Science.gov

Sample records for qualite applicable au

  1. Qualitative electroless Ni/Au plating considerations for the solder mask on top of sequential build-up layers

    NASA Astrophysics Data System (ADS)

    Siau, Sam; Vervaet, Alfons; Degrendele, Lieven; Baets, Johan De; Calster, Andre Van

    2006-02-01

    Advanced printed circuit boards (PCBs) with sequential build-up (SBU) layers require alternating dielectric and copper layers on top of a core substrate. This can be achieved by lamination of resin coated copper (RCC) or by coating of dielectric polymers followed by copper deposition. The plating of electroless Ni/Au used as a solderability preservative on top of sequential build-up layers is investigated. For this application a solder mask polymer has to be applied in order to separate solder pads. Experiments showed that on parts of the underlying build-up layer exposed to the electroless Ni plating solution electroless Ni can grow. This overplating is caused by the remains of colloidal Pd/Sn catalyst on top of the build-up layer from preceding electroless Cu deposition. At very small features skipping of the plating can also take place. The overplating and skipping phenomena are influenced by a number of parameters, such as the temperature, the concentration of the stabilizer and pH. The dimensions of features on the board and the thickness of the solder-mask polymer also influence skipping. Based on qualitative analyses of the skipping and overplating phenomena rules of thumb for the solder mask design based on the plating conditions are proposed.

  2. Validity in Qualitative Research: Application of Safeguards

    ERIC Educational Resources Information Center

    Daytner, Katrina M.

    2006-01-01

    The construct of validity has received considerable attention in qualitative methods literature (Denzin, 1989; Erickson, 1986; Geertz, 1973; Goetz & LeCompte, 1984; Howe & Eisenhart, 1990; Maxwell, 1992; Smith & Glass, 1987). Much of the attention has been focused upon the issue of whether qualitative results and interpretations accurately reflect…

  3. New ideally absorbing Au plasmonic nanostructures for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zakomirnyi, Vadim I.; Rasskazov, Ilia L.; Karpov, Sergey V.; Polyutov, Sergey P.

    2017-01-01

    In this paper a new set of plasmonic nanostructures operating at the conditions of an ideal absorption (Grigoriev et al., 2015 [1]) was proposed for novel biomedical applications. We consider spherical x/Au nanoshells and Au/x/Au nanomatryoshkas, where 'x' changes from conventional Si and SiO2 to alternative plasmonic materials (Naik and Shalaev, 2013 [2]), such as zinc oxide doped with aluminum, gallium and indium tin oxide. The absorption peak of proposed nanostructures lies within 700-1100 nm wavelength region and corresponds to the maximal optical transparency of hemoglobin and melanin as well as to the radiation frequency of available pulsed medical lasers. It was shown that the ideal absorption takes place in a given wavelength region for Au coatings with thickness less than 12 nm. In this case finite quantum size effects for metallic nanoshells play a significant role. The mathematical model for the search of the ideal absorption conditions was modified by taking into account the finite quantum size effects.

  4. Fe/Au Core-Shell Nanoparticles for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Sra, Amandeep; Leslie-Pelecky, Diandra

    2009-10-01

    The physical properties of nanoparticles, including size, composition and surface chemistry, greatly influence biological and pharmacological properties and, ultimately, their clinical applications. Superparamagnetic iron oxide nanoparticles are widely used for applications such as MRI contrast agents, drug delivery via magnetic targeting and hyperthermia due to their chemical stability and biocompatibility; however, enhancing the saturation magnetization (Ms) of nanoparticles would produce greater sensitivity. Our design strategy involves a bottom-up wet chemistry approach to the synthesis of Fe nanoparticles. Specific advantages of Fe are the high value of Ms (210 emu/g in bulk) coupled with low toxicity; however, Fe nanoparticles must be protected from oxidation, which causes a dramatic reduction in Ms. To circumvent oxidation, Fe nanoparticles are coated with a Au shell that prevents the oxidation of the magnetic core and also provides the nanoparticles with plasmonic properties for optical stimulation. Ligands of various functionalities can be introduced through the well established Au-thiol surface chemistry for different biomedical applications while maintaining the magnetic functionality of the Fe core. In this presentation, we will discuss the physical, chemical and magnetic properties of our Fe/Au nanoparticles and their resistance to oxidation.

  5. Qualitative Reasoning for Additional Die Casting Applications

    SciTech Connect

    R. Allen Miller; Dehua Cui; Yuming Ma

    2003-05-28

    If manufacturing incompatibility of a product can be evaluated at the early product design stage, the designers can modify their design to reduce the effect of potential manufacturing problems. This will result in fewer manufacturing problems, less redsign, less expensive tooling, lower cost, better quality, and shorter development time. For a given design, geometric reasoning can predict qualitatively the behaviors of a physical manufacturing process by representing and reasoning with incomplete knowledge of the physical phenomena. It integrates a design with manufacturing processes to help designers simultaneously consider design goals and manufacturing constraints during the early design stage. The geometric reasoning approach can encourage design engineers to qualitatively evaluate the compatibility of their design with manufacturing limitations and requirements.

  6. Development of Pt-Au-Graphene-Carbon Nanotube Composite for Fuel Cells and Biosensors Applications

    DTIC Science & Technology

    2011-02-11

    1 Project Title:- Development of Pt-Au-Graphene- Carbon nanotube composites for fuel cells and biosensors applications Objectives:- This...project addresses the architectures needed for the processing of Pt-Au-graphene- carbon nanotube (Pt-Au/f-G/f-CNT) nanocomposites and aims at the...05-2010 4. TITLE AND SUBTITLE Development of Pt-Au-Graphene- Carbon nanotube composite for fuel cells and biosensors applications 5a. CONTRACT

  7. [Preliminarily application of content analysis to qualitative nursing data].

    PubMed

    Liang, Shu-Yuan; Chuang, Yeu-Hui; Wu, Shu-Fang

    2012-10-01

    Content analysis is a methodology for objectively and systematically studying the content of communication in various formats. Content analysis in nursing research and nursing education is called qualitative content analysis. Qualitative content analysis is frequently applied to nursing research, as it allows researchers to determine categories inductively and deductively. This article examines qualitative content analysis in nursing research from theoretical and practical perspectives. We first describe how content analysis concepts such as unit of analysis, meaning unit, code, category, and theme are used. Next, we describe the basic steps involved in using content analysis, including data preparation, data familiarization, analysis unit identification, creating tentative coding categories, category refinement, and establishing category integrity. Finally, this paper introduces the concept of content analysis rigor, including dependability, confirmability, credibility, and transferability. This article elucidates the content analysis method in order to help professionals conduct systematic research that generates data that are informative and useful in practical application.

  8. Qualitative research in CKD: an overview of methods and applications.

    PubMed

    Tong, Allison; Winkelmayer, Wolfgang C; Craig, Jonathan C

    2014-09-01

    There recently has been a paradigm shift in health care policies and research toward greater patient centeredness. A core tenet of patient-centered care is that patients' needs, values, and preferences are respected in clinical decision making. Qualitative research methods are designed to generate insights about patients' priorities, values, and beliefs. However, in the past 5 years (2008-2013), only 23 (0.4%) of the 6,043 original articles published in the top 5 nephrology journals (assessed by impact factor) were qualitative studies. Given this observation, it seems important to promote awareness and better understanding within the nephrology community about qualitative research and how the findings can contribute to improving the quality and outcomes of care for patients with chronic kidney disease. This article outlines examples of how qualitative research can generate insight into the values and preferences of patients with chronic kidney disease, provides an overview of qualitative health research methods, and discusses practical applications for research, practice, and policy.

  9. Nitrite ion-induced fluorescence quenching of luminescent BSA-Au(25) nanoclusters: mechanism and application.

    PubMed

    Unnikrishnan, Binesh; Wei, Shih-Chun; Chiu, Wei-Jane; Cang, Jinshun; Hsu, Pang-Hung; Huang, Chih-Ching

    2014-05-07

    Fluorescence quenching is an interesting phenomenon which is highly useful in developing fluorescence based sensors. A thorough understanding of the fluorescence quenching mechanism is essential to develop efficient sensors. In this work, we investigate different aspects governing the nitrite ion-induced fluorescence quenching of luminescent bovine serum albumin stabilized gold nanoclusters (BSA-Au NCs) and their application for detection of nitrite in urine. The probable events leading to photoluminescence (PL) quenching by nitrite ions were discussed on the basis of the results obtained from ultraviolet-visible (UV-Vis) absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), fluorescence measurements, circular dichroism (CD) spectroscopy, zeta potential and dynamic light scattering (DLS) studies. These studies suggested that PL quenching mainly occurred through the oxidation of Au(0) atoms to Au(i) atoms in the core of BSA-Au NCs mediated by nitrite ions. The interference caused by certain species such as Hg(2+), Cu(2+), CN(-), S(2-), glutathione, cysteine, etc. during the nitrite determination by fluorescence quenching was eliminated by using masking agents and optimising the conditions. Based on these findings we proposed a BSA-Au NC-modified membrane based sensor which would be more convenient for the real life applications such as nitrite detection in urine samples. The BSA-Au NC-modified nitrocellulose membrane (NCM) enabled the detection of nitrite at a level as low as 100 nM in aqueous solutions. This Au NC-based paper probe was validated to exhibit good performance for nitrite analysis in environmental water and urine samples, which makes it useful in practical applications.

  10. Polymers effects on synthesis of AuNPs, and Au/Ag nanoalloys: indirectly generated AuNPs and versatile sensing applications including anti-leukemic agent.

    PubMed

    Jahan, Shanaz; Mansoor, Farrukh; Kanwal, Shamsa

    2014-03-15

    Polymers either serve as shielding or capping agents to restrict the nanoparticle size. This study demonstrates the polymer depositions and their effects in synthesis and sharp stabilization of gold nanoparticles (AuNPs) and to develop gold/silver nanoalloys (Au/Ag nanoalloys). Effects of different polymers are tested to justify their role in synthesis and stability of phloroglucinol (PG) coated AuNPs and Au/Ag nanoalloys. Cationic and anionic i.e. [Polydiallyldimethylammonium](+) (PDDA), [Polyethyleneimine](+) (PEI), [Polystyrene sulfonate](2-) (PSS) and neutral polymer Polychlorotriflouroethylene (PCTFE) produce praiseworthy stable AuNPs and Au/Ag nanoalloy. To prove polymer effects characterization protocols including UV-vis, Fluorescence (PL), IR and AFM imaging are performed to fully investigate the mechanism and size characteristics of these nanoparticles/nanoalloys. In this study sharp size controlling/sheilding effects were observed particularly with cationic polymers simply through the favorable electrostatic interactions with the terminal ends of PG Potent/significant detection of doxorubicin (DOX, an antileukemic agent) via fluorescence resonance energy transfer (FRET) between PEI shielded AuNPs (AuNPEI) and DOX was achieved upto 10 pM level, while PDDA protected AuNPs facilitated the detection of ascorbic acid based on fluorescence enhancement effects in wide range (10-200 nM) and with detection limit of 200 pM. Similarly sensing performance of PEI stabilized Au/Ag nanoalloys on addition of halides (Cl(-), Br(-), I(-)) is evaluated through red shifted SPR along with continuous increase in absorbance and also through AFM. Moreover the addition of halide ions also helped the regeneration of AuNPs by taking away silver from the Au/Ag nanoalloys enabling their detections upto subnanomolar levels.

  11. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications

    NASA Astrophysics Data System (ADS)

    Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun

    2016-10-01

    Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m‑3 and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells.

  12. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications.

    PubMed

    Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun

    2016-10-13

    Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m(-3) and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells.

  13. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications

    PubMed Central

    Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun

    2016-01-01

    Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m−3 and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells. PMID:27734945

  14. Au dotted magnetic network nanostructure and its application for on-site monitoring femtomolar level pesticide.

    PubMed

    Yang, Tianxi; Guo, Xiaoyu; Wang, Hui; Fu, Shuyue; Yu, Jie; Wen, Ying; Yang, Haifeng

    2014-04-09

    A novel magnetically responsive and surface-enhanced Raman spectroscopy (SERS) active nanocomposite is designed and prepared by direct grafting of Au nanoparticles onto the surface of magnetic network nanostructure (MNN) with the help of a nontoxic and environmentally friendly reagent of inositol hexakisphosphate shortly named as IP6. The presence of IP6 as a stabilizer and a bridging agent could weave Fe3O4 nanoparticles (NPs) into magnetic network nanostructure, which is easily dotted with Au nanoparticles (Au NPs). It has been shown firstly that the huge Raman enhancement of Au-MNN is reached by an external magnetic collection. Au-MNN presenting the large surface and high detection sensitivity enables it to exhibit multifunctional applications involving sufficient adsorption of dissolved chemical species for enrichment, separation, as well as a Raman amplifier for the analysis of trace pesticide residues at femtomolar level by a portable Raman spectrometer. Therefore, such multifunctional nanocomposites can be developed as a smart and promising nanosystem that integrates SERS approach with an easy assay for concentration by an external magnet for the effective on-site assessments of agricultural and environmental safety.

  15. Magnetic susceptibility and hardness of Au-xPt-yNb alloys for biomedical applications.

    PubMed

    Uyama, Emi; Inui, Shihoko; Hamada, Kenichi; Honda, Eiichi; Asaoka, Kenzo

    2013-09-01

    Metal devices in the human body induce serious metal artifacts in magnetic resonance imaging (MRI). Metals artifacts are mainly caused by a volume magnetic susceptibility (χv) mismatch between a metal device and human tissue. In this research, Au-xPt-yNb alloys were developed for fabricating MRI artifact-free biomedical metal devices. The magnetic properties, hardness and phase constitutions of these alloys were investigated. The Au-xPt-8Nb alloys showed satisfactory χv values. Heat treatments did not clearly change the χv values for Au-xPt-8Nb alloys. The Vickers hardness (HV) of these two alloys was much higher than that of high-Pt alloys; moreover, aging at 700°C increased the HV values of these two alloys. A dual phase structure consisting of face-centered cubic α1 and α2 phases was observed and aging at 700°C promoted phase separation. The Au-5Pt-8Nb and Au-10Pt-8Nb alloys showed satisfactory χv values and high hardness and are thus suggested as candidates for MRI artifact-free alloys for biomedical applications.

  16. The application of qualitative research findings to oncology nursing practice.

    PubMed

    Cuthbert, Colleen Ann; Moules, Nancy

    2014-11-01

    The Oncology Nursing Society (ONS) has established an ambitious research agenda and professional priorities based on a survey by LoBiondo-Wood et al. (2014). With the overall goal to "improve cancer care and the lives of individuals with cancer" (Moore & Badger, 2014, p. 93) through research activities, translating those research findings to direct clinical practice can be overwhelming. As clinicians, understanding how to critique research for quality prior to incorporating research findings into practice is important. The ultimate goal in this critique is to ensure that decisions made about patient care are based on strong evidence. However, the process for appraisal of qualitative research can be ambiguous and often contradictory as a result of the elusive aspect of quality in qualitative research methods (Seale, 1999). In addition, with more than 100 tools available to evaluate qualitative research studies (Higgins & Green, 2011), a lack of consensus exists on how to critically appraise research findings.

  17. Green synthesis and applications of Au-Ag bimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Meena Kumari, M.; Jacob, John; Philip, Daizy

    2015-02-01

    This paper reports for the first time the synthesis of bimetallic nanoparticles at room temperature using the fruit juice of pomegranate. Simultaneous reduction of gold and silver ions in different molar ratios leads to the formation of alloy as well as core-shell nanostructures. The nanoparticles have been characterized using UV-vis spectroscopy, transmission electron microscopy, Fourier Transform Infrared Spectroscopy and X-ray diffraction. The synthesized alloy particles are used as catalysts in the reduction of 2-, 3-, 4-nitrophenols to the corresponding amines and in the degradation of methyl orange. The reduction kinetics for all the reactions follows pseudo-first order. The rate constants follow the order k4-nitrophenol < k2-nitrophenol < k3-nitrophenol. Thermal conductivity is measured as a function of volume fraction and it is observed that the incorporation of the alloy nanoparticles enhances the thermal conductivity of the base fluid (water) showing nanofluid application. The nitric oxide and hydroxyl radical scavenging activity shown by the nanoparticles promise the potential application in biomedical field.

  18. Colloidal Au-enhanced surface plasmon resonance imaging: application in a DNA hybridization process

    NASA Astrophysics Data System (ADS)

    Manera, M. G.; Spadavecchia, J.; Taurino, A.; Rella, R.

    2010-03-01

    The detection of the DNA hybridization mechanism using monodispersed gold nanoparticles as labels is an interesting alternative to increase the sensitivity of the SPR imaging technique. DNA-modified Au nanoparticles (DNA-Au NPs) containing single-stranded (ss) portions of DNA were prepared by monitoring their monolayer formation by UV-vis spectroscopy. The hybridization process between specific thio-oligonucleotides immobilized on the DNA-Au NPs and the corresponding complementary strands is reported and compared with the traditional hybridization process on properly self-assembled thin gold films deposited on glass substrates. A remarkable signal amplification is observed, following the incorporation of colloidal Au into a SPR biosensing experiment, resulting in an increased SPR response to DNA-DNA interactions. In particular Fusarium thiolated DNA (5'HS poly(T)15ATC CCT CAA AAA CTG CCG CT-3) and trichothecenes complementary DNA (5'-AGC GGC AGT TTT TGA GGG AT-3') sequences have been explored due to their possible application to agro-industry for the control of food quality.

  19. Analysis of the applicability of Ni, Cu, Au, Pt, and Pd nanoclusters for data recording

    NASA Astrophysics Data System (ADS)

    Redel', L. V.; Gafner, S. L.; Gafner, Yu. Ya.; Zamulin, I. S.; Goloven'ko, Zh. V.

    2017-02-01

    The applicability of individual Ni, Cu, Au, Pt, and Pd nanoclusters as data bits in next generation memory devices constructed on the phase-change carrier principle is studied. To this end, based on the modified tight-binding potential (TB-SMA), structure formation from the melt of nanoparticles of these metals to 10 nm in diameter was simulated by the molecular dynamics method. The effect of various crystallization conditions on the formation of the internal structures of Ni, Cu, Au, Pt, and Pd nanoclusters is studied. The stability boundaries of various crystalline isomers are analyzed. The obtained systematic features are compared for nanoparticles of copper, nickel, gold, platinum, and palladium of identical sizes. It is concluded that platinum nanoclusters of diameter D > 8 nm are the best materials among studied metals for producing memory elements based on phase transitions.

  20. Antitumor therapeutic application of self-assembled RNAi-AuNP nanoconstructs: Combination of VEGF-RNAi and photothermal ablation

    PubMed Central

    Son, Sejin; Kim, Namho; You, Dong Gil; Yoon, Hong Yeol; Yhee, Ji Young; Kim, Kwangmeyung; Kwon, Ick Chan; Kim, Sun Hwa

    2017-01-01

    Nucleic acid-directed self-assembly provides an attractive method to fabricate prerequisite nanoscale structures for a wide range of technological applications due to the remarkable programmability of DNA/RNA molecules. In this study, exquisite RNAi-AuNP nanoconstructs with various geometries were developed by utilizing anti-VEGF siRNA molecules as RNAi-based therapeutics in addition to their role as building blocks for programmed self-assembly. In particular, the anti-VEGF siRNA-functionalized AuNP nanoconstructs can take additional advantage of gold-nanoclusters for photothermal cancer therapeutic agent. A noticeable technical aspect of self-assembled RNAi-AuNP nanoconstructs in this study is the precise conjugation and separation of designated numbers of therapeutic siRNA onto AuNP to develop highly sophisticated RNA-based building blocks capable of creating various geometries of RNAi-AuNP nano-assemblies. The therapeutic potential of RNAi-AuNP nanoconstructs was validated in vivo as well as in vitro by combining heat generation capability of AuNP and anti-angiogenesis mechanism of siRNA. This strategy of combining anti-VEGF mechanism for depleting angiogenesis process at initial tumor progression and complete ablation of residual tumors with photothermal activity of AuNP at later tumor stage showed effective tumor growth inhibition and tumor ablation with PC-3 tumor bearing mice. PMID:28042312

  1. Plasmonic effects of au/ag bimetallic multispiked nanoparticles for photovoltaic applications.

    PubMed

    Sharma, Manisha; Pudasaini, Pushpa Raj; Ruiz-Zepeda, Francisco; Vinogradova, Ekaterina; Ayon, Arturo A

    2014-09-10

    In recent years, there has been considerable interest in the use of plasmons, that is, free electron oscillations in conductors, to boost the performance of both organic and inorganic thin film solar cells. This has been driven by the possibility of employing thin active layers in solar cells in order to reduce materials costs, and is enabled by significant advances in fabrication technology. The ability of surface plasmons in metallic nanostructures to guide and confine light in the nanometer scale has opened up new design possibilities for solar cell devices. Here, we report the synthesis and characterization of highly monodisperse, reasonably stable, multipode Au/Ag bimetallic nanostructures using an inorganic additive as a ligand for photovoltaic applications. A promising surface enhanced Raman scattering (SERS) effect has been observed for the synthesized bimetallic Au/Ag multispiked nanoparticles, which compare favorably well with their Au and Ag spherical nanoparticle counterparts. The synthesized plasmonic nanostructures were incorporated on the rear surface of an ultrathin planar c-silicon/organic polymer hybrid solar cell, and the overall effect on photovoltaic performance was investigated. A promising enhancement in solar cell performance parameters, including both the open circuit voltage (VOC) and short circuit current density (JSC), has been observed by employing the aforementioned bimetallic multispiked nanoparticles on the rear surface of solar cell devices. A power conversion efficiency (PCE) value as high as 7.70% has been measured in a hybrid device with Au/Ag multispiked nanoparticles on the rear surface of an ultrathin, crystalline silicon (c-Si) membrane (∼ 12 μm). This value compares well to the measured PCE value of 6.72% for a similar device without nanoparticles. The experimental observations support the hope for a sizable PCE increase, due to plasmon effects, in thin-film, c-Si solar cells in the near future.

  2. Application of Haddon’s matrix in qualitative research methodology: an experience in burns epidemiology

    PubMed Central

    Deljavan, Reza; Sadeghi-Bazargani, Homayoun; Fouladi, Nasrin; Arshi, Shahnam; Mohammadi, Reza

    2012-01-01

    Background Little has been done to investigate the application of injury specific qualitative research methods in the field of burn injuries. The aim of this study was to use an analytical tool (Haddon’s matrix) through qualitative research methods to better understand people’s perceptions about burn injuries. Methods This study applied Haddon’s matrix as a framework and an analytical tool for a qualitative research methodology in burn research. Both child and adult burn injury victims were enrolled into a qualitative study conducted using focus group discussion. Haddon’s matrix was used to develop an interview guide and also through the analysis phase. Results The main analysis clusters were pre-event level/human (including risky behaviors, belief and cultural factors, and knowledge and education), pre-event level/object, pre-event phase/environment and event and post-event phase (including fire control, emergency scald and burn wound management, traditional remedies, medical consultation, and severity indicators). This research gave rise to results that are possibly useful both for future injury research and for designing burn injury prevention plans. Conclusion Haddon’s matrix is applicable in a qualitative research methodology both at data collection and data analysis phases. The study using Haddon’s matrix through a qualitative research methodology yielded substantially rich information regarding burn injuries that may possibly be useful for prevention or future quantitative research. PMID:22866013

  3. Properties of ordered titanium templates covered with Au thin films for SERS applications

    NASA Astrophysics Data System (ADS)

    Grochowska, Katarzyna; Siuzdak, Katarzyna; Sokołowski, Michał; Karczewski, Jakub; Szkoda, Mariusz; Śliwiński, Gerard

    2016-12-01

    Currently, roughened metal nanostructures are widely studied as highly sensitive Raman scattering substrates that show application potential in biochemistry, food safety or medical diagnostic. In this work the structural properties and the enhancement effect due to surface enhanced Raman scattering (SERS) of highly ordered nano-patterned titanium templates covered with thin (5-20 nm) gold films are reported. The templates are formed by preparation of a dense structure of TiO2 nanotubes on a flat Ti surface (2 × 2 cm2) and their subsequent etching down to the substrate. SEM images reveal the formation of honeycomb nanostructures with the cavity diameter of 80 nm. Due to the strongly inhomogeneous distribution of the electromagnetic field in the vicinity of the Au film discontinuities the measured average enhancement factor (107-108) is markedly higher than observed for bare Ti templates. The enhancement factor and Raman signal intensity can be optimized by adjusting the process conditions and thickness of the deposited Au layer. Results confirm that the obtained structures can be used in surface enhanced sensing.

  4. Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications.

    PubMed

    Breuer, Steffen; Pfüller, Carsten; Flissikowski, Timur; Brandt, Oliver; Grahn, Holger T; Geelhaar, Lutz; Riechert, Henning

    2011-03-09

    The incorporation of Au during vapor-liquid-solid nanowire growth might inherently limit the performance of nanowire-based devices. Here, we assess the material quality of Au-assisted and Au-free grown GaAs/(Al,Ga)As core-shell nanowires using photoluminescence spectroscopy. We show that at room temperature, the internal quantum efficiency is systematically much lower for the Au-assisted nanowires than for the Au-free ones. In contrast, the optoelectronic material quality of the latter is comparable to that of state-of-the-art planar double heterostructures.

  5. Interaction of Au, Ag, and Bi ions with Ba2YCu3O(7-y) - Implications for superconductor applications

    NASA Technical Reports Server (NTRS)

    Hepp, A. F.; Gaier, J. R.; Pouch, J. J.; Hambourger, P. D.

    1988-01-01

    Results are presented on the reactions of Au, Ag, and Bi ions with Ba2YCu3O(7-y) oxides and on the properties of the resultant materials. The results indicate that Au(3+) structural chemistry makes gold an excellent candidate for multiphase structures of the Ba2Y(Cu/1-x/Au/x/)3O(7-y)-type substituted superconductors. Silver is structurally and chemically compatible with the perovskite structure, but when it forms a second phase, it does so without the destruction of the superconducting phase, making silver a useful metal for metal/ceramic applications. On the other hand, bismuth was shown to degrade Tc phase or to form other phases, indicating that it may not be useful in applications with rare-earth-based superconductors.

  6. Qualitative modeling.

    PubMed

    Forbus, Kenneth D

    2011-07-01

    Qualitative modeling concerns the representations and reasoning that people use to understand continuous aspects of the world. Qualitative models formalize everyday notions of causality and provide accounts of how to ground symbolic, relational representations in perceptual processes. This article surveys the basic ideas of qualitative modeling and their applications from a cognitive science perspective. It describes the basic principles of qualitative modeling, and a variety of qualitative representations that have been developed for quantities and for relationships between them, providing a kind of qualitative mathematics. Three ontological frameworks for organizing modeling knowledge (processes, components, and field) are summarized, along with research on automatically assembling models for particular tasks from such knowledge. Qualitative simulation and how it carves up time into meaningful units is discussed. We discuss several accounts of causal reasoning about dynamical systems, based on different choices of qualitative mathematics and ontology. Qualitative spatial reasoning is explored, both in terms of relational systems and visual reasoning. Applications of qualitative models of particular interest to cognitive scientists are described, including how they have been used to capture the expertise of scientists and engineers and how they have been used in education. Open questions and frontiers are also discussed, focusing on relationships between ideas developed in the qualitative modeling community and other areas of cognitive science. WIREs Cogni Sci 2011 2 374-391 DOI: 10.1002/wcs.115 For further resources related to this article, please visit the WIREs website.

  7. Preparation of Ag/Au bimetallic nanostructures and their application in surface-enhanced fluorescence.

    PubMed

    Dong, Jun; Ye, Yanyan; Zhang, Wenhui; Ren, Zebin; Huo, Yiping; Zheng, Hairong

    2015-11-01

    An effective substrate for surface-enhanced fluorescence, which consists of cluster Ag/Au bimetallic nanostructures on a copper surface, was synthesized via a multi-stage galvanic replacement reaction of a Ag cluster in a chlorauric acid (HAuCl4) solution at room temperature. The fabricated silver/gold bimetallic cluster were found to yield large surface-enhanced fluorescence (SEF) enhancement factors for rhodamine 6G probe molecules deposited on the substrate, and also the fluorescence efficiency is critically dependent on the period of nanostructure growth. With the help of proper control reaction conditions, such as the reaction time, and concentration of reaction solutions, the maximum fluorescence enhanced effect was obtained. Therefore, the bimetallic nanostructure substrate also can be adapted to studies in SEF, which will expand the application of SEF.

  8. Formation of Au nanoparticles on CNTs three dimensional structure for LSPR biosensor application

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Shimizu, Tetsuhide

    2017-02-01

    A 3D LSPR sensor was fabricated by using CNTs as support and depositing AuNPs on the support in this study. We proposed a simple process to arrange AuNPs to CNTs by using vacuum deposition and annealing for 3D LSPR sensor. In order to fabricate 3D LSPR sensor, CNTs was synthesized and patterned on quartz glass substrate by CVD method and photolithography. For the synthesis of AuNPs, Au thin film was deposited on glass and CNTs by vacuum deposition. After deposition, Au thin film on glass and CNTs was particulated by annealing. The performance of 3D LSPR sensor was confirmed using BSA for bio analysis. LSPR characteristics was measured and compared before and after adsorption of BSA. The detection limit was 100ng/ml and detection sensitivity was 10 times in comparison with 2D LSPR sensor of same AuNPs formation condition.

  9. Application of cellulose acetate to the selective adsorption and recovery of Au(III).

    PubMed

    Yang, Jian; Kubota, Fukiko; Baba, Yuzo; Kamiya, Noriho; Goto, Masahiro

    2014-10-13

    Cellulose acetyl derivatives were examined for the selective recovery of Au(III) from acidic chloride solutions as an adsorbent, and cellulose acetate fibers (CAF) were found to be effective for the separation of Au(III) from other metal ions, including the precious metal ions Pt(IV) and Pd(II). The amount of Au(III) adsorbed by the fibers increased with an increase in the hydrochloric acid concentration, but decreased with an increase in the ionic strength of the solution. The adsorption of Au(III) onto CAF took place quickly and an adsorption equilibrium was reached within 1h. The maximum adsorption capacity of Au(III) was determined to be 110 mg/g at 2M hydrochloric acid. The loaded Au(III) was readily recovered by incineration.

  10. Pd-on-Au Supra-nanostructures Decorated Graphene Oxide: An Advanced Electrocatalyst for Fuel Cell Application.

    PubMed

    Tao, Yingzhou; Dandapat, Anirban; Chen, Liming; Huang, Youju; Sasson, Yoel; Lin, Zhenyu; Zhang, Jiawei; Guo, Longhua; Chen, Tao

    2016-08-30

    We report a very easy and effective approach for synthesizing unique palladium-on-gold supra-nanostructure (Au@Pd-SprNS)-decorated graphene oxide (GO) nanosheets. The SprNSs comprising Au nanorods as core and a unique close-packed assembly of tiny anisotropic Pd nanoparticles (NPs) as shell were homogeneously distributed on the GO surface via electrostatic self-assembly. Compared with the traditional one-pot method for synthesis of metal NPs on GO sheets, the size and shape of core-shell Au@Pd SprNSs can be finely controlled and uniformly distributed on the GO carrier. Interestingly, this Au@Pd-SprNSs/GO nanocomposite displayed high electrocatalytic activities toward the oxidation of methanol, ethanol, and formic acid, which can be attributed to the abundance of intrinsic active sites including high density of atomic steps, ledges and kinks, Au-Pd heterojunctions and cooperative action of the two metals of the SprNSs. Additionally, uniform dispersion of the SprNSs over the GO nanosheets prevent agglomeration between the SprNSs, which is of great significance to enhance the long-term stability of catalyst. This work will introduce a highly efficient Pd-based nanoelectrocatalyst to be used in fuel cell application.

  11. Sonophotodeposition of bimetallic photocatalysts Pd-Au/TiO2 : application to selective oxidation of methanol to methyl formate.

    PubMed

    Colmenares, Juan C; Lisowski, Paweł; Łomot, Dariusz; Chernyayeva, Olga; Lisovytskiy, Dmytro

    2015-05-22

    The aim of this work is to develop bimetallic Pd-Au/TiO2 P90 systems, which are highly active and selective for the photocatalytic oxidation of methanol to form methyl formate. Modification of commercial TiO2 P90 with Pd-Au nanoparticles was successfully achieved for the first time by means of a sonophotodeposition (SPD) method. The prepared materials were characterized by TEM, UV/Vis spectroscopy, X-ray photoelectron spectroscopy, and powder XRD. The Pd-Au bimetallic nanoparticles supported on titania exhibited remarkably enhanced catalytic activity in selective methanol oxidation to form methyl formate due to the synergism of Au and Pd particles, as well as the strong interaction between TiO2 and Pd-Au. SPD is a green methodology that can be used to prepare well-defined bimetallic surfaces on semiconductor supports with great promise for catalytic applications, in which selectivity can be tuned through adjustment of the surface composition.

  12. Synthesis of biocompatible AuAgS/Ag2S nanoclusters and their applications in photocatalysis and mercury detection

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Chen, Shenna; Zhang, Lingyang; Huang, Haowen; Liu, Fengping; Liu, Xuanyong

    2014-12-01

    In this paper, a facile approach for preparation of AuAgS/Ag2S nanoclusters was developed. The unique AuAgS/Ag2S nanoclusters capped with biomolecules exhibit interesting excellent optical and catalytic properties. The fluorescent AuAgS/Ag2S nanoclusters show tunable luminescence depending on the nanocluster size. The apoptosis assay demonstrated that the AuAgS/Ag2S nanoclusters showed low cytotoxicity and good biocompatibility. Therefore, the nanoclusters can be used not only as a probe for labeling cells but also for their photocatalytic activity for photodegradation of organic dye. Moreover, a highly selective and sensitive assay for detection of mercury including Hg2+ and undissociated mercury complexes was developed based on the quenching fluorescent AuAgS/Ag2S nanoclusters, which provides a promising approach for determining various forms of Hg in the mercury-based compounds in environment. These unique nanoclusters may have potential applications in biological labeling, sensing mercury, and photodegradation of various organic pollutants in waste water.

  13. Educators' and Applicants' Views of the Postdoctoral Pediatric Dentistry Admission Process: A Qualitative Study.

    PubMed

    Ricker, Kevin; Mihas, Paul; Lee, Jessica Y; Guthmiller, Janet M; Roberts, Michael W; Divaris, Kimon

    2015-11-01

    The postdoctoral application and matching process in dental education is a high-stakes and resource-intensive process for all involved. While programs seek the most qualified candidates, applicants strive to be competitive to increase their likelihood of being accepted to a desirable program. There are limited data regarding either subjective or objective factors underlying the complex interplay between programs and applicants. This qualitative study sought to provide insight into the stakeholders' experiences and views on the matching process. Telephone and in-person interviews were conducted with ten pediatric dentistry program directors and ten recent applicants to pediatric dentistry programs in the United States in 2013-14. Participants were selected to represent the geographic (five districts of the American Academy of Pediatric Dentistry) and institutional (hospital- or university-based) diversity of pediatric dentistry programs. Interviews were recorded and transcribed verbatim. Veracity and need for more information were the themes most often articulated by both groups. The program directors most valued teachability and self-motivation as desirable applicant characteristics. The applicants relied primarily on subjective sources to gather information about programs and prioritized location and financial factors as pivotal for their rankings. Both groups appreciated the uniformity of the current application process and highlighted several weaknesses and areas for improvement. These results shed light on the postdoctoral matching process in pediatric dentistry via a qualitative description of stakeholders' experiences and viewpoints. These insights can serve as a basis for improving and refining the matching process.

  14. Learning Qualitative Differential Equation models: a survey of algorithms and applications

    PubMed Central

    PANG, WEI; COGHILL, GEORGE M.

    2013-01-01

    Over the last two decades, qualitative reasoning (QR) has become an important domain in Artificial Intelligence. QDE (Qualitative Differential Equation) model learning (QML), as a branch of QR, has also received an increasing amount of attention; many systems have been proposed to solve various significant problems in this field. QML has been applied to a wide range of fields, including physics, biology and medical science. In this paper, we first identify the scope of this review by distinguishing QML from other QML systems, and then review all the noteworthy QML systems within this scope. The applications of QML in several application domains are also introduced briefly. Finally, the future directions of QML are explored from different perspectives. PMID:23704803

  15. A new method for qualitative simulation of water resources systems: 2. Applications

    NASA Astrophysics Data System (ADS)

    Antunes, M. P.; Seixas, M. J.; Camara, A. S.; Pinheiro, M.

    1987-11-01

    SLIN (Simulação Linguistica) is a new method for qualitative dynamic simulation. As was presented previously (Camara et al., this issue), SLIN relies upon a categorical representation of variables which are manipulated by logical rules. Two applications to water resources systems are included to illustrate SLIN's potential usefulness: the environmental impact evaluation of a hydropower plant and the assessment of oil dispersion in the sea after a tanker wreck.

  16. Modelisation et commande des redresseurs triphases fonctionnant a haut rendement et a faible taux de distorsion harmonique: Application au redresseur triphase de vienne

    NASA Astrophysics Data System (ADS)

    Belhadj Youssef, Nesrine

    Les problemes de la qualite de l'onde electrique constituent l'une des preoccupations majeures des fournisseurs de l'energie et des organismes specialises en qualite d'energie. Ce sujet a gagne davantage d'ampleur avec l'utilisation ascendante des convertisseurs de l'energie electrique dans la majorite des applications industrielles et domestiques. Dans le cadre de cette these, on s'interesse plus particulierement au type des convertisseurs alternatif/continu, dont le fonctionnement adequat implique la parfaite regulation du bus DC de tension, l'attenuation des harmoniques de courants, la compensation de l'energie reactive et la maximisation du rendement energetique. Ces differents criteres doivent etre maintenus pour diverses conditions de fonctionnement, c'est-a-dire independamment des variations parametriques auxquelles le systeme peut etre sujet. Il s'avere donc indispensable d'adopter des techniques de commande efficaces, ce qui passe par une modelisation correcte du convertisseur. L'optimisation du nombre de capteurs dans le circuit est egalement un facteur cle a prendre en consideration.

  17. Single gold nanowire electrodes and single Pt@Au nanowire electrodes: electrochemistry and applications.

    PubMed

    Zhang, Yaoyao; Xu, Shen; Xiao, Xiaoqing; Liu, Yong; Qian, Yuanyuan; Li, Yongxin

    2017-03-02

    Single Au nanowire electrodes and single Pt@Au nanowire electrodes showed steady-state voltammetric responses and a fast electron-transfer rate, which have been used to fabricate an E-DNA sensor and investigate the oxygen reduction reaction at the single nanowire level.

  18. Electrical performance of Ti-ZnO-Au thin film composite structure for device application

    NASA Astrophysics Data System (ADS)

    Joshi, Priyanka; Singh, Jitendra; Das, Surajit; Desai, J. V.; Akhtar, Jamil

    2016-04-01

    Thin film layers of Au/Ti approximately 2200 Å thick and ZnO approximately 2.24 µm thick were sputtered sequentially onto silicon dioxide coated <100> Si-wafer. Conventional wisdom confirms the adhesion of gold over zinc oxide (ZnO) by an intermediate layer of titanium for better adhesion. But, in Au/Ti/ZnO/Au/Ti structure, it was observed that with the passing of time the gold diffused into ZnO thin film at room temperature, making a very low resistance between the two gold layers eventually making a conductive path in ZnO. Therefore, electrical connectivity was found between the metal layers. A detailed experimental analysis has been carried out in support of the observed Au diffusion. In the present work, reliability of Ti/Au metallisation and anomalous electrical behavior due to gold diffusion has been studied.

  19. [Application and Integration of Qualitative and Quantitative Research Methods in Intervention Studies in Rehabilitation Research].

    PubMed

    Wirtz, M A; Strohmer, J

    2016-06-01

    In order to develop and evaluate interventions in rehabilitation research a wide range of empirical research methods may be adopted. Qualitative research methods emphasize the relevance of an open research focus and a natural proximity to research objects. Accordingly, using qualitative methods special benefits may arise if researchers strive to identify and organize unknown information aspects (inductive purpose). Particularly, quantitative research methods require a high degree of standardization and transparency of the research process. Furthermore, a clear definition of efficacy and effectiveness exists (deductive purpose). These paradigmatic approaches are characterized by almost opposite key characteristics, application standards, purposes and quality criteria. Hence, specific aspects have to be regarded if researchers aim to select or combine those approaches in order to ensure an optimal gain in knowledge.

  20. Tuning the Composition of AuPt Bimetallic Nanoparticles for Antibacterial Application**

    PubMed Central

    Zhao, Yuyun; Ye, Chunjie; Liu, Wenwen; Chen, Rong; Jiang, Xingyu

    2014-01-01

    We show that bimetallic nanoparticles (NPs) of AuPt without any surface modification are potent antibiotic reagents, while pure Au NPs or pure Pt NPs display no antibiotic activities. The most potent antibacterial AuPt NPs happen to be the most effective catalysts for chemical transformations. The mechanism of antibiotic action includes the dissipation of membrane potential and the elevation of adenosine triphosphate (ATP) levels. These bimetallic NPs are unique in that they do not produce reactive oxygen species as most antibiotics do. Being non-toxic to human cells, these bimetallic noble NPs might open an entry to a new class of antibiotics. PMID:24828967

  1. Facile Synthesis of Quasi-One-Dimensional Au/PtAu Heterojunction Nanotubes and Their Application as Catalysts in an Oxygen-Reduction Reaction.

    PubMed

    Cai, Kai; Liu, Jiawei; Zhang, Huan; Huang, Zhao; Lu, Zhicheng; Foda, Mohamed F; Li, Tingting; Han, Heyou

    2015-05-11

    An intermediate-template-directed method has been developed for the synthesis of quasi-one-dimensional Au/PtAu heterojunction nanotubes by the heterogeneous nucleation and growth of Au on Te/Pt core-shell nanostructures in aqueous solution. The synthesized porous Au/PtAu bimetallic nanotubes (PABNTs) consist of porous tubular framework and attached Au nanoparticles (AuNPs). The reaction intermediates played an important role in the preparation, which fabricated the framework and provided a localized reducing agent for the reduction of the Au and Pt precursors. The Pt7 Au PABNTs showed higher electrocatalytic activity and durability in the oxygen-reduction reaction (ORR) in 0.1 M HClO4 than porous Pt nanotubes (PtNTs) and commercially available Pt/C. The mass activity of PABNTs was 218 % that of commercial Pt/C after an accelerated durability test. This study demonstrates the potential of PABNTs as highly efficient electrocatalysts. In addition, this method provides a facile strategy for the synthesis of desirable hetero-nanostructures with controlled size and shape by utilizing an intermediate template.

  2. Fabrication of Te and Te-Au Nanowires-Based Carbon Fiber Fabrics for Antibacterial Applications

    PubMed Central

    Chou, Ting-Mao; Ke, Yi-Yun; Tsao, Yu-Hsiang; Li, Ying-Chun; Lin, Zong-Hong

    2016-01-01

    Pathogenic bacteria that give rise to diseases every year remain a major health concern. In recent years, tellurium-based nanomaterials have been approved as new and efficient antibacterial agents. In this paper, we developed the approach to directly grow tellurium nanowires (Te NWs) onto commercial carbon fiber fabrics and demonstrated their antibacterial activity. Those Te NWs can serve as templates and reducing agents for gold nanoparticles (Au NPs) to deposit. Three different Te-Au NWs with varied concentration of Au NPs were synthesized and showed superior antibacterial activity and biocompability. These results indicate that the as-prepared carbon fiber fabrics with Te and Te-Au NWs can become antimicrobial clothing products in the near future. PMID:26861380

  3. Fabrication of Te and Te-Au Nanowires-Based Carbon Fiber Fabrics for Antibacterial Applications.

    PubMed

    Chou, Ting-Mao; Ke, Yi-Yun; Tsao, Yu-Hsiang; Li, Ying-Chun; Lin, Zong-Hong

    2016-02-06

    Pathogenic bacteria that give rise to diseases every year remain a major health concern. In recent years, tellurium-based nanomaterials have been approved as new and efficient antibacterial agents. In this paper, we developed the approach to directly grow tellurium nanowires (Te NWs) onto commercial carbon fiber fabrics and demonstrated their antibacterial activity. Those Te NWs can serve as templates and reducing agents for gold nanoparticles (Au NPs) to deposit. Three different Te-Au NWs with varied concentration of Au NPs were synthesized and showed superior antibacterial activity and biocompability. These results indicate that the as-prepared carbon fiber fabrics with Te and Te-Au NWs can become antimicrobial clothing products in the near future.

  4. TEM characterization of Au-based alloys to join YSZ to steel for SOFC applications

    SciTech Connect

    Lin, Kun-Lin; Singh, Mrityunjay; Asthana, Rajiv

    2012-01-15

    The microstructures of two gold-based alloys with compositions (in wt.%) of 96.4Au-3Ni-0.6Ti and 97.5Au-0.75Ni-1.75V following oxidation at 850 Degree-Sign C for 200 min were characterized by analytical transmission electron microscopy with energy dispersive spectroscopy and by scanning electron microscopy. In the oxidized 96.4Au-3Ni-0.6Ti interlayer, a dense scale composed of nickel oxide (NiO) and nickel titanate (NiTiO{sub 3}) formed at the alloy surface. No evidence of titanium oxide was found because there was not enough Ti present to form titanium oxide. In the oxidized 97.5Au-0.75Ni-1.75V interlayer, loose vanadium oxide (V{sub 2}O{sub 5}) and nickel vanadate (Ni{sub 2}V{sub 2}O{sub 7}) formed and were distributed within the oxidized 97.5Au-0.75Ni-1.75V interlayer. Similarly, because of the low Ni content in the alloys, no NiO formed. The oxide products in the 96.4Au-3Ni-0.6Ti and 97.5Au-0.75Ni-1.75V interlayers after oxidation are consistent with the Pilling-Bedworth (PB) ratio considerations. - Highlights: Black-Right-Pointing-Pointer Two commercial Au-based reactive metallic interlayers were oxidized at 850 Degree-Sign C for 200 min. Black-Right-Pointing-Pointer The oxidized products at the surface were characterized by TEM/EDS and SEM. Black-Right-Pointing-Pointer NiO and NiTiO{sub 3} formed at the oxidized 96.4Au-3Ni-0.6Ti interlayer. Black-Right-Pointing-Pointer V{sub 2}O{sub 5} and Ni{sub 2}V{sub 2}O{sub 7} were found in the oxidized 97.5Au-0.75Ni-1.75V interlayer. Black-Right-Pointing-Pointer These oxide products are consistent with the Pilling-Bedworth (PB) ratio considerations.

  5. Corrosion Protection of Al/Au/ZnO Anode for Hybrid Cell Application

    PubMed Central

    Slaughter, Gymama; Stevens, Brian

    2015-01-01

    Effective protection of power sources from corrosion is critical in the development of abiotic fuel cells, biofuel cells, hybrid cells and biobateries for implantable bioelectronics. Corrosion of these bioelectronic devices result in device inability to generate bioelectricity. In this paper Al/Au/ZnO was considered as a possible anodic substrate for the development of a hybrid cell. The protective abilities of corrosive resistant aluminum hydroxide and zinc phosphite composite films formed on the surface of Al/Au/ZnO anode in various electrolyte environments were examined by electrochemical methods. The presence of phosphate buffer and physiological saline (NaCl) buffer allows for the formation of aluminum hyrdroxide and zinc phosphite composite films on the surface of the Al/Au/ZnO anode that prevent further corrosion of the anode. The highly protective films formed on the Al/Au/ZnO anode during energy harvesting in a physiological saline environment resulted in 98.5% corrosion protective efficiency, thereby demonstrating that the formation of aluminum hydroxide and zinc phosphite composite films are effective in the prevention of anode corrosion during energy harvesting. A cell assembly consisting of the Al/Au/ZnO anode and platinum cathode resulted in an open circuit voltage of 1.03 V. A maximum power density of 955.3 μW/ cm2 in physiological saline buffer at a cell voltage and current density of 345 mV and 2.89 mA/ cm2, respectively. PMID:26580661

  6. Synthesis, characterization and potential application of MnZn ferrite and MnZn ferrite @ Au nanoparticles.

    PubMed

    Wang, Xin; Wang, Lingyan; Lim, I-Im S; Bao, Kun; Mott, Derrick; Park, Hye-Young; Luo, Jin; Hao, Shunli; Zhong, Chuan-Jian

    2009-05-01

    The ability to tune the magnetic properties of magnetic nanoparticles by manipulating the composition or surface properties of the nanoparticles is important for exploiting the application of the nanomaterials. This report describes preliminary findings of an investigation of the viability of synthesizing MnZn ferrite and core @ shell MnZn ferrite @ Au nanoparticles as potentially magnetization-tunable nanomaterials. The synthesis of the core-shell magnetic nanoparticles involved a simple combination of seed formation of the MnZn ferrite magnetic nanoparticles and surface coating of the seeds with gold shells. Water-soluble MnZn ferrite nanoparticles of 20-40 nm diameters and MnZn ferrite @ Au nanoparticles of 30-60 nm have been obtained. The MnZn ferrite @ Au nanoparticles have been demonstrated to be viable in magnetic separation of nanoparticles via interparticle antibody-specific binding reactivity between antibodies on the gold shells of the core-shell magnetic particles and proteins on gold nanoparticles. These findings have significant implications to the design of the core @ shell magnetic nanomaterials with core composition tuned magnetization for bioassay application.

  7. Controlled preparation of Au/Ag/SnO2 core-shell nanoparticles using a photochemical method and applications in LSPR based sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Na; Ye, Chen; Polavarapu, Lakshminarayana; Xu, Qing-Hua

    2015-05-01

    A photochemical method for the controlled preparation of core-shell Au/Ag/SnO2 nanorods (NRs) and nanospheres (NSs) has been developed based on photo-induced electron transfer processes in the plasmonic metal-semiconductor system. Au/AgNR/SnO2 and Au/AgNS/SnO2 were prepared by the UV irradiation of a mixture of mesoporous SnO2 coated AuNRs, or AuNSs, and AgNO3, in which AgNO3 was reduced by electrons transferred from the photo-excited mesoporous SnO2 (semiconductor) to the gold (metal). This method allows precise control over the composition and optical properties of the obtained nanoparticles. The LSPR refractive index sensitivity of the obtained Au/AgNR/SnO2 nanoparticles has been optimized to obtain a refractive index sensitivity of ~442 nm RIU-1. The optimized nanoparticles were subsequently chosen for the LSPR based sensing of glutathione (GSH) with the limit of detection of ~7.5 × 10-7 M. This photochemical method allows the controlled preparation of various Au/Ag/SnO2 nanoparticles to adjust their LSPR to suit various applications.A photochemical method for the controlled preparation of core-shell Au/Ag/SnO2 nanorods (NRs) and nanospheres (NSs) has been developed based on photo-induced electron transfer processes in the plasmonic metal-semiconductor system. Au/AgNR/SnO2 and Au/AgNS/SnO2 were prepared by the UV irradiation of a mixture of mesoporous SnO2 coated AuNRs, or AuNSs, and AgNO3, in which AgNO3 was reduced by electrons transferred from the photo-excited mesoporous SnO2 (semiconductor) to the gold (metal). This method allows precise control over the composition and optical properties of the obtained nanoparticles. The LSPR refractive index sensitivity of the obtained Au/AgNR/SnO2 nanoparticles has been optimized to obtain a refractive index sensitivity of ~442 nm RIU-1. The optimized nanoparticles were subsequently chosen for the LSPR based sensing of glutathione (GSH) with the limit of detection of ~7.5 × 10-7 M. This photochemical method allows

  8. Production of radio-gold {sup 199}Au for diagnostic and therapeutic applications

    SciTech Connect

    Khandaker, Mayeen Uddin Kassim, Hasan Abu; Haba, Hiromitsu

    2016-01-22

    Production cross-sections of the {sup nat}Pt(d,x){sup 199}Au reactions have been measured from a 24-MeV deuteron energy down to the threshold by using a stacked-foil activation technique combined with HPGe γ-ray spectrometry. Only a partial agreement is obtained with the existing literature data. Theoretical data extracted from the TENDL-2013 library shows large discrepancy with the measured ones. Physical thick target yield for the {sup 199}Au radionuclide was deduced using the measured cross-sections, and found a general agreement with the directly measured yield available in the literature. This study reveals that a low deuteron energy (<15 MeV) cyclotron and an enriched {sup 198}Pt (100%) target could be used to obtain {sup 199}Au in no carrier added form.

  9. State of art of nanotechnology applications in the meat chain: a qualitative synthesis.

    PubMed

    Belluco, Simone; Gallocchio, Federica; Losasso, Carmen; Ricci, Antonia

    2016-10-13

    Background Nanotechnology is a promising area in industry with a broad range of applications including in the agri-food sector. Several studies have investigated the potential benefits deriving from use of nanomaterials in the context of the whole food chain drawing scenarios of benefits but also potential for concerns. Among the agri-food sector, animal production has potential for nanomaterial application but also for safety concerns due to the possibility of nanomaterial accumulation along the farm-to-fork path. Scope and Approach The aim of this work was to define the state of the art of nanomaterial applications in the animal production sector by assessing data belonging to recently publishes studies. To do this, a qualitative synthesis approach was applied to build a fit-for-purpose framework and to summarise relevant themes in the context of effectiveness, feasibility and health concerns. Key Findings and Conclusions Nanomaterials have potential for use in a wide range of applications from feed production and farming to food packaging, including several detection tools designed for the benefit of consumer protection. The current high degree of variability in nanomaterials tested and in study designs impairs external validation of research results. Further research is required to clearly define which safe nanomaterial applications have the potential to reach the market.

  10. Enhancement of the transverse magneto-optical Kerr effect via resonant tunneling in Au/Ce:YIG/Au trilayers and its application

    NASA Astrophysics Data System (ADS)

    Li, Jie; Tang, Tingting; Zhang, Yanfen; Luo, Li

    2017-02-01

    We propose a new structure to enhance the transverse magneto-optical Kerr effect (TMOKE) via resonant photon tunneling. In trilayer structures with a magnetic dielectric layer sandwiched between non-magnetic metal layers, an enhanced TMOKE can be observed. The TMOKE in Au/Ce:YIG/Au trilayers with different widths of magnetic dielectric layers are calculated using a 4  ×  4 transfer-matrix method, in which the maximum absolute value reaches 0.7. Based on the enhanced TMOKE, we apply the structure proposed above in magnetic field sensing, and TMOKE values are calculated when the external magnetic field intensity is increasing. Compared with other magnetic field sensing methods, the Au/Ce:YIG/Au trilayer possesses a very simple structure and shows high sensitivity to magnetic field variation, which is promising as a highly integrated and sensitive magneto-optical device.

  11. Simultaneous Au(III) Extraction and In Situ Formation of Polymeric Membrane-Supported Au Nanoparticles: A Sustainable Process with Application in Catalysis.

    PubMed

    Mora-Tamez, Lucía; Esquivel-Peña, Vicente; Ocampo, Ana L; Rodríguez de San Miguel, Eduardo; Grande, Daniel; de Gyves, Josefina

    2017-01-07

    A polymeric membrane-supported catalyst with immobilized gold nanoparticles (AuNPs) was prepared through the extraction and in situ reduction of Au(III) salts in a one-step strategy. Polymeric inclusion membranes (PIMs) and polymeric nanoporous membranes (PNMs) were tested as different membrane-support systems. Transport experiments indicated that PIMs composed of cellulose triacetate, 2-nitrophenyloctyl ether, and an aliphatic tertiary amine (Adogen 364 or Alamine 336) were the most efficient supports for Au(III) extraction. The simultaneous extraction and reduction processes were proven to be the result of a synergic phenomenon in which all the membrane components were involved. Scanning electron microscopy characterization of cross-sectional samples suggested a distribution of AuNPs throughout the membrane. Transmission electron microscopy characterization of the AuNPs indicated average particle sizes of 36.7 and 2.9 nm for the PIMs and PNMs, respectively. AuNPs supported on PIMs allowed for >95.4 % reduction of a 0.05 mmol L(-1) 4-nitrophenol aqueous solution with 10 mmol L(-1) NaBH4 solution within 25 min.

  12. [Adequate application of quantitative and qualitative statistic analytic methods in acupuncture clinical trials].

    PubMed

    Tan, Ming T; Liu, Jian-ping; Lao, Lixing

    2012-08-01

    Recently, proper use of the statistical methods in traditional Chinese medicine (TCM) randomized controlled trials (RCTs) has received increased attention. Statistical inference based on hypothesis testing is the foundation of clinical trials and evidence-based medicine. In this article, the authors described the methodological differences between literature published in Chinese and Western journals in the design and analysis of acupuncture RCTs and the application of basic statistical principles. In China, qualitative analysis method has been widely used in acupuncture and TCM clinical trials, while the between-group quantitative analysis methods on clinical symptom scores are commonly used in the West. The evidence for and against these analytical differences were discussed based on the data of RCTs assessing acupuncture for pain relief. The authors concluded that although both methods have their unique advantages, quantitative analysis should be used as the primary analysis while qualitative analysis can be a secondary criterion for analysis. The purpose of this paper is to inspire further discussion of such special issues in clinical research design and thus contribute to the increased scientific rigor of TCM research.

  13. Peer Review of Grant Applications: Criteria Used and Qualitative Study of Reviewer Practices

    PubMed Central

    Abdoul, Hendy; Perrey, Christophe; Amiel, Philippe; Tubach, Florence; Gottot, Serge; Durand-Zaleski, Isabelle; Alberti, Corinne

    2012-01-01

    Background Peer review of grant applications has been criticized as lacking reliability. Studies showing poor agreement among reviewers supported this possibility but usually focused on reviewers’ scores and failed to investigate reasons for disagreement. Here, our goal was to determine how reviewers rate applications, by investigating reviewer practices and grant assessment criteria. Methods and Findings We first collected and analyzed a convenience sample of French and international calls for proposals and assessment guidelines, from which we created an overall typology of assessment criteria comprising nine domains relevance to the call for proposals, usefulness, originality, innovativeness, methodology, feasibility, funding, ethical aspects, and writing of the grant application. We then performed a qualitative study of reviewer practices, particularly regarding the use of assessment criteria, among reviewers of the French Academic Hospital Research Grant Agencies (Programmes Hospitaliers de Recherche Clinique, PHRCs). Semi-structured interviews and observation sessions were conducted. Both the time spent assessing each grant application and the assessment methods varied across reviewers. The assessment criteria recommended by the PHRCs were listed by all reviewers as frequently evaluated and useful. However, use of the PHRC criteria was subjective and varied across reviewers. Some reviewers gave the same weight to each assessment criterion, whereas others considered originality to be the most important criterion (12/34), followed by methodology (10/34) and feasibility (4/34). Conceivably, this variability might adversely affect the reliability of the review process, and studies evaluating this hypothesis would be of interest. Conclusions Variability across reviewers may result in mistrust among grant applicants about the review process. Consequently, ensuring transparency is of the utmost importance. Consistency in the review process could also be improved by

  14. Synthesis of Photoswitchable Magnetic Au-Fullerosome Hybrid Nanomaterials for Permittivity Enhancement Applications.

    PubMed

    Wang, Min; Jeon, Seaho; Su, Chefu; Yu, Tzuyang; Tan, Loon-Seng; Chiang, Long Y

    2015-08-13

    We designed and synthesized several nanomaterials 3 of three-layered core-shell (γ-FeOx@AuNP)@[C60(>DPAF-C9) 1 or 2]n nanoparticles (NPs). These NPs having e(-)-polarizable fullerosome structures located at the outer layer were fabricated from highly magnetic core-shell γ-FeOx@AuNPs. Fullerosomic polarization of 3 was found to be capable of causing a large amplification of material permittivity that is also associated with the photoswitching effect in the frequency range of 0.5-4.0 GHz. Multilayered synthetic construction allows Förster resonance energy transfer (FRET) of photoinduced accumulative surface plasmon resonance (SPR) energy in the gold layer to the partially bilayered C60(>DPAF-C9) 1 or 2-derived fullerosome membrane shell layer in a near-field of direct contact without producing radiation heat, which is commonly associated with SPR.

  15. Approximate treatment of semicore states in GW calculations with application to Au clusters

    NASA Astrophysics Data System (ADS)

    Xian, Jiawei; Baroni, Stefano; Umari, P.

    2014-03-01

    We address the treatment of transition metal atoms in GW electronic-structure calculations within the plane-wave pseudo-potential formalism. The contributions of s and p semi-core electrons to the self-energy, which are essential to grant an acceptable accuracy, are dealt with using a recently proposed scheme whereby the exchange components are treated exactly at the G0W0 level, whereas a suitable approximation to the correlation components is devised. This scheme is benchmarked for small gold nano-clusters, resulting in ionization potentials, electron affinities, and density of states in very good agreement with those obtained from calculations where s and p semicore states are treated as valence orbitals, and allowing us to apply this same scheme to clusters of intermediate size, Au20 and Au32, that would be otherwise very difficult to deal with.

  16. Approximate treatment of semicore states in GW calculations with application to Au clusters.

    PubMed

    Xian, Jiawei; Baroni, Stefano; Umari, P

    2014-03-28

    We address the treatment of transition metal atoms in GW electronic-structure calculations within the plane-wave pseudo-potential formalism. The contributions of s and p semi-core electrons to the self-energy, which are essential to grant an acceptable accuracy, are dealt with using a recently proposed scheme whereby the exchange components are treated exactly at the G0W0 level, whereas a suitable approximation to the correlation components is devised. This scheme is benchmarked for small gold nano-clusters, resulting in ionization potentials, electron affinities, and density of states in very good agreement with those obtained from calculations where s and p semicore states are treated as valence orbitals, and allowing us to apply this same scheme to clusters of intermediate size, Au20 and Au32, that would be otherwise very difficult to deal with.

  17. Approximate treatment of semicore states in GW calculations with application to Au clusters

    SciTech Connect

    Xian, Jiawei; Baroni, Stefano; Umari, P.

    2014-03-28

    We address the treatment of transition metal atoms in GW electronic-structure calculations within the plane-wave pseudo-potential formalism. The contributions of s and p semi-core electrons to the self-energy, which are essential to grant an acceptable accuracy, are dealt with using a recently proposed scheme whereby the exchange components are treated exactly at the G{sub 0}W{sub 0} level, whereas a suitable approximation to the correlation components is devised. This scheme is benchmarked for small gold nano-clusters, resulting in ionization potentials, electron affinities, and density of states in very good agreement with those obtained from calculations where s and p semicore states are treated as valence orbitals, and allowing us to apply this same scheme to clusters of intermediate size, Au{sub 20} and Au{sub 32}, that would be otherwise very difficult to deal with.

  18. ZnO/Au-based surface plasmon resonance for CO2 gas sensing application

    NASA Astrophysics Data System (ADS)

    Nuryadi, Ratno; Mayasari, Rina Dewi

    2016-01-01

    We fabricate surface plasmon resonance (SPR) device using a modified ZnO/Au-Kretschmann configuration to investigate the possibility of using ZnO for CO2 gas sensing at room temperature. Here, nanostructured ZnO/Au layer was deposited on the flat surface of the prism and then gas chamber was placed on the ZnO/Au surface to observe the gas response. The ZnO structures were characterized by X-ray diffraction, scanning electron microscope, and energy dispersive spectroscopy. We found that ZnO structures have two types of nanostructures, i.e., individual nanorods and flower-like structures, which have hexagonal crystal structure. The ZnO nanorod has a diameter ranged from 200 to 300 nm and length ranged from 3 to 5 μm. The effect of gas response is demonstrated by a shift of SPR spectra and a change in light reflectance. It is found that the adsorption of gas molecules on the ZnO nanorods produces the shift of SPR angle to the lower light incident angle. A consistent sensing behavior over repetitive circles is also demonstrated.

  19. Controlled preparation of Au/Ag/SnO2 core-shell nanoparticles using a photochemical method and applications in LSPR based sensing.

    PubMed

    Zhou, Na; Ye, Chen; Polavarapu, Lakshminarayana; Xu, Qing-Hua

    2015-05-21

    A photochemical method for the controlled preparation of core-shell Au/Ag/SnO2 nanorods (NRs) and nanospheres (NSs) has been developed based on photo-induced electron transfer processes in the plasmonic metal-semiconductor system. Au/AgNR/SnO2 and Au/AgNS/SnO2 were prepared by the UV irradiation of a mixture of mesoporous SnO2 coated AuNRs, or AuNSs, and AgNO3, in which AgNO3 was reduced by electrons transferred from the photo-excited mesoporous SnO2 (semiconductor) to the gold (metal). This method allows precise control over the composition and optical properties of the obtained nanoparticles. The LSPR refractive index sensitivity of the obtained Au/AgNR/SnO2 nanoparticles has been optimized to obtain a refractive index sensitivity of ∼442 nm RIU(-1). The optimized nanoparticles were subsequently chosen for the LSPR based sensing of glutathione (GSH) with the limit of detection of ∼7.5 × 10(-7) M. This photochemical method allows the controlled preparation of various Au/Ag/SnO2 nanoparticles to adjust their LSPR to suit various applications.

  20. Electrogenerated Chemiluminescence Behavior of Au nanoparticles-hybridized Pb (II) metal-organic framework and its application in selective sensing hexavalent chromium

    PubMed Central

    Ma, Hongmin; Li, Xiaojian; Yan, Tao; Li, Yan; Liu, Haiyang; Zhang, Yong; Wu, Dan; Du, Bin; Wei, Qin

    2016-01-01

    In this work, a novel electrochemiluminescence (ECL) sensor based on Au nanoparticles-hybridized Pb (II)-β-cyclodextrin (Pb-β-CD) metal-organic framework for detecting hexavalent chromium (Cr(VI)) was developed. Pb-β-CD shows excellent ECL behavior and unexpected reducing ability towards Au ions. Au nanoparticles could massively form on the surface of Pb-β-CD (Au@Pb-β-CD) without use of any additional reducing agent. In the presence of coreactant K2S2O8, the ECL emission of Pb-β-CD was enhanced by the formation of Au nanoparticles. Cr(VI) can collisionally quench the ECL behavior of Au@Pb-β-CD/S2O82− system and the detection mechanism was investigated. This ECL sensor is found to have a linear response in the range of 0.01–100 μM and a low detection limit of 3.43 nM (S/N = 3) under the optimal conditions. These results suggest that metal-organic framework Au@Pb-β-CD has great potential in extending the application in the ECL field as an efficient luminophore. PMID:26902375

  1. Study of the nucleation and growth of antibiotic labeled Au NPs and blue luminescent Au8 quantum clusters for Hg2+ ion sensing, cellular imaging and antibacterial applications

    NASA Astrophysics Data System (ADS)

    Khandelwal, Puneet; Singh, Dheeraj K.; Sadhu, Subha; Poddar, Pankaj

    2015-11-01

    Herein, we report a detailed experimental study supported by DFT calculations to understand the mechanism behind the synthesis of cefradine (CFD - an antibiotic) labeled gold nanoparticles (Au NPs) by employing CFD as both a mild reducing and capping agent. The analysis of the effect of growth conditions reveals that a higher concentration of HAuCl4 results in the formation of an increasing fraction of anisotropic structures, higher temperature leads to the formation of quasi-spherical particles instead of anisotropic ones, and larger pH leads to the formation of much smaller particles. The cyclic voltammetry (CV) results show that when the pH of the reaction medium increases from 4 to 6, the reduction potential of CFD increases which leads to the synthesis of nanoparticles (in a pH 4 reaction) to quantum clusters (in a pH 6 reaction). The MALDI-TOF mass spectrometry results of supernatant of the pH 6 reaction indicate the formation of [Au8(CFD)2S6] QCs which show fluorescence at ca. 432 nm with a Stokes shift of ca. 95 nm. The blue luminescence from Au8 QCs was applied for sensing of Hg2+ ions on the basis of an aggregation-induced fluorescence quenching mechanism and offers good selectivity and a high sensitivity with a limit of detection ca. 2 nM which is lower than the detection requirement of 10 nM by the U.S. EPA and 30 nM by WHO for drinking water. We have also applied the sensing probe to detect Hg2+ ions in bacterial samples. Further, we have investigated the antibacterial property of as-synthesized Au NPs using MIC, growth curve and cell survival assay. The results show that Au NPs could reduce the cell survival very efficiently rather than the cell growth in comparison to the antibiotic itself. The scanning electron microscopy study shows the degradation and blebbing of the bacterial cell wall upon exposure with Au NPs which was further supported by fluorescence microscopy results. These Au NPs did not show reactive oxygen species generation. We believe

  2. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging

    NASA Astrophysics Data System (ADS)

    Hu, Chongya; Shen, Jianlei; Yan, Juan; Zhong, Jian; Qin, Weiwei; Liu, Rui; Aldalbahi, Ali; Zuo, Xiaolei; Song, Shiping; Fan, Chunhai; He, Dannong

    2016-01-01

    Cellular imaging technologies employing metallic surface-enhanced Raman scattering (SERS) tags have gained much interest toward clinical diagnostics, but they are still suffering from poor controlled distribution of hot spots and reproducibility of SERS signals. Here, we report the fabrication and characterization of high narrow nanogap-containing Au@Au core-shell SERS nanoparticles (GCNPs) for the identification and imaging of proteins overexpressed on the surface of cancer cells. First, plasmonic nanostructures are made of gold nanoparticles (~15 nm) coated with gold shells, between which a highly narrow and uniform nanogap (~1.1 nm) is formed owing to polyA anchored on the Au cores. The well controlled distribution of Raman reporter molecules, such as 4,4'-dipyridyl (44DP) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), are readily encoded in the nanogap and can generate strong, reproducible SERS signals. In addition, we have investigated the size-dependent SERS activity of GCNPs and found that with the same laser wavelength, the Raman enhancement discriminated between particle sizes. The maximum Raman enhancement was achieved at a certain threshold of particle size (~76 nm). High narrow nanogap-containing Au@Au core-shell SERS tags (GCTs) were prepared via the functionalization of hyaluronic acid (HA) on GCNPs, which recognized the CD44 receptor, a tumor-associated surface biomarker. And it was shown that GCTs have a good targeting ability to tumour cells and promising prospects for multiplex biomarker detection.Cellular imaging technologies employing metallic surface-enhanced Raman scattering (SERS) tags have gained much interest toward clinical diagnostics, but they are still suffering from poor controlled distribution of hot spots and reproducibility of SERS signals. Here, we report the fabrication and characterization of high narrow nanogap-containing Au@Au core-shell SERS nanoparticles (GCNPs) for the identification and imaging of proteins overexpressed on

  3. Transfert radiatif entre une petite particule et un diélectrique: application au chauffage local

    NASA Astrophysics Data System (ADS)

    Mulet, J.-P.; Joulain, K.; Carminati, R.; Greffet, J. J.

    2002-06-01

    nous montrons dans cette étude que le transfert radiatif entre une particule de taille nanométrique et un diélectrique petit être très important lorsque les distances mises en jeu sont petites devant la longueur d'onde caractéristique du rayonnement thermique. Ce transfert peut devenir dominant lorsque les matériaux utilisés sont polaires. Nous discuterons de la possibilité d'appliquer ces résultats au chauffage local dans les nano-structures.

  4. REFLECT: Logiciel de restitution des reflectances au sol pour l'amelioration de la qualite de l'information extraite des images satellitales a haute resolution spatiale

    NASA Astrophysics Data System (ADS)

    Bouroubi, Mohamed Yacine

    Multi-spectral satellite imagery, especially at high spatial resolution (finer than 30 m on the ground), represents an invaluable source of information for decision making in various domains in connection with natural resources management, environment preservation or urban planning and management. The mapping scales may range from local (finer resolution than 5 m) to regional (resolution coarser than 5m). The images are characterized by objects reflectance in the electromagnetic spectrum witch represents the key information in many applications. However, satellite sensor measurements are also affected by parasite input due to illumination and observation conditions, to the atmosphere, to topography and to sensor properties. Two questions have oriented this research. What is the best approach to retrieve surface reflectance with the measured values while taking into account these parasite factors? Is this retrieval a sine qua non condition for reliable image information extraction for the diverse domains of application for the images (mapping, environmental monitoring, landscape change detection, resources inventory, etc.)? The goals we have delineated for this research are as follow: (1) Develop software to retrieve ground reflectance while taking into account the aspects mentioned earlier. This software had to be modular enough to allow improvement and adaptation to diverse remote sensing application problems; and (2) Apply this software in various context (urban, agricultural, forest) and analyse results to evaluate the accuracy gain of extracted information from remote sensing imagery transformed in ground reflectance images to demonstrate the necessity of operating in this way, whatever the type of application. During this research, we have developed a tool to retrieve ground reflectance (the new version of the REFLECT software). This software is based on the formulas (and routines) of the 6S code (Second Simulation of Satellite Signal in the Solar Spectrum

  5. Cu2O and Au/Cu2O particles: surface properties and applications in glucose sensing.

    PubMed

    Won, Yu-Ho; Stanciu, Lia A

    2012-09-26

    In this work we investigated the surface and facet-dependent catalytic properties of metal oxide particles as well as noble metal/metal oxide heterogeneous structures, with cuprous oxide (Cu(2)O) and Au/Cu(2)O being selected as model systems. As an example of application, we explored the potential of these materials in developing electrocatalytic devices. Cu(2)O particles were synthesized in various shapes, then used for testing their morphology-dependent electrochemical properties applied to the detection of glucose. While we did not attempt to obtain the best detection limit reported to date, the octahedral and hexapod Cu(2)O particles showed reasonable detection limits of 0.51 and 0.60 mM, respectively, which are physiologically relevant concentrations. However, detection limit seems to be less affected by particle shapes than sensitivity. Heterogeneous systems where Au NPs were deposited on the surface of Cu(2)O particles were also tested with similar results in terms of the effect of surface orientation.

  6. Qualité de vie et vécu de la maladie, avant et après hystérectomie vaginale, chez les femmes admises au Centre Hospitalier Universitaire de Brazzaville

    PubMed Central

    Mbongo, Jean Alfred; Mouanga, Alain; Miabaou, Didace Massamba; Nzelie, Aya; Iloki, Léon Hervé

    2016-01-01

    Toute maladie est un mal en soi qu’il faut éradiquer car elle altère souvent de façon significative la qualité de la vie. L’hystérectomie vaginale est indiquée pour les patientes qui présentent certaines affections gynécologiques graves, elle est donc bénéfique mais, peut également avoir une répercussion néfaste sur la qualité de vie de la femme. Ainsi nous avons voulu explorer le vécu de la maladie et de l’hystérectomie vaginale (HV) des femmes avant et après l’intervention chirurgicale. Nous avons effectué une étude prospective qualitative, à recueil clinique sur une période de 12 mois; qui a concerné les femmes, ayant subi une hystérectomie vaginale. Celles n’ayant pas accepté de participer à l’étude, ou n’ayant pas de contact téléphonique n’ont pas été incluses. Pendant la maladie, le vécu des femmes a été: l’inconfort sexuel 26/40 (65%); les saignements génitaux 12/40 (30%); les douleurs pelviennes 13/40 (32,5%). En Post-opératoire, ont été noté les dyspareunies transitoires30/40 (75%) ; les céphalées secondaires à l’anesthésie 4/40 (10%). Le vécu psychologique a été dominé avant l’HV par la peur de la chirurgie chez toutes les patientes, les troubles du sommeil 38/40 (95%), l’angoisse 30 /40(75%), un sentiment de honte lié aux difficultés à accomplir l’acte sexuel en raison du prolapsus 26/40(65%) et/ ou en raison des saignements génitaux, dus au fibrome utérin 14/40(35%). Le sentiment de la perte de féminité était déclaré par 26/40 femmes porteuses de prolapsus utérin (65%), la modification de l’estime de soi 26/40 (65%). Ces appréciations subjectives ont été améliorées avec l’HV, contre balançant la perte de leur organe de reproduction. Aucune information n’a été donnée par les femmes à leurs proches et aux membres de la famille avant la chirurgie, traduisant ainsi leur sentiment de gène ou de honte. L’arrêt des symptômes a été observé dans tous les

  7. Novel electrochemical redox-active species: one-step synthesis of polyaniline derivative-Au/Pd and its application for multiplexed immunoassay

    NASA Astrophysics Data System (ADS)

    Wang, Liyuan; Feng, Feng; Ma, Zhanfang

    2015-11-01

    Electrochemical redox-active species play crucial role in electrochemically multiplexed immunoassays. A one-pot method for synthesizing four kinds of new electrochemical redox-active species was reported using HAuCl4 and Na2PdCl4 as dual oxidating agents and aniline derivatives as monomers. The synthesized polyaniline derivative-Au/Pd composites, namely poly(N-methyl-o-benzenediamine)-Au/Pd, poly(N-phenyl-o-phenylenediamine)-Au/Pd, poly(N-phenyl-p-phenylenediamine)-Au/Pd and poly(3,3’,5,5’-tetramethylbenzidine)-Au/Pd, exhibited electrochemical redox activity at -0.65 V, -0.3 V, 0.12 V, and 0.5 V, respectively. Meanwhile, these composites showed high H2O2 electrocatalytic activity because of the presence of Au/Pd. The as-prepared composites were used as electrochemical immunoprobes in simultaneous detection of four tumor biomarkers (carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA199), carbohydrate antigen 72-4 (CA724), and alpha fetoprotein (AFP)). This immunoassay shed light on potential applications in simultaneous gastric cancer (related biomarkers: CEA, CA199, CA724) and liver cancer diagnosis (related biomarkers: CEA, CA199, AFP). The present strategy to the synthesize redox species could be easily extended to other polymers such as polypyrrole derivatives and polythiophene derivatives. This would be of great significance in the electrochemical detection of more analytes.

  8. Novel electrochemical redox-active species: one-step synthesis of polyaniline derivative-Au/Pd and its application for multiplexed immunoassay.

    PubMed

    Wang, Liyuan; Feng, Feng; Ma, Zhanfang

    2015-11-18

    Electrochemical redox-active species play crucial role in electrochemically multiplexed immunoassays. A one-pot method for synthesizing four kinds of new electrochemical redox-active species was reported using HAuCl4 and Na2PdCl4 as dual oxidating agents and aniline derivatives as monomers. The synthesized polyaniline derivative-Au/Pd composites, namely poly(N-methyl-o-benzenediamine)-Au/Pd, poly(N-phenyl-o-phenylenediamine)-Au/Pd, poly(N-phenyl-p-phenylenediamine)-Au/Pd and poly(3,3',5,5'-tetramethylbenzidine)-Au/Pd, exhibited electrochemical redox activity at -0.65 V, -0.3 V, 0.12 V, and 0.5 V, respectively. Meanwhile, these composites showed high H2O2 electrocatalytic activity because of the presence of Au/Pd. The as-prepared composites were used as electrochemical immunoprobes in simultaneous detection of four tumor biomarkers (carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA199), carbohydrate antigen 72-4 (CA724), and alpha fetoprotein (AFP)). This immunoassay shed light on potential applications in simultaneous gastric cancer (related biomarkers: CEA, CA199, CA724) and liver cancer diagnosis (related biomarkers: CEA, CA199, AFP). The present strategy to the synthesize redox species could be easily extended to other polymers such as polypyrrole derivatives and polythiophene derivatives. This would be of great significance in the electrochemical detection of more analytes.

  9. Crystallographic investigation of Au nanoparticles embedded in a SrTiO{sub 3} thin film for plasmonics applications by means of synchrotron radiation

    SciTech Connect

    Pincini, Davide; Mazzoli, Claudio; Bernhardt, Hendrik; Katzer, Christian; Schmidl, Frank; Uschmann, Ingo; Detlefs, Carsten

    2015-03-14

    Self-organized monocrystalline Au nanoparticles with potential applications in plasmonics are grown in a SrTiO{sub 3} matrix by a novel two-step deposition process. The crystalline preferred orientation of these Au nanoparticles is investigated by synchrotron hard x-ray diffraction. Nanoparticles preferentially align with the (111) direction along the substrate normal (001), whereas two in-plane orientations are found with [110]{sub SrTiO{sub 3}}∥[110]{sub Au} and [100]{sub SrTiO{sub 3}}∥[110]{sub Au}. Additionally, a smaller diffraction signal from nanoparticles with the (001) direction parallel to the substrate normal (001) is observed; once again, two in-plane orientations are found, with [100]{sub SrTiO{sub 3}}∥[100]{sub Au} and [100]{sub SrTiO{sub 3}}∥[110]{sub Au}. The populations of the two in-plane orientations are found to depend on the thickness of the gold film deposited in the first step of the growth.

  10. Novel electrochemical redox-active species: one-step synthesis of polyaniline derivative-Au/Pd and its application for multiplexed immunoassay

    PubMed Central

    Wang, Liyuan; Feng, Feng; Ma, Zhanfang

    2015-01-01

    Electrochemical redox-active species play crucial role in electrochemically multiplexed immunoassays. A one-pot method for synthesizing four kinds of new electrochemical redox-active species was reported using HAuCl4 and Na2PdCl4 as dual oxidating agents and aniline derivatives as monomers. The synthesized polyaniline derivative-Au/Pd composites, namely poly(N-methyl-o-benzenediamine)-Au/Pd, poly(N-phenyl-o-phenylenediamine)-Au/Pd, poly(N-phenyl-p-phenylenediamine)-Au/Pd and poly(3,3’,5,5’-tetramethylbenzidine)-Au/Pd, exhibited electrochemical redox activity at −0.65 V, −0.3 V, 0.12 V, and 0.5 V, respectively. Meanwhile, these composites showed high H2O2 electrocatalytic activity because of the presence of Au/Pd. The as-prepared composites were used as electrochemical immunoprobes in simultaneous detection of four tumor biomarkers (carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA199), carbohydrate antigen 72-4 (CA724), and alpha fetoprotein (AFP)). This immunoassay shed light on potential applications in simultaneous gastric cancer (related biomarkers: CEA, CA199, CA724) and liver cancer diagnosis (related biomarkers: CEA, CA199, AFP). The present strategy to the synthesize redox species could be easily extended to other polymers such as polypyrrole derivatives and polythiophene derivatives. This would be of great significance in the electrochemical detection of more analytes. PMID:26577799

  11. Highly efficient and stable Au/CeO2-TiO2 photocatalyst for nitric oxide abatement: potential application in flue gas treatment.

    PubMed

    Zhu, Wei; Xiao, Shuning; Zhang, Dieqing; Liu, Peijue; Zhou, Hongjun; Dai, Wenrui; Liu, Fanfan; Li, Hexing

    2015-10-06

    In the present work, highly efficient and stable Au/CeO2-TiO2 photocatalysts were prepared by a microwave-assisted solution approach. The Au/CeO2-TiO2 composites with optimal molar ratio of Au/Ce/Ti of 0.004:0.1:1 delivered a remarkably high and stable NO conversion rate of 85% in a continuous flow reactor system under simulated solar light irradiation, which far exceeded the rate of 48% over pure TiO2. The tiny Au nanocrystals (∼1.1 nm) were well stabilized by CeO2 via strong metal-support bonding even it was subjected to calcinations at 550 °C for 6 h. These Au nanocrystals served as the very active sites for activating the molecule of nitric oxide and reducing the transmission time of the photogenerated electrons to accelerate O2 transforming to reactive oxygen species. Moreover, the Au-Ce(3+) interface formed and served as an anchoring site of O2 molecule. Then more adsorbed oxygen could react with photogenerated electrons on TiO2 surfaces to produce more superoxide radicals for NO oxidation, resulting in the improved efficiency. Meanwhile, O2 was also captured at the Au/TiO2 perimeter site and the NO molecules on TiO2 sites were initially delivered to the active perimeter site via diffusion on the TiO2 surface, where they assisted O-O bond dissociation and reacted with oxygen at these perimeter sites. Therefore, these finite Au nanocrystals can consecutively expose active sites for oxidizing NO. These synergistic effects created an efficient and stable system for breaking down NO pollutants. Furthermore, the excellent antisintering property of the catalyst will allow them for the potential application in photocatalytic treatment of high-temperature flue gas from power plant.

  12. Knowledge Based System Applications for Guidance and Control (Application des Systemes a Base de Connaissances au Guidage-Pilotage)

    DTIC Science & Technology

    1991-01-01

    pour le pilote, l’automatisation du combat, ]a fusion oes capteurs et les concepts de ]a gestion tactique de ]a bataille par des moyens embarquds... naturellement A aceroitue sea marges de adcuntd ci donc A dimtnuer la capacti effective de leapace qu’iI contr~le 11 cherche en effet A se prdmuntr...d𔄀tabliesement du modble des ph~nom~nes do pertes de r~solution suivant la distance de la cible au capteur . La parte do r~solution a deux causes

  13. Fusion of qualitative bond graph and genetic algorithms: a fault diagnosis application.

    PubMed

    Lo, C H; Wong, Y K; Rad, A B; Chow, K M

    2002-10-01

    In this paper, the problem of fault diagnosis via integration of genetic algorithms (GA's) and qualitative bond graphs (QBG's) is addressed. We suggest that GA's can be used to search for possible fault components among a system of qualitative equations. The QBG is adopted as the modeling scheme to generate a set of qualitative equations. The qualitative bond graph provides a unified approach for modeling engineering systems, in particular, mechatronic systems. In order to demonstrate the performance of the proposed algorithm, we have tested the proposed algorithm on an in-house designed and built floating disc experimental setup. Results from fault diagnosis in the floating disc system are presented and discussed. Additional measurements will be required to localize the fault when more than one fault candidate is inferred. Fault diagnosis is activated by a fault detection mechanism when a discrepancy between measured abnormal behavior and predicted system behavior is observed. The fault detection mechanism is not presented here.

  14. Content analysis in studies using the clinical-qualitative method: application and perspectives.

    PubMed

    Campos, Claudinei José Gomes; Turato, Egberto Ribeiro

    2009-01-01

    Content analysis comprises a set of techniques for organizing communication/information - a procedure used with qualitative data to make themes/topics and concepts/knowledge emerge. Communication content, considering human written or spoken discourse, is complex and presents valuable polysemous characteristic. With the dissemination of the clinical-qualitative method, the use of content analysis, considered an important methodological tool, raises theoretical-practical issues that need to be taken into consideration for its academically precise use. Thus, this article aimed to enumerate specific elements of the content analysis technique and discuss its suitability for the clinical-qualitative method that combines generic qualitative methods from Human and Cultural Sciences with the area of Health Sciences. Concepts were selected due to their pertinence, use and eventual adaptation to the method focused on.

  15. Quantitative and Qualitative Imaging in Single Photon Emission Tomography for Nuclear Medicine Applications.

    NASA Astrophysics Data System (ADS)

    Masoomi, Mojtaba (Arash).

    Available from UMI in association with The British Library. An important goal of single photon emission tomography (SPECT) is the determination of absolute regional radionuclide concentration as a function of time. Quantitative and qualitative studies of SPECT with regard to clinical application is the object of this work. Three basic approaches for image reconstruction and factors which affect the choice of a reconstruction algorithm have been reviewed, discussed and the reconstruction techniques, GRADY and CBP evaluated, based on computer modelling. A sophisticated package of computational subroutines, RECLBL, for image reconstruction and for generation of phantoms, which was fully implemented on PRIME was used throughout this study. Two different systems, a rotating gamma-camera and a prototype scanning-rig have been used to carry out tomography experiments with different phantoms in emission and transmission mode. Performance assessment and reproducibility of the gamma-camera was tested prior to the experimental work. SPECT studies are generally hampered for a number of reasons, the most severe being attenuation and scattering. The effect of scattered photons on image quality was discussed, three distinct techniques were utilised to correct the images and results were compared. Determination of the depth of the source, Am-241 and Tc-99m in the attenuating media, water and TEMEX by analysing the spectroscopic data base on the SPR and spatial resolution was studied, results revealed that both techniques had the same range of depth sensitivity. A method of simultaneous emission and transmission tomography was developed to correct the images for attenuation. The reproducibility of the technique was examined. Results showed that the technique is able to present a promising and a practical approach to more accurate quantitative SPECT imaging. A procedure to evaluate images, under certain conditions has been defined, its properties were evaluated using computer

  16. Qualitative Research in Emergency Care Part I: Research Principles and Common Applications.

    PubMed

    Choo, Esther K; Garro, Aris C; Ranney, Megan L; Meisel, Zachary F; Morrow Guthrie, Kate

    2015-09-01

    Qualitative methods are increasingly being used in emergency care research. Rigorous qualitative methods can play a critical role in advancing the emergency care research agenda by allowing investigators to generate hypotheses, gain an in-depth understanding of health problems or specific populations, create expert consensus, and develop new intervention and dissemination strategies. This article, Part I of a two-article series, provides an introduction to general principles of applied qualitative health research and examples of its common use in emergency care research, describing study designs and data collection methods most relevant to our field, including observation, individual interviews, and focus groups. In Part II of this series, we will outline the specific steps necessary to conduct a valid and reliable qualitative research project, with a focus on interview-based studies. These elements include building the research team, preparing data collection guides, defining and obtaining an adequate sample, collecting and organizing qualitative data, and coding and analyzing the data. We also discuss potential ethical considerations unique to qualitative research as it relates to emergency care research.

  17. Applications de la tranformee en ondelettes au traitement de l'information optique

    NASA Astrophysics Data System (ADS)

    Deschenes, Sylvain

    La these presente l'apport d'un outil mathematique recemment decouvert, la transformee en ondelettes, au traitement de l'information optique. Les ondelettes continues sont d'abords introduites et leur realisation optique est presentee. Ensuite, une ondelette repondant aux equations de Maxwell est developpee. Cette derniere permet de tisser des liens entre la transformee en ondelettes et le principe de Huygens utilise pour etudier la diffraction scalaire. La possibilite d'utiliser cette ondelette pour generer des faisceaux non diffractants est egalement discutee. Dans un deuxieme temps, les ondelettes discretes sont utilisees dans le but d'extraire des informations pertinentes dans une banque d'images infrarouges. Ces images representent les vues de vehicules prises a tous les cinq degres. La transformee en ondelettes genere une analyse multiresolution permettant d'extraire des contours moins bruites. Cette information est alors traitee par de nouveaux algorithmes de reconnaissance de forme dans un espace qui caracterise de facon invariante les objets 3-D.

  18. Patterns of Feedback on the Bridge to Independence: A Qualitative Thematic Analysis of NIH Mentored Career Development Award Application Critiques

    PubMed Central

    Dattalo, Melissa; Regner, Caitlin; Filut, Amarette; Carnes, Molly

    2016-01-01

    Abstract Background: NIH Mentored Career Development (K) Awards bridge investigators from mentored to independent research. A smaller proportion of women than men succeed in this transition. The aim of this qualitative study was to analyze reviewers' narrative critiques of K award applications and explore thematic content of feedback provided to male and female applicants. Method: We collected 88 critiques, 34 from 9 unfunded and 54 from 18 funded applications, from 70% (n = 26) of investigators at the University of Wisconsin-Madison with K awards funded between 2005 and 2009 on the first submission or after revision. We qualitatively analyzed text in the 5 critique sections: candidate, career development plan, research plan, mentors, and environment and institutional commitment. We explored thematic content within these sections for male and female applicants and for applicants who had received a subsequent independent research award by 2014. Results: Themes revealed consistent areas of criticism for unfunded applications and praise for funded applications. Subtle variations in thematic content appeared for male and female applicants: For male applicants criticism was often followed by advice but for female applicants it was followed by questions about ability; praise recurrently characterized male but not female applicants' research as highly significant with optimism for future independence. Female K awardees that obtained subsequent independent awards stood out as having track records described as “outstanding.” Conclusion: This exploratory study suggests that K award reviewer feedback, particularly for female applicants, should be investigated as a potential contributor to research persistence and success in crossing the bridge to independence. PMID:26418619

  19. Graphene decorated with PtAu alloy nanoparticles: facile synthesis and promising application for formic acid oxidation

    SciTech Connect

    Zhang, Sheng; Shao, Yuyan; Liao, Honggang; Liu, Jun; Aksay, Ilhan A.; Yin, Geping; Lin, Yuehe

    2011-03-01

    PtAu alloy nanoparticles (~ 3.2 nm in diameter) are synthesized in poly(diallyldimethylammonium chloride) (PDDA) aqueous solution and uniformly dispersed on graphene nanosheets. PtAu/graphene exhibits high electrocