2016-06-01

    Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniques for CO2 sequestration have grown out of conventional oil and gas geophysical exploration techniques, it takes a long time to conduct geophysical monitoring, and there are many barriers and challenges. In this paper, with the initial objective of performing CO2 sequestration, we studied the geophysical tasks associated with evaluating geological storage sites and monitoring CO2 sequestration. Based on our review of the scope of geophysical monitoring techniques and our experience in domestic and international carbon capture and sequestration projects, we analyzed the inherent difficulties and our experiences in geophysical monitoring techniques, especially, with respect to 4D seismic acquisition, processing, and interpretation.

  7. Sequestration Options for the West Coast States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myer, Larry

    -sink matching was implemented and preliminary marginal cost curves developed, which showed that 20, 40, or 80 Mega tonnes (Mt) of CO{sub 2} per year could be sequestered in California at a cost ofmore » $31/tonne (t), $35/t, or $$50/t, respectively. Phase I also addressed key issues affecting deployment of CCS technologies, including storage-site monitoring, injection regulations, and health and environmental risks. A framework for screening and ranking candidate sites for geologic CO{sub 2} storage on the basis of HSE risk was developed. A webbased, state-by-state compilation of current regulations for injection wells, and permits/contracts for land use changes, was developed, and modeling studies were carried out to assess the application of a number of different geophysical techniques for monitoring geologic sequestration. Public outreach activities resulted in heightened awareness of sequestration among state, community and industry leaders in the Region. Assessment of the changes in carbon stocks in agricultural lands showed that Washington, Oregon and Arizona were CO{sub 2} sources for the period from 1987 to 1997. Over the same period, forest carbon stocks decreased in Washington, but increased in Oregon and Arizona. Results of the terrestrial supply curve analyses showed that afforestation of rangelands and crop lands offer major sequestration opportunities; at a price of $$20 per t CO{sub 2}, more than 1,233 MMT could be sequestered over 40-years in Washington and more than 1,813 MMT could be sequestered in Oregon.« less

  8. Integrity of Pre-existing Wellbores in Geological Sequestration of CO 2 – Assessment Using a Coupled Geomechanics-fluid Flow Model

    DOE PAGES

    Kelkar, Sharad; Carey, J. William; Dempsey, David; ...

    2014-12-31

    Assessment of potential CO 2 and brine leakage from wellbores is central to any consideration of the viability of geological CO 2 sequestration. Depleted oil and gas reservoirs are some of the potential candidates for consideration as sequestration sites. The sequestration sites are expected to cover laterally extensive areas to be of practical interest. Hence there is a high likelihood that such sites will contain many pre-existing abandoned wells. Most existing work on wellbore integrity has focused on field and laboratory studies of chemical reactivity. Very little work has been done on the impacts of mechanical stresses on wellbore performance.more » This study focuses on the potential enhancement of fluid flow pathways in the near-wellbore environment due to modifications in the geomechanical stress field resulting from the CO 2 injection operations. The majority of the operational scenarios for CO 2 sequestration lead to significant rise in the formation pore pressure. This is expected to lead to an expansion of the reservoir rock and build-up of shear stresses near wellbores where the existence of cement and casing are expected to constrain the expansion. If the stress buildup is large enough, this can lead to failure with attendant permeability enhancement that can potentially provide leakage pathways to shallower aquifers and the surface. In this study, we use a numerical model to simulate key features of a wellbore (casing, annulus and cement) embedded in a system that includes the upper aquifer, caprock, and storage aquifer. We present the sensitivity of damage initiation and propagation to various operational and formation parameters. We consider Mohr-Coulomb shear-failure models; tensile failure is also likely to occur but will require higher stress changes and will be preceded by shear failure. The modeling is performed using the numerical simulator FEHM developed at LANL that models coupled THM processes during multi-phase fluid flow and

  9. [Quality control and assessment of qualitative interview in health care research].

    PubMed

    Xie, Yan-ming; Liao, Xing

    2008-07-01

    It is not finally concluded how to standardize the use of qualitative research in the world. Qualitative researchers disagree with each other about this issue. As we know, there have been a large number of articles written in different ways about qualitative research due to the "flexibility", one of its features. Qualitative research is quite different from quantitative research which is easy to control its quality and quality assessment. A series of criteria has been set up for quantitative research. However qualitative research needs to be improved in these aspects, in which qualitative interviews are mostly used at home and abroad at present. Hence, it becomes an important and urgent issue for qualitative researchers to standardly control and assess the quality of qualitative interview.

  10. An Organic Geochemical Assessment of CO2-Coal Interactions During Sequestration

    USGS Publications Warehouse

    Kolak, Jonathan J.; Burruss, Robert A.

    2003-01-01

    Three well-characterized coal samples of varying rank were extracted with supercritical CO2 to determine the amount of polycyclic aromatic hydrocarbons (PAHs) that could be mobilized during simulated CO2 injection/sequestration in deep coal beds. The supercritical CO2 extractions were conducted at 40?C and 100 bars, roughly corresponding to a depth of 1 km. The greatest amount of PAHs was extracted from the high-volatile C bituminous coal sample. Extracts from the subbituminous C and anthracite coal samples contained lower concentrations of these compounds. The effectiveness of supercritical CO2 in liberating PAHs from the coal sample was evaluated in a comparison with a parallel series of Soxhlet extractions using 100% dichloromethane. More PAHs were extracted from the lower rank coal samples with dichloromethane than with supercritical CO2. The results from this investigation indicate that, regardless of coal rank, CO2 injection into deep coal beds may mobilize PAHs from the coal matrix. However, more PAHs could be mobilized during CO2 sequestration in a high-volatile C bituminous coal bed than in either of the other two coal ranks studied.

  11. Algae-Based Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Haoyang, Cai

    2018-03-01

    Our civilization is facing a series of environmental problems, including global warming and climate change, which are caused by the accumulation of green house gases in the atmosphere. This article will briefly analyze the current global warming problem and propose a method that we apply algae cultivation to absorb carbon and use shellfish to sequestrate it. Despite the importance of decreasing CO2 emissions or developing carbon-free energy sources, carbon sequestration should be a key issue, since the amount of carbon dioxide that already exists in the atmosphere is great enough to cause global warming. Algae cultivation would be a good choice because they have high metabolism rates and provides shellfish with abundant food that contains carbon. Shellfish’s shells, which are difficult to be decomposed, are reliable storage of carbon, compared to dead organisms like trees and algae. The amount of carbon that can be sequestrated by shellfish is considerable. However, the sequestrating rate of algae and shellfish is not high enough to affect the global climate. Research on algae and shellfish cultivation, including gene technology that aims to create “super plants” and “super shellfish”, is decisive to the solution. Perhaps the baton of history will shift to gene technology, from nuclear physics that has lost appropriate international environment after the end of the Cold War. Gene technology is vital to human survival.

  12. Enhancing Institutional Assessment Efforts through Qualitative Methods

    ERIC Educational Resources Information Center

    Van Note Chism, Nancy; Banta, Trudy W.

    2007-01-01

    Qualitative methods can do much to describe context and illuminate the why behind patterns encountered in institutional assessment. Alone, or in combination with quantitative methods, they should be the approach of choice for many of the most important assessment questions. (Contains 1 table.)

  13. Unraveling the stratigraphy of the Oriskany Sandstone: A necessity in assessing its site-specific carbon sequestration potential

    USGS Publications Warehouse

    Kostelnik, J.; Carter, K.M.

    2009-01-01

    The widespread distribution, favorable reservoir characteristics, and depth make the Lower Devonian Oriskany Sandstone a viable sequestration target in the Appalachian Basin. The Oriskany Sandstone is thickest in the structurally complex Ridge and Valley Province, thins toward the northern and western basin margins, and is even absent in other parts of the basin (i.e., the no-sand area of northwestern Pennsylvania). We evaluated four regions using petrographic data, core analyses, and geophysical log analyses. Throughout the entire study area, average porosities range from 1.35 to 14%. The most notable porosity types are primary intergranular, secondary dissolution, and fracture porosity. Intergranular primary porosity dominates at stratigraphic pinch-out zones near the Oriskany no-sand area and at the western limit of the Oriskany Sandstone. Secondary porosity occurs from dissolution of carbonate constituents primarily in the combination-traps natural gas play extending through western Pennsylvania, western West Virginia, and eastern Ohio. Fracture porosity dominates in the central Appalachian Plateau Province and Valley and Ridge Province. Based on average porosity, the most likely regions for successful sequestration in the Oriskany interval are (1) updip from Oriskany Sandstone pinch-outs in eastern Ohio, and (2) western Pennsylvania, western West Virginia, and eastern Ohio where production occurs from a combination of stratigraphic and structural traps. Permeability data, where available, were used to further evaluate the potential of these regions. Permeability ranges from 0.2 to 42.7 md. Stratigraphic pinch-outs at the northern and western limits of the basin have the highest permeabilities. We recommend detailed site assessments when evaluating the sequestration potential of a given injection site based on the variability observed in the Oriskany structure, lithology, and reservoir characteristics. ?? 2009. The American Association of Petroleum Geologists

  14. Sequestration of hydrophobic organic contaminants by geosorbents

    USGS Publications Warehouse

    Luthy, Richard G.; Aiken, George R.; Brusseau, Mark L.; Cunningham, Scott D.; Gschwend, Philip M.; Pignatello, Joseph J.; Reinhard, Martin; Traina, Samuel J.; Weber, Walter J.; Westall, John C.

    1997-01-01

    The chemical interactions of hydrophobic organic contaminants (HOCs) with soils and sediments (geosorbents) may result in strong binding and slow subsequent release rates that significantly affect remediation rates and endpoints. The underlying physical and chemical phenomena potentially responsible for this apparent sequestration of HOCs by geosorbents are not well understood. This challenges our concepts for assessing exposure and toxicity and for setting environmental quality criteria. Currently there are no direct observational data revealing the molecular-scale locations in which nonpolar organic compounds accumulate when associated with natural soils or sediments. Hence macroscopic observations are used to make inferences about sorption mechanisms and the chemical factors affecting the sequestration of HOCs by geosorbents. Recent observations suggest that HOC interactions with geosorbents comprise different inorganic and organic surfaces and matrices, and distinctions may be drawn along these lines, particularly with regard to the roles of inorganic micropores, natural sorbent organic matter components, combustion residue particulate carbon, and spilled organic liquids. Certain manipulations of sorbates or sorbent media may help reveal sorption mechanisms, but mixed sorption phenomena complicate the interpretation of macroscopic data regarding diffusion of HOCs into and out of different matrices and the hysteretic sorption and aging effects commonly observed for geosorbents. Analytical characterizations at the microscale, and mechanistic models derived therefrom, are needed to advance scientific knowledge of HOC sequestration, release, and environmental risk.

  15. Deep horizons: Soil Carbon sequestration and storage potential in grassland soils

    NASA Astrophysics Data System (ADS)

    Torres-Sallan, Gemma; Schulte, Rogier; Lanigan, Gary J.; Byrne, Kenneth A.; Reidy, Brian; Creamer, Rachel

    2016-04-01

    Soil Organic Carbon (SOC) enhances soil fertility, holding nutrients in a plant-available form. It also improves aeration and water infiltration. Soils are considered a vital pool for C (Carbon) sequestration, as they are the largest pool of C after the oceans, and contain 3.5 more C than the atmosphere. SOC models and inventories tend to focus on the top 30 cm of soils, only analysing total SOC values. Association of C with microaggregates (53-250 μm) and silt and clay (<53 μm) is considered C sequestration as these fractions offer the greatest protection against mineralization. This study assessed the role of aggregation in C sequestration throughout the profile, down to 1 m depth, of 30 grassland sites divided in 6 soil types. One kg sample was collected for each horizon, sieved at 8 mm and dried at 40 °C. Through a wet sieving procedure, four aggregate sizes were isolated: large macroaggregates (>2000 μm); macroaggregates (250-2000 μm); microaggregates and silt & clay. Organic C associated to each aggregate fraction was analysed on a LECO combustion analyser. Sand-free C was calculated for each aggregate size. For all soil types, 84% of the SOC located in the first 30 cm was contained inside macroaggregates and large macroaggregates. Given that this fraction has a turnover time of 1 to 10 years, sampling at that depth only provides information on the labile fraction in soil, and does not consider the longer term C sequestration potential. Only when looking at the whole profile, two clear trends could be observed: 1) soils with a clay increase at depth had most of their C located in the silt and clay fractions, which indicate their enhanced C sequestration capacity, 2) free-draining soils had a bigger part of their SOC located in the macroaggregate fractions. These results indicate that current C inventories and models that focus on the top 30 cm, do not accurately measure soil C sequestration potential in soils, but rather the more labile fraction. However

  16. Oral Histories as Critical Qualitative Inquiry in Community Health Assessment

    ERIC Educational Resources Information Center

    Hernandez, Sarah Gabriella; Genkova, Ana; Castañeda, Yvette; Alexander, Simone; Hebert-Beirne, Jennifer

    2017-01-01

    Qualitative methods such as focus groups and interviews are common methodologies employed in participatory approaches to community health assessment to develop effective community health improvement plans. Oral histories are a rarely used form of qualitative inquiry that can enhance community health assessment in multiple ways. Oral histories…

  17. Qualitative Career Assessment: An Overview and Analysis

    ERIC Educational Resources Information Center

    Whiston, Susan C.; Rahardja, Daryn

    2005-01-01

    Qualitative career assessments are theoretically based interventions that are grounded in constructivism. Constructivism is a departure from the traditional logical positive worldview that has influenced the development of many traditional career assessments. A central concept to constructivism is the importance of meaning, which can only be…

  18. Near-term deployment of carbon capture and sequestration from biorefineries in the United States

    PubMed Central

    Johnson, Nils; McCoy, Sean T.; Turner, Peter A.; Mach, Katharine J.

    2018-01-01

    Capture and permanent geologic sequestration of biogenic CO2 emissions may provide critical flexibility in ambitious climate change mitigation. However, most bioenergy with carbon capture and sequestration (BECCS) technologies are technically immature or commercially unavailable. Here, we evaluate low-cost, commercially ready CO2 capture opportunities for existing ethanol biorefineries in the United States. The analysis combines process engineering, spatial optimization, and lifecycle assessment to consider the technical, economic, and institutional feasibility of near-term carbon capture and sequestration (CCS). Our modeling framework evaluates least cost source–sink relationships and aggregation opportunities for pipeline transport, which can cost-effectively transport small CO2 volumes to suitable sequestration sites; 216 existing US biorefineries emit 45 Mt CO2 annually from fermentation, of which 60% could be captured and compressed for pipeline transport for under $25/tCO2. A sequestration credit, analogous to existing CCS tax credits, of $60/tCO2 could incent 30 Mt of sequestration and 6,900 km of pipeline infrastructure across the United States. Similarly, a carbon abatement credit, analogous to existing tradeable CO2 credits, of $90/tCO2 can incent 38 Mt of abatement. Aggregation of CO2 sources enables cost-effective long-distance pipeline transport to distant sequestration sites. Financial incentives under the low-carbon fuel standard in California and recent revisions to existing federal tax credits suggest a substantial near-term opportunity to permanently sequester biogenic CO2. This financial opportunity could catalyze the growth of carbon capture, transport, and sequestration; improve the lifecycle impacts of conventional biofuels; support development of carbon-negative fuels; and help fulfill the mandates of low-carbon fuel policies across the United States. PMID:29686063

  19. The Lifestyle Carbon Dividend: Assessment of the Carbon Sequestration Potential of Grasslands and Pasturelands Reverted to Native Forests

    NASA Astrophysics Data System (ADS)

    Rao, S.; Jain, A. K.; Shu, S.

    2015-12-01

    What is the potential of a global transition to a vegan lifestyle to sequester carbon and mitigate climate change? To answer this question, we use an Earth System Model (ESM), the Integrated Science Assessment Model (ISAM). ISAM is a fully coupled biogeochemistry (carbon and nitrogen cycles) and biogeophysics (hydrology and thermal energy) ESM, which calculates carbon sources and sinks due to land cover and land use change activities, such as reforestation and afforestation. We calculate the carbon sequestration potential of grasslands and pasturelands that can be reverted to native forests as 265 GtC on 1.96E+7 km2 of land area, just 41% of the total area of such lands on Earth. The grasslands and pasturelands are assumed to revert back to native forests which existed prior to any human intervention and these include tropical, temperate and boreal forests. The results are validated with above ground regrowth measurements. Since this carbon sequestration potential is greater than the 240 GtC of that has been added to the atmosphere since the industrial era began, it shows that such global lifestyle transitions have tremendous potential to mitigate and even reverse climate change.

  20. Terrestrial Carbon Sequestration with Biochar: A Preliminary Assessment of its Global Potential

    NASA Astrophysics Data System (ADS)

    Amonette, J.; Lehmann, J.; Joseph, S.

    2007-12-01

    Biochar technology involves the capture of CO2 from the atmosphere by photosynthesis and its ultimate conversion to biochar by pyrolysis. Energy is obtained during the pyrolysis process and the charcoal, or biochar, which is considerably more stable than biomass, may then be incorporated into agricultural lands where it serves to increase the nutrient- and water-holding capacity of soil. With an estimated half-life in soil on the order of centuries to millenia, biochar offers a way of safely storing C for long periods of time while enhancing the productivity of terrestrial ecosystems. Moreover, biochar technology, like other biomass conversion approaches that include C sequestration options, offers a way to decrease the levels of CO2 in the atmosphere. That is, biochar technology is one of the few inherently "carbon-negative" sources of energy. These positive attributes are of little consequence, however, if the total contribution to sequestration is small compared to the need. In this paper, we provide a preliminary assessment of the potential contribution of biochar technology to the mitigation of climate change, and identify some research needs. Currently, the atmospheric C levels are increasing by about 4.1 Gt/yr, with 7.2 Gt/yr being put into the atmosphere by fossil fuel combustion and cement production, and 3.1 Gt/yr being removed from the atmosphere by the ocean (2.2 Gt/yr) and terrestrial processes (0.9 Gt/yr). The uptake by terrestrial processes can be increased significantly by management of the 60.6 Gt/yr of biomass C that is fixed by photosynthesis (i.e., net primary productivity), of which 59 Gt/yr is decomposed and 1.6 Gt/yr combusted. Biomass pyrolysis converts about 50% of the biomass C to char. Of the other 50% that is converted to bio-oil and bio-gas, the net energy production is about 62% efficient. Thus, pyrolysis of 1 Gt of biomass C would provide energy equivalent to about 0.3 Gt of fossil C and could be used to offset that amount of fossil C

  1. Qualitative Assessment of Inquiry-Based Teaching Methods

    ERIC Educational Resources Information Center

    Briggs, Michael; Long, George; Owens, Katrina

    2011-01-01

    A new approach to teaching method assessment using student focused qualitative studies and the theoretical framework of mental models is proposed. The methodology is considered specifically for the advantages it offers when applied to the assessment of inquiry-based teaching methods. The theoretical foundation of mental models is discussed, and…

  2. Quantifying and Mapping the Supply of and Demand for Carbon Storage and Sequestration Service from Urban Trees.

    PubMed

    Zhao, Chang; Sander, Heather A

    2015-01-01

    Studies that assess the distribution of benefits provided by ecosystem services across urban areas are increasingly common. Nevertheless, current knowledge of both the supply and demand sides of ecosystem services remains limited, leaving a gap in our understanding of balance between ecosystem service supply and demand that restricts our ability to assess and manage these services. The present study seeks to fill this gap by developing and applying an integrated approach to quantifying the supply and demand of a key ecosystem service, carbon storage and sequestration, at the local level. This approach follows three basic steps: (1) quantifying and mapping service supply based upon Light Detection and Ranging (LiDAR) processing and allometric models, (2) quantifying and mapping demand for carbon sequestration using an indicator based on local anthropogenic CO2 emissions, and (3) mapping a supply-to-demand ratio. We illustrate this approach using a portion of the Twin Cities Metropolitan Area of Minnesota, USA. Our results indicate that 1735.69 million kg carbon are stored by urban trees in our study area. Annually, 33.43 million kg carbon are sequestered by trees, whereas 3087.60 million kg carbon are emitted by human sources. Thus, carbon sequestration service provided by urban trees in the study location play a minor role in combating climate change, offsetting approximately 1% of local anthropogenic carbon emissions per year, although avoided emissions via storage in trees are substantial. Our supply-to-demand ratio map provides insight into the balance between carbon sequestration supply in urban trees and demand for such sequestration at the local level, pinpointing critical locations where higher levels of supply and demand exist. Such a ratio map could help planners and policy makers to assess and manage the supply of and demand for carbon sequestration.

  3. Quantifying and Mapping the Supply of and Demand for Carbon Storage and Sequestration Service from Urban Trees

    PubMed Central

    Zhao, Chang; Sander, Heather A.

    2015-01-01

    Studies that assess the distribution of benefits provided by ecosystem services across urban areas are increasingly common. Nevertheless, current knowledge of both the supply and demand sides of ecosystem services remains limited, leaving a gap in our understanding of balance between ecosystem service supply and demand that restricts our ability to assess and manage these services. The present study seeks to fill this gap by developing and applying an integrated approach to quantifying the supply and demand of a key ecosystem service, carbon storage and sequestration, at the local level. This approach follows three basic steps: (1) quantifying and mapping service supply based upon Light Detection and Ranging (LiDAR) processing and allometric models, (2) quantifying and mapping demand for carbon sequestration using an indicator based on local anthropogenic CO2 emissions, and (3) mapping a supply-to-demand ratio. We illustrate this approach using a portion of the Twin Cities Metropolitan Area of Minnesota, USA. Our results indicate that 1735.69 million kg carbon are stored by urban trees in our study area. Annually, 33.43 million kg carbon are sequestered by trees, whereas 3087.60 million kg carbon are emitted by human sources. Thus, carbon sequestration service provided by urban trees in the study location play a minor role in combating climate change, offsetting approximately 1% of local anthropogenic carbon emissions per year, although avoided emissions via storage in trees are substantial. Our supply-to-demand ratio map provides insight into the balance between carbon sequestration supply in urban trees and demand for such sequestration at the local level, pinpointing critical locations where higher levels of supply and demand exist. Such a ratio map could help planners and policy makers to assess and manage the supply of and demand for carbon sequestration. PMID:26317530

  4. Near-term deployment of carbon capture and sequestration from biorefineries in the United States.

    PubMed

    Sanchez, Daniel L; Johnson, Nils; McCoy, Sean T; Turner, Peter A; Mach, Katharine J

    2018-05-08

    Capture and permanent geologic sequestration of biogenic CO 2 emissions may provide critical flexibility in ambitious climate change mitigation. However, most bioenergy with carbon capture and sequestration (BECCS) technologies are technically immature or commercially unavailable. Here, we evaluate low-cost, commercially ready CO 2 capture opportunities for existing ethanol biorefineries in the United States. The analysis combines process engineering, spatial optimization, and lifecycle assessment to consider the technical, economic, and institutional feasibility of near-term carbon capture and sequestration (CCS). Our modeling framework evaluates least cost source-sink relationships and aggregation opportunities for pipeline transport, which can cost-effectively transport small CO 2 volumes to suitable sequestration sites; 216 existing US biorefineries emit 45 Mt CO 2 annually from fermentation, of which 60% could be captured and compressed for pipeline transport for under $25/tCO 2 A sequestration credit, analogous to existing CCS tax credits, of $60/tCO 2 could incent 30 Mt of sequestration and 6,900 km of pipeline infrastructure across the United States. Similarly, a carbon abatement credit, analogous to existing tradeable CO 2 credits, of $90/tCO 2 can incent 38 Mt of abatement. Aggregation of CO 2 sources enables cost-effective long-distance pipeline transport to distant sequestration sites. Financial incentives under the low-carbon fuel standard in California and recent revisions to existing federal tax credits suggest a substantial near-term opportunity to permanently sequester biogenic CO 2 This financial opportunity could catalyze the growth of carbon capture, transport, and sequestration; improve the lifecycle impacts of conventional biofuels; support development of carbon-negative fuels; and help fulfill the mandates of low-carbon fuel policies across the United States. Copyright © 2018 the Author(s). Published by PNAS.

  5. Further exploration of dissemination bias in qualitative research required to facilitate assessment within qualitative evidence syntheses.

    PubMed

    Toews, Ingrid; Booth, Andrew; Berg, Rigmor C; Lewin, Simon; Glenton, Claire; Munthe-Kaas, Heather M; Noyes, Jane; Schroter, Sara; Meerpohl, Joerg J

    2017-08-01

    To conceptualise and discuss dissemination bias in qualitative research. It is likely that the mechanisms leading to dissemination bias in quantitative research, including time lag, language, gray literature, and truncation bias also contribute to dissemination bias in qualitative research. These conceptual considerations have informed the development of a research agenda. Further exploration of dissemination bias in qualitative research is needed, including the extent of non-dissemination and related dissemination bias, and how to assess dissemination bias within qualitative evidence syntheses. We also need to consider the mechanisms through which dissemination bias in qualitative research could occur to explore approaches for reducing it. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Myths and Misconceptions about Using Qualitative Methods in Assessment

    ERIC Educational Resources Information Center

    Harper, Shaun R.; Kuh, George D.

    2007-01-01

    The value of qualitative assessment approaches has been underestimated primarily because they are often juxtaposed against long-standing quantitative traditions and the widely accepted premise that the best research produces generalizable and statistically significant findings. Institutional researchers avoid qualitative methods for at least three…

  7. Impacts of crop rotations on soil organic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Gobin, Anne; Vos, Johan; Joris, Ingeborg; Van De Vreken, Philippe

    2013-04-01

    Agricultural land use and crop rotations can greatly affect the amount of carbon sequestered in the soil. We developed a framework for modelling the impacts of crop rotations on soil carbon sequestration at the field scale with test case Flanders. A crop rotation geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System) to elicit the most common crop rotation on major soil types in Flanders. In order to simulate the impact of crop cover on carbon sequestration, the Roth-C model was adapted to Flanders' environment and coupled to common crop rotations extracted from the IACS geodatabases and statistical databases on crop yield. Crop allometric models were used to calculate crop residues from common crops in Flanders and subsequently derive stable organic matter fluxes to the soil (REGSOM). The REGSOM model was coupled to Roth-C model was run for 30 years and for all combinations of seven main arable crops, two common catch crops and two common dosages of organic manure. The common crops are winter wheat, winter barley, sugar beet, potato, grain maize, silage maize and winter rapeseed; the catch crops are yellow mustard and Italian ryegrass; the manure dosages are 35 ton/ha cattle slurry and 22 ton/ha pig slurry. Four common soils were simulated: sand, loam, sandy loam and clay. In total more than 2.4 million simulations were made with monthly output of carbon content for 30 years. Results demonstrate that crop cover dynamics influence carbon sequestration for a very large percentage. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. Crop residues of grain maize and winter wheat followed by catch crops contribute largely to the total carbon sequestered. This implies that agricultural policies that impact on agricultural land management influence soil carbon sequestration for a large percentage. The framework is therefore

  8. Carbon sequestration by fruit trees--Chinese apple orchards as an example.

    PubMed

    Wu, Ting; Wang, Yi; Yu, Changjiang; Chiarawipa, Rawee; Zhang, Xinzhong; Han, Zhenhai; Wu, Lianhai

    2012-01-01

    Apple production systems are an important component in the Chinese agricultural sector with 1.99 million ha plantation. The orchards in China could play an important role in the carbon (C) cycle of terrestrial ecosystems and contribute to C sequestration. The carbon sequestration capability in apple orchards was analyzed through identifying a set of potential assessment factors and their weighting factors determined by a field model study and literature. The dynamics of the net C sink in apple orchards in China was estimated based on the apple orchard inventory data from 1990s and the capability analysis. The field study showed that the trees reached the peak of C sequestration capability when they were 18 years old, and then the capability began to decline with age. Carbon emission derived from management practices would not be compensated through C storage in apple trees before reaching the mature stage. The net C sink in apple orchards in China ranged from 14 to 32 Tg C, and C storage in biomass from 230 to 475 Tg C between 1990 and 2010. The estimated net C sequestration in Chinese apple orchards from 1990 to 2010 was equal to 4.5% of the total net C sink in the terrestrial ecosystems in China. Therefore, apple production systems can be potentially considered as C sinks excluding the energy associated with fruit production in addition to provide fruits.

  9. Qualitative research in nutrition and dietetics: assessing quality.

    PubMed

    Pilnick, A; Swift, J A

    2011-06-01

    In recent years, qualitative research has become much more widely used in healthcare settings and undoubtedly has much to offer nutrition and dietetics. Its value is, however, still sometimes called into question and, for those unfamiliar with qualitative approaches, it can be difficult to grasp what distinguishes 'good' qualitative research from that which has been less rigorously conceived and conducted. This review, the fourth in the series, aims to highlight some of the key scientific debates around the quality criteria that can be applied to qualitative research, and offers some flexible guidelines that may be used both in producing and assessing qualitative health research, including studies in nutrition and dietetics. Other reviews in this series provide a model for embarking on a qualitative research project in nutrition and dietetics, an overview of the principal techniques of data collection, sampling and analysis and some practical advice relevant to nutrition and dietetics, along with glossaries of key terms. © 2010 The Authors. Journal compilation © 2010 The British Dietetic Association Ltd.

  10. Options for accounting carbon sequestration in German forests.

    PubMed

    Krug, Joachim; Koehl, Michael; Riedel, Thomas; Bormann, Kristin; Rueter, Sebastian; Elsasser, Peter

    2009-08-03

    The Accra climate change talks held from 21-27 August 2008 in Accra, Ghana, were part of an ongoing series of meetings leading up to the Copenhagen meeting in December 2009. During the meeting a set of options for accounting carbon sequestration in forestry on a post-2012 framework was presented. The options include gross-net and net-net accounting and approaches for establishing baselines. This article demonstrates the embedded consequences of Accra Accounting Options for the case study of German national GHG accounting. It presents the most current assessment of sequestration rates by forest management for the period 1990 - 2007, provides an outlook of future emissions and removals (up to the year 2042) as related to three different management scenarios, and shows that implementation of some Accra options may reverse sources to sinks, or sinks to sources. The results of the study highlight the importance of elaborating an accounting system that would prioritize the climate convention goals, not national preferences.

  11. Finding Qualitative Research Evidence for Health Technology Assessment.

    PubMed

    DeJean, Deirdre; Giacomini, Mita; Simeonov, Dorina; Smith, Andrea

    2016-08-01

    Health technology assessment (HTA) agencies increasingly use reviews of qualitative research as evidence for evaluating social, experiential, and ethical aspects of health technologies. We systematically searched three bibliographic databases (MEDLINE, CINAHL, and Social Science Citation Index [SSCI]) using published search filters or "hedges" and our hybrid filter to identify qualitative research studies pertaining to chronic obstructive pulmonary disease and early breast cancer. The search filters were compared in terms of sensitivity, specificity, and precision. Our screening by title and abstract revealed that qualitative research constituted only slightly more than 1% of all published research on each health topic. The performance of the published search filters varied greatly across topics and databases. Compared with existing search filters, our hybrid filter demonstrated a consistently high sensitivity across databases and topics, and minimized the resource-intensive process of sifting through false positives. We identify opportunities for qualitative health researchers to improve the uptake of qualitative research into evidence-informed policy making. © The Author(s) 2016.

  12. A method for assessing carbon stocks, carbon sequestration, and greenhouse-gas fluxes in ecosystems of the United States under present conditions and future scenarios

    USGS Publications Warehouse

    Bergamaschi, Brian A.; Bernknopf, Richard; Clow, David; Dye, Dennis; Faulkner, Stephen; Forney, William; Gleason, Robert; Hawbaker, Todd; Liu, Jinxun; Liu, Shu-Guang; Prisley, Stephen; Reed, Bradley; Reeves, Matthew; Rollins, Matthew; Sleeter, Benjamin; Sohl, Terry; Stackpoole, Sarah; Stehman, Stephen; Striegl, Robert G.; Wein, Anne; Zhu, Zhi-Liang; Zhu, Zhi-Liang

    2010-01-01

    he Energy Independence and Security Act of 2007 (EISA), Section 712, mandates the U.S. Department of the Interior to develop a methodology and conduct an assessment of the Nation’s ecosystems, focusing on carbon stocks, carbon sequestration, and emissions of three greenhouse gases (GHGs): carbon dioxide, methane, and nitrous oxide. The major requirements include (1) an assessment of all ecosystems (terrestrial systems, such as forests, croplands, wetlands, grasslands/shrublands; and aquatic ecosystems, such as rivers, lakes, and estuaries); (2) an estimate of the annual potential capacities of ecosystems to increase carbon sequestration and reduce net GHG emissions in the context of mitigation strategies (including management and restoration activities); and (3) an evaluation of the effects of controlling processes, such as climate change, land-use and land-cover change, and disturbances such as wildfires.The concepts of ecosystems, carbon pools, and GHG fluxes follow conventional definitions in use by major national and international assessment or inventory efforts. In order to estimate current ecosystem carbon stocks and GHG fluxes and to understand the potential capacity and effects of mitigation strategies, the method will use two time periods for the assessment: 2001 through 2010, which establishes a current ecosystem carbon and GHG baseline and will be used to validate the models; and 2011 through 2050, which will be used to assess potential capacities based on a set of scenarios. The scenario framework will be constructed using storylines of the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES), along with both reference and enhanced land-use and land-cover (LULC) and land-management parameters. Additional LULC and land-management mitigation scenarios will be constructed for each storyline to increase carbon sequestration and reduce GHG fluxes in ecosystems. Input from regional experts and stakeholders will be

  13. A method for assessing carbon stocks, carbon sequestration, and greenhouse-gas fluxes in ecosystems of the United States under present conditions and future scenarios

    Treesearch

    Zhiliang Zhu; Brian Bergamaschi; Richard Bernknopf; David Clow; Dennis Dye; Stephen Faulkner; William Forney; Robert Gleason; Todd Hawbaker; Jinxun Liu; Shuguang Liu; Stephen Prisley; Bradley Reed; Matthew Reeves; Matthew Rollins; Benjamin Sleeter; Terry Sohl; Sarah Stackpoole; Stephen Stehman; Robert Striegl; Anne Wein

    2010-01-01

    This methodology was developed to fulfill a requirement by the Energy Independence and Security Act of 2007 (EISA). The EISA legislation mandates the U.S. Department of the Interior (DOI) to develop a methodology and conduct an assessment of carbon storage, carbon sequestration, and fluxes of three principal greenhouse gases (GHG) for the Nation's ecosystems. The...

  14. Federal Control of Geological Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reitze, Arnold W.

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-burning electric power plants in deep underground formations. This article explores the technical andmore » legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.« less

  15. Teaching and assessing procedural skills: a qualitative study

    PubMed Central

    2013-01-01

    Background Graduating Internal Medicine residents must possess sufficient skills to perform a variety of medical procedures. Little is known about resident experiences of acquiring procedural skills proficiency, of practicing these techniques, or of being assessed on their proficiency. The purpose of this study was to qualitatively investigate resident 1) experiences of the acquisition of procedural skills and 2) perceptions of procedural skills assessment methods available to them. Methods Focus groups were conducted in the weeks following an assessment of procedural skills incorporated into an objective structured clinical examination (OSCE). Using fundamental qualitative description, emergent themes were identified and analyzed. Results Residents perceived procedural skills assessment on the OSCE as a useful formative tool for direct observation and immediate feedback. This positive reaction was regularly expressed in conjunction with a frustration with available assessment systems. Participants reported that proficiency was acquired through resident directed learning with no formal mechanism to ensure acquisition or maintenance of skills. Conclusions The acquisition and assessment of procedural skills in Internal Medicine programs should move toward a more structured system of teaching, deliberate practice and objective assessment. We propose that directed, self-guided learning might meet these needs. PMID:23672617

  16. Teaching and assessing procedural skills: a qualitative study.

    PubMed

    Touchie, Claire; Humphrey-Murto, Susan; Varpio, Lara

    2013-05-14

    Graduating Internal Medicine residents must possess sufficient skills to perform a variety of medical procedures. Little is known about resident experiences of acquiring procedural skills proficiency, of practicing these techniques, or of being assessed on their proficiency. The purpose of this study was to qualitatively investigate resident 1) experiences of the acquisition of procedural skills and 2) perceptions of procedural skills assessment methods available to them. Focus groups were conducted in the weeks following an assessment of procedural skills incorporated into an objective structured clinical examination (OSCE). Using fundamental qualitative description, emergent themes were identified and analyzed. Residents perceived procedural skills assessment on the OSCE as a useful formative tool for direct observation and immediate feedback. This positive reaction was regularly expressed in conjunction with a frustration with available assessment systems. Participants reported that proficiency was acquired through resident directed learning with no formal mechanism to ensure acquisition or maintenance of skills. The acquisition and assessment of procedural skills in Internal Medicine programs should move toward a more structured system of teaching, deliberate practice and objective assessment. We propose that directed, self-guided learning might meet these needs.

  17. Assessing the impact of changes in climate and CO2 on potential carbon sequestration in agricultural soils

    NASA Astrophysics Data System (ADS)

    Jain, Atul K.; West, Tristram O.; Yang, Xiaojuan; Post, Wilfred M.

    2005-10-01

    Changes in soil management can potentially increase the accumulation of soil organic carbon (SOC), thereby sequestering CO2 from the atmosphere. However, the amount of carbon sequestered in soils can be augmented or lessened due to changes in climate and atmospheric CO2 concentration. The purpose of this paper is to study the influence of climate and CO2 feedbacks on soil carbon sequestration using a terrestrial carbon cycle model. Model simulations consist of observed adoption rates of no-tillage practices on croplands in the U.S. and Canada between 1981-2000. Model results indicate potential sequestration rates between 0.4-0.6 MgC/ha/yr in the Midwestern U.S. with decreasing rates towards the western, dryer regions of the U.S. It is estimated here that changes in climate and CO2 between 1981-2000 could be responsible for an additional soil carbon sequestration of 42 Tg. This is 5% of the soil carbon estimated to be potentially sequestered as the result of conversion to no-tillage in the U.S. and Canada.

  18. Assessing the Feasibility and Risks of Using Wave-Driven Upwelling Pumps to Enhance the Biological Sequestration of Carbon in Open Oceans

    NASA Astrophysics Data System (ADS)

    White, A.; Bjorkman, K.; Grabowski, E.; Letelier, R. M.; Poulos, S.; Watkins, B.; Karl, D. M.

    2008-12-01

    In 1976, John D. Isaacs proposed to use wave energy to pump cold and nutrient-rich deep water into the sunlit surface layers. The motivation for this endeavor has taken many forms over the years, from energy production to fueling aquaculture to the more recent suggestion that artificial upwelling could be used to stimulate primary productivity and anthropogenic carbon sequestration in oligotrophic regions of the ocean. However, the potential for biological carbon sequestration in response to upwelling will depend on the concentration of nutrients relative to that of dissolved inorganic carbon in the water being upwelled and on the response of the marine microbial assemblage to this nutrient enrichment. In June 2008, we tested a commercially available wave pump in the vicinity of Station ALOHA, north of Oahu, Hawaii in order to assess the logistics of at-sea deployment and the survivability of the equipment in the open ocean. Our engineering test was also designed to evaluate a recently published hypothesis (Karl and Letelier, 2008, Marine Ecology Progress Series) that upwelling of water containing excess phosphate relative to nitrogen compared to the canonical "Redfield" molar ratio of 16N:1P, would generate a two-phased phytoplankton bloom and enhance carbon sequestration. In this presentation, we analyze the results of this field test within the context of pelagic biogeochemical cycles. Furthermore, we discuss the deployment of a 300m wave pump, efforts to sample a biochemical response, the engineering challenges faced and the practical and ethical implications of these results for future experiments aimed at stimulating the growth of phytoplankton in oligotrophic regions.

  19. Mechanisms of Soil Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Lal, Rattan

    2015-04-01

    Carbon (C) sequestration in soil is one of the several strategies of reducing the net emission of CO2 into the atmosphere. Of the two components, soil organic C (SOC) and soil inorganic C (SIC), SOC is an important control of edaphic properties and processes. In addition to off-setting part of the anthropogenic emissions, enhancing SOC concentration to above the threshold level (~1.5-2.0%) in the root zone has numerous ancillary benefits including food and nutritional security, biodiversity, water quality, among others. Because of its critical importance in human wellbeing and nature conservancy, scientific processes must be sufficiently understood with regards to: i) the potential attainable, and actual sink capacity of SOC and SIC, ii) permanence of the C sequestered its turnover and mean residence time, iii) the amount of biomass C needed (Mg/ha/yr) to maintain and enhance SOC pool, and to create a positive C budget, iv) factors governing the depth distribution of SOC, v) physical, chemical and biological mechanisms affecting the rate of decomposition by biotic and abiotic processes, vi) role of soil aggregation in sequestration and protection of SOC and SIC pool, vii) the importance of root system and its exudates in transfer of biomass-C into the SOC pools, viii) significance of biogenic processes in formation of secondary carbonates, ix) the role of dissolved organic C (DOC) in sequestration of SOC and SIC, and x) importance of weathering of alumino-silicates (e.g., powered olivine) in SIC sequestration. Lack of understanding of these and other basic processes leads to misunderstanding, inconsistencies in interpretation of empirical data, and futile debates. Identification of site-specific management practices is also facilitated by understanding of the basic processes of sequestration of SOC and SIC. Sustainable intensification of agroecosystems -- producing more from less by enhancing the use efficiency and reducing losses of inputs, necessitates thorough

  20. Hurricane impacts on US forest carbon sequestration

    Treesearch

    Steven G. McNulty

    2002-01-01

    Recent focus has been given to US forests as a sink for increases in atmospheric carbon dioxide. Current estimates of US Forest carbon sequestration average approximately 20 Tg (i.e. 1012 g) year. However, predictions of forest carbon sequestration often do not include the influence of hurricanes on forest carbon storage. Intense hurricanes...

  1. Carbon Sequestration by Fruit Trees - Chinese Apple Orchards as an Example

    PubMed Central

    Wu, Ting; Wang, Yi; Yu, Changjiang; Chiarawipa, Rawee; Zhang, Xinzhong; Han, Zhenhai; Wu, Lianhai

    2012-01-01

    Apple production systems are an important component in the Chinese agricultural sector with 1.99 million ha plantation. The orchards in China could play an important role in the carbon (C) cycle of terrestrial ecosystems and contribute to C sequestration. The carbon sequestration capability in apple orchards was analyzed through identifying a set of potential assessment factors and their weighting factors determined by a field model study and literature. The dynamics of the net C sink in apple orchards in China was estimated based on the apple orchard inventory data from 1990s and the capability analysis. The field study showed that the trees reached the peak of C sequestration capability when they were 18 years old, and then the capability began to decline with age. Carbon emission derived from management practices would not be compensated through C storage in apple trees before reaching the mature stage. The net C sink in apple orchards in China ranged from 14 to 32 Tg C, and C storage in biomass from 230 to 475 Tg C between 1990 and 2010. The estimated net C sequestration in Chinese apple orchards from 1990 to 2010 was equal to 4.5% of the total net C sink in the terrestrial ecosystems in China. Therefore, apple production systems can be potentially considered as C sinks excluding the energy associated with fruit production in addition to provide fruits. PMID:22719974

  2. Mesoscale carbon sequestration site screening and CCS infrastructure analysis.

    PubMed

    Keating, Gordon N; Middleton, Richard S; Stauffer, Philip H; Viswanathan, Hari S; Letellier, Bruce C; Pasqualini, Donatella; Pawar, Rajesh J; Wolfsberg, Andrew V

    2011-01-01

    We explore carbon capture and sequestration (CCS) at the meso-scale, a level of study between regional carbon accounting and highly detailed reservoir models for individual sites. We develop an approach to CO(2) sequestration site screening for industries or energy development policies that involves identification of appropriate sequestration basin, analysis of geologic formations, definition of surface sites, design of infrastructure, and analysis of CO(2) transport and storage costs. Our case study involves carbon management for potential oil shale development in the Piceance-Uinta Basin, CO and UT. This study uses new capabilities of the CO(2)-PENS model for site screening, including reservoir capacity, injectivity, and cost calculations for simple reservoirs at multiple sites. We couple this with a model of optimized source-sink-network infrastructure (SimCCS) to design pipeline networks and minimize CCS cost for a given industry or region. The CLEAR(uff) dynamical assessment model calculates the CO(2) source term for various oil production levels. Nine sites in a 13,300 km(2) area have the capacity to store 6.5 GtCO(2), corresponding to shale-oil production of 1.3 Mbbl/day for 50 years (about 1/4 of U.S. crude oil production). Our results highlight the complex, nonlinear relationship between the spatial deployment of CCS infrastructure and the oil-shale production rate.

  3. Status and potential of terrestrial carbon sequestration in West Virginia

    Treesearch

    Benktesh D. Sharma; Jingxin Wang

    2011-01-01

    Terrestrial ecosystem management offers cost-effective ways to enhance carbon (C) sequestration. This study utilized C stock and C sequestration in forest and agricultural lands, abandoned mine lands, and harvested wood products to estimate the net current annual C sequestration in West Virginia. Several management options within these components were simulated using a...

  4. Carbon Storage and Sequestration in Ecosystems of the Western United States: Finings of a Recent Resource Assessment

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Bergamaschi, B. A.; Hawbaker, T. J.; Liu, S.; Sleeter, B. M.; Sohl, T. L.; Stackpoole, S. M.

    2012-12-01

    A new assessment was conducted covering 2.66 million km2 in the Western United States extending from the Rockies to the Pacific coastal waters, in two time periods: baseline (the first half of the 2000s) and future (projections from baseline to 2050), using in-situ and remotely sensed data together with statistical methods and simulation models. The total carbon storage in the ecosystems of the Western United States in 2005 was approximately 13,920 TgC; distributed in live biomass (38%), soil organic carbon (39%), and woody debris and other surface carbon pools (23%). Estimated mean values of major flux terms included net ecosystem production (-127.2 TgC/yr), inland lateral flux (7.2 TgC/yr) from rivers/streams to coastal areas, emissions from inland water surfaces to the atmosphere (28.2 TgC/yr), and emissions form the wildland fires (10.0 TgC/yr). Average C sequestration rates for the region were estimated: -86.6 TgC/yr in net flux for all terrestrial ecosystems, -2.4 and -2.0 TgC/yr in net burial rates in lakes and reservoirs and in the Pacific coastal waters respectively, for a total sequestration rate of -90.9 TgC/yr across all of the major ecosystems. A negative sign denotes uptake, sequestration, or a carbon sink. Most of the net carbon flux is in forests (62.2%, -72.1 gC/m2/yr), followed by grasslands/shrublands (29.6%, -16.4 gC/m2/yr), agricultural lands (7.1%, -38.3 gC/m2/yr), and wetlands (0.96%, -82.1 gC/m2/yr). Projected on the basis of future land-use and land-cover scenarios and climate projections, the total amount of carbon that potentially could be stored in the ecosystems of the Western United States in 2050 was estimated to range from 13,743 to 19,407 TgC, an increase of 1,325-3,947 TgC (or 10.7 to 25.5 %) from baseline conditions of 2005. The potential mean (averaged between 2006 and 2050) annual net carbon flux in terrestrial ecosystems was projected to range from -113.9 TgC/yr to 2.9 TgC/yr. When compared to the baseline net carbon flux

  5. Qualitative radiology assessment of tumor response: does it measure up?

    PubMed

    Gottlieb, Ronald H; Litwin, Alan; Gupta, Bhavna; Taylor, John; Raczyk, Cheryl; Mashtare, Terry; Wilding, Gregory; Fakih, Marwan

    2008-01-01

    Our purpose was to assess whether a simpler qualitative evaluation of tumor response by computed tomography is as reproducible and predictive of clinical outcome as the Response Evaluation Criteria in Solid Tumors (RECIST) and World Health Organization (WHO) methods. This study was a two-reader retrospective evaluation in which qualitative assessment resulted in agreement in 21 of 23 patients with metastatic colorectal carcinoma (91.3%, kappa=0.78; 95% CI, 0.51-1.00). Hepatic metastases were classified as increased, decreased, or unchanged, compared with agreement in 20 of 23 patients (87.0%) for RECIST (kappa=0.62; 95% CI, 0.23-1.00) and WHO (kappa=0.67; 95% CI, 0.34-1.00) methods. Patients were placed into partial response, stable disease, and disease progression categories. Time to progression of disease was better predicted qualitatively than by RECIST or WHO. Our pilot data suggest that our qualitative scoring system is more reproducible and predictive of patient clinical outcome than the RECIST and WHO methods.

  6. Carbon sequestration index as a determinant for climate change mitigation: Case study of Bintan Island

    NASA Astrophysics Data System (ADS)

    Wahyudi, A.'an J.; Afdal; Prayudha, Bayu; Dharmawan, I. W. E.; Irawan, Andri; Abimanyu, Haznan; Meirinawati, Hanny; Surinati, Dewi; Syukri, Agus F.; Yuliana, Chitra I.; Yuniati, Putri I.

    2018-02-01

    The increase of the anthropogenic carbon dioxide (CO2) affects the global carbon cycle altering the atmospheric system and initiates the climate changes. There are two ways to mitigate these changes, by maintaining the greenhouse gasses below the carbon budget and by conserving the marine and terrestrial vegetation for carbon sequestration. These two strategies become variable to the carbon sequestration index (CSI) that represents the potential of a region in carbon sequestration, according to its natural capacity. As a study case, we conducted carbon sequestration research in Bintan region (Bintan Island and its surrounding), Riau Archipelago province. This research was aimed to assess the CSI and its possibility for climate change mitigation. We observed carbon sequestration of seagrass meadows and mangrove, greenhouse gas (CO2) emission (correlated to population growth, the increase of vehicles), and CSI. Bintan region has 125,849.9 ha of vegetation area and 14,879.6 ha of terrestrial and marine vegetation area, respectively. Both vegetation areas are able to sequester 0.262 Tg C yr-1 in total and marine vegetation contributes about 77.1%. Total CO2 emission in Bintan region is up to 0.273 Tg C yr-1, produced by transportation, industry and land use sectors. Therefore, CSI of the Bintan region is 0.98, which is above the global average (i.e. 0.58). This value demonstrates that the degree of sequestration is comparable to the total carbon emission. This result suggests that Bintan’s vegetation has high potential for reducing greenhouse gas effects.

  7. State and Regional Control of Geological Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reitze, Arnold; Durrant, Marie

    2011-03-01

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. Carbon capture and geologic sequestration offer one method to reduce carbon emissions from coal and other hydrocarbon energy production. While the federal government is providing increased funding for carbon capture and sequestration, recent congressional legislative efforts to create a framework for regulating carbon emissions have failed. However,more » regional and state bodies have taken significant actions both to regulate carbon and facilitate its capture and sequestration. This article explores how regional bodies and state government are addressing the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. Several regional bodies have formed regulations and model laws that affect carbon capture and storage, and three bodies comprising twenty-three states—the Regional Greenhouse Gas Initiative, the Midwest Regional Greenhouse Gas Reduction Accord, and the Western Climate initiative—have cap-­and-trade programs in various stages of development. State property, land use and environmental laws affect the development and implementation of carbon capture and sequestration projects, and unless federal standards are imposed, state laws on torts and renewable portfolio requirements will directly affect the liability and viability of these projects. This paper examines current state laws and legislative efforts addressing carbon capture and sequestration.« less

  8. Options for accounting carbon sequestration in German forests

    PubMed Central

    Krug, Joachim; Koehl, Michael; Riedel, Thomas; Bormann, Kristin; Rueter, Sebastian; Elsasser, Peter

    2009-01-01

    Background The Accra climate change talks held from 21–27 August 2008 in Accra, Ghana, were part of an ongoing series of meetings leading up to the Copenhagen meeting in December 2009. During the meeting a set of options for accounting carbon sequestration in forestry on a post-2012 framework was presented. The options include gross-net and net-net accounting and approaches for establishing baselines. Results This article demonstrates the embedded consequences of Accra Accounting Options for the case study of German national GHG accounting. It presents the most current assessment of sequestration rates by forest management for the period 1990 – 2007, provides an outlook of future emissions and removals (up to the year 2042) as related to three different management scenarios, and shows that implementation of some Accra options may reverse sources to sinks, or sinks to sources. Conclusion The results of the study highlight the importance of elaborating an accounting system that would prioritize the climate convention goals, not national preferences. PMID:19650896

  9. Pulmonary Sequestration: Early Diagnosis and Management

    PubMed Central

    Wani, Sajad A.; Mufti, Gowher N.; Bhat, Nisar A.; Baba, Ajaz A.

    2015-01-01

    Intralobar sequestration is characterized by aberrant formation of nonfunctional lung tissue that has no communication with the bronchial tree and receives systemic arterial blood supply. Failure of earlier diagnosis can lead to recurrent pneumonia, failure to thrive, multiple hospital admissions, and more morbidity. The aim of this case report is to increase the awareness about the lung sequestration, to diagnose and treat it early, so that it is resected before repeated infection, and prevent the morbidity and mortality. PMID:26273485

  10. Assessment of carbon sequestration potential of revegetated coal mine overburden dumps: A chronosequence study from dry tropical climate.

    PubMed

    Ahirwal, Jitendra; Maiti, Subodh Kumar

    2017-10-01

    Development of secondary forest as post-mining land use in the surface coal mining degraded sites is of high research interest due to its potential to sequester atmospheric carbon (C). The objectives of this study were to assess the improvement in mine soil quality and C sequestration potential of the post-mining reclaimed land with time. Hence, this study was conducted in reclaimed chronosequence sites (young, intermediate and old) of a large open cast coal project (Central Coal Fields Limited, Jharkhand, India) and results were compared to a reference forest site (Sal forest, Shorea robusta). Mine soil quality was assessed in terms of accretion of soil organic carbon (SOC), available nitrogen (N) and soil CO 2 flux along with the age of revegetation. After 14 years of revegetation, SOC and N concentrations increased three and five-fold, respectively and found equivalent to the reference site. Accretion of SOC stock was estimated to be 1.9 Mg C ha -1 year -1 . Total ecosystem C sequestered after 2-14 years of revegetation increased from 8 Mg C ha -1 to 90 Mg C ha -1 (30-333 Mg CO 2 ha -1 ) with an average rate of 6.4 Mg C ha -1 year -1 . Above ground biomass contributes maximum C sequestrate (50%) in revegetated site. CO 2 flux increased with age of revegetation and found 11, 33 and 42 Mg CO 2 ha -1 year -1 in younger, intermediate and older dumps, respectively. Soil respiration in revegetated site is more influenced by the temperature than soil moisture. Results of the study also showed that trees like, Dalbergia sissoo and Heterophragma adenophyllum should be preferred for revegetation of mine degraded sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A qualitative approach to assessing work ability.

    PubMed

    Tengland, Per-Anders

    2013-01-01

    We often need to be able to assess the extent to which individuals have or lack work ability. For this we need instruments. Most of the instruments available have flaws. They either lack validity or they use roundabout methods when collecting information about the individual's work ability. The aim of this paper is to present a conceptual model for constructing a questionnaire that can be used for assessing work ability. The methods used are philosophical, i.e. analytical and deductive. A conceptual theory is provided, and based on the resulting definition of the concept of "work ability" conclusions are drawn regarding how to assess work ability. When constructing quantitative instruments, we can increase validity through using a more strict definition of work ability. However, such an approach will only solve some of the problems noted above. The proposal is, instead, to create a qualitative questionnaire, founded on a definition of "work ability", which focuses on the concrete problems concerning the work ability of the individual. Finally, a sketch of such an instrument is provided, with questions covering all the relevant aspects of work ability. The qualitative questionnaire proposed is believed to be superior to more traditional (quantitative) instruments for assessing a person's work ability, as well as for finding solutions to her problems concerning work ability.

  12. Carbon dynamics and sequestration in urban turfgrass ecosystems

    USDA-ARS?s Scientific Manuscript database

    Urbanization is a global trend. Turfgrass covers 1.9% of land in the continental US. Here we review existing literature associated with carbon (C) pools, sequestration, and nitrous oxide emission of urban turfgrass ecosystems. Turfgrasses exhibit significant carbon sequestration (0.34–1.4 Mg ha-1 ye...

  13. Physical and Biological Regulation of Carbon Sequestration in Tidal Marshes

    NASA Astrophysics Data System (ADS)

    Morris, J. T.; Callaway, J.

    2017-12-01

    The rate of carbon sequestration in tidal marshes is regulated by complex feedbacks among biological and physical factors including the rate of sea-level rise (SLR), biomass production, tidal amplitude, and the concentration of suspended sediment. We used the Marsh Equilibrium Model (MEM) to explore the effects on C-sequestration across a wide range of permutations of these variables. C-sequestration increased with the rate of SLR to a maximum, then down to a vanishing point at higher SLR when marshes convert to mudflats. An acceleration in SLR will increase C-sequestration in marshes that can keep pace, but at high rates of SLR this is only possible with high biomass and suspended sediment concentrations. We found that there were no feasible solutions at SLR >13 mm/yr for permutations of variables that characterize the great majority of tidal marshes, i.e., the equilibrium elevation exists below the lower vertical limit for survival of marsh vegetation. The rate of SLR resulting in maximum C-sequestration varies with biomass production. C-sequestration rates at SLR=1 mm/yr averaged only 36 g C m-2 yr-1, but at the highest maximum biomass tested (5000 g/m2) the mean C-sequestration reached 399 g C m-2 yr-1 at SLR = 14 mm/yr. The empirical estimate of C-sequestration in a core dated 50-years overestimates the theoretical long-term rate by 34% for realistic values of decomposition rate and belowground production. The overestimate of the empirical method arises from the live and decaying biomass contained within the carbon inventory above the marker horizon, and overestimates were even greater for shorter surface cores.

  14. [Regional and global estimates of carbon stocks and carbon sequestration capacity in forest ecosystems: A review].

    PubMed

    Liu, Wei-wei; Wang, Xiao-ke; Lu, Fei; Ouyang, Zhi-yun

    2015-09-01

    As a dominant part of terrestrial ecosystems, forest ecosystem plays an important role in absorbing atmospheric CO2 and global climate change mitigation. From the aspects of zonal climate and geographical distribution, the present carbon stocks and carbon sequestration capacity of forest ecosystem were comprehensively examined based on the review of the latest literatures. The influences of land use change on forest carbon sequestration were analyzed, and factors that leading to the uncertainty of carbon sequestration assessment in forest ecosystem were also discussed. It was estimated that the current forest carbon stock was in the range of 652 to 927 Pg C and the carbon sequestration capacity was approximately 4.02 Pg C · a(-1). In terms of zonal climate, the carbon stock and carbon sequestration capacity of tropical forest were the maximum, about 471 Pg C and 1.02-1.3 Pg C · a(-1) respectively; then the carbon stock of boreal forest was about 272 Pg C, while its carbon sequestration capacity was the minimum, approximately 0.5 Pg C · a(-1); for temperate forest, the carbon stock was minimal, around 113 to 159 Pg C and its carbon sequestration capacity was 0.8 Pg C · a(-1). From the aspect of geographical distribution, the carbon stock of forest ecosystem in South America was the largest (187.7-290 Pg C), then followed by European (162.6 Pg C), North America (106.7 Pg C), Africa (98.2 Pg C) and Asia (74.5 Pg C), and Oceania (21.7 Pg C). In addition, carbon sequestration capacity of regional forest ecosystem was summed up as listed below: Tropical South America forest was the maximum (1276 Tg C · a(-1)), then were Tropical Africa (753 Tg C · a(-1)), North America (248 Tg C · a(-1)) and European (239 Tg C · a(-1)), and East Asia (98.8-136.5 Tg C · a(-1)) was minimum. To further reduce the uncertainty in the estimations of the carbon stock and carbon sequestration capacity of forest ecosystem, comprehensive application of long-term observation, inventories

  15. Is a Clean Development Mechanism project economically justified? Case study of an International Carbon Sequestration Project in Iran.

    PubMed

    Katircioglu, Salih; Dalir, Sara; Olya, Hossein G

    2016-01-01

    The present study evaluates a carbon sequestration project for the three plant species in arid and semiarid regions of Iran. Results show that Haloxylon performed appropriately in the carbon sequestration process during the 6 years of the International Carbon Sequestration Project (ICSP). In addition to a high degree of carbon dioxide sequestration, Haloxylon shows high compatibility with severe environmental conditions and low maintenance costs. Financial and economic analysis demonstrated that the ICSP was justified from an economic perspective. The financial assessment showed that net present value (NPV) (US$1,098,022.70), internal rate of return (IRR) (21.53%), and payback period (6 years) were in an acceptable range. The results of the economic analysis suggested an NPV of US$4,407,805.15 and an IRR of 50.63%. Therefore, results of this study suggest that there are sufficient incentives for investors to participate in such kind of Clean Development Mechanism (CDM) projects.

  16. Public Review Draft: A Method for Assessing Carbon Stocks, Carbon Sequestration, and Greenhouse-Gas Fluxes in Ecosystems of the United States Under Present Conditions and Future Scenarios

    USGS Publications Warehouse

    Bergamaschi, Brian A.; Bernknopf, Richard; Clow, David; Dye, Dennis; Faulkner, Stephen; Forney, William; Gleason, Robert; Hawbaker, Todd; Liu, Jinxun; Liu, Shu-Guang; Prisley, Stephen; Reed, Bradley; Reeves, Matthew; Rollins, Matthew; Sleeter, Benjamin; Sohl, Terry; Stackpoole, Sarah; Stehman, Stephen; Striegl, Robert G.; Wein, Anne; Zhu, Zhi-Liang; Zhu, Zhi-Liang

    2010-01-01

    The Energy Independence and Security Act of 2007 (EISA), Section 712, authorizes the U.S. Department of the Interior to develop a methodology and conduct an assessment of the Nation's ecosystems focusing on carbon stocks, carbon sequestration, and emissions of three greenhouse gases (GHGs): carbon dioxide, methane, and nitrous oxide. The major requirements include (1) an assessment of all ecosystems (terrestrial systems, such as forests, croplands, wetlands, shrub and grasslands; and aquatic ecosystems, such as rivers, lakes, and estuaries), (2) an estimation of annual potential capacities of ecosystems to increase carbon sequestration and reduce net GHG emissions in the context of mitigation strategies (including management and restoration activities), and (3) an evaluation of the effects of controlling processes, such as climate change, land use and land cover, and wildlfires. The purpose of this draft methodology for public review is to propose a technical plan to conduct the assessment. Within the methodology, the concepts of ecosystems, carbon pools, and GHG fluxes used for the assessment follow conventional definitions in use by major national and international assessment or inventory efforts. In order to estimate current ecosystem carbon stocks and GHG fluxes and to understand the potential capacity and effects of mitigation strategies, the method will use two time periods for the assessment: 2001 through 2010, which establishes a current ecosystem GHG baseline and will be used to validate the models; and 2011 through 2050, which will be used to assess future potential conditions based on a set of projected scenarios. The scenario framework is constructed using storylines of the Intergovernmental Panel on Climate Change (IPCC) Special Report Emission Scenarios (SRES), along with initial reference land-use and land-cover (LULC) and land-management scenarios. An additional three LULC and land-management mitigation scenarios will be constructed for each

  17. Further assessment of a method to estimate reliability and validity of qualitative research findings.

    PubMed

    Hinds, P S; Scandrett-Hibden, S; McAulay, L S

    1990-04-01

    The reliability and validity of qualitative research findings are viewed with scepticism by some scientists. This scepticism is derived from the belief that qualitative researchers give insufficient attention to estimating reliability and validity of data, and the differences between quantitative and qualitative methods in assessing data. The danger of this scepticism is that relevant and applicable research findings will not be used. Our purpose is to describe an evaluative strategy for use with qualitative data, a strategy that is a synthesis of quantitative and qualitative assessment methods. Results of the strategy and factors that influence its use are also described.

  18. Barriers and Prospects of Carbon Sequestration in India.

    PubMed

    Gupta, Anjali; Nema, Arvind K

    2014-04-01

    Carbon sequestration is considered a leading technology for reducing carbon dioxide (CO2) emissions from fossil-fuel based electricity generating power plants and could permit the continued use of coal and gas whilst meeting greenhouse gas targets. India will become the world's third largest emitter of CO2 by 2015. Considering the dependence of health of the Indian global economy, there is an imperative need to develop a global approach which could address the capturing and securely storing carbon dioxide emitted from an array of energy. Therefore technology such as carbon sequestration will deliver significant CO2 reductions in a timely fashion. Considerable energy is required for the capture, compression, transport and storage steps. With the availability of potential technical storage methods for carbon sequestration like forest, mineral and geological storage options with India, it would facilitate achieving stabilization goal in the near future. This paper examines the potential carbon sequestration options available in India and evaluates them with respect to their strengths, weakness, threats and future prospects.

  19. Users’ guide to the surgical literature: how to assess a qualitative study

    PubMed Central

    Gallo, Lucas; Murphy, Jessica; Braga, Luis H.; Farrokhyar, Forough

    2018-01-01

    Summary Qualitative research contributes to the medical literature through the observation, description and interpretation of theories about social interactions and individual experiences as they occur in their natural setting. This type of research has the potential to enhance the understanding of surgeons’ and patients’ preferences, attitudes and beliefs, as well as assess how these may change with time. To date, there is no widely accepted standard for the methodological assessment of qualitative research. Despite ongoing debate, this article seeks to familiarize surgeons with the basic techniques for the critical appraisal of qualitative studies in the surgical literature. PMID:29806819

  20. Carbon sequestration partnerships

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The U.S. Department of Energy named seven regional partnerships on 16 August to study the best methods for the non-biological sequestration of carbon in different parts of the country.DOE will provide about $11.1 million to these partnerships over the next 2 years, with participating organizations expected to contribute an additional $7 million.

  1. Today's PTA Advocate: Speak Up to Stop Sequestration

    ERIC Educational Resources Information Center

    Chevalier, Jacque

    2012-01-01

    The word sequestration has been in the news lately when talking about the federal budget. Sequestration refers to across-the-board cuts, and depending on where one lives and the amount of federal aid one's community receives, those cuts could amount to as much as 17 percent. That spells bad news for schools unless parents, educators, and other…

  2. Vegetation carbon sequestration in Chinese forests from 2010 to 2050.

    PubMed

    He, Nianpeng; Wen, Ding; Zhu, Jianxing; Tang, Xuli; Xu, Li; Zhang, Li; Hu, Huifeng; Huang, Mei; Yu, Guirui

    2017-04-01

    Forests store a large part of the terrestrial vegetation carbon (C) and have high C sequestration potential. Here, we developed a new forest C sequestration (FCS) model based on the secondary succession theory, to estimate vegetation C sequestration capacity in China's forest vegetation. The model used the field measurement data of 3161 forest plots and three future climate scenarios. The results showed that logistic equations provided a good fit for vegetation biomass with forest age in natural and planted forests. The FCS model has been verified with forest biomass data, and model uncertainty is discussed. The increment of vegetation C storage in China's forest vegetation from 2010 to 2050 was estimated as 13.92 Pg C, while the average vegetation C sequestration rate was 0.34 Pg C yr -1 with a 95% confidence interval of 0.28-0.42 Pg C yr -1 , which differed significantly between forest types. The largest contributor to the increment was deciduous broadleaf forest (37.8%), while the smallest was deciduous needleleaf forest (2.7%). The vegetation C sequestration rate might reach its maximum around 2020, although vegetation C storage increases continually. It is estimated that vegetation C sequestration might offset 6-8% of China's future emissions. Furthermore, there was a significant negative relationship between vegetation C sequestration rate and C emission rate in different provinces of China, suggesting that developed provinces might need to compensate for undeveloped provinces through C trade. Our findings will provide valuable guidelines to policymakers for designing afforestation strategies and forest C trade in China. © 2016 John Wiley & Sons Ltd.

  3. Biologically Enhanced Carbon Sequestration: Research Needs and Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldenburg, Curtis; Oldenburg, Curtis M.; Torn, Margaret S.

    2008-03-21

    Fossil fuel combustion, deforestation, and biomass burning are the dominant contributors to increasing atmospheric carbon dioxide (CO{sub 2}) concentrations and global warming. Many approaches to mitigating CO{sub 2} emissions are being pursued, and among the most promising are terrestrial and geologic carbon sequestration. Recent advances in ecology and microbial biology offer promising new possibilities for enhancing terrestrial and geologic carbon sequestration. A workshop was held October 29, 2007, at Lawrence Berkeley National Laboratory (LBNL) on Biologically Enhanced Carbon Sequestration (BECS). The workshop participants (approximately 30 scientists from California, Illinois, Oregon, Montana, and New Mexico) developed a prioritized list of researchmore » needed to make progress in the development of biological enhancements to improve terrestrial and geologic carbon sequestration. The workshop participants also identified a number of areas of supporting science that are critical to making progress in the fundamental research areas. The purpose of this position paper is to summarize and elaborate upon the findings of the workshop. The paper considers terrestrial and geologic carbon sequestration separately. First, we present a summary in outline form of the research roadmaps for terrestrial and geologic BECS. This outline is elaborated upon in the narrative sections that follow. The narrative sections start with the focused research priorities in each area followed by critical supporting science for biological enhancements as prioritized during the workshop. Finally, Table 1 summarizes the potential significance or 'materiality' of advances in these areas for reducing net greenhouse gas emissions.« less

  4. Briefing on geological sequestration

    EPA Science Inventory

    Geological sequestration (GS) is generally recognized as the injection and long-term (e.g., hundreds to thousands of years) trapping of gaseous, liquid or supercritical carbon dioxide (CO2) in subsurface media – primarily saline formations, depleted or nearly depleted oil and gas...

  5. Supraorbital Postmortem Brain Sampling for Definitive Quantitative Confirmation of Cerebral Sequestration of Plasmodium falciparum Parasites

    PubMed Central

    Milner, Danny A.; Valim, Clarissa; Luo, Robert; Playforth, Krupa B.; Kamiza, Steve; Molyneux, Malcolm E.; Seydel, Karl B.; Taylor, Terrie E.

    2012-01-01

    Background The conventional clinical case definition of cerebral malaria (CM) is imprecise but specificity is improved by a definitive clinical feature such as retinopathy or confirming sequestration of parasites in a post-mortem examination of the brain. A full autopsy is often not possible, since it is costly and may encounter resistance of the deceased's family. Methods We have assessed the use of a cytological smear of brain tissue, obtained post-mortem by supraorbital sampling, for the purpose of quantifying cerebral sequestration in children with fatal malaria in Blantyre, Malawi. We have compared this method to histological quantification of parasites at autopsy. Results The number of parasites present on cytological smears correlated with the proportion of vessels parasitized as assessed by histology of fixed and stained brain tissue. Use of cytological results in addition to the standard clinical case definition increases the specificity of the clinical case definition alone from 48.3% to 100% with a minimal change in sensitivity. Conclusions Post-mortem supraorbital sampling of brain tissue improves the specificity of the diagnosis of fatal cerebral malaria and provides accurate quantitative estimates of cerebral sequestration. This tool can be of great value in clinical, pathogenetic, and epidemiological research studies on cerebral malaria. PMID:22291197

  6. Implication of soil C sequestration on sustainable agriculture and environment.

    PubMed

    Mondini, C; Sequi, P

    2008-01-01

    Soil organic matter (SOM) is the largest C stock of the continental biosphere with 1550Pg. The size of C reservoir in the soil and environmental concerns on climate change have recently attracted the attention of scientist and politicians on C sequestration as an effective strategy to tackle greenhouse gas (GHG) emissions. It has been estimated that the potential for C storage in world cropland is relevant (about 0.6-1.2PgCy(-1)). However, there are several constraints of C sequestration that raise concern about its effectiveness as a strategy to offset climate change. C sequestration is finite in quantity and time, reversible, and can be further decreased by socio-economic restrictions. Given these limitations, C sequestration can play only a minor role in the reduction of emissions (2-5% of total GHG emission under the highest emission scenarios). Yet, C sequestration is still attractive for two main reasons: it is likely to be particularly effective in reducing atmospheric CO2 levels in the first 20-30yr of its implementation and presents ancillary benefits for environment and sustainability that make it a real win-win strategy. These beneficial implications are discussed in this paper with emphasis on the need of C sequestration not only to offset climatic changes, but also for the equilibria of the environment and for the sustainability of agriculture and of entire human society.

  7. Information Uncertainty to Compare Qualitative Reasoning Security Risk Assessment Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, Gregory M; Key, Brian P; Zerkle, David K

    2009-01-01

    The security risk associated with malevolent acts such as those of terrorism are often void of the historical data required for a traditional PRA. Most information available to conduct security risk assessments for these malevolent acts is obtained from subject matter experts as subjective judgements. Qualitative reasoning approaches such as approximate reasoning and evidential reasoning are useful for modeling the predicted risk from information provided by subject matter experts. Absent from these approaches is a consistent means to compare the security risk assessment results. Associated with each predicted risk reasoning result is a quantifiable amount of information uncertainty which canmore » be measured and used to compare the results. This paper explores using entropy measures to quantify the information uncertainty associated with conflict and non-specificity in the predicted reasoning results. The measured quantities of conflict and non-specificity can ultimately be used to compare qualitative reasoning results which are important in triage studies and ultimately resource allocation. Straight forward extensions of previous entropy measures are presented here to quantify the non-specificity and conflict associated with security risk assessment results obtained from qualitative reasoning models.« less

  8. Applying GRADE-CERQual to qualitative evidence synthesis findings-paper 2: how to make an overall CERQual assessment of confidence and create a Summary of Qualitative Findings table.

    PubMed

    Lewin, Simon; Bohren, Meghan; Rashidian, Arash; Munthe-Kaas, Heather; Glenton, Claire; Colvin, Christopher J; Garside, Ruth; Noyes, Jane; Booth, Andrew; Tunçalp, Özge; Wainwright, Megan; Flottorp, Signe; Tucker, Joseph D; Carlsen, Benedicte

    2018-01-25

    The GRADE-CERQual (Confidence in Evidence from Reviews of Qualitative research) approach has been developed by the GRADE (Grading of Recommendations Assessment, Development and Evaluation) Working Group. The approach has been developed to support the use of findings from qualitative evidence syntheses in decision making, including guideline development and policy formulation. CERQual includes four components for assessing how much confidence to place in findings from reviews of qualitative research (also referred to as qualitative evidence syntheses): (1) methodological limitations, (2) coherence, (3) adequacy of data and (4) relevance. This paper is part of a series providing guidance on how to apply CERQual and focuses on making an overall assessment of confidence in a review finding and creating a CERQual Evidence Profile and a CERQual Summary of Qualitative Findings table. We developed this guidance by examining the methods used by other GRADE approaches, gathering feedback from relevant research communities and developing consensus through project group meetings. We then piloted the guidance on several qualitative evidence syntheses before agreeing on the approach. Confidence in the evidence is an assessment of the extent to which a review finding is a reasonable representation of the phenomenon of interest. Creating a summary of each review finding and deciding whether or not CERQual should be used are important steps prior to assessing confidence. Confidence should be assessed for each review finding individually, based on the judgements made for each of the four CERQual components. Four levels are used to describe the overall assessment of confidence: high, moderate, low or very low. The overall CERQual assessment for each review finding should be explained in a CERQual Evidence Profile and Summary of Qualitative Findings table. Structuring and summarising review findings, assessing confidence in those findings using CERQual and creating a CERQual Evidence

  9. Geologic CO2 Sequestration: Predicting and Confirming Performance in Oil Reservoirs and Saline Aquifers

    NASA Astrophysics Data System (ADS)

    Johnson, J. W.; Nitao, J. J.; Newmark, R. L.; Kirkendall, B. A.; Nimz, G. J.; Knauss, K. G.; Ziagos, J. P.

    2002-05-01

    extending this capability to address CO2-flood EOR/sequestration in oil reservoirs. We have also developed a suite of innovative geophysical and geochemical techniques for monitoring sequestration performance in both settings. These include electromagnetic induction imaging and electrical resistance tomography for tracking migration of immiscible CO2, noble gas isotopes for assessing trace CO2 leakage through the cap rock, and integrated geochemical sampling, analytical, and experimental methods for determining sequestration partitioning among solubility and mineral trapping mechanisms. We have proposed to demonstrate feasibility of the co-optimized EOR/sequestration concept and utility of our modeling and monitoring technologies to design and evaluate its implementation by conducting a demonstration project in the Livermore Oil Field. This small, mature, shallow field, located less than a mile east of Lawrence Livermore National Laboratory, is representative of many potential EOR/sequestration sites in California. In approach, this proposed demonstration is analogous to the Weyburn EOR/CO2 monitoring project, to which it will provide an important complement by virtue of its contrasting depth (immiscible versus Weyburn's miscible CO2 flood) and geologic setting (clay-capped sand versus Weyburn's anhydrite-capped carbonate reservoir).

  10. Experimental design applications for modeling and assessing carbon dioxide sequestration in saline aquifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, John

    2014-11-29

    This project was a computer modeling effort to couple reservoir simulation and ED/RSM using Sensitivity Analysis, Uncertainty Analysis, and Optimization Methods, to assess geologic, geochemical, geomechanical, and rock-fluid effects and factors on CO 2 injectivity, capacity, and plume migration. The project objective was to develop proxy models to simplify the highly complex coupled geochemical and geomechanical models in the utilization and storage of CO 2 in the subsurface. The goals were to investigate and prove the feasibility of the ED/RSM processes and engineering development, and bridge the gaps regarding the uncertainty and unknowns of the many geochemical and geomechanical interactingmore » parameters in the development and operation of anthropogenic CO 2 sequestration and storage sites. The bottleneck in this workflow is the high computational effort of reactive transport simulation models and large number of input variables to optimize with ED/RSM techniques. The project was not to develop the reactive transport, geomechanical, or ED/RSM software, but was to use what was commercially and/or publically available as a proof of concept to generate proxy or surrogate models. A detailed geologic and petrographic mineral assemblage and geologic structure of the doubly plunging anticline was defined using the USDOE RMOTC formations of interest data (e.g., Lower Sundance, Crow Mountain, Alcova Limestone, and Red Peak). The assemblage of 23 minerals was primarily developed from literature data and petrophysical (well log) analysis. The assemblage and structure was input into a commercial reactive transport simulator to predict the effects of CO 2 injection and complex reactions with the reservoir rock. Significant impediments were encountered during the execution phase of the project. The only known commercial reactive transport simulator was incapable of simulating complex geochemistry modeled in this project. Significant effort and project funding was

  11. A terrain-attribute based approach to assessing soil carbon sequestration in the Oregon Coast range mountains

    EPA Science Inventory

    Determining how to best mitigate Global Climate Change through the sequestration of atmospheric CO2 requires developing an understanding of potential ecosystem C sinks and the rates at which C can be sequestered in soils and vegetation under a variety of land uses. The largest g...

  12. Comprehensive, Quantitative Risk Assessment of CO{sub 2} Geologic Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepinski, James

    2013-09-30

    A Quantitative Failure Modes and Effects Analysis (QFMEA) was developed to conduct comprehensive, quantitative risk assessments on CO{sub 2} capture, transportation, and sequestration or use in deep saline aquifers, enhanced oil recovery operations, or enhanced coal bed methane operations. The model identifies and characterizes potential risks; identifies the likely failure modes, causes, effects and methods of detection; lists possible risk prevention and risk mitigation steps; estimates potential damage recovery costs, mitigation costs and costs savings resulting from mitigation; and ranks (prioritizes) risks according to the probability of failure, the severity of failure, the difficulty of early failure detection and themore » potential for fatalities. The QFMEA model generates the necessary information needed for effective project risk management. Diverse project information can be integrated into a concise, common format that allows comprehensive, quantitative analysis, by a cross-functional team of experts, to determine: What can possibly go wrong? How much will damage recovery cost? How can it be prevented or mitigated? What is the cost savings or benefit of prevention or mitigation? Which risks should be given highest priority for resolution? The QFMEA model can be tailored to specific projects and is applicable to new projects as well as mature projects. The model can be revised and updated as new information comes available. It accepts input from multiple sources, such as literature searches, site characterization, field data, computer simulations, analogues, process influence diagrams, probability density functions, financial analysis models, cost factors, and heuristic best practices manuals, and converts the information into a standardized format in an Excel spreadsheet. Process influence diagrams, geologic models, financial models, cost factors and an insurance schedule were developed to support the QFMEA model. Comprehensive, quantitative risk

  13. Bile acid sequestrants for cholesterol

    MedlinePlus

    ... ency/patientinstructions/000787.htm Bile acid sequestrants for cholesterol To use the sharing features on this page, ... are medicines that help lower your LDL (bad) cholesterol . Too much cholesterol in your blood can stick ...

  14. Integrated Mid-Continent Carbon Capture, Sequestration & Enhanced Oil Recovery Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brian McPherson

    2010-08-31

    A consortium of research partners led by the Southwest Regional Partnership on Carbon Sequestration and industry partners, including CAP CO2 LLC, Blue Source LLC, Coffeyville Resources, Nitrogen Fertilizers LLC, Ash Grove Cement Company, Kansas Ethanol LLC, Headwaters Clean Carbon Services, Black & Veatch, and Schlumberger Carbon Services, conducted a feasibility study of a large-scale CCS commercialization project that included large-scale CO{sub 2} sources. The overall objective of this project, entitled the 'Integrated Mid-Continent Carbon Capture, Sequestration and Enhanced Oil Recovery Project' was to design an integrated system of US mid-continent industrial CO{sub 2} sources with CO{sub 2} capture, and geologicmore » sequestration in deep saline formations and in oil field reservoirs with concomitant EOR. Findings of this project suggest that deep saline sequestration in the mid-continent region is not feasible without major financial incentives, such as tax credits or otherwise, that do not exist at this time. However, results of the analysis suggest that enhanced oil recovery with carbon sequestration is indeed feasible and practical for specific types of geologic settings in the Midwestern U.S.« less

  15. Calculation of hydrocarbon-in-place in gas and gas-condensate reservoirs - Carbon dioxide sequestration

    USGS Publications Warehouse

    Verma, Mahendra K.

    2012-01-01

    The Energy Independence and Security Act of 2007 (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2), requiring estimation of hydrocarbon-in-place volumes and formation volume factors for all the oil, gas, and gas-condensate reservoirs within the U.S. sedimentary basins. The procedures to calculate in-place volumes for oil and gas reservoirs have already been presented by Verma and Bird (2005) to help with the USGS assessment of the undiscovered resources in the National Petroleum Reserve, Alaska, but there is no straightforward procedure available for calculating in-place volumes for gas-condensate reservoirs for the carbon sequestration project. The objective of the present study is to propose a simple procedure for calculating the hydrocarbon-in-place volume of a condensate reservoir to help estimate the hydrocarbon pore volume for potential CO2 sequestration.

  16. Prolonged Curvularia endophthalmitis due to organism sequestration.

    PubMed

    Rachitskaya, Aleksandra V; Reddy, Ashvini K; Miller, Darlene; Davis, Janet; Flynn, Harry W; Smiddy, William; Lara, Wilfredo; Lin, Selina; Dubovy, Sander; Albini, Thomas A

    2014-09-01

    Endophthalmitis caused by Curvularia is a rare condition seen after cataract surgery and trauma. The clinical course has not been described previously. To examine the clinical course of 6 postoperative and trauma-related cases of Curvularia endophthalmitis. Retrospective case series. We reviewed the archives of the microbiology laboratory of Bascom Palmer Eye Institute, a tertiary referral hospital, from January 1, 1980, through September 30, 2013, to identify cases of Curvularia endophthalmitis. Data collected included demographic information, the cause of endophthalmitis, presenting features, treatment course, the number of recurrences, the area of organism sequestration, and final visual outcome. Trauma and cataract surgery. Times from the inciting event to presentation of symptoms, diagnosis, and eradication; visual acuity; and identification of the area of sequestration. We identified 6 patients with Curvularia endophthalmitis, including 5 who underwent cataract surgery and 1 after trauma. The diagnosis was established rapidly in the trauma case. In the postoperative cases, the time from the surgery to first symptoms ranged from 2 to 5 months; from the surgery to correct diagnosis, 7 to 24 months; and from the surgery to eradication, 8 to 27 months. Despite aggressive antifungal therapy, eradication of the infection could be achieved only by identification and removal of the nidus of sequestration. The median follow-up was 29.5 months. In cases of endophthalmitis caused by Curvularia, the diagnosis and treatment are often delayed, especially in postoperative cases. The eradication of the organism requires identification and removal of the nidi of sequestration.

  17. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils.

    PubMed

    Maaroufi, Nadia I; Nordin, Annika; Hasselquist, Niles J; Bach, Lisbet H; Palmqvist, Kristin; Gundale, Michael J

    2015-08-01

    It is proposed that carbon (C) sequestration in response to reactive nitrogen (Nr ) deposition in boreal forests accounts for a large portion of the terrestrial sink for anthropogenic CO2 emissions. While studies have helped clarify the magnitude by which Nr deposition enhances C sequestration by forest vegetation, there remains a paucity of long-term experimental studies evaluating how soil C pools respond. We conducted a long-term experiment, maintained since 1996, consisting of three N addition levels (0, 12.5, and 50 kg N ha(-1) yr(-1) ) in the boreal zone of northern Sweden to understand how atmospheric Nr deposition affects soil C accumulation, soil microbial communities, and soil respiration. We hypothesized that soil C sequestration will increase, and soil microbial biomass and soil respiration will decrease, with disproportionately large changes expected compared to low levels of N addition. Our data showed that the low N addition treatment caused a non-significant increase in the organic horizon C pool of ~15% and a significant increase of ~30% in response to the high N treatment relative to the control. The relationship between C sequestration and N addition in the organic horizon was linear, with a slope of 10 kg C kg(-1) N. We also found a concomitant decrease in total microbial and fungal biomasses and a ~11% reduction in soil respiration in response to the high N treatment. Our data complement previous data from the same study system describing aboveground C sequestration, indicating a total ecosystem sequestration rate of 26 kg C kg(-1) N. These estimates are far lower than suggested by some previous modeling studies, and thus will help improve and validate current modeling efforts aimed at separating the effect of multiple global change factors on the C balance of the boreal region. © 2015 John Wiley & Sons Ltd.

  18. A qualitative and quantitative assessment for a bone marrow harvest simulator.

    PubMed

    Machado, Liliane S; Moraes, Ronei M

    2009-01-01

    Several approaches to perform assessment in training simulators based on virtual reality have been proposed. There are two kinds of assessment methods: offline and online. The main requirements related to online training assessment methodologies applied to virtual reality systems are the low computational complexity and the high accuracy. In the literature it can be found several approaches for general cases which can satisfy such requirements. An inconvenient about those approaches is related to an unsatisfactory solution for specific cases, as in some medical procedures, where there are quantitative and qualitative information available to perform the assessment. In this paper, we present an approach to online training assessment based on a Modified Naive Bayes which can manipulate qualitative and quantitative variables simultaneously. A special medical case was simulated in a bone marrow harvest simulator. The results obtained were satisfactory and evidenced the applicability of the method.

  19. NATIVE PLANTS FOR OPTIMIZING CARBON SEQUESTRATION IN RECLAIMED LANDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. UNKEFER; M. EBINGER; ET AL

    Carbon emissions and atmospheric concentrations are expected to continue to increase through the next century unless major changes are made in the way carbon is managed. Managing carbon has emerged as a pressing national energy and environmental need that will drive national policies and treaties through the coming decades. Addressing carbon management is now a major priority for DOE and the nation. One way to manage carbon is to use energy more efficiently to reduce our need for major energy and carbon source-fossil fuel combustion. Another way is to increase our use of low-carbon and carbon free fuels and technologies.more » A third way, and the focus of this proposal, is carbon sequestration, in which carbon is captured and stored thereby mitigating carbon emissions. Sequestration of carbon in the terrestrial biosphere has emerged as the principle means by which the US will meet its near-term international and economic requirements for reducing net carbon emissions (DOE Carbon Sequestration: State of the Science. 1999; IGBP 1998). Terrestrial carbon sequestration provides three major advantages. First, terrestrial carbon pools and fluxes are of sufficient magnitude to effectively mitigate national and even global carbon emissions. The terrestrial biosphere stores {approximately}2060 GigaTons of carbon and transfers approximately 120 GigaTons of carbon per year between the atmosphere and the earth's surface, whereas the current global annual emissions are about 6 GigaTons. Second, we can rapidly and readily modify existing management practices to increase carbon sequestration in our extensive forest, range, and croplands. Third, increasing soil carbon is without negative environment consequences and indeed positively impacts land productivity. The terrestrial carbon cycle is dependent on several interrelationships between plants and soils. Because the soil carbon pool ({approximately}1500 Giga Tons) is approximately three times that in terrestrial vegetation

  20. Ecosystem carbon stocks and sequestration potential of federal lands across the conterminous United States

    USGS Publications Warehouse

    Tan, Zhengxi; Liu, Shuguang; Sohl, Terry L.; Wu, Yiping; Young, Claudia J.

    2015-01-01

    Federal lands across the conterminous United States (CONUS) account for 23.5% of the CONUS terrestrial area but have received no systematic studies on their ecosystem carbon (C) dynamics and contribution to the national C budgets. The methodology for US Congress-mandated national biological C sequestration potential assessment was used to evaluate ecosystem C dynamics in CONUS federal lands at present and in the future under three Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (IPCC SRES) A1B, A2, and B1. The total ecosystem C stock was estimated as 11,613 Tg C in 2005 and projected to be 13,965 Tg C in 2050, an average increase of 19.4% from the baseline. The projected annual C sequestration rate (in kilograms of carbon per hectare per year) from 2006 to 2050 would be sinks of 620 and 228 for forests and grasslands, respectively, and C sources of 13 for shrublands. The federal lands’ contribution to the national ecosystem C budget could decrease from 23.3% in 2005 to 20.8% in 2050. The C sequestration potential in the future depends not only on the footprint of individual ecosystems but also on each federal agency’s land use and management. The results presented here update our current knowledge about the baseline ecosystem C stock and sequestration potential of federal lands, which would be useful for federal agencies to decide management practices to achieve the national greenhouse gas (GHG) mitigation goal.

  1. Electricity from fossil fuels without CO2 emissions: assessing the costs of carbon dioxide capture and sequestration in U.S. electricity markets.

    PubMed

    Johnson, T L; Keith, D W

    2001-10-01

    The decoupling of fossil-fueled electricity production from atmospheric CO2 emissions via CO2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a "bottom-up" engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.

  2. Electricity from Fossil Fuels without CO2 Emissions: Assessing the Costs of Carbon Dioxide Capture and Sequestration in U.S. Electricity Markets.

    PubMed

    Johnson, Timothy L; Keith, David W

    2001-10-01

    The decoupling of fossil-fueled electricity production from atmospheric CO 2 emissions via CO 2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO 2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO 2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a "bottom-up" engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.

  3. Carbon capture and sequestration (CCS)

    DOT National Transportation Integrated Search

    2009-06-19

    Carbon capture and sequestration (or storage)known as CCShas attracted interest as a : measure for mitigating global climate change because large amounts of carbon dioxide (CO2) : emitted from fossil fuel use in the United States are potentiall...

  4. Quantification of key long-term risks at CO₂ sequestration sites: Latest results from US DOE's National Risk Assessment Partnership (NRAP) Project

    DOE PAGES

    Pawar, Rajesh; Bromhal, Grant; Carroll, Susan; ...

    2014-12-31

    Risk assessment for geologic CO₂ storage including quantification of risks is an area of active investigation. The National Risk Assessment Partnership (NRAP) is a US-Department of Energy (US-DOE) effort focused on developing a defensible, science-based methodology and platform for quantifying risk profiles at geologic CO₂ sequestration sites. NRAP has been developing a methodology that centers round development of an integrated assessment model (IAM) using system modeling approach to quantify risks and risk profiles. The IAM has been used to calculate risk profiles with a few key potential impacts due to potential CO₂ and brine leakage. The simulation results are alsomore » used to determine long-term storage security relationships and compare the long-term storage effectiveness to IPCC storage permanence goal. Additionally, we also demonstrate application of IAM for uncertainty quantification in order to determine parameters to which the uncertainty in model results is most sensitive.« less

  5. Possible impacts of sequestration on federal research

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-10-01

    U.S. federal research and development (R&D) activities could be reduced by up to $57.5 billion, or 8.4%, through 2017 because of automatic reductions in U.S. federal funding, referred to as sequestration, that are set to begin in January 2013 under the 2011 Budget Control Act. That is according to a 27 September analysis by the American Association for the Advancement of Science (AAAS). If defense R&D is pulled from the equation, sequestration could cut nondefense R&D by $50.8 billion, or 17.2% through that same time period, according to AAAS. Under an equal allocation scenario, the Department of Energy could lose $4.6 billion for R&D over that time period, the National Science Foundation could lose $2.1 billion for R&D, and NASA could lose $3.5 billion, according to the analysis, which also notes that states could be hit hard by decreased federal R&D spending. Congressional leaders currently are looking into how to avoid sequestration. For more information, see http://www.aaas.org/news/releases/2012/0928sequester.shtml.

  6. Biophysical risks to carbon sequestration and storage in Australian drylands.

    PubMed

    Nolan, Rachael H; Sinclair, Jennifer; Eldridge, David J; Ramp, Daniel

    2018-02-15

    Carbon abatement schemes that reduce land clearing and promote revegetation are now an important component of climate change policy globally. There is considerable potential for these schemes to operate in drylands which are spatially extensive. However, projects in these environments risk failure through unplanned release of stored carbon to the atmosphere. In this review, we identify factors that may adversely affect the success of vegetation-based carbon abatement projects in dryland ecosystems, evaluate their likelihood of occurrence, and estimate the potential consequences for carbon storage and sequestration. We also evaluate management strategies to reduce risks posed to these carbon abatement projects. Identified risks were primarily disturbances, including unplanned fire, drought, and grazing. Revegetation projects also risk recruitment failure, thereby failing to reach projected rates of sequestration. Many of these risks are dependent on rainfall, which is highly variable in drylands and susceptible to further variation under climate change. Resprouting vegetation is likely to be less vulnerable to disturbance and have faster recovery rates upon release from disturbance. We conclude that there is a strong impetus for identifying management strategies and risk reduction mechanisms for carbon abatement projects. Risk mitigation would be enhanced by effective co-ordination of mitigation strategies at scales larger than individual abatement project boundaries, and by implementing risk assessment throughout project planning and implementation stages. Reduction of risk is vital for maximising carbon sequestration of individual projects and for reducing barriers to the establishment of new projects entering the market. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Treatment for unstable pulmonary sequestration injury in patient with severe blunt trauma: A case report.

    PubMed

    Hiraki, Sakiko; Okada, Yohei; Arai, Yusuke; Ishii, Wataru; Iiduka, Ryoji

    2017-08-01

    Pulmonary sequestration is a congenital malformation characterized by nonfunctioning tissue not communicating with the tracheobronchial tree. As the blood pressure in the artery feeding the sequestrated lung tissue is higher than that in the normal pulmonary artery, the risk of massive hemorrhage in pulmonary sequestration is high. We herein present the first case of a severe blunt trauma patient with unstable pulmonary sequestration injury. The mechanism of pulmonary sequestration injury is vastly different than that of injury to normal lung. We suggest that proximal feeding artery embolization should be performed before surgical intervention in patients with massive hemorrhage of pulmonary sequestration due to severe chest trauma.

  8. Role of Geomechanics in Assessing the Feasibility of CO2 Sequestration in Depleted Hydrocarbon Sandstone Reservoirs

    NASA Astrophysics Data System (ADS)

    Fang, Zhi; Khaksar, Abbas

    2013-05-01

    Carbon dioxide (CO2) sequestration in depleted sandstone hydrocarbon reservoirs could be complicated by a number of geomechanical problems associated with well drilling, completions, and CO2 injection. The initial production of hydrocarbons (gas or oil) and the resulting pressure depletion as well as associated reduction in horizontal stresses (e.g., fracture gradient) narrow the operational drilling mud weight window, which could exacerbate wellbore instabilities while infill drilling. Well completions (casing, liners, etc.) may experience solids flowback to the injector wells when injection is interrupted due to CO2 supply or during required system maintenance. CO2 injection alters the pressure and temperature in the near wellbore region, which could cause fault reactivation or thermal fracturing. In addition, the injection pressure may exceed the maximum sustainable storage pressure, and cause fracturing and fault reactivation within the reservoirs or bounding formations. A systematic approach has been developed for geomechanical assessments for CO2 storage in depleted reservoirs. The approach requires a robust field geomechanical model with its components derived from drilling and production data as well as from wireline logs of historical wells. This approach is described in detail in this paper together with a recent study on a depleted gas field in the North Sea considered for CO2 sequestration. The particular case study shows that there is a limitation on maximum allowable well inclinations, 45° if aligning with the maximum horizontal stress direction and 65° if aligning with the minimum horizontal stress direction, beyond which wellbore failure would become critical while drilling. Evaluation of sanding risks indicates no sand control installations would be needed for injector wells. Fracturing and faulting assessments confirm that the fracturing pressure of caprock is significantly higher than the planned CO2 injection and storage pressures for an ideal

  9. Carbon Sequestration in Colorado's Lands: A Spatial and Policy Analysis

    NASA Astrophysics Data System (ADS)

    Brandt, N.; Brazeau, A.; Browning, K.; Meier, R.

    2017-12-01

    Managing landscapes to enhance terrestrial carbon sequestration has significant potential to mitigate climate change. While a previous carbon baseline assessment in Colorado has been published (Conant et al, 2007), our study pulls from the existing literature to conduct an updated baseline assessment of carbon stocks and a unique review of carbon policies in Colorado. Through a multi-level spatial analysis based in GIS and informed by a literature review, we established a carbon stock baseline and ran four land use and carbon stock projection scenarios using Monte Carlo simulations. We identified 11 key policy recommendations for improving Colorado's carbon stocks, and evaluated each using Bardach's policy matrix approach (Bardach, 2012). We utilized a series of case studies to support our policy recommendations. We found that Colorado's lands have a carbon stock of 3,334 MMT CO2eq, with Forests and Woodlands holding the largest stocks, at 1,490 and 774 MMT CO2eq respectively. Avoided conversion of all Grasslands, Forests, and Wetlands in Colorado projected over 40 years would increase carbon stocks by 32 MMT CO2eq, 1,053 MMT CO2eq, and 36 MMT CO2eq, respectively. Over the 40-year study period, Forests and Woodlands areas are projected to shrink while Shrublands and Developed areas are projected to grow. Those projections suggest sizable increases in area of future wildfires and development in Colorado. We found that numerous policy opportunities to sequester carbon exist at different jurisdictional levels and across land cover types. The largest opportunities were found in state-level policies and policies impacting Forests, Grasslands, and Wetlands. The passage of statewide emission reduction legislation has the highest potential to impact carbon sequestration, although political and administrative feasibility of this option are relatively low. This study contributes to the broader field of carbon sequestration literature by examining the nexus of carbon stocks

  10. Assessing the Impact of Afforestation on Soil Organic C Sequestration by Means of Sequential Density Fractionation

    PubMed Central

    Cong, Weiwei; Ren, Tusheng; Li, Baoguo

    2015-01-01

    Afforestation is a prevalent practice carried out for soil recovery and carbon sequestration. Improved understanding of the effects of afforestation on soil organic carbon (SOC) content and dynamics is necessary to identify the particular processes of soil organic matter (SOM) formation and/or decomposition that result from afforestation. To elucidate these mechanisms, we have used a sequential density fractionation technique to identify the transfer mechanisms of forest derived C to soil fractions and investigate the impact of afforestation on SOC sequestration. Surface soil samples from continuous maize crop land (C4) and forest land (C3), which had been established 5, 12 and 25 yr, respectively, on the Northeast China Plain were separated into five density fractions. SOC, nitrogen (N) concentration and δ13C data from the three forests and adjacent cropland were compared. Afforestation decreased SOC concentration in the < 2.5 g cm-3 fractions from 5 yr forest sites, but increased SOC content in the < 2.0 g cm-3 fractions from 25 yr forest sites. Afforestation did not affect soil mass distribution, SOC and N proportional weight distributions across the density fractions. The < 1.8 g cm-3 fractions from 12 and 25 yr forests showed higher C/N and lower δ13C as compared to other fractions. Incorporation of forest litter-derived C occurred from low density (< 1.8 g cm-3) fractions to aggregates of higher density (1.8-2.5 g cm-3) through aggregate recombination and C transport in the pore system of the aggregates. Some forest litter-derived C could transfer from the light fractions or directly diffuse and adsorb onto mineral particles. Results from this study indicate that microaggregate protection and association between organic material and minerals provide major contribution to the SOC sequestration in the afforested soil system. PMID:25705896

  11. Micromotor-Based Biomimetic Carbon Dioxide Sequestration: Towards Mobile Microscrubbers.

    PubMed

    Uygun, Murat; Singh, Virendra V; Kaufmann, Kevin; Uygun, Deniz A; de Oliveira, Severina D S; Wang, Joseph

    2015-10-26

    We describe a mobile CO2 scrubbing platform that offers a greatly accelerated biomimetic sequestration based on a self-propelled carbonic anhydrase (CA) functionalized micromotor. The CO2 hydration capability of CA is coupled with the rapid movement of catalytic micromotors, and along with the corresponding fluid dynamics, results in a highly efficient mobile CO2 scrubbing microsystem. The continuous movement of CA and enhanced mass transport of the CO2 substrate lead to significant improvements in the sequestration efficiency and speed over stationary immobilized or free CA platforms. This system is a promising approach to rapid and enhanced CO2 sequestration platforms for addressing growing concerns over the buildup of greenhouse gas. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Land use scenarios development and impacts assessment on vegetation carbon/nitrogen sequestration in the West African Sudan savanna watershed, Benin

    NASA Astrophysics Data System (ADS)

    Chabi, A.

    2015-12-01

    ackground: Reduced Emissions from Deforestation and Degradation (REDD+), being developed through the United Nations Framework Convention on Climate Change (UNFCCC) requires information on the carbon/nitrogen stocks in the plant biomass for predicting future climate under scenarios development. The development of land use scenarios in West Africa is needed to predict future impacts of change in the environment and the socio-economic status of rural communities. The study aims at developing land use scenario based on mitigation strategy to climate change as an issue of contributing for carbon and nitrogen sequestration, the condition 'food focused' as a scenario based crop production and 'financial investment' as scenario based on an economic development pathway, and to explore the possible future temporal and spatial impacts on vegetation carbon/nitrogen sequestration/emission and socio-economic status of rural communities. Preliminary results: BEN-LUDAS (Benin-Land Use DyNamic Simulator) model, carbon and nitrogen equations, remote sensing and socio-economic data were used to predict the future impacts of each scenario in the environment and human systems. The preliminary results which are under analysis will be presented soon. Conclusion: The proposed BEN-LUDAS models will help to contribute to policy decision making at the local and regional scale and to predict future impacts of change in the environment and socio-economic status of the rural communities. Keywords: Land use scenarios development, BEN-LUDAS, socio-economic status of rural communities, future impacts of change, assessment, West African Sudan savanna watershed, Benin

  13. Technical Report on Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bill Stanley; Sandra Brown; Zoe Kant

    2009-01-07

    The Nature Conservancy participated in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project was 'Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration'. The objectives of the project were to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providingmore » new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Final Technical Report discusses the results of the six tasks that The Nature Conservancy undertook to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between July 1st 2001 and July 10th 2008. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool. The project occurred in two phases. The first was a focused exploration of specific carbon measurement and monitoring methodologies and pre-selected carbon sequestration opportunities. The second was a more systematic and comprehensive approach to compare various competing measurement and monitoring methodologies, and assessment of a variety of carbon sequestration opportunities in order to find those that are the lowest cost with the greatest combined carbon and other

  14. Molecular and Metabolic Mechanisms of Carbon Sequestration in Marine Thrombolites

    NASA Technical Reports Server (NTRS)

    Mobberley, Jennifer

    2013-01-01

    The overall goal of my dissertation project has been to examine the molecular processes underlying carbon sequestration in lithifying microbial ecosystems, known as thrombolitic mats, and assess their feasibility for use in bioregenerative life support systems. The results of my research and education efforts funded by the Graduate Student Researchers Program can be summarized in four peer-reviewed research publication, one educational publication, two papers in preparation, and six research presentations at local and national science meetings (see below for specific details).

  15. Briefing on geological sequestration (Tulsa)

    EPA Science Inventory

    Geological sequestration (GS) is generally recognized as the injection and long-term (e.g., hundreds to thousands of years) trapping of gaseous, liquid or supercritical carbon dioxide (CO2) in subsurface media – primarily saline formations, depleted or nearly depleted oil and gas...

  16. Enhancing forest carbon sequestration in China: toward an integration of scientific and socio-economic perspectives.

    PubMed

    Chen, J M; Thomas, S C; Yin, Y; Maclaren, V; Liu, J; Pan, J; Liu, G; Tian, Q; Zhu, Q; Pan, J-J; Shi, X; Xue, J; Kang, E

    2007-11-01

    This article serves as an introduction to this special issue, "China's Forest Carbon Sequestration", representing major results of a project sponsored by the Canadian International Development Agency and the Chinese Academy of Sciences. China occupies a pivotal position globally as a principle emitter of carbon dioxide, as host to some of the world's largest reforestation efforts, and as a key player in international negotiations aimed at reducing global greenhouse gas emission. The goals of this project are to develop remote sensing approaches for quantifying forest carbon balance in China in a transparent manner, and information and tools to support land-use decisions for enhanced carbon sequestration (CS) that are science based and economically and socially viable. The project consists of three components: (i) remote sensing and carbon modeling, (ii) forest and soil assessment, and (iii) integrated assessment of the socio-economic implications of CS via forest management. Articles included in this special issue are highlights of the results of each of these components.

  17. Physical and Economic Integration of Carbon Capture Methods with Sequestration Sinks

    NASA Astrophysics Data System (ADS)

    Murrell, G. R.; Thyne, G. D.

    2007-12-01

    Currently there are several different carbon capture technologies either available or in active development for coal- fired power plants. Each approach has different advantages, limitations and costs that must be integrated with the method of sequestration and the physiochemical properties of carbon dioxide to evaluate which approach is most cost effective. For large volume point sources such as coal-fired power stations, the only viable sequestration sinks are either oceanic or geological in nature. However, the carbon processes and systems under consideration produce carbon dioxide at a variety of pressure and temperature conditions that must be made compatible with the sinks. Integration of all these factors provides a basis for meaningful economic comparisons between the alternatives. The high degree of compatibility between carbon dioxide produced by integrated gasification combined cycle technology and geological sequestration conditions makes it apparent that this coupling currently holds the advantage. Using a basis that includes complete source-to-sink sequestration costs, the relative cost benefit of pre-combustion IGCC compared to other post-combustion methods is on the order of 30%. Additional economic benefits arising from enhanced oil recovery revenues and potential sequestration credits further improve this coupling.

  18. GIS-based integrated assessment and decision support system for land use planning in consideration of carbon sequestration benefits

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Chen, J. M.; Li, Manchun; Ju, Weimin

    2007-06-01

    As the major eligible land use activities in the Clean Development Mechanism (CDM), afforestation and reforestation offer opportunities and potential economic benefits for developing countries to participate in carbon-trade in the potential international carbon (C) sink markets. However, the design and selection of appropriate afforestation and reforestation locations in CDM are complex processes which need integrated assessment (IA) of C sequestration (CS) potential, environmental effects, and socio-economic impacts. This paper promotes the consideration of CS benefits in local land use planning and presents a GIS-based integrated assessment and spatial decision support system (IA-SDSS) to support decision-making on 'where' and 'how' to afforest. It integrates an Integrated Terrestrial Ecosystem Carbon Model (InTEC) and a GIS platform for modeling regional long-term CS potential and assessment of geo-referenced land use criteria including CS consequence, and produces ranking of plantation schemes with different tree species using the Analytic hierarchy process (AHP) method. Three land use scenarios are investigated: (i) traditional land use planning criteria without C benefits, (ii) land use for CS with low C price, and (iii) land use for CS with high price. Different scenarios and consequences will influence the weights of tree-species selection in the AHP decision process.

  19. Ecosystem carbon stocks and sequestration potential of federal lands across the conterminous United States

    PubMed Central

    Tan, Zhengxi; Liu, Shuguang; Sohl, Terry L.; Wu, Yiping; Young, Claudia J.

    2015-01-01

    Federal lands across the conterminous United States (CONUS) account for 23.5% of the CONUS terrestrial area but have received no systematic studies on their ecosystem carbon (C) dynamics and contribution to the national C budgets. The methodology for US Congress-mandated national biological C sequestration potential assessment was used to evaluate ecosystem C dynamics in CONUS federal lands at present and in the future under three Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (IPCC SRES) A1B, A2, and B1. The total ecosystem C stock was estimated as 11,613 Tg C in 2005 and projected to be 13,965 Tg C in 2050, an average increase of 19.4% from the baseline. The projected annual C sequestration rate (in kilograms of carbon per hectare per year) from 2006 to 2050 would be sinks of 620 and 228 for forests and grasslands, respectively, and C sources of 13 for shrublands. The federal lands’ contribution to the national ecosystem C budget could decrease from 23.3% in 2005 to 20.8% in 2050. The C sequestration potential in the future depends not only on the footprint of individual ecosystems but also on each federal agency’s land use and management. The results presented here update our current knowledge about the baseline ecosystem C stock and sequestration potential of federal lands, which would be useful for federal agencies to decide management practices to achieve the national greenhouse gas (GHG) mitigation goal. PMID:26417074

  20. Reservoir uncertainty, Precambrian topography, and carbon sequestration in the Mt. Simon Sandstone, Illinois Basin

    USGS Publications Warehouse

    Leetaru, H.E.; McBride, J.H.

    2009-01-01

    Sequestration sites are evaluated by studying the local geological structure and confirming the presence of both a reservoir facies and an impermeable seal not breached by significant faulting. The Cambrian Mt. Simon Sandstone is a blanket sandstone that underlies large parts of Midwest United States and is this region's most significant carbon sequestration reservoir. An assessment of the geological structure of any Mt. Simon sequestration site must also include knowledge of the paleotopography prior to deposition. Understanding Precambrian paleotopography is critical in estimating reservoir thickness and quality. Regional outcrop and borehole mapping of the Mt. Simon in conjunction with mapping seismic reflection data can facilitate the prediction of basement highs. Any potential site must, at the minimum, have seismic reflection data, calibrated with drill-hole information, to evaluate the presence of Precambrian topography and alleviate some of the uncertainty surrounding the thickness or possible absence of the Mt. Simon at a particular sequestration site. The Mt. Simon is thought to commonly overlie Precambrian basement granitic or rhyolitic rocks. In places, at least about 549 m (1800 ft) of topographic relief on the top of the basement surface prior to Mt. Simon deposition was observed. The Mt. Simon reservoir sandstone is thin or not present where basement is topographically high, whereas the low areas can have thick Mt. Simon. The paleotopography on the basement and its correlation to Mt. Simon thickness have been observed at both outcrops and in the subsurface from the states of Illinois, Ohio, Wisconsin, and Missouri. ?? 2009. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  1. Pilot Studies of Geologic and Terrestrial Carbon Sequestration in the Big Sky Region, USA, and Opportunities for Commercial Scale Deployment of New Technologies

    NASA Astrophysics Data System (ADS)

    Waggoner, L. A.; Capalbo, S. M.; Talbott, J.

    2007-05-01

    Within the Big Sky region, including Montana, Idaho, South Dakota, Wyoming and the Pacific Northwest, industry is developing new coal-fired power plants using the abundant coal and other fossil-based resources. Of crucial importance to future development programs are robust carbon mitigation plans that include a technical and economic assessment of regional carbon sequestration opportunities. The objective of the Big Sky Carbon Sequestration Partnership (BSCSP) is to promote the development of a regional framework and infrastructure required to validate and deploy carbon sequestration technologies. Initial work compiled sources and potential sinks for carbon dioxide (CO2) in the Big Sky Region and developed the online Carbon Atlas. Current efforts couple geologic and terrestrial field validation tests with market assessments, economic analysis and regulatory and public outreach. The primary geological efforts are in the demonstration of carbon storage in mafic/basalt formations, a geology not yet well characterized but with significant long-term storage potential in the region and other parts of the world; and in the Madison Formation, a large carbonate aquifer in Wyoming and Montana. Terrestrial sequestration relies on management practices and technologies to remove atmospheric CO2 to storage in trees, plants, and soil. This indirect sequestration method can be implemented today and is on the front-line of voluntary, market-based approaches to reduce CO2 emissions. Details of pilot projects are presented including: new technologies, challenges and successes of projects and potential for commercial-scale deployment.

  2. Southwestern Regional Partnership For Carbon Sequestration (Phase 2) Pump Canyon CO2- ECBM/Sequestration Demonstration, San Juan Basin, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Advanced Resources International

    2010-01-31

    Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO{sub 2} sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO{sub 2}-enhanced coalbed methane (CO{sub 2}/ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO{sub 2} sequestration in deep, unmineable coal seams via a small-scalemore » geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO{sub 2} was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO{sub 2} movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO{sub 2}. In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO{sub 2} fluxes, and tracers were used to help in tracking the injected CO{sub 2}. Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives

  3. A Qualitative Approach to Assessing Technological Pedagogical Content Knowledge

    ERIC Educational Resources Information Center

    Groth, Randall; Spickler, Donald; Bergner, Jennifer; Bardzell, Michael

    2009-01-01

    Because technological pedagogical content knowledge is becoming an increasingly important construct in the field of teacher education, there is a need for assessment mechanisms that capture teachers' development of this portion of the knowledge base for teaching. The paper describes a proposal drawing on qualitative data produced during lesson…

  4. Carbon sequestration by Australian tidal marshes

    PubMed Central

    Macreadie, Peter I.; Ollivier, Q. R.; Kelleway, J. J.; Serrano, O.; Carnell, P. E.; Ewers Lewis, C. J.; Atwood, T. B.; Sanderman, J.; Baldock, J.; Connolly, R. M.; Duarte, C. M.; Lavery, P. S.; Steven, A.; Lovelock, C. E.

    2017-01-01

    Australia’s tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia’s tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha−1 (range 14–963 Mg OC ha−1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha−1 yr−1. Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia’s 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO2-equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr−1, with a CO2-equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes. PMID:28281574

  5. Carbon sequestration by Australian tidal marshes.

    PubMed

    Macreadie, Peter I; Ollivier, Q R; Kelleway, J J; Serrano, O; Carnell, P E; Ewers Lewis, C J; Atwood, T B; Sanderman, J; Baldock, J; Connolly, R M; Duarte, C M; Lavery, P S; Steven, A; Lovelock, C E

    2017-03-10

    Australia's tidal marshes have suffered significant losses but their recently recognised importance in CO 2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia's tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha -1 (range 14-963 Mg OC ha -1 ). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha -1 yr -1 . Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia's 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO 2 -equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr -1 , with a CO 2 -equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO 2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes.

  6. 40 CFR 98.448 - Geologic sequestration monitoring, reporting, and verification (MRV) plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Sequestration of Carbon Dioxide § 98.448 Geologic sequestration monitoring, reporting, and verification (MRV... use to calculate site-specific variables for the mass balance equation. This includes, but is not...

  7. 40 CFR 98.448 - Geologic sequestration monitoring, reporting, and verification (MRV) plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Sequestration of Carbon Dioxide § 98.448 Geologic sequestration monitoring, reporting, and verification (MRV... use to calculate site-specific variables for the mass balance equation. This includes, but is not...

  8. Potential soil carbon sequestration in overgrazed grassland ecosystems

    NASA Astrophysics Data System (ADS)

    Conant, Richard T.; Paustian, Keith

    2002-12-01

    Excessive grazing pressure is detrimental to plant productivity and may lead to declines in soil organic matter. Soil organic matter is an important source of plant nutrients and can enhance soil aggregation, limit soil erosion, and can also increase cation exchange and water holding capacities, and is, therefore, a key regulator of grassland ecosystem processes. Changes in grassland management which reverse the process of declining productivity can potentially lead to increased soil C. Thus, rehabilitation of areas degraded by overgrazing can potentially sequester atmospheric C. We compiled data from the literature to evaluate the influence of grazing intensity on soil C. Based on data contained within these studies, we ascertained a positive linear relationship between potential C sequestration and mean annual precipitation which we extrapolated to estimate global C sequestration potential with rehabilitation of overgrazed grassland. The GLASOD and IGBP DISCover data sets were integrated to generate a map of overgrazed grassland area for each of four severity classes on each continent. Our regression model predicted losses of soil C with decreased grazing intensity in drier areas (precipitation less than 333 mm yr-1), but substantial sequestration in wetter areas. Most (93%) C sequestration potential occurred in areas with MAP less than 1800 mm. Universal rehabilitation of overgrazed grasslands can sequester approximately 45 Tg C yr-1, most of which can be achieved simply by cessation of overgrazing and implementation of moderate grazing intensity. Institutional level investments by governments may be required to sequester additional C.

  9. Cochrane Qualitative and Implementation Methods Group guidance series-paper 3: methods for assessing methodological limitations, data extraction and synthesis, and confidence in synthesized qualitative findings.

    PubMed

    Noyes, Jane; Booth, Andrew; Flemming, Kate; Garside, Ruth; Harden, Angela; Lewin, Simon; Pantoja, Tomas; Hannes, Karin; Cargo, Margaret; Thomas, James

    2018-05-01

    The Cochrane Qualitative and Implementation Methods Group develops and publishes guidance on the synthesis of qualitative and mixed-method implementation evidence. Choice of appropriate methodologies, methods, and tools is essential when developing a rigorous protocol and conducting the synthesis. Cochrane authors who conduct qualitative evidence syntheses have thus far used a small number of relatively simple methods to address similarly written questions. Cochrane has invested in methodological work to develop new tools and to encourage the production of exemplar reviews to show the value of more innovative methods that address a wider range of questions. In this paper, in the series, we report updated guidance on the selection of tools to assess methodological limitations in qualitative studies and methods to extract and synthesize qualitative evidence. We recommend application of Grades of Recommendation, Assessment, Development, and Evaluation-Confidence in the Evidence from Qualitative Reviews to assess confidence in qualitative synthesized findings. This guidance aims to support review authors to undertake a qualitative evidence synthesis that is intended to be integrated subsequently with the findings of one or more Cochrane reviews of the effects of similar interventions. The review of intervention effects may be undertaken concurrently with or separate to the qualitative evidence synthesis. We encourage further development through reflection and formal testing. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Carbon dioxide (CO2) sequestration in deep saline aquifers and formations: Chapter 3

    USGS Publications Warehouse

    Rosenbauer, Robert J.; Thomas, Burt

    2010-01-01

    Carbon dioxide (CO2) capture and sequestration in geologic media is one among many emerging strategies to reduce atmospheric emissions of anthropogenic CO2. This chapter looks at the potential of deep saline aquifers – based on their capacity and close proximity to large point sources of CO2 – as repositories for the geologic sequestration of CO2. The petrochemical characteristics which impact on the suitability of saline aquifers for CO2 sequestration and the role of coupled geochemical transport models and numerical tools in evaluating site feasibility are also examined. The full-scale commercial CO2 sequestration project at Sleipner is described together with ongoing pilot and demonstration projects.

  11. The impact of cultivar diversity in bioenergy feedstock production systems on soil carbon sequestration rates

    NASA Astrophysics Data System (ADS)

    De Graaff, M.; Morris, G.; Jastrow, J. D.; SIX, J. W.

    2013-12-01

    Land-use change for bioenergy production can create greenhouse gas (GHG) emissions through disturbance of soil carbon (C) pools, but native species with extensive root systems may rapidly repay the GHG debt, particularly when grown in diverse mixtures, by enhancing soil C sequestration upon land-use change. Native bioenergy candidate species, switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerardii) show extensive within-species variation, and our preliminary data show that increased cultivar diversity can enhance yield. We aim to assess how shifting C3-dominated nonnative perennial grasslands to C4-dominated native perennial grasslands for use as bioenergy feedstock affects soil C stocks, and how within-species diversity in switchgrass and big bluestem affects soil C sequestration rates. Our experiment is conducted at the Fermilab National Environmental Research Park, and compares different approaches for perennial feedstock production ranging across a biodiversity gradient, where diversity is manipulated at both the species- and cultivar level, and nitrogen (N) is applied at two levels (0 and 67 kg/ha). Preliminary results indicate that switchgrass and big bluestem differentially affect soil C sequstration, and that increasing diversity may enhance soil C sequestration rates.

  12. Impact of sedimentation on wetland carbon sequestration in an agricultural watershed.

    PubMed

    McCarty, Gregory; Pachepsky, Yakov; Ritchie, Jerry

    2009-01-01

    Landscape redistribution of soil C is common within agricultural ecosystems. Little is known about the effects of upland sediment deposition on C dynamics within riparian wetlands. To assess sedimentation impact, we obtained profile samples of wetland soil and used the combination of (137)Cs, (210)Pb, and (14)C chronological markers to determine rates of C sequestration and mineral deposition over the history of a wetland within a first-order catchment under agricultural management in the coastal plains of the United States. Substantial post settlement deposition in the wetland soil was evidenced in places by a 20- to 40-cm layer of mineral soil that buried the original histosol. Soil profiles contained a minimum in C content within the top 35 cm of the profile which originated from a rapid deposition from low C upland soils. Radiocarbon and radioisotope dating showed that increases in C above this minimum were the result of C sequestered in the past approximately 50 yr. Modeling the kinetics of modern C dynamics using the (137)Cs and (210)Pb markers within these surface profiles provides strong evidence for accelerated C sequestration associated with mineral sediment deposition in the ecosystem. These findings indicate that at the landscape scale, dilution of ecosystem C by import of low C upland sediment into wetlands stimulates C sequestration by pulling soil C content below some pedogenic equilibrium value for the ecosystem. They also indicate that over the history of the wetland, rates of C accretion may be linked to mineral soil deposition.

  13. Human neutrophil elastase and collagenase sequestration with phosphorylated cotton wound dressings.

    PubMed

    Edwards, J Vincent; Howley, Phyllis S

    2007-11-01

    The design and preparation of wound dressings that redress the protease imbalance in chronic wounds is an important goal of wound healing and medical materials science. Chronic wounds contain high levels of tissue and cytokine-destroying proteases including matrix metalloprotease and neutrophil elastase. Thus, the lowering of excessive protease levels in the wound environment by wound dressing sequestration prevents the breakdown of extracellular matrix proteins and growth factors necessary for wound healing. Phosphorylated cotton wound dressings were prepared to target sequestration of proteases from chronic wound exudate through a cationic uptake binding mechanism involving salt bridge formation of the positively charged amino acid side chains of proteases with the phosphate counterions of the wound dressing fiber. Dressings were prepared by applying sodium hexametaphosphate and diammonium phosphate in separate formulations to cotton gauze by pad/dry/cure methods. Phosphorylated cotton dressings were assessed for their ability to lower elastase and collagenase activity. The phosphorylated cotton dressings lowered elastase and collagenase activity 40-80% more effectively than the untreated cotton wound dressings under conditions that mimic chronic wound exudate. Efficacy of the phosphorylated cotton was found to be related to the level of phosphorylation and a lower pH due to protonated phosphate at the surface of the dressing. The capacity of the modified gauze to sequester continued elastase secretions similar to that found in a chronic wound over a 24-h period was retained within a 80% retention of elastase sequestration and was dose-dependent. Copyright (c) 2007 Wiley Periodicals, Inc.

  14. Contingent Fees in Medical Malpractice Litigation—A Qualitative Assessment

    PubMed Central

    Ottensmeyer, David J.; Smith, Howard L.; Porter, James

    1983-01-01

    The medical profession has experienced high liability insurance premiums accompanied by widespread use of contingent fees in medical malpractice litigation. It is worthwhile, therefore, to assess qualitatively the merits of contingent fees, the evidence suggesting that they are associated with unjustified litigation and their implications for the medical and legal professions. PMID:6636743

  15. The Annemarie Roeper Method of Qualitative Assessment: My Journey

    ERIC Educational Resources Information Center

    Beneventi, Anne

    2016-01-01

    The Annemarie Roeper Method of Qualitative Assessment (QA) establishes an extremely rich set of procedures for revealing students' strengths as well as opportunities for the development of bright young people. This article explores the ways in which the QA process serves as a sterling example of a holistic, authentic system for recognizing…

  16. Analysis and Comparison of Carbon Capture & Sequestration Policies

    NASA Astrophysics Data System (ADS)

    Burton, E.; Ezzedine, S. M.; Reed, J.; Beyer, J. H.; Wagoner, J. L.

    2010-12-01

    Several states and countries have adopted or are in the process of crafting policies to enable geologic carbon sequestration projects. These efforts reflect the recognition that existing statutory and regulatory frameworks leave ambiguities or gaps that elevate project risk for private companies considering carbon sequestration projects, and/or are insufficient to address a government’s mandate to protect the public interest. We have compared the various approaches that United States’ state and federal governments have taken to provide regulatory frameworks to address carbon sequestration. A major purpose of our work is to inform the development of any future legislation in California, should it be deemed necessary to meet the goals of Assembly Bill 1925 (2006) to accelerate the adoption of cost-effective geologic sequestration strategies for the long-term management of industrial carbon dioxide in the state. Our analysis shows a diverse issues are covered by adopted and proposed carbon capture and sequestration (CCS) legislation and that many of the new laws focus on defining regulatory frameworks for underground injection of CO2, ambiguities in property issues, or assigning legal liability. While these approaches may enable the progress of early projects, future legislation requires a longer term and broader view that includes a quantified integration of CCS into a government’s overall climate change mitigation strategy while considering potentially counterproductive impacts on CCS of other climate change mitigation strategies. Furthermore, legislation should be crafted in the context of a vision for CCS as an economically viable and widespread industry. While an important function of new CCS legislation is enabling early projects, it must be kept in mind that applying the same laws or protocols in the future to a widespread CCS industry may result in business disincentives and compromise of the public interest in mitigating GHG emissions. Protection of the

  17. A Policy Option To Provide Sufficient Funding For Massive-Scale Sequestration of CO2

    NASA Astrophysics Data System (ADS)

    Kithil, P. W.

    2007-12-01

    Global emissions of CO2 now are nearly 30 billion tons per year, and are growing rapidly due to strong economic growth. Atmospheric levels of CO2 have reached 380 ppm and recent reports suggest the rate of increase has gone from 1% per year in the 1990's to 3% per year now - with potential to cross 550ppm in the 2020 decade. Without stabilization of atmospheric CO2 below 550ppm, climate models predict unacceptably higher average temperatures with significant risk of runaway global warming this century. While there is much talk about reducing CO2 emissions by switching to non-fossil energy sources, imposing energy efficiency, and a host of other changes, there are no new large-scale energy sources on the horizon. The options are to impose draconian cuts in fossil energy consumption that will keep us below 550ppm (devastating the global economy) - or to adopt massive-scale sequestration of CO2. Three approaches are feasible: biological ocean sequestration, geologic sequestration, and biological terrestrial sequestration. Biological sequestration is applicable to all CO2 sources, whereas geologic sequestration is limited to fossil-fuel power plants and some large point-source emitters such as cement plants and large industrial facilities. Sequestration provides a direct mechanism for reducing atmospheric levels of CO2, whereas offsetting technologies such as wind power or improved efficiency, reduce the need for more fossil fuels but do not physically remove CO2 from the environment. The primary geologic technique, carbon capture & sequestration (CCS), prevents CO2 from entering the atmosphere but likewise does not reduce existing levels of atmospheric CO2. Biological sequestration (ocean or terrestrial) physically removes CO2 from the atmosphere. Since we cannot shut down our global economy, urgent action is needed to counteract CO2 emissions, and avoid catastrophic climate change. Given the long lead time and/or small impact of offsetting energy sources

  18. The effect of ocean acidification on carbon storage and sequestration in seagrass beds; a global and UK context.

    PubMed

    Garrard, Samantha L; Beaumont, Nicola J

    2014-09-15

    Ocean acidification will have many negative consequences for marine organisms and ecosystems, leading to a decline in many ecosystem services provided by the marine environment. This study reviews the effect of ocean acidification (OA) on seagrasses, assessing how this may affect their capacity to sequester carbon in the future and providing an economic valuation of these changes. If ocean acidification leads to a significant increase in above- and below-ground biomass, the capacity of seagrass to sequester carbon will be significantly increased. The associated value of this increase in sequestration capacity is approximately £500 and 600 billion globally between 2010 and 2100. A proportionally similar increase in carbon sequestration value was found for the UK. This study highlights one of the few positive stories for ocean acidification and underlines that sustainable management of seagrasses is critical to avoid their continued degradation and loss of carbon sequestration capacity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Nitrogen deposition and soil carbon sequestration: enzymes, experiments, and model estimates (Invited)

    NASA Astrophysics Data System (ADS)

    Goodale, C. L.; Weiss, M.; Tonitto, C.; Stone, M.

    2010-12-01

    Atmospheric nitrogen has long been expected to increase forest carbon sequestration, by means of enhanced productivity and litter production. More recently, N deposition has received attention for its potential for inducing soil C sequestration by suppressing microbial decomposition. Here, we present a range of measurements and model projections of the effects of N additions on soil C dynamics in forest soils of the northeastern U.S. A review of field-scale measurements of soil C stocks suggests modest enhancements of soil C storage in long-term N addition studies. Measurements of forest floor material from six long-term N addition studies showed that N additions suppressed microbial biomass and oxidative enzyme activity across sites. Additional analyses on soils from two of these sites are exploring the interactive effects of temperature and N addition on the activity of a range of extracellular enzymes used for decomposition of a range of organic matter. Incubations of forest floor material from four of these sites showed inhibition of heterotrophic respiration by an average of 28% during the first week of incubation, although this inhibition disappeared after 2 to 11 months. Nitrogen additions had no significant effect on DOC loss or on the partitioning of soil C into light or heavy (mineral-associated) organic matter. Last, we have adapted a new model of soil organic matter decomposition for the PnET-CN model to assess the long-term impact of suppressed decomposition on C sequestration in various soil C pools.

  20. Development of Protective Coatings for Co-Sequestration Processes and Pipelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bierwagen, Gordon; Huang, Yaping

    2011-11-30

    The program, entitled Development of Protective Coatings for Co-Sequestration Processes and Pipelines, examined the sensitivity of existing coating systems to supercritical carbon dioxide (SCCO2) exposure and developed new coating system to protect pipelines from their corrosion under SCCO2 exposure. A literature review was also conducted regarding pipeline corrosion sensors to monitor pipes used in handling co-sequestration fluids. Research was to ensure safety and reliability for a pipeline involving transport of SCCO2 from the power plant to the sequestration site to mitigate the greenhouse gas effect. Results showed that one commercial coating and one designed formulation can both be supplied asmore » potential candidates for internal pipeline coating to transport SCCO2.« less

  1. Terrestrial Carbon Sequestration: Analysis of Terrestrial Carbon Sequestration at Three Contaminated Sites Remediated and Revitalized with Soil Amendments

    EPA Pesticide Factsheets

    This paper provides EPA's analysis of the data to determine carbon sequestration rates at three diverse sites that differ in geography/location, weather, soil properties, type of contamination, and age.

  2. Application of four-dimension criteria to assess rigour of qualitative research in emergency medicine.

    PubMed

    Forero, Roberto; Nahidi, Shizar; De Costa, Josephine; Mohsin, Mohammed; Fitzgerald, Gerry; Gibson, Nick; McCarthy, Sally; Aboagye-Sarfo, Patrick

    2018-02-17

    The main objective of this methodological manuscript was to illustrate the role of using qualitative research in emergency settings. We outline rigorous criteria applied to a qualitative study assessing perceptions and experiences of staff working in Australian emergency departments. We used an integrated mixed-methodology framework to identify different perspectives and experiences of emergency department staff during the implementation of a time target government policy. The qualitative study comprised interviews from 119 participants across 16 hospitals. The interviews were conducted in 2015-2016 and the data were managed using NVivo version 11. We conducted the analysis in three stages, namely: conceptual framework, comparison and contrast and hypothesis development. We concluded with the implementation of the four-dimension criteria (credibility, dependability, confirmability and transferability) to assess the robustness of the study, RESULTS: We adapted four-dimension criteria to assess the rigour of a large-scale qualitative research in the emergency department context. The criteria comprised strategies such as building the research team; preparing data collection guidelines; defining and obtaining adequate participation; reaching data saturation and ensuring high levels of consistency and inter-coder agreement. Based on the findings, the proposed framework satisfied the four-dimension criteria and generated potential qualitative research applications to emergency medicine research. We have added a methodological contribution to the ongoing debate about rigour in qualitative research which we hope will guide future studies in this topic in emergency care research. It also provided recommendations for conducting future mixed-methods studies. Future papers on this series will use the results from qualitative data and the empirical findings from longitudinal data linkage to further identify factors associated with ED performance; they will be reported

  3. Regression of left ventricular dilation after percutaneous closure of a large intralobar pulmonary sequestration.

    PubMed

    Alvarez, Alejandro; Borgia, Francesco; Guccione, Paolo

    2010-02-01

    We describe an infant of 8 months who presented with left ventricular dilation due to an extensive intralobar sequestration of the right lung. The pulmonary sequestration was associated with a patent arterial duct and a right aortic arch. Percutaneous closure of the anomalous aberrant artery feeding the sequestrated lung resulted in prompt regression of the left ventricular enlargement.

  4. Qualitative risk assessment during polymer mortar test specimens preparation - methods comparison

    NASA Astrophysics Data System (ADS)

    Silva, F.; Sousa, S. P. B.; Arezes, P.; Swuste, P.; Ribeiro, M. C. S.; Baptista, J. S.

    2015-05-01

    Polymer binder modification with inorganic nanomaterials (NM) could be a potential and efficient solution to control matrix flammability of polymer concrete (PC) materials without sacrificing other important properties. Occupational exposures can occur all along the life cycle of a NM and “nanoproducts” from research through scale-up, product development, manufacturing, and end of life. The main objective of the present study is to analyse and compare different qualitative risk assessment methods during the production of polymer mortars (PM) with NM. The laboratory scale production process was divided in 3 main phases (pre-production, production and post-production), which allow testing the assessment methods in different situations. The risk assessment involved in the manufacturing process of PM was made by using the qualitative analyses based on: French Agency for Food, Environmental and Occupational Health & Safety method (ANSES); Control Banding Nanotool (CB Nanotool); Ecole Polytechnique Fédérale de Lausanne method (EPFL); Guidance working safely with nanomaterials and nanoproducts (GWSNN); Istituto Superiore per la Prevenzione e la Sicurezza del Lavoro, Italy method (ISPESL); Precautionary Matrix for Synthetic Nanomaterials (PMSN); and Stoffenmanager Nano. It was verified that the different methods applied also produce different final results. In phases 1 and 3 the risk assessment tends to be classified as medium-high risk, while for phase 2 the more common result is medium level. It is necessary to improve the use of qualitative methods by defining narrow criteria for the methods selection for each assessed situation, bearing in mind that the uncertainties are also a relevant factor when dealing with the risk related to nanotechnologies field.

  5. Contaminant sequestration in karstic aquifers: Experiments and quantification

    NASA Astrophysics Data System (ADS)

    Li, Guangquan; Loper, David E.; Kung, Robin

    2008-02-01

    A karstic aquifer typically has significant secondary porosity consisting of an interconnected system of caves or conduits. Conduit-borne contaminants can enter the contiguous limestone matrix, remain inside for a longer time than in the conduit, and subsequently be flushed out. This retention or sequestration can significantly influence the fate of contaminants within the aquifer and alter the shape of the breakthrough curve. The mechanisms involved in sequestration have been identified and quantified by analysis of the breakthrough curves generated by a set of laboratory experiments in which a conduit, porous limestone matrix, and conservative contaminant were simulated by a porous-walled pipe, chamber of closely packed glass beads, and salt, respectively. Experiments were conducted with both active and passive transfer of water between conduit and matrix, simulating differing hydrogeologic regimes. In active transfer the primary control parameter is the volume of water transferred; sequestration is primarily due to advection with the effects of diffusion and dispersion being minimal. In passive transfer the control parameters are the conduit Reynolds number and the duration that contaminant resides in the conduit; sequestration is caused by the combined effects of the conduit pressure drop, pressure variation due to bedform, and diffusion. Active and passive transfer can be unified by analyzing the ratio of the scale of pressure variation to the conduit length. In accordance with the resolved mechanisms a variety of models have been constructed to recover solute distributions in the matrix and to regenerate breakthrough curves. These analyses and models provide a potential approach to investigate contaminant migration in karstic aquifers.

  6. Meta-modeling soil organic carbon sequestration potential and its application at regional scale.

    PubMed

    Luo, Zhongkui; Wang, Enli; Bryan, Brett A; King, Darran; Zhao, Gang; Pan, Xubin; Bende-Michl, Ulrike

    2013-03-01

    Upscaling the results from process-based soil-plant models to assess regional soil organic carbon (SOC) change and sequestration potential is a great challenge due to the lack of detailed spatial information, particularly soil properties. Meta-modeling can be used to simplify and summarize process-based models and significantly reduce the demand for input data and thus could be easily applied on regional scales. We used the pre-validated Agricultural Production Systems sIMulator (APSIM) to simulate the impact of climate, soil, and management on SOC at 613 reference sites across Australia's cereal-growing regions under a continuous wheat system. We then developed a simple meta-model to link the APSIM-modeled SOC change to primary drivers, i.e., the amount of recalcitrant SOC, plant available water capacity of soil, soil pH, and solar radiation, temperature, and rainfall in the growing season. Based on high-resolution soil texture data and 8165 climate data points across the study area, we used the meta-model to assess SOC sequestration potential and the uncertainty associated with the variability of soil characteristics. The meta-model explained 74% of the variation of final SOC content as simulated by APSIM. Applying the meta-model to Australia's cereal-growing regions reveals regional patterns in SOC, with higher SOC stock in cool, wet regions. Overall, the potential SOC stock ranged from 21.14 to 152.71 Mg/ha with a mean of 52.18 Mg/ha. Variation of soil properties induced uncertainty ranging from 12% to 117% with higher uncertainty in warm, wet regions. In general, soils in Australia's cereal-growing regions under continuous wheat production were simulated as a sink of atmospheric carbon dioxide with a mean sequestration potential of 8.17 Mg/ha.

  7. Efficiency of incentives to jointly increase carbon sequestration and species conservation on a landscape

    PubMed Central

    Nelson, Erik; Polasky, Stephen; Lewis, David J.; Plantinga, Andrew J.; Lonsdorf, Eric; White, Denis; Bael, David; Lawler, Joshua J.

    2008-01-01

    We develop an integrated model to predict private land-use decisions in response to policy incentives designed to increase the provision of carbon sequestration and species conservation across heterogeneous landscapes. Using data from the Willamette Basin, Oregon, we compare the provision of carbon sequestration and species conservation under five simple policies that offer payments for conservation. We evaluate policy performance compared with the maximum feasible combinations of carbon sequestration and species conservation on the landscape for various conservation budgets. None of the conservation payment policies produce increases in carbon sequestration and species conservation that approach the maximum potential gains on the landscape. Our results show that policies aimed at increasing the provision of carbon sequestration do not necessarily increase species conservation and that highly targeted policies do not necessarily do as well as more general policies. PMID:18621703

  8. A Review of CO2 Sequestration Projects and Application in China

    PubMed Central

    Tang, Yong; Yang, Ruizhi; Bian, Xiaoqiang

    2014-01-01

    In 2008, the top CO2 emitters were China, United States, and European Union. The rapid growing economy and the heavy reliance on coal in China give rise to the continued growth of CO2 emission, deterioration of anthropogenic climate change, and urgent need of new technologies. Carbon Capture and sequestration is one of the effective ways to provide reduction of CO2 emission and mitigation of pollution. Coal-fired power plants are the focus of CO2 source supply due to their excessive emission and the energy structure in China. And over 80% of the large CO2 sources are located nearby storage reservoirs. In China, the CO2 storage potential capacity is of about 3.6 × 109 t for all onshore oilfields; 30.483 × 109 t for major gas fields between 900 m and 3500 m of depth; 143.505 × 109 t for saline aquifers; and 142.67 × 109 t for coal beds. On the other hand, planation, soil carbon sequestration, and CH4–CO2 reforming also contribute a lot to carbon sequestration. This paper illustrates some main situations about CO2 sequestration applications in China with the demonstration of several projects regarding different ways of storage. It is concluded that China possesses immense potential and promising future of CO2 sequestration. PMID:25302323

  9. Comparison study on qualitative and quantitative risk assessment methods for urban natural gas pipeline network.

    PubMed

    Han, Z Y; Weng, W G

    2011-05-15

    In this paper, a qualitative and a quantitative risk assessment methods for urban natural gas pipeline network are proposed. The qualitative method is comprised of an index system, which includes a causation index, an inherent risk index, a consequence index and their corresponding weights. The quantitative method consists of a probability assessment, a consequences analysis and a risk evaluation. The outcome of the qualitative method is a qualitative risk value, and for quantitative method the outcomes are individual risk and social risk. In comparison with previous research, the qualitative method proposed in this paper is particularly suitable for urban natural gas pipeline network, and the quantitative method takes different consequences of accidents into consideration, such as toxic gas diffusion, jet flame, fire ball combustion and UVCE. Two sample urban natural gas pipeline networks are used to demonstrate these two methods. It is indicated that both of the two methods can be applied to practical application, and the choice of the methods depends on the actual basic data of the gas pipelines and the precision requirements of risk assessment. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  10. Assessing Carbon Storage and Sequestration of Seagrass Meadows on the Pacific Coast of Canada

    NASA Astrophysics Data System (ADS)

    Postlethwaite, V. R.; McGowan, A. E.; Robinson, C.; Kohfeld, K. E.; Pellatt, M. G.; Yakimishyn, J.; Chastain, S. G.

    2016-12-01

    Recent estimates suggest that seagrasses are highly efficient carbon sinks, storing a disproportionate amount of carbon for their relatively small area (only approximately 0.2% of the global ocean), and that they may bury carbon up to 12 times faster than terrestrial forests. Unfortunately, seagrass meadows are being lost at a rate of 0.4-2.6% yr-1, potentially releasing 0.15-1.02 Pg (billion tonnes) carbon dioxide into the atmosphere annually. Research on seagrass carbon stocks has been mainly limited to areas in the Mediterranean, Southeast Asia, and Western Australia, and specifically has been very limited in the Northeast Pacific. We aim to characterize the carbon storage and sequestration occurring in the Pacific Rim National Park Reserve and the Clayoquot Sound area, off the western coast of Vancouver Island, British Columbia (BC). Each of our sites varied in environmental characteristics representative of BC's seagrass meadows, including freshwater influence. Six cores, plus one from a "reference" site were taken from each meadow. Loss on ignition (LOI) and elemental analysis will be used to determine organic C and carbonate content. Additionally, we will use dry bulk density, 210Pb dating and seagrass density data to determine carbon accumulation rates and total meadow carbon stocks to provide a comprehensive picture of carbon storage and sequestration in BC's seagrass meadows. Carbon storage results will contribute to global estimates of seagrass carbon stocks via the Commission for Environmental Cooperation, as well as assist in marine ecosystem conservation planning and help in understanding the value of these ecosystems, especially as a means of climate change mitigation.

  11. Applying GRADE-CERQual to qualitative evidence synthesis findings-paper 4: how to assess coherence.

    PubMed

    Colvin, Christopher J; Garside, Ruth; Wainwright, Megan; Munthe-Kaas, Heather; Glenton, Claire; Bohren, Meghan A; Carlsen, Benedicte; Tunçalp, Özge; Noyes, Jane; Booth, Andrew; Rashidian, Arash; Flottorp, Signe; Lewin, Simon

    2018-01-25

    The GRADE-CERQual (Grading of Recommendations Assessment, Development and Evaluation-Confidence in Evidence from Reviews of Qualitative research) approach has been developed by the GRADE working group. The approach has been developed to support the use of findings from qualitative evidence syntheses in decision-making, including guideline development and policy formulation. CERQual includes four components for assessing how much confidence to place in findings from reviews of qualitative research (also referred to as qualitative evidence syntheses): (1) methodological limitations, (2) relevance, (3) coherence and (4) adequacy of data. This paper is part of a series providing guidance on how to apply CERQual and focuses on CERQual's coherence component. We developed the coherence component by searching the literature for definitions, gathering feedback from relevant research communities and developing consensus through project group meetings. We tested the CERQual coherence component within several qualitative evidence syntheses before agreeing on the current definition and principles for application. When applying CERQual, we define coherence as how clear and cogent the fit is between the data from the primary studies and a review finding that synthesises that data. In this paper, we describe the coherence component and its rationale and offer guidance on how to assess coherence in the context of a review finding as part of the CERQual approach. This guidance outlines the information required to assess coherence, the steps that need to be taken to assess coherence and examples of coherence assessments. This paper provides guidance for review authors and others on undertaking an assessment of coherence in the context of the CERQual approach. We suggest that threats to coherence may arise when the data supporting a review finding are contradictory, ambiguous or incomplete or where competing theories exist that could be used to synthesise the data. We expect the

  12. Orientation Effects in Fault Reactivation in Geological CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Castelletto, N.; Ferronato, M.; Gambolati, G.; Janna, C.; Teatini, P.

    2012-12-01

    Geological CO2 sequestration remains one of the most promising option for reducing the greenhouse gases emission. The accurate simulation of the complex coupled physical processes occurring during the injection and the post-injection stage represents a key issue for investigating the feasibility and the safety of the sequestration. The fluid-dynamical and geochemical aspects related to sequestering CO2 underground have been widely debated in the scientific literature over more than one decade. Recently, the importance of geomechanical processes has been widely recognized. In the present modeling study, we focus on fault reactivation induced by injection, an essential aspect for the evaluation of CO2 sequestration projects that needs to be adequately investigated to avoid the generation of preferential leaking path for CO2 and the related risk of induced seismicity. We use a geomechanical model based on the structural equations of poroelasticity solved by the Finite Element (FE) - Interface Element (IE) approach. Standard FEs are used to represent a continuum, while IEs prove especially suited to assess the relative displacements of adjacent elements such as the opening and slippage of existing faults or the generation of new fractures [1]. The IEs allow for the modeling of fault mechanics using an elasto-plastic constitutive law based on the Mohr-Coulomb failure criterion. We analyze the reactivation of a single fault in a synthetic reservoir by varying the fault orientation and size, hydraulic conductivity of the faulted zone, initial vertical and horizontal stress state and Mohr-Coulomb parameters (i.e., friction angle and cohesion). References: [1] Ferronato, M., G. Gambolati, C. Janna, and P. Teatini (2008), Numerical modeling of regional faults in land subsidence prediction above gas/oil reservoirs, Int. J. Numer. Anal. Methods Geomech., 32, 633-657.

  13. A Circular Bioeconomy with Biobased Products from CO2 Sequestration.

    PubMed

    Venkata Mohan, S; Modestra, J Annie; Amulya, K; Butti, Sai Kishore; Velvizhi, G

    2016-06-01

    The unprecedented climate change influenced by elevated concentrations of CO2 has compelled the research world to focus on CO2 sequestration. Although existing natural and anthropogenic CO2 sinks have proven valuable, their ability to further assimilate CO2 is now questioned. Thus, we highlight here the importance of biological sequestration methods as alternate and viable routes for mitigating climate change while simultaneously synthesizing value-added products that could sustainably fuel the circular bioeconomy. Four conceptual models for CO2 biosequestration and the synthesis of biobased products, as well as an integrated CO2 biorefinery model, are proposed. Optimizing and implementing this biorefinery model might overcome the limitations of existing sequestration methods and could help realign the carbon balance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Final Report: Exudation by Poplar Ectomycorrhizas: Qualitative and Quantitative Assessment of C Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cumming, J R

    Study 1. We compared mycorrhizal Populus tremuloides inoculated with Laccaria bicolor and nonmycorrhizal (NM) P. tremuloides seedlings grown under different levels of P nutrition. Decreasing concentrations of P significantly increased the activity of reactive oxygen scavenging enzymes. In addition, phosphoenolpyruvate carboxylase activity increased under P limitation. P deficiency also increased organic acid exudation and total organic carbon exudation. Colonization by L. bicolor reduced the P concentration thresholds where these physiological changes occurred. Study 2. We assessed the influences of ectomycorrhizal colonization on phosphate limitation responses of trembling aspen. Photosynthetic CO2 uptake was reduced in NM poplar, but not in plantsmore » colonized by L. bicolor or P. involutus. Reductions in shoot and root biomass in NM plants were substantially greater than reductions in plants colonized by either ectomycorrhizal fungi. Leaf starch and sugar concentrations declined with Pi limitation across mycorrhizal treatments, but were higher in plants colonized by L. bicolor and P. involutus. In roots, starch concentrations were greater in NM plants with Pi limitation. In roots, sugars were significantly higher in NM plants compared to mycorrhizal plants and increased significantly in NM plants under Pi limitation. Concentrations were unaffected by Pi limitation in plants colonized by L. bicolor or P. involutus. Study 3. We analyzed proteins that were differentially expressed during the mycorrhizal association. A comparison of global protein expression elucidated broad differences in protein profiles between NM plants and plants colonized by ectomycorrhizal (ECM) or arbuscular mycorrhizal (AM) fungi as well as differences between the ECM fungi L. bicolor and P. involutus. Plants colonized by P. involutus and G. intraradices exhibited unique patterns of up/down-regulated proteins compared to NM plants, whereas plants colonized by L. bicolor exhibited

  15. An Alternative Mechanism for Accelerated Carbon Sequestration in Concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haselbach, Liv M.; Thomle, Jonathan N.

    The increased rate of carbon dioxide sequestration (carbonation) is desired in many primary and secondary life applications of concrete in order to make the life cycle of concrete structures more carbon neutral. Most carbonation rate studies have focused on concrete exposed to air under various conditions. An alternative mechanism for accelerated carbon sequestration in concrete was investigated in this research based on the pH change of waters in contact with pervious concrete which have been submerged in carbonate laden waters. The results indicate that the concrete exposed to high levels of carbonate species in water may carbonate faster than whenmore » exposed to ambient air, and that the rate is higher with higher concentrations. Validation of increased carbon dioxide sequestration was also performed via thermogravimetric analysis (TGA). It is theorized that the proposed alternative mechanism reduces a limiting rate effect of carbon dioxide dissolution in water in the micro pores of the concrete.« less

  16. Metamodeling-based approach for risk assessment and cost estimation: Application to geological carbon sequestration planning

    NASA Astrophysics Data System (ADS)

    Sun, Alexander Y.; Jeong, Hoonyoung; González-Nicolás, Ana; Templeton, Thomas C.

    2018-04-01

    Carbon capture and storage (CCS) is being evaluated globally as a geoengineering measure for significantly reducing greenhouse emission. However, long-term liability associated with potential leakage from these geologic repositories is perceived as a main barrier of entry to site operators. Risk quantification and impact assessment help CCS operators to screen candidate sites for suitability of CO2 storage. Leakage risks are highly site dependent, and a quantitative understanding and categorization of these risks can only be made possible through broad participation and deliberation of stakeholders, with the use of site-specific, process-based models as the decision basis. Online decision making, however, requires that scenarios be run in real time. In this work, a Python based, Leakage Assessment and Cost Estimation (PyLACE) web application was developed for quantifying financial risks associated with potential leakage from geologic carbon sequestration sites. PyLACE aims to assist a collaborative, analytic-deliberative decision making processes by automating metamodel creation, knowledge sharing, and online collaboration. In PyLACE, metamodeling, which is a process of developing faster-to-run surrogates of process-level models, is enabled using a special stochastic response surface method and the Gaussian process regression. Both methods allow consideration of model parameter uncertainties and the use of that information to generate confidence intervals on model outputs. Training of the metamodels is delegated to a high performance computing cluster and is orchestrated by a set of asynchronous job scheduling tools for job submission and result retrieval. As a case study, workflow and main features of PyLACE are demonstrated using a multilayer, carbon storage model.

  17. Advances in Geological CO{sub 2} Sequestration and Co-Sequestration with O{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verba, Circe A; O'Connor, William K.; Ideker, J.H.

    2012-10-28

    The injection of CO{sub 2} for Enhanced Oil Recovery (EOR) and sequestration in brine-bearing formations for long term storage has been in practice or under investigation in many locations globally. This study focused on the assessment of cement wellbore seal integrity in CO{sub 2}- and CO{sub 2}-O{sub 2}-saturated brine and supercritical CO{sub 2} environments. Brine chemistries (NaCl, MgCl{sub 2}, CaCl{sub 2}) at various saline concentrations were investigated at a pressure of 28.9 MPa (4200 psi) at both 50{degree}C and 85{degree}C. These parameters were selected to simulate downhole conditions at several potential CO{sub 2} injection sites in the United States. Classmore » H portland cement is not thermodynamically stable under these conditions and the formation of carbonic acid degrades the cement. Dissociation occurs and leaches cations, forming a CaCO{sub 3} buffered zone, amorphous silica, and other secondary minerals. Increased temperature affected the structure of C-S-H and the hydration of the cement leading to higher degradation rates.« less

  18. Identification of a Platelet Membrane Glycoprotein as a Falciparum Malaria Sequestration Receptor

    NASA Astrophysics Data System (ADS)

    Ockenhouse, Christian F.; Tandon, Narendra N.; Magowan, Cathleen; Jamieson, G. A.; Chulay, Jeffrey D.

    1989-03-01

    Infections with the human malaria parasite Plasmodium falciparum are characterized by sequestration of erythrocytes infected with mature forms of the parasite. Sequestration of infected erythrocytes appears to be critical for survival of the parasite and to mediate immunopathological abnormalities in severe malaria. A leukocyte differentiation antigen (CD36) was previously suggested to have a role in sequestration of malaria-infected erythrocytes. CD36 was purified from platelets, where it is known as GPIV, and was shown to be a receptor for binding of infected erythrocytes. Infected erythrocytes adhered to CD36 immobilized on plastic; purified CD36 exhibited saturable, specific binding to infected erythrocytes; and purified CD36 or antibodies to CD36 inhibited and reversed binding of infected erythrocytes to cultured endothelial cells and melanoma cells in vitro. The portion of the CD36 molecule that reverses cytoadherence may be useful therapeutically for rapid reversal of sequestration in cerebral malaria.

  19. Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils

    PubMed Central

    Vogel, Cordula; Mueller, Carsten W.; Höschen, Carmen; Buegger, Franz; Heister, Katja; Schulz, Stefanie; Schloter, Michael; Kögel-Knabner, Ingrid

    2014-01-01

    The sequestration of carbon and nitrogen by clay-sized particles in soils is well established, and clay content or mineral surface area has been used to estimate the sequestration potential of soils. Here, via incubation of a sieved (<2 mm) topsoil with labelled litter, we find that only some of the clay-sized surfaces bind organic matter (OM). Surprisingly, <19% of the visible mineral areas show an OM attachment. OM is preferentially associated with organo-mineral clusters with rough surfaces. By combining nano-scale secondary ion mass spectrometry and isotopic tracing, we distinguish between new labelled and pre-existing OM and show that new OM is preferentially attached to already present organo-mineral clusters. These results, which provide evidence that only a limited proportion of the clay-sized surfaces contribute to OM sequestration, revolutionize our view of carbon sequestration in soils and the widely used carbon saturation estimates. PMID:24399306

  20. Quantitative 3D breast magnetic resonance imaging fibroglandular tissue analysis and correlation with qualitative assessments: a feasibility study.

    PubMed

    Ha, Richard; Mema, Eralda; Guo, Xiaotao; Mango, Victoria; Desperito, Elise; Ha, Jason; Wynn, Ralph; Zhao, Binsheng

    2016-04-01

    The amount of fibroglandular tissue (FGT) has been linked to breast cancer risk based on mammographic density studies. Currently, the qualitative assessment of FGT on mammogram (MG) and magnetic resonance imaging (MRI) is prone to intra and inter-observer variability. The purpose of this study is to develop an objective quantitative FGT measurement tool for breast MRI that could provide significant clinical value. An IRB approved study was performed. Sixty breast MRI cases with qualitative assessment of mammographic breast density and MRI FGT were randomly selected for quantitative analysis from routine breast MRIs performed at our institution from 1/2013 to 12/2014. Blinded to the qualitative data, whole breast and FGT contours were delineated on T1-weighted pre contrast sagittal images using an in-house, proprietary segmentation algorithm which combines the region-based active contours and a level set approach. FGT (%) was calculated by: [segmented volume of FGT (mm(3))/(segmented volume of whole breast (mm(3))] ×100. Statistical correlation analysis was performed between quantified FGT (%) on MRI and qualitative assessments of mammographic breast density and MRI FGT. There was a significant positive correlation between quantitative MRI FGT assessment and qualitative MRI FGT (r=0.809, n=60, P<0.001) and mammographic density assessment (r=0.805, n=60, P<0.001). There was a significant correlation between qualitative MRI FGT assessment and mammographic density assessment (r=0.725, n=60, P<0.001). The four qualitative assessment categories of FGT correlated with the calculated mean quantitative FGT (%) of 4.61% (95% CI, 0-12.3%), 8.74% (7.3-10.2%), 18.1% (15.1-21.1%), 37.4% (29.5-45.3%). Quantitative measures of FGT (%) were computed with data derived from breast MRI and correlated significantly with conventional qualitative assessments. This quantitative technique may prove to be a valuable tool in clinical use by providing computer generated standardized

  1. Applying GRADE-CERQual to qualitative evidence synthesis findings-paper 3: how to assess methodological limitations.

    PubMed

    Munthe-Kaas, Heather; Bohren, Meghan A; Glenton, Claire; Lewin, Simon; Noyes, Jane; Tunçalp, Özge; Booth, Andrew; Garside, Ruth; Colvin, Christopher J; Wainwright, Megan; Rashidian, Arash; Flottorp, Signe; Carlsen, Benedicte

    2018-01-25

    The GRADE-CERQual (Confidence in Evidence from Reviews of Qualitative research) approach has been developed by the GRADE (Grading of Recommendations Assessment, Development and Evaluation) Working Group. The approach has been developed to support the use of findings from qualitative evidence syntheses in decision-making, including guideline development and policy formulation. CERQual includes four components for assessing how much confidence to place in findings from reviews of qualitative research (also referred to as qualitative evidence syntheses): (1) methodological limitations, (2) coherence, (3) adequacy of data and (4) relevance. This paper is part of a series providing guidance on how to apply CERQual and focuses on CERQual's methodological limitations component. We developed the methodological limitations component by searching the literature for definitions, gathering feedback from relevant research communities and developing consensus through project group meetings. We tested the CERQual methodological limitations component within several qualitative evidence syntheses before agreeing on the current definition and principles for application. When applying CERQual, we define methodological limitations as the extent to which there are concerns about the design or conduct of the primary studies that contributed evidence to an individual review finding. In this paper, we describe the methodological limitations component and its rationale and offer guidance on how to assess methodological limitations of a review finding as part of the CERQual approach. This guidance outlines the information required to assess methodological limitations component, the steps that need to be taken to assess methodological limitations of data contributing to a review finding and examples of methodological limitation assessments. This paper provides guidance for review authors and others on undertaking an assessment of methodological limitations in the context of the CERQual

  2. Geological Carbon Sequestration in the Ohio River Valley: An Evaluation of Possible Target Formations

    NASA Astrophysics Data System (ADS)

    Dalton, T. A.; Daniels, J. J.

    2009-12-01

    The development of geological carbon sequestration within the Ohio River Valley is of major interest to the national electricity and coal industries because the Valley is home to a heavy concentration of coal-burning electricity generation plants and the infrastructure is impossible to eliminate in the short-term. It has been determined by Ohio's politicians and citizenry that the continued use of coal in this region until alternative energy supplies are available will be necessary over the next few years. Geologic sequestration is the only possible means of keeping the CO2 out of the atmosphere in the region. The cost of the sequestration effort greatly decreases CO2 emissions by sequestering CO2 directly on site of these plants, or by minimizing the distance between fossil-fueled generation and sequestration (i.e., by eliminating the cost of transportation of supercritical CO2 from plant to sequestration site). Thus, the practicality of CO2 geologic sequestration within the Ohio River Valley is central to the development of such a commercial effort. Though extensive work has been done by the Regional Partnerships of the DOE/NETL in the characterization of general areas for carbon sequestration throughout the nation, few projects have narrowed their focus into a single geologic region in order to evaluate the sites of greatest commercial potential. As an undergraduate of the Earth Sciences at Ohio State, I have engaged in thorough research to obtain a detailed understanding of the geology of the Ohio River Valley and its potential for commercial-scale carbon sequestration. Through this research, I have been able to offer an estimate of the areas of greatest interest for CO2 geologic sequestration. This research has involved petrological, mineralogical, geochemical, and geophysical analyses of four major reservoir formations within Ohio—the Rose Run, the Copper Ridge, the Clinton, and the Oriskany—along with an evaluation of the possible effects of injection

  3. Bayesian-information-gap decision theory with an application to CO 2 sequestration

    DOE PAGES

    O'Malley, D.; Vesselinov, V. V.

    2015-09-04

    Decisions related to subsurface engineering problems such as groundwater management, fossil fuel production, and geologic carbon sequestration are frequently challenging because of an overabundance of uncertainties (related to conceptualizations, parameters, observations, etc.). Because of the importance of these problems to agriculture, energy, and the climate (respectively), good decisions that are scientifically defensible must be made despite the uncertainties. We describe a general approach to making decisions for challenging problems such as these in the presence of severe uncertainties that combines probabilistic and non-probabilistic methods. The approach uses Bayesian sampling to assess parametric uncertainty and Information-Gap Decision Theory (IGDT) to addressmore » model inadequacy. The combined approach also resolves an issue that frequently arises when applying Bayesian methods to real-world engineering problems related to the enumeration of possible outcomes. In the case of zero non-probabilistic uncertainty, the method reduces to a Bayesian method. Lastly, to illustrate the approach, we apply it to a site-selection decision for geologic CO 2 sequestration.« less

  4. Delineation of Magnesium-rich Ultramafic Rocks Available for Mineral Carbon Sequestration in the United States

    USGS Publications Warehouse

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral carbon sequestration is locating the magnesium-silicate bedrock available to sequester CO2. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made covering the entire United States detailing their geographical distribution and extent, or evaluating their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the continental United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. These rock types are potentially suitable as source material for mineral carbon-dioxide sequestration. The focus of the national-scale map is entirely on suitable ultramafic rock types, which typically consist primarily of olivine and serpentine minerals. By combining the map with digital datasets that show non-mineable lands (such as urban areas and National Parks), estimates on potential depth of a surface mine, and the predicted reactivities of the mineral deposits, one can begin to estimate the capacity for CO2 mineral sequestration within the United States. ?? 2009 Elsevier Ltd. All rights reserved.

  5. Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (RMCCS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McPherson, Brian; Matthews, Vince

    2013-09-30

    The primary objective of the “Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region” project, or RMCCS project, is to characterize the storage potential of the most promising geologic sequestration formations within the southwestern U.S. and the Central Rocky Mountain region in particular. The approach included an analysis of geologic sequestration formations under the Craig Power Station in northwestern Colorado, and application or extrapolation of those local-scale results to the broader region. A ten-step protocol for geologic carbon storage site characterization was a primary outcome of this project.

  6. Carbon Sequestration and Fertility after Centennial Time Scale Incorporation of Charcoal into Soil

    PubMed Central

    Criscuoli, Irene; Alberti, Giorgio; Baronti, Silvia; Favilli, Filippo; Martinez, Cristina; Calzolari, Costanza; Pusceddu, Emanuela; Rumpel, Cornelia; Viola, Roberto; Miglietta, Franco

    2014-01-01

    The addition of pyrogenic carbon (C) in the soil is considered a potential strategy to achieve direct C sequestration and potential reduction of non-CO2 greenhouse gas emissions. In this paper, we investigated the long term effects of charcoal addition on C sequestration and soil physico-chemical properties by studying a series of abandoned charcoal hearths in the Eastern Alps of Italy established in the XIX century. This natural setting can be seen as an analogue of a deliberate experiment with replications. Carbon sequestration was assessed indirectly by comparing the amount of pyrogenic C present in the hearths (23.3±4.7 kg C m−2) with the estimated amount of charcoal that was left on the soil after the carbonization (29.3±5.1 kg C m−2). After taking into account uncertainty associated with parameters’ estimation, we were able to conclude that 80±21% of the C originally added to the soil via charcoal can still be found there and that charcoal has an overall Mean Residence Time of 650±139 years, thus supporting the view that charcoal incorporation is an effective way to sequester atmospheric CO2. We also observed an overall change in the physical properties (hydrophobicity and bulk density) of charcoal hearth soils and an accumulation of nutrients compared to the adjacent soil without charcoal. We caution, however, that our site-specific results should not be generalized without further study. PMID:24614647

  7. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan M. Capalbo

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources foundmore » in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management

  8. Lead sequestration and species redistribution during soil organic matter decomposition

    USGS Publications Warehouse

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases (???20-35%) and SOM (???65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility. ?? 2008 American Chemical Society.

  9. Carbon sequestration and fertility after centennial time scale incorporation of charcoal into soil

    NASA Astrophysics Data System (ADS)

    Criscuoli, Irene; Alberti, Giorgio; Baronti, Silvia; Favilli, Filippo; Martinez, Cristina; Calzolari, Costanza; Pusceddu, Emanuela; Rumpel, Cornelia; Viola, Roberto; Miglietta, Franco

    2014-05-01

    The addition of pyrogenic carbon (C) in the soil is considered a sustainable strategy to achieve direct C sequestration and potential reduction of non-CO2 greenhouse gas emissions. In this paper, we investigated the long term effects of charcoal addition on C sequestration and soil chemico-physical properties by studying a series of abandoned charcoal hearths in the Eastern Alps established in the XIX century. This natural setting can be seen as an analogue of a deliberate experiment with replications. Carbon sequestration was assessed indirectly by comparing the amount of C present in the hearths with the estimated amount of charcoal that was left on the soil after the carbonization. Approximately 80% of the C originally added to the soil via charcoal can still be found today, thus supporting the view that charcoal incorporation is an effective way to sequester atmospheric CO2. We also observed an improvement in the physical properties (hydrophobicity and bulk density) of charcoal hearth soils and an accumulation of nutrients compared to the adjacent soil without charcoal. Then, we focused on the morphological and physical characterization of several fragments, using scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF). Such study enabled the identification of peculiar morphological features of tracheids, which were tentatively associated to a differential oxidation of the structures that were created during carbonization from lignine and cellulose. In order to assess the effect of soil-aging we compared the old-biochar with a modern one obtained from the same feedstock and with similar carbonization process. XRD and XRF analysis were performed on both old and modern biochar, in order to study the multiphase crystalline structure and chemical elements found. We observed mineralization and a fossilization of old biochar samples respect to the modern ones, with accumulation of several mineral oxides and a substantial presence of

  10. Mapping the Mineral Resource Base for Mineral Carbon-Dioxide Sequestration in the Conterminous United States

    USGS Publications Warehouse

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    This database provides information on the occurrence of ultramafic rocks in the conterminous United States that are suitable for sequestering captured carbon dioxide in mineral form, also known as mineral carbon-dioxide sequestration. Mineral carbon-dioxide sequestration is a proposed greenhouse gas mitigation technology whereby carbon dioxide (CO2) is disposed of by reacting it with calcium or magnesium silicate minerals to form a solid magnesium or calcium carbonate product. The technology offers a large capacity to permanently store CO2 in an environmentally benign form via a process that takes little effort to verify or monitor after disposal. These characteristics are unique among its peers in greenhouse gas disposal technologies. The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral CO2 sequestration is locating the magnesium-silicate bedrock available to sequester the carbon dioxide. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made in the United States that details their geographical distribution and extent, nor has anyone evaluated their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the conterminous United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. The focus of our national-scale map is entirely on ultramafic rock types, which typically consist primarily of olivine- and serpentine-rich rocks. These rock types are potentially suitable as source material for mineral CO2 sequestration.

  11. Clinical application of qualitative assessment for breast masses in shear-wave elastography.

    PubMed

    Gweon, Hye Mi; Youk, Ji Hyun; Son, Eun Ju; Kim, Jeong-Ah

    2013-11-01

    To evaluate the interobserver agreement and the diagnostic performance of various qualitative features in shear-wave elastography (SWE) for breast masses. A total of 153 breast lesions in 152 women who underwent B-mode ultrasound and SWE before biopsy were included. Qualitative analysis in SWE was performed using two different classifications: E values (Ecol; 6-point color score, Ehomo; homogeneity score and Esha; shape score) and a four-color pattern classification. Two radiologists reviewed five data sets: B-mode ultrasound, SWE, and combination of both for E values and four-color pattern. The BI-RADS categories were assessed B-mode and combined sets. Interobserver agreement was assessed using weighted κ statistics. Areas under the receiver operating characteristic curve (AUC), sensitivity, and specificity were analyzed. Interobserver agreement was substantial for Ecol (κ=0.79), Ehomo (κ=0.77) and four-color pattern (κ=0.64), and moderate for Esha (κ=0.56). Better-performing qualitative features were Ecol and four-color pattern (AUCs, 0.932 and 0.925) compared with Ehomo and Esha (AUCs, 0.857 and 0.864; P<0.05). The diagnostic performance of B-mode ultrasound (AUC, 0.950) was not significantly different from combined sets with E value and with four color pattern (AUCs, 0.962 and 0.954). When all qualitative values were negative, leading to downgrade the BI-RADS category, the specificity increased significantly from 16.5% to 56.1% (E value) and 57.0% (four-color pattern) (P<0.001) without improvement in sensitivity. The qualitative SWE features were highly reproducible and showed good diagnostic performance in suspicious breast masses. Adding qualitative SWE to B-mode ultrasound increased specificity in decision making for biopsy recommendation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. CARBON SEQUESTRATION AND PLANT COMMUNITY DYNAMICS FOLLOWING REFORESTATION OF TROPICAL PASTURE.

    Treesearch

    WHENDEE L. SILVER; LARA M. KUEPPERS; ARIEL E. LUGO; REBECCA OSTERTAG; VIRGINIA MATZEK

    2004-01-01

    Conversion of abandoned cattle pastures to secondary forests and plantations in the tropics has been proposed as a means to increase rates of carbon (C) sequestration from the atmosphere and enhance local biodiversity. We used a long-term tropical reforestation project (55–61 yr) to estimate rates of above- and belowground C sequestration and to investigate the impact...

  13. Reduced carbon sequestration potential of biochar in acidic soil.

    PubMed

    Sheng, Yaqi; Zhan, Yu; Zhu, Lizhong

    2016-12-01

    Biochar application in soil has been proposed as a promising method for carbon sequestration. While factors affecting its carbon sequestration potential have been widely investigated, the number of studies on the effect of soil pH is limited. To investigate the carbon sequestration potential of biochar across a series of soil pH levels, the total carbon emission, CO 2 release from inorganic carbon, and phospholipid fatty acids (PLFAs) of six soils with various pH levels were compared after the addition of straw biochar produced at different pyrolysis temperatures. The results show that the acidic soils released more CO 2 (1.5-3.5 times higher than the control) after the application of biochar compared with neutral and alkaline soils. The degradation of both native soil organic carbon (SOC) and biochar were accelerated. More inorganic CO 2 release in acidic soil contributed to the increased degradation of biochar. Higher proportion of gram-positive bacteria in acidic soil (25%-36%) was responsible for the enhanced biochar degradation and simultaneously co-metabolism of SOC. In addition, lower substrate limitation for bacteria, indicated by higher C-O stretching after the biochar application in the acidic soil, also caused more CO 2 release. In addition to the soil pH, other factors such as clay contents and experimental duration also affected the phsico-chemical and biotic processes of SOC dynamics. Gram-negative/gram-positive bacteria ratio was found to be negatively related to priming effects, and suggested to serve as an indicator for priming effect. In general, the carbon sequestration potential of rice-straw biochar in soil reduced along with the decrease of soil pH especially in a short-term. Given wide spread of acidic soils in China, carbon sequestration potential of biochar may be overestimated without taking into account the impact of soil pH. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The interconnectedness between landowner knowledge, value, belief, attitude, and willingness to act: policy implications for carbon sequestration on private rangelands.

    PubMed

    Cook, Seth L; Ma, Zhao

    2014-02-15

    Rangelands can be managed to increase soil carbon and help mitigate emissions of carbon dioxide. This study assessed Utah rangeland owner's environmental values, beliefs about climate change, and awareness of and attitudes towards carbon sequestration, as well as their perceptions of potential policy strategies for promoting carbon sequestration on private rangelands. Data were collected from semi-structured interviews and a statewide survey of Utah rangeland owners, and were analyzed using descriptive and bivariate statistics. Over two-thirds of respondents reported some level of awareness of carbon sequestration and a generally positive attitude towards it, contrasting to their lack of interest in participating in a relevant program in the future. Having a positive attitude was statistically significantly associated with having more "biocentric" environmental values, believing the climate had been changing over the past 30 years, and having a stronger belief of human activities influencing the climate. Respondents valued the potential ecological benefits of carbon sequestration more than the potential financial or climate change benefits. Additionally, respondents indicated a preference for educational approaches over financial incentives. They also preferred to work with a private agricultural entity over a non-profit or government entity on improving land management practices to sequester carbon. These results suggest potential challenges for developing technically sound and socially acceptable policies and programs for promoting carbon sequestration on private rangelands. Potential strategies for overcoming these challenges include emphasizing the ecological benefits associated with sequestering carbon to appeal to landowners with ecologically oriented management objectives, enhancing the cooperation between private agricultural organizations and government agencies, and funneling resources for promoting carbon sequestration into existing land management and

  15. Carbon storage and sequestration by trees in urban and community areas of the United States

    Treesearch

    David J. Nowak; Eric J. Greenfield; Robert E. Hoehn; Elizabeth Lapoint

    2013-01-01

    Carbon storage and sequestration by urban trees in the United States was quantified to assess the magnitude and role of urban forests in relation to climate change. Urban tree field data from 28 cities and 6 states were used to determine the average carbon density per unit of tree cover. These data were applied to statewide urban tree cover measurements to determine...

  16. Response comment: Carbon sequestration on Mars

    USGS Publications Warehouse

    Edwards, Christopher; Ehlmann, Bethany L.

    2016-01-01

    Martian atmospheric pressure has important implications for the past and present habitability of the planet, including the timing and causes of environmental change. The ancient Martian surface is strewn with evidence for early water bound in minerals (e.g., Ehlmann and Edwards, 2014) and recorded in surface features such as large catastrophically created outflow channels (e.g., Carr, 1979), valley networks (Hynek et al., 2010; Irwin et al., 2005), and crater lakes (e.g., Fassett and Head, 2008). Using orbital spectral data sets coupled with geologic maps and a set of numerical spectral analysis models, Edwards and Ehlmann (2015) constrained the amount of atmospheric sequestration in early Martian rocks and found that the majority of this sequestration occurred prior to the formation of the early Hesperian/late Noachian valley networks (Fassett and Head, 2011; Hynek et al., 2010), thus implying the atmosphere was already thin by the time these surface-water-related features were formed.

  17. Payments for carbon sequestration to alleviate development pressure in a rapidly urbanizing region

    USGS Publications Warehouse

    Smith, Jordan W.; Dorning, Monica; Shoemaker, Douglas A.; Méley, Andréanne; Dupey, Lauren; Meentemeyer, Ross K.

    2017-01-01

    The purpose of this study was to determine individuals' willingness to enroll in voluntary payments for carbon sequestration programs through the use of a discrete choice experiment delivered to forest owners living in the rapidly urbanizing region surrounding Charlotte, North Carolina. We examined forest owners' willingness to enroll in payments for carbon sequestration policies under different levels of financial incentives (annual revenue), different contract lengths, and different program administrators (e.g., private companies versus a state or federal agency). We also examined the influence forest owners' sense of place had on their willingness to enroll in hypothetical programs. Our results showed a high level of ambivalence toward participating in payments for carbon sequestration programs. However, both financial incentives and contract lengths significantly influenced forest owners' intent to enroll. Neither program administration nor forest owners' sense of place influenced intent to enroll. Although our analyses indicated that payments from carbon sequestration programs are not currently competitive with the monetary returns expected from timber harvest or property sales, certain forest owners might see payments for carbon sequestration programs as a viable option for offsetting increasing tax costs as development encroaches and property values rise.

  18. Potential Hydrogeomechanical Impacts of Geological CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    McPherson, B. J.; Haerer, D.; Han, W.; Heath, J.; Morse, J.

    2006-12-01

    Long-term sequestration of anthropogenic "greenhouse gases" such as CO2 is a proposed approach to managing climate change. Deep brine reservoirs in sedimentary basins are possible sites for sequestration, given their ubiquitous nature. We used a mathematical sedimentary basin model, including coupling of multiphase CO2-groundwater flow and rock deformation, to evaluate residence times in possible brine reservoir storage sites, migration patterns and rates away from such sites, and effects of CO2 injection on fluid pressures and rock strain. Study areas include the Uinta and Paradox basins of Utah, the San Juan basin of New Mexico, and the Permian basin of west Texas. Regional-scale hydrologic and mechanical properties, including the presence of fracture zones, were calibrated using laboratory and field data. Our initial results suggest that, in general, long-term (~100 years or more) sequestration in deep brine reservoirs is possible, if guided by robust structural and hydrologic data. However, specific processes must be addressed to characterize and minimize risks. In addition to CO2 migration from target sequestration reservoirs into other reservoirs or to the land surface, another environmental issue is displacement of brines into freshwater aquifers. We evaluated the potential for such unintended aquifer contamination by displacement of brines out of adjacent sealing layers such as marine shales. Results suggest that sustained injection of CO2 may incur significant brine displacement out of adjacent sealing layers, depending on the injection history, initial brine composition, and hydrologic properties of both reservoirs and seals. Model simulations also suggest that as injection-induced overpressures migrate, effective stresses may follow this migration under some conditions, as will associated rock strain. Such "strain migration" may lead to induced or reactivated fractures or faults, but can be controlled through reservoir engineering.

  19. 75 FR 33613 - Notice of the Carbon Sequestration-Geothermal Energy-Science Joint Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-14

    ... Sequestration--Geothermal Energy--Science Joint Workshop AGENCY: Office of Energy Efficiency and Renewable Energy, DOE. ACTION: Notice of the Carbon Sequestration--Geothermal Energy--Science Joint Workshop... Carbon Storage and Geothermal Energy, June 15-16, 2010. Experts from industry, academia, national labs...

  20. Incidental Finding of Bronchopulmonary Sequestration in a 64-Year-Old Female.

    PubMed

    Tunsupon, Pichapong; Arshad, Ayesha; Patel, Sumit; Mador, M Jeffery

    2017-01-01

    Bronchopulmonary sequestration is a congenital abnormality of the primitive foregut. In adults, the typical age at presentation is 20-25 years. A 64-year-old female was referred for evaluation of an 8 × 6-cm right lower lobe cystic lesion. Her medical history was significant for recurrent right lower lobe pneumonia requiring multiple hospitalizations. Her physical examination was significant for crackles at the right lung base. Computed tomography (CT) of the chest with contrast showed cystic changes with thickened septation of the medial segment of the right lower lobe lacking distinct visceral pleura and with arterial supply from the anomalous branch of the thoracic aorta arising near the celiac trunk. Pulmonary angiography confirmed the diagnosis of intralobar pulmonary sequestration. The patient underwent celiac endovascular coil embolization of the anomalous artery to lessen the risk of hemorrhage prior to video-assisted thoracoscopic surgery (VATS) resection of the right lower lobe. She recovered well and was discharged home 1 week after VATS lobectomy. Follow-up CT of the chest 2 months later showed normal postsurgical changes related to right lower lobe lobectomy. The patient remained asymptomatic and resumed her daily activities. Pulmonary sequestration can present with recurrent pneumonia in late adulthood. Physicians must review any previous imaging studies of the chest to identify the structural abnormality and be cognizant of differential diagnoses such as infected cystic bronchiectasis, bronchogenic cyst, congenital diaphragmatic hernia, or cystic adenomatoid malformation that can occur in conjunction with bronchopulmonary sequestration. Pulmonary angiogram is the gold standard to confirm the diagnosis of bronchopulmonary sequestration. Surgical resection is the standard of care.

  1. Anesthesiologists' learning curves for bedside qualitative ultrasound assessment of gastric content: a cohort study.

    PubMed

    Arzola, Cristian; Carvalho, Jose C A; Cubillos, Javier; Ye, Xiang Y; Perlas, Anahi

    2013-08-01

    Focused assessment of the gastric antrum by ultrasound is a feasible tool to evaluate the quality of the stomach content. We aimed to determine the amount of training an anesthesiologist would need to achieve competence in the bedside ultrasound technique for qualitative assessment of gastric content. Six anesthesiologists underwent a teaching intervention followed by a formative assessment; then learning curves were constructed. Participants received didactic teaching (reading material, picture library, and lecture) and an interactive hands-on workshop on live models directed by an expert sonographer. The participants were instructed on how to perform a systematic qualitative assessment to diagnose one of three distinct categories of gastric content (empty, clear fluid, solid) in healthy volunteers. Individual learning curves were constructed using the cumulative sum method, and competence was defined as a 90% success rate in a series of ultrasound examinations. A predictive model was further developed based on the entire cohort performance to determine the number of cases required to achieve a 95% success rate. Each anesthesiologist performed 30 ultrasound examinations (a total of 180 assessments), and three of the six participants achieved competence. The average number of cases required to achieve 90% and 95% success rates was estimated to be 24 and 33, respectively. With appropriate training and supervision, it is estimated that anesthesiologists will achieve a 95% success rate in bedside qualitative ultrasound assessment after performing approximately 33 examinations.

  2. Cardiomyopathy Induced by Pulmonary Sequestration in a 50-Year-Old Man

    PubMed Central

    Chatelain, Shaun; Comp, Robert A.; Grace, R. Randal

    2015-01-01

    A 50-year-old black man presented at the emergency department with midsternal, nonradiating chest pressure and chronic dyspnea on exertion. Four years before the current admission, he had been diagnosed with nonischemic cardiomyopathy at another facility. After our complete evaluation, we suspected that his symptoms arose from left-to-left shunting in association with pulmonary sequestration, a congenital malformation. Our preliminary diagnosis of secondary dilated cardiomyopathy was confirmed by normalization of the patient's ventricular size and function after lobectomy. To our knowledge, this patient is the oldest on record to present with cardiomyopathy consequent to pulmonary sequestration. His case is highly unusual because of his age and the rapid resolution of his symptoms after lobectomy. We believe that pulmonary sequestration should be included in the differential diagnosis of dilated cardiomyopathy. PMID:25873803

  3. A comparative study of qualitative and quantitative methods for the assessment of adhesive remnant after bracket debonding.

    PubMed

    Cehreli, S Burcak; Polat-Ozsoy, Omur; Sar, Cagla; Cubukcu, H Evren; Cehreli, Zafer C

    2012-04-01

    The amount of the residual adhesive after bracket debonding is frequently assessed in a qualitative manner, utilizing the adhesive remnant index (ARI). This study aimed to investigate whether quantitative assessment of the adhesive remnant yields more precise results compared to qualitative methods utilizing the 4- and 5-point ARI scales. Twenty debonded brackets were selected. Evaluation and scoring of the adhesive remnant on bracket bases were made consecutively using: 1. qualitative assessment (visual scoring) and 2. quantitative measurement (image analysis) on digital photographs. Image analysis was made on scanning electron micrographs (SEM) and high-precision elemental maps of the adhesive remnant as determined by energy dispersed X-ray spectrometry. Evaluations were made in accordance with the original 4-point and the modified 5-point ARI scales. Intra-class correlation coefficients (ICCs) were calculated, and the data were evaluated using Friedman test followed by Wilcoxon signed ranks test with Bonferroni correction. ICC statistics indicated high levels of agreement for qualitative visual scoring among examiners. The 4-point ARI scale was compliant with the SEM assessments but indicated significantly less adhesive remnant compared to the results of quantitative elemental mapping. When the 5-point scale was used, both quantitative techniques yielded similar results with those obtained qualitatively. These results indicate that qualitative visual scoring using the ARI is capable of generating similar results with those assessed by quantitative image analysis techniques. In particular, visual scoring with the 5-point ARI scale can yield similar results with both the SEM analysis and elemental mapping.

  4. Long-term nitrogen regulation of forest carbon sequestration

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Luo, Y.

    2009-12-01

    It is well established that nitrogen (N) limits plant production but unclear how N regulates long-term terrestrial carbon (C) sequestration in response to rising atmospheric C dioxide (CO2)(Luo et al., 2004). Most experimental evidence on C-N interactions is primarily derived from short-term CO2 manipulative studies (e.g. Oren et al., 2001; Reich et al., 2006a), which abruptly increase C inputs into ecosystems and N demand from soil while atmospheric CO2 concentration in the real world is gradually increasing over time (Luo & Reynolds, 1999). It is essential to examine long-term N regulations of C sequestration in natural ecosystems. Here we present results of a synthesis of more than 100 studies on long-term C-N interactions during secondary succession. C significantly accumulates in plant, litter and forest floor in most studies, and in mineral soil in one-third studies during stand development. Substantial increases in C stock are tightly coupled with N accretion. The C: N ratio in plant increases with stand age in most cases, but remains relatively constant in litter, forest floor and mineral soil. Our results suggest that natural ecosystems could have the intrinsic capacity to maintain long-term C sequestration through external N accrual, high N use efficiency, and efficient internal N cycling.

  5. A Qualitative Analysis of Rater Behavior on an L2 Speaking Assessment

    ERIC Educational Resources Information Center

    Kim, Hyun Jung

    2015-01-01

    Human raters are normally involved in L2 performance assessment; as a result, rater behavior has been widely investigated to reduce rater effects on test scores and to provide validity arguments. Yet raters' cognition and use of rubrics in their actual rating have rarely been explored qualitatively in L2 speaking assessments. In this study three…

  6. Effects of in situ stress measurement uncertainties on assessment of predicted seismic activity and risk associated with a hypothetical industrial-scale geologic CO 2 sequestration operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeanne, Pierre; Rutqvist, Jonny; Wainwright, Haruko M.

    Carbon capture and storage (CCS) in geologic formations has been recognized as a promising option for reducing carbon dioxide (CO 2) emissions from large stationary sources. However, the pressure buildup inside the storage formation can potentially induce slip along preexisting faults, which could lead to felt seismic ground motion and also provide pathways for brine/CO 2 leakage into shallow drinking water aquifers. To assess the geomechanical stability of faults, it is of crucial importance to know the in situ state of stress. In situ stress measurements can provide some information on the stresses acting on faults but with considerable uncertainties.more » In this paper, we investigate how such uncertainties, as defined by the variation of stress measurements obtained within the study area, could influence the assessment of the geomechanical stability of faults and the characteristics of potential injection-induced seismic events. Our modeling study is based on a hypothetical industrial-scale carbon sequestration project assumed to be located in the Southern San Joaquin Basin in California, USA. We assess the stability on the major (25 km long) fault that bounds the sequestration site and is subjected to significant reservoir pressure changes as a result of 50 years of CO 2 injection. We also present a series of geomechanical simulations in which the resolved stresses on the fault were varied over ranges of values corresponding to various stress measurements performed around the study area. The simulation results are analyzed by a statistical approach. Our main results are that the variations in resolved stresses as defined by the range of stress measurements had a negligible effect on the prediction of the seismic risk (maximum magnitude), but an important effect on the timing, the seismicity rate (number of seismic events) and the location of seismic activity.« less

  7. Effects of in situ stress measurement uncertainties on assessment of predicted seismic activity and risk associated with a hypothetical industrial-scale geologic CO 2 sequestration operation

    DOE PAGES

    Jeanne, Pierre; Rutqvist, Jonny; Wainwright, Haruko M.; ...

    2016-10-05

    Carbon capture and storage (CCS) in geologic formations has been recognized as a promising option for reducing carbon dioxide (CO 2) emissions from large stationary sources. However, the pressure buildup inside the storage formation can potentially induce slip along preexisting faults, which could lead to felt seismic ground motion and also provide pathways for brine/CO 2 leakage into shallow drinking water aquifers. To assess the geomechanical stability of faults, it is of crucial importance to know the in situ state of stress. In situ stress measurements can provide some information on the stresses acting on faults but with considerable uncertainties.more » In this paper, we investigate how such uncertainties, as defined by the variation of stress measurements obtained within the study area, could influence the assessment of the geomechanical stability of faults and the characteristics of potential injection-induced seismic events. Our modeling study is based on a hypothetical industrial-scale carbon sequestration project assumed to be located in the Southern San Joaquin Basin in California, USA. We assess the stability on the major (25 km long) fault that bounds the sequestration site and is subjected to significant reservoir pressure changes as a result of 50 years of CO 2 injection. We also present a series of geomechanical simulations in which the resolved stresses on the fault were varied over ranges of values corresponding to various stress measurements performed around the study area. The simulation results are analyzed by a statistical approach. Our main results are that the variations in resolved stresses as defined by the range of stress measurements had a negligible effect on the prediction of the seismic risk (maximum magnitude), but an important effect on the timing, the seismicity rate (number of seismic events) and the location of seismic activity.« less

  8. Biotic and abiotic effects on CO2 sequestration during microbially-induced calcium carbonate precipitation.

    PubMed

    Okyay, Tugba Onal; Rodrigues, Debora F

    2015-03-01

    In this study, CO2 sequestration was investigated through the microbially-induced calcium carbonate precipitation (MICP) process with isolates obtained from a cave called 'Cave Without A Name' (Boerne, TX, USA) and the Pamukkale travertines (Denizli, Turkey). The majority of the bacterial isolates obtained from these habitats belonged to the genera Sporosarcina, Brevundimonas, Sphingobacterium and Acinetobacter. The isolates were investigated for their capability to precipitate calcium carbonate and sequester CO2. Biotic and abiotic effects of CO2 sequestration during MICP were also investigated. In the biotic effect, we observed that the rate and concentration of CO2 sequestered was dependent on the species or strains. The main abiotic factors affecting CO2 sequestration during MICP were the pH and medium components. The increase in pH led to enhanced CO2 sequestration by the growth medium. The growth medium components, on the other hand, were shown to affect both the urease activity and CO2 sequestration. Through the Plackett-Burman experimental design, the most important growth medium component involved in CO2 sequestration was determined to be urea. The optimized medium composition by the Plackett-Burman design for each isolate led to a statistically significant increase, of up to 148.9%, in CO2 uptake through calcification mechanisms. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Using silviculture to influence carbon sequestration in southern Appalachian spruce-fir forests

    Treesearch

    Patrick T. Moore; R. Justin DeRose; James N. Long; Helga van Miegroet

    2012-01-01

    Enhancement of forest growth through silvicultural modification of stand density is one strategy for increasing carbon (C) sequestration. Using the Fire and Fuels Extension of the Forest Vegetation Simulator, the effects of even-aged, uneven-aged and no-action management scenarios on C sequestration in a southern Appalachian red spruce-Fraser fir forest were modeled....

  10. Development and validation of a testing protocol for carbon sequestration using a controlled environment.

    DOT National Transportation Integrated Search

    2012-05-01

    Carbon footprints, carbon credits and associated carbon sequestration techniques are rapidly becoming part : of how environmental mitigation business is conducted, not only in Texas but globally. Terrestrial carbon : sequestration is the general term...

  11. Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis

    DOE Data Explorer

    West, Tristram O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Post, Wilfred M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2002-01-01

    Changes in agricultural management can potentially increase the accumulation rate of soil organic carbon (SOC), thereby sequestering CO2 from the atmosphere. This study was conducted to quantify potential soil carbon (C) sequestration rates for different crops in response to decreasing tillage intensity or enhancing rotation complexity, and to estimate the duration of time over which sequestration may occur. Analyses of C sequestration rates were completed using a global database of 67 long-term agricultural experiments, consisting of 276 paired treatments. Results indicate, on average, that a change from conventional tillage (CT) to no-till (NT) can sequester 57 ± 14 g C m–2 yr–1, excluding wheat (Triticum aestivum L.)-fallow systems which may not result in SOC accumulation with a change from CT to NT. Enhancing rotation complexity can sequester an average 14 ± 11 g C m–2 yr–1, excluding a change from continuous corn (Zea mays L.) to corn-soybean (Glycine max L.) which may not result in a significant accumulation of SOC. Carbon sequestration rates, with a change from CT to NT, can be expected to peak in 5-10 yr with SOC reaching a new equilibrium in 15-20 yr. Following initiation of an enhancement in rotation complexity, SOC may reach a new equilibrium in approximately 40-60 yr. Carbon sequestration rates, estimated for a number of individual crops and crop rotations in this study, can be used in spatial modeling analyses to more accurately predict regional, national, and global C sequestration potentials.

  12. Poverty in Albania: A Qualitative Assessment. World Bank Technical Paper.

    ERIC Educational Resources Information Center

    De Soto, Hermine; Gordon, Peter; Gedeshi, Ilir; Sinoimeri, Zamira

    This World Bank qualitative assessment of poverty in Albania outlines five objectives: (1) it seeks to develop the understanding of poverty in the country by involving poor Albanians in a process of exploring the causes, nature, extent of poverty and its effects; (2) it is intended to support the Growth and Poverty Reduction Strategy Paper (GPRS),…

  13. Applying GRADE-CERQual to qualitative evidence synthesis findings-paper 5: how to assess adequacy of data.

    PubMed

    Glenton, Claire; Carlsen, Benedicte; Lewin, Simon; Munthe-Kaas, Heather; Colvin, Christopher J; Tunçalp, Özge; Bohren, Meghan A; Noyes, Jane; Booth, Andrew; Garside, Ruth; Rashidian, Arash; Flottorp, Signe; Wainwright, Megan

    2018-01-25

    The GRADE-CERQual (Confidence in Evidence from Reviews of Qualitative research) approach has been developed by the GRADE (Grading of Recommendations Assessment, Development and Evaluation) working group. The approach has been developed to support the use of findings from qualitative evidence syntheses in decision-making, including guideline development and policy formulation. CERQual includes four components for assessing how much confidence to place in findings from reviews of qualitative research (also referred to as qualitative evidence syntheses): (1) methodological limitations; (2) coherence; (3) adequacy of data; and (4) relevance. This paper is part of a series providing guidance on how to apply CERQual and focuses on CERQual's adequacy of data component. We developed the adequacy of data component by searching the literature for definitions, gathering feedback from relevant research communities and developing consensus through project group meetings. We tested the CERQual adequacy of data component within several qualitative evidence syntheses before agreeing on the current definition and principles for application. When applying CERQual, we define adequacy of data as an overall determination of the degree of richness and the quantity of data supporting a review finding. In this paper, we describe the adequacy component and its rationale and offer guidance on how to assess data adequacy in the context of a review finding as part of the CERQual approach. This guidance outlines the information required to assess data adequacy, the steps that need to be taken to assess data adequacy, and examples of adequacy assessments. This paper provides guidance for review authors and others on undertaking an assessment of adequacy in the context of the CERQual approach. We approach assessments of data adequacy in terms of the richness and quantity of the data supporting each review finding, but do not offer fixed rules regarding what constitutes sufficiently rich data or

  14. Simplified Predictive Models for CO2 Sequestration Performance Assessment

    NASA Astrophysics Data System (ADS)

    Mishra, Srikanta; RaviGanesh, Priya; Schuetter, Jared; Mooney, Douglas; He, Jincong; Durlofsky, Louis

    2014-05-01

    We present results from an ongoing research project that seeks to develop and validate a portfolio of simplified modeling approaches that will enable rapid feasibility and risk assessment for CO2 sequestration in deep saline formation. The overall research goal is to provide tools for predicting: (a) injection well and formation pressure buildup, and (b) lateral and vertical CO2 plume migration. Simplified modeling approaches that are being developed in this research fall under three categories: (1) Simplified physics-based modeling (SPM), where only the most relevant physical processes are modeled, (2) Statistical-learning based modeling (SLM), where the simulator is replaced with a "response surface", and (3) Reduced-order method based modeling (RMM), where mathematical approximations reduce the computational burden. The system of interest is a single vertical well injecting supercritical CO2 into a 2-D layered reservoir-caprock system with variable layer permeabilities. In the first category (SPM), we use a set of well-designed full-physics compositional simulations to understand key processes and parameters affecting pressure propagation and buoyant plume migration. Based on these simulations, we have developed correlations for dimensionless injectivity as a function of the slope of fractional-flow curve, variance of layer permeability values, and the nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. In the second category (SLM), we develop statistical "proxy models" using the simulation domain described previously with two different approaches: (a) classical Box-Behnken experimental design with a quadratic response surface fit, and (b) maximin Latin Hypercube sampling (LHS) based design with a Kriging metamodel fit using a quadratic trend and Gaussian correlation structure. For roughly the same number of

  15. Fundamentals of carbon dioxide-enhanced oil recovery (CO2-EOR): a supporting document of the assessment methodology for hydrocarbon recovery using CO2-EOR associated with carbon sequestration

    USGS Publications Warehouse

    Verma, Mahendra K.

    2015-01-01

    The objective of this report is to provide basic technical information regarding the CO2-EOR process, which is at the core of the assessment methodology, to estimate the technically recoverable oil within the fields of the identified sedimentary basins of the United States. Emphasis is on CO2-EOR because this is currently one technology being considered as an ultimate long-term geologic storage solution for CO2 owing to its economic profitability from incremental oil production offsetting the cost of carbon sequestration.

  16. Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep sediments.

    PubMed

    Strand, Stuart E; Benford, Gregory

    2009-02-15

    For significant impact any method to remove CO2 from the atmosphere must process large amounts of carbon efficiently, be repeatable, sequester carbon for thousands of years, be practical, economical and be implemented soon. The only method that meets these criteria is removal of crop residues and burial in the deep ocean. We show here that this method is 92% efficient in sequestration of crop residue carbon while cellulosic ethanol production is only 32% and soil sequestration is about 14% efficient. Deep ocean sequestration can potentially capture 15% of the current global CO2 annual increase, returning that carbon backto deep sediments, confining the carbon for millennia, while using existing capital infrastructure and technology. Because of these clear advantages, we recommend enhanced research into permanent sequestration of crop residues in the deep ocean.

  17. New cost estimates for carbon sequestration through afforestation in the United States

    Treesearch

    Anne Sofie Elburg Nielsen; Andrew J. Plantinga; Ralph J. Alig

    2014-01-01

    This report provides new cost estimates for carbon sequestration through afforestation in the United States. We extend existing studies of carbon sequestration costs in several important ways, while ensuring the transparency of our approach. We clearly identify all components of our cost estimates so that other researchers can reconstruct our results as well as use our...

  18. Carbon sequestration in the U.S. forest sector from 1990 to 2010

    Treesearch

    Peter B. Woodbury; James E. Smith; Linda S. Heath

    2007-01-01

    Forest inventory data supplemented with data from intensive research sites and models were used to estimate carbon stocks and sequestration rates in U.S. forests, including effects of land use change. Data on the production of wood products and emission from decomposition were used to estimate carbon stocks and sequestration rates in wood products and landfills. From...

  19. Estimating urban forest carbon sequestration potential in the southern United States using current remote sensing imagery sources

    Treesearch

    Krista Merry; Pete Bettinger; Jacek Siry; J. Michael Bowker

    2015-01-01

    With an increased interest in reducing carbon dioxide in the atmosphere, tree planting and maintenance in urban areas has become a viable option for increasing carbon sequestration. Methods for assessing the potential for planting trees within an urban area should allow for quick, inexpensive, and accurate estimations of available land using current remote sensing...

  20. Carbon sequestration by patch fertilization: A comprehensive assessment using coupled physical-ecological-biogeochemical models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarmiento, Jorge L.; Gnanadesikan, Anand; Gruber, Nicolas

    2007-06-21

    This final report summarizes research undertaken collaboratively between Princeton University, the NOAA Geophysical Fluid Dynamics Laboratory on the Princeton University campus, the State University of New York at Stony Brook, and the University of California, Los Angeles between September 1, 2000, and November 30, 2006, to do fundamental research on ocean iron fertilization as a means to enhance the net oceanic uptake of CO2 from the atmosphere. The approach we proposed was to develop and apply a suite of coupled physical-ecological-biogeochemical models in order to (i) determine to what extent enhanced carbon fixation from iron fertilization will lead to anmore » increase in the oceanic uptake of atmospheric CO2 and how long this carbon will remain sequestered (efficiency), and (ii) examine the changes in ocean ecology and natural biogeochemical cycles resulting from iron fertilization (consequences). The award was funded in two separate three-year installments: September 1, 2000 to November 30, 2003, for a project entitled “Ocean carbon sequestration by fertilization: An integrated biogeochemical assessment.” A final report was submitted for this at the end of 2003 and is included here as Appendix 1; and, December 1, 2003 to November 30, 2006, for a follow-on project under the same grant number entitled “Carbon sequestration by patch fertilization: A comprehensive assessment using coupled physical-ecological-biogeochemical models.” This report focuses primarily on the progress we made during the second period of funding subsequent to the work reported on in Appendix 1. When we began this project, we were thinking almost exclusively in terms of long-term fertilization over large regions of the ocean such as the Southern Ocean, with much of our focus being on how ocean circulation and biogeochemical cycling would interact to control the response to a given fertilization scenario. Our research on these types of scenarios, which was carried out largely

  1. Parasite Sequestration in Plasmodium falciparum Malaria: Spleen and Antibody Modulation of Cytoadherence of Infected Erythrocytes

    NASA Astrophysics Data System (ADS)

    David, Peter H.; Hommel, Marcel; Miller, Louis H.; Udeinya, Iroka J.; Oligino, Lynette D.

    1983-08-01

    Sequestration, the adherence of infected erythrocytes containing late developmental stages of the parasite (trophozoites and schizonts) to the endothelium of capillaries and venules, is characteristic of Plasmodium falciparum infections. We have studied two host factors, the spleen and antibody, that influence sequestration of P. falciparum in the squirrel monkey. Sequestration of trophozoite/schizont-infected erythrocytes that occurs in intact animals is reduced in splenectomized animals; in vitro, when infected blood is incubated with monolayers of human melanoma cells, trophozoite/schizont-infected erythrocytes from intact animals but not from splenectomized animals bind to the melanoma cells. The switch in cytoadherence characteristics of the infected erythrocytes from nonbinding to binding occurs with a cloned parasite. Immune serum can inhibit and reverse in vitro binding to melanoma cells of infected erythrocytes from intact animals. Similarly, antibody can reverse in vivo sequestration as shown by the appearance of trophozoite/schizont-infected erythrocytes in the peripheral blood of an intact animal after inoculation with immune serum. These results indicate that the spleen modulates the expression of parasite alterations of the infected erythrocyte membrane responsible for sequestration and suggest that the prevention and reversal of sequestration could be one of the effector mechanisms involved in antibody-mediated protection against P. falciparum malaria.

  2. From Assessment to Implementation: Using Qualitative Interviews to Inform Distance Learning Library Services

    ERIC Educational Resources Information Center

    Wharton, Lindsey N.

    2017-01-01

    While broad assessment projects are often used to steer library strategic planning initiatives, this article will present the benefits of qualitative interviews with distance learning constituents as a framework for developing a focused vision and targeted services. This article will describe the planning and execution of an assessment project…

  3. Biogeologic Carbon Sequestration - a Cost-Effective Proposal

    NASA Astrophysics Data System (ADS)

    Shaw, G. H.; Kuhns, R.

    2009-05-01

    Carbon sequestration has been proposed as a strategy for reducing the impact of carbon dioxide emissions from burning of fossil fuels. There are two main routes: 1) capture CO2 emissions from power plants or other large point sources followed by some form of "burial/sequestration", and 2) extraction of CO2 from the ambient atmosphere (involving substantial concentration relative to atmospheric levels) also followed by burial/sequestration. In either case the goal is to achieve significant long-term isolation of CO2 at an economically sustainable price, perhaps measured by some "market price" for CO2, such as the European carbon futures market, where the price is now (2/3/09) about 14-15/tonne of CO2. The second approach, removal of CO2 from the atmosphere, has the potential benefit of reversing the previous buildup of atmospheric CO2, and perhaps even providing a means to "adjust" terrestrial climate by regulating atmospheric CO2 concentrations. For the present, ideas of planetary "geo-engineering" are not as popular as reducing the impact of continued CO2 emissions. In fact, the energy and capital costs of extraction from a dilute atmosphere appear to make this approach uneconomical. Proposals to fertilize the open ocean suffer from concerns about long term ecosystem effects, to say nothing of a lack of verifiability. There is, however, an approach using biological systems that can not only extract significant amounts of CO2, but can do so cost-effectively. Lakes are known in which primary productivity approaches or exceeds 1gm C/cm2-yr. This equates to removal of 35,000 tonnes of CO2 per km2 per year, with a "market value" of about 500,000/yr. Such productivity only occurs under highly eutrophic conditions, and presumably requires significant nutrient additions. As such it would be unthinkable to pursue this technique on a large scale in extant lakes. If, however, it is possible to produce one or more large artificial lakes under acceptable conditions it is

  4. A Survey of Measurement, Mitigation, and Verification Field Technologies for Carbon Sequestration Geologic Storage

    NASA Astrophysics Data System (ADS)

    Cohen, K. K.; Klara, S. M.; Srivastava, R. D.

    2004-12-01

    The U.S. Department of Energy's (U.S. DOE's) Carbon Sequestration Program is developing state-of-the-science technologies for measurement, mitigation, and verification (MM&V) in field operations of geologic sequestration. MM&V of geologic carbon sequestration operations will play an integral role in the pre-injection, injection, and post-injection phases of carbon capture and storage projects to reduce anthropogenic greenhouse gas emissions. Effective MM&V is critical to the success of CO2 storage projects and will be used by operators, regulators, and stakeholders to ensure safe and permanent storage of CO2. In the U.S. DOE's Program, Carbon sequestration MM&V has numerous instrumental roles: Measurement of a site's characteristics and capability for sequestration; Monitoring of the site to ensure the storage integrity; Verification that the CO2 is safely stored; and Protection of ecosystems. Other drivers for MM&V technology development include cost-effectiveness, measurement precision, and frequency of measurements required. As sequestration operations are implemented in the future, it is anticipated that measurements over long time periods and at different scales will be required; this will present a significant challenge. MM&V sequestration technologies generally utilize one of the following approaches: below ground measurements; surface/near-surface measurements; aerial and satellite imagery; and modeling/simulations. Advanced subsurface geophysical technologies will play a primary role for MM&V. It is likely that successful MM&V programs will incorporate multiple technologies including but not limited to: reservoir modeling and simulations; geophysical techniques (a wide variety of seismic methods, microgravity, electrical, and electromagnetic techniques); subsurface fluid movement monitoring methods such as injection of tracers, borehole and wellhead pressure sensors, and tiltmeters; surface/near surface methods such as soil gas monitoring and infrared

  5. Ferricyanide-based analysis of aqueous lignin suspension revealed sequestration of water-soluble lignin moieties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshua, C. J.; Simmons, B. A.; Singer, S. W.

    This study describes the application of a ferricyanide-based assay as a simple and inexpensive assay for rapid analysis of aqueous lignin samples. The assay measures the formation of Prussian blue from the redox reaction between a mixture of potassium ferricyanide and ferric chloride, and phenolic hydroxyl groups of lignin or lignin-derived phenolic moieties. This study revealed that soluble lignin moieties exhibited stronger ferricyanide reactivity than insoluble aggregates. The soluble lignin moieties exhibited higher ferricyanide reactivity because of increased access of the phenolic hydroxyl groups to the ferricyanide reagents. Ferricyanide reactivity of soluble lignin moieties correlated inversely with the molecular weightmore » distributions of the molecules, probably due to the involvement of phenolic hydroxyl groups in bond formation. The insoluble lignin aggregates exhibited low ferricyanide reactivity due to sequestration of the phenolic hydroxyl groups within the solid matrix. The study also highlighted the sequestration of polydispersed water-soluble lignin moieties by insoluble aggregates. The sequestered moieties were released by treatment with 0.01 M NaOH at 37 °C for 180 min. The redox assay was effective on different types of lignin extracts such as Klason lignin from switchgrass, ionic-liquid derived lignin from Eucalyptus and alkali lignin extracts. The assay generated a distinct profile for each lignin sample that was highly reproducible. The assay was also used to monitor consumption of syringic acid by Sphingobium sp. SYK-6. The simplicity and reproducibility of this assay makes it an excellent and versatile tool for qualitative and semi-quantitative characterization and comparative profiling of aqueous lignin samples.« less

  6. Ferricyanide-based analysis of aqueous lignin suspension revealed sequestration of water-soluble lignin moieties

    DOE PAGES

    Joshua, C. J.; Simmons, B. A.; Singer, S. W.

    2016-06-02

    This study describes the application of a ferricyanide-based assay as a simple and inexpensive assay for rapid analysis of aqueous lignin samples. The assay measures the formation of Prussian blue from the redox reaction between a mixture of potassium ferricyanide and ferric chloride, and phenolic hydroxyl groups of lignin or lignin-derived phenolic moieties. This study revealed that soluble lignin moieties exhibited stronger ferricyanide reactivity than insoluble aggregates. The soluble lignin moieties exhibited higher ferricyanide reactivity because of increased access of the phenolic hydroxyl groups to the ferricyanide reagents. Ferricyanide reactivity of soluble lignin moieties correlated inversely with the molecular weightmore » distributions of the molecules, probably due to the involvement of phenolic hydroxyl groups in bond formation. The insoluble lignin aggregates exhibited low ferricyanide reactivity due to sequestration of the phenolic hydroxyl groups within the solid matrix. The study also highlighted the sequestration of polydispersed water-soluble lignin moieties by insoluble aggregates. The sequestered moieties were released by treatment with 0.01 M NaOH at 37 °C for 180 min. The redox assay was effective on different types of lignin extracts such as Klason lignin from switchgrass, ionic-liquid derived lignin from Eucalyptus and alkali lignin extracts. The assay generated a distinct profile for each lignin sample that was highly reproducible. The assay was also used to monitor consumption of syringic acid by Sphingobium sp. SYK-6. The simplicity and reproducibility of this assay makes it an excellent and versatile tool for qualitative and semi-quantitative characterization and comparative profiling of aqueous lignin samples.« less

  7. Animals as an indicator of carbon sequestration and valuable landscapes

    PubMed Central

    Szyszko, Jan; Schwerk, Axel; Malczyk, Jarosław

    2011-01-01

    Abstract Possibilities of the assessment of a landscape with the use of succession development stages, monitored with the value of the Mean Individual Biomass (MIB) of carabid beetles and the occurrence of bird species are discussed on the basis of an example from Poland. Higher variability of the MIB value in space signifies a greater biodiversity. Apart from the variability of MIB, it is suggested to adopt the occurrence of the following animals as indicators, (in the order of importance), representing underlying valuable landscapes: black stork, lesser spotted eagle, white-tailed eagle, wolf, crane and white stork. The higher number of these species and their greater density indicate a higher value of the landscape for biodiversity and ecosystem services, especially carbon sequestration. All these indicators may be useful to assess measures for sustainable land use. PMID:21738434

  8. Applying GRADE-CERQual to qualitative evidence synthesis findings-paper 6: how to assess relevance of the data.

    PubMed

    Noyes, Jane; Booth, Andrew; Lewin, Simon; Carlsen, Benedicte; Glenton, Claire; Colvin, Christopher J; Garside, Ruth; Bohren, Meghan A; Rashidian, Arash; Wainwright, Megan; Tunςalp, Özge; Chandler, Jacqueline; Flottorp, Signe; Pantoja, Tomas; Tucker, Joseph D; Munthe-Kaas, Heather

    2018-01-25

    The GRADE-CERQual (Confidence in Evidence from Reviews of Qualitative research) approach has been developed by the GRADE (Grading of Recommendations Assessment, Development and Evaluation) Working Group. The approach has been developed to support the use of findings from qualitative evidence syntheses in decision-making, including guideline development and policy formulation. CERQual includes four components for assessing how much confidence to place in findings from reviews of qualitative research (also referred to as qualitative evidence syntheses): (1) methodological limitations, (2) coherence, (3) adequacy of data and (4) relevance. This paper is part of a series providing guidance on how to apply CERQual and focuses on CERQual's relevance component. We developed the relevance component by searching the literature for definitions, gathering feedback from relevant research communities and developing consensus through project group meetings. We tested the CERQual relevance component within several qualitative evidence syntheses before agreeing on the current definition and principles for application. When applying CERQual, we define relevance as the extent to which the body of data from the primary studies supporting a review finding is applicable to the context (perspective or population, phenomenon of interest, setting) specified in the review question. In this paper, we describe the relevance component and its rationale and offer guidance on how to assess relevance in the context of a review finding. This guidance outlines the information required to assess relevance, the steps that need to be taken to assess relevance and examples of relevance assessments. This paper provides guidance for review authors and others on undertaking an assessment of relevance in the context of the CERQual approach. Assessing the relevance component requires consideration of potentially important contextual factors at an early stage in the review process. We expect the CERQual

  9. Intralober pulmonary sequestration with arterial supply from two different origins: a case report.

    PubMed

    Erden, Ersin Sukru; Yetim, Tulin Durgun; Balci, Ali; Akcay, Adnan Burak; Hakverdi, Sibel; Demirkose, Mesut

    2012-01-01

    Pulmonary sequestration is a rare anomaly, which does not have a connection with the bronchial system and gets its blood supply, generally, from the aorta or its branches. Anatomically, two different forms were described: intralobar and extralobar. Although 74% of intralobar pulmonary sequestrations get their blood supply from the descending thoracic aorta, they may get their blood supply from different arteries. Furthermore, there is more than one arterial anomaly in 14.8% of cases. We report an intralobar pulmonary sequestration, in which arterial blood supply is from two different origins (Arcus aorta and celiac trunk). To the best of our knowledge, this is the first case in the literature.

  10. How sequestration cuts affect primary care physicians and graduate medical education.

    PubMed

    Chauhan, Bindiya; Coffin, Janis

    2013-01-01

    On April 1, 2013, sequestration cuts went into effect impacting Medicare physician payments, graduate medical education, and many other healthcare agencies. The cuts range from 2% to 5%, affecting various departments and organizations. There is already a shortage of primary care physicians in general, not including rural or underserved areas, with limited grants for advanced training. The sequestration cuts negatively impact the future of many primary care physicians and hinder the care many Americans will receive over time.

  11. Refractory organic matter in coastal salt marshes-effect on C sequestration calculations.

    PubMed

    Leorri, Eduardo; Zimmerman, Andrew R; Mitra, Siddhartha; Christian, Robert R; Fatela, Francisco; Mallinson, David J

    2018-08-15

    The age and ability of salt marshes to accumulate and sequester carbon is often assessed using the carbon isotopic signatures (Δ 14 C and δ 13 C) of sedimentary organic matter. However, transfers of allochthonous refractory carbon (C RF ) from the watershed to marshes would not represent new C sequestration. To better understand how refractory carbon (C RF ) inputs affect assessments of marsh age and C sequestration, Δ 14 C and δ 13 C of both total organic carbon (TOC), C RF , and non-C RF organic matter fractions were measured in salt marshes from four contrasting systems on the North Atlantic coast. To our knowledge, no salt marsh sediment study has considered refractory or allochthonous carbon in carbon budget calculations or the impact on chronologies. Stable and radiogenic isotope data suggest that while TOC was dominated by autochthonous plant inputs, C RF was dominated by locally recycled or allochthonous C, the delivery of which was controlled by the size and slope of each watershed. Steep-gradient rivers analyzed delivered Δ 14 C-depleted C RF to their estuarine marshes, while the site located in the low-gradient river was associated with larger C RF content. Finally, the marsh isolated from riverine input contained the least fraction of TOC as C RF . Laterally transported C RF caused only a small offset in Δ 14 C in relation to TOC in low-gradient systems (average Δ 14 C offset was -44.4 and -24.2‰ at each location). However, the presence of allochthonous Δ 14 C-depleted C RF in sediments of steep-gradient rivers led to large overestimates of the time of organic matter deposition (i.e. apparent age was older than the 'true' time of deposition) (Δ 14 C offset ranged from -170.6 to -528.9‰). Further, reliance on TOC or loss on ignition analyses to calculate C sequestration by marshes might produce overestimates of at least as much as 10 to 20% since neither account for the lateral transport of allochthonous carbon. Copyright © 2018 Elsevier B

  12. Soil carbon sequestration potential in semi-arid grasslands in the conservation reserve program

    USDA-ARS?s Scientific Manuscript database

    The Conservation Reserve Program (CRP) in the USA plays a major role in carbon (C) sequestration to help mitigate rising CO2 levels and climate change. The Southern High Plains (SHP) region contains N900.000 ha enrolled in CRP, but a regionally specific C sequestration rate has not been studied, and...

  13. Method for carbon dioxide sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC-CO.sub.2) and water or bine into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation.

  14. Climate Controls on Carbon Sequestration in Eastern North America

    NASA Technical Reports Server (NTRS)

    Peteet, D. M.; Renik, B.; Maenza-Gmeich, T.; Kurdyla, D.; Guilderson, T.

    2002-01-01

    Mid-latitude forest ecosystems have been proposed as a "missing sink" today. The role of soils (including wetlands) in this proposed sink is a very important unknown. In order to make estimates of future climate change effects on carbon storage, we can examine past wetland carbon sequestration. How did past climate change affect net wetland carbon storage? We present long-term data from existing wetland sites used for paleoclimate reconstruction to assess the net carbon storage in wetland over the last 15000 years. During times of colder and wetter climate, many mid-latitude sites show increases in carbon storage, while past warmer, drier climates produced decreases in storage. Comparison among bog, fen, swamp, and tidal marsh are demonstrated for the Hudson Valley region.

  15. Wind erosion reduces soil organic carbon sequestration falsely indicating ineffective management practices

    NASA Astrophysics Data System (ADS)

    Chappell, Adrian; Baldock, Jeffrey A.

    2016-09-01

    Improved management of agricultural land has the potential to reduce greenhouse gas emissions and to reduce atmospheric CO2 via soil carbon sequestration. However, SOC stocks are reduced by soil erosion which is commonly omitted from calculations of crop production, C cycling, C sequestration and C accounting. We used fields from the wind eroded dryland cropping region of Western Australia to demonstrate the global implications for C sequestration and C accounting of omitting soil erosion. For the fields we previously estimated mean net (1950s-1990) soil erosion of 1.2 ± 1.0 t ha-1 y-1. The mean net (1990-2013) soil erosion increased by nearly four times to 4.4 ± 2.1 t ha-1 y-1. Conservation agriculture has evidently not reduced wind erosion in this region. The mean net (1990-2013) SOC erosion was up to 0.2 t C ha-1 y-1 across all sampled fields and similar to measured sequestration rates in the region (up to 0.5 t C ha-1 y-1; 10 years) for many management practices recommended for building SOC stocks. The minimum detectable change (MDC; 10 years) of SOC without erosion was up to 0.2 t C ha-1 y-1 whilst the MDC of SOC with erosion was up to 0.4 t C ha-1 y-1. These results illustrate the generally applicable outcome: (i) if SOC erosion is equal to (or greater than) the increase in SOC due to management practices, the change will not be detectable (or a loss will be evident); (ii) without including soil erosion in SOC sequestration calculations, the monitoring of SOC stocks will lead to, at best the inability to detect change and, at worst the false impression that management practices have failed to store SOC. Furthermore, continued omission of soil erosion in crop production, C accounting and C sequestration will most likely undermine confidence in policy designed to encourage adoption of C farming and the attendant benefits for soil stewardship and food security.

  16. Atmospheric CO2 sequestration in iron and steel slag: Consett, Co. Durham, UK.

    PubMed

    Mayes, William Matthew; Riley, Alex L; Gomes, Helena I; Brabham, Peter; Hamlyn, Joanna; Pullin, Huw; Renforth, Phil

    2018-06-12

    Carbonate formation in waste from the steel industry could constitute a non-trivial proportion of global requirements to remove carbon dioxide from the atmosphere at potentially low cost. To constrain this potential, we examined atmospheric carbon dioxide sequestration in a >20 million tonne legacy slag deposit in northern England, UK. Carbonates formed from the drainage water of the heap had stable carbon and oxygen isotopes between -12 and -25 ‰ and -5 and -18 ‰ for δ13C and δ18O respectively, suggesting atmospheric carbon dioxide sequestration in high pH solutions. From analysis of solution saturation state, we estimate that between 280 and 2,900 tCO2 have precipitated from the drainage waters. However, by combining a thirty-seven-year dataset of the drainage water chemistry with geospatial analysis, we estimate that <1 % of the maximum carbon capture potential of the deposit may have been realised. This implies that uncontrolled deposition of slag is insufficient to maximise carbon sequestration, and there may be considerable quantities of unreacted legacy deposits available for atmospheric carbon sequestration.

  17. Carbon sequestration, optimum forest rotation and their environmental impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kula, Erhun, E-mail: erhun.kula@bahcesehir.edu.tr; Gunalay, Yavuz, E-mail: yavuz.gunalay@bahcesehir.edu.tr

    2012-11-15

    Due to their large biomass forests assume an important role in the global carbon cycle by moderating the greenhouse effect of atmospheric pollution. The Kyoto Protocol recognises this contribution by allocating carbon credits to countries which are able to create new forest areas. Sequestrated carbon provides an environmental benefit thus must be taken into account in cost-benefit analysis of afforestation projects. Furthermore, like timber output carbon credits are now tradable assets in the carbon exchange. By using British data, this paper looks at the issue of identifying optimum felling age by considering carbon sequestration benefits simultaneously with timber yields. Themore » results of this analysis show that the inclusion of carbon benefits prolongs the optimum cutting age by requiring trees to stand longer in order to soak up more CO{sub 2}. Consequently this finding must be considered in any carbon accounting calculations. - Highlights: Black-Right-Pointing-Pointer Carbon sequestration in forestry is an environmental benefit. Black-Right-Pointing-Pointer It moderates the problem of global warming. Black-Right-Pointing-Pointer It prolongs the gestation period in harvesting. Black-Right-Pointing-Pointer This paper uses British data in less favoured districts for growing Sitka spruce species.« less

  18. Peatland geoengineering: an alternative approach to terrestrial carbon sequestration.

    PubMed

    Freeman, Christopher; Fenner, Nathalie; Shirsat, Anil H

    2012-09-13

    Terrestrial and oceanic ecosystems contribute almost equally to the sequestration of ca 50 per cent of anthropogenic CO(2) emissions, and already play a role in minimizing our impact on Earth's climate. On land, the majority of the sequestered carbon enters soil carbon stores. Almost one-third of that soil carbon can be found in peatlands, an area covering just 2-3% of the Earth's landmass. Peatlands are thus well established as powerful agents of carbon capture and storage; the preservation of archaeological artefacts, such as ancient bog bodies, further attest to their exceptional preservative properties. Peatlands have higher carbon storage densities per unit ecosystem area than either the oceans or dry terrestrial systems. However, despite attempts over a number of years at enhancing carbon capture in the oceans or in land-based afforestation schemes, no attempt has yet been made to optimize peatland carbon storage capacity or even to harness peatlands to store externally captured carbon. Recent studies suggest that peatland carbon sequestration is due to the inhibitory effects of phenolic compounds that create an 'enzymic latch' on decomposition. Here, we propose to harness that mechanism in a series of peatland geoengineering strategies whereby molecular, biogeochemical, agronomical and afforestation approaches increase carbon capture and long-term sequestration in peat-forming terrestrial ecosystems.

  19. Carbon sequestration in wood and paper products

    Treesearch

    Kenneth E. Skog; Geraldine A. Nicholson

    2000-01-01

    Recognition that increasing levels of CO2 in the atmosphere will affect the global climate has spurred research into reduction global carbon emissions and increasing carbon sequestration. The main nonhuman sources of atmospheric CO2 are animal respiration and decay of biomass. However, increases in atmospheric levels are...

  20. Soil carbon sequestration is a climate stabilization wedge: comments on Sommer and Bossio (2014).

    PubMed

    Lassaletta, Luis; Aguilera, Eduardo

    2015-04-15

    Sommer and Bossio (2014) model the potential soil organic carbon (SOC) sequestration in agricultural soils (croplands and grasslands) during the next 87 years, concluding that this process cannot be considered as a climate stabilization wedge. We argue, however, that the amounts of SOC potentially sequestered in both scenarios (pessimistic and optimistic) fulfil the requirements for being considered as wedge because in both cases at least 25 GtC would be sequestered during the next 50 years. We consider that it is precisely in the near future, and meanwhile other solutions are developed, when this stabilization effort is most urgent even if after some decades the sequestration rate is significantly reduced. Indirect effects of SOC sequestration on mitigation could reinforce the potential of this solution. We conclude that the sequestration of organic carbon in agricultural soils as a climate change mitigation tool still deserves important attention for scientists, managers and policy makers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Carbon sequestration potential estimates with changes in land use and tillage practice in Ohio, USA

    USGS Publications Warehouse

    Tan, Z.; Lal, R.

    2005-01-01

    Soil C sequestration through changes in land use and management is one of the important strategies to mitigate the global greenhouse effect. This study was conducted to estimate C sequestration potential of the top 20 cm depth of soil for two scenarios in Ohio, USA: (1) with reforestation of both current cropland and grassland where SOC pools are less than the baseline SOC pool under current forest; (2) with the adoption of NT on all current cropland. Based on Ohio Soil Survey Characterization Database and long-term experimental data of paired conservation tillage (CT) versus no-till (NT), we specified spatial variations of current SOC pools and C sequestration potentials associated with soil taxa within each major land resource area (MLRA). For scenario I, there would be 4.56 Mha of cropland having an average SOC sequestration capacity of 1.55 kg C m−2 and 0.80 Mha of grassland with that of 1.35 kg C m−2. Of all potential area, 73% are associated with Alfisols and 15% with Mollisols, but the achievable potential could vary significantly with individual MLRAs. Alternately, an average SOC sequestration rate of 62 g C m−2 year−1 was estimated with conversion from CT to NT for cultivated Alfisols, by which a cumulative increase of 71 Tg C resulted from reforestation of cropland could be realized in 25 years. Soils with lower antecedent C contents have higher C sequestration rates. In comparison with the results obtained at the state scale, the estimates of SOC sequestration potentials taxonomically associated with each specific MLRA may be more useful to the formulation of C credit trading programs.

  2. Electrical Resistance Tomography Field Trials to Image CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Newmark, R.

    2003-12-01

    If geologic formations are used to sequester or store carbon dioxide (CO2) for long periods of time, it will be necessary to verify the containment of injected CO2 by assessing leaks and flow paths, and by understanding the geophysical and geochemical interactions between the CO2 and the geologic minerals and fluids. Remote monitoring methods are preferred, to minimize cost and impact to the integrity of the disposal reservoir. Electrical methods are especially well suited for monitoring processes involving fluids, as electrical properties are most sensitive to the presence and nature of the fluids contained in the medium. High resolution tomographs of electrical properties have been used with success for site characterization, monitoring subsurface migration of fluids in instances of leaking underground tanks, water infiltration events, subsurface steam floods, contaminant movement, and assessing the integrity of subsurface barriers. These surveys are commonly conducted utilizing vertical arrays of point electrodes in a crosswell configuration. Alternative ways of monitoring the reservoir are desirable due to the high costs of drilling the required monitoring boreholes Recent field results obtained using steel well casings as long electrodes are also promising. We have conducted field trials to evaluate the effectiveness of long electrode ERT as a potential monitoring approach for CO2 sequestration. In these trials, CO2 is not being sequestered but rather is being used as a solvent for enhanced oil recovery. This setting offers the same conditions expected during sequestration so monitoring secondary oil recovery allows a test of the method under realistic physical conditions and operational constraints. Field experience has confirmed the challenges identified during model studies. The principal difficulty are the very small signals due to the fact that formation changes occur only over a small segment of the 5000 foot length of the electrodes. In addition

  3. The Effect of Government Actions on Environmental Technology Innovation: Applications to the Integrated Assessment of Carbon Sequestration Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, E. S.; Hounshell, D. A.; Yeh, S.

    2004-01-15

    This project seeks to improve the ability of integrated assessment models (IA) to incorporate changes in technology, especially environmental technologies, cost and performance over time. In this report, we present results of research that examines past experience in controlling other major power plant emissions that might serve as a reasonable guide to future rates of technological progress in carbon capture and sequestration (CCS) systems. In particular, we focus on U.S. and worldwide experience with sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) control technologies over the past 30 years, and derive empirical learning rates for these technologies. The patternsmore » of technology innovation are captured by our analysis of patent activities and trends of cost reduction over time. Overall, we found learning rates of 11% for the capital costs of flue gas desulfurization (FGD) system for SO{sub 2} control, and 13% for selective catalytic reduction (SCR) systems for NO{sub x} control. We explore the key factors responsible for the observed trends, especially the development of regulatory policies for SO{sub 2} and NO{sub x} control, and their implications for environmental control technology innovation.« less

  4. Sequestration of PDC-109 protein improves freezability of crossbred bull spermatozoa.

    PubMed

    Srivastava, N; Srivastava, S K; Ghosh, S K; Singh, L P; Prasad, J K; Kumar, Amit; Perumal, P; Jerome, A; Thamizharasan, A

    2012-03-01

    A study was carried out to assess the effect of sequestration of PDC-109 protein, a majority constituent of heparin binding proteins (HBP) of seminal plasma, on freezability and in vitro fertilizing ability of crossbred bull spermatozoa after cryopreservation. The study consisted of isolation and characterization of PDC-109 protein to raise anti-sera against it in rabbits. Following which, raised antibodies against PDC-109 protein was quantitated and coated in tubes used for collection of ejaculates. Semen ejaculates thus collected were cryopreserved using EYTG extender. Physico-morphological characteristics, viz. motility, viability, acrosomal integrity and HOS response as an indicator of freezability of cryopreserved spermatozoa were determined at pre freeze as well as post thaw stage. At pre freeze stage, a significant (p<0.05) improvement in viability (83.83 ± 2.18 vs 75.17 ± 2.42) and acrosome integrity (81.33 ± 2.38 vs 72.83 ± 2.39) in antibodies treated group than control was observed. Similarly, increase in HOS responsive spermatozoa was highly significant (p<0.01) than control (78.83 ± 1.69 vs 67.5 ± 1.75). At post thaw stage, significant (p<0.05) improvement in viability (69.50 ± 2.16 vs 60.33 ± 2.19) and HOS responsive spermatozoa (68.67 ± 1.62 vs 58.50 ± 1.32) and highly significant (p<0.01) increase in individual motility (56.17 ± 1.83 vs 47.00 ± 1.86) and acrosome integrity (75.17 ± 2.38 vs 61.83 ± 2.1) was observed in antibodies treated group when compared to control was observed. The results from the study revealed that sequestration of PDC-109 protein from semen samples leads to significant improvement in pre-freeze and post-thaw values of above parameters in cryopreserved spermatozoa. It is thus concluded that sequestration of PDC-109 protein from ejaculates improves freezability of crossbred bull spermatozoa. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. The sequestration switch: removing industrial CO2 by direct ocean absorption.

    PubMed

    Ametistova, Lioudmila; Twidell, John; Briden, James

    2002-04-22

    This review paper considers direct injection of industrial CO2 emissions into the mid-water oceanic column below 500 m depth. Such a process is a potential candidate for switching atmospheric carbon emissions directly to long term sequestration, thereby relieving the intermediate atmospheric burden. Given sufficient research justification, the argument is that harmful impact in both the Atmosphere and the biologically rich upper marine layer could be reduced. The paper aims to estimate the role that active intervention, through direct ocean CO2 storage, could play and to outline further research and assessment for the strategy to be a viable option for climate change mitigation. The attractiveness of direct ocean injection lies in its bypassing of the Atmosphere and upper marine region, its relative permanence, its practicability using existing technologies and its quantification. The difficulties relate to the uncertainty of some fundamental scientific issues, such as plume dynamics, lowered pH of the exposed waters and associated ecological impact, the significant energy penalty associated with the necessary engineering plant and the uncertain costs. Moreover, there are considerable uncertainties regarding related international marine law. Development of the process would require acceptance of the evidence for climate change, strict requirements for large industrial consumers of fossil fuel to reduce CO2 emissions into the Atmosphere and scientific evidence for the overall beneficial impact of ocean sequestration.

  6. U.S. Department of Energy's Regional Carbon Sequestration Partnership Program: Overview

    USGS Publications Warehouse

    Litynski, J.; Plasynski, S.; Spangler, L.; Finley, R.; Steadman, E.; Ball, D.; Nemeth, K.J.; McPherson, B.; Myer, L.

    2009-01-01

    The U.S. Department of Energy (DOE) has formed a nationwide network of seven regional partnerships to help determine the best approaches for capturing and permanently storing gases that can contribute to global climate change. The Regional Carbon Sequestration Partnerships (RCSPs) are tasked with determining the most suitable technologies, regulations, and infrastructure for carbon capture, transport, and storage in their areas of the country and parts of Canada. The seven partnerships include more than 350 state agencies, universities, national laboratories, private companies, and environmental organizations, spanning 42 states, two Indian nations, and four Canadian provinces. The Regional Partnerships initiative is being implemented in three phases: ???Characterization Phase (2003-2005): The objective was to collect data on CO2 sources and sinks and develop the human capital to support and enable future carbon sequestration field tests and deployments. The completion of this Phase was marked by release of the Carbon Sequestration Atlas of the United States and Canada-Version 1 which included a common methodology for capacity assessment and reported over 3,000GT of storage capacity in saline formations, depleted oil and gas fields, and coal seams.???Validation Phase (2005-2009): The objective is to plan and implement small-scale (<1??million tons CO2) field testing of storage technologies in areas determined to be favorable for carbon storage. The partnerships are currently conducting over 20 small-scale geologic field tests and 11 terrestrial field tests.???Development Phase (2008-2018): The primary objective is the development of large-scale (>1??million tons of CO2) Carbon Capture and Storage (CCS) projects, which will demonstrate that large volumes of CO2 can be injected safely, permanently, and economically into geologic formations representative of large storage capacity. Even though the RCSP Program is being implemented in three phases, it should be viewed

  7. Calcium silicates synthesised from industrial residues with the ability for CO2 sequestration.

    PubMed

    Morales-Flórez, Victor; Santos, Alberto; López, Antonio; Moriña, Isabel; Esquivias, Luis

    2014-12-01

    This work explored several synthesis routes to obtain calcium silicates from different calcium-rich and silica-rich industrial residues. Larnite, wollastonite and calcium silicate chloride were successfully synthesised with moderate heat treatments below standard temperatures. These procedures help to not only conserve natural resources, but also to reduce the energy requirements and CO2 emissions. In addition, these silicates have been successfully tested as carbon dioxide sequesters, to enhance the viability of CO2 mineral sequestration technologies using calcium-rich industrial by-products as sequestration agents. Two different carbon sequestration experiments were performed under ambient conditions. Static experiments revealed carbonation efficiencies close to 100% and real-time resolved experiments characterised the dynamic behaviour and ability of these samples to reduce the CO2 concentration within a mixture of gases. The CO2 concentration was reduced up to 70%, with a carbon fixation dynamic ratio of 3.2 mg CO2 per g of sequestration agent and minute. Our results confirm the suitability of the proposed synthesis routes to synthesise different calcium silicates recycling industrial residues, being therefore energetically more efficient and environmentally friendly procedures for the cement industry. © The Author(s) 2014.

  8. Enhancing Themes and Strengths Assessment: Leveraging Academic-Led Qualitative Inquiry in Community Health Assessment to Uncover Roots of Community Health Inequities.

    PubMed

    Hebert-Beirne, Jennifer; Felner, Jennifer K; Castañeda, Yvette; Cohen, Sheri

    Rigorous qualitative research can enhance local health departments' efforts to gain a deeper insight into residents' perceived community health inequities necessary for productive community health assessments (CHAs) and community health improvement plans (CHIPs). The Chicago Department of Public Health and the Partnership for Healthy Chicago used the National Association of County & City Health Officials' Mobilizing for Action through Planning and Partnerships (MAPP) model to conduct its CHA/CHIP, Healthy Chicago 2.0 (HC 2.0). Public health graduate students conducted qualitative research for part of the Community Themes and Strengths Assessment (CTSA), one of the 4 MAPP assessments. Using a health equity lens, this qualitative component included focus groups and oral histories with residents in Chicago Community Areas with the highest social and economic hardship to better understand how residents perceive health inequities in their respective neighborhoods. Community-based organizations in 6 Chicago neighborhoods with the highest quartile of social and economic hardship. Forty-eight Chicago residents from 5 community areas participated in focus groups, and 6 residents of a Mexican ethnic enclave shared oral histories. Residents' perceptions of community needs and assets. Needs identified include inaccessible resources and opportunities, economic instability, and safety. Assets include the efficacy and agency of resilient residents, as well as faith and spirituality. Systemic and institutional discrimination was identified at the roots of community health inequities. Through qualitative inquiry, the more nuanced understanding of how residents perceive health inequities better positioned HC 2.0 to develop upstream strategies in line with advanced health equity practice. Engaging qualitative academic researchers in CTSA brings academic expertise to enrich the CHA while providing real-time learning experiences to prepare future public health practitioners to work on

  9. Efficiency of incentives to jointly increase carbon sequestration and species conservation on a landscape

    Treesearch

    Erik Nelson; Stephen Polasky; David J. Lewis; Andrew J. Plantinga; Eric Lonsdorf; Denis White; David Bael; Joshua Lawler

    2008-01-01

    We develop an integrated model to predict private land-use decisions in response to policy incentives designed to increase the provision of carbon sequestration and species conservation across heterogeneous landscapes. Using data from the Willamette Basin, Oregon, we compare the provision of carbon sequestration and species conservation under five simple policies that...

  10. Caprock Breach: A Threat to Secure Geologic Sequestration

    NASA Astrophysics Data System (ADS)

    Selvadurai, A. P.; Dong, W.

    2013-12-01

    The integrity of caprock in providing a reliable barrier is crucial to several environmental geosciences endeavours related to geologic sequestration of CO2, deep geologic disposal of hazardous wastes and contaminants. The integrity of geologic barriers can be compromised by several factors. The re-activation of dormant fractures and development of new fractures in the caprock during the injection process are regarded as effects that can pose a threat to storage security. Other poromechanical influences of pore structure collapse due to chemically induced erosion of the porous fabric resulting in worm-hole type features can also contribute to compromising storage security. The assessment of the rate of steady or transient seepage through defects in the caprock can allow geoscientists to make prudent evaluations of the effectiveness of a sequestration strategy. While complicated computational simulations can be used to calculate leakage through defects, it is useful to explore alternative analytical results that could be used in providing preliminary estimates of leakage rates through defects in the caprock in a storage setting. The relevance of such developments is underscored by the fact that the permeability characteristics of the storage formation, the fracture and the surficial rocks overlying the caprock can rarely be quantified with certainty. This paper presents the problem of a crack in a caprock that connects to a storage formation and an overburden rock or surficial soil formation. The geologic media are maintained at constant far-field flow potentials and leakage takes place at either steady or transient conditions. The paper develops an analytical result that can be used to estimate the steady seepage through the crack. The analytical result can also be used to estimate the leakage through hydraulically non-intersecting cracks and leakage from caprock-well casing interfaces. The analytical result is used to estimate the accuracy of a computational

  11. Greenhouse gas balance of mountain dairy farms as affected by grassland carbon sequestration.

    PubMed

    Salvador, Sara; Corazzin, Mirco; Romanzin, Alberto; Bovolenta, Stefano

    2017-07-01

    Recent studies on milk production have often focused on environmental impacts analysed using the Life Cycle Assessment (LCA) approach. In grassland-based livestock systems, soil carbon sequestration might be a potential sink to mitigate greenhouse gas (GHG) balance. Nevertheless, there is no commonly shared methodology. In this work, the GHG emissions of small-scale mountain dairy farms were assessed using the LCA approach. Two functional units, kg of Fat and Protein Corrected Milk (FPCM) and Utilizable Agricultural Land (UAL), and two different emissions allocations methods, no allocation and physical allocation, which accounts for the co-product beef, were considered. Two groups of small-scale dairy farms were identified based on the Livestock Units (LU) reared: <30 LU (LLU) and >30 LU (HLU). Before considering soil carbon sequestration in LCA, performing no allocation methods, LLU farms tended to have higher GHG emission than HLU farms per kg of FPCM (1.94 vs. 1.59 kg CO 2 -eq/kg FPCM, P ≤ 0.10), whereas the situation was reversed upon considering the m 2 of UAL as a functional unit (0.29 vs. 0.89 kg CO 2 -eq/m 2 , P ≤ 0.05). Conversely, considering physical allocation, the difference between the two groups became less noticeable. When the contribution from soil carbon sequestration was included in the LCA and no allocation method was performed, LLU farms registered higher values of GHG emission per kg of FPCM than HLU farms (1.38 vs. 1.10 kg CO 2 -eq/kg FPCM, P ≤ 0.05), and the situation was likewise reversed in this case upon considering the m 2 of UAL as a functional unit (0.22 vs. 0.73 kg CO 2 -eq/m 2 , P ≤ 0.05). To highlight how the presence of grasslands is crucial for the carbon footprint of small-scale farms, this study also applied a simulation for increasing the forage self-sufficiency of farms to 100%. In this case, an average reduction of GHG emission per kg of FPCM of farms was estimated both with no allocation and with physical

  12. Estimating the potential of carbon sequestration by Korean forestry sector under climate change and management scenarios

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, M.; Son, Y.; Lee, W. K.

    2017-12-01

    Korean forests have recovered by the national-scale reforestation program and can contribute to the national greenhouse gas (GHG) mitigation goal. The forest carbon (C) sequestration is expected to change by climate change and forest management regime. In this context, estimating the changes in GHG mitigation potential of Korean forestry sector by climate and management is a timely issue. Thus, we estimated the forest C sequestration of Korea under four scenarios (2010­-2050): constant temperature with no management (CT_No), representative concentration pathway (RCP) 8.5 with no management (RCP_No), constant temperature with thinning management (CT_Man), and RCP 8.5 with thinning management (RCP_Man). Dynamic stand growth model (KO-G-Dynamic; for biomass) and forest C model (FBDC model; for non-biomass) were used at approximately 64,000 simulation units (1km2). As model input data, the forest data (e.g., forest type and stand age) and climate data were spatially prepared from the national forest inventories and the RCP 8.5 climate data. The model simulation results showed that the mean annual C sequestrations during the period (Tg C yr-1) were 11.0, 9.9, 11.5, and 10.5, respectively, under the CT_No, RCP_No, CT_Man, and RCP_Man, respectively, at the national scale. The C sequestration decreased with the time passage due to the maturity of the forests. The climate change seemed disadvantageous to the C sequestration by the forest ecosystems (≒ -1.0 Tg C yr-1) due to the increase in organic matter decomposition. In particular, the decrease in C sequestration by the climate change was greater for the needle-leaved species, compared to the broad-leaved species. Meanwhile, the forest management enhanced forest C sequestration (≒ 0.5 Tg C yr-1). Accordingly, implementing appropriate forest management strategies for adaptation would contribute to maintaining the C sequestration by Korean forestry sector under climate change. Acknowledgement: This study was supported

  13. Reaction mechanisms for enhancing carbon dioxide mineral sequestration

    NASA Astrophysics Data System (ADS)

    Jarvis, Karalee Ann

    Increasing global temperature resulting from the increased release of carbon dioxide into the atmosphere is one of the greatest problems facing society. Nevertheless, coal plants remain the largest source of electrical energy and carbon dioxide gas. For this reason, researchers are searching for methods to reduce carbon dioxide emissions into the atmosphere from the combustion of coal. Mineral sequestration of carbon dioxide reacted in electrolyte solutions at 185°C and 2200 psi with olivine (magnesium silicate) has been shown to produce environmentally benign carbonates. However, to make this method feasible for industrial applications, the reaction rate needs to be increased. Two methods were employed to increase the rate of mineral sequestration: reactant composition and concentration were altered independently in various runs. The products were analyzed with complete combustion for total carbon content. Crystalline phases in the product were analyzed with Debye-Scherrer X-ray powder diffraction. To understand the reaction mechanism, single crystals of San Carlos Olivine were reacted in two solutions: (0.64 M NaHCO3/1 M NaCl) and (5.5 M KHCO3) and analyzed with scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and fluctuation electron microscopy (FEM) to study the surface morphology, atomic crystalline structure, composition and amorphous structure. From solution chemistry studies, it was found that increasing the activity of the bicarbonate ion increased the conversion rate of carbon dioxide to magnesite. The fastest conversion, 60% conversion in one hour, occurred in a solution of 5.5 M KHCO3. The reaction product particles, magnesium carbonate, significantly increased in both number density and size on the coupon when the bicarbonate ion activity was increased. During some experiments reaction vessel corrosion also altered the mineral sequestration mechanism. Nickel ions from vessel

  14. Protein Sequestration of Lipophilic Furanocoumarins in Grapefruit Juice

    USDA-ARS?s Scientific Manuscript database

    Our previous discoveries of grapefruit furanocoumarin binding to edible fungi led us to investigate the possible roles of dietary factors in this binding phenomenon. In this present study sequestration of grapefruit furanocoumarins by foods was investigated by characterizing the binding between thes...

  15. Potential restrictions for CO2 sequestration sites due to shale and tight gas production.

    PubMed

    Elliot, T R; Celia, M A

    2012-04-03

    Carbon capture and geological sequestration is the only available technology that both allows continued use of fossil fuels in the power sector and reduces significantly the associated CO(2) emissions. Geological sequestration requires a deep permeable geological formation into which captured CO(2)can be injected, and an overlying impermeable formation, called a caprock, that keeps the buoyant CO(2) within the injection formation. Shale formations typically have very low permeability and are considered to be good caprock formations. Production of natural gas from shale and other tight formations involves fracturing the shale with the explicit objective to greatly increase the permeability of the shale. As such, shale gas production is in direct conflict with the use of shale formations as a caprock barrier to CO(2) migration. We have examined the locations in the United States where deep saline aquifers, suitable for CO(2) sequestration, exist, as well as the locations of gas production from shale and other tight formations. While estimated sequestration capacity for CO(2) sequestration in deep saline aquifers is large, up to 80% of that capacity has areal overlap with potential shale-gas production regions and, therefore, could be adversely affected by shale and tight gas production. Analysis of stationary sources of CO(2) shows a similar effect: about two-thirds of the total emissions from these sources are located within 20 miles of a deep saline aquifer, but shale and tight gas production could affect up to 85% of these sources. These analyses indicate that colocation of deep saline aquifers with shale and tight gas production could significantly affect the sequestration capacity for CCS operations. This suggests that a more comprehensive management strategy for subsurface resource utilization should be developed.

  16. The path to a successful one-million tonne demonstration of geological sequestration: Characterization, cooperation, and collaboration

    USGS Publications Warehouse

    Finley, R.J.; Greenberg, S.E.; Frailey, S.M.; Krapac, I.G.; Leetaru, H.E.; Marsteller, S.

    2011-01-01

    The development of the Illinois Basin-Decatur USA test site for a 1 million tonne injection of CO2 into the Mount Simon Sandstone saline reservoir beginning in 2011 has been a multiphase process requiring a wide array of personnel and resources that began in 2003. The process of regional characterization took two years as part of a Phase I effort focused on the entire Illinois Basin, located in Illinois, Indiana, and Kentucky, USA. Seeking the cooperation of an industrial source of CO2 and site selection within the Basin took place during Phase II while most of the concurrent research emphasis was on a set of small-scale tests of Enhanced Oil Recovery (EOR) and CO2 injection into a coal seam. Phase III began the commitment to the 1 million-tonne test site development through the collaboration of the Archer Daniels Midland Company (ADM) who is providing a site, the CO2, and developing a compression facility, of Schlumberger Carbon Services who is providing expertise for operations, drilling, geophysics, risk assessment, and reservoir modelling, and of the Illinois State Geological Survey (ISGS) whose geologists and engineers lead the Midwest Geological Sequestration Consortium (MGSC). Communications and outreach has been a collaborative effort of ADM, ISGS and Schlumberger Carbon Services. The Consortium is one of the seven Regional Carbon Sequestration Partnerships, a carbon sequestration research program supported by the National Energy Technology Laboratory of the U.S. Department of Energy. ?? 2011 Published by Elsevier Ltd.

  17. Development and Implementation of the Midwest Geological Sequestration Consortium CO 2-Technology Transfer Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, Sallie E.

    2015-06-30

    In 2009, the Illinois State Geological Survey (ISGS), in collaboration with the Midwest Geological Sequestration Consortium (MGSC), created a regional technology training center to disseminate carbon capture and sequestration (CCS) technology gained through leadership and participation in regional carbon sequestration projects. This technology training center was titled and branded as the Sequestration Training and Education Program (STEP). Over the last six years STEP has provided local, regional, national, and international education and training opportunities for engineers, geologists, service providers, regulators, executives, K-12 students, K-12 educators, undergraduate students, graduate students, university and community college faculty members, and participants of community programsmore » and functions, community organizations, and others. The goal for STEP educational programs has been on knowledge sharing and capacity building to stimulate economic recovery and development by training personnel for commercial CCS projects. STEP has worked with local, national and international professional organizations and regional experts to leverage existing training opportunities and provide stand-alone training. This report gives detailed information on STEP activities during the grant period (2009-2015).« less

  18. Proposed roadmap for overcoming legal and financial obstacles to carbon capture and sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Wendy; Chohen, Leah; Kostakidis-Lianos, Leah

    Many existing proposals either lack sufficient concreteness to make carbon capture and geological sequestration (CCGS) operational or fail to focus on a comprehensive, long term framework for its regulation, thus failing to account adequately for the urgency of the issue, the need to develop immediate experience with large scale demonstration projects, or the financial and other incentives required to launch early demonstration projects. We aim to help fill this void by proposing a roadmap to commercial deployment of CCGS in the United States.This roadmap focuses on the legal and financial incentives necessary for rapid demonstration of geological sequestration in themore » absence of national restrictions on CO2 emissions. It weaves together existing federal programs and financing opportunities into a set of recommendations for achieving commercial viability of geological sequestration.« less

  19. What Do Students Learn when We Teach Peace? A Qualitative Assessment of a Theater Peace Program

    ERIC Educational Resources Information Center

    Duckworth, Cheryl Lynn; Allen, Barb; Williams, Teri Triguba

    2012-01-01

    This is a qualitative assessment of a theater arts peace education program for high-school students. We present the results of qualitative interviews with students who participated in a peace education program. They tell us in their own words what they believe they learned. Given that most peace education evaluation is quantitative or focuses on…

  20. The United States Department of Energy's Regional Carbon Sequestration Partnerships program: a collaborative approach to carbon management.

    PubMed

    Litynski, John T; Klara, Scott M; McIlvried, Howard G; Srivastava, Rameshwar D

    2006-01-01

    This paper reviews the Regional Carbon Sequestration Partnerships (RCSP) concept, which is a first attempt to bring the U.S. Department of Energy's (DOE) carbon sequestration program activities into the "real world" by using a geographically-disposed-system type approach for the U.S. Each regional partnership is unique and covers a unique section of the U.S. and is tasked with determining how the research and development activities of DOE's carbon sequestration program can best be implemented in their region of the country. Although there is no universal agreement on the cause, it is generally understood that global warming is occurring, and many climate scientists believe that this is due, in part, to the buildup of carbon dioxide (CO(2)) in the atmosphere. This is evident from the finding presented in the National Academy of Science Report to the President on Climate Change which stated "Greenhouse gases are accumulating in Earth's atmosphere as a result of human activities, causing surface air temperatures and subsurface ocean temperatures to rise. Temperatures are, in fact, rising. The changes observed over the last several decades are likely mostly due to human activities, ...". In the United States, emissions of CO(2) originate mainly from the combustion of fossil fuels for energy production, transportation, and other industrial processes. Roughly one third of U.S. anthropogenic CO(2) emissions come from power plants. Reduction of CO(2) emissions through sequestration of carbon either in geologic formations or in terrestrial ecosystems can be part of the solution to the problem of global warming. However, a number of steps must be accomplished before sequestration can become a reality. Cost effective capture and separation technology must be developed, tested, and demonstrated; a database of potential sequestration sites must be established; and techniques must be developed to measure, monitor, and verify the sequestered CO(2). Geographical differences in

  1. Soil carbon sequestration due to post-Soviet cropland abandonment: estimates from a large-scale soil organic carbon field inventory.

    PubMed

    Wertebach, Tim-Martin; Hölzel, Norbert; Kämpf, Immo; Yurtaev, Andrey; Tupitsin, Sergey; Kiehl, Kathrin; Kamp, Johannes; Kleinebecker, Till

    2017-09-01

    The break-up of the Soviet Union in 1991 triggered cropland abandonment on a continental scale, which in turn led to carbon accumulation on abandoned land across Eurasia. Previous studies have estimated carbon accumulation rates across Russia based on large-scale modelling. Studies that assess carbon sequestration on abandoned land based on robust field sampling are rare. We investigated soil organic carbon (SOC) stocks using a randomized sampling design along a climatic gradient from forest steppe to Sub-Taiga in Western Siberia (Tyumen Province). In total, SOC contents were sampled on 470 plots across different soil and land-use types. The effect of land use on changes in SOC stock was evaluated, and carbon sequestration rates were calculated for different age stages of abandoned cropland. While land-use type had an effect on carbon accumulation in the topsoil (0-5 cm), no independent land-use effects were found for deeper SOC stocks. Topsoil carbon stocks of grasslands and forests were significantly higher than those of soils managed for crops and under abandoned cropland. SOC increased significantly with time since abandonment. The average carbon sequestration rate for soils of abandoned cropland was 0.66 Mg C ha -1  yr -1 (1-20 years old, 0-5 cm soil depth), which is at the lower end of published estimates for Russia and Siberia. There was a tendency towards SOC saturation on abandoned land as sequestration rates were much higher for recently abandoned (1-10 years old, 1.04 Mg C ha -1  yr -1 ) compared to earlier abandoned crop fields (11-20 years old, 0.26 Mg C ha -1  yr -1 ). Our study confirms the global significance of abandoned cropland in Russia for carbon sequestration. Our findings also suggest that robust regional surveys based on a large number of samples advance model-based continent-wide SOC prediction. © 2017 John Wiley & Sons Ltd.

  2. Effects of lanthanum and acid rain stress on the bio-sequestration of lanthanum in phytoliths in germinated rice seeds

    PubMed Central

    Si, Yong; Wang, Lihong; Huang, Xiaohua

    2018-01-01

    REEs in the environment can be absorbed by plants and sequestered by plant phytoliths. Acid rain can directly or indirectly affect plant physiological functions. Currently, the effects of REEs and acid rain on phytolith-REEs complex in plants are not yet fully understood. In this study, a high-silicon accumulation crop, rice (Oryza sativa L.), was selected as a representative of plants, and orthogonal experiments were conducted under various levels of lanthanum [La(III)] and pH. The results showed that various La(III) concentrations could significantly improve the efficiency and sequestration of phytolith La(III) in germinated rice seeds. A pH of 4.5 promoted phytolith La(III) sequestration, while a pH of 3.5 inhibited sequestration. Compared with the single treatment with La(III), the combination of La(III) and acid rain inhibited the efficiency and sequestration of phytolith La(III). Correlation analysis showed that the efficiency of phytolith La(III) sequestration had no correlation with the production of phytolith but was closely correlated with the sequestration of phytolith La(III) and the physiological changes of germinated rice seeds. Phytolith morphology was an important factor affecting phytolith La(III) sequestration in germinated rice seeds, and the effect of tubes on sequestration was more significant than that of dumbbells. This study demonstrated that the formation of the phytolith and La(III) complex could be affected by exogenous La(III) and acid rain in germinated rice seeds. PMID:29763463

  3. Yield and soil carbon sequestration in grazed pastures sown with two or five forage species

    USDA-ARS?s Scientific Manuscript database

    Increasing plant species richness is often associated with an increase in productivity and associated ecosystem services such as soil C sequestration. In this paper we report on a nine-year experiment to evaluate the relative forage production and C sequestration potential of grazed pastures sown to...

  4. Carbon sequestration potential for forage and pasture systems

    USDA-ARS?s Scientific Manuscript database

    Grassland soils represent a large reservoir of organic and inorganic carbon. Regionally, grasslands are annual CO2 sources or sinks depending on crop and soil management, current soil organic carbon (SOC) concentration and climate. Land management changes (LMC) impact SOC sequestration rate, the du...

  5. [Greenhouse gas emissions, carbon leakage and net carbon sequestration from afforestation and forest management: A review.

    PubMed

    Liu, Bo Jie; Lu, Fei; Wang, Xiao Ke; Liu, Wei Wei

    2017-02-01

    Forests play an important role in climate change mitigation and concentration of CO 2 reduction in the atmosphere. Forest management, especially afforestation and forest protection, could increase carbon stock of forests significantly. Carbon sequestration rate of afforestation ranges from 0.04 to 7.52 t C·hm -2 ·a -1 , while that of forest protection is 0.33-5.20 t C·hm -2 ·a -1 . At the same time, greenhouse gas (GHG) is generated within management boundary due to the production and transportation of the materials consumed in relevant activities of afforestation and forest management. In addition, carbon leakage is also generated outside boundary from activity shifting, market effects and change of environments induced by forest management. In this review, we summarized the definition of emission sources of GHG, monitoring methods, quantity and rate of greenhouse gas emissions within boundary of afforestation and forest management. In addition, types, monitoring methods and quantity of carbon leakage outside boundary of forest management were also analyzed. Based on the reviewed results of carbon sequestration, we introduced greenhouse gas emissions within boundary and carbon leakage, net carbon sequestration as well as the countervailing effects of greenhouse gas emissions and carbon leakage to carbon sequestration. Greenhouse gas emissions within management boundary counteract 0.01%-19.3% of carbon sequestration, and such counteraction could increase to as high as 95% considering carbon leakage. Afforestation and forest management have substantial net carbon sequestration benefits, when only taking direct greenhouse gas emissions within boundary and measurable carbon leakage from activity shifting into consideration. Compared with soil carbon sequestration measures in croplands, afforestation and forest management is more advantageous in net carbon sequestration and has better prospects for application in terms of net mitigation potential. Along with the

  6. Carbon sequestration and natural longleaf pine ecosystems

    Treesearch

    Ralph S. Meldahl; John S. Kush

    2006-01-01

    A fire-maintained longleaf pine (Pinus palustris Mill.) ecosystem may offer the best option for carbon (C) sequestration among the southern pines. Longleaf is the longest living of the southern pines, and products from longleaf pine will sequester C longer than most since they are likely to be solid wood products such as structural lumber and poles....

  7. Temporal Considerations of Carbon Sequestration in LCA

    Treesearch

    James Salazar; Richard Bergman

    2013-01-01

    Accounting for carbon sequestration in LCA illustrates the limitations of a single global warming characterization factor. Typical cradle-to-grave LCA models all emissions from end-of-life processes and then characterizes these flows by IPCC GWP (100-yr) factors. A novel method estimates climate change impact by characterizing annual emissions with the IPCC GHG forcing...

  8. The value of carbon sequestration and storage in coastal habitats

    NASA Astrophysics Data System (ADS)

    Beaumont, N. J.; Jones, L.; Garbutt, A.; Hansom, J. D.; Toberman, M.

    2014-01-01

    Coastal margin habitats are globally significant in terms of their capacity to sequester and store carbon, but their continuing decline, due to environmental change and human land use decisions, is reducing their capacity to provide this ecosystem service. In this paper the UK is used as a case study area to develop methodologies to quantify and value the ecosystem service of blue carbon sequestration and storage in coastal margin habitats. Changes in UK coastal habitat area between 1900 and 2060 are documented, the long term stocks of carbon stored by these habitats are calculated, and the capacity of these habitats to sequester CO2 is detailed. Changes in value of the carbon sequestration service of coastal habitats are then projected for 2000-2060 under two scenarios, the maintenance of the current state of the habitat and the continuation of current trends of habitat loss. If coastal habitats are maintained at their current extent, their sequestration capacity over the period 2000-2060 is valued to be in the region of £1 billion UK sterling (3.5% discount rate). However, if current trends of habitat loss continue, the capacity of the coastal habitats both to sequester and store CO2 will be significantly reduced, with a reduction in value of around £0.25 billion UK sterling (2000-2060; 3.5% discount rate). If loss-trends due to sea level rise or land reclamation worsen, this loss in value will be greater. This case study provides valuable site specific information, but also highlights global issues regarding the quantification and valuation of carbon sequestration and storage. Whilst our ability to value ecosystem services is improving, considerable uncertainty remains. If such ecosystem valuations are to be incorporated with confidence into national and global policy and legislative frameworks, it is necessary to address this uncertainty. Recommendations to achieve this are outlined.

  9. Sequestration of flue gas CO₂ by direct gas-solid carbonation of air pollution control system residues.

    PubMed

    Tian, Sicong; Jiang, Jianguo

    2012-12-18

    Direct gas-solid carbonation reactions of residues from an air pollution control system (APCr) were conducted using different combinations of simulated flue gas to study the impact on CO₂ sequestration. X-ray diffraction analysis of APCr determined the existence of CaClOH, whose maximum theoretical CO₂ sequestration potential of 58.13 g CO₂/kg APCr was calculated by the reference intensity ratio method. The reaction mechanism obeyed a model of a fast kinetics-controlled process followed by a slow product layer diffusion-controlled process. Temperature is the key factor in direct gas-solid carbonation and had a notable influence on both the carbonation conversion and the CO₂ sequestration rate. The optimal CO₂ sequestrating temperature of 395 °C was easily obtained for APCr using a continuous heating experiment. CO₂ content in the flue gas had a definite influence on the CO₂ sequestration rate of the kinetics-controlled process, but almost no influence on the final carbonation conversion. Typical concentrations of SO₂ in the flue gas could not only accelerate the carbonation reaction rate of the product layer diffusion-controlled process, but also could improve the final carbonation conversion. Maximum carbonation conversions of between 68.6% and 77.1% were achieved in a typical flue gas. Features of rapid CO₂ sequestration rate, strong impurities resistance, and high capture conversion for direct gas-solid carbonation were proved in this study, which presents a theoretical foundation for the applied use of this encouraging technology on carbon capture and storage.

  10. [Bone sequestration in alpacas in Germany - A practice report with 12 cases].

    PubMed

    Kobera, Ralph; Wagner, Henrik

    2018-04-01

    Bone sequestration is relatively unknown in New-world camelids in Germany and is frequently wrongly addressed as neoplasia by veterinary practitioners. This clinical case report describes diagnosis and treatment for bone sequestration in alpacas based on 12 cases. The main symptom of the presented alpacas was moderate to severe lameness in one limb. Some of the patients had been treated with nonsteroidal anti-inflammatory drugs by the referring veterinarian. In eight alpacas, palpation of the swelling in the affected leg was painful and in five animals, exudation was observed. Radiographic imaging led to a correct diagnosis in all of the cases. Following surgical removal of the bone sequestrum, the lameness was already noticeably improved by the third postoperative day. In all patients, healing was achieved without any complications. These results show that bone sequestration in alpacas can be treated successfully by timely surgery. This is the first case report on this topic in alpacas in Germany. Schattauer GmbH.

  11. Sequestration of arsenic in ombrotrophic peatlands

    NASA Astrophysics Data System (ADS)

    Rothwell, James; Hudson-Edwards, Karen; Taylor, Kevin; Polya, David; Evans, Martin; Allott, Tim

    2014-05-01

    Peatlands can be important stores of arsenic but we are lacking spectroscopic evidence of the sequestration pathways of this toxic metalloid in peatland environments. This study reports on the solid-phase speciation of anthropogenically-derived arsenic in atmospherically contaminated peat from the Peak District National Park (UK). Surface and sub-surface peat samples were analysed by synchrotron X-ray absorption spectroscopy on B18 beamline at Diamond Light Source (UK). The results suggest that there are contrasting arsenic sequestration mechanisms in the peat. The bulk arsenic speciation results, in combination with strong arsenic-iron correlations at the surface, suggest that iron (hydr)oxides are key phases for the immobilisation of arsenic at the peat surface. In contrast, the deeper peat samples are dominated by arsenic sulphides (arsenopyrite, realgar and orpiment). Given that these peats receive inputs solely from the atmosphere, the presence of these sulphide phases suggests an in-situ authigenic formation. Redox oscillations in the peat due to a fluctuating water table and an abundant store of legacy sulphur from historic acid rain inputs may favour the precipitation of arsenic sequestering sulphides in sub-surface horizons. Oxidation-induced loss of these arsenic sequestering sulphur species by water table drawdown has important implications for the mobility of arsenic and the quality of waters draining peatlands.

  12. The NatCarb geoportal: Linking distributed data from the Carbon Sequestration Regional Partnerships

    USGS Publications Warehouse

    Carr, T.R.; Rich, P.M.; Bartley, J.D.

    2007-01-01

    The Department of Energy (DOE) Carbon Sequestration Regional Partnerships are generating the data for a "carbon atlas" of key geospatial data (carbon sources, potential sinks, etc.) required for rapid implementation of carbon sequestration on a broad scale. The NATional CARBon Sequestration Database and Geographic Information System (NatCarb) provides Web-based, nation-wide data access. Distributed computing solutions link partnerships and other publicly accessible repositories of geological, geophysical, natural resource, infrastructure, and environmental data. Data are maintained and enhanced locally, but assembled and accessed through a single geoportal. NatCarb, as a first attempt at a national carbon cyberinfrastructure (NCCI), assembles the data required to address technical and policy challenges of carbon capture and storage. We present a path forward to design and implement a comprehensive and successful NCCI. ?? 2007 The Haworth Press, Inc. All rights reserved.

  13. Sequestration of Martian CO2 by mineral carbonation

    PubMed Central

    Tomkinson, Tim; Lee, Martin R.; Mark, Darren F.; Smith, Caroline L.

    2013-01-01

    Carbonation is the water-mediated replacement of silicate minerals, such as olivine, by carbonate, and is commonplace in the Earth’s crust. This reaction can remove significant quantities of CO2 from the atmosphere and store it over geological timescales. Here we present the first direct evidence for CO2 sequestration and storage on Mars by mineral carbonation. Electron beam imaging and analysis show that olivine and a plagioclase feldspar-rich mesostasis in the Lafayette meteorite have been replaced by carbonate. The susceptibility of olivine to replacement was enhanced by the presence of smectite veins along which CO2-rich fluids gained access to grain interiors. Lafayette was partially carbonated during the Amazonian, when liquid water was available intermittently and atmospheric CO2 concentrations were close to their present-day values. Earlier in Mars’ history, when the planet had a much thicker atmosphere and an active hydrosphere, carbonation is likely to have been an effective mechanism for sequestration of CO2. PMID:24149494

  14. Phylogenetic variation of phytolith carbon sequestration in bamboos

    PubMed Central

    Li, Beilei; Song, Zhaoliang; Li, Zimin; Wang, Hailong; Gui, Renyi; Song, Ruisheng

    2014-01-01

    Phytoliths, the amorphous silica deposited in plant tissues, can occlude organic carbon (phytolith-occluded carbon, PhytOC) during their formation and play a significant role in the global carbon balance. This study explored phylogenetic variation of phytolith carbon sequestration in bamboos. The phytolith content in bamboo varied substantially from 4.28% to 16.42%, with the highest content in Sasa and the lowest in Chimonobambusa, Indocalamus and Acidosasa. The mean PhytOC production flux and rate in China's bamboo forests were 62.83 kg CO2 ha−1 y−1 and 4.5 × 108 kg CO2 y−1, respectively. This implies that 1.4 × 109 kg CO2 would be sequestered in world's bamboo phytoliths because the global bamboo distribution area is about three to four times higher than China's bamboo. Therefore, both increasing the bamboo area and selecting high phytolith-content bamboo species would increase the sequestration of atmospheric CO2 within bamboo phytoliths. PMID:24736571

  15. Occurrence and sequestration of toxins in food chains.

    PubMed

    Mebs, D

    1998-11-01

    Animals may acquire toxicity by absorbing toxic compounds from their food, e.g. from plants or other animals. Sequestration and accumulation of toxins may provide protection from predators, which learn to avoid this prey because of unpleasant experiences such as bitter taste. This is a common phenomenon in marine as well as in terrestrial ecosystems. Moreover, toxins may enter food chains where they accumulate reaching high, often lethal concentrations. Palytoxin which had been primarily detected in marine zoanthids (Palythoa sp.), occurs also in a wide range of other animals, e.g. in sponges, corals, shellfish, polychaetes and crustaceans, but also in fish, which feed on crustaceans and zoanthids as well. These animals exhibit a high resistance to the toxin's action. The mechanisms which protect the Na+, K+-ATPase of their cell membranes, the primary target of palytoxin, is unknown. Sequestration of the toxin by other animals may cause health problems due to food poisoning.

  16. The use of tracers to assess leakage from the sequestration of CO2 in a depleted oil reservoir, New Mexico, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, A.W.; Diehl, J.R.; Bromhal, G.S.

    Geological sequestration of CO2 in depleted oil reservoirs is a potentially useful strategy for greenhouse gas management and can be combined with enhanced oil recovery. Development of methods to estimate CO2 leakage rates is essential to assure that storage objectives are being met at sequestration facilities. Perfluorocarbon tracers (PFTs) were added as three 12 h slugs at about one week intervals during the injection of 2090 tons of CO2 into the West Pearl Queen (WPQ) depleted oil formation, sequestration pilot study site located in SE New Mexico. The CO2 was injected into the Permian Queen Formation. Leakage was monitored inmore » soil–gas using a matrix of 40 capillary adsorbent tubes (CATs) left in the soil for periods ranging from days to months. The tracers, perfluoro-1,2-dimethylcyclohexane (PDCH), perfluorotrimethylcyclohexane (PTCH) and perfluorodimethylcyclobutane (PDCB), were analyzed using thermal desorption, and gas chromatography with electron capture detection. Monitoring was designed to look for immediate leakage, such as at the injection well bore and at nearby wells, and to develop the technology to estimate overall CO2 leak rates based on the use of PFTs. Tracers were detected in soil–gas at the monitoring sites 50 m from the injection well within days of injection. Tracers continued to escape over the following years. Leakage appears to have emanated from the vicinity of the injection well in a radial pattern to about 100 m and in directional patterns to 300 m. Leakage rates were estimated for the 3 tracers from each of the 4 sets of CATs in place following the start of CO2 injection. Leakage was fairly uniform during this period. As a first approximation, the CO2 leak rate was estimated at about 0.0085% of the total CO2 sequestered per annum.« less

  17. Integrating science, economics and law into policy: The case of carbon sequestration in climate change policy

    NASA Astrophysics Data System (ADS)

    Richards, Kenneth

    Carbon sequestration, the extraction and storage of carbon from the atmosphere by biomass, could potentially provide a cost-effective means to reduce net greenhouse gas emissions. The claims on behalf of carbon sequestration may be inadvertently overstated, however. Several key observations emerge from this study. First, although carbon sequestration studies all report results in terms of dollars per ton, the definition of that term varies significantly, meaning that the results of various analyses can not be meaningfully compared. Second, when carbon sequestration is included in an energy-economy model of climate change policy, it appears that carbon sequestration could play a major, if not dominant role in a national carbon emission abatement program, reducing costs of emissions stabilization by as much as 80 percent, saving tens of billions of dollars per year. However, the results are very dependant upon landowners' perceived risk. Studies may also have overstated the potential for carbon sequestration because they have not considered the implementation process. This study demonstrates that three factors will reduce the cost-effectiveness of carbon sequestration. First, the implementation costs associated with measurement and governance of the government-private sector relation are higher than in the case of carbon source control. Second, legal constraints limit the range of instruments that the government can use to induce private landowners to expand their carbon sinks. The government will likely have to pay private parties to expand their sinks, or undertake direct government production. In either case, additional revenues will be required, introducing social costs associated with excess burden. Third, because of the very long time involved in developing carbon sinks (up to several decades) the government may not be able to make credible commitments against exactions of one type or another that would effectively reduce the value of private sector investments

  18. CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor.

    PubMed

    Chang, E-E; Pan, Shu-Yuan; Chen, Yi-Hung; Chu, Hsiao-Wen; Wang, Chu-Fang; Chiang, Pen-Chi

    2011-11-15

    Carbon dioxide (CO(2)) sequestration experiments using the accelerated carbonation of three types of steelmaking slags, i.e., ultra-fine (UF) slag, fly-ash (FA) slag, and blended hydraulic slag cement (BHC), were performed in an autoclave reactor. The effects of reaction time, liquid-to-solid ratio (L/S), temperature, CO(2) pressure, and initial pH on CO(2) sequestration were evaluated. Two different CO(2) pressures were chosen: the normal condition (700 psig) and the supercritical condition (1300 psig). The carbonation conversion was determined quantitatively by using thermo-gravimetric analysis (TGA). The major factors that affected the conversion were reaction time (5 min to 12h) and temperature (40-160°C). The BHC was found to have the highest carbonation conversion of approximately 68%, corresponding to a capacity of 0.283 kg CO(2)/kg BHC, in 12h at 700 psig and 160°C. In addition, the carbonation products were confirmed to be mainly in CaCO(3), which was determined by using scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) to analyze samples before and after carbonation. Furthermore, reaction kinetics were expressed with a surface coverage model, and the carbon footprint of the developed technology in this investigation was calculated by a life cycle assessment (LCA). Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Sequestrate fungi of New Zealand: Elaphomyces (Ascomycota, Eurotiales, Elaphomycetaceae)

    Treesearch

    Michael A. Castellano; Ross E. Beever; James M. Trappe

    2012-01-01

    Four species of the sequestrate fungal genus Elaphomyces are reported from New Zealand: Elaphomyces bollardii sp. nov. associated with Leptospermum spp. and Kunzea ericoides, E. luteicrustus sp. nov. associated with Nothofagus menziesii, E. putridus sp. nov. associated with...

  20. Carbon Sequestration Estimation of Street Trees Based on Point Cloud from Vehicle-Borne Laser Scanning System

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Hu, Q.

    2017-09-01

    Continuous development of urban road traffic system requests higher standards of road ecological environment. Ecological benefits of street trees are getting more attention. Carbon sequestration of street trees refers to the carbon stocks of street trees, which can be a measurement for ecological benefits of street trees. Estimating carbon sequestration in a traditional way is costly and inefficient. In order to solve above problems, a carbon sequestration estimation approach for street trees based on 3D point cloud from vehicle-borne laser scanning system is proposed in this paper. The method can measure the geometric parameters of a street tree, including tree height, crown width, diameter at breast height (DBH), by processing and analyzing point cloud data of an individual tree. Four Chinese scholartree trees and four camphor trees are selected for experiment. The root mean square error (RMSE) of tree height is 0.11m for Chinese scholartree and 0.02m for camphor. Crown widths in X direction and Y direction, as well as the average crown width are calculated. And the RMSE of average crown width is 0.22m for Chinese scholartree and 0.10m for camphor. The last calculated parameter is DBH, the RMSE of DBH is 0.5cm for both Chinese scholartree and camphor. Combining the measured geometric parameters and an appropriate carbon sequestration calculation model, the individual tree's carbon sequestration will be estimated. The proposed method can help enlarge application range of vehicle-borne laser point cloud data, improve the efficiency of estimating carbon sequestration, construct urban ecological environment and manage landscape.

  1. Optimization of a Time-Lapse Gravity Network for Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Appriou, D.; Strickland, C. E.; Ruprecht Yonkofski, C. M.

    2017-12-01

    The objective of this study is to evaluate what could be a comprehensive and optimal state of the art gravity monitoring network that would meet the UIC class VI regulation and insure that 90% of the CO2 injected remain underground. Time-lapse gravity surveys have a long history of effective applications of monitoring temporal density changes in the subsurface. For decades, gravity measurements have been used for a wide range of applications. The interest of time-lapse gravity surveys for monitoring carbon sequestration sites started recently. The success of their deployment in such sites depends upon a combination of favorable conditions, such as the reservoir geometry, depth, thickness, density change over time induced by the CO2 injection and the location of the instrument. In most cases, the density changes induced by the CO2 plume in the subsurface are not detectable from the surface but the use of borehole gravimeters can provide excellent results. In the framework of the National Assessment and Risk Partnership (NRAP) funded by the Department of Energy, the evaluation of the effectiveness of the gravity monitoring of a CO2 storage site has been assessed using multiple synthetic scenarios implemented on a community model developed for the Kimberlina site (e.g., fault leakage scenarios, borehole leakage). The Kimberlina carbon sequestration project was a pilot project located in southern San Joaquin Valley, California, aimed to safely inject 250,000 t CO2/yr for four years. Although the project was cancelled in 2012, the site characterization efforts resulted in the development of a geologic model. In this study, we present the results of the time-lapse gravity monitoring applied on different multiphase flow and reactive transport models developed by Lawrence Berkeley National Laboratory (i.e., no leakage, permeable fault zone, wellbore leakage). Our monitoring approach considers an ideal network, consisting of multiple vertical and horizontal instrumented

  2. Improved grazing management may increase soil carbon sequestration in temperate steppe

    NASA Astrophysics Data System (ADS)

    Chen, Wenqing; Huang, Ding; Liu, Nan; Zhang, Yingjun; Badgery, Warwick B.; Wang, Xiaoya; Shen, Yue

    2015-07-01

    Different grazing strategies impact grassland plant production and may also regulate the soil carbon formation. For a site in semiarid temperate steppe, we studied the effect of combinations of rest, high and moderate grazing pressure over three stages of the growing season, on the process involved in soil carbon sequestration. Results show that constant moderate grazing (MMM) exhibited the highest root production and turnover accumulating the most soil carbon. While deferred grazing (RHM and RMH) sequestered less soil carbon compared to MMM, they showed higher standing root mass, maintained a more desirable pasture composition, and had better ability to retain soil N. Constant high grazing pressure (HHH) caused diminished above- and belowground plant production, more soil N losses and an unfavorable microbial environment and had reduced carbon input. Reducing grazing pressure in the last grazing stage (HHM) still had a negative impact on soil carbon. Regression analyses show that adjusting stocking rate to ~5SE/ha with ~40% vegetation utilization rate can get the most carbon accrual. Overall, the soil carbon sequestration in the temperate grassland is affected by the grazing regime that is applied, and grazing can be altered to improve soil carbon sequestration in the temperate steppe.

  3. Sequestration of human cytomegalovirus by human renal and mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Twite, Nicolas; Andrei, Graciela; Kummert, Caroline

    2014-07-15

    Urine and breast milk represent the main routes of human cytomegalovirus (HCMV) transmission but the contribution of renal and mammary epithelial cells to viral excretion remains unclear. We observed that kidney and mammary epithelial cells were permissive to HCMV infection and expressed immediate early, early and late antigens within 72 h of infection. During the first 24 h after infection, high titers of infectious virus were measured associated to the cells and in culture supernatants, independently of de novo synthesis of virus progeny. This phenomenon was not observed in HCMV-infected fibroblasts and suggested the sequestration and the release of HCMVmore » by epithelial cells. This hypothesis was supported by confocal and electron microscopy analyses. The sequestration and progressive release of HCMV by kidney and mammary epithelial cells may play an important role in the excretion of the virus in urine and breast milk and may thereby contribute to HCMV transmission. - Highlights: • Primary renal and mammary epithelial cells are permissive to HCMV infection. • HCMV is sequestered by epithelial cells and this phenomenon does not require viral replication. • HCMV sequestration by epithelial cells is reduced by antibodies and IFN-γ.« less

  4. Improved grazing management may increase soil carbon sequestration in temperate steppe.

    PubMed

    Chen, Wenqing; Huang, Ding; Liu, Nan; Zhang, Yingjun; Badgery, Warwick B; Wang, Xiaoya; Shen, Yue

    2015-07-03

    Different grazing strategies impact grassland plant production and may also regulate the soil carbon formation. For a site in semiarid temperate steppe, we studied the effect of combinations of rest, high and moderate grazing pressure over three stages of the growing season, on the process involved in soil carbon sequestration. Results show that constant moderate grazing (MMM) exhibited the highest root production and turnover accumulating the most soil carbon. While deferred grazing (RHM and RMH) sequestered less soil carbon compared to MMM, they showed higher standing root mass, maintained a more desirable pasture composition, and had better ability to retain soil N. Constant high grazing pressure (HHH) caused diminished above- and belowground plant production, more soil N losses and an unfavorable microbial environment and had reduced carbon input. Reducing grazing pressure in the last grazing stage (HHM) still had a negative impact on soil carbon. Regression analyses show that adjusting stocking rate to ~5SE/ha with ~40% vegetation utilization rate can get the most carbon accrual. Overall, the soil carbon sequestration in the temperate grassland is affected by the grazing regime that is applied, and grazing can be altered to improve soil carbon sequestration in the temperate steppe.

  5. Soil carbon sequestration potential of permanent pasture and continuous cropping soils in New Zealand.

    PubMed

    McNally, Sam R; Beare, Mike H; Curtin, Denis; Meenken, Esther D; Kelliher, Francis M; Calvelo Pereira, Roberto; Shen, Qinhua; Baldock, Jeff

    2017-11-01

    Understanding soil organic carbon (SOC) sequestration is important to develop strategies to increase the SOC stock and, thereby, offset some of the increases in atmospheric carbon dioxide. Although the capacity of soils to store SOC in a stable form is commonly attributed to the fine (clay + fine silt) fraction, the properties of the fine fraction that determine the SOC stabilization capacity are poorly known. The aim of this study was to develop an improved model to estimate the SOC stabilization capacity of Allophanic (Andisols) and non-Allophanic topsoils (0-15 cm) and, as a case study, to apply the model to predict the sequestration potential of pastoral soils across New Zealand. A quantile (90th) regression model, based on the specific surface area and extractable aluminium (pyrophosphate) content of soils, provided the best prediction of the upper limit of fine fraction carbon (FFC) (i.e. the stabilization capacity), but with different coefficients for Allophanic and non-Allophanic soils. The carbon (C) saturation deficit was estimated as the difference between the stabilization capacity of individual soils and their current C concentration. For long-term pastures, the mean saturation deficit of Allophanic soils (20.3 mg C g -1 ) was greater than that of non-Allophanic soils (16.3 mg C g -1 ). The saturation deficit of cropped soils was 1.14-1.89 times that of pasture soils. The sequestration potential of pasture soils ranged from 10 t C ha -1 (Ultic soils) to 42 t C ha -1 (Melanic soils). Although meeting the estimated national soil C sequestration potential (124 Mt C) is unrealistic, improved management practices targeted to those soils with the greatest sequestration potential could contribute significantly to off-setting New Zealand's greenhouse gas emissions. As the first national-scale estimate of SOC sequestration potential that encompasses both Allophanic and non-Allophanic soils, this serves as an informative case study for the international

  6. Assessing spatial uncertainty in reservoir characterization for carbon sequestration planning using public well-log data: A case study

    USGS Publications Warehouse

    Venteris, E.R.; Carter, K.M.

    2009-01-01

    Mapping and characterization of potential geologic reservoirs are key components in planning carbon dioxide (CO2) injection projects. The geometry of target and confining layers is vital to ensure that the injected CO2 remains in a supercritical state and is confined to the target layer. Also, maps of injection volume (porosity) are necessary to estimate sequestration capacity at undrilled locations. Our study uses publicly filed geophysical logs and geostatistical modeling methods to investigate the reliability of spatial prediction for oil and gas plays in the Medina Group (sandstone and shale facies) in northwestern Pennsylvania. Specifically, the modeling focused on two targets: the Grimsby Formation and Whirlpool Sandstone. For each layer, thousands of data points were available to model structure and thickness but only hundreds were available to support volumetric modeling because of the rarity of density-porosity logs in the public records. Geostatistical analysis based on this data resulted in accurate structure models, less accurate isopach models, and inconsistent models of pore volume. Of the two layers studied, only the Whirlpool Sandstone data provided for a useful spatial model of pore volume. Where reliable models for spatial prediction are absent, the best predictor available for unsampled locations is the mean value of the data, and potential sequestration sites should be planned as close as possible to existing wells with volumetric data. ?? 2009. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  7. Geologic Carbon Sequestration in a Lightly Explored Basin: the Puget-Willamette Lowland

    NASA Astrophysics Data System (ADS)

    Jackson, J. S.

    2007-12-01

    The Puget-Willamette Lowland is located between the Cascade Range and Olympic Mountains-Coast Range. Exploration for oil and gas there commenced in 1890. Over 700 wells subsequently drilled yield one commercial gas discovery. Eocene sediments deposited west of an ancestral Cascade Range include a coal-bearing sequence covering much of the Puget-Willamette Lowland. The terrestrial deposits pass into marine deposits to the west. Syn- depositional normal faulting and strike-slip faulting are evident in several sub-basins. In the southern Lowland, normal faults were modified by episodes of late Eocene and Miocene transpression, which resulted in mild inversion of older normal faults Preserved sediments indicate that local subsidence continued into Miocene- Pliocene time, and was followed in the northern Lowland by extensive Pleistocene glaciation. In the northern Lowland, Holocene faulting is recognized in outcrop and is interpreted on seismic data acquired in Puget Sound. Structures formed by early Miocene or earlier events may have trapped migrating hydrocarbons. Structures formed or modified by Holocene faulting very probably post-date hydrocarbon generation and migration. The region appears to host potential geologic sequestration targets, including coals, sandstones, and vesicular basalt flows. The size and location of potential traps is poorly constrained by present data. Experience in better explored fore arc basins suggests 10 to 30 percent of the basin may be deformed into suitable trapping geometries. Modern seismic data is required to identify potential sequestration traps. More than one well will be required to confirm the presence and size of these traps. The present boom in oil and gas drilling has created a robust environment for seismic and drilling companies, who command unprecedented rates for their services. Only one seismic crew is presently active on the West Coast, and only a few exploration drilling rigs are available. If this environment

  8. Measurement guidelines for the sequestration of forest carbon

    Treesearch

    Timothy R.H. Pearson; Sandra L. Brown; Richard A. Birdsey

    2007-01-01

    Measurement guidelines for forest carbon sequestration were developed to support reporting by public and private entities to greenhouse gas registries. These guidelines are intended to be a reference for designing a forest carbon inventory and monitoring system by professionals with a knowledge of sampling, statistical estimation, and forest measurements. This report...

  9. The nuts and bolts of carbon sequestration in forests

    EPA Science Inventory

    The nature of carbon in forests is discussed from the perspective of carbon trading as an incentive for conserving private forest lands. The presentation addresses carbon sequestration in forests and its significance for global warming. Carbon inventories, specifically in the are...

  10. Methodology for qualitative uncertainty assessment of climate impact indicators

    NASA Astrophysics Data System (ADS)

    Otto, Juliane; Keup-Thiel, Elke; Rechid, Diana; Hänsler, Andreas; Pfeifer, Susanne; Roth, Ellinor; Jacob, Daniela

    2016-04-01

    The FP7 project "Climate Information Portal for Copernicus" (CLIPC) is developing an integrated platform of climate data services to provide a single point of access for authoritative scientific information on climate change and climate change impacts. In this project, the Climate Service Center Germany (GERICS) has been in charge of the development of a methodology on how to assess the uncertainties related to climate impact indicators. Existing climate data portals mainly treat the uncertainties in two ways: Either they provide generic guidance and/or express with statistical measures the quantifiable fraction of the uncertainty. However, none of the climate data portals give the users a qualitative guidance how confident they can be in the validity of the displayed data. The need for such guidance was identified in CLIPC user consultations. Therefore, we aim to provide an uncertainty assessment that provides the users with climate impact indicator-specific guidance on the degree to which they can trust the outcome. We will present an approach that provides information on the importance of different sources of uncertainties associated with a specific climate impact indicator and how these sources affect the overall 'degree of confidence' of this respective indicator. To meet users requirements in the effective communication of uncertainties, their feedback has been involved during the development process of the methodology. Assessing and visualising the quantitative component of uncertainty is part of the qualitative guidance. As visual analysis method, we apply the Climate Signal Maps (Pfeifer et al. 2015), which highlight only those areas with robust climate change signals. Here, robustness is defined as a combination of model agreement and the significance of the individual model projections. Reference Pfeifer, S., Bülow, K., Gobiet, A., Hänsler, A., Mudelsee, M., Otto, J., Rechid, D., Teichmann, C. and Jacob, D.: Robustness of Ensemble Climate Projections

  11. Interactions between carbon sequestration and shade tree diversity in a smallholder coffee cooperative in El Salvador.

    PubMed

    Richards, Meryl Breton; Méndez, V Ernesto

    2014-04-01

    Agroforestry systems have substantial potential to conserve native biodiversity and provide ecosystem services. In particular, agroforestry systems have the potential to conserve native tree diversity and sequester carbon for climate change mitigation. However, little research has been conducted on the temporal stability of species diversity and aboveground carbon stocks in these systems or the relation between species diversity and aboveground carbon sequestration. We measured changes in shade-tree diversity and shade-tree carbon stocks in 14 plots of a 35-ha coffee cooperative over 9 years and analyzed relations between species diversity and carbon sequestration. Carbon sequestration was positively correlated with initial species richness of shade trees. Species diversity of shade trees did not change significantly over the study period, but carbon stocks increased due to tree growth. Our results show a potential for carbon sequestration and long-term biodiversity conservation in smallholder coffee agroforestry systems and illustrate the opportunity for synergies between biodiversity conservation and climate change mitigation. © 2013 Society for Conservation Biology.

  12. Terrestrial C sequestration at elevated CO2 and temperature: the role of dissolved organic N loss

    USGS Publications Warehouse

    Rastetter, Edward B.; Perakis, Steven S.; Shaver, Gaius R.; Agren, Goran I.

    2005-01-01

    We used a simple model of carbon–nitrogen (C–N) interactions in terrestrial ecosystems to examine the responses to elevated CO2 and to elevated CO2 plus warming in ecosystems that had the same total nitrogen loss but that differed in the ratio of dissolved organic nitrogen (DON) to dissolved inorganic nitrogen (DIN) loss. We postulate that DIN losses can be curtailed by higher N demand in response to elevated CO2, but that DON losses cannot. We also examined simulations in which DON losses were held constant, were proportional to the amount of soil organic matter, were proportional to the soil C:N ratio, or were proportional to the rate of decomposition. We found that the mode of N loss made little difference to the short‐term (<60 years) rate of carbon sequestration by the ecosystem, but high DON losses resulted in much lower carbon sequestration in the long term than did low DON losses. In the short term, C sequestration was fueled by an internal redistribution of N from soils to vegetation and by increases in the C:N ratio of soils and vegetation. This sequestration was about three times larger with elevated CO2 and warming than with elevated CO2 alone. After year 60, C sequestration was fueled by a net accumulation of N in the ecosystem, and the rate of sequestration was about the same with elevated CO2 and warming as with elevated CO2alone. With high DON losses, the ecosystem either sequestered C slowly after year 60 (when DON losses were constant or proportional to soil organic matter) or lost C (when DON losses were proportional to the soil C:N ratio or to decomposition). We conclude that changes in long‐term C sequestration depend not only on the magnitude of N losses, but also on the form of those losses.

  13. Using Qualitative Research to Assess Teaching and Learning in Technology-Infused TILE Classrooms

    ERIC Educational Resources Information Center

    Van Horne, Sam; Murniati, Cecilia Titiek; Saichaie, Kem; Jesse, Maggie; Florman, Jean C.; Ingram, Beth F.

    2014-01-01

    This chapter describes the results of an assessment project whose purpose was to improve the faculty-development program for instructors who teach in technology-infused TILE (Transform, Interact, Learn, Engage) classrooms at the University of Iowa. Qualitative research methods were critical for (1) learning about how students and instructors…

  14. Qualitative assessment of awake nasopharyngoscopy for prediction of oral appliance treatment response in obstructive sleep apnoea.

    PubMed

    Sutherland, Kate; Chan, Andrew S L; Ngiam, Joachim; Darendeliler, M Ali; Cistulli, Peter A

    2018-01-23

    Clinical methods to identify responders to oral appliance (OA) therapy for obstructive sleep apnoea (OSA) are needed. Awake nasopharyngoscopy during mandibular advancement, with image capture and subsequent processing and analysis, may predict treatment response. A qualitative assessment of awake nasopharyngoscopy would be simpler for clinical practice. We aimed to determine if a qualitative classification system of nasopharyngoscopic observations reflects treatment response. OSA patients were recruited for treatment with a customised two-piece OA. A custom scoring sheet was used to record observations of the pharyngeal airway (velopharynx, oropharynx, hypopharynx) during supine nasopharyngoscopy in response to mandibular advancement and performance of the Müller manoeuvre. Qualitative scores for degree (< 25%, 25-50%, 50-75%, > 75%), collapse pattern (concentric, anteroposterior, lateral) and diameter change (uniform, anteroposterior, lateral) were recorded. Treatment outcome was confirmed by polysomnography after a titration period of 14.6 ± 9.8 weeks. Treatment response was defined as (1) Treatment AHI < 5, (2) Treatment AHI < 10 plus > 50% AHI reduction and (3) > 50% AHI reduction. Eighty OSA patients (53.8% male) underwent nasopharyngoscopy. The most common naspharyngoscopic observation with mandibular advancement was a small (< 50%) increase in velopharyngeal lateral diameter (37.5%). The majority of subjects (72.5%) were recorded as having > 75% velopharyngeal collapse on performance of the Müller manoeuvre. Mandibular advancement reduced the observed level of pharyngeal collapse at all three pharyngeal regions (p < 0.001). None of the nasopharyngoscopic qualitative scores differed between responder and non-responder groups. Qualitative assessment of awake nasopharyngoscopy appears useful for assessing the effect of mandibular advancement on upper airway collapsibility. However, it is not sensitive enough to predict oral

  15. Applicability of aquifer impact models to support decisions at CO 2 sequestration sites

    DOE PAGES

    Keating, Elizabeth; Bacon, Diana; Carroll, Susan; ...

    2016-07-25

    The National Risk Assessment Partnership has developed a suite of tools to assess and manage risk at CO 2 sequestration sites. This capability includes polynomial or look-up table based reduced-order models (ROMs) that predict the impact of CO 2 and brine leaks on overlying aquifers. The development of these computationally-efficient models and the underlying reactive transport simulations they emulate has been documented elsewhere (Carroll et al., 2014a; Carroll et al., 2014b; Dai et al., 2014 ; Keating et al., 2016). Here in this paper, we seek to demonstrate applicability of ROM-based analysis by considering what types of decisions and aquifermore » types would benefit from the ROM analysis. We present four hypothetical examples where applying ROMs, in ensemble mode, could support decisions during a geologic CO 2 sequestration project. These decisions pertain to site selection, site characterization, monitoring network evaluation, and health impacts. In all cases, we consider potential brine/CO 2 leak rates at the base of the aquifer to be uncertain. We show that derived probabilities provide information relevant to the decision at hand. Although the ROMs were developed using site-specific data from two aquifers (High Plains and Edwards), the models accept aquifer characteristics as variable inputs and so they may have more broad applicability. We conclude that pH and TDS predictions are the most transferable to other aquifers based on the analysis of the nine water quality metrics (pH, TDS, 4 trace metals, 3 organic compounds). Guidelines are presented for determining the aquifer types for which the ROMs should be applicable.« less

  16. Transcriptional profiling defines dynamics of parasite tissue sequestration during malaria infection.

    PubMed

    Pelle, Karell G; Oh, Keunyoung; Buchholz, Kathrin; Narasimhan, Vagheesh; Joice, Regina; Milner, Danny A; Brancucci, Nicolas Mb; Ma, Siyuan; Voss, Till S; Ketman, Ken; Seydel, Karl B; Taylor, Terrie E; Barteneva, Natasha S; Huttenhower, Curtis; Marti, Matthias

    2015-01-01

    During intra-erythrocytic development, late asexually replicating Plasmodium falciparum parasites sequester from peripheral circulation. This facilitates chronic infection and is linked to severe disease and organ-specific pathology including cerebral and placental malaria. Immature gametocytes - sexual stage precursor cells - likewise disappear from circulation. Recent work has demonstrated that these sexual stage parasites are located in the hematopoietic system of the bone marrow before mature gametocytes are released into the bloodstream to facilitate mosquito transmission. However, as sequestration occurs only in vivo and not during in vitro culture, the mechanisms by which it is regulated and enacted (particularly by the gametocyte stage) remain poorly understood. We generated the most comprehensive P. falciparum functional gene network to date by integrating global transcriptional data from a large set of asexual and sexual in vitro samples, patient-derived in vivo samples, and a new set of in vitro samples profiling sexual commitment. We defined more than 250 functional modules (clusters) of genes that are co-expressed primarily during the intra-erythrocytic parasite cycle, including 35 during sexual commitment and gametocyte development. Comparing the in vivo and in vitro datasets allowed us, for the first time, to map the time point of asexual parasite sequestration in patients to 22 hours post-invasion, confirming previous in vitro observations on the dynamics of host cell modification and cytoadherence. Moreover, we were able to define the properties of gametocyte sequestration, demonstrating the presence of two circulating gametocyte populations: gametocyte rings between 0 and approximately 30 hours post-invasion and mature gametocytes after around 7 days post-invasion. This study provides a bioinformatics resource for the functional elucidation of parasite life cycle dynamics and specifically demonstrates the presence of the gametocyte ring stages

  17. Water Challenges for Geologic Carbon Capture and Sequestration

    PubMed Central

    Friedmann, Samuel J.; Carroll, Susan A.

    2010-01-01

    Carbon capture and sequestration (CCS) has been proposed as a means to dramatically reduce greenhouse gas emissions with the continued use of fossil fuels. For geologic sequestration, the carbon dioxide is captured from large point sources (e.g., power plants or other industrial sources), transported to the injection site and injected into deep geological formations for storage. This will produce new water challenges, such as the amount of water used in energy resource development and utilization and the “capture penalty” for water use. At depth, brine displacement within formations, storage reservoir pressure increases resulting from injection, and leakage are potential concerns. Potential impacts range from increasing water demand for capture to contamination of groundwater through leakage or brine displacement. Understanding these potential impacts and the conditions under which they arise informs the design and implementation of appropriate monitoring and controls, important both for assurance of environmental safety and for accounting purposes. Potential benefits also exist, such as co-production and treatment of water to both offset reservoir pressure increase and to provide local water for beneficial use. PMID:20127328

  18. Sequestration and Distribution Characteristics of Cd(II) by Microcystis aeruginosa and Its Role in Colony Formation.

    PubMed

    Bi, Xiangdong; Yan, Ran; Li, Fenxiang; Dai, Wei; Jiao, Kewei; Zhou, Qixing; Liu, Qi

    2016-01-01

    To investigate the sequestration and distribution characteristics of Cd(II) by Microcystis aeruginosa and its role in Microcystis colony formation, M. aeruginosa was exposed to six different Cd(II) concentrations for 10 days. Cd(II) exposure caused hormesis in the growth of M. aeruginosa . Low concentrations of Cd(II) significantly induced formation of small Microcystis colonies ( P < 0.05) and increased the intracellular polysaccharide (IPS) and bound extracellular polysaccharide (bEPS) contents of M. aeruginosa significantly ( P < 0.05). There was a linear relationship between the amount of Cd(II) sequestrated by algal cells and the amount added to cultures in the rapid adsorption process that occurred during the first 5 min of exposure. After 10 d, M. aeruginosa sequestrated nearly 80% of 0.2 mg L -1 added Cd(II), while >93% of Cd(II) was sequestrated in the groups with lower added concentrations of Cd(II). More than 80% of the sequestrated Cd(II) was bioadsorbed by bEPS. The Pearson correlation coefficients of exterior and interior factors related to colony formation of M. aeruginosa revealed that Cd(II) could stimulate the production of IPS and bEPS via increasing Cd(II) bioaccumulation and bioadsorption. Increased levels of cross-linking between Cd(II) and bEPS stimulated algal cell aggregation, which eventually promoted the formation of Microcystis colonies.

  19. Sequestration and Distribution Characteristics of Cd(II) by Microcystis aeruginosa and Its Role in Colony Formation

    PubMed Central

    Bi, Xiangdong; Yan, Ran; Li, Fenxiang; Dai, Wei; Jiao, Kewei; Liu, Qi

    2016-01-01

    To investigate the sequestration and distribution characteristics of Cd(II) by Microcystis aeruginosa and its role in Microcystis colony formation, M. aeruginosa was exposed to six different Cd(II) concentrations for 10 days. Cd(II) exposure caused hormesis in the growth of M. aeruginosa. Low concentrations of Cd(II) significantly induced formation of small Microcystis colonies (P < 0.05) and increased the intracellular polysaccharide (IPS) and bound extracellular polysaccharide (bEPS) contents of M. aeruginosa significantly (P < 0.05). There was a linear relationship between the amount of Cd(II) sequestrated by algal cells and the amount added to cultures in the rapid adsorption process that occurred during the first 5 min of exposure. After 10 d, M. aeruginosa sequestrated nearly 80% of 0.2 mg L−1 added Cd(II), while >93% of Cd(II) was sequestrated in the groups with lower added concentrations of Cd(II). More than 80% of the sequestrated Cd(II) was bioadsorbed by bEPS. The Pearson correlation coefficients of exterior and interior factors related to colony formation of M. aeruginosa revealed that Cd(II) could stimulate the production of IPS and bEPS via increasing Cd(II) bioaccumulation and bioadsorption. Increased levels of cross-linking between Cd(II) and bEPS stimulated algal cell aggregation, which eventually promoted the formation of Microcystis colonies. PMID:27777956

  20. Computational Modeling of the Geologic Sequestration of Carbon Dioxide

    EPA Science Inventory

    Geologic sequestration of CO2 is a component of C capture and storage (CCS), an emerging technology for reducing CO2 emissions to the atmosphere, and involves injection of captured CO2 into deep subsurface formations. Similar to the injection of hazardous wastes, before injection...

  1. Qualitative Analysis for Maintenance Process Assessment

    NASA Technical Reports Server (NTRS)

    Brand, Lionel; Kim, Yong-Mi; Melo, Walcelio; Seaman, Carolyn; Basili, Victor

    1996-01-01

    In order to improve software maintenance processes, we first need to be able to characterize and assess them. These tasks must be performed in depth and with objectivity since the problems are complex. One approach is to set up a measurement-based software process improvement program specifically aimed at maintenance. However, establishing a measurement program requires that one understands the problems to be addressed by the measurement program and is able to characterize the maintenance environment and processes in order to collect suitable and cost-effective data. Also, enacting such a program and getting usable data sets takes time. A short term substitute is therefore needed. We propose in this paper a characterization process aimed specifically at maintenance and based on a general qualitative analysis methodology. This process is rigorously defined in order to be repeatable and usable by people who are not acquainted with such analysis procedures. A basic feature of our approach is that actual implemented software changes are analyzed in order to understand the flaws in the maintenance process. Guidelines are provided and a case study is shown that demonstrates the usefulness of the approach.

  2. Critiquing qualitative research.

    PubMed

    Beck, Cheryl Tatano

    2009-10-01

    The ability to critique research is a valuable skill that is fundamental to a perioperative nurse's ability to base his or her clinical practice on evidence derived from research. Criteria differ for critiquing a quantitative versus a qualitative study (ie, statistics are evaluated in a quantitative study, but not in a qualitative study). This article provides on guidelines for assessing qualitative research. Excerpts from a published qualitative research report are summarized and then critiqued. Questions are provided that help evaluate different sections of a research study (eg, sample, data collection methods, data analysis).

  3. Photobiological hydrogen production and carbon dioxide sequestration

    NASA Astrophysics Data System (ADS)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  4. NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies

    PubMed Central

    Hirose, Tetsuro; Virnicchi, Giorgio; Tanigawa, Akie; Naganuma, Takao; Li, Ruohan; Kimura, Hiroshi; Yokoi, Takahide; Nakagawa, Shinichi; Bénard, Marianne; Fox, Archa H.; Pierron, Gérard

    2014-01-01

    Paraspeckles are subnuclear structures formed around nuclear paraspeckle assembly transcript 1 (NEAT1)/MENε/β long noncoding RNA (lncRNA). Here we show that paraspeckles become dramatically enlarged after proteasome inhibition. This enlargement is mainly caused by NEAT1 transcriptional up-regulation rather than accumulation of undegraded paraspeckle proteins. Of interest, however, using immuno–electron microscopy, we find that key paraspeckle proteins become effectively depleted from the nucleoplasm by 50% when paraspeckle assembly is enhanced, suggesting a sequestration mechanism. We also perform microarrays from NEAT1-knockdown cells and find that NEAT1 represses transcription of several genes, including the RNA-specific adenosine deaminase B2 (ADARB2) gene. In contrast, the NEAT1-binding paraspeckle protein splicing factor proline/glutamine-rich (SFPQ) is required for ADARB2 transcription. This leads us to hypothesize that ADARB2 expression is controlled by NEAT1-dependent sequestration of SFPQ. Accordingly, we find that ADARB2 expression is strongly reduced upon enhanced SFPQ sequestration by proteasome inhibition, with concomitant reduction in SFPQ binding to the ADARB2 promoter. Finally, NEAT1−/− fibroblasts are more sensitive to proteasome inhibition, which triggers cell death, suggesting that paraspeckles/NEAT1 attenuates the cell death pathway. These data further confirm that paraspeckles are stress-responsive nuclear bodies and provide a model in which induced NEAT1 controls target gene transcription by protein sequestration into paraspeckles. PMID:24173718

  5. Subsurface Monitoring of CO2 Sequestration - A Review and Look Forward

    NASA Astrophysics Data System (ADS)

    Daley, T. M.

    2012-12-01

    The injection of CO2 into subsurface formations is at least 50 years old with large-scale utilization of CO2 for enhanced oil recovery (CO2-EOR) beginning in the 1970s. Early monitoring efforts had limited measurements in available boreholes. With growing interest in CO2 sequestration beginning in the 1990's, along with growth in geophysical reservoir monitoring, small to mid-size sequestration monitoring projects began to appear. The overall goals of a subsurface monitoring plan are to provide measurement of CO2 induced changes in subsurface properties at a range of spatial and temporal scales. The range of spatial scales allows tracking of the location and saturation of the plume with varying detail, while finer temporal sampling (up to continuous) allows better understanding of dynamic processes (e.g. multi-phase flow) and constraining of reservoir models. Early monitoring of small scale pilots associated with CO2-EOR (e.g., the McElroy field and the Lost Hills field), developed many of the methodologies including tomographic imaging and multi-physics measurements. Large (reservoir) scale sequestration monitoring began with the Sleipner and Weyburn projects. Typically, large scale monitoring, such as 4D surface seismic, has limited temporal sampling due to costs. Smaller scale pilots can allow more frequent measurements as either individual time-lapse 'snapshots' or as continuous monitoring. Pilot monitoring examples include the Frio, Nagaoka and Otway pilots using repeated well logging, crosswell imaging, vertical seismic profiles and CASSM (continuous active-source seismic monitoring). For saline reservoir sequestration projects, there is typically integration of characterization and monitoring, since the sites are not pre-characterized resource developments (oil or gas), which reinforces the need for multi-scale measurements. As we move beyond pilot sites, we need to quantify CO2 plume and reservoir properties (e.g. pressure) over large scales, while still

  6. Carbon Sequestration: is Science Leading Policy or Will Policy Direct Science?

    NASA Astrophysics Data System (ADS)

    Anderson, A. K.

    2007-12-01

    Climate-related policy is in its infancy on capital hill, as policy makers only recently started to converge on the acceptance that climate change is a credible, scientific reality. Until recently much of the debate and policy decisions have been related to whether or not climate change, or more specifically global warming, is occurring. The climate debate has shifted from discussing the science behind climate change to addressing how we can reduce carbon dioxide emissions. In the 110th Congress, policy makers have come to realize and accept that we, as a nation, are one of the largest global emitters of carbon dioxide to the atmosphere. Geologic carbon sequestration has gained significant congressional attention and is considered to be one of the most promising carbon mitigation tools. In the present Congress, scientific experts have testified before numerous committees about the various caveats of geologic carbon sequestration. As a result, policy has been and is currently being drafted to address the challenges facing large-scale commercial demonstration of geologic sequestration facilities. Policy has been passed through both the House and Senate that is aimed at increasing funding for basic and advanced research, development, and demonstration of small- to large-scale carbon dioxide injection projects. This legislation is only the beginning of a series of legislation that is under development. In the next year, policy will be introduced that will likely address issues related to pore space and mineral rights ownership, regulatory framework for carbon dioxide transport and injection, long-term injection site monitoring protocol, personal and environmental safety, and liability issues, to name a few. Policy is not limited to the technical aspects of carbon capture, transport, and storage, but is also being developed to help stimulate a market that will be operating under climate constraints. Financial incentives have been proposed that will assist industrial

  7. SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 SEQUESTRATION

    EPA Science Inventory

    The chapter discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of t...

  8. Granulocyte Macrophage-Colony Stimulating Factor-induced Zn Sequestration Enhances Macrophage Superoxide and Limits Intracellular Pathogen Survival

    PubMed Central

    Vignesh, Kavitha Subramanian; Landero Figueroa, Julio A.; Porollo, Aleksey; Caruso, Joseph A.; Deepe, George S.

    2013-01-01

    SUMMARY Macrophages possess numerous mechanisms to combat microbial invasion, including sequestration of essential nutrients, like Zn. The pleiotropic cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) enhances antimicrobial defenses against intracellular pathogens such as Histoplasma capsulatum, but its mode of action remains elusive. We have found that GM-CSF activated infected macrophages sequestered labile Zn by inducing binding to metallothioneins (MTs) in a STAT3 and STAT5 transcription factor-dependent manner. GM-CSF upregulated expression of Zn exporters, Slc30a4 and Slc30a7 and the metal was shuttled away from phagosomes and into the Golgi apparatus. This distinctive Zn sequestration strategy elevated phagosomal H+ channel function and triggered reactive oxygen species (ROS) generation by NADPH oxidase. Consequently, H. capsulatum was selectively deprived of Zn, thereby halting replication and fostering fungal clearance. GM-CSF mediated Zn sequestration via MTs in vitro and in vivo in mice and in human macrophages. These findings illuminate a GM-CSF-induced Zn-sequestration network that drives phagocyte antimicrobial effector function. PMID:24138881

  9. Rangeland health attributes and indicators for qualitative assessment

    USGS Publications Warehouse

    Pyke, David A.; Herrick, J.E.; Pellant, Mike

    2002-01-01

    Panels of experts from the Society for Range Management and the National Research Council proposed that status of rangeland ecosystems could be ascertained by evaluating an ecological site's potential to conserve soil resources and by a series of indicators for ecosystem processes and site stability. Using these recommendations as a starting point, we developed a rapid, qualitative method for assessing a moment-in-time status of rangelands. Evaluators rate 17 indicators to assess 3 ecosystem attributes (soil and site stability, hydrologic function, and biotic integrity) for a given location. Indicators include rills, water flow patterns, pedestals and terracettes, bare ground, gullies, wind scour and depositional areas, litter movement, soil resistance to erosion, soil surface loss or degradation, plant composition relative to infiltration, soil compaction, plant functional/structural groups, plant mortality, litter amount, annual production, invasive plants, and reproductive capability. In this paper, we detail the development and evolution of the technique and introduce a modified ecological reference worksheet that documents the expected presence and amount of each indicator on the ecological site. In addition, we review the intended applications for this technique and clarify the differences between assessment and monitoring that lead us to recommend this technique be used for moment-in-time assessments and not be used for temporal monitoring of rangeland status. Lastly, we propose a mechanism for adapting and modifying this technique to reflect improvements in understanding of ecosystem processes. We support the need for quantitative measures for monitoring rangeland health and propose some measures that we believe may address some of the 17 indicators.

  10. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation.

    PubMed

    Wiesmeier, Martin; Hübner, Rico; Spörlein, Peter; Geuß, Uwe; Hangen, Edzard; Reischl, Arthur; Schilling, Bernd; von Lützow, Margit; Kögel-Knabner, Ingrid

    2014-02-01

    Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long-term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse-textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2 -equivalents could theoretically be stored in A horizons of cultivated soils - four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity. © 2013 John Wiley & Sons Ltd.

  11. Erosion of soil organic carbon: implications for carbon sequestration

    USGS Publications Warehouse

    Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.; McPherson, B.J.; Sundquist, E.T.

    2009-01-01

    Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

  12. Reactive Radial Diffusion Model for the Aging/Sequestration Process

    NASA Astrophysics Data System (ADS)

    Ginn, T. R.; Basagaoglu, H.; McCoy, B. J.; Scow, K. M.

    2001-12-01

    A radial diffusion model has been formulated to simulate age-dependent bioavailability of chemical compounds to micro-organisms residing outside (and/or inside) the porous soil particles. Experimental findings in the literature indicate that the sequestration and reduction in bioavailability of contaminants are controlled presumably by the diffusion-limited sorption kinetics and the time-variant desorption process. Here we combine radial-diffusion mass transfer modeling with the exposure-time concept to generate mass-balance equations for the intra- and extra-particle concentrations. The model accomodates reversible sorption kinetics involving sorption time-dependence of the rate coefficients, distinct intra- and extra-particle biodegradation rates; and a dynamic mass interaction between the intra- and extra-particle concentrations arising from the radial diffusion concept. The model explicitly treats multiple particle classes distributed in size and chemical properties in a bulk aquifer or soil volume, which allows the simulation of the sequestration and bioavailability of contaminants in different particle size classes that have distinct diffusion, reaction, and aging properties.

  13. Quantifying carbon sequestration in forest plantations by modeling the dynamics of above and below ground carbon pools

    Treesearch

    Chris A. Maier; Kurt H. Johnsen

    2010-01-01

    Intensive pine plantation management may provide opportunities to increase carbon sequestration in the Southeastern United States. Developing management options that increase fiber production and soil carbon sequestration require an understanding of the biological and edaphic processes that control soil carbon turnover. Belowground carbon resides primarily in three...

  14. [Computed tomography semiotics of osteonecrosis and sequestration in chronic hematogenic osteomyelitis].

    PubMed

    D'iachkova, G V; Mitina, Iu L

    2007-01-01

    Based on the data of computed tomography, radiography and densitometry in 39 patients the authors describe in detail the signs of osteonecrosis and sequestration of different localization and extension.

  15. [Carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand land.

    PubMed

    Ma, Jian Ye; Tong, Xiao Gang; Li, Zhan Bin; Fu, Guang Jun; Li, Jiao; Hasier

    2016-11-18

    The aim of this study was to investigate the effects of carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand Land, soil samples were collected from quicksand land, semifixed sand and fixed sand lands that were established by the shrub for 20-55 year-old and the arbor for 20-50 year-old at sand control region of Yulin in Northern Shaanxi Province. The dynamics and sequestration rate of soil organic carbon (SOC) associated with sand, silt and clay were measured by physical fractionation method. The results indicated that, compared with quicksand area, the carbon content in total SOC and all soil particle-sized fractions at bothsand-fixing sand forest lands showed a significant increasing trend, and the maximum carbon content was observed in the top layer of soils. From quicksand to fixed sand land with 55-year-old shrub and 50-year-old arbor, the annual sequestration rate of carbon stock in 0-5 cm soil depth was same in silt by 0.05 Mg·hm -2 ·a -1 . The increase rate of carbon sequestration in sand was 0.05 and 0.08 Mg·hm -2 ·a -1 , and in clay was 0.02 and 0.03 Mg·hm -2 ·a -1 at shrubs and arbors land, respectively. The increase rate of carbon sequestration in 0-20 cm soil layer for all the soil particles was averagely 2.1 times as that of 0-5 cm. At the annual increase rate of carbon, the stock of carbon in sand, silt and clay at the two fixed sand lands were increased by 6.7, 18.1 and 4.4 times after 50-55 year-old reversion of quicksand land to fixed sand. In addition, the average percentages that contributed to accumulation of total SOC by different particles in 0-20 cm soil were in the order of silt carbon (39.7%)≈sand carbon (34.6%) > clay carbon (25.6%). Generally, the soil particle-sized fractions had great carbon sequestration potential during reversion of desertification in Mu Us Sand Land, and the slit and sand were the main fractions for carbon sequestration at both fixed sand lands.

  16. Probabilistic evaluation of shallow groundwater resources at a hypothetical carbon sequestration site

    DOE PAGES

    Dai, Zhenxue; Keating, Elizabeth; Bacon, Diana H.; ...

    2014-03-07

    Carbon sequestration in geologic reservoirs is an important approach for mitigating greenhouse gases emissions to the atmosphere. This study first develops an integrated Monte Carlo method for simulating CO 2 and brine leakage from carbon sequestration and subsequent geochemical interactions in shallow aquifers. Then, we estimate probability distributions of five risk proxies related to the likelihood and volume of changes in pH, total dissolved solids, and trace concentrations of lead, arsenic, and cadmium for two possible consequence thresholds. The results indicate that shallow groundwater resources may degrade locally around leakage points by reduced pH and increased total dissolved solids (TDS).more » The volumes of pH and TDS plumes are most sensitive to aquifer porosity, permeability, and CO 2 and brine leakage rates. The estimated plume size of pH change is the largest, while that of cadmium is the smallest among the risk proxies. Plume volume distributions of arsenic and lead are similar to those of TDS. The scientific results from this study provide substantial insight for understanding risks of deep fluids leaking into shallow aquifers, determining the area of review, and designing monitoring networks at carbon sequestration sites.« less

  17. Mayamontana coccolobae (Basidiomycota), a new sequestrate taxon from Belize

    Treesearch

    Michael A. Castellano; James M. Trappe; D. Jean Lodge

    2007-01-01

    A new semi-hypogeous, sequestrate genus and species in the Basidiomycota is described from the Maya Mountains of Belize, where it was fruiting in association with Coccoloba belizensis. Mayamontana coccolobae is characterized by small, bright orange basidiomata with a friable, loculate, red-orange to red gleba and bilaterally...

  18. Assessing the potential to sequester carbon within state highway rights-of-way in New Mexico phase 2: development of a right-of-way carbon sequestration program.

    DOT National Transportation Integrated Search

    2016-06-13

    The New Mexico Department of Transportation (NMDOT) was selected by the Federal Highway : Administration (FHWA) to determine the feasibility of maximizing carbon sequestration within state : highway rightsofway (ROW). Golder Associates Inc. was...

  19. A strontium-90 sequestrant for first-aid treatment of radiation emergency.

    PubMed

    Haratake, Mamoru; Hatanaka, Eisuke; Fuchigami, Takeshi; Akashi, Makoto; Nakayama, Morio

    2012-01-01

    In this study, hydrophilic porous polymer beads with phosphonic acid groups (PGMA-EGDMA-TTA-MP) were synthesized, and assessed as a radioactive strontium-90 sequestrant for the treatment of the radiation emergency. Strontium ions were rapidly absorbed into the blood from the gastrointestinal (GI) tract after oral administration to rats, and distributed to the target organ, i.e., bones. Over 40% of the administered strontium was absorbed into the blood, while the remainder was discharged in the feces within 48 h after the administration. When the PGMA-EGDMA-TTA-MP beads were administered to rats subsequent to the strontium solution, the strontium had accumulated less in the femur. Consequently, the oral administration of the PGMA-EGDMA-TTA-MP beads was effective in suppressing the absorption of strontium from the GI tract.

  20. Translating National Level Forest Service Goals to Local Level Land Management: Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    McNulty, S.; Treasure, E.

    2017-12-01

    The USDA Forest Service has many national level policies related to multiple use management. However, translating national policy to stand level forest management can be difficult. As an example of how a national policy can be put into action, we examined three case studies in which a desired future condition is evaluated at the national, region and local scale. We chose to use carbon sequestration as the desired future condition because climate change has become a major area of concern during the last decade. Several studies have determined that the 193 million acres of US national forest land currently sequester 11% to 15% of the total carbon emitted as a nation. This paper provides a framework by which national scale strategies for maintaining or enhancing forest carbon sequestration is translated through regional considerations and local constraints in adaptive management practices. Although this framework used the carbon sequestration as a case study, this framework could be used with other national level priorities such as the National Environmental Protection Act (NEPA) or the Endangered Species Act (ESA).

  1. Biochar: A synthesis of its agronomic impact beyond carbon sequestration

    USDA-ARS?s Scientific Manuscript database

    Biochar has been recently heralded as an amendment to revitalize degraded soils, improve soil carbon sequestration, increase agronomic productivity and enter into future carbon trading markets. However, scientific and economic technicalities may limit the ability of biochar to consistently deliver o...

  2. Carbon Sequestration in Unconventional Reservoirs: Geophysical, Geochemical and Geomechanical Considerations

    NASA Astrophysics Data System (ADS)

    Zakharova, Natalia V.

    In the face of the environmental challenges presented by the acceleration of global warming, carbon capture and storage, also called carbon sequestration, may provide a vital option to reduce anthropogenic carbon dioxide emissions, while meeting the world's energy demands. To operate on a global scale, carbon sequestration would require thousands of geologic repositories that could accommodate billions of tons of carbon dioxide per year. In order to reach such capacity, various types of geologic reservoirs should be considered, including unconventional reservoirs such as volcanic rocks, fractured formations, and moderate-permeability aquifers. Unconventional reservoirs, however, are characterized by complex pore structure, high heterogeneity, and intricate feedbacks between physical, chemical and mechanical processes, and their capacity to securely store carbon emissions needs to be confirmed. In this dissertation, I present my contribution toward the understanding of geophysical, geochemical, hydraulic, and geomechanical properties of continental basalts and fractured sedimentary formations in the context of their carbon storage capacity. The data come from two characterization projects, in the Columbia River Flood Basalt in Washington and the Newark Rift Basin in New York, funded by the U.S. Department of Energy through Big Sky Carbon Sequestration Partnerships and TriCarb Consortium for Carbon Sequestration. My work focuses on in situ analysis using borehole geophysical measurements that allow for detailed characterization of formation properties on the reservoir scale and under nearly unaltered subsurface conditions. The immobilization of injected CO2 by mineralization in basaltic rocks offers a critical advantage over sedimentary reservoirs for long-term CO2 storage. Continental flood basalts, such as the Columbia River Basalt Group, possess a suitable structure for CO2 storage, with extensive reservoirs in the interflow zones separated by massive impermeable

  3. NONINDIGENOUS PATHOGENIC SHRIMP VIRUS INTRODUCTIONS INTO THE UNITED STATES: DEVELOPING A QUALITATIVE ECOLOGICAL RISK ASSESSMENT

    EPA Science Inventory

    Nonindigenous Pathogenic Shrimp Virus Introductions into the United States: Developing a Qualitative Ecological Risk Assessment. Austin, R.K.; van der Schalie, W.R.; U.S. Environmental Protection Agency, Washington, DC; Menzie, C.; Menzie-Cura and Associates, Chelmsford, MA; Fair...

  4. Applicability of aquifer impact models to support decisions at CO2 sequestration sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keating, Elizabeth; Bacon, Diana; Carroll, Susan

    2016-09-01

    The National Risk Assessment Partnership has developed a suite of tools to assess and manage risk at CO2 sequestration sites (www.netldoe.gov/nrap). This capability includes polynomial or look-up table based reduced-order models (ROMs) that predict the impact of CO2 and brine leaks on overlying aquifers. The development of these computationally-efficient models and the underlying reactive transport simulations they emulate has been documented elsewhere (Carroll et al., 2014, Dai et al., 2014, Keating et al., 2015). The ROMs reproduce the ensemble behavior of large numbers of simulations and are well-suited to applications that consider a large number of scenarios to understand parametermore » sensitivity and uncertainty on the risk of CO2 leakage to groundwater quality. In this paper, we seek to demonstrate applicability of ROM-based ensemble analysis by considering what types of decisions and aquifer types would benefit from the ROM analysis. We present four hypothetical four examples where applying ROMs, in ensemble mode, could support decisions in the early stages in a geologic CO2 sequestration project. These decisions pertain to site selection, site characterization, monitoring network evaluation, and health impacts. In all cases, we consider potential brine/CO2 leak rates at the base of the aquifer to be uncertain. We show that derived probabilities provide information relevant to the decision at hand. Although the ROMs were developed using site-specific data from two aquifers (High Plains and Edwards), the models accept aquifer characteristics as variable inputs and so they may have more broad applicability. We conclude that pH and TDS predictions are the most transferable to other aquifers based on the analysis of the nine water quality metrics (pH, TDS, 4 trace metals, 3 organic compounds). Guidelines are presented for determining the aquifer types for which the ROMs should be applicable.« less

  5. Geologic framework for the national assessment of carbon dioxide storage resources─South Florida Basin: Chapter L in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Roberts-Ashby, Tina L.; Brennan, Sean T.; Merrill, Matthew D.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.

    2015-08-26

    This report presents five storage assessment units (SAUs) that have been identified as potentially suitable for geologic carbon dioxide sequestration within a 35,075-square-mile area that includes the entire onshore and State-water portions of the South Florida Basin. Platform-wide, thick successions of laterally extensive carbonates and evaporites deposited in highly cyclic depositional environments in the South Florida Basin provide several massive, porous carbonate reservoirs that are separated by evaporite seals. For each storage assessment unit identified within the basin, the areal distribution of the reservoir-seal couplet identified as suitable for geologic Carbon dioxide sequestration is presented, along with a description of the geologic characteristics that influence the potential carbon dioxide storage volume and reservoir performance. On a case-by-case basis, strategies for estimating the pore volume existing within structurally and (or) stratigraphically closed traps are also discussed. Geologic information presented in this report has been employed to calculate potential storage capacities for carbon dioxide sequestration in the storage assessment units assessed herein, although complete assessment results are not contained in this report.

  6. Terrestrial biological carbon sequestration: science for enhancement and implementation

    Treesearch

    Wilfred M. Post; James E. Amonette; Richard Birdsey; Charles T. Jr. Garten; R. Cesar Izaurralde; Philip Jardine; Julie Jastrow; Rattan Lal; Gregg Marland

    2009-01-01

    The purpose of this chapter is to review terrestrial biological carbon sequestration and evaluate the potential carbon storage capacity if present and new techniques are more aggressively utilized. Photosynthetic CO2 capture from the atmosphere and storage of the C in aboveground and belowground biomass and in soil organic and inorganic forms can...

  7. Recommendations for sexual expression management in long-term care: a qualitative needs assessment

    PubMed Central

    Syme, Maggie L.; Lichtenberg, Peter; Moye, Jennifer

    2017-01-01

    Aims To conduct a qualitative needs assessment of Directors of Nursing regarding challenges and recommendations for addressing sexual expression and consent. Background Sexual expression management among long-term care residents is a complex issue for nursing home staff. Little guidance is available for those wanting to follow a person-centred approach. Policies and procedures are needed, and must be usable across long-term care settings. Design Qualitative design for in-depth exploration. Methods Semi-structured interviews were conducted with 20 Directors of Nursing in the spring and summer of 2013, representing a range of regions, facility sizes and resident populations. Interview questions prompted them to identify recommendations that address challenges to improving sexual expression management in long-term care settings. Results Comparative thematic analysis resulted in several codes, which were grouped into eight overall categories. Recommendation categories that addressed key challenges included: address the issue, make environmental changes, identify staff expertise, provide education and training, assess sexuality initially and recurrently, establish policies/procedures for sexual expression management, develop assessment tools for sexual expression and consent, and clarify legal issues. The recommendation to develop national guidelines was observed across categories. Discussion Directors of Nursing report several challenges to sexual expression management in their facilities, and perceive their current methods to be ad hoc. A proactive approach to policy and procedure development is needed. PMID:27188413

  8. Carbon storage and sequestration by trees in VIT University campus

    NASA Astrophysics Data System (ADS)

    Saral, A. Mary; SteffySelcia, S.; Devi, Keerthana

    2017-11-01

    The present study addresses carbon storage and sequestration by trees grown in VIT University campus, Vellore. Approximately twenty trees were selected from Woodstockarea. The above ground biomass and below ground biomass were calculated. The above ground biomass includes non-destructive anddestructive sampling. The Non-destructive method includes the measurement of height of thetree and diameter of the tree. The height of the tree is calculated using Total Station instrument and diameter is calculated using measuring tape. In the destructive method the weight of samples (leaves) and sub-samples (fruits, flowers) of the tree were considered. To calculate the belowground biomass soil samples are taken and analyzed. The results obtained were used to predict the carbon storage. It was found that out of twenty tree samples Millingtonia hortensis which is commonly known as Cork tree possess maximum carbon storage (14.342kg/tree) and carbon sequestration (52.583kg/tree) respectively.

  9. Predictive modeling of CO2 sequestration in deep saline sandstone reservoirs: Impacts of geochemical kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balashov, Victor N.; Guthrie, George D.; Hakala, J. Alexandra

    2013-03-01

    One idea for mitigating the increase in fossil-fuel generated CO{sub 2} in the atmosphere is to inject CO{sub 2} into subsurface saline sandstone reservoirs. To decide whether to try such sequestration at a globally significant scale will require the ability to predict the fate of injected CO{sub 2}. Thus, models are needed to predict the rates and extents of subsurface rock-water-gas interactions. Several reactive transport models for CO{sub 2} sequestration created in the last decade predicted sequestration in sandstone reservoirs of ~17 to ~90 kg CO{sub 2} m{sup -3|. To build confidence in such models, a baseline problem including rockmore » + water chemistry is proposed as the basis for future modeling so that both the models and the parameterizations can be compared systematically. In addition, a reactive diffusion model is used to investigate the fate of injected supercritical CO{sub 2} fluid in the proposed baseline reservoir + brine system. In the baseline problem, injected CO{sub 2} is redistributed from the supercritical (SC) free phase by dissolution into pore brine and by formation of carbonates in the sandstone. The numerical transport model incorporates a full kinetic description of mineral-water reactions under the assumption that transport is by diffusion only. Sensitivity tests were also run to understand which mineral kinetics reactions are important for CO{sub 2} trapping. The diffusion transport model shows that for the first ~20 years after CO{sub 2} diffusion initiates, CO{sub 2} is mostly consumed by dissolution into the brine to form CO{sub 2,aq} (solubility trapping). From 20-200 years, both solubility and mineral trapping are important as calcite precipitation is driven by dissolution of oligoclase. From 200 to 1000 years, mineral trapping is the most important sequestration mechanism, as smectite dissolves and calcite precipitates. Beyond 2000 years, most trapping is due to formation of aqueous HCO{sub 3}{sup -}. Ninety-seven percent of

  10. Method and apparatus for ion sequestration and a nanostructured metal phosphate

    DOEpatents

    Mattigod, Shas V [Richland, WA; Fryxell, Glen E [Kennewic, WA; Li, Xiaohong [Richland, WA; Parker, Kent E [Kennewick, WA; Wellman, Dawn M [West Richland, WA

    2010-04-06

    A nanostructured substance, a process for sequestration of ionic waste, and an ion-sequestration apparatus are disclosed in the specification. The nanostructured substance can comprise a Lewis acid transition metal bound to a phosphate, wherein the phosphate comprises a primary structural component of the substance and the Lewis acid transition metal is a reducing agent. The nanostructured substance has a Brunner-Emmet-Teller (BET) surface area greater than or equal to approximately 100 m.sup.2/g, and a distribution coefficient for an analyte, K.sub.d, greater than or equal to approximately 5000 ml/g. The process can comprise contacting a fluid and a nanostructured metal phosphate. The apparatus can comprise a vessel and a nanostructured metal phosphate. The vessel defines a volume wherein a fluid contacts the nanostructured metal phosphate.

  11. Workplace-based assessment and students' approaches to learning: a qualitative inquiry.

    PubMed

    Al-Kadri, Hanan M; Al-Kadi, Mohammed T; Van Der Vleuten, Cees P M

    2013-01-01

    We have performed this research to assess the effect of work-place based assessment (WBA) practice on medical students' learning approaches. The research was conducted at the King Saud bin Abdulaziz University for Health Sciences, College of Medicine from 1 March to 31 July 2012. We conducted a qualitative, phenomenological research utilizing semi-structured individual interviews with medical students exposed to WBA. The audio-taped interviews were transcribed verbatim, analyzed, and themes were identified. We preformed investigators' triangulation, member checking with clinical supervisors and we triangulated the data with a similar research performed prior to the implementation of WBA. WBA results in variable learning approaches. Based on several affecting factors; clinical supervisors, faculty-given feedback, and assessment function, students may swing between surface, deep and effort and achievement learning approaches. Students' and supervisors' orientations on the process of WBA, utilization of peer feedback and formative rather than summative assessment facilitate successful implementation of WBA and lead to students' deeper approaches to learning. Interestingly, students and their supervisors have contradicting perceptions to WBA. A change in culture to unify students' and supervisors' perceptions of WBA, more accommodation of formative assessment, and feedback may result in students' deeper approach to learning.

  12. Work-based assessment: qualitative perspectives of novice nutrition and dietetics educators.

    PubMed

    Palermo, C; Beck, E J; Chung, A; Ash, S; Capra, S; Truby, H; Jolly, B

    2014-10-01

    The assessment of competence for health professionals including nutrition and dietetics professionals in work-based settings is challenging. The present study aimed to explore the experiences of educators involved in the assessment of nutrition and dietetics students in the practice setting and to identify barriers and enablers to effective assessment. A qualitative research approach using in-depth interviews was employed with a convenience sample of inexperienced dietitian assessors. Interviews explored assessment practices and challenges. Data were analysed using a thematic approach within a phenomenological framework. Twelve relatively inexperienced practice educators were purposefully sampled to take part in the present study. Three themes emerged from these data. (i) Student learning and thus assessment is hindered by a number of barriers, including workload demands and case-mix. Some workplaces are challenged to provide appropriate learning opportunities and environment. Adequate support for placement educators from the university, managers and their peers and planning are enablers to effective assessment. (ii) The role of the assessor and their relationship with students impacts on competence assessment. (iii) There is a lack of clarity in the tasks and responsibilities of competency-based assessment. The present study provides perspectives on barriers and enablers to effective assessment. It highlights the importance of reflective practice and feedback in assessment practices that are synonymous with evidence from other disciplines, which can be used to better support a work-based competency assessment of student performance. © 2013 The British Dietetic Association Ltd.

  13. A novel dendrochronological approach reveals drivers of carbon sequestration in tree species of riparian forests across spatiotemporal scales.

    PubMed

    Rieger, Isaak; Kowarik, Ingo; Cherubini, Paolo; Cierjacks, Arne

    2017-01-01

    Aboveground carbon (C) sequestration in trees is important in global C dynamics, but reliable techniques for its modeling in highly productive and heterogeneous ecosystems are limited. We applied an extended dendrochronological approach to disentangle the functioning of drivers from the atmosphere (temperature, precipitation), the lithosphere (sedimentation rate), the hydrosphere (groundwater table, river water level fluctuation), the biosphere (tree characteristics), and the anthroposphere (dike construction). Carbon sequestration in aboveground biomass of riparian Quercus robur L. and Fraxinus excelsior L. was modeled (1) over time using boosted regression tree analysis (BRT) on cross-datable trees characterized by equal annual growth ring patterns and (2) across space using a subsequent classification and regression tree analysis (CART) on cross-datable and not cross-datable trees. While C sequestration of cross-datable Q. robur responded to precipitation and temperature, cross-datable F. excelsior also responded to a low Danube river water level. However, CART revealed that C sequestration over time is governed by tree height and parameters that vary over space (magnitude of fluctuation in the groundwater table, vertical distance to mean river water level, and longitudinal distance to upstream end of the study area). Thus, a uniform response to climatic drivers of aboveground C sequestration in Q. robur was only detectable in trees of an intermediate height class and in taller trees (>21.8m) on sites where the groundwater table fluctuated little (≤0.9m). The detection of climatic drivers and the river water level in F. excelsior depended on sites at lower altitudes above the mean river water level (≤2.7m) and along a less dynamic downstream section of the study area. Our approach indicates unexploited opportunities of understanding the interplay of different environmental drivers in aboveground C sequestration. Results may support species-specific and

  14. Simulating CO2 Leakage and Seepage From Geologic Carbon Sequestration Sites: Implications for Near-Surface Monitoring

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Lewicki, J. L.; Zhang, Y.

    2003-12-01

    The injection of CO2 into deep geologic formations for the purpose of carbon sequestration entails risk that CO2 will leak upward from the target formation and ultimately seep out of the ground surface. We have developed a coupled subsurface and atmospheric surface layer modeling capability based on TOUGH2 to simulate CO2 leakage and seepage. Simulation results for representative subsurface and surface layer conditions are used to specify the requirements of potential near-surface monitoring strategies relevant to both health, safety, and environmental risk assessment as well as sequestration verification. The coupled model makes use of the standard multicomponent and multiphase framework of TOUGH2 and extends the model domain to include an atmospheric surface layer. In the atmospheric surface layer, we assume a logarithmic velocity profile for the time-averaged wind and make use of Pasquill-Gifford and Smagorinski dispersion coefficients to model surface layer dispersion. Results for the unsaturated zone and surface layer show that the vadose zone pore space can become filled with pure CO2 even for small leakage fluxes, but that CO2 concentrations above the ground surface are very low due to the strong effects of dispersion caused by surface winds. Ecological processes such as plant photosynthesis and root respiration, as well as biodegradation in soils, strongly affect near-surface CO2 concentrations and fluxes. The challenge for geologic carbon sequestration verification is to discern the leakage and seepage signal from the ecological signal. Our simulations point to the importance of subsurface monitoring and the need for geochemical (e.g., isotopic) analyses to distinguish leaking injected fossil CO2 from natural ecological CO2. This work was supported by the Office of Science, U.S. Department of Energy under contract No. DE-AC03-76SF00098.

  15. Carbon sequestration efficiency of organic amendments in a long-term experiment on a vertisol in Huang-Huai-Hai Plain, China.

    PubMed

    Hua, Keke; Wang, Daozhong; Guo, Xisheng; Guo, Zibin

    2014-01-01

    Soil organic carbon (SOC) sequestration is important for improving soil fertility of cropland and for the mitigation of greenhouse gas emissions to the atmosphere. The efficiency of SOC sequestration depends on the quantity and quality of the organic matter, soil type, and climate. Little is known about the SOC sequestration efficiency of organic amendments in Vertisols. Thus, we conducted the research based on 29 years (1982-2011) of long-term fertilization experiment with a no fertilizer control and five fertilization regimes: CK (control, no fertilizer), NPK (mineral NPK fertilizers alone), NPK+1/2W (mineral NPK fertilizers combined with half the amount of wheat straw), NPK+W (mineral NPK fertilizers combined with full the amount of wheat straw), NPK+PM (mineral NPK fertilizers combined with pig manure) and NPK+CM (mineral NPK fertilizers combined cattle manure). Total mean annual C inputs were 0.45, 1.55, 2.66, 3.71, 4.68 and 6.56 ton/ha/yr for CK, NPK, NPKW1/2, NPKW, NPKPM and NPKCM, respectively. Mean SOC sequestration rate was 0.20 ton/ha/yr in the NPK treatment, and 0.39, 0.50, 0.51 and 0.97 ton/ha/yr in the NPKW1/2, NPKW, NPKPM, and NPKCM treatments, respectively. A linear relationship was observed between annual C input and SOC sequestration rate (SOCsequestration rate  = 0.16 Cinput -0.10, R = 0.95, P<0.01), suggesting a C sequestration efficiency of 16%. The Vertisol required an annual C input of 0.63 ton/ha/yr to maintain the initial SOC level. Moreover, the C sequestration efficiencies of wheat straw, pig manure and cattle manure were 17%, 11% and 17%, respectively. The results indicate that the Vertisol has a large potential to sequester SOC with a high efficiency, and applying cattle manure or wheat straw is a recommendable SOC sequestration practice in Vertisols.

  16. Carbon Sequestration Efficiency of Organic Amendments in a Long-Term Experiment on a Vertisol in Huang-Huai-Hai Plain, China

    PubMed Central

    Hua, Keke; Wang, Daozhong; Guo, Xisheng; Guo, Zibin

    2014-01-01

    Soil organic carbon (SOC) sequestration is important for improving soil fertility of cropland and for the mitigation of greenhouse gas emissions to the atmosphere. The efficiency of SOC sequestration depends on the quantity and quality of the organic matter, soil type, and climate. Little is known about the SOC sequestration efficiency of organic amendments in Vertisols. Thus, we conducted the research based on 29 years (1982–2011) of long-term fertilization experiment with a no fertilizer control and five fertilization regimes: CK (control, no fertilizer), NPK (mineral NPK fertilizers alone), NPK+1/2W (mineral NPK fertilizers combined with half the amount of wheat straw), NPK+W (mineral NPK fertilizers combined with full the amount of wheat straw), NPK+PM (mineral NPK fertilizers combined with pig manure) and NPK+CM (mineral NPK fertilizers combined cattle manure). Total mean annual C inputs were 0.45, 1.55, 2.66, 3.71, 4.68 and 6.56 ton/ha/yr for CK, NPK, NPKW1/2, NPKW, NPKPM and NPKCM, respectively. Mean SOC sequestration rate was 0.20 ton/ha/yr in the NPK treatment, and 0.39, 0.50, 0.51 and 0.97 ton/ha/yr in the NPKW1/2, NPKW, NPKPM, and NPKCM treatments, respectively. A linear relationship was observed between annual C input and SOC sequestration rate (SOCsequestration rate  = 0.16 Cinput –0.10, R = 0.95, P<0.01), suggesting a C sequestration efficiency of 16%. The Vertisol required an annual C input of 0.63 ton/ha/yr to maintain the initial SOC level. Moreover, the C sequestration efficiencies of wheat straw, pig manure and cattle manure were 17%, 11% and 17%, respectively. The results indicate that the Vertisol has a large potential to sequester SOC with a high efficiency, and applying cattle manure or wheat straw is a recommendable SOC sequestration practice in Vertisols. PMID:25265095

  17. Soil carbon sequestration potential for "grain for green" project in Loess Plateau, China

    USGS Publications Warehouse

    Chang, R.; Fu, B.; Liu, Gaisheng; Liu, S.

    2011-01-01

    Conversion of cropland into perennial vegetation land can increase soil organic carbon (SOC) accumulation, which might be an important mitigation measure to sequester carbon dioxide from the atmosphere. The “Grain for Green” project, one of the most ambitious ecological programmes launched in modern China, aims at transforming the low-yield slope cropland into grassland and woodland. The Loess Plateau in China is the most important target of this project due to its serious soil erosion. The objectives of this study are to answer three questions: (1) what is the rate of the SOC accumulation for this “Grain for Green” project in Loess Plateau? (2) Is there a difference in SOC sequestration among different restoration types, including grassland, shrub and forest? (3) Is the effect of restoration types on SOC accumulation different among northern, middle and southern regions of the Loess Plateau? Based on analysis of the data collected from the literature conducted in the Loess Plateau, we found that SOC increased at a rate of 0.712 TgC/year in the top 20 cm soil layer for 60 years under this project across the entire Loess Plateau. This was a relatively reliable estimation based on current data, although there were some uncertainties. Compared to grassland, forest had a significantly greater effect on SOC accumulation in middle and southern Loess Plateau but had a weaker effect in the northern Loess Plateau. There were no differences found in SOC sequestration between shrub and grassland across the entire Loess Plateau. Grassland had a stronger effect on SOC sequestration in the northern Loess Plateau than in the middle and southern regions. In contrast, forest could increase more SOC in the middle and southern Loess Plateau than in the northern Loess Plateau, whereas shrub had a similar effect on SOC sequestration across the Loess Plateau. Our results suggest that the “Grain for Green” project can significantly increase the SOC storage in Loess Plateau

  18. Soil carbon sequestration and forest management: challenges and opportunities

    Treesearch

    Coeli M. Hoover

    2003-01-01

    The subject of the effects of forest management activities on soil carbon is a difficult one to address, but ongoing discussions of carbon sequestration as an emissions offset and the emergence of carbon-credit-trading systems necessitate that we broaden and deepen our understanding of the response of forest-soil carbon pools to forest management. There have been...

  19. Fire management and carbon sequestration in Pine Barren Forests

    Treesearch

    Kenneth L. Clark; Nicholas Skowronski; Michael Gallagher

    2015-01-01

    Prescribed burning is the major viable option that land managers have for reducing hazardous fuels and ensuring the regeneration of fire-dependent species in a cost-effective manner in Pine Barren ecosystems. Fuels management activities are directly linked to carbon (C) storage and rates of C sequestration by forests. To evaluate the effects of prescribed burning on...

  20. Climate change and carbon sequestration opportunities on national forests

    Treesearch

    R.L. Deal

    2010-01-01

    Deforestation globally accounts for about 20 percent of total greenhouse gas emissions. One of the major forestry challenges in the United States is reducing the loss of forest land from development. Foresters have a critical role to play in forest management and carbon sequestration to reduce greenhouse gas emissions, and forestry can be part of the solution. A recent...

  1. Using Biomass to Improve Site Quality and Carbon Sequestration

    Treesearch

    Bryce J. Stokes; Felipe G. Sanchez; Emily A. Carter

    1998-01-01

    The future demands on forest lands are a concern because of reduced productivity, especially on inherently poor sites, sites with long-depleted soils, or those soils that bear repeated, intensive short rotations. Forests are also an important carbon sink and, when well managed, can make even more significant contributions to sequestration and to reduction of greenhouse...

  2. In Brief: Carbon Sequestration Partnerships; Review of Peer Reviews

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The U.S. Department of Energy named seven regional partnerships on 16 August to study the best methods for the non-biological sequestration of carbon in different parts of the country.Peer review guidelines for science issued by the federal government which is related to regulatory topics could be tightened up under a 29 August White House proposal.

  3. Enzyme Sequestration as a Tuning Point in Controlling Response Dynamics of Signalling Networks

    PubMed Central

    Ollivier, Julien F.; Soyer, Orkun S.

    2016-01-01

    Signalling networks result from combinatorial interactions among many enzymes and scaffolding proteins. These complex systems generate response dynamics that are often essential for correct decision-making in cells. Uncovering biochemical design principles that underpin such response dynamics is a prerequisite to understand evolved signalling networks and to design synthetic ones. Here, we use in silico evolution to explore the possible biochemical design space for signalling networks displaying ultrasensitive and adaptive response dynamics. By running evolutionary simulations mimicking different biochemical scenarios, we find that enzyme sequestration emerges as a key mechanism for enabling such dynamics. Inspired by these findings, and to test the role of sequestration, we design a generic, minimalist model of a signalling cycle, featuring two enzymes and a single scaffolding protein. We show that this simple system is capable of displaying both ultrasensitive and adaptive response dynamics. Furthermore, we find that tuning the concentration or kinetics of the sequestering protein can shift system dynamics between these two response types. These empirical results suggest that enzyme sequestration through scaffolding proteins is exploited by evolution to generate diverse response dynamics in signalling networks and could provide an engineering point in synthetic biology applications. PMID:27163612

  4. SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 SEQUESTRATION (PRESENTATION)

    EPA Science Inventory

    The paper discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of the...

  5. Biochar for soil fertility and natural carbon sequestration

    USGS Publications Warehouse

    Rostad, C.E.; Rutherford, D.W.

    2011-01-01

    Biochar is charcoal (similar to chars generated by forest fires) that is made for incorporation into soils to increase soil fertility while providing natural carbon sequestration. The incorporation of biochar into soils can preserve and enrich soils and also slow the rate at which climate change is affecting our planet. Studies on biochar, such as those cited by this report, are applicable to both fire science and soil science.

  6. Carbon sequestration in two alpine soils on the Tibetan Plateau.

    PubMed

    Tian, Yu-Qiang; Xu, Xing-Liang; Song, Ming-Hua; Zhou, Cai-Ping; Gao, Qiong; Ouyang, Hua

    2009-09-01

    Soil carbon sequestration was estimated in a conifer forest and an alpine meadow on the Tibetan Plateau using a carbon-14 radioactive label provided by thermonuclear weapon tests (known as bomb-(14)C). Soil organic matter was physically separated into light and heavy fractions. The concentration spike of bomb-(14)C occurred at a soil depth of 4 cm in both the forest soil and the alpine meadow soil. Based on the depth of the bomb-(14)C spike, the carbon sequestration rate was determined to be 38.5 g C/m(2) per year for the forest soil and 27.1 g C/m(2) per year for the alpine meadow soil. Considering that more than 60% of soil organic carbon (SOC) is stored in the heavy fraction and the large area of alpine forests and meadows on the Tibetan Plateau, these alpine ecosystems might partially contribute to "the missing carbon sink".

  7. Global Sequestration Potential of Increased Organic Carbon in Cropland Soils.

    PubMed

    Zomer, Robert J; Bossio, Deborah A; Sommer, Rolf; Verchot, Louis V

    2017-11-14

    The role of soil organic carbon in global carbon cycles is receiving increasing attention both as a potentially large and uncertain source of CO 2 emissions in response to predicted global temperature rises, and as a natural sink for carbon able to reduce atmospheric CO 2 . There is general agreement that the technical potential for sequestration of carbon in soil is significant, and some consensus on the magnitude of that potential. Croplands worldwide could sequester between 0.90 and 1.85 Pg C/yr, i.e. 26-53% of the target of the "4p1000 Initiative: Soils for Food Security and Climate". The importance of intensively cultivated regions such as North America, Europe, India and intensively cultivated areas in Africa, such as Ethiopia, is highlighted. Soil carbon sequestration and the conservation of existing soil carbon stocks, given its multiple benefits including improved food production, is an important mitigation pathway to achieve the less than 2 °C global target of the Paris Climate Agreement.

  8. 78 FR 78063 - Appendix 4 to Draft Qualitative Risk Assessment of Risk of Activity/Food Combinations for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ...ScienceResearch/UCM334110.pdf . 2. FDA, ``Appendix 4 to Draft Qualitative Risk Assessment of Risk of....regulations.gov and at http://www.fda.gov/downloads/Food/FoodScienceResearch/RiskSafetyAssessment/UCM377408... on a Farm,'' 2013. Available at: http://www.fda.gov/downloads/Food/FoodScienceResearch/RiskSafety...

  9. Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash.

    PubMed

    Rendek, Eva; Ducom, Gaëlle; Germain, Patrick

    2006-01-16

    During bottom ash weathering, carbonation under atmospheric conditions induces physico-chemical evolutions leading to the pacification of the material. Fresh bottom ash samples were subjected to an accelerated carbonation using pure CO2. The aim of this work was to quantify the volume of CO2 that could be sequestrated with a view to reduce greenhouse gas emissions and investigate the possibility of upgrading some specific properties of the material with accelerated carbonation. Carbonation was performed by putting 4mm-sieved samples in a CO2 chamber. The CO2 pressure and the humidity of the samples were varied to optimize the reaction parameters. Unsieved material was also tested. Calcite formation resulting from accelerated carbonation was investigated by thermogravimetry and differential scanning calorimetry (TG/DSC) and metal leaching tests were performed. The volume of sequestrated CO2 was on average 12.5L/kg dry matter (DM) for unsieved material and 24 L/kg DM for 4mm-sieved samples. An ash humidity of 15% appeared to give the best results. The reaction was drastically accelerated at high pressure but it did not increase the volume of sequestrated CO2. Accelerated carbonation, like the natural phenomenon, reduces the dangerous nature of the material. It decreases the pH from 11.8 to 8.2 and causes Pb, Cr and Cd leaching to decrease. This process could reduce incinerator CO2 emissions by 0.5-1%.

  10. A qualitative assessment of cross-cultural adaptation of intermediate measures for schizophrenia in multisite international studies.

    PubMed

    Gonzalez, Jodi M; Rubin, Maureen; Fredrick, Megan M; Velligan, Dawn I

    2013-04-30

    In this substudy of the Measurement and Treatment Research to Improve Cognition in Schizophrenia we examined qualitative feedback on the cross-cultural adaptability of four intermediate measures of functional outcome (Independent Living Scales, UCSD Performance-Based Skills Assessment, Test of Adaptive Behavior in Schizophrenia, and Cognitive Assessment Interview). Feedback was provided by experienced English-fluent clinical researchers at 31 sites in eight countries familiar with medication trials. Researchers provided feedback on test subscales and items which were rated as having adaptation challenges. They noted the specific concern and made suggestions for adaptation to their culture. We analyzed the qualitative data using a modified Grounded Theory approach guided by the International Testing Commission Guidelines model for test adaptation. For each measure except the Cognitive Assessment Interview (CAI), the majority of subscales were reported to require major adaptations in terms of content and concepts contained in the subscale. In particular, social, financial, transportation and health care systems varied widely across countries-systems which are often used to assess performance capacity in the U.S. We provide suggestions for how to address future international test development and adaptation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Acute splenic sequestration in a pregnant woman with homozygous sickle-cell anemia.

    PubMed

    Maia, Carolina Bastos; Nomura, Roseli Mieko Yamamoto; Igai, Ana Maria Kondo; Fonseca, Guilherme Hencklain; Gualandro, Sandra Menosi; Zugaib, Marcelo

    2013-01-01

    Homozygous (SS) sickle-cell anemia complicated by acute splenic sequestration in adults is a rare event, and it has never been reported during pregnancy. A 25-year-old woman with homozygous (SS) sickle-cell disease was hospitalized at 32 weeks' of gestation presenting weakness, abdominal pain, fever and hemoglobin of 2.4 g/dl. Abnormal fetal heart rate was detected by means of cardiotocography, and 5 units of packed red cells were transfused. Cesarean was performed at 37 weeks. Both mother and baby were discharged in a good general condition. This case report demonstrates the importance of immediate blood transfusion for treatment of fetal distress in cases of splenic sequestration during pregnancy. This treatment is essential for avoiding maternal and fetal complications.

  12. Soil carbon sequestration by three perennial legume pastures is greater in deeper soil layers than in the surface soil

    NASA Astrophysics Data System (ADS)

    Guan, X.-K.; Turner, N. C.; Song, L.; Gu, Y.-J.; Wang, T.-C.; Li, F.-M.

    2015-07-01

    Soil organic carbon (SOC) plays a vital role as both a sink for and source of atmospheric carbon. Revegetation of degraded arable land in China is expected to increase soil carbon sequestration, but the role of perennial legumes on soil carbon stocks in semiarid areas has not been quantified. In this study, we assessed the effect of alfalfa (Medicago sativa L.) and two locally adapted forage legumes, bush clover (Lespedeza davurica S.) and milk vetch (Astragalus adsurgens Pall.) on the SOC concentration and SOC stock accumulated annually over a 2 m soil profile, and to estimate the long-term potential for SOC sequestration in the soil under the three forage legumes. The results showed that the concentration of SOC of the bare soil decreased slightly over the 7 years, while 7 years of legume growth substantially increased the concentration of SOC over the 0-2.0 m soil depth measured. Over the 7 year growth period the SOC stocks increased by 24.1, 19.9 and 14.6 Mg C ha-1 under the alfalfa, bush clover and milk vetch stands, respectively, and decreased by 4.2 Mg C ha-1 under bare soil. The sequestration of SOC in the 1-2 m depth of soil accounted for 79, 68 and 74 % of SOC sequestered through the upper 2 m of soil under alfalfa, bush clover and milk vetch, respectively. Conversion of arable land to perennial legume pasture resulted in a significant increase in SOC, particularly at soil depths below 1 m.

  13. A kinetic rate model for crystalline basalt dissolution at temperature and pressure conditions relevant for geologic CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Pollyea, R.; Rimstidt, J. D.

    2016-12-01

    Geologic carbon sequestration in terrestrial basalt reservoirs is predicated on permanent CO2 trapping through CO2-water-rock dissolution reactions followed by carbonate precipitation. Bench-scale experiments have shown these reaction paths to be rapid, occurring on a timescale 100 - 102 years. Moreover, recent results from the CarbFix basalt sequestration pilot project in Iceland demonstrate >95% CO2 isolation two years after a small-scale injection. In order to assess the viability of basalt sequestration worldwide (e.g., Deccan Traps, Columbia Plateau, etc.), flexible simulation tools are required that distill the dissolution reactions into a user-friendly format that is readily transmissible to existing reactive transport numerical simulators. In the present research, we combine experimental results extant in the literature for Icelandic basalt to develop kinetic rate models describing the pH-dependent dissolution of (1) basaltic glass and (2) an aggregate mineral assemblage for crystalline basalt comprising olivine, pyroxene, and plagioclase phases. In order to utilize these kinetic rate models with numerical simulation, a thermodynamic solubility model for each phase is developed for use with the reactive transport simulation code, TOUGHREACT. We use reactive transport simulation in a simple 1-D reactor to compare dissolution of the aggregate crystalline basalt phase with the traditional formulation comprising individual mineral phases for the crystalline basalt. Simulation results are in general agreement, illustrating the efficacy of this simplified approach for modeling basalt dissolution at temperature and pressure conditions typical of geologic CO2 reservoirs. Moreover, this approach may be of value to investigators seeking dissolution models for crystalline basalt in other mafic provinces.

  14. Dynamic Evolution of Cement Composition and Transport Properties under Conditions Relevant to Geological Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunet, Jean-Patrick Leopold; Li, Li; Karpyn, Zuleima T

    2013-08-01

    Assessing the possibility of CO{sub 2} leakage is one of the major challenges for geological carbon sequestration. Injected CO{sub 2} can react with wellbore cement, which can potentially change cement composition and transport properties. In this work, we develop a reactive transport model based on experimental observations to understand and predict the property evolution of cement in direct contact with CO{sub 2}-saturated brine under diffusion-controlled conditions. The model reproduced the observed zones of portlandite depletion and calcite formation. Cement alteration is initially fast and slows down at later times. This work also quantified the role of initial cement properties, inmore » particular the ratio of the initial portlandite content to porosity (defined here as φ), in determining the evolution of cement properties. Portlandite-rich cement with large φ values results in a localized “sharp” reactive diffusive front characterized by calcite precipitation, leading to significant porosity reduction, which eventually clogs the pore space and prevents further acid penetration. Severe degradation occurs at the cement–brine interface with large φ values. This alteration increases effective permeability by orders of magnitude for fluids that preferentially flow through the degraded zone. The significant porosity decrease in the calcite zone also leads to orders of magnitude decrease in effective permeability, where fluids flow through the low-permeability calcite zone. The developed reactive transport model provides a valuable tool to link cement–CO{sub 2} reactions with the evolution of porosity and permeability. It can be used to quantify and predict long-term wellbore cement behavior and can facilitate the risk assessment associated with geological CO{sub 2} sequestration.« less

  15. Sequestration of mitochondrial iron by silica particles initiates a biological effect.

    EPA Science Inventory

    Summary Inhalation of particulate matter has presented a challenge to human health for thousands of years. The underlying mechanism for biological effect following particle exposure is incompletely understood. We tested the postulate that particle sequestration of cell and mit...

  16. Development of Improved Caprock Integrity and Risk Assessment Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruno, Michael

    GeoMechanics Technologies has completed a geomechanical caprock integrity analysis and risk assessment study funded through the US Department of Energy. The project included: a detailed review of historical caprock integrity problems experienced in the natural gas storage industry; a theoretical description and documentation of caprock integrity issues; advanced coupled transport flow modelling and geomechanical simulation of three large-scale potential geologic sequestration sites to estimate geomechanical effects from CO₂ injection; development of a quantitative risk and decision analysis tool to assess caprock integrity risks; and, ultimately the development of recommendations and guidelines for caprock characterization and CO₂ injection operating practices. Historicalmore » data from gas storage operations and CO₂ sequestration projects suggest that leakage and containment incident risks are on the order of 10-1 to 10-2, which is higher risk than some previous studies have suggested for CO₂. Geomechanical analysis, as described herein, can be applied to quantify risks and to provide operating guidelines to reduce risks. The risk assessment tool developed for this project has been applied to five areas: The Wilmington Graben offshore Southern California, Kevin Dome in Montana, the Louden Field in Illinois, the Sleipner CO₂ sequestration operation in the North Sea, and the In Salah CO₂ sequestration operation in North Africa. Of these five, the Wilmington Graben area represents the highest relative risk while the Kevin Dome area represents the lowest relative risk.« less

  17. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed.

    PubMed

    Bhattarai, Mukesh Dev; Secchi, Silvia; Schoof, Justin

    2017-01-01

    Land-based carbon sequestration constitutes a major low cost and immediately viable option in climate change mitigation. Using downscaled data from eight atmosphere-ocean general circulation models for a simulation period between 2015 and 2099, we examine the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed and the impact of climate change on crop yields. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 192.1 MtCO 2 eq of soil organic carbon per hectare with a sequestration rate of 2.26 MtCO 2 eq ha -1 yr -1 . Our results also indicate that switchgrass can sequester the equivalent of 310.7 MtCO 2 eq of soil organic carbon per hectare with a sequestration rate of 3.65 MtCO 2 eq ha -1 yr -1 . Our findings suggest that, unlike for corn and soybean yields, climate change does not have a significant effect on switchgrass yields, possibly due to the carbon fertilization effect.

  18. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed

    NASA Astrophysics Data System (ADS)

    Bhattarai, Mukesh Dev; Secchi, Silvia; Schoof, Justin

    2017-01-01

    Land-based carbon sequestration constitutes a major low cost and immediately viable option in climate change mitigation. Using downscaled data from eight atmosphere-ocean general circulation models for a simulation period between 2015 and 2099, we examine the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed and the impact of climate change on crop yields. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 192.1 MtCO2 eq of soil organic carbon per hectare with a sequestration rate of 2.26 MtCO2 eq ha-1 yr-1. Our results also indicate that switchgrass can sequester the equivalent of 310.7 MtCO2 eq of soil organic carbon per hectare with a sequestration rate of 3.65 MtCO2 eq ha-1 yr-1. Our findings suggest that, unlike for corn and soybean yields, climate change does not have a significant effect on switchgrass yields, possibly due to the carbon fertilization effect.

  19. Disaggregating Qualitative Data from Asian American College Students in Campus Racial Climate Research and Assessment

    ERIC Educational Resources Information Center

    Museus, Samuel D.; Truong, Kimberly A.

    2009-01-01

    This article highlights the utility of disaggregating qualitative research and assessment data on Asian American college students. Given the complexity of and diversity within the Asian American population, scholars have begun to underscore the importance of disaggregating data in the empirical examination of Asian Americans, but most of those…

  20. Soil Carbon Sequestration and the Greenhouse Effect (2nd Edition)

    USDA-ARS?s Scientific Manuscript database

    This volume is a second edition of the book “Soil Carbon Sequestration and The Greenhouse Effect”. The first edition was published in 2001 as SSSA Special Publ. #57. The present edition is an update of the concepts, processes, properties, practices and the supporting data. All chapters are new co...

  1. Long-term effect of a single application of organic refuse on carbon sequestration and soil physical properties.

    PubMed

    Albaladejo, J; Lopez, J; Boix-Fayos, C; Barbera, G G; Martinez-Mena, M

    2008-01-01

    Restoration of degraded lands could be a way to reverse soil degradation and desertification in semiarid areas and mitigate greenhouse gases (GHG). Our objective was to evaluate the long-term effects of a single addition of organic refuse on soil physical properties and measure its carbon sequestration potential. In 1988, a set of five plots (87 m(2) each) was established in an open desert-like scrubland (2-4% cover) in Murcia, Spain, to which urban solid refuse (USR) was added in a single treatment at different rates. Soil properties were monitored over a 5-yr period. Sixteen years after the addition, three of the plots were monitored again (P0: control, P1: 13 kg m(-2), P2: 26 kg m(-2) of USR added) to assess the lasting effect of the organic addition on the soil organic carbon (SOC) pools and on the physical characteristics of the soil. The SOC content was higher in P2 (16.4 g kg(-1)) and in P1 (11.8 g kg(-1)) than in P0 (7.9 g kg(-1)). Likewise, aerial biomass increased from 0.18 kg m(-2) in P0 up to 0.27 kg m(-2) in P1 and 0.46 kg m(-2) in P2. This represents a total C sequestration of 9.5 Mg ha(-1) in P2 and 3.4 Mg ha(-1) in P1, most of the sequestered C remaining in the recalcitrant soil pool. Additionally, higher saturated hydraulic conductivity, aggregate stability, and available water content values and lower bulk density values were measured in the restored plots. Clearly, a single addition of organic refuse to the degraded soils to increase the potential for C sequestration was effective.

  2. A qualitative assessment of beliefs, attitudes, and behaviors related to diarrhea and water filtration in rural Kenya.

    PubMed

    De Ver Dye, Timothy; Apondi, Rose; Lugada, Eric; Kahn, James G; Sandiford-Day, Mary Ann; Dasbanerjee, Tania

    2011-08-01

    We qualitatively assessed beliefs, attitudes, and behaviors related to diarrhea and water filtration in rural Kenya. A public health campaign was conducted in rural western Kenya to give community members a comprehensive prevention package of goods and services, including a personal water filter or a household water filter (or both). Two months after the campaign, we conducted qualitative interviews with 34 campaign attendees to assess their beliefs, attitudes, and behaviors related to diarrhea and use of the filtration devices. Participants held generally correct perceptions of diarrhea causation. Participants provided positive reports of their experiences with using filters and of their success with obtaining clean water, reducing disease, and reducing consumption of resources otherwise needed to produce clean water. Several participants offered technical suggestions for device improvements, and most participants were still using the devices at the time of the assessment. Novel water filtration devices distributed as part of a comprehensive public health campaign rapidly proved acceptable to community members and were consistent with community practices and beliefs.

  3. Carbon accumulation and sequestration of lakes in China during the Holocene.

    PubMed

    Wang, Mei; Chen, Huai; Yu, Zicheng; Wu, Jianghua; Zhu, Qiu'an; Peng, Changhui; Wang, Yanfen; Qin, Boqiang

    2015-12-01

    Understanding the responses of lake systems to past climate change and human activity is critical for assessing and predicting the fate of lake carbon (C) in the future. In this study, we synthesized records of the sediment accumulation from 82 lakes and of C sequestration from 58 lakes with direct organic C measurements throughout China. We also identified the controlling factors of the long-term sediment and C accumulation dynamics in these lakes during the past 12 ka (1 ka = 1000 cal yr BP). Our results indicated an overall increasing trend of sediment and C accumulation since 12 ka, with an accumulation peak in the last couple of millennia for lakes in China, corresponding to terrestrial organic matter input due to land-use change. The Holocene lake sediment accumulation rate (SAR) and C accumulation rate (CAR) averaged (mean ± SE) 0.47 ± 0.05 mm yr(-1) and 7.7 ± 1.4 g C m(-2)  yr(-1) in China, respectively, comparable to the previous estimates for boreal and temperate regions. The SAR for lakes in the East Plain of subtropical China (1.05 ± 0.28 mm yr(-1) ) was higher than those in other regions (P < 0.05). However, CAR did not vary significantly among regions. Overall, the variability and history of climate and anthropogenic interference regulated the temporal and spatial dynamics of sediment and C sequestration for lakes in China. We estimated the total amount of C burial in lakes of China as 8.0 ± 1.0 Pg C. This first estimation of total C storage and dynamics in lakes of China confirms the importance of lakes in land C budget in monsoon-influenced regions. © 2015 John Wiley & Sons Ltd.

  4. Land-use changes and carbon sequestration through the twentieth century in a Mediterranean mountain ecosystem: implications for land management.

    PubMed

    Padilla, Francisco M; Vidal, Beatriz; Sánchez, Joaquín; Pugnaire, Francisco I

    2010-12-01

    Ecosystems in the western Mediterranean basin have undergone intense changes in land use throughout the centuries, resulting in areas with severe alterations. Today, most these areas have become sensitive to human activity, prone to profound changes in land-use configuration and ecosystem services. A consensus exists amongst stakeholders that ecosystem services must be preserved but managerial strategies that help to preserve them while ensuring sustainability are often inadequate. To provide a basis for measuring implications of land-use change on carbon sequestration services, changes in land use and associated carbon sequestration potential throughout the 20th century in a rural area at the foothills of the Sierra Nevada range (SE Spain) were explored. We found that forest systems replaced dryland farming and pastures from the middle of the century onwards as a result of agricultural abandonment and afforestation programs. The area has always acted as a carbon sink with sequestration rates ranging from 28,961 t CO(2) year(-1) in 1921 to 60,635 t CO(2) year(-1) in 1995, mirroring changes in land use. Conversion from pastures to woodland, for example, accounted for an increase in carbon sequestration above 30,000 t CO(2) year(-1) by the end of the century. However, intensive deforestation would imply a decrease of approximately 66% of the bulk CO(2) fixed. In our study area, woodland conservation is essential to maintain the ecosystem services that underlie carbon sequestration. Our essay could inspire policymakers to better achieve goals of increasing carbon sequestration rates and sustainability within protected areas. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Qualitative Assessment of Ultrasound Biomicroscopic Images Using Standard Photographs: The Liwan Eye Study

    PubMed Central

    Jiang, Yuzhen; Huang, Wenyong; Huang, Qunxiao; Zhang, Jian; Foster, Paul J.

    2010-01-01

    Objective. To classify anatomic features related to anterior chamber angles by a qualitative assessment system based on ultrasound biomicroscopy (UBM) images. Methods. Cases of primary angle-closure suspect (PACS), defined by pigmented trabecular meshwork that is not visible in two or more quadrants on static gonioscopy (cases) and systematically selected subjects (1 of every 10) who did not meet this criterion (controls) were enrolled during a population-based survey in Guangzhou, China. All subjects underwent UBM examination. A set of standard UBM images was used to qualitatively classify anatomic features related to the angle configuration, including iris thickness, iris convexity, iris angulation, ciliary body size, and ciliary process position. All analysis was conducted on right eye images. Results. Based on the qualitative grades, the difference in overall iris thickness between gonioscopically narrow eyes (n = 117) and control eyes (n = 57) was not statistically significant. The peripheral one third of the iris tended to be thicker in all quadrants of the PACS eyes, although the difference was statistically significant only in the superior quadrant (P = 0.008). No significant differences were found in the qualitative classifications of iris insertion, iris angulation, ciliary body size, and ciliary process position. The findings were similar when compared with the control group of eyes with wide angles in all quadrants. Conclusions. Basal iris thickness seems to be more relevant to narrow angle configuration than to overall iris thickness. Otherwise, the anterior rotation and size of the ciliary body, the iris insertion, and the overall iris thickness are comparable in narrow- and wide-angle eyes. PMID:19834039

  6. Pryce type I sequestration: no mosquito shooting.

    PubMed

    Barik, Ramachandra; Patnaik, Amar Narayan; Malempati, Amaresh Rao; Nemani, Lalita

    2015-06-01

    We report a case of a 40-year-old woman with congenital dual arterial supply to an otherwise normal left lower lobe, causing hyperperfusion lung injury. In addition to near normal pulmonary arterial supply, the lower lobe of the left lung received a systemic arterial supply from the descending thoracic aorta. The patient was successfully managed by surgical ligation of the systemic arterial supply without lobectomy. We discuss when to defer lobectomy in Pryce type I sequestration. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. Brush management effects on soil carbon sequestration in sagebrush-dominated rangelands

    USDA-ARS?s Scientific Manuscript database

    Scientific information regarding soil organic carbon (SOC) sequestration in western rangelands, especially those with a sagebrush (Artemisia spp.) component and in lower rainfall areas (<350 mm), remains a major knowledge gap in understanding the effects of land management. We sampled soils from two...

  8. Model-Based Assessment of the CO2 Sequestration Potential of Coastal Ocean Alkalinization

    NASA Astrophysics Data System (ADS)

    Feng, E. Y.; Koeve, W.; Keller, D. P.; Oschlies, A.

    2017-12-01

    The potential of coastal ocean alkalinization (COA), a carbon dioxide removal (CDR) climate engineering strategy that chemically increases ocean carbon uptake and storage, is investigated with an Earth system model of intermediate complexity. The CDR potential and possible environmental side effects are estimated for various COA deployment scenarios, assuming olivine as the alkalinity source in ice-free coastal waters (about 8.6% of the global ocean's surface area), with dissolution rates being a function of grain size, ambient seawater temperature, and pH. Our results indicate that for a large-enough olivine deployment of small-enough grain sizes (10 µm), atmospheric CO2 could be reduced by more than 800 GtC by the year 2100. However, COA with coarse olivine grains (1000 µm) has little CO2 sequestration potential on this time scale. Ambitious CDR with fine olivine grains would increase coastal aragonite saturation Ω to levels well beyond those that are currently observed. When imposing upper limits for aragonite saturation levels (Ωlim) in the grid boxes subject to COA (Ωlim = 3.4 and 9 chosen as examples), COA still has the potential to reduce atmospheric CO2 by 265 GtC (Ωlim = 3.4) to 790 GtC (Ωlim = 9) and increase ocean carbon storage by 290 Gt (Ωlim = 3.4) to 913 Gt (Ωlim = 9) by year 2100.

  9. Qualitative human body composition analysis assessed with bioelectrical impedance.

    PubMed

    Talluri, T

    1998-12-01

    Body composition is generally aiming at quantitative estimates of fat mass, inadequate to assess nutritional states that on the other hand are well defined by the intra/extra cellular masses proportion (ECM/BCM). Direct measures performed with phase sensitive bioelectrical impedance analyzers can be used to define the current distribution in normal and abnormal populations. Phase angle and reactance nomogram is directly reflecting the ECM/BCM pathways proportions and body impedance analysis (BIA) is also validated to estimate the individual content of body cell mass (BCM). A new body cell mass index (BCMI) obtained dividing the weight of BCM in kilograms by the body surface in square meters is confronted to the scatterplot distribution of phase angle and reactance values obtained from controls and patients, and proposed as a qualitative approach to identify abnormal ECM/BCM ratios and nutritional states.

  10. Development of a Rapid Assessment Method for Quantifying Carbon Sequestration on Reclaimed Coal Mine Sites

    NASA Astrophysics Data System (ADS)

    Maharaj, S.; Barton, C. D.; Karathanasis, A. D.

    2005-12-01

    Projected climate change resulting from elevated atmospheric carbon dioxide has given rise to various strategies designed to sequester carbon in various terrestrial ecosystems. Reclaimed coal mine soils present one such potential carbon sink where traditional reclamation objectives can complement carbon sequestration. However, quantifying new carbon (carbon that has been added to soil through recent biological processes) on reclaimed mine soils have proven to be difficult due to carbonates and coal particles present in the reclaimed coal mine spoils. Visible coal particles can be removed, but the microscopic coal dust particles remain. Additionally, with the advent of carbon trading on the stock market, rapid quantification of newly sequestered carbon has proven to be elusive. The focus of this project is to assess the potential of thermogravimetric analysis as a rapid, simple and direct method for differentiating and quantifying new carbon from old carbon (carbon of geologic origin) on reclaimed coal mine sites and provide a standard procedure for determining carbon sequestered in soil sinks. Thermogravimetry is a physico-chemical technique where the weight change is measured and recorded during the incremental heating of the soil sample over a temperature range of 25 to 1000 ° C. Grass litter and limestone were used as representative organic and inorganic carbon fractions, while coal was used to differentiate the old and new carbon within the organic fraction. Recoveries of mixtures at the 95 % confidence interval were found to be 94.49 ± 4.23 % (coal) , 93.67 ± 2.11 % (litter) , and 108.88 ± 2.88 % (limestone) respectively. Each of the above components appeared as distinct separate peaks on the thermograph, with litter appearing between 260 to 390 ° C, coal 425 to 480 ° C, and limestone 640 to 740 ° C. Overlapping peaks for the organic carbon represented by the grass litter may be indicative of cellulose and lignin fractions. Ongoing work in this area is

  11. The biodiversity cost of carbon sequestration in tropical savanna.

    PubMed

    Abreu, Rodolfo C R; Hoffmann, William A; Vasconcelos, Heraldo L; Pilon, Natashi A; Rossatto, Davi R; Durigan, Giselda

    2017-08-01

    Tropical savannas have been increasingly viewed as an opportunity for carbon sequestration through fire suppression and afforestation, but insufficient attention has been given to the consequences for biodiversity. To evaluate the biodiversity costs of increasing carbon sequestration, we quantified changes in ecosystem carbon stocks and the associated changes in communities of plants and ants resulting from fire suppression in savannas of the Brazilian Cerrado, a global biodiversity hotspot. Fire suppression resulted in increased carbon stocks of 1.2 Mg ha -1 year -1 since 1986 but was associated with acute species loss. In sites fully encroached by forest, plant species richness declined by 27%, and ant richness declined by 35%. Richness of savanna specialists, the species most at risk of local extinction due to forest encroachment, declined by 67% for plants and 86% for ants. This loss highlights the important role of fire in maintaining biodiversity in tropical savannas, a role that is not reflected in current policies of fire suppression throughout the Brazilian Cerrado. In tropical grasslands and savannas throughout the tropics, carbon mitigation programs that promote forest cover cannot be assumed to provide net benefits for conservation.

  12. The biodiversity cost of carbon sequestration in tropical savanna

    PubMed Central

    Abreu, Rodolfo C. R.; Hoffmann, William A.; Vasconcelos, Heraldo L.; Pilon, Natashi A.; Rossatto, Davi R.; Durigan, Giselda

    2017-01-01

    Tropical savannas have been increasingly viewed as an opportunity for carbon sequestration through fire suppression and afforestation, but insufficient attention has been given to the consequences for biodiversity. To evaluate the biodiversity costs of increasing carbon sequestration, we quantified changes in ecosystem carbon stocks and the associated changes in communities of plants and ants resulting from fire suppression in savannas of the Brazilian Cerrado, a global biodiversity hotspot. Fire suppression resulted in increased carbon stocks of 1.2 Mg ha−1 year−1 since 1986 but was associated with acute species loss. In sites fully encroached by forest, plant species richness declined by 27%, and ant richness declined by 35%. Richness of savanna specialists, the species most at risk of local extinction due to forest encroachment, declined by 67% for plants and 86% for ants. This loss highlights the important role of fire in maintaining biodiversity in tropical savannas, a role that is not reflected in current policies of fire suppression throughout the Brazilian Cerrado. In tropical grasslands and savannas throughout the tropics, carbon mitigation programs that promote forest cover cannot be assumed to provide net benefits for conservation. PMID:28875172

  13. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration.

    PubMed

    To, Jennifer Pc; Zhu, Jinming; Benfey, Philip N; Elich, Tedd

    2010-09-08

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.

  14. A Sustainability Initiative to Quantify Carbon Sequestration by Campus Trees

    ERIC Educational Resources Information Center

    Cox, Helen M.

    2012-01-01

    Over 3,900 trees on a university campus were inventoried by an instructor-led team of geography undergraduates in order to quantify the carbon sequestration associated with biomass growth. The setting of the project is described, together with its logistics, methodology, outcomes, and benefits. This hands-on project provided a team of students…

  15. Immobilized carbonic anhydrase on mesoporous cruciate flower-like metal organic framework for promoting CO2 sequestration.

    PubMed

    Ren, Sizhu; Feng, Yuxiao; Wen, Huan; Li, Conghai; Sun, Baoting; Cui, Jiandong; Jia, Shiru

    2018-05-25

    CO 2 capture by immobilized carbonic anhydrase (CA) has become an alternative and environmental friendly approach in CO 2 sequestration technology. However, the immobilized CA usually exhibits low CO 2 sequestration efficiency due to no gas adsorption function for the conventional CA supports. Metal organic frameworks (MOFs) are an excellent material for gas adsorption and enzyme immobilization. Herein, a combined immobilization system of CA and ZIF-8 with cruciate flower-like morphology for CO 2 adsorption was prepared for the first time by adsorbing CA onto ZIF-8. The immobilization efficiency was greater than 95%, and the maximum activity recovery reached 75%, indicating the highly efficient immobilization process. The resultant CA@ZIF-8 composites exhibited outstanding thermostability, the tolerance against denaturants, and reusability compared with free CA. Furthermore, we demonstrated for the first time that the shape of ZIF-8 could be controlled by adjusting concentrations of Zn 2+ ions at the high concentration of 2-methylimidazole (1 M). More importantly, we also demonstrated the applicability of the CA@ZIF-8 composites to the sequestration of CO 2 in carbonate minerals. The yields of the CaCO 3 obtained by using CA@ZIF-8 composites were 22-folds compared to free CA. Thus, this CA@ZIF-8 composite can be successfully used as a robust biocatalyst for sequestration of CO 2 . Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Sampling in Qualitative Research

    PubMed Central

    LUBORSKY, MARK R.; RUBINSTEIN, ROBERT L.

    2011-01-01

    In gerontology the most recognized and elaborate discourse about sampling is generally thought to be in quantitative research associated with survey research and medical research. But sampling has long been a central concern in the social and humanistic inquiry, albeit in a different guise suited to the different goals. There is a need for more explicit discussion of qualitative sampling issues. This article will outline the guiding principles and rationales, features, and practices of sampling in qualitative research. It then describes common questions about sampling in qualitative research. In conclusion it proposes the concept of qualitative clarity as a set of principles (analogous to statistical power) to guide assessments of qualitative sampling in a particular study or proposal. PMID:22058580

  17. IN-SITU STRATEGIES FOR THE SEQUESTRATION OF ZINC IN CONTAMINATED SEDIMENTS

    EPA Science Inventory

    The application of in-situ remediation strategies for the sequestration of zinc is being studied as an alternative to the traditional method of excavation and containment. The site of study is the Indian Head Naval Warfare Center (IHNWC) located adjacent to Mattawoman Creek in Ch...

  18. Aggregation of carbon dioxide sequestration storage assessment units

    USGS Publications Warehouse

    Blondes, Madalyn S.; Schuenemeyer, John H.; Olea, Ricardo A.; Drew, Lawrence J.

    2013-01-01

    The U.S. Geological Survey is currently conducting a national assessment of carbon dioxide (CO2) storage resources, mandated by the Energy Independence and Security Act of 2007. Pre-emission capture and storage of CO2 in subsurface saline formations is one potential method to reduce greenhouse gas emissions and the negative impact of global climate change. Like many large-scale resource assessments, the area under investigation is split into smaller, more manageable storage assessment units (SAUs), which must be aggregated with correctly propagated uncertainty to the basin, regional, and national scales. The aggregation methodology requires two types of data: marginal probability distributions of storage resource for each SAU, and a correlation matrix obtained by expert elicitation describing interdependencies between pairs of SAUs. Dependencies arise because geologic analogs, assessment methods, and assessors often overlap. The correlation matrix is used to induce rank correlation, using a Cholesky decomposition, among the empirical marginal distributions representing individually assessed SAUs. This manuscript presents a probabilistic aggregation method tailored to the correlations and dependencies inherent to a CO2 storage assessment. Aggregation results must be presented at the basin, regional, and national scales. A single stage approach, in which one large correlation matrix is defined and subsets are used for different scales, is compared to a multiple stage approach, in which new correlation matrices are created to aggregate intermediate results. Although the single-stage approach requires determination of significantly more correlation coefficients, it captures geologic dependencies among similar units in different basins and it is less sensitive to fluctuations in low correlation coefficients than the multiple stage approach. Thus, subsets of one single-stage correlation matrix are used to aggregate to basin, regional, and national scales.

  19. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 4. Operational Description and Qualitative Assessment.

    DOT National Transportation Integrated Search

    1974-02-01

    The volume presents a description of how the Satellite-Based Advanced Air Traffic Management System (SAATMS) operates and a qualitative assessment of the system. The operational description includes the services, functions, and tasks performed by the...

  20. Triolein embedded cellulose acetate membrane as a tool to evaluate sequestration of PAHs in lake sediment core at large temporal scale.

    PubMed

    Tao, Yuqiang; Xue, Bin; Yao, Shuchun; Deng, Jiancai; Gui, Zhifan

    2012-04-03

    Although numerous studies have addressed sequestration of hydrophobic organic compounds (HOCs) in laboratory, little attention has been paid to its evaluation method in field at large temporal scale. A biomimetic tool, triolein embedded cellulose acetate membrane (TECAM), was therefore tested to evaluate sequestration of six PAHs with various hydrophobicity in a well-dated sediment core sampled from Nanyi Lake, China. Properties of sediment organic matter (OM) varying with aging time dominated the sequestration of PAHs in the sediment core. TECAM-sediment accumulation factors (MSAFs) of the PAHs declined with aging time, and significantly correlated with the corresponding biota-sediment accumulation factors (BSAFs) for gastropod (Bellamya aeruginosa) simultaneously incubated in the same sediment slices. Sequestration rates of the PAHs in the sediment core evaluated by TECAM were much lower than those obtained from laboratory study. The relationship between relative availability for TECAM (MSAF(t)/MSAF(0)) and aging time followed the first order exponential decay model. MSAF(t)/MSAF(0) was well-related to the minor changes of the properties of OM varying with aging time. Compared with chemical extraction, sequestration reflected by TECAM was much closer to that by B. aeruginosa. In contrast to B. aeruginosa, TECAM could avoid metabolism and the influences from feeding and other behaviors of organisms, and it is much easier to deploy and ready in laboratory. Hence TECAM provides an effective and convenient way to study sequestration of PAHs and probably other HOCs in field at large temporal scale.

  1. Residual Isocyanates in Medical Devices and Products: A Qualitative and Quantitative Assessment

    PubMed Central

    Franklin, Gillian; Harari, Homero; Ahsan, Samavi; Bello, Dhimiter; Sterling, David A.; Nedrelow, Jonathan; Raynaud, Scott; Biswas, Swati; Liu, Youcheng

    2016-01-01

    We conducted a pilot qualitative and quantitative assessment of residual isocyanates and their potential initial exposures in neonates, as little is known about their contact effect. After a neonatal intensive care unit (NICU) stockroom inventory, polyurethane (PU) and PU foam (PUF) devices and products were qualitatively evaluated for residual isocyanates using Surface SWYPE™. Those containing isocyanates were quantitatively tested for methylene diphenyl diisocyanate (MDI) species, using UPLC-UV-MS/MS method. Ten of 37 products and devices tested, indicated both free and bound residual surface isocyanates; PU/PUF pieces contained aromatic isocyanates; one product contained aliphatic isocyanates. Overall, quantified mean MDI concentrations were low (4,4′-MDI = 0.52 to 140.1 pg/mg) and (2,4′-MDI = 0.01 to 4.48 pg/mg). The 4,4′-MDI species had the highest measured concentration (280 pg/mg). Commonly used medical devices/products contain low, but measurable concentrations of residual isocyanates. Quantifying other isocyanate species and neonatal skin exposure to isocyanates from these devices and products requires further investigation. PMID:27773989

  2. Soil organic carbon sequestration and tillage systems in Mediterranean environments

    NASA Astrophysics Data System (ADS)

    Francaviglia, Rosa; Di Bene, Claudia; Marchetti, Alessandro; Farina, Roberta

    2016-04-01

    Soil carbon sequestration is of special interest in Mediterranean areas, where rainfed cropping systems are prevalent, inputs of organic matter to soils are low and mostly rely on crop residues, while losses are high due to climatic and anthropic factors such as intensive and non-conservative farming practices. The adoption of reduced or no tillage systems, characterized by a lower soil disturbance in comparison with conventional tillage, has proved to be positively effective on soil organic carbon (SOC) conservation and other physical and chemical processes, parameters or functions, e.g. erosion, compaction, ion retention and exchange, buffering capacity, water retention and aggregate stability. Moreover, soil biological and biochemical processes are usually improved by the reduction of tillage intensity. The work deals with some results available in the scientific literature, and related to field experiment on arable crops performed in Italy, Greece, Morocco and Spain. Data were organized in a dataset containing the main environmental parameters (altitude, temperature, rainfall), soil tillage system information (conventional, minimum and no-tillage), soil parameters (bulk density, pH, particle size distribution and texture), crop type, rotation, management and length of the experiment in years, initial SOCi and final SOCf stocks. Sampling sites are located between 33° 00' and 43° 32' latitude N, 2-860 m a.s.l., with mean annual temperature and rainfall in the range 10.9-19.6° C and 355-900 mm. SOC data, expressed in t C ha-1, have been evaluated both in terms of Carbon Sequestration Rate, given by [(SOCf-SOCi)/length in years], and as percentage change in comparison with the initial value [(SOCf-SOCi)/SOCi*100]. Data variability due to the different environmental, soil and crop management conditions that influence SOC sequestration and losses will be examined.

  3. Soil Carbon Sequestration and Land-Use Change: Processes and Potential

    DOE Data Explorer

    Post, W. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kwon, K. C. [Tuskeegee University, Tuskeegee, AL (United States)

    2005-01-01

    When agricultural land is no longer used for cultivation and allowed to revert to natural vegetation or replanted to perennial vegetation, soil organic carbon can accumulate. This accumulation process essentially reverses some of the effects responsible for soil organic carbon losses from when the land was converted from perennial vegetation. We discuss the essential elements of what is known about soil organic matter dynamics that may result in enhanced soil carbon sequestration with changes in land-use and soil management. We review literature that reports changes in soil organic carbon after changes in land-use that favour carbon accumulation. This data summary provides a guide to approximate rates of SOC sequestration that are possible with management, and indicates the relative importance of some factors that influence the rates of organic carbon sequestration in soil. There is a large variation in the length of time for and the rate at which carbon may accumulate in soil, related to the productivity of the recovering vegetation, physical and biological conditions in the soil, and the past history of soil organic carbon inputs and physical disturbance. Maximum rates of C accumulation during the early aggrading stage of perennial vegetation growth, while substantial, are usually much less than 100g C m–2 y–1. Average rates of accumulation are similar for forest or grassland establishment: 33.8 g C m–2 y–1 and 33.2 g C m–2 y–1, respectively. These observed rates of soil organic C accumulation, when combined with the small amount of land area involved, are insufficient to account for a significant fraction of the missing C in the global carbon cycle as accumulating in the soils of formerly agricultural land.

  4. [Effects of straw returning combined with medium and microelements application on soil organic carbon sequestration in cropland.

    PubMed

    Jiang, Zhen Hui; Shi, Jiang Lan; Jia, Zhou; Ding, Ting Ting; Tian, Xiao Hong

    2016-04-22

    A 52-day incubation experiment was conducted to investigate the effects of maize straw decomposition with combined medium element (S) and microelements (Fe and Zn) application on arable soil organic carbon sequestration. During the straw decomposition, the soil microbial biomass carbon (MBC) content and CO 2 -C mineralization rate increased with the addition of S, Fe and Zn, respectively. Also, the cumulative CO 2 -C efflux after 52-day laboratory incubation significantly increased in the treatments with S, or Fe, or Zn addition, while there was no significant reduction of soil organic carbon content in the treatments. In addition, Fe or Zn application increased the inert C pools and their proportion, and apparent balance of soil organic carbon, indicating a promoting effect of Fe or Zn addition on soil organic carbon sequestration. In contrast, S addition decreased the proportion of inert C pools and apparent balance of soil organic carbon, indicating an adverse effect of S addition on soil organic carbon sequestration. The results suggested that when nitrogen and phosphorus fertilizers were applied, inclusion of S, or Fe, or Zn in straw incorporation could promote soil organic carbon mineralization process, while organic carbon sequestration was favored by Fe or Zn addition, but not by S addition.

  5. The Effect of Emissions Trading And Carbon Sequestration on The Cost Of CO2 Emissions Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahasenan, Natesan; Scott, Michael J.; Smith, Steven J.

    2002-08-05

    The deployment of carbon capture and sequestration (CC&S) technologies is greatly affected by the marginal cost of controlling carbon emissions (also the value of carbon, when emissions permits are traded). Emissions limits that are more stringent in the near term imply higher near-term carbon values and therefore encourage the local development and deployment of CC&S technologies. In addition, trade in emissions obligations lowers the cost of meeting any regional or global emissions limit and so affects the rate of penetration of CC&S technologies. We examine the effects of the availability of sequestration opportunities and emissions trading (either within select regionsmore » or globally) on the cost of emissions mitigation and compliance with different emissions reduction targets for the IPCC SRES scenarios. For each base scenario and emissions target, we examine the issues outlined above and present quantitative estimates for the impacts of trade and the availability of sequestration opportunities in meeting emissions limitation obligations.« less

  6. HIV internalization into oral and genital epithelial cells by endocytosis and macropinocytosis leads to viral sequestration in the vesicles

    PubMed Central

    Yasen, Aizezi; Herrera, Rossana; Rosbe, Kristina; Lien, Kathy; Tugizov, Sharof M.

    2018-01-01

    Recently, we showed that HIV-1 is sequestered, i.e., trapped, in the intracellular vesicles of oral and genital epithelial cells. Here, we investigated the mechanisms of HIV-1 sequestration in vesicles of polarized tonsil, foreskin and cervical epithelial cells. HIV-1 internalization into epithelial cells is initiated by multiple entry pathways, including clathrin-, caveolin/lipid raft-associated endocytosis and macropinocytosis. Inhibition of HIV-1 attachment to galactosylceramide and heparan sulfate proteoglycans, and virus endocytosis and macropinocytosis reduced HIV-1 sequestration by 30–40%. T-cell immunoglobulin and mucin domain 1 (TIM-1) were expressed on the apical surface of polarized tonsil, cervical and foreskin epithelial cells. However, TIM-1-associated HIV-1 macropinocytosis and sequestration were detected mostly in tonsil epithelial cells. Sequestered HIV-1 was resistant to trypsin, pronase, and soluble CD4, indicating that the sequestered virus was intracellular. Inhibition of HIV-1 intraepithelial sequestration and elimination of vesicles containing virus in the mucosal epithelium may help in the prevention of HIV-1 mucosal transmission. PMID:29277006

  7. Comparing pasture c sequestration estimates from eddy covariance and soil cores

    USDA-ARS?s Scientific Manuscript database

    Temperate pastures in the northeast USA are highly productive and could act as significant sinks for soil organic carbon (SOC). However, soils under mature pastures are often considered to have reached equilibrium such that no further sequestration of SOC is expected. This study quantified changes i...

  8. Effect of sulfide on As(III) and As(V) sequestration by ferrihydrite.

    PubMed

    Zhao, Zhixi; Wang, Shaofeng; Jia, Yongfeng

    2017-10-01

    The sulfide-induced change in arsenic speciation is often coupled to iron geochemical processes, including redox reaction, adsorption/desorption and precipitation/dissolution. Knowledge about how sulfide influenced the coupled geochemistry of iron and arsenic was not explored well up to now. In this work, retention and mobilization of As(III) and As(V) on ferrihydrite in sulfide-rich environment was studied. The initial oxidation states of arsenic and the contact order of sulfide notably influenced arsenic sequestration on ferrihydrite. For As(III) systems, pre-sulfidation of As(III) decreased arsenic sequestration mostly. The arsenic adsorption capacity decreased about 50% in comparison with the system without sulfide addition. For As(V) systems, pre-sulfidation of ferrihydrite decreased 30% sequestration of arsenic on ferrihydrite. Reduction of ferrihydrite by sulfide in As(V) system was higher than that in As(III) system. Geochemical modeling calculations identified formation of thioarsenite in the pre-sulfidation of As(III) system. Formation of arsenic thioanions enhanced As solubility in the pre-sulfidation of As(III) system. The high concentration of sulfide and Fe(II) in pre-sulfidation of ferrihydrite system contributed to saturation of FeS. This supplied new solid phase to immobilize soluble arsenic in aqueous phase. X-ray absorption near edge spectroscopy (XANES) of sulfur K-edge, arsenic K-edge and iron L-edge analysis gave the consistent evidence for the sulfidation reaction of arsenic and ferrihydrite under specific geochemical settings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The key to commercial-scale geological CO2 sequestration: Displaced fluid management

    USGS Publications Warehouse

    Surdam, R.C.; Jiao, Z.; Stauffer, P.; Miller, T.

    2011-01-01

    The Wyoming State Geological Survey has completed a thorough inventory and prioritization of all Wyoming stratigraphic units and geologic sites capable of sequestering commercial quantities of CO2 (5-15 Mt CO 2/year). This multi-year study identified the Paleozoic Tensleep/Weber Sandstone and Madison Limestone (and stratigraphic equivalent units) as the leading clastic and carbonate reservoir candidates for commercial-scale geological CO2 sequestration in Wyoming. This conclusion was based on unit thickness, overlying low permeability lithofacies, reservoir storage and continuity properties, regional distribution patterns, formation fluid chemistry characteristics, and preliminary fluid-flow modeling. This study also identified the Rock Springs Uplift in southwestern Wyoming as the most promising geological CO2 sequestration site in Wyoming and probably in any Rocky Mountain basin. The results of the WSGS CO2 geological sequestration inventory led the agency and colleagues at the UW School of Energy Resources Carbon Management Institute (CMI) to collect available geologic, petrophysical, geochemical, and geophysical data on the Rock Springs Uplift, and to build a regional 3-D geologic framework model of the Uplift. From the results of these tasks and using the FutureGen protocol, the WSGS showed that on the Rock Springs Uplift, the Weber Sandstone has sufficient pore space to sequester 18 billion tons (Gt) of CO2, and the Madison Limestone has sufficient pore space to sequester 8 Gt of CO2. ?? 2011 Published by Elsevier Ltd.

  10. Heart Failure in a Preterm Infant. Case Report and Echocardiographic Clues for the Diagnostic Approach to Pulmonary Sequestration.

    PubMed

    Rodriguez-Gonzalez, Moises; Segado-Arenas, Antonio; Matamala-Morillo, Miguel A

    2016-08-01

    Pulmonary sequestration is an unusual cause of heart failure in infants. We report a preterm newborn with signs of congestive heart failure supposed secondary to a ductus arteriosus that was finally diagnosed as a coexistent extralobar pulmonary sequestration. In this case, Doppler echocardiography was essential for diagnosis, revealing an abnormal systemic arterial supply to the sequestered lung and abnormal venous drainage. © 2016, Wiley Periodicals, Inc.

  11. Evaluating the Contribution of Soil Carbon to Global Climate Change Mitigation in an Integrated Assessment

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Izaurralde, R. C.; Clarke, L. E.

    2006-12-01

    Assessing the contribution of terrestrial carbon sequestration to national and international climate change mitigation requires integration across scientific and disciplinary boundaries. In a study for the US Climate Change Technology Program, site based measurements and geographic data were used to develop a three- pool, first-order kinetic model of global agricultural soil carbon (C) stock changes over 14 continental scale regions. This model was then used together with land use scenarios from the MiniCAM integrated assessment model in a global analysis of climate change mitigation options. MiniCAM evaluated mitigation strategies within a set of policy environments aimed at achieving atmospheric CO2 stabilization by 2100 under a suite of technology and development scenarios. Adoption of terrestrial sequestration practices is based on competition for land and economic markets for carbon. In the reference case with no climate policy, conversion of agricultural land from conventional cultivation to no tillage over the next century in the United States results in C sequestration of 7.6 to 59.8 Tg C yr-1, which doubles to 19.0 to 143.4 Tg C yr-1 under the most aggressive climate policy. Globally, with no carbon policy, agricultural C sequestration rates range from 75.2 to 18.2 Tg C yr-1 over the century, with the highest rates occurring in the first fifty years. Under the most aggressive global climate change policy, sequestration in agricultural soils reaches up to 190 Tg C yr-1 in the first 15 years. The contribution of agricultural soil C sequestration is a small fraction of the total global carbon offsets necessary to reach the stabilization targets (9 to 20 Gt C yr-1) by the end of the century. This integrated assessment provides decision makers with science-based estimates of the potential magnitude of terrestrial C sequestration relative to other greenhouse gas mitigation strategies in all sectors of the global economy. It also provides insight into the

  12. Development Of An Agroforestry Sequestration Project In KhammamDistrict Of India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudha, P.; Ramprasad, V.; Nagendra, M.D.V.

    2007-06-01

    Large potential for agroforestry as a mitigation option hasgiven rise to scientific and policy questions. This paper addressesmethodological issues in estimating carbon sequestration potential,baseline determination, additionality and leakage in Khammam district,Andhra Pradesh, southern part of India. Technical potential forafforestation was determined considering the various landuse options. Forestimating the technical potential, culturable wastelands, fallow andmarginal croplands were considered for Eucalyptus clonal plantations.Field studies for aboveground and below ground biomass, woody litter andsoil organic carbon for baseline and project scenario were conducted toestimate the carbon sequestration potential. The baseline carbon stockwas estimated to be 45.33 tC/ha. The additional carbon sequestrationpotential under themore » project scenario for 30 years is estimated to be12.82 tC/ha/year inclusive of harvest regimes and carbon emissions due tobiomass burning and fertilizer application. The project scenario thoughhas a higher benefit cost ratio compared to baseline scenario, initialinvestment cost is high. Investment barrier exists for adoptingagroforestry in thedistrict.« less

  13. Geophysical delineation of Mg-rich ultramafic rocks for mineral carbon sequestration

    USGS Publications Warehouse

    McCafferty, Anne E.; Van Gosen, Bradley S.; Krevor, Sam C.; Graves, Chris R.

    2009-01-01

    This presentation covers three general topics: (1) description of a new geologic compilation of the United States that shows the location of magnesium-rich ultramafic rocks in the conterminous United States; (2) conceptual illustration of the potential ways that ultramafic rocks could be used to sequester carbon dioxide; and (3) description of ways to use geophysical data to refine and extend the geologic mapping of ultramafic rocks and to better characterize their mineralogy.The geophysical focus of this research is twofold. First, we illustrate how airborne magnetic data can be used to map the shallow subsurface geometry of ultramafic rocks for the purpose of estimating the volume of rock material available for mineral CO2 sequestration. Secondly, we explore, on a regional to outcrop scale, how magnetic mineralogy, as expressed in magnetic anomalies, may vary with magnesium minerals, which are the primary minerals of interest for CO2 sequestration

  14. Fertilization Increases Below-Ground Carbon Sequestration of Loblolly Pine Plantations

    Treesearch

    K.H. Johnsen; J.R. Butnor; C. Maier; R. Oren; R. Pangle; L. Samuelson; J. Seiler; S.E. McKeand; H.L. Allen

    2001-01-01

    The extent of fertilization of southern pine forests is increasing rapidly; industrial fertilization increased from 16,200 ha per year in 1988, to 344,250 ha in 1998. Fertilization increases stand productivity and can increase carbon (C) sequestration by: 1) increasing above-ground standing C; 2) increasing C stored in forest products; and 3) increasing below-ground...

  15. [Variation of forest vegetation carbon storage and carbon sequestration rate in Liaoning Province, Northeast China].

    PubMed

    Zhen, Wei; Huang, Mei; Zhai, Yin-Li; Chen, Ke; Gong, Ya-Zhen

    2014-05-01

    The forest vegetation carbon stock and carbon sequestration rate in Liaoning Province, Northeast China, were predicted by using Canadian carbon balance model (CBM-CFS3) combining with the forest resource data. The future spatio-temporal distribution and trends of vegetation carbon storage, carbon density and carbon sequestration rate were projected, based on the two scenarios, i. e. with or without afforestation. The result suggested that the total forest vegetation carbon storage and carbon density in Liaoning Province in 2005 were 133.94 Tg and 25.08 t x hm(-2), respectively. The vegetation carbon storage in Quercus was the biggest, while in Robinia pseudoacacia was the least. Both Larix olgensis and broad-leaved forests had higher vegetation carbon densities than others, and the vegetation carbon densities of Pinus tabuliformis, Quercus and Robinia pseudoacacia were close to each other. The spatial distribution of forest vegetation carbon density in Liaoning Province showed a decrease trend from east to west. In the eastern forest area, the future increase of vegetation carbon density would be smaller than those in the northern forest area, because most of the forests in the former part were matured or over matured, while most of the forests in the later part were young. Under the scenario of no afforestation, the future increment of total forest vegetation carbon stock in Liaoning Province would increase gradually, and the total carbon sequestration rate would decrease, while they would both increase significantly under the afforestation scenario. Therefore, afforestation plays an important role in increasing vegetation carbon storage, carbon density and carbon sequestration rate.

  16. RECONNAISSANCE ASSESSMENT OF CO2 SEQUESTRATION POTENTIAL IN THE TRIASSIC AGE RIFT BASIN TREND OF SOUTH CAROLINA, GEORGIA, AND NORTHERN FLORIDA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blount, G.; Millings, M.

    2011-08-01

    A reconnaissance assessment of the carbon dioxide (CO{sub 2}) sequestration potential within the Triassic age rift trend sediments of South Carolina, Georgia and the northern Florida Rift trend was performed for the Office of Fossil Energy, National Energy Technology Laboratory (NETL). This rift trend also extends into eastern Alabama, and has been termed the South Georgia Rift by previous authors, but is termed the South Carolina, Georgia, northern Florida, and eastern Alabama Rift (SGFAR) trend in this report to better describe the extent of the trend. The objectives of the study were to: (1) integrate all pertinent geologic information (literaturemore » reviews, drilling logs, seismic data, etc.) to create an understanding of the structural aspects of the basin trend (basin trend location and configuration, and the thickness of the sedimentary rock fill), (2) estimate the rough CO{sub 2} storage capacity (using conservative inputs), and (3) assess the general viability of the basins as sites of large-scale CO{sub 2} sequestration (determine if additional studies are appropriate). The CO{sub 2} estimates for the trend include South Carolina, Georgia, and northern Florida only. The study determined that the basins within the SGFAR trend have sufficient sedimentary fill to have a large potential storage capacity for CO{sub 2}. The deeper basins appear to have sedimentary fill of over 15,000 feet. Much of this fill is likely to be alluvial and fluvial sedimentary rock with higher porosity and permeability. This report estimates an order of magnitude potential capacity of approximately 137 billion metric tons for supercritical CO{sub 2}. The pore space within the basins represent hundreds of years of potential storage for supercritical CO{sub 2} and CO{sub 2} stored in aqueous form. There are many sources of CO{sub 2} within the region that could use the trend for geologic storage. Thirty one coal fired power plants are located within 100 miles of the deepest

  17. In vitro effects of an extracorporeal membrane oxygenation circuit on the sequestration of ϵ-aminocaproic acid.

    PubMed

    Wagner, Deborah; Caraballo, Miguel; Waldvogel, John; Peterson, Yuki; Sun, Duxin

    2017-04-01

    To assess the in vitro effects of drug sequestration in extracorporeal membrane oxygenation (ECMO) on ϵ-aminocaproic acid (EACA) concentrations. This in vitro study will determine changes in EACA concentration over time in ECMO circuits. A pediatric dose of 2,500 mg was administered to whole expired blood in the simulated pediatric ECMO circuit. Blood samples were collected at 0, 30, 60, 360 and 1440-minute intervals after initial administration equilibration from three different sites of the circuit: pre-oxygenator (PRE), post-oxygenator (POST) and PVC tubing (PVC) to determine the predominant site of drug loss. The circuit was maintained for two consecutive days with a re-dose at 24 hours to establish a comparison between unsaturated (New) and saturated (Old) oxygenator membranes. Comparisons between sample sites, sample times and New versus Old membranes were statistically analyzed by a linear mixed-effects model with significance defined as a p-value <0.05. There were no significant differences in EACA concentration with respect to sample site, with PRE and POST samples demonstrating respective mean differences of 0.30 mg/ml and 0.34 mg/ml as compared to PVC, resulting in non-significant p-values of 0.373 [95% CI (-0.37, 0.98)] and 0.324 [95% CI (-0.34, 1.01)], respectively. The comparison of New vs. Old ECMO circuits resulted in non-significant changes from baseline, with a mean difference of 0.50 mg/ml, 95% CI (-0.65, 1.65), p=0.315. The findings of this study did not show any significant changes in drug concentration that can be attributed to sequestration within the ECMO circuit. Mean concentrations between ECMO circuit sample sites did not differ significantly. Comparison between New and Old circuits also did not differ significantly in the change from baseline concentration over time. Sequestration within ECMO circuits appears not to be a considerable factor for EACA administration.

  18. Sequestration of organic nitrogen in a paddy soil chronosequence as assessed by amino sugars molecular markers

    NASA Astrophysics Data System (ADS)

    Roth, Philipp; Lehndorff, E.; Cao, Z.; Amelung, W.

    2010-05-01

    Available nitrogen is a limiting factor in paddy rice systems due to ammonia volatilization, denitrification and stabilization in organic complexes. Soil organic nitrogen (SON) might therefore constitute a critical component of the nitrogen cycle in rice systems. The objective of this study was to elucidate the role of microorganisms for the sequestration of paddy N in organic forms. For this purpose we analyzed amino sugars as markers for the residues of bacteria and fungi in a chronosequence of soils that were used for paddy rice production for a period of 0 to 2000 years in the Hangzhou bay area in Southeast China. Within the soil profile, amino sugar concentrations were generally highest in the puddled Ap horizon and decreased with increasing depth along with organic carbon concentrations regardless of the time of rice cultivation. Nevertheless, a sharp increase of total amino sugar concentration from 0.1 g kg-1 to 0.3 g kg-1 was observed in the Ah horizon when comparing tidal wetland to salt marsh that had been impoldered 30 years ago, indicating an increasing importance of microbial residues in SON stabilization following the conversion of the semiaquatic marsh to a terrestrial system. With increased time of paddy rice cropping, amino sugar concentrations continued to increase up to a maximum of 2.1 g kg-1 after 300 years of paddy cultivation but declined again to 1 g kg-1 in soils with 700-2000 years history of cultivation despite increasing organic matter accumulation. Changes in the composition of the amino sugars were also most pronounced at initial stages of paddy rice management. The proportions of glucosamine (abundant in fungal chitin) decreased during the first 50 years of cultivation relative to mainly galactosamine (abundant in bacterial gums) and muramic acid (abundant in bacterial peptidoglycan), that remained at constantly low levels. At later stages of paddy rice cultivation, the ratios of glucosamine to galactosamine and to muramic acid re

  19. A Qualitative Toolkit for Institutional Research

    ERIC Educational Resources Information Center

    George Mwangi, Chrystal A.; Bettencourt, Genia M.

    2017-01-01

    This chapter provides tools, resources, and examples for engaging qualitative inquiry as a part of institutional research and assessment. It supports the development of individual ability and organizational intelligence in qualitative inquiry.

  20. A Qualitative Assessment of Beliefs, Attitudes, and Behaviors Related to Diarrhea and Water Filtration in Rural Kenya

    PubMed Central

    Apondi, Rose; Lugada, Eric; Kahn, James G.; Sandiford-Day, Mary Ann; DasBanerjee, Tania

    2011-01-01

    Objectives. We qualitatively assessed beliefs, attitudes, and behaviors related to diarrhea and water filtration in rural Kenya. Methods. A public health campaign was conducted in rural western Kenya to give community members a comprehensive prevention package of goods and services, including a personal water filter or a household water filter (or both). Two months after the campaign, we conducted qualitative interviews with 34 campaign attendees to assess their beliefs, attitudes, and behaviors related to diarrhea and use of the filtration devices. Results. Participants held generally correct perceptions of diarrhea causation. Participants provided positive reports of their experiences with using filters and of their success with obtaining clean water, reducing disease, and reducing consumption of resources otherwise needed to produce clean water. Several participants offered technical suggestions for device improvements, and most participants were still using the devices at the time of the assessment. Conclusions. Novel water filtration devices distributed as part of a comprehensive public health campaign rapidly proved acceptable to community members and were consistent with community practices and beliefs. PMID:21680914

  1. The Deep Carbon Cycle and CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Filipovitch, N. B.; Mao, W. L.; Chou, I.; Mu, K.

    2009-12-01

    Increased understanding of the Earth’s carbon cycle may provide insight for future carbon storage. Long term geologic sequestration of CO2 occurs in the earth via exothermic reactions between CO2 and silicate minerals to form carbonate minerals. It has been shown that while there is a large enough supply of ultra mafic igneous rock to sequester the CO2 [1], the kinetics of this natural process are too slow to effectively manage our CO2 output. Most studies have focused on studying reaction kinetics at relatively low temperatures and pressures [2,3], and have found that the reaction kinetics are either too slow or (in the case of serpentine) necessitate an uneconomical heat pretreatment [3,4]. Our experiments expand the pressures and temperatures (up to 500 bars and exceeding 200 °C) at which the CO2 + silicate reaction is studied using fused silica capillary cells and Raman and XRD analysis. By increasing our understanding of the kinetics of this process and providing a valuable input for reactive flow and transport models, these results may guide approaches for practical CO2 sequestration in carbonate minerals as a way to manage atmospheric CO2 levels. High pressure and temperature results on carbonates have implications for understanding the deep carbon cycle. Most of the previous high pressure studies on carbonates have concentrated on magnesite (MgCO3), calcite (CaCO3), or dolomite ((Ca,Mg)CO3) [5,6]. While the Mg and Ca carbonates are the most abundant, iron-rich siderite (FeCO3) may be a significant player at greater depths within the earth. We performed XRD and Raman spectroscopy experiments on siderite to lower mantle pressures (up to 40 GPa) and observed a possible phase change around 13 GPa. References 1. Lackner, Klaus S., Wendt, Christopher H., Butt, Darryl P., Joyce, Edward L., Sharp, David H., 1995, Carbon dioxide disposal in carbonate minerals, Energy, Vol.20, No. 11, pp. 1153-1170 2. Bearat, Hamdallah, McKelvy, Michael J., Chizmeshya, Andrew V

  2. Carbon sequestration and Jerusalem artichoke biomass under nitrogen applications in coastal saline zone in the northern region of Jiangsu, China.

    PubMed

    Niu, Li; Manxia, Chen; Xiumei, Gao; Xiaohua, Long; Hongbo, Shao; Zhaopu, Liu; Zed, Rengel

    2016-10-15

    Agriculture is an important source of greenhouse gases, but can also be a significant sink. Nitrogen fertilization is effective in increasing agricultural production and carbon storage. We explored the effects of different rates of nitrogen fertilization on biomass, carbon density, and carbon sequestration in fields under the cultivation of Jerusalem artichoke as well as in soil in a coastal saline zone for two years. Five nitrogen fertilization rates were tested (in guream(-2)): 4 (N1), 8 (N2), 12 (N3), 16 (N4), and 0 (control, CK). The biomass of different organs of Jerusalem artichoke during the growth cycle was significantly higher in N2 than the other treatments. Under different nitrogen treatments, carbon density in organs of Jerusalem artichoke ranged from 336 to 419gCkg(-1). Carbon sequestration in Jerusalem artichoke was higher in treatments with nitrogen fertilization compared to the CK treatment. The highest carbon sequestration was found in the N2 treatment. Soil carbon content was higher in the 0-10cm than 10-20cm layer, with nitrogen fertilization increasing carbon content in both soil layers. The highest soil carbon sequestration was measured in the N2 treatment. Carbon sequestration in both soil and Jerusalem artichoke residue was increased by nitrogen fertilization depending on the rates in the coastal saline zone studied. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China.

    PubMed

    Wiesmeier, Martin; Munro, Sam; Barthold, Frauke; Steffens, Markus; Schad, Peter; Kögel-Knabner, Ingrid

    2015-10-01

    Organic carbon (OC) sequestration in degraded semi-arid environments by improved soil management is assumed to contribute substantially to climate change mitigation. However, information about the soil organic carbon (SOC) sequestration potential in steppe soils and their current saturation status remains unknown. In this study, we estimated the OC storage capacity of semi-arid grassland soils on the basis of remote, natural steppe fragments in northern China. Based on the maximum OC saturation of silt and clay particles <20 μm, OC sequestration potentials of degraded steppe soils (grazing land, arable land, eroded areas) were estimated. The analysis of natural grassland soils revealed a strong linear regression between the proportion of the fine fraction and its OC content, confirming the importance of silt and clay particles for OC stabilization in steppe soils. This relationship was similar to derived regressions in temperate and tropical soils but on a lower level, probably due to a lower C input and different clay mineralogy. In relation to the estimated OC storage capacity, degraded steppe soils showed a high OC saturation of 78-85% despite massive SOC losses due to unsustainable land use. As a result, the potential of degraded grassland soils to sequester additional OC was generally low. This can be related to a relatively high contribution of labile SOC, which is preferentially lost in the course of soil degradation. Moreover, wind erosion leads to substantial loss of silt and clay particles and consequently results in a direct loss of the ability to stabilize additional OC. Our findings indicate that the SOC loss in semi-arid environments induced by intensive land use is largely irreversible. Observed SOC increases after improved land management mainly result in an accumulation of labile SOC prone to land use/climate changes and therefore cannot be regarded as contribution to long-term OC sequestration. © 2015 John Wiley & Sons Ltd.

  4. Soil quality and carbon sequestration in a reclaimed coal mine spoil of Jharia coalfield, India

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sangeeta; Masto, Reginald; Ram, Lal

    2016-04-01

    Revegetation of coal mine spoil helps in carbon storage and the success of remediation depend on the selection of appropriate tree species. A study was conducted at the coalmine overburden dumps of Jharia Coalfield, Dhanbad, India to evaluate the impact of revegetation on the overall soil quality and carbon sequestration. Morphological parameters (tree height, diameter at breast height, tree biomass, wood specific gravity) of the dominant tree species (Acacia auriculiformis, Cassia siamea, Dalbergia sissoo and Leucaena leucocephala) growing on the mine spoil was recorded. Mine spoil samples were collected under the canopy cover of different tree species and analyzed for soil physical, chemical, and biological parameters. In general reclaimed sites had better soil quality than the reference site. For instance, D. sissoo and C. siamea improved soil pH (+28.5%, +27.9%), EC (+15.65%, +19%), cation exchange capacity (+58.7%, +52.3%), organic carbon (+67.5%, +79.5%), N (+97.2%, +75.7%), P (+98.2%, +76.9%), K (+31.8%, +37.4%), microbial biomass carbon (+143%, +164%) and dehydrogenase activity (+228%, +262%) as compared to the unreclaimed reference coal mine site. The concentration of polycyclic aromatic hydrocarbons (PAHs) decreased significantly in the reclaimed site than the reference spoil, C. siamea was found to be more promising for PAH degradation. The overall impact of tree species on the quality of reclaimed mine spoil cannot be assessed by individual soil parameters, as most of the parameters are interlinked and difficult to interpret. However, combination of soil properties into an integrated soil quality index provides a more meaningful assessment of reclamation potential of tree species. Principal component analysis (PCA) was used to identify key mine soil quality indicators to develop a soil quality index (SQI). Coarse fraction, pH, EC, soil organic carbon, P, Ca, S, and dehydrogenase activity were the most critical properties controlling growth of tree

  5. Method for carbon dioxide sequestration

    DOEpatents

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas; Heath, Jason E.

    2015-09-22

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC--CO.sub.2) into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation. This process allows for the immobilization of the injected SC--CO.sub.2 for very long times. The dispersal of scCO2 into small ganglia is accomplished by alternating injection of SC--CO.sub.2 and water. The injection rate is required to be high enough to ensure the SC--CO.sub.2 at the advancing front to be broken into pieces and small enough for immobilization through viscous instability.

  6. Nanoparticle Treated Stainless Steel Filters for Metal Vapor Sequestration

    NASA Astrophysics Data System (ADS)

    Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul; Coopersmith, Kaitlin J.; Summer, Ansley J.; Lewis, Rebecca

    2017-02-01

    The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown onto various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. The effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.

  7. pH-Responsive Micelle Sequestrant Polymers Inhibit Fat Absorption.

    PubMed

    Qian, Jian; Sullivan, Bradley P; Berkland, Cory

    2015-08-10

    Current antiobesity therapeutics are associated with side effects and/or poor long-term patient compliance, necessitating development of more efficacious and safer alternatives. Herein, we designed and engineered a new class of orally acting pharmaceutical agents, or micelle sequestrant polymers (MSPs), that could respond to the pH change in the gastrointestinal (GI) tract and potentially sequester lipid micelles; inhibiting lipid absorption through a pH-triggered flocculation process. These MSPs, derived from poly(2-(diisopropylamino)ethyl methacrylate) and poly(2-(dibutylamino)ethyl methacrylate), were soluble in acidic media, but they transitioned to become insoluble around pH 7.2 and 6.1, respectively. MSPs showed substantial bile acid and triglyceride sequestration capacity with fast pH response tested in vitro. In vivo study showed that orally dosed MSPs significantly enhanced fecal elimination of triglycerides and bile acids. Several MSPs increased fecal elimination of triglycerides by 9-10 times compared with that of the control. In contrast, fecal concentration of bile acids, but not triglycerides, was increased by cholestyramine or Welchol. Importantly, fecal elimination of bile acids and triglycerides was unaltered by addition of control dietary fibers. MSPs may serve as a novel approach to weight loss that inhibits excess caloric intake by preventing absorption of excess dietary triglycerides.

  8. Nanoparticle treated stainless steel filters for metal vapor sequestration

    DOE PAGES

    Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul; ...

    2016-12-07

    The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown ontomore » various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. Furthermore, the effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.« less

  9. Pollution mitigation and carbon sequestration by an urban forest.

    PubMed

    Brack, C L

    2002-01-01

    At the beginning of the 1900s, the Canberra plain was largely treeless. Graziers had carried out extensive clearing of the original trees since the 1820s leaving only scattered remnants and some plantings near homesteads. With the selection of Canberra as the site for the new capital of Australia, extensive tree plantings began in 1911. These trees have delivered a number of benefits, including aesthetic values and the amelioration of climatic extremes. Recently, however, it was considered that the benefits might extend to pollution mitigation and the sequestration of carbon. This paper outlines a case study of the value of the Canberra urban forest with particular reference to pollution mitigation. This study uses a tree inventory, modelling and decision support system developed to collect and use data about trees for tree asset management. The decision support system (DISMUT) was developed to assist in the management of about 400,000 trees planted in Canberra. The size of trees during the 5-year Kyoto Commitment Period was estimated using DISMUT and multiplied by estimates of value per square meter of canopy derived from available literature. The planted trees are estimated to have a combined energy reduction, pollution mitigation and carbon sequestration value of US$20-67 million during the period 2008-2012.

  10. Nanoparticle treated stainless steel filters for metal vapor sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul

    The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown ontomore » various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. Furthermore, the effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.« less

  11. Analysis of Geologic CO2 Sequestration at Farnham Dome, Utah, USA

    NASA Astrophysics Data System (ADS)

    Lee, S.; Han, W.; Morgan, C.; Lu, C.; Esser, R.; Thorne, D.; McPherson, B.

    2008-12-01

    The Farnham Dome in east-central Utah is an elongated, Laramide-age anticline along the northern plunge of the San Rafael uplift and the western edge of the Uinta Basin. We are helping design a proposed field demonstration of commercial-scale geologic CO2 sequestration, including injection of 2.9 million tons of CO2 over four years time. The Farnham Dome pilot site stratigraphy includes a stacked system of saline formations alternating with low-permeability units. Facilitating the potential sequestration demonstration is a natural CO2 reservoir at depth, the Jurassic-age Navajo formation, which contains an estimated 50 million tons of natural CO2. The sequestration test design includes two deep formations suitable for supercritical CO2 injection, the Jurassic-age Wingate sandstone and the Permian-age White Rim sandstone. We developed a site-specific geologic model based on available geophysical well logs and formation tops data for use with numerical simulation. The current geologic model is limited to an area of approximately 6.5x4.5 km2 and 2.5 km thick, which contains 12 stacked formations starting with the White Rim formation at the bottom (>5000 feet bgl) and extending to the Jurassic Curtis formation at the top of the model grid. With the detail of the geologic model, we are able to estimate the Farnham Dome CO2 capacity at approximately 36.5 million tones within a 5 mile radius of a single injection well. Numerical simulation of multiphase, non- isothermal CO2 injection and flow suggest that the injected CO2 plume will not intersect nearby fault zones mapped in previous geologic studies. Our simulations also examine and compare competing roles of different trapping mechanisms, including hydrostratigraphic, residual gas, solubility, and mineralization trapping. Previous studies of soil gas flux at the surface of the fault zones yield no significant evidence of CO2 leakage from the natural reservoir at Farnham Dome, and thus we use these simulations to

  12. L-phenylalanyl-L-glutamate-stimulated, chloride-dependent glutamate binding represents glutamate sequestration mediated by an exchange system.

    PubMed

    Kessler, M; Petersen, G; Vu, H M; Baudry, M; Lynch, G

    1987-04-01

    Stimulation of glutamate binding by the dipeptide L-phenylalanyl-L-glutamate (Phe-Glu) was inhibited by the peptidase inhibitor bestatin, suggesting that the stimulation was caused by glutamate liberated from the dipeptide and not by the dipeptide itself. It further suggests that this form of glutamate binding should be reinterpreted as glutamate sequestration and that stimulation of binding both by dipeptides and after preincubation with high concentrations of glutamate is likely to be due to counterflow accumulation. Several other criteria indicate that most of glutamate binding stimulated by chloride represents glutamate sequestration: Binding is reduced when the osmolarity of the incubation medium is increased, when membranes incubated with [3H]glutamate are lysed before filtration, and when membranes are made permeable by transient exposure to saponin. Moreover, dissociation of bound glutamate after a 100-fold dilution of the incubation medium is accelerated about 50 times by the addition of glutamate to the dilution medium. This result would be anomalous if glutamate were bound to a receptor site; it suggests instead that glutamate is transported in and out of membrane vesicles by a transport system that preferentially mediates exchange between internal and external glutamate. Glutamate binding contains a component of glutamate sequestration even when measured in the absence of chloride. Sequestration is adequately abolished only after treating membranes with detergents; even extensive lysis, sonication, and freezing/thawing may be insufficient.

  13. Low historical nitrogen deposition effect on carbon sequestration in the boreal zone

    NASA Astrophysics Data System (ADS)

    Fleischer, K.; Wârlind, D.; van der Molen, M. K.; Rebel, K. T.; Arneth, A.; Erisman, J. W.; Wassen, M. J.; Smith, B.; Gough, C. M.; Margolis, H. A.; Cescatti, A.; Montagnani, L.; Arain, A.; Dolman, A. J.

    2015-12-01

    Nitrogen (N) cycle dynamics and N deposition play an important role in determining the terrestrial biosphere's carbon (C) balance. We assess global and biome-specific N deposition effects on C sequestration rates with the dynamic global vegetation model LPJ-GUESS. Modeled CN interactions are evaluated by comparing predictions of the C and CN version of the model with direct observations of C fluxes from 68 forest FLUXNET sites. N limitation on C uptake reduced overestimation of gross primary productivity for boreal evergreen needleleaf forests from 56% to 18%, presenting the greatest improvement among forest types. Relative N deposition effects on C sequestration (dC/dN) in boreal, temperate, and tropical sites ranged from 17 to 26 kg C kg N-1 when modeled at site scale and were reduced to 12-22 kg C kg N-1 at global scale. We find that 19% of the recent (1990-2007) and 24% of the historical global C sink (1900-2006) was driven by N deposition effects. While boreal forests exhibit highest dC/dN, their N deposition-induced C sink was relatively low and is suspected to stay low in the future as no major changes in N deposition rates are expected in the boreal zone. N deposition induced a greater C sink in temperate and tropical forests, while predicted C fluxes and N-induced C sink response in tropical forests were associated with greatest uncertainties. Future work should be directed at improving the ability of LPJ-GUESS and other process-based ecosystem models to reproduce C cycle dynamics in the tropics, facilitated by more benchmarking data sets. Furthermore, efforts should aim to improve understanding and model representations of N availability (e.g., N fixation and organic N uptake), N limitation, P cycle dynamics, and effects of anthropogenic land use and land cover changes.

  14. Soil carbon stocks and carbon sequestration rates in seminatural grassland in Aso region, Kumamoto, Southern Japan.

    PubMed

    Toma, Yo; Clifton-Brown, John; Sugiyama, Shinji; Nakaboh, Makoto; Hatano, Ryusuke; Fernández, Fabián G; Ryan Stewart, J; Nishiwaki, Aya; Yamada, Toshihiko

    2013-06-01

    Global soil carbon (C) stocks account for approximately three times that found in the atmosphere. In the Aso mountain region of Southern Japan, seminatural grasslands have been maintained by annual harvests and/or burning for more than 1000 years. Quantification of soil C stocks and C sequestration rates in Aso mountain ecosystem is needed to make well-informed, land-use decisions to maximize C sinks while minimizing C emissions. Soil cores were collected from six sites within 200 km(2) (767-937 m asl.) from the surface down to the k-Ah layer established 7300 years ago by a volcanic eruption. The biological sources of the C stored in the Aso mountain ecosystem were investigated by combining C content at a number of sampling depths with age (using (14) C dating) and δ(13) C isotopic fractionation. Quantification of plant phytoliths at several depths was used to make basic reconstructions of past vegetation and was linked with C-sequestration rates. The mean total C stock of all six sites was 232 Mg C ha(-1) (28-417 Mg C ha(-1) ), which equates to a soil C sequestration rate of 32 kg C ha(-1)  yr(-1) over 7300 years. Mean soil C sequestration rates over 34, 50 and 100 years were estimated by an equation regressing soil C sequestration rate against soil C accumulation interval, which was modeled to be 618, 483 and 332 kg C ha(-1)  yr(-1) , respectively. Such data allows for a deeper understanding in how much C could be sequestered in Miscanthus grasslands at different time scales. In Aso, tribe Andropogoneae (especially Miscanthus and Schizoachyrium genera) and tribe Paniceae contributed between 64% and 100% of soil C based on δ(13) C abundance. We conclude that the seminatural, C4 -dominated grassland system serves as an important C sink, and worthy of future conservation. © 2013 Blackwell Publishing Ltd.

  15. Research and Development of a DNDC Online Model for Farmland Carbon Sequestration and GHG Emissions Mitigation in China.

    PubMed

    Jiang, Zaidi; Yin, Shan; Zhang, Xianxian; Li, Changsheng; Shen, Guangrong; Zhou, Pei; Liu, Chunjiang

    2017-12-01

    Appropriate agricultural practices for carbon sequestration and emission mitigation have a significant influence on global climate change. However, various agricultural practices on farmland carbon sequestration usually have a major impact on greenhouse gas (GHG) emissions. It is very important to accurately quantify the effect of agricultural practices. This study developed a platform-the Denitrification Decomposition (DNDC) online model-for simulating and evaluating the agricultural carbon sequestration and emission mitigation based on the scientific process of the DNDC model, which is widely used in the simulation of soil carbon and nitrogen dynamics. After testing the adaptability of the platform on two sampling fields, it turned out that the simulated values matched the measured values well for crop yields and GHG emissions. We used the platform to estimate the effect of three carbon sequestration practices in a sampling field: nitrogen fertilization reduction, straw residue and midseason drainage. The results indicated the following: (1) moderate decrement of the nitrogen fertilization in the sampling field was able to decrease the N₂O emission while maintaining the paddy rice yield; (2) ground straw residue had almost no influence on paddy rice yield, but the CH₄ emission and the surface SOC concentration increased along with the quantity of the straw residue; (3) compared to continuous flooding, midseason drainage would not decrease the paddy rice yield and could lead to a drop in CH₄ emission. Thus, this study established the DNDC online model, which is able to serve as a reference and support for the study and evaluation of the effects of agricultural practices on agricultural carbon sequestration and GHG emissions mitigation in China.

  16. Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars.

    PubMed

    Santín, Cristina; Doerr, Stefan H; Merino, Agustin; Bucheli, Thomas D; Bryant, Rob; Ascough, Philippa; Gao, Xiaodong; Masiello, Caroline A

    2017-09-11

    Pyrogenic carbon (PyC), produced naturally (wildfire charcoal) and anthropogenically (biochar), is extensively studied due to its importance in several disciplines, including global climate dynamics, agronomy and paleosciences. Charcoal and biochar are commonly used as analogues for each other to infer respective carbon sequestration potentials, production conditions, and environmental roles and fates. The direct comparability of corresponding natural and anthropogenic PyC, however, has never been tested. Here we compared key physicochemical properties (elemental composition, δ 13 C and PAHs signatures, chemical recalcitrance, density and porosity) and carbon sequestration potentials of PyC materials formed from two identical feedstocks (pine forest floor and wood) under wildfire charring- and slow-pyrolysis conditions. Wildfire charcoals were formed under higher maximum temperatures and oxygen availabilities, but much shorter heating durations than slow-pyrolysis biochars, resulting in differing physicochemical properties. These differences are particularly relevant regarding their respective roles as carbon sinks, as even the wildfire charcoals formed at the highest temperatures had lower carbon sequestration potentials than most slow-pyrolysis biochars. Our results challenge the common notion that natural charcoal and biochar are well suited as proxies for each other, and suggest that biochar's environmental residence time may be underestimated when based on natural charcoal as a proxy, and vice versa.

  17. A Qualitative Analysis of Narrative Preclerkship Assessment Data to Evaluate Teamwork Skills.

    PubMed

    Dolan, Brigid M; O'Brien, Celia Laird; Cameron, Kenzie A; Green, Marianne M

    2018-04-16

    Construct: Students entering the health professions require competency in teamwork. Although many teamwork curricula and assessments exist, studies have not demonstrated robust longitudinal assessment of preclerkship students' teamwork skills and attitudes. Assessment portfolios may serve to fill this gap, but it is unknown how narrative comments within portfolios describe student teamwork behaviors. We performed a qualitative analysis of narrative data in 15 assessment portfolios. Student portfolios were randomly selected from 3 groups stratified by quantitative ratings of teamwork performance gathered from small-group and clinical preceptor assessment forms. Narrative data included peer and faculty feedback from these same forms. Data were coded for teamwork-related behaviors using a constant comparative approach combined with an identification of the valence of the coded statements as either "positive observation" or "suggestion for improvement." Eight codes related to teamwork emerged: attitude and demeanor, information facilitation, leadership, preparation and dependability, professionalism, team orientation, values team member contributions, and nonspecific teamwork comments. The frequency of codes and valence varied across the 3 performance groups, with students in the low-performing group receiving more suggestions for improvement across all teamwork codes. Narrative data from assessment portfolios included specific descriptions of teamwork behavior, with important contributions provided by both faculty and peers. A variety of teamwork domains were represented. Such feedback as collected in an assessment portfolio can be used for longitudinal assessment of preclerkship student teamwork skills and attitudes.

  18. Acute Splenic Sequestration Crisis in Adult Sickle Cell Disease: A Report of 16 Cases.

    PubMed

    Naymagon, Leonard; Pendurti, Gopichand; Billett, Henny H

    2015-01-01

    Acute splenic sequestration crisis (ASSC), characterized by rapidly progressive anemia and circulatory compromise in the setting of sudden splenic enlargement, is an uncommon entity among adult sickle cell patients. We reviewed cases of adult ASSC encountered at our institution to generate insight into the recognition, diagnosis, and treatment of the condition. Cases of adult ASSC during a 10-year period were identified retrospectively. Patient charts were reviewed for laboratory and imaging results; demographic data and clinical course were collected and reviewed. Sixteen cases of adult ASSC were identified. Most patients presented with pain crisis; only four of 16 patients presented with abdominal pain. The maximum decreases in hemoglobin (Hb) (42.0%) and platelets (62.1%) occurred at day 2.9, delaying identification and treatment. Hemodynamic instability played a large role in dictating risk stratification. Therapy consisted of transfusion (14/16) and splenectomy (5/16). No recurrences were noted in a mean follow-up time of 5.3 years but review of patients' charts demonstrated that at least one of the patients had two prior episodes. Adult ASSC may present with non specific findings and patients may not deteriorate until several days into a previously uneventful hospital course. Changes in platelet counts may be more reliable markers than changes in Hb level since red cell transfusions may interfere with assessments of the sequestration process. This case series of adult ASSC, the largest reported in the literature to date, highlights common clinical, laboratory, radiological, and pathological features of this uncommon entity and helps to guide recognition, diagnosis, and treatment.

  19. Assessment of acute myocarditis by cardiac magnetic resonance imaging: Comparison of qualitative and quantitative analysis methods.

    PubMed

    Imbriaco, Massimo; Nappi, Carmela; Puglia, Marta; De Giorgi, Marco; Dell'Aversana, Serena; Cuocolo, Renato; Ponsiglione, Andrea; De Giorgi, Igino; Polito, Maria Vincenza; Klain, Michele; Piscione, Federico; Pace, Leonardo; Cuocolo, Alberto

    2017-10-26

    To compare cardiac magnetic resonance (CMR) qualitative and quantitative analysis methods for the noninvasive assessment of myocardial inflammation in patients with suspected acute myocarditis (AM). A total of 61 patients with suspected AM underwent coronary angiography and CMR. Qualitative analysis was performed applying Lake-Louise Criteria (LLC), followed by quantitative analysis based on the evaluation of edema ratio (ER) and global relative enhancement (RE). Diagnostic performance was assessed for each method by measuring the area under the curves (AUC) of the receiver operating characteristic analyses. The final diagnosis of AM was based on symptoms and signs suggestive of cardiac disease, evidence of myocardial injury as defined by electrocardiogram changes, elevated troponin I, exclusion of coronary artery disease by coronary angiography, and clinical and echocardiographic follow-up at 3 months after admission to the chest pain unit. In all patients, coronary angiography did not show significant coronary artery stenosis. Troponin I levels and creatine kinase were higher in patients with AM compared to those without (both P < .001). There were no significant differences among LLC, T2-weighted short inversion time inversion recovery (STIR) sequences, early (EGE), and late (LGE) gadolinium-enhancement sequences for diagnosis of AM. The AUC for qualitative (T2-weighted STIR 0.92, EGE 0.87 and LGE 0.88) and quantitative (ER 0.89 and global RE 0.80) analyses were also similar. Qualitative and quantitative CMR analysis methods show similar diagnostic accuracy for the diagnosis of AM. These findings suggest that a simplified approach using a shortened CMR protocol including only T2-weighted STIR sequences might be useful to rule out AM in patients with acute coronary syndrome and normal coronary angiography.

  20. Geochemical Impacts to Groundwater from Geologic Carbon Sequestration: Controls on pH and Inorganic Carbon Concentrations from Reaction Path and Kinetic Modeling

    EPA Science Inventory

    Geologic carbon sequestration has the potential to cause long-term reductions in global emissions of carbon dioxide to the atmosphere. Safe and effective application of carbon sequestration technology requires an understanding of the potential risks to the quality of underground...

  1. Comparison of Carbon Sequestration Rates and Energy Balance of Turf in the Denver Urban Ecosystem and an Adjacent Native Grassland

    NASA Astrophysics Data System (ADS)

    Thienelt, T. S.; Anderson, D. E.; Powell, K. M.

    2011-12-01

    Urban ecosystems are currently characterized by rapid growth, are expected to continually expand and, thus, represent an important driver of land use change. A significant component of urban ecosystems is lawns, potentially the single largest irrigated "crop" in the U.S. Beginning in March of 2011 (ahead of the growing season), eddy covariance measurements of net carbon exchange and evapotranspiration along with energy balance fluxes were conducted for a well-watered, fertilized lawn (rye-bluegrass-mix) in metropolitan Denver and for a nearby tallgrass prairie (big bluestem, switchgrass, cheatgrass, blue grama). Due to the semi-arid climate conditions of the Denver region, differences in management (i.e., irrigation and fertilization) are expected to have a discernible impact on ecosystem productivity and thus on carbon sequestration rates, evapotranspiration, and the sensible and latent heat partitioning of the energy balance. By mid-July, preliminary data indicated that cumulative evapotranspiration was approximately 270 mm and 170 mm for urban and native grasslands, respectively, although cumulative carbon sequestration at that time was similar for both (approximately 40 mg/m2). However, the pattern of carbon exchange differed between the grasslands. Both sites showed daily net uptake of carbon starting in late May, but the urban lawn displayed greater diurnal variability as well as greater uptake rates in general, especially following fertilization in mid-June. In contrast, the trend of carbon uptake at the prairie site was occasionally reversed following strong convective precipitation events, resulting in a temporary net release of carbon. The continuing acquisition of data and investigation of these relations will help us assess the potential impact of urban growth on regional carbon sequestration.

  2. Qualitative risk assessment in a data-scarce environment: a model to assess the impact of control measures on spread of African Swine Fever.

    PubMed

    Wieland, Barbara; Dhollander, Sofie; Salman, Mo; Koenen, Frank

    2011-04-01

    In the absence of data, qualitative risk assessment frameworks have proved useful to assess risks associated with animal health diseases. As part of a scientific opinion for the European Commission (EC) on African Swine Fever (ASF), a working group of the European Food Safety Authority (EFSA) assessed the risk of ASF remaining endemic in Trans Caucasus Countries (TCC) and the Russian Federation (RF) and the risk of ASF becoming endemic in the EU if disease were introduced. The aim was to develop a tool to evaluate how current control or preventive measures mitigate the risk of spread and giving decision makers the means to review how strengthening of surveillance and control measures would mitigate the risk of disease spread. Based on a generic model outlining disease introduction, spread and endemicity in a region, the impact of risk mitigation measures on spread of disease was assessed for specific risk questions. The resulting hierarchical models consisted of key steps containing several sub-steps. For each step of the risk pathways risk estimates were determined by the expert group based on existing data or through expert opinion elicitation. Risk estimates were combined using two different combination matrices, one to combine estimates of independent steps and one to combine conditional probabilities. The qualitative risk assessment indicated a moderate risk that ASF will remain endemic in current affected areas in the TCC and RF and a high risk of spread to currently unaffected areas. If introduced into the EU, ASF is likely to be controlled effectively in the production sector with high or limited biosecurity. In the free range production sector, however, there is a moderate risk of ASF becoming endemic due to wild boar contact, non-compliance with animal movement bans, and difficult access to all individual pigs upon implementation of control measures. This study demonstrated the advantages of a systematic framework to assist an expert panel to carry out a

  3. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James A. Burger; J. Galbraith; T. Fox

    2005-06-08

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in VA, WV, KY, OH, and PA mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorialmore » in a random complete block design with three replications at each of three locations, Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we compiled and evaluated all soil properties measured on the study sites. Statistical analysis of the properties was conducted, and first year survival and growth of white pine, hybrid poplars, and native hardwoods was assessed. Hardwood species survived better at all sites than white pine or hybrid poplar. Hardwood survival across treatments was 80%, 85%, and 50% for sites in Virginia, West Virginia, and Ohio, respectively, while white pine survival was 27%, 41%, and 58%, and hybrid poplar survival was 37%, 41%, and 72% for the same sites, respectively. Hybrid poplar height and diameter growth were superior to those of the other species tested, with the height growth of this species reaching 126.6cm after one year in the most intensive treatment at the site in Virginia. To determine carbon in soils on

  4. Carbon Sequestration in Reforested Areas in China Since 1970

    NASA Astrophysics Data System (ADS)

    Chen, J.; Liu, J.; Wang, S.; Sun, R.; Shi, X.; Tian, Q.; Xue, J.; Pan, J.; Kang, E.; Zhu, Q.; Zhou, Y.; Yang, L.; Liu, G.; Chen, M.; Thomas, S.; Bryan, R.; Yin, Y.; MacLaren, V.; Zhou, S.; Feng, X.; Wang, C.; Pan, J.

    2004-05-01

    Since July 2002, a 3-year Canada-China joint project was funded by the Canadian International Development Agency and the Chinese Academy of Sciences to assess the current status of China's forests and the impacts of forestry activities on carbon sequestration. From 1973 to 2001, China's total forested area increased from 122 Mha to 159 Mha, owing to large-scale reforestations for the main purpose of soil erosion control. In this project, four local forest sites in Changbaishan, Heihe, Liping and Xingguo in various regions are chosen for intensive assessments of forest and soil stocks. Ground-based measurements of leaf area index (LAI), net primary productivity (NPP), soil texture, vegetation and soil carbon stocks are used to calibrate models. High-resolution remote sensing images from ASTER and ETM are used to map LAI and NPP of these sites and for upscaling to the whole China based on MODIS and VEGETATION images. Remote sensing techniques and carbon cycle models (BEPS, InTEC) developed in Canada are being adapted to China's ecosystems. Preliminary results suggest that new reforested areas since 1970 are now actively sequester carbon, making the overall forested area as a carbon sink in the last few decades. Efforts are being made to reduce uncertainties in the estimation through incorporating new nation-wide datasets of forest age, soil texture and organic matter, nitrogen deposition, etc. At Changbaishan, Liping and Heihe, integrated assessments are being conducted to investigate the impacts of reforestation (Grain-to-Green) programs on the social and economic status of farmers as well as the ecological environment and land use options to maximize carbon sequestraton.

  5. Sequestration of carbon dioxide and production of biomolecules using cyanobacteria.

    PubMed

    Upendar, Ganta; Singh, Sunita; Chakrabarty, Jitamanyu; Chandra Ghanta, Kartik; Dutta, Susmita; Dutta, Abhishek

    2018-07-15

    A cyanobacterial strain, Synechococcus sp. NIT18, has been applied to sequester CO 2 using sodium carbonate as inorganic carbon source due to its efficiency of CO 2 bioconversion and high biomass production. The biomass obtained is used for the extraction of biomolecules - protein, carbohydrate and lipid. The main objective of the study is to maximize the biomass and biomolecules production with CO 2 sequestration using cyanobacterial strain cultivated under different concentrations of CO 2 (5-20%), pH (7-11) and inoculum size (5-12.5%) within a statistical framework. Maximum sequestration of CO 2 and maximum productivities of protein, carbohydrate and lipid are 71.02%, 4.9 mg/L/day, 6.7 mg/L/day and 1.6 mg/L/day respectively, at initial CO 2 concentration: 10%, pH: 9 and inoculum size: 12.5%. Since flue gas contains 10-15% CO 2 and the present strain is able to sequester CO 2 in this range, the strain could be considered as a useful tool for CO 2 mitigation for greener world. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Structure-activity relationships of lipopolysaccharide sequestration in guanylhydrazone-bearing lipopolyamines.

    PubMed

    Wu, Wenyan; Sil, Diptesh; Szostak, Michal L; Malladi, Subbalakshmi S; Warshakoon, Hemamali J; Kimbrell, Matthew R; Cromer, Jens R; David, Sunil A

    2009-01-15

    The toxicity of gram-negative bacterial endotoxin (lipopolysaccharide, LPS) resides in its structurally highly conserved glycolipid component called lipid A. Our major goal has been to develop small-molecules that would sequester LPS by binding to the lipid A moiety, so that it could be useful for the prophylaxis or adjunctive therapy of gram-negative sepsis. We had previously identified in rapid-throughput screens several guanylhydrazones as potent LPS binders. We were desirous of examining if the presence of the guanylhydrazone (rather than an amine) functionality would afford greater LPS sequestration potency. In evaluating a congeneric set of guanylhydrazone analogues, we find that C(16) alkyl substitution is optimal in the N-alkylguanylhydrazone series; a homospermine analogue with the terminal amine N-alkylated with a C(16) chain with the other terminus of the molecule bearing an unsubstituted guanylhydrazone moiety is marginally more active, suggesting very slight, if any, steric effects. Neither C(16) analogue is significantly more active than the N-C(16)-alkyl or N-C(16)-acyl compounds that we had characterized earlier, indicating that basicity of the phosphate-recognizing cationic group, is not a determinant of LPS sequestration activity.

  7. Assessment of the psychosocial and mental health needs, dysfunction and coping mechanisms of violence affected populations in Bireuen Aceh. A qualitative study.

    PubMed

    Poudyal, Bhava; Bass, Judith; Subyantoro, Theodora; Jonathan, Abraham; Erni, Theresia; Bolton, Paul

    2009-01-01

    Qualitative research is important due to the shortage of literature in understanding cultural influences on psychosocial and mental health syndromes and their presentation, especially in developing countries. This qualitative study aims to investigate the psychosocial and mental health needs of populations in Aceh, Indonesia affected by over 30 years of conflict, their dysfunction, and their positive coping mechanisms. Results from this qualitative assessment indicate the presence of depression, anxiety and somatic symptoms. The data provide local terminology and ways in which the local population describes their own distress, which is an important addition to the understanding of the mental health consequences of this conflict. The data has been used to develop appropriate intervention strategies and adapt and validate assessment tools to measure psychological distress, dysfunction and coping mechanisms.

  8. Qualitative Assessment: Evaluating the Impacts of Climate ...

    EPA Pesticide Factsheets

    The South Fork Nooksack River (South Fork) is located in northwest Washington State and is home to nine species of Pacific salmon, including Nooksack early Chinook (aka, spring Chinook salmon), an iconic species for the Nooksack Indian Tribe. The quantity of salmon in the South Fork, especially spring Chinook salmon, has dramatically declined from historic levels, due primarily to habitat degradation from the legacy impacts of various land uses such as commercial forestry, agriculture, flood control, and transportation infrastructure. Segments of the South Fork and some of its tributaries exceed temperature criteria established for the protection of cold-water salmonid populations, and were listed on Washington State’s Clean Water Act (CWA) 303(d) list of impaired waterbodies. High water temperatures in the South Fork are detrimental to fish and other native species that depend on cool, clean, well-oxygenated water. Of the nine salmon species, three have been listed as threatened under the federal Endangered Species Act (ESA) and are of high priority to restoration efforts in the South Fork—spring Chinook salmon, summer steelhead trout, and bull trout. Growing evidence shows that climate change will exacerbate legacy impacts. This qualitative assessment is a comprehensive analysis of climate change impacts on freshwater habitat and Pacific salmon in the South Fork. It also evaluates the effectiveness of restoration tools that address Pacific salmon recovery.

  9. Gymnomyces xerophilus sp. nov. (sequestrate Russulaceae), an ectomycorrhizal associate of Quercus in California.

    Treesearch

    Matthew E. Smith; James M. Trappe; David M. Rizzo; Steven L. Miller

    2006-01-01

    Gymnomyces xerophilus sp. nov., a sequestrate species in the Russulaceae, is characterized and described morphologically as a new species from Quercus-dominated woodlands in California. ITS sequences recovered from healthy, ectomycorrhizal roots of Quercus douglasii and Q....

  10. Regional carbon sequestration and climate change: It’s all about water

    Treesearch

    Ge Sun; Peter Caldwell; Steve McNulty; Eric Ward; Jean-Christophe Domec; Asko Noormets

    2013-01-01

    Forests need a lot of water to produce the goods (e.g., timber) and services (e.g., carbon sequestration and climate moderation) that benefit humans. Forests grow naturally in water-rich regions where precipitation is abundant or where groundwater is available, such as riparian areas in arid regions. For example, loblolly pine (Pinus taeda L.)...

  11. Soil organic matter formation and sequestration across a forested floodplain chronosequence

    Treesearch

    John D. Wigginton; B. Graeme Lockaby; Carl C. Trettin

    2000-01-01

    Successional changes in soil organic matter formation and carbon sequestration across a forested floodplain chronosequence were studied at the Savannah river site, National Environmental Research Park, SC, US. Four floodplain sites were selected for study, three of which are in various stages of recovery from impact due to thermal effluent discharge. The fourth is a...

  12. Bacteremia Caused by Gordonia bronchialis in a Patient with Sequestrated Lung

    PubMed Central

    Sng, Li-Hwei; Koh, T. H.; Toney, S. R.; Floyd, M.; Butler, W. R.; Tan, B. H.

    2004-01-01

    Gordonia species have been recognized as pathogens in immunocompromised and immunocompetent patients. We report the first case of bacteremia due to Gordonia bronchialis in a diabetic patient with a sequestrated lung. Species identification was confirmed with mycolic acid analysis by high-performance liquid chromatography and sequencing of the 16S rRNA gene. PMID:15184495

  13. Ecological carbon sequestration via wood harvest and storage (WHS): Can it be a viable climate and energy strategy?

    NASA Astrophysics Data System (ADS)

    Zeng, N.; Zaitchik, B. F.; King, A. W.; Wullschleger, S. D.

    2016-12-01

    A carbon sequestration strategy is proposed in which forests are sustainably managed to optimal carbon productivity, and a fraction of the wood is selectively harvested and stored to prevent decomposition under anaerobic, dry or cold conditions. Because a large flux of CO2 is constantly assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. The live trees serve as a `carbon scrubber' or `carbon remover' that provides continuous sequestration (negative emissions). The stored wood is a semi-permanent carbon sink, but also serves as a `biomass/bioenergy reserve' that could be utilized in the future.Based on forest coarse wood production rate, land availability, bioconservation and other practical constraints, we estimate a carbon sequestration potential for wood harvest and storage (WHS) 1-3 GtC y-1. The implementation of such a scheme at our estimated lower value of 1 GtC y-1 would imply a doubling of the current world wood harvest rate. This can be achieved by harvesting wood at a modest harvesting intensity of 1.2 tC ha-1 y-1, over a forest area of 8 Mkm2 (800 Mha). To achieve the higher value of 3 GtC y-1, forests need to be managed this way on half of the world's forested land, or on a smaller area but with higher harvest intensity. However, the actual implementation may face challenges that vary regionally. We propose `carbon sequestration and biomass farms' in the tropical deforestation frontiers with mixed land use for carbon, energy, agriculture, as well as conservation. In another example, the forests damaged by insect infestation could be thinned to reduce fire and harvested for carbon sequestration.We estimate a cost of $10-50/tCO2 for harvest and storage around the landing site. The technique is low tech, distributed and reversible. We compare the potential of WHS with a number of other carbon sequestration methods. We will also show its impact on future land carbon sink

  14. Development of a Carbon Sequestration Visualization Tool using Google Earth Pro

    NASA Astrophysics Data System (ADS)

    Keating, G. N.; Greene, M. K.

    2008-12-01

    The Big Sky Carbon Sequestration Partnership seeks to prepare organizations throughout the western United States for a possible carbon-constrained economy. Through the development of CO2 capture and subsurface sequestration technology, the Partnership is working to enable the region to cleanly utilize its abundant fossil energy resources. The intent of the Los Alamos National Laboratory Big Sky Visualization tool is to allow geochemists, geologists, geophysicists, project managers, and other project members to view, identify, and query the data collected from CO2 injection tests using a single data source platform, a mission to which Google Earth Pro is uniquely and ideally suited . The visualization framework enables fusion of data from disparate sources and allows investigators to fully explore spatial and temporal trends in CO2 fate and transport within a reservoir. 3-D subsurface wells are projected above ground in Google Earth as the KML anchor points for the presentation of various surface subsurface data. This solution is the most integrative and cost-effective possible for the variety of users in the Big Sky community.

  15. A Holocene record of climate-driven shifts in coastal carbon sequestration

    USGS Publications Warehouse

    Mitra, Siddhartha; Zimmerman, A.R.; Hunsinger, G.B.; Willard, D.; Dunn, J.C.

    2009-01-01

    A sediment core collected in the mesohaline portion of Chesapeake Bay was found to contain periods of increased delivery of refractory black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs). The BC was most likely produced by biomass combustion during four centennialscale dry periods as indicated by the Palmer Drought Severity Index (PDSI), beginning in the late Medieval Warm Period of 1100 CE. In contrast, wetter periods were associated with increased non-BC organic matter influx into the bay, likely due to greater runoff and associated nutrient delivery. In addition, an overall increase in both BC and non-BC organic matter deposition during the past millennium may reflect a shift in climate regime. The finding that carbon sequestration in the coastal zone responds to climate fluctuations at both centennial and millennial scales through fire occurrence and nutrient delivery has implications for past and future climate predictions. Drought-induced fires may lead, on longer timescales, to greater carbon sequestration and, therefore, represent a negative climate feedback. Copyright 2009 by the American Geophysical Union.

  16. Genetic toxicology at the crossroads-from qualitative hazard evaluation to quantitative risk assessment.

    PubMed

    White, Paul A; Johnson, George E

    2016-05-01

    Applied genetic toxicology is undergoing a transition from qualitative hazard identification to quantitative dose-response analysis and risk assessment. To facilitate this change, the Health and Environmental Sciences Institute (HESI) Genetic Toxicology Technical Committee (GTTC) sponsored a workshop held in Lancaster, UK on July 10-11, 2014. The event included invited speakers from several institutions and the contents was divided into three themes-1: Point-of-departure Metrics for Quantitative Dose-Response Analysis in Genetic Toxicology; 2: Measurement and Estimation of Exposures for Better Extrapolation to Humans and 3: The Use of Quantitative Approaches in Genetic Toxicology for human health risk assessment (HHRA). A host of pertinent issues were discussed relating to the use of in vitro and in vivo dose-response data, the development of methods for in vitro to in vivo extrapolation and approaches to use in vivo dose-response data to determine human exposure limits for regulatory evaluations and decision-making. This Special Issue, which was inspired by the workshop, contains a series of papers that collectively address topics related to the aforementioned themes. The Issue includes contributions that collectively evaluate, describe and discuss in silico, in vitro, in vivo and statistical approaches that are facilitating the shift from qualitative hazard evaluation to quantitative risk assessment. The use and application of the benchmark dose approach was a central theme in many of the workshop presentations and discussions, and the Special Issue includes several contributions that outline novel applications for the analysis and interpretation of genetic toxicity data. Although the contents of the Special Issue constitutes an important step towards the adoption of quantitative methods for regulatory assessment of genetic toxicity, formal acceptance of quantitative methods for HHRA and regulatory decision-making will require consensus regarding the

  17. Assessment of policy impacts on carbon capture and sequestration and bioenergy for U.S.' coal and natural gas power plants

    NASA Astrophysics Data System (ADS)

    Spokas, K.; Patrizio, P.; Leduc, S.; Mesfun, S.; Kraxner, F.

    2017-12-01

    Reducing electricity-sector emissions relies heavily on countries' abilities to either transition away from carbon-intensive energy generation or to sequester its resultant emissions with carbon capture and storage (CCS) technologies. The use of biomass energy technologies in conjunction with carbon capture and sequestration (BECCS) presents the opportunity for net reductions in atmospheric carbon dioxide. In this study, we investigate the limitations of several common policy mechanisms to incentivize the deployment of BECCS using the techno-economic spatial optimization model BeWhere (www.iiasa.ac.at/bewhere). We consider a set of coal and natural gas power plants in the United States (U.S.) selected using a screening process that considers capacity, boiler age, and capacity factor for electricity-generation units from the EPA 2014 eGRID database. The set makes up 470 GW of generation, and produces 8,400 PJ and 2.07 GtCO2 annually. Co-firing up to 15% for coal power plants is considered, using woody-biomass residues sourced from certified and managed U.S. forests obtained from the G4M (www.iiasa.ac.at/g4m) and GeoWiki (www.geo-wiki.org) database. Geologic storage is considered with injectivity and geomechanical limitations to ensure safe storage. Costs are minimized under two policy mechanisms: a carbon tax and geologic carbon sequestration credits, such as the Q45 credits. Results show that the carbon tax scenario incentivizes co-firing at low to medium carbon taxes, but is replaced by CCS at higher tax values. Carbon taxes do not strongly incentivize BECCS, as negative emissions associated with sequestering carbon content are not accounted as revenue. On the other hand, carbon credit scenarios result in significant CCS deployment, but lack any incentive for co-firing.

  18. Evaluation of the Effect of the CO2 Ocean Sequestration on Marine Life in the Sea near Japan Using a Numerical Model

    NASA Astrophysics Data System (ADS)

    Nakamura, Tomoaki; Wada, Akira; Hasegawa, Kazuyuki; Ochiai, Minoru

    CO2 oceanic sequestration is one of the technologies for reducing the discharge of CO2 into the atmosphere, which is considered to cause the global warming, and consists in isolating industry-made CO2 gas within the depths of the ocean. This method is expected to enable industry-made CO2 to be separated from the atmosphere for a considerably long period of time. On the other hand, it is also feared that the CO2 injected in the ocean may lower pH of seawater surrounding the sequestration site, thus may adversely affect marine organisms. For evaluating the biological influences, we have studied to precisely predict the CO2 distribution around the CO2 injection site by a numerical simulation method. In previous studies, in which a 2 degree by 2 degree mesh was employed in the simulation, CO2 concentrations tended to be evenly dispersed within the grid, giving lower concentration values. Thus, the calculation accuracy within the area several hundred kilometers from the CO2 injection site was not satisfactory for the biological effect assessment. In the present study, we improved the accuracy of concentration distribution by changing the computational mesh resolution for a 0.2 by 0.2 degree. By the renewed method we could obtain detailed CO2 distribution in waters within several hundred kilometers of the injection site, and clarified that the Moving-ship procedure may have less effects of lowered pH on marine organisms than the fixed-point release procedure of CO2 sequestration.

  19. Understanding Geochemical Impacts of Carbon Dioxide Leakage from Carbon Capture and Sequestration

    EPA Science Inventory

    US EPA held a technical Geochemical Impact Workshop in Washington, DC on July 10 and 11, 2007 to discuss geological considerations and Area of Review (AoR) issues related to geologic sequestration (GS) of Carbon Dioxide (CO2). Seventy=one (71) representatives of the electric uti...

  20. Space-Time Controls on Carbon Sequestration Over Large-Scale Amazon Basin

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Cooper, Harry J.; Gu, Jiujing; Grose, Andrew; Norman, John; daRocha, Humberto R.; Starr, David O. (Technical Monitor)

    2002-01-01

    A major research focus of the LBA Ecology Program is an assessment of the carbon budget and the carbon sequestering capacity of the large scale forest-pasture system that dominates the Amazonia landscape, and its time-space heterogeneity manifest in carbon fluxes across the large scale Amazon basin ecosystem. Quantification of these processes requires a combination of in situ measurements, remotely sensed measurements from space, and a realistically forced hydrometeorological model coupled to a carbon assimilation model, capable of simulating details within the surface energy and water budgets along with the principle modes of photosynthesis and respiration. Here we describe the results of an investigation concerning the space-time controls of carbon sources and sinks distributed over the large scale Amazon basin. The results are derived from a carbon-water-energy budget retrieval system for the large scale Amazon basin, which uses a coupled carbon assimilation-hydrometeorological model as an integrating system, forced by both in situ meteorological measurements and remotely sensed radiation fluxes and precipitation retrieval retrieved from a combination of GOES, SSM/I, TOMS, and TRMM satellite measurements. Brief discussion concerning validation of (a) retrieved surface radiation fluxes and precipitation based on 30-min averaged surface measurements taken at Ji-Parana in Rondonia and Manaus in Amazonas, and (b) modeled carbon fluxes based on tower CO2 flux measurements taken at Reserva Jaru, Manaus and Fazenda Nossa Senhora. The space-time controls on carbon sequestration are partitioned into sets of factors classified by: (1) above canopy meteorology, (2) incoming surface radiation, (3) precipitation interception, and (4) indigenous stomatal processes varied over the different land covers of pristine rainforest, partially, and fully logged rainforests, and pasture lands. These are the principle meteorological, thermodynamical, hydrological, and biophysical

  1. Melanosomal sequestration of cytotoxic drugs contributes to the intractability of malignant melanomas

    PubMed Central

    Chen, Kevin G.; Valencia, Julio C.; Lai, Barry; Zhang, Guofeng; Paterson, Jill K.; Rouzaud, François; Berens, Werner; Wincovitch, Stephen M.; Garfield, Susan H.; Leapman, Richard D.; Hearing, Vincent J.; Gottesman, Michael M.

    2006-01-01

    Multidrug resistance mechanisms underlying the intractability of malignant melanomas remain largely unknown. In this study, we demonstrate that the development of multidrug resistance in melanomas involves subcellular sequestration of intracellular cytotoxic drugs such as cis-diaminedichloroplatinum II (cisplatin; CDDP). CDDP is initially sequestered in subcellular organelles such as melanosomes, which significantly reduces its nuclear localization when compared with nonmelanoma/KB-3-1 epidermoid carcinoma cells. The melanosomal accumulation of CDDP remarkably modulates melanogenesis through a pronounced increase in tyrosinase activity. The altered melanogenesis manifested an ≈8-fold increase in both intracellular pigmentation and extracellular transport of melanosomes containing CDDP. Thus, our experiments provide evidence that melanosomes contribute to the refractory properties of melanoma cells by sequestering cytotoxic drugs and increasing melanosome-mediated drug export. Preventing melanosomal sequestration of cytotoxic drugs by inhibiting the functions of melanosomes may have great potential as an approach to improving the chemosensitivity of melanoma cells. PMID:16777967

  2. Melanosomal sequestration of cytotoxic drugs contributes to the intractability of malignant melanomas

    NASA Astrophysics Data System (ADS)

    Chen, Kevin G.; Valencia, Julio C.; Lai, Barry; Zhang, Guofeng; Paterson, Jill K.; Rouzaud, François; Berens, Werner; Wincovitch, Stephen M.; Garfield, Susan H.; Leapman, Richard D.; Hearing, Vincent J.; Gottesman, Michael M.

    2006-06-01

    Multidrug resistance mechanisms underlying the intractability of malignant melanomas remain largely unknown. In this study, we demonstrate that the development of multidrug resistance in melanomas involves subcellular sequestration of intracellular cytotoxic drugs such as cis-diaminedichloroplatinum II (cisplatin; CDDP). CDDP is initially sequestered in subcellular organelles such as melanosomes, which significantly reduces its nuclear localization when compared with nonmelanoma/KB-3-1 epidermoid carcinoma cells. The melanosomal accumulation of CDDP remarkably modulates melanogenesis through a pronounced increase in tyrosinase activity. The altered melanogenesis manifested an 8-fold increase in both intracellular pigmentation and extracellular transport of melanosomes containing CDDP. Thus, our experiments provide evidence that melanosomes contribute to the refractory properties of melanoma cells by sequestering cytotoxic drugs and increasing melanosome-mediated drug export. Preventing melanosomal sequestration of cytotoxic drugs by inhibiting the functions of melanosomes may have great potential as an approach to improving the chemosensitivity of melanoma cells. cancer | melanosomes | skin | tumor therapy | multidrug resistance

  3. OMICS DATA IN THE QUALITATIVE AND QUANTITATIVE CHARACTERIZATION OF THE MODE OF ACTION IN SUPPORT OF IRIS ASSESSMENTS

    EPA Science Inventory

    Knowledge and information generated using new tools/methods collectively called "Omics" technologies could have a profound effect on qualitative and quantitative characterizations of human health risk assessments.

    The suffix "Omics" is a descriptor used for a series of e...

  4. Phytochrome B Requires PIF Degradation and Sequestration to Induce Light Responses Across a Wide Range of Light Conditions.

    PubMed

    Park, Eunae; Kim, Yeojae; Choi, Giltsu

    2018-05-15

    Phytochrome B (phyB) inhibits the function of phytochrome-interacting factors (PIFs) by inducing their degradation and sequestration, but the relative physiological importance of these two phyB activities is unclear. In an analysis of published Arabidopsis thaliana phyB mutations, we identified a point mutation in the N-terminal half of phyB (phyBG111D) that abolishes its PIF sequestration activity without affecting its PIF degradation activity. We also identified a point mutation in the phyB C-terminal domain, which, when combined with a deletion of the C-terminal end (phyB990G767R), does the opposite; it blocks PIF degradation without affecting PIF sequestration. The resulting phyB proteins, phyB990G767R and phyBG111D, are equally capable of inducing light responses under continuous red light. However, phyBG111D, which exhibits only the PIF degradation activity, induces stronger light responses than phyB990G767R under white light with prolonged dark periods (i.e., diurnal cycles). In contrast, phyB990G767R, which exhibits only the PIF sequestration activity, induces stronger light responses in flickering light (a condition that mimics sunflecks). Together, our results indicate that both of these separable phyB activities are required for light responses in varying light conditions. © 2018 American Society of Plant Biologists. All rights reserved.

  5. A Qualitative Assessment of Human Cadavers Embalmed by Thiel's Method Used in Laparoscopic Training for Renal Resection

    ERIC Educational Resources Information Center

    Rai, Bhavan Prasad; Tang, Benjie; Eisma, Roos; Soames, Roger W.; Wen, Haitao; Nabi, Ghulam

    2012-01-01

    Human cadaveric tissue is the fundamental substrate for basic anatomic and surgical skills training. A qualitative assessment of the use of human cadavers preserved by Thiel's method for a British Association of Urological Surgeons--approved, advanced laparoscopic renal resection skills training course is described in the present study. Four…

  6. Engineered Escherichia coli with Periplasmic Carbonic Anhydrase as a Biocatalyst for CO2 Sequestration

    PubMed Central

    Jo, Byung Hoon; Kim, Im Gyu; Seo, Jeong Hyun; Kang, Dong Gyun

    2013-01-01

    Carbonic anhydrase is an enzyme that reversibly catalyzes the hydration of carbon dioxide (CO2). It has been suggested recently that this remarkably fast enzyme can be used for sequestration of CO2, a major greenhouse gas, making this a promising alternative for chemical CO2 mitigation. To promote the economical use of enzymes, we engineered the carbonic anhydrase from Neisseria gonorrhoeae (ngCA) in the periplasm of Escherichia coli, thereby creating a bacterial whole-cell catalyst. We then investigated the application of this system to CO2 sequestration by mineral carbonation, a process with the potential to store large quantities of CO2. ngCA was highly expressed in the periplasm of E. coli in a soluble form, and the recombinant bacterial cell displayed the distinct ability to hydrate CO2 compared with its cytoplasmic ngCA counterpart and previously reported whole-cell CA systems. The expression of ngCA in the periplasm of E. coli greatly accelerated the rate of calcium carbonate (CaCO3) formation and exerted a striking impact on the maximal amount of CaCO3 produced under conditions of relatively low pH. It was also shown that the thermal stability of the periplasmic enzyme was significantly improved. These results demonstrate that the engineered bacterial cell with periplasmic ngCA can successfully serve as an efficient biocatalyst for CO2 sequestration. PMID:23974145

  7. Mechanisms of calcium sequestration by isolated Malpighian tubules of the house cricket Acheta domesticus.

    PubMed

    Browne, Austin; O'Donnell, Michael J

    2018-01-01

    Hemolymph calcium homeostasis in insects is achieved by the Malpighian tubules, primarily by sequestering excess Ca 2+ within internal calcium stores (Ca-rich granules) most often located within type I (principal) tubule cells. Using both the scanning ion-selective electrode technique and the Ramsay secretion assay this study provides the first measurements of basolateral and transepithelial Ca 2+ fluxes across the Malpighian tubules of an Orthopteran insect, the house cricket Acheta domesticus. Ca 2+ transport was specific to midtubule segments, where 97% of the Ca 2+ entering the tubule is sequestered within intracellular calcium stores and the remaining 3% is secreted into the lumen. Antagonists of voltage-gated (L-type) calcium channels decreased Ca 2+ influx ≥fivefold in adenosine 3',5'-cyclic monophosphate (cAMP)-stimulated tubules, suggesting basolateral Ca 2+ influx is facilitated by voltage-gated Ca 2+ channels. Increasing fluid secretion through manipulation of intracellular levels of cAMP or Ca 2+ had opposite effects on tubule Ca 2+ transport. The adenylyl cyclase-cAMP-PKA pathway promotes Ca 2+ sequestration whereas both 5-hydroxytryptamine and thapsigargin inhibited sequestration. Our results suggest that the midtubules of Acheta domesticus are dynamic calcium stores, which maintain hemolymph calcium concentration by manipulating rates of Ca 2+ sequestration through stimulatory (cAMP) and inhibitory (Ca 2+ ) regulatory pathways. © 2017 Wiley Periodicals, Inc.

  8. How organic carbon derived from multiple sources contributes to carbon sequestration processes in a shallow coastal system?

    PubMed Central

    Watanabe, Kenta; Kuwae, Tomohiro

    2015-01-01

    Carbon captured by marine organisms helps sequester atmospheric CO2, especially in shallow coastal ecosystems, where rates of primary production and burial of organic carbon (OC) from multiple sources are high. However, linkages between the dynamics of OC derived from multiple sources and carbon sequestration are poorly understood. We investigated the origin (terrestrial, phytobenthos derived, and phytoplankton derived) of particulate OC (POC) and dissolved OC (DOC) in the water column and sedimentary OC using elemental, isotopic, and optical signatures in Furen Lagoon, Japan. Based on these data analysis, we explored how OC from multiple sources contributes to sequestration via storage in sediments, water column sequestration, and air–sea CO2 exchanges, and analyzed how the contributions vary with salinity in a shallow seagrass meadow as well. The relative contribution of terrestrial POC in the water column decreased with increasing salinity, whereas autochthonous POC increased in the salinity range 10–30. Phytoplankton-derived POC dominated the water column POC (65–95%) within this salinity range; however, it was minor in the sediments (3–29%). In contrast, terrestrial and phytobenthos-derived POC were relatively minor contributors in the water column but were major contributors in the sediments (49–78% and 19–36%, respectively), indicating that terrestrial and phytobenthos-derived POC were selectively stored in the sediments. Autochthonous DOC, part of which can contribute to long-term carbon sequestration in the water column, accounted for >25% of the total water column DOC pool in the salinity range 15–30. Autochthonous OC production decreased the concentration of dissolved inorganic carbon in the water column and thereby contributed to atmospheric CO2 uptake, except in the low-salinity zone. Our results indicate that shallow coastal ecosystems function not only as transition zones between land and ocean but also as carbon sequestration filters

  9. Vegetation turnover and nitrogen feedback drive temperate forest carbon sequestration in response to elevated CO[2]. A multi-model structural analysis

    NASA Astrophysics Data System (ADS)

    Walker, A. P.; Zaehle, S.; Medlyn, B. E.; De Kauwe, M. G.; Asao, S.; Hickler, T.; Lomas, M. R.; Pak, B. C.; Parton, W. J.; Quegan, S.; Ricciuto, D. M.; Wang, Y.; Warlind, D.; Norby, R. J.

    2013-12-01

    Predicting forest carbon (C) sequestration requires understanding the processes leading to rates of biomass C accrual (net primary productivity; NPP) and loss (turnover). In temperate forest ecosystems, experiments and models have shown that feedback via progressive nitrogen limitation (PNL) is a key driver of NPP responses to elevated CO[2]. In this analysis we show that while still important, PNL may not be as severe a constraint on NPP as indicated by some studies and that the response of turnover to elevated CO[2] could be as important, especially in the near to medium term. Seven terrestrial ecosystem and biosphere models that couple C and N cycles with varying assumptions and complexity were used to simulate responses over 300 years to a step change in CO[2] to 550 ppmv. Simulations were run for the evergreen needleleaf Duke forest and the deciduous broadleaf Oak Ridge forest FACE experiments. Whether or not a model simulated PNL under elevated CO[2] depended on model structure and the timescale of observation. Avoiding PNL depended on mechanisms that reduced ecosystem N losses. The two key assumptions that reduced N losses were whether plant N uptake was based on plant N demand and whether ecosystem N losses (volatisation and leaching) were dependent on the concentration of N in the soil solution. Assumptions on allocation and turnover resulted in very different responses of turnover to elevated CO[2], which had profound implications for C sequestration. For example, at equilibrium CABLE2.0 predicted an increase in vegetation C sequestration despite decreased NPP, while O-CN predicted much less vegetation C sequestration than would be expected from predicted NPP increases alone. Generally elevated CO[2] favoured a shift in C partitioning towards longer lived wood biomass, which increased vegetation turnover and enhanced C sequestration. Enhanced wood partitioning was overlaid by increases or decreases in self-thinning depended on whether self-thinning was

  10. Sequestration, tissue distribution and developmental transmission of cyanogenic glucosides in a specialist insect herbivore.

    PubMed

    Zagrobelny, Mika; Olsen, Carl Erik; Pentzold, Stefan; Fürstenberg-Hägg, Joel; Jørgensen, Kirsten; Bak, Søren; Møller, Birger Lindberg; Motawia, Mohammed Saddik

    2014-01-01

    Considering the staggering diversity of bioactive natural products present in plants, insects are only able to sequester a small number of phytochemicals from their food plants. The mechanisms of how only some phytochemicals are sequestered and how the sequestration process takes place remains largely unknown. In this study the model system of Zygaena filipendulae (Lepidoptera) and their food plant Lotus corniculatus is used to advance the knowledge of insect sequestration. Z. filipendulae larvae are dependent on sequestration of the cyanogenic glucosides linamarin and lotaustralin from their food plant, and have a much lower fitness if reared on plants without these compounds. This study investigates the fate of the cyanogenic glucosides during ingestion, sequestration in the larvae, and in the course of insect ontogeny. To this purpose, double-labeled linamarin and lotaustralin were chemically synthesized carrying two stable isotopes, a (2)H labeled aglucone and a (13)C labeled glucose moiety. In addition, a small amount of (14)C was incorporated into the glucose residue. The isotope-labeled compounds were applied onto cyanogenic L. corniculatus leaves that were subsequently presented to the Z. filipendulae larvae. Following ingestion by the larvae, the destiny of the isotope labeled cyanogenic glucosides was monitored in different tissues of larvae and adults at selected time points, using radio-TLC and LC-MS analyses. It was shown that sequestered compounds are taken up intact, contrary to earlier hypotheses where it was suggested that the compounds would have to be hydrolyzed before transport across the gut. The uptake from the larval gut was highly stereo selective as the β-glucosides were retained while the α-glucosides were excreted and recovered in the frass. Sequestered compounds were rapidly distributed into all analyzed tissues of the larval body, partly retained throughout metamorphosis and transferred into the adult insect where they were

  11. Effective CO2 sequestration monitoring using joint inversion result of seismic and electromagnetic data

    NASA Astrophysics Data System (ADS)

    Noh, K.; Jeong, S.; Seol, S. J.; Byun, J.; Kwon, T.

    2015-12-01

    Man-made carbon dioxide (CO2) released into the atmosphere is a significant contributor to the greenhouse gas effect and related global warming. Sequestration of CO2 into saline aquifers has been proposed as one of the most practical options of all geological sequestration possibilities. During CO2 geological sequestration, monitoring is indispensable to delineate the change of CO2 saturation and migration of CO2 in the subsurface. Especially, monitoring of CO2 saturation in aquifers provides useful information for determining amount of injected CO2. Seismic inversion can provide the migration of CO2 plume with high resolution because velocity is reduced when CO2 replaces the pore fluid during CO2 injection. However, the estimation of CO2 saturation using the seismic method is difficult due to the lower sensitivity of the velocity to the saturation when the CO2 saturation up to 20%. On the other hand, marine controlled-source EM (mCSEM) inversion is sensitive to the resistivity changes resulting from variations in CO2 saturation, even though it has poor resolution than seismic method. In this study, we proposed an effective CO2 sequestration monitoring method using joint inversion of seismic and mCSEM data based on a cross-gradient constraint. The method was tested with realistic CO2 injection models in a deep brine aquifer beneath a shallow sea which is selected with consideration for the access convenience for the installation of source and receiver and an environmental safety. Resistivity images of CO2 plume by the proposed method for different CO2 injection stages have been significantly improved over those obtained from individual EM inversion. In addition, we could estimate a reliable CO2 saturation by rock physics model (RPM) using the P-wave velocity and the improved resistivity. The proposed method is a basis of three-dimensional estimation of reservoir parameters such as porosity and fluid saturation, and the method can be also applied for detecting a

  12. Stormwater Effects on Heavy Metal Sequestration in a Bioretention System in Culver City, California

    NASA Astrophysics Data System (ADS)

    Yousavich, D. J.; Ellis, A. S.; Dorsey, J.; Johnston, K.

    2017-12-01

    Rain Gardens, also referred to as bioretention or biofilters, are often used to capture or filter urban runoff before it drains into surface or groundwater systems. The Culver City Rain Garden (CCRG) is one such system that is designed to capture and filter runoff from approximately 11 acres of mixed-use commercial and industrial land before it enters Ballona Creek. The EPA has designated Ballona Creek as an impaired waterway and established Total Maximum Daily Loads for heavy metals. Previous research has utilized sequential extractions to establish trends in heavy metal sequestration for Cu, Pb, and Zn in bioretention media. The aim of this project is to evaluate if there is a difference in heavy metal sequestration between dry and wetted bioretention media. To characterize the stormwater at the site, influent and surface water were collected and analyzed for sulfate and heavy metals 3 times during the 2016-2017 storm season. Two soil cores from the CCRG were acquired in the summer of 2017 to analyze soil metal sequestration trends. They will be subjected to different wetting conditions, sectioned into discrete depths, and digested with an established sequential extraction technique. Surface water in the CCRG shows average Dissolved Oxygen during wet conditions of 2.92 mg/L and average pH of 6.1 indicating reducing conditions near the surface and the possible protonation of adsorption sites during wet weather conditions. Influent metal data indicate average dissolved iron levels near 1 ppm and influent Cu, Pb, and Zn levels near 0.05, 0.01, and 0.5 ppm respectively. This coupled with average surface water sulfate levels near 3 ppm indicates the potential for iron oxide and sulfide mineral formation depending on redox conditions. The sequential extraction results will elucidate whether heavy metals are adsorbed or are being sequestered in mineral formation. These results will allow for the inclusion of heavy metal sequestration trends in the design of further

  13. Soil organic carbon sequestration potential and gap of the sub-tropical region

    NASA Astrophysics Data System (ADS)

    Chiti, T.; Santini, M.; Valentini, R.

    2012-04-01

    A database of soil organic carbon (SOC) stocks was created for the sub-tropical belt using existing global SOC databases (WISE3; various SOTER) and new data from an ongoing project (ERC Africa-GHG) specific for the tropical forests of the African continent. The intent of this database is to evaluate the sequestration potential of a critical area of the world where most of the primary rainforests are located, and actually show undoubtedly high SOC losses associated with deforestation. About 4100 profiles, quite well distributed over the entire sub-tropical belt, were used to calculate the actual SOC stock for the 0-30 cm and 30-100 cm depths of mineral soil. First, this actual SOC stock has been related to the current Land Use Systems; successively, it has been interpolated taking into account Homogeneous Land Units (HLUs) in terms of soil type, climate zone and land use. Then, relying on consistent projections, of both climate and land use changes, for the years 2050 and 2100 under extremes IPCC-SRES emission scenarios such as the B1 and the A2, potential SOC stocks for these time frames has been calculated. Soil carbon sequestration gap is calculated by the difference of the actual SOC stock and the future projections. When subtracting potential from the actual SOC stocks, negative values represent a gap in terms of possible SOC losses and so reduced carbon sequestration. The soil carbon gap indicates locations where there will be low soil-carbon levels associated with medium-to-high actual SOC stocks, and medium soil-carbon levels associated with high actual SOC stocks, depending on soil type, climate and land use conditions. On the long term, 2076-2100, a SOC gap is observed under all scenarios in South America, just below the Amazonia basin, where are located open and fragmented forests. However, in the Amazonia basin deforestation decrease since no sensible SOC losses were observed. An important gap is observed also in the Congo basin and West Africa, but the

  14. Quantitative and Qualitative Assessment of Pulmonary Emphysema with T2-Weighted PROPELLER MRI in a High-Risk Population Compared to Low-Dose CT.

    PubMed

    Meier-Schroers, Michael; Sprinkart, Alois Martin; Becker, Manuel; Homsi, Rami; Thomas, Daniel

    2018-03-07

     To determine the suitability of T2-weighted PROPELLER MRI for the assessment of pulmonary emphysema.  60 participants in a lung cancer screening program (30 subjects with pulmonary emphysema, and 30 control subjects without emphysema) were included for this retrospective study. All subjects were examined with low-dose CT (LDCT) and MRI within the screening program. The use of a T2-weighted PROPELLER sequence for the assessment of emphysema was analyzed and correlated with the results of LDCT. The presence and the extent of pulmonary emphysema were first assessed qualitatively using a three-point score, and then quantitatively with a semi-automated software program to obtain emphysema indices.  All 30 cases with pulmonary emphysema were accurately detected by MRI. There were 3 cases with emphysema according to MRI without emphysematous changes on LDCT (false-positive results). The qualitative scores as well as the emphysema indices were significantly higher in the emphysema group compared to the control group for MRI and LDCT (p < 0.001). Both the scores and the indices correlated significantly between MRI and LDCT (qualitative score of severity: r = 0.912/p < 0.001 in the emphysema group and r = 0.668/p < 0.001 in the control group; emphysema index: r = 0.960/p < 0.001 in the emphysema group and r = 0.746/p < 0.001 in the control group).  The presence and the extent of pulmonary emphysema may be assessed qualitatively and quantitatively by T2-weighted PROPELLER MRI with very good correlation to LDCT.   · T2-weighted PROPELLER MRI may be suitable for the assessment of pulmonary emphysema.. · There was significant correlation between MRI and LDCT regarding qualitative scores and quantitative emphysema indices in our study with correlation coefficients for different subgroups ranging from r = 0.668 to r = 0.960.. · T2-weighted PROPELLER MRI may have the potential to be used for follow-up examinations in

  15. Carbon Sequestration in Wetland Soils of the Northern Gulf of Mexico Coastal Region

    EPA Science Inventory

    Coastal wetlands play an important but complex role in the global carbon cycle, contributing to the ecosystem service of greenhouse gas regulation through carbon sequestration. Although coastal wetlands occupy a small percent of the total US land area, their potential for carbon...

  16. Stats Don't Tell the Whole Story: Using Qualitative Data Analysis of Chat Reference Transcripts to Assess and Improve Services

    ERIC Educational Resources Information Center

    Mungin, Michael

    2017-01-01

    In the five years following implementation of a chat reference service at James Madison University (JMU), the service proved very popular but was not closely assessed for quality of service. Using grounded theory and qualitative data analysis techniques, a comprehensive assessment effort was begun in earnest and is in progress. Preliminary results…

  17. Rare presentation of intralobar pulmonary sequestration associated with repeated episodes of ventricular tachycardia

    PubMed Central

    Rao, D Sheshagiri; Barik, Ramachandra

    2016-01-01

    Arterial supply of an intralobar pulmonary sequestration (IPS) from the coronary circulation is extremely rare. A significant coronary steal does not occur because of dual or triple sources of blood supply to sequestrated lung tissue. We present a 60-year-old woman who presented to us with repeated episodes of monomorphic ventricular tachycardia (VT) in last 3 mo. Radio frequency ablation was ineffective. On evaluation, she had right lower lobe IPS with dual arterial blood supply, i.e., right pulmonary artery and the systemic arterial supply from the right coronary artery (RCA). Stress myocardial perfusion scan revealed significant inducible ischemia in the RCA territory. Coronary angiogram revealed critical stenosis of proximal RCA just after the origin of the systemic artery supplying IPS. The critical stenosis in the RCA was stented. At 12 mo follow-up, she had no further episodes of VT or angina. PMID:27468336

  18. Rare presentation of intralobar pulmonary sequestration associated with repeated episodes of ventricular tachycardia.

    PubMed

    Rao, D Sheshagiri; Barik, Ramachandra

    2016-07-26

    Arterial supply of an intralobar pulmonary sequestration (IPS) from the coronary circulation is extremely rare. A significant coronary steal does not occur because of dual or triple sources of blood supply to sequestrated lung tissue. We present a 60-year-old woman who presented to us with repeated episodes of monomorphic ventricular tachycardia (VT) in last 3 mo. Radio frequency ablation was ineffective. On evaluation, she had right lower lobe IPS with dual arterial blood supply, i.e., right pulmonary artery and the systemic arterial supply from the right coronary artery (RCA). Stress myocardial perfusion scan revealed significant inducible ischemia in the RCA territory. Coronary angiogram revealed critical stenosis of proximal RCA just after the origin of the systemic artery supplying IPS. The critical stenosis in the RCA was stented. At 12 mo follow-up, she had no further episodes of VT or angina.

  19. Getting More Value from the LibQUAL+® Survey: The Merits of Qualitative Analysis and Importance-Satisfaction Matrices in Assessing Library Patron Comments

    ERIC Educational Resources Information Center

    Detlor, Brian; Ball, Kathryn

    2015-01-01

    This paper examines the merit of conducting a qualitative analysis of LibQUAL+® survey comments as a means of leveraging quantitative LibQUAL+ results, and using importance-satisfaction matrices to present and assess qualitative findings. Comments collected from the authors' institution's LibQUAL+ survey were analyzed using a codebook based on…

  20. Lithological control on phytolith carbon sequestration in moso bamboo forests

    PubMed Central

    Li, Beilei; Song, Zhaoliang; Wang, Hailong; Li, Zimin; Jiang, Peikun; Zhou, Guomo

    2014-01-01

    Phytolith-occluded carbon (PhytOC) is a stable carbon (C) fraction that has effects on long-term global C balance. Here, we report the phytolith and PhytOC accumulation in moso bamboo leaves developed on four types of parent materials. The results show that PhytOC content of moso bamboo varies with parent material in the order of granodiorite (2.0 g kg−1) > granite (1.6 g kg−1) > basalt (1.3 g kg−1) > shale (0.7 g kg−1). PhytOC production flux of moso bamboo on four types of parent materials varies significantly from 1.0 to 64.8 kg CO2 ha−1 yr−1, thus a net 4.7 × 106 –310.8 × 106 kg CO2 yr−1 would be sequestered by moso bamboo phytoliths in China. The phytolith C sequestration rate in moso bamboo of China will continue to increase in the following decades due to nationwide bamboo afforestation/reforestation, demonstrating the potential of bamboo in regulating terrestrial C balance. Management practices such as afforestation of bamboo in granodiorite area and granodiorite powder amendment may further enhance phytolith C sequestration through bamboo plants. PMID:24918576

  1. Different designs of kinase-phosphatase interactions and phosphatase sequestration shapes the robustness and signal flow in the MAPK cascade

    PubMed Central

    2012-01-01

    Background The three layer mitogen activated protein kinase (MAPK) signaling cascade exhibits different designs of interactions between its kinases and phosphatases. While the sequential interactions between the three kinases of the cascade are tightly preserved, the phosphatases of the cascade, such as MKP3 and PP2A, exhibit relatively diverse interactions with their substrate kinases. Additionally, the kinases of the MAPK cascade can also sequester their phosphatases. Thus, each topologically distinct interaction design of kinases and phosphatases could exhibit unique signal processing characteristics, and the presence of phosphatase sequestration may lead to further fine tuning of the propagated signal. Results We have built four architecturally distinct types of models of the MAPK cascade, each model with identical kinase-kinase interactions but unique kinases-phosphatases interactions. Our simulations unravelled that MAPK cascade’s robustness to external perturbations is a function of nature of interaction between its kinases and phosphatases. The cascade’s output robustness was enhanced when phosphatases were sequestrated by their target kinases. We uncovered a novel implicit/hidden negative feedback loop from the phosphatase MKP3 to its upstream kinase Raf-1, in a cascade resembling the B cell MAPK cascade. Notably, strength of the feedback loop was reciprocal to the strength of phosphatases’ sequestration and stronger sequestration abolished the feedback loop completely. An experimental method to verify the presence of the feedback loop is also proposed. We further showed, when the models were activated by transient signal, memory (total time taken by the cascade output to reach its unstimulated level after removal of signal) of a cascade was determined by the specific designs of interaction among its kinases and phosphatases. Conclusions Differences in interaction designs among the kinases and phosphatases can differentially shape the robustness and

  2. Site Development, Operations, and Closure Plan Topical Report 5 An Assessment of Geologic Carbon Sequestration Options in the Illinois Basin. Phase III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, Robert; Payne, William; Kirksey, Jim

    2015-06-01

    The Midwest Geological Sequestration Consortium (MGSC) has partnered with Archer Daniels Midland Company (ADM) and Schlumberger Carbon Services to conduct a large-volume, saline reservoir storage project at ADM’s agricultural products processing complex in Decatur, Illinois. The Development Phase project, named the Illinois Basin Decatur Project (IBDP) involves the injection of 1 million tonnes of carbon dioxide (CO 2) into a deep saline formation of the Illinois Basin over a three-year period. This report focuses on objectives, execution, and lessons learned/unanticipated results from the site development (relating specifically to surface equipment), operations, and the site closure plan.

  3. In Vitro and in Silico Tools To Assess Extent of Cellular Uptake and Lysosomal Sequestration of Respiratory Drugs in Human Alveolar Macrophages.

    PubMed

    Ufuk, Ayşe; Assmus, Frauke; Francis, Laura; Plumb, Jonathan; Damian, Valeriu; Gertz, Michael; Houston, J Brian; Galetin, Aleksandra

    2017-04-03

    Accumulation of respiratory drugs in human alveolar macrophages (AMs) has not been extensively studied in vitro and in silico despite its potential impact on therapeutic efficacy and/or occurrence of phospholipidosis. The current study aims to characterize the accumulation and subcellular distribution of drugs with respiratory indication in human AMs and to develop an in silico mechanistic AM model to predict lysosomal accumulation of investigated drugs. The data set included 9 drugs previously investigated in rat AM cell line NR8383. Cell-to-unbound medium concentration ratio (K p,cell ) of all drugs (5 μM) was determined to assess the magnitude of intracellular accumulation. The extent of lysosomal sequestration in freshly isolated human AMs from multiple donors (n = 5) was investigated for clarithromycin and imipramine (positive control) using an indirect in vitro method (±20 mM ammonium chloride, NH 4 Cl). The AM cell parameters and drug physicochemical data were collated to develop an in silico mechanistic AM model. Three in silico models differing in their description of drug membrane partitioning were evaluated; model (1) relied on octanol-water partitioning of drugs, model (2) used in vitro data to account for this process, and model (3) predicted membrane partitioning by incorporating AM phospholipid fractions. In vitro K p,cell ranged >200-fold for respiratory drugs, with the highest accumulation seen for clarithromycin. A good agreement in K p,cell was observed between human AMs and NR8383 (2.45-fold bias), highlighting NR8383 as a potentially useful in vitro surrogate tool to characterize drug accumulation in AMs. The mean K p,cell of clarithromycin (81, CV = 51%) and imipramine (963, CV = 54%) were reduced in the presence of NH 4 Cl by up to 67% and 81%, respectively, suggesting substantial contribution of lysosomal sequestration and intracellular binding in the accumulation of these drugs in human AMs. The in vitro data showed variability in drug

  4. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, David; Golomb, Dan; Shi, Guang

    2011-09-30

    This project involves the use of an innovative new invention Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequentlymore » changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude

  5. An Evaluation of Subsurface Microbial Activity Conditional to Subsurface Temperature, Porosity, and Permeability at North American Carbon Sequestration Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, B.; Mordensky, S.; Verba, Circe

    Several nations, including the United States, recognize global climate change as a force transforming the global ecosphere. Carbon dioxide (CO 2) is a greenhouse gas that contributes to the evolving climate. Reduction of atmospheric CO 2 levels is a goal for many nations and carbon sequestration which traps CO 2 in the Earth’s subsurface is one method to reduce atmospheric CO 2 levels. Among the variables that must be considered in developing this technology to a national scale is microbial activity. Microbial activity or biomass can change rock permeability, alter artificial seals around boreholes, and play a key role inmore » biogeochemistry and accordingly may determine how CO 2 is sequestered underground. Certain physical parameters of a reservoir found in literature (e.g., temperature, porosity, and permeability) may indicate whether a reservoir can host microbial communities. In order to estimate which subsurface formations may host microbes, this report examines the subsurface temperature, porosity, and permeability of underground rock formations that have high potential to be targeted for CO 2 sequestration. Of the 268 North American wellbore locations from the National Carbon Sequestration Database (NATCARB; National Energy and Technology Laboratory, 2015) and 35 sites from Nelson and Kibler (2003), 96 sequestration sites contain temperature data. Of these 96 sites, 36 sites have temperatures that would be favorable for microbial survival, 48 sites have mixed conditions for supporting microbial populations, and 11 sites would appear to be unfavorable to support microbial populations. Future studies of microbe viability would benefit from a larger database with more formation parameters (e.g. mineralogy, structure, and groundwater chemistry), which would help to increase understanding of where CO 2 sequestration could be most efficiently implemented.« less

  6. Carbon storage and sequestration by urban trees in the USA

    Treesearch

    David J. Nowak; Daniel E. Crane

    2002-01-01

    Based on field data from 10 USA cities and national urban tree cover data, it is estimated that urban trees in the coterminous USA currently store 700 million tonnes of carbon ($14,300 million value) with a gross carbon sequestration rate of 22.8 million tC/yr ($460 rnillion/year). Carbon storage within cities ranges From 1.2 million tC in New York, NY, to 19,300 tC in...

  7. Knowledge representation and qualitative simulation of salmon redd functioning. Part I: qualitative modeling and simulation.

    PubMed

    Guerrin, F; Dumas, J

    2001-02-01

    This work aims at representing empirical knowledge of freshwater ecologists on the functioning of salmon redds (spawning areas of salmon) and its impact on mortality of early stages. For this, we use Qsim, a qualitative simulator. In this first part, we provide unfamiliar readers with the underlying qualitative differential equation (QDE) ontology of Qsim: representing quantities, qualitative variables, qualitative constraints, QDE structure. Based on a very simple example taken of the salmon redd application, we show how informal biological knowledge may be represented and simulated using an approach that was first intended to analyze qualitatively ordinary differential equations systems. A companion paper (Part II) gives the full description and simulation of the salmon redd qualitative model. This work was part of a project aimed at assessing the impact of the environment on salmon populations dynamics by the use of models of processes acting at different levels: catchment, river, and redds. Only the latter level is dealt with in this paper.

  8. OXIDANT GENERATION PROMOTES IRON SEQUESTRATION IN BEAS-2B CELLS EXPOSED TO ASBESTOS

    EPA Science Inventory

    Lung injury following asbestos exposure is associated with an oxidative stress that is catalyzed by iron in the fiber matrix, complexed to the surface, or both. We tested the hypothesis that the cellular response to asbestos includes the transport and sequestration of this iron ...

  9. *OXIDANT GENERATION PROMOTES IRON SEQUESTRATION IN BEAS-2B CELLS EXPOSED TO ASBESTOS

    EPA Science Inventory

    Lung injury after asbestos exposure is associated with an oxidative stress that is catalyzed by iron in the fiber matrix, complexed to the surface, or both. We tested the hypothesis that the cellular response to asbestos includes the transport and sequestration of this iron throu...

  10. OXIDANTT GENERATION PROMOTES IRON SEQUESTRATION IN BEAS-2B CELLS EXPOSED TO ASBESTOS

    EPA Science Inventory

    Lung injury following asbestos exposure is associated with an oxidative stress that is catalyzed by iron in the matrix, complexed to the surface, or both. We hypothesized that the cellular response to asbestos includes the transport and sequestration of iron by 1) generation of s...

  11. Comparaison de la performance environnementale de la production thermique d'electricite avec et sans sequestration geologique du dioxyde de carbone

    NASA Astrophysics Data System (ADS)

    Bellerive, Nathalie

    The research project hypothesis is that CO2 capture and sequestration technologies (CSC) leads to a significant decrease in global warming, but increases the impact of all other aspects of the study. This is because other processes used for CO2 capture and sequestration require additional quantities of raw materials and energy. Two other objectives are described in this project. The first is the modeling of an Integrated Gasification Combined Cycle power plant for which there is no known generic data. The second is to select the right hypothesis regarding electrical production technologies, CO2 capture, compression and transportation by pipeline and finally sequestration. "Life Cycle Assessment" (LCA) analyses were chosen for this research project. LCA is an exhaustive quantitative method used to evaluate potential environmental impacts associated with a product, a service or an activity from resource extraction to waste elimination. This tool is governed by ISO 14 040 through ISO 14 049 and is sustained by the Society of Environmental Toxicology and Chemistry (SETAC) and the United Nations Environment Program (UNEP). Two power plants were studied, the Integrated Gasification Combined Cycle (IGCC) power plant and the Natural Gas Combined Cycle (NGCC) power plant. In order to sequester CO2 in geological formation, it is necessary to extract CO2from emission flows. For the IGCC power plant, CO 2 was captured before the burning phase. For the NGCC power plant, the capture was done during the afterburning phase. Once the CO2 was isolated, it was compressed and directed through a transportation pipe 1 000 km in length on the ground surface and in the sea. It is hypothesized that the power plant is 300 km from the shore and the sequestration platform 700 km from France's shore, in the North Sea. The IGCC power plant modeling and data selection regarding CO2 capture and sequestration were done by using primary data from the industry and the Ecoinvent generic database

  12. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed

    NASA Astrophysics Data System (ADS)

    Bhattarai, M. D.; Secchi, S.; Schoof, J. T.

    2015-12-01

    The sequestration of carbon constitutes one of major options in agricultural climate change land-based mitigation. We examined the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed. We Used downscaled data from eight atmosphere-ocean general circulation models (AOGCMs) for a simulation period between 2015 and 2099 with three emission pathways reflecting low, medium and high greenhouse gas scenarios. The use of downscaled data, coupled with high resolution land use and soil data, can help policy makers and land managers better understand spatial and temporal impacts of climate change. We consider traditional practices such as no-till corn-soybean rotations and continuous corn and include also switchgrass, a bioenergy crop. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 156,000 MtCO2 of soil organic carbon with a sequestration rate of 2.38 MtCO2 ha-1 yr-1 for the simulated period. Our results also indicate that switchgrass can sequester the equivalent of 282,000 MtCO2 of soil organic carbon with a sequestration rate of 4.4 MtCO2 ha-1 yr-1 for the period. Our finding also suggests that while climate change impacts corn and soybean yields, it does not have a significant effect on switchgrass yields possibly due to carbon fertilization effect on switchgrass yields.

  13. Towards Providing Solutions to the Air Quality Crisis in the Mexico City Metropolitan Area: Carbon Sequestration by Succulent Species in Green Roofs.

    PubMed

    Collazo-Ortega, Margarita; Rosas, Ulises; Reyes-Santiago, Jerónimo

    2017-03-31

    In the first months of 2016, the Mexico City Metropolitan Area experienced the worst air pollution crisis in the last decade, prompting drastic short-term solutions by the Mexico City Government and neighboring States. In order to help further the search for long-term sustainable solutions, we felt obliged to immediately release the results of our research regarding the monitoring of carbon sequestration by green roofs. Large-scale naturation, such as the implementation of green roofs, provides a way to partially mitigate the increased carbon dioxide output in urban areas. Here, we quantified the carbon sequestration capabilities of two ornamental succulent plant species, Sedum dendroideum and Sedum rubrotinctum, which require low maintenance, and little or no irrigation. To obtain a detailed picture of these plants' carbon sequestration capabilities, we measured carbon uptake on the Sedum plants by quantifying carbon dioxide exchange and fixation as organic acids, during the day and across the year, on a green roof located in Southern Mexico City. The species displayed their typical CAM photosynthetic metabolism. Moreover, our quantification allowed us to conservatively estimate that a newly planted green roof of Sedum sequesters approximately 180,000,000 ppm of carbon dioxide per year in a green roof of 100 square meters in the short term. The patterns of CAM and carbon dioxide sequestration were highly robust to the fluctuations of temperature and precipitation between seasons, and therefore we speculate that carbon sequestration would be comparable in any given year of a newly planted green roof. Older green roof would require regular trimming to mantain their carbon sink properties, but their carbon sequestration capabilities remain to be quantified. Nevertheless, we propose that Sedum green roofs can be part of the long-term solutions to mitigate the air pollution crisis in the Mexico City Metropolitan area, and other "megacities" with marked seasonal drought.

  14. Estimating the CO2 sequestration potential of depleted and fractured shale formations using CH4 production rates

    NASA Astrophysics Data System (ADS)

    Clarens, A. F.; Tao, Z.

    2013-12-01

    Oil and gas production from hydraulically fractured shale formations is an abundant new source of domestically available energy for the United States. It will also result in significant CO2 emissions with important climate implications. Several studies have suggested that fractured shale formations could be used to permanently store CO2 once they are depleted of hydrocarbons. Many of the largest shale formations being developed in the United States have temperature and pressure profiles that are similar to those of saline aquifers being widely studied for geologic carbon sequestration. Here a modeling framework was developed that can be used to estimate the sequestration capacity for a shale formation based on historical CH4 production. The model is applied to those portions of the Marcellus formation found in Pennsylvania because reliable data on well production is readily available for this state. Production data from over 300 wells was compiled and used to estimate historical production and to extrapolate projected production. In shales, much of the CO2 would be sorbed to the pore and fracture surface and so this model considers sorption kinetics as well as total sorption capacity. The results suggest that shale formations could represent a significant repository for geologic carbon sequestration. The Marcellus shale in Pennsylvania alone could store between 10.4 and 18.4 Gigatonnes of CO2 between now and 2030. This would be over 50% of total annual US CO2 emissions from stationary sources. The mass transfer and sorption kinetics results indicate that CO2 injection proceeds several times faster than CH4 production. Model estimates were most sensitive to the permeability of the formation and assumptions about the ultimate ratio of adsorbed CH4 to CO2. CH4 production is a useful basis for calculating sequestration capacity because gas mass transfer out of the formation will be impacted by the same factors (e.g., temperature, pressure, and moisture content

  15. Impact on Health-Related Quality of Life in Adults with Eosinophilic Gastritis and Gastroenteritis: A Qualitative Assessment.

    PubMed

    Bedell, Alyse; Taft, Tiffany; Craven, Meredith R; Guadagnoli, Livia; Hirano, Ikuo; Gonsalves, Nirmala

    2018-05-01

    Eosinophilic gastritis (EG) and eosinophilic gastroenteritis (EGE) are chronic immune-mediated conditions of the digestive tract, which affect the stomach only, or the stomach and small intestines, respectively. Though these disorders are uncommon, they are being increasingly recognized and diagnosed. While health-related quality of life (HRQOL) has been evaluated in other eosinophilic gastrointestinal diseases, this study is the first to describe HRQOL impacts unique to EG/EGE. This study aims to qualitatively describe experiences of adults diagnosed with EG and EGE. We aim to identify impacts on HRQOL in this population in order to inform clinical care and assessment. Seven patients diagnosed with EG or EGE participated in semi-structured interviews assessing common domains of HRQOL. Four distinct themes emerged from qualitative analyses, which represent impacts to HRQOL: the psychological impact of the diagnosis, impact on social relationships, financial impact, and impact on the body. These generally improved over time and with effective treatment. This study demonstrated that patients with EG/EGE experience impacts to HRQOL, some of which differ from HRQOL of other eosinophilic gastrointestinal diseases. These results support the development of a disease-specific measure, or adaptation of an existing measure, to assess HRQOL in EG/EGE.

  16. The Coal-Seq III Consortium. Advancing the Science of CO 2 Sequestration in Coal Seam and Gas Shale Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koperna, George

    The Coal-Seq consortium is a government-industry collaborative that was initially launched in 2000 as a U.S. Department of Energy sponsored investigation into CO2 sequestration in deep, unmineable coal seams. The consortium’s objective aimed to advancing industry’s understanding of complex coalbed methane and gas shale reservoir behavior in the presence of multi-component gases via laboratory experiments, theoretical model development and field validation studies. Research from this collaborative effort was utilized to produce modules to enhance reservoir simulation and modeling capabilities to assess the technical and economic potential for CO2 storage and enhanced coalbed methane recovery in coal basins. Coal-Seq Phase 3more » expands upon the learnings garnered from Phase 1 & 2, which has led to further investigation into refined model development related to multicomponent equations-of-state, sorption and diffusion behavior, geomechanical and permeability studies, technical and economic feasibility studies for major international coal basins the extension of the work to gas shale reservoirs, and continued global technology exchange. The first research objective assesses changes in coal and shale properties with exposure to CO2 under field replicated conditions. Results indicate that no significant weakening occurs when coal and shale were exposed to CO2, therefore, there was no need to account for mechanical weakening of coal due to the injection of CO2 for modeling. The second major research objective evaluates cleat, Cp, and matrix, Cm, swelling/shrinkage compressibility under field replicated conditions. The experimental studies found that both Cp and Cm vary due to changes in reservoir pressure during injection and depletion under field replicated conditions. Using laboratory data from this study, a compressibility model was developed to predict the pore-volume compressibility, Cp, and the matrix compressibility, Cm, of coal and shale, which was

  17. Patients' and clinicians' experiences of holistic needs assessment using a cancer distress thermometer and problem list: A qualitative study.

    PubMed

    Biddle, Lucy; Paramasivan, Sangeetha; Harris, Susan; Campbell, Rona; Brennan, James; Hollingworth, William

    2016-08-01

    Psychosocial needs assessment is recommended for patients undergoing cancer treatment, but trials of effectiveness of assessment tools provide mixed results. This qualitative study aimed to understand how such tools are experienced by patients and clinicians in order to optimise use in the future. Qualitative interviews were used in a mixed-methods sequential design following a randomised controlled trial of needs assessment using the Distress Thermometer and Problem List (DT&PL), and explored patients' and clinicians' evaluations of the needs assessment process. Benefits of needs assessment using the DT&PL included the potential to detect hidden distress, allow opportunity for distress to be discussed, and to deliver outcomes to address problems. However, effectiveness and patient willingness to report all forms of distress could be hindered by: clinicians feeling ill-equipped to deal with 'non-physical' distress and patients questioning their appropriateness to do so; time constraints; insufficient support services and referral guidelines; inappropriate timing; and lack of follow-up. The benefits of a holistic needs assessment cannot be realised without matching time and frequency of administration to the dynamic nature of distress during cancer, and making changes to the context of delivery - for instance, providing protected time, increasing referral options and clinician training. Significant investment is needed to optimise potential benefits for patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Qualitative Release Assessment to Estimate the Likelihood of Henipavirus Entering the United Kingdom

    PubMed Central

    Snary, Emma L.; Ramnial, Vick; Breed, Andrew C.; Stephenson, Ben; Field, Hume E.; Fooks, Anthony R.

    2012-01-01

    The genus Henipavirus includes Hendra virus (HeV) and Nipah virus (NiV), for which fruit bats (particularly those of the genus Pteropus) are considered to be the wildlife reservoir. The recognition of henipaviruses occurring across a wider geographic and host range suggests the possibility of the virus entering the United Kingdom (UK). To estimate the likelihood of henipaviruses entering the UK, a qualitative release assessment was undertaken. To facilitate the release assessment, the world was divided into four zones according to location of outbreaks of henipaviruses, isolation of henipaviruses, proximity to other countries where incidents of henipaviruses have occurred and the distribution of Pteropus spp. fruit bats. From this release assessment, the key findings are that the importation of fruit from Zone 1 and 2 and bat bushmeat from Zone 1 each have a Low annual probability of release of henipaviruses into the UK. Similarly, the importation of bat meat from Zone 2, horses and companion animals from Zone 1 and people travelling from Zone 1 and entering the UK was estimated to pose a Very Low probability of release. The annual probability of release for all other release routes was assessed to be Negligible. It is recommended that the release assessment be periodically re-assessed to reflect changes in knowledge and circumstances over time. PMID:22328916

  19. Immunization Elicits Antigen-Specific Antibody Sequestration in Dorsal Root Ganglia Sensory Neurons

    PubMed Central

    Gunasekaran, Manojkumar; Chatterjee, Prodyot K.; Shih, Andrew; Imperato, Gavin H.; Addorisio, Meghan; Kumar, Gopal; Lee, Annette; Graf, John F.; Meyer, Dan; Marino, Michael; Puleo, Christopher; Ashe, Jeffrey; Cox, Maureen A.; Mak, Tak W.; Bouton, Chad; Sherry, Barbara; Diamond, Betty; Andersson, Ulf; Coleman, Thomas R.; Metz, Christine N.; Tracey, Kevin J.; Chavan, Sangeeta S.

    2018-01-01

    The immune and nervous systems are two major organ systems responsible for host defense and memory. Both systems achieve memory and learning that can be retained, retrieved, and utilized for decades. Here, we report the surprising discovery that peripheral sensory neurons of the dorsal root ganglia (DRGs) of immunized mice contain antigen-specific antibodies. Using a combination of rigorous molecular genetic analyses, transgenic mice, and adoptive transfer experiments, we demonstrate that DRGs do not synthesize these antigen-specific antibodies, but rather sequester primarily IgG1 subtype antibodies. As revealed by RNA-seq and targeted quantitative PCR (qPCR), dorsal root ganglion (DRG) sensory neurons harvested from either naïve or immunized mice lack enzymes (i.e., RAG1, RAG2, AID, or UNG) required for generating antibody diversity and, therefore, cannot make antibodies. Additionally, transgenic mice that express a reporter fluorescent protein under the control of Igγ1 constant region fail to express Ighg1 transcripts in DRG sensory neurons. Furthermore, neural sequestration of antibodies occurs in mice rendered deficient in neuronal Rag2, but antibody sequestration is not observed in DRG sensory neurons isolated from mice that lack mature B cells [e.g., Rag1 knock out (KO) or μMT mice]. Finally, adoptive transfer of Rag1-deficient bone marrow (BM) into wild-type (WT) mice or WT BM into Rag1 KO mice revealed that antibody sequestration was observed in DRG sensory neurons of chimeric mice with WT BM but not with Rag1-deficient BM. Together, these results indicate that DRG sensory neurons sequester and retain antigen-specific antibodies released by antibody-secreting plasma cells. Coupling this work with previous studies implicating DRG sensory neurons in regulating antigen trafficking during immunization raises the interesting possibility that the nervous system collaborates with the immune system to regulate antigen-mediated responses. PMID:29755449

  20. Qualitative assessment of attitudes and knowledge on preterm birth in Malawi and within country framework of care

    PubMed Central

    2014-01-01

    Background The overarching goal of this study was to qualitatively assess baseline knowledge and perceptions regarding preterm birth (PTB) and oral health in an at-risk, low resource setting surrounding Lilongwe, Malawi. The aims were to determine what is understood regarding normal length of gestation and how gestational age is estimated, to identify common language for preterm birth, and to assess what is understood as options for PTB management. As prior qualitative research had largely focused on patient or client-based focused groups, we primarily focused on groups comprised of community health workers (CHWs) and providers. Methods A qualitative study using focus-group discussions, incidence narrative, and informant interviews amongst voluntary participants. Six focus groups were comprised of CHWs, patient couples, midwives, and clinical officers (n = 33) at two rural health centers referring to Kamuzu Central Hospital. Semi-structured questions facilitated discussion of PTB and oral health (inclusive of periodontal disease), including definitions, perception, causation, management, and accepted interventions. Results Every participant knew of women who had experienced “a baby born too soon”, or preterm birth. All participants recognized both an etiology conceptualization and disease framework for preterm birth, distinguished PTB from miscarriage and macerated stillbirth, and articulated a willingness to engage in studies aimed at prevention or management. Identified gaps included: (1) discordance in the definition of PTB (i.e., 28–34 weeks or less than the 8th month, but with a corresponding fetal weight ranging 500 to 2300 grams); (2) utility and regional availability of antenatal steroids for prevention of preterm infant morbidity and mortality; (3) need for antenatal referral for at-risk women, or with symptoms of preterm birth. There was no evident preference for route of progesterone for the prevention of recurrent PTB. Conclusions Qualitative

  1. Strategies for carbon sequestration and reducing greenhouse gas emissions from nursery production systems

    USDA-ARS?s Scientific Manuscript database

    Currently two experiments are being conducted to determine the impact of the ornamental horticulture industry on GHG emissions and on C sequestration. One study focuses on the effect of nursery container size to begin indentifying components of the industry that may impact GHG emissions. In this stu...

  2. A Qualitative Description of Chronic Neck Pain has Implications for Outcome Assessment and Classification

    PubMed Central

    MacDermid, Joy C.; Walton, David M.; Bobos, Pavlos; Lomotan, Margaret; Carlesso, Lisa

    2016-01-01

    Background: Neck pain is common, but few studies have used qualitative methods to describe it. Purpose: To describe the quality, distribution and behavior of neck pain. Methods: Sixteen people (15 females; mean age = 33 years (range = 20-69)) with neck pain >3 months were interviewed using a semi-structured guide. Interview data were recorded and transcribed verbatim. Descriptive content analysis was performed by two authors. Participants then completed an electronic descriptive pain tool, placing icons (word and icon descriptors to describe quality) on anatomic diagrams to identify location of pain, and intensity ratings at each location. This data was triangulated with interviews. Results: Aching pain and stiffness in the posterior neck and shoulder region were the most common pain complaints. All patients reported more than one pain quality. Associated headache was common (11/16 people); but varied in location and pain quality; 13/16 reported upper extremity symptoms. Neuropathic characteristics (burning) or sensory disturbance (numbness/tingling) occurred in some patients, but were less common. Activities that involved lifting/carrying and psychological stress were factors reported as exacerbating pain. Physical activity was valued as essential to function, but also instigated exacerbations. Concordance between the structured pain tool and interviews enhanced trustworthiness of our results. Integrating qualitative findings with a previous classification system derived a 7-axis neck pain classification: source/context, sample subgroup, distribution, duration, episode pattern, pain/symptom severity, disability/participation restriction. Conclusions: Qualitative assessment and classification should consider the multiple dimensions of neck pain. PMID:28217199

  3. State-to-State Mode Specificity: Energy Sequestration and Flow Gated by Transition State.

    PubMed

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2015-12-23

    Energy flow and sequestration at the state-to-state level are investigated for a prototypical four-atom reaction, H2 + OH → H + H2O, using a transition-state wave packet (TSWP) method. The product state distribution is found to depend strongly on the reactant vibrational excitation, indicating mode specificity at the state-to-state level. From a local-mode perspective, it is shown that the vibrational excitation of the H2O product derives from two different sources, one attributable to the energy flow along the reaction coordinate into the newly formed OH bond and the other due to the sequestration of the vibrational energy in the OH spectator moiety during the reaction. The analysis provided a unified interpretation of some seemingly contradicting experimental observations. It is further shown that the transfer of vibrational energy from the OH reactant to H2O product is gated by the transition state, accomplished coherently by multiple TSWPs with the corresponding OH vibrational excitation.

  4. A qualitative exploration of oncology nurses' family assessment practices in Denmark and Australia.

    PubMed

    Coyne, Elisabeth; Dieperink, Karin B

    2017-02-01

    The nurses' ability to provide supportive care to the patient and the family is influenced by their family assessment skills, which provide them with understanding of the family needs and strengths. When a patient is diagnosed with cancer, it is the family who provides the long-term support for the patient, and nurses need to understand the family needs in order to provide holistic care. The objective of the present study is to understand the factors that influence nurses' family assessment practices in adult oncology setting in Denmark and Australia. An interpretive qualitative study was conducted guided by the family systems theory. Focus groups were completed with 62 nurses working in adult oncology areas in Denmark and Australia. A thematic analysis and a computer-generated concept mapping were completed to identify themes within the data. Overall, the nurses valued family as part of the patient care and worked to understand the family concerns. However, the family assessment process was unstructured and did not enable holistic family support. Nurses from both countries discussed that experience and ability to engage with the family influenced the nurse's role in family assessment. This study identified that nurses value family as part of patient care, however struggle to assess and support families during oncology care. There is a need for a structured assessment approach and education on family assessment, which could be used across the two countries and possibly internationally.

  5. Anthropogenic Impacts on Biological Carbon Sequestration in the Coastal Waters

    NASA Astrophysics Data System (ADS)

    Jiao, N.

    2016-02-01

    The well-known biological mechanism for carbon sequestration in the ocean is the biological pump (BP) which is driven by primary production initially in the surface water and then dependent on particulate organic carbon sinking process in the water column. In contrast microbial carbon pump (MCP) depends on microbial transformation of dissolved organic carbon (DOC) to refractory DOC (RDOC).Although the BP and the MCP are distinct mechanisms, they are intertwined. Both mechanisms should be considered regarding maximum sequestration of carbon in the ocean. Recent studies have showed that excess nutrients could facilitate the uptake of DOC and enhance both bacterial production and respiration. Bacterial growth efficiency increases with increasing nitrogen concentration to certain levels and then decreases thereafter, while the remaining DOC in the water usually decreases with increasing nitrogen concentration, suggesting that excess nitrogen could simulate uptake of DOC in the environment and thus have negative impacts on the ocean DOC storage.This is somehow against the case of the BP which is known to increase with increasing availability of nutrients. Another responsible factor is the nature of algal products. If it is labile, the organic carbon cannot be preserved in the environment.On top of that, labile organic carbon has priming effects for river discharged semi-labile DOC for bacterial respiration.That is, labile organic matter will become the incubator for bacteria. While bacteria respire DOC into CO2, they consume oxygen, and finally result in hypoxia. Under anoxic condition, anaerobic bacteria successively work on the rest of the organic carbon and produce harmful gasses such as methane and H2S. Such story did have happened during geological events in the history of the earth. The above processes not only result in ecological disasters but also reduce the capacity of carbon sequestration in the ocean. To achieve maximum carbon sinks, both BP and MCP should

  6. Toward optimal soil organic carbon sequestration with effects of agricultural management practices and climate change in Tai-Lake paddy soils of China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Liming; Zhuang, Qianlai; He, Yujie

    Understanding the impacts of climate change and agricultural management practices on soil organic carbon (SOC) dynamics is critical for implementing optimal farming practices and maintaining agricultural productivity. This study examines the influence of climate and agricultural management on carbon sequestration potentials in Tai-Lake Paddy soils of China using the DeNitrification-DeComposition (DNDC) model, with a high-resolution soil database (1:50,000). Model simulations considered the effects of no tillage, increasing manure application, increasing/decreasing of N-fertilizer application and crop residues, water management, and climatic shifts in temperature and precipitation. We found that the carbon sequestration potential for the 2.32 Mha paddy soils of themore » Tai-Lake region varied from 4.71 to 44.31 Tg C during the period 2001-2019, with an annual average SOC changes ranged from 107 to 1005 kg C ha -1 yr -1. The sequestration potential significantly increased with increasing application of N-fertilizer, manure, conservation tillage, and crop residues. To increase soil C sequestration in this region, no-tillage and increasing of crop residue return to soils and manure application are recommended. Our analysis of climate impacts on SOC sequestration suggests that the rice paddies in this region will continue to be a carbon sink under future warming conditions. In addition, because the region’s annual precipitation (>1200 mm) is high, we also recommend reducing irrigation water use for these rice paddies to conserve freshwater in the Tai-Lake region.« less

  7. How will Shrub Expansion Impact Soil Carbon Sequestration in Arctic Tundra?

    NASA Astrophysics Data System (ADS)

    Czimczik, C. I.; Holden, S. R.; He, Y.; Randerson, J. T.

    2015-12-01

    Multiple lines of evidence suggest that plant productivity, and especially shrub abundance, is increasing in the Arctic in response to climate change. This greening is substantiated by increases in the Normalized Difference Vegetation Index, repeat photography and field observations. The implications of a greener Arctic on carbon sequestration by tundra ecosystems remain poorly understood. Here, we explore existing datasets of plant productivity and soil carbon stocks to quantify how greening, and in particular an expansion of woody shrubs, may translate to the sequestration of carbon in arctic soils. As an estimate of carbon storage in arctic tundra soils, we used the Northern Circumpolar Soil Carbon Database v2. As estimates of tundra type and productivity, we used the Circumpolar Arctic Vegetation map as well as the MODIS and Landsat Vegetation Continuous Fields, and MODIS GPP/NPP (MOD17) products. Preliminary findings suggest that in graminoid tundra and erect-shrub tundra higher shrub abundance is associated with greater soil carbon stocks. However, this relationship between shrub abundance and soil carbon is not apparent in prostrate-shrub tundra, or when comparing across graminoid tundra, erect-shrub tundra and prostrate-shrub tundra. Uncertainties originate from the extreme spatial (vertical and horizontal) heterogeneity of organic matter distribution in cryoturbated soils, the fact that (some) permafrost carbon stocks, e.g. yedoma, reflect previous rather than current vegetative cover, and small sample sizes, esp. in the High Arctic. Using Vegetation Continuous Fields and MODIS GPP/NPP (MOD17), we develop quantitative trajectories of soil carbon storage as a function of shrub cover and plant productivity in the Arctic (>60°N). We then compare our greening-derived carbon sequestration estimates to projected losses of carbon from thawing permafrost. Our findings will reduce uncertainties in the magnitude and timing of the carbon-climate feedback from the

  8. Potential and cost of carbon sequestration in the Tanzanian forest sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makundi, Willy R.

    2001-01-01

    The forest sector in Tanzania offers ample opportunities to reduce greenhouse gas emissions (GHG) and sequestered carbon (C) in terrestrial ecosystems. More than 90% of the country's demand for primary energy is obtained from biomass mostly procured unsustainably from natural forests. This study examines the potential to sequester C through expansion of forest plantations aimed at reducing the dependence on natural forest for wood fuel production, as well as increase the country's output of industrial wood from plantations. These were compared ton conservation options in the tropical and miombo ecosystems. Three sequestration options were analyzed, involving the establishment of shortmore » rotation and long rotation plantations on about 1.7 x 106 hectares. The short rotation community forest option has a potential to sequester an equilibrium amount of 197.4 x 106 Mg C by 2024 at a net benefit of $79.5 x 106, while yielding a NPV of $0.46 Mg-1 C. The long rotation options for softwood and hardwood plantations will reach an equilibrium sequestration of 5.6 and 11.8 x 106 Mg C at a negative NPV of $0.60 Mg-1 C and $0.32 Mg-1 C. The three options provide cost competitive opportunities for sequestering about 7.5 x 106 Mg C yr -1 while providing desired forest products and easing the pressure on the natural forests in Tanzania. The endowment costs of the sequestration options were all found to be cheaper than the emission avoidance cost for conservation options which had an average cost of $1.27 Mg-1 C, rising to $ 7.5 Mg-1 C under some assumptions on vulnerability to encroachment. The estimates shown here may represent the upper bound, because the actual potential will be influenced by market prices for inputs and forest products, land use policy constraints and the structure of global C transactions.« less

  9. Using experimental and geospatial data to estimate regional carbon sequestration potential under no-till management

    USGS Publications Warehouse

    Tan, Z.; Lal, R.; Liu, S.

    2006-01-01

    Conservation management of croplands at the plot scale has demonstrated a great potential to mitigate the greenhouse effect through sequestration of atmospheric carbon (C) into soil. This study estimated the potential of soil to sequester C through the conversion of croplands from conventional tillage (CT) to no-till (NT) in the East Central United States between 1992 and 2012. This study used the baseline soil organic C (SOC) pool (SOCP) inventory and the empirical models that describe the relationships of the SOCP under CT and NT, respectively, to their baseline SOCP in the upper 30-cm depth of soil. The baseline SOCP were obtained from the State Soil Geographic database, and the cropland distribution map was generated from the 1992 National Land Cover Database. The results indicate that if all the croplands under CT in 1992 were converted to NT, the SOCP would increase by 16.8% by 2012, which results in a total C sink of 136 Tg after 20 years. A greater sequestration rate would occur in soils with lower baseline SOCP, but the sink strength would be weaker with increasing SOCP levels. The CT-induced C sources tend to become larger in soils with higher baseline levels, which can be significantly reduced by adopting NT. We conclude that baseline SOC contents are an indicator of C sequestration potential with NT practices. ?? 2006 Lippincott Williams & Wilkins, Inc.

  10. Global carbon sequestration in tidal, saline wetland soils

    USGS Publications Warehouse

    Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C.

    2003-01-01

    Wetlands represent the largest component of the terrestrial biological carbon pool and thus play an important role in global carbon cycles. Most global carbon budgets, however, have focused on dry land ecosystems that extend over large areas and have not accounted for the many small, scattered carbon-storing ecosystems such as tidal saline wetlands. We compiled data for 154 sites in mangroves and salt marshes from the western and eastern Atlantic and Pacific coasts, as well as the Indian Ocean, Mediterranean Ocean, and Gulf of Mexico. The set of sites spans a latitudinal range from 22.4??S in the Indian Ocean to 55.5??N in the northeastern Atlantic. The average soil carbon density of mangrove swamps (0.055 ?? 0.004 g cm-3) is significantly higher than the salt marsh average (0.039 ?? 0.003 g cm-3). Soil carbon density in mangrove swamps and Spartina patens marshes declines with increasing average annual temperature, probably due to increased decay rates at higher temperatures. In contrast, carbon sequestration rates were not significantly different between mangrove swamps and salt marshes. Variability in sediment accumulation rates within marshes is a major control of carbon sequestration rates masking any relationship with climatic parameters. Globally, these combined wetlands store at least 44.6 Tg C yr-1 and probably more, as detailed areal inventories are not available for salt marshes in China and South America. Much attention has been given to the role of freshwater wetlands, particularly northern peatlands, as carbon sinks. In contrast to peatlands, salt marshes and mangroves release negligible amounts of greenhouse gases and store more carbon per unit area. Copyright 2003 by the American Geophysical Union.

  11. Feasibility of CO2 Sequestration as a Closure Option for Underground Coal Mine

    NASA Astrophysics Data System (ADS)

    Ray, Sutapa; Dey, Kaushik

    2018-04-01

    The Kyoto Protocol, 1998, was signed by member countries to reduce greenhouse gas (GHG) emissions to a minimum acceptable level. India agreed to Kyoto Protocol since 2002 and started its research on GHG mitigation. Few researchers have carried out research work on CO2 sequestration in different rock formations. However, CO2 sequestration in abandoned mines has yet not drawn its attention largely. In the past few years or decades, a significant amount of research and development has been done on Carbon Capture and Storage (CCS) technologies, since it is a possible solution for assuring less emission of CO2 to the atmosphere from power plants and some other major industrial plants. CCS mainly involves three steps: (a) capture and compression of CO2 from source (power plants and industrial areas), (b) transportation of captured CO2 to the storage mine and (c) injecting CO2 into underground mine. CO2 is stored at an underground mine mainly in three forms: (1) adsorbed in the coals left as pillars of the mine, (2) absorbed in water through a chemical process and (3) filled in void with compressed CO2. Adsorption isotherm is a graph developed between the amounts of adsorbate adsorbed on the surface of adsorbent and the pressure at constant temperature. Various types of adsorption isotherms are available, namely, Freundlich, Langmuir and BET theory. Indian coal is different in origin from most of the international coal deposits and thus demands isotherm experiments of the same to arrive at the right adsorption isotherm. To carry out these experiments, adsorption isotherm set up is fabricated in the laboratory with a capacity to measure the adsorbed volume up to a pressure level of 100 bar. The coal samples are collected from the pillars and walls of the underground coal seam using a portable drill machine. The adsorption isotherm experiments have been carried out for the samples taken from a mine. From the adsorption isotherm experiments, Langmuir Equation is found to be

  12. What can acute medicine learn from qualitative methods?

    PubMed

    Heasman, Brett; Reader, Tom W

    2015-10-01

    The contribution of qualitative methods to evidence-based medicine is growing, with qualitative studies increasingly used to examine patient experience and unsafe organizational cultures. The present review considers qualitative research recently conducted on teamwork and organizational culture in the ICU and also other acute domains. Qualitative studies have highlighted the importance of interpersonal and social aspects of healthcare on managing and responding to patient care needs. Clear/consistent communication, compassion, and trust underpin successful patient-physician interactions, with improved patient experiences linked to patient safety and clinical effectiveness across a wide range of measures and outcomes. Across multidisciplinary teams, good communication facilitates shared understanding, decision-making and coordinated action, reducing patient risk in the process. Qualitative methods highlight the complex nature of risk management in hospital wards, which is highly contextualized to the demands and resources available, and influenced by multilayered social contexts. In addition to augmenting quantitative research, qualitative investigations enable the investigation of questions on social behaviour that are beyond the scope of quantitative assessment alone. To develop improved patient-centred care, health professionals should therefore consider integrating qualitative procedures into their existing assessments of patient/staff satisfaction.

  13. Milkweed butterfly resistance to plant toxins is linked to sequestration, not coping with a toxic diet.

    PubMed

    Petschenka, Georg; Agrawal, Anurag A

    2015-11-07

    Insect resistance to plant toxins is widely assumed to have evolved in response to using defended plants as a dietary resource. We tested this hypothesis in the milkweed butterflies (Danaini) which have progressively evolved higher levels of resistance to cardenolide toxins based on amino acid substitutions of their cellular sodium-potassium pump (Na(+)/K(+)-ATPase). Using chemical, physiological and caterpillar growth assays on diverse milkweeds (Asclepias spp.) and isolated cardenolides, we show that resistant Na(+)/K(+)-ATPases are not necessary to cope with dietary cardenolides. By contrast, sequestration of cardenolides in the body (as a defence against predators) is associated with the three levels of Na(+)/K(+)-ATPase resistance. To estimate the potential physiological burden of cardenolide sequestration without Na(+)/K(+)-ATPase adaptations, we applied haemolymph of sequestering species on isolated Na(+)/K(+)-ATPase of sequestering and non-sequestering species. Haemolymph cardenolides dramatically impair non-adapted Na(+)/K(+)-ATPase, but had systematically reduced effects on Na(+)/K(+)-ATPase of sequestering species. Our data indicate that major adaptations to plant toxins may be evolutionarily linked to sequestration, and may not necessarily be a means to eat toxic plants. Na(+)/K(+)-ATPase adaptations thus were a potential mechanism through which predators spurred the coevolutionary arms race between plants and insects. © 2015 The Author(s).

  14. Milkweed butterfly resistance to plant toxins is linked to sequestration, not coping with a toxic diet

    PubMed Central

    Petschenka, Georg; Agrawal, Anurag A.

    2015-01-01

    Insect resistance to plant toxins is widely assumed to have evolved in response to using defended plants as a dietary resource. We tested this hypothesis in the milkweed butterflies (Danaini) which have progressively evolved higher levels of resistance to cardenolide toxins based on amino acid substitutions of their cellular sodium–potassium pump (Na+/K+-ATPase). Using chemical, physiological and caterpillar growth assays on diverse milkweeds (Asclepias spp.) and isolated cardenolides, we show that resistant Na+/K+-ATPases are not necessary to cope with dietary cardenolides. By contrast, sequestration of cardenolides in the body (as a defence against predators) is associated with the three levels of Na+/K+-ATPase resistance. To estimate the potential physiological burden of cardenolide sequestration without Na+/K+-ATPase adaptations, we applied haemolymph of sequestering species on isolated Na+/K+-ATPase of sequestering and non-sequestering species. Haemolymph cardenolides dramatically impair non-adapted Na+/K+-ATPase, but had systematically reduced effects on Na+/K+-ATPase of sequestering species. Our data indicate that major adaptations to plant toxins may be evolutionarily linked to sequestration, and may not necessarily be a means to eat toxic plants. Na+/K+-ATPase adaptations thus were a potential mechanism through which predators spurred the coevolutionary arms race between plants and insects. PMID:26538594

  15. Grassland to shrubland state transitions enhance carbon sequestration in the northern Chihuahuan Desert.

    PubMed

    Petrie, M D; Collins, S L; Swann, A M; Ford, P L; Litvak, M E

    2015-03-01

    The replacement of native C4 -dominated grassland by C3 -dominated shrubland is considered an ecological state transition where different ecological communities can exist under similar environmental conditions. These state transitions are occurring globally, and may be exacerbated by climate change. One consequence of the global increase in woody vegetation may be enhanced ecosystem carbon sequestration, although the responses of arid and semiarid ecosystems may be highly variable. During a drier than average period from 2007 to 2011 in the northern Chihuahuan Desert, we found established shrubland to sequester 49 g C m(-2) yr(-1) on average, while nearby native C4 grassland was a net source of 31 g C m(-2) yr(-1) over this same period. Differences in C exchange between these ecosystems were pronounced--grassland had similar productivity compared to shrubland but experienced higher C efflux via ecosystem respiration, while shrubland was a consistent C sink because of a longer growing season and lower ecosystem respiration. At daily timescales, rates of carbon exchange were more sensitive to soil moisture variation in grassland than shrubland, such that grassland had a net uptake of C when wet but lost C when dry. Thus, even under unfavorable, drier than average climate conditions, the state transition from grassland to shrubland resulted in a substantial increase in terrestrial C sequestration. These results illustrate the inherent tradeoffs in quantifying ecosystem services that result from ecological state transitions, such as shrub encroachment. In this case, the deleterious changes to ecosystem services often linked to grassland to shrubland state transitions may at least be partially offset by increased ecosystem carbon sequestration. © 2014 John Wiley & Sons Ltd.

  16. Fuel-Flexible Gasification-Combustion Technology for Production of Hydrogen and Sequestration-Ready Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizeq, George; West, Janice; Frydman, Arnaldo

    Electricity produced from hydrogen in fuel cells can be highly efficient relative to competing technologies and has the potential to be virtually pollution free. Thus, fuel cells may become an ideal solution to this nation's energy needs if one has a satisfactory process for producing hydrogen from available energy resources such as coal, and low-cost alternative feedstocks such as biomass. GE EER is developing an innovative fuel-flexible advanced gasification-combustion (AGC) technology for production of hydrogen for fuel cells or combustion turbines, and a separate stream of sequestration-ready CO2. The AGC module can be integrated into a number of Vision- 21more » power systems. It offers increased energy efficiency relative to conventional gasification and combustion systems and near-zero pollution. The R&D on the AGC technology is being conducted under a Vision-21 award from the U.S. DOE NETL with co-funding from GE EER, Southern Illinois University at Carbondale (SIU-C), and the California Energy Commission (CEC). The AGC technology converts coal and air into three separate streams of pure hydrogen, sequestration-ready CO2, and high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The three-year program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. Process and kinetic modeling studies as well as an economic assessment will also be performed. This paper provides an overview of the program and its objectives, and discusses first-year R&D activities, including design of experimental facilities and results from initial tests and modeling studies. In particular, the paper describes the design of the bench-scale facility and initial process modeling data. In addition, a process flow diagram is shown for a complete plant incorporating the AGC module with other Vision-21 plant components to maximize hydrogen production and process efficiency.« less

  17. Geologic framework for the national assessment of carbon dioxide storage resources: U.S. Gulf Coast: Chapter H in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Roberts-Ashby, Tina L.; Brennan, Sean T.; Buursink, Marc L.; Covault, Jacob A.; Craddock, William H.; Drake II, Ronald M.; Merrill, Matthew D.; Slucher, Ernie R.; Warwick, Peter D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.

    2014-01-01

    This report presents 27 storage assessment units (SAUs) within the United States (U.S.) Gulf Coast. The U.S. Gulf Coast contains a regionally extensive, thick succession of clastics, carbonates, salts, and other evaporites that were deposited in a highly cyclic depositional environment that was subjected to a fluctuating siliciclastic sediment supply and transgressive and regressive sea levels. At least nine major depositional packages contain porous strata that are potentially suitable for geologic carbon dioxide (CO2) sequestration within the region. For each SAU identified within these packages, the areal distribution of porous rock that is suitable for geologic CO2 sequestration is discussed, along with a description of the geologic characteristics that influence the potential CO2 storage volume and reservoir performance. These characteristics include reservoir depth, gross thickness, net-porous thickness, porosity, permeability, and groundwater salinity. Additionally, a characterization of the overlying regional seal for each SAU is presented. On a case-by-case basis, strategies for estimating the pore volume existing within structurally and (or) stratigraphically closed traps are also presented. Geologic information presented in this report has been employed to calculate potential storage capacities for CO2 sequestration in the SAUs that are assessed herein, although complete assessment results are not contained in this report.

  18. Qualitative Versus Quantitative Mammographic Breast Density Assessment: Applications for the US and Abroad

    PubMed Central

    Destounis, Stamatia; Arieno, Andrea; Morgan, Renee; Roberts, Christina; Chan, Ariane

    2017-01-01

    Mammographic breast density (MBD) has been proven to be an important risk factor for breast cancer and an important determinant of mammographic screening performance. The measurement of density has changed dramatically since its inception. Initial qualitative measurement methods have been found to have limited consistency between readers, and in regards to breast cancer risk. Following the introduction of full-field digital mammography, more sophisticated measurement methodology is now possible. Automated computer-based density measurements can provide consistent, reproducible, and objective results. In this review paper, we describe various methods currently available to assess MBD, and provide a discussion on the clinical utility of such methods for breast cancer screening. PMID:28561776

  19. Carbon Sequestration and Peat Accretion Processes in Peatland Systems: A North-South Comparison

    NASA Astrophysics Data System (ADS)

    Richardson, C. J.; Wang, H.; Bridgham, S. D.

    2012-12-01

    Millions of hectares of peatlands exist in the U.S. and Canada but few comparisons have been made on the process controlling peat accretion, carbon sequestration and GHG losses across latitudinal gradients. Historic threats to carbon sequestration for these areas have been drainage and conversion to agriculture and forestry, which promotes the decomposition of the organic matter in the soil, leading to accelerated soil subsidence, severe carbon losses, and accelerated transport of C and nutrients to adjoining ecosystems. A more recent and insidious threat to the survival of peatlands worldwide is the increased temperature and drought conditions projected for many areas of global peatlands (IPCC 2007). A comparison of carbon sequestration rates and controlling processes for southeastern shrub bogs, the Florida Everglades and selected peatlands of the northern US and Canada under current climatic conditions reveals several major differences in controlling factors and rates of sequestration and carbon flux. Numerous studies have shown that drought or drainage can unlock historically stored carbon, thus releasing more CO2 ¬ and dissolved organic carbon (Blodau et al. 2004; Furukawa et al. 2005; Von Arnold et al. 2005; Hirano et al. 2007), and such effects might last for decades (Fenner & Freeman 2011). The main driver of this process is the O2 introduced by drought or drainage, which will increase the activity of phenol oxidase, then accelerate the decomposition of phenol compounds, which is generally considered the "enzymatic latch" for carbon storage in peatlands (Freeman et al. 2001). However, our recent studies in southeastern peatlands along the coast of North Carolina have found that drought or drainage does not affect CO2 emission in some southern peatlands where the initial water level is below the ground surface (unsaturated peats), as polyphenol increases rather than decreases. Our results suggest that additional controlling factors, rather than anoxia exist

  20. Estimates of Carbon Sequestration in Tidal Coastal Wetlands Along the US east Coast

    EPA Science Inventory

    Globally, salt marshes are reported to sequester carbon (210 g C m-2 y -1), and along with mangroves in the US, they are reported to account for 1–2 % of the carbon sink for the conterminous US. Using the published salt marsh carbon sequestration rate and National Wetland Invent...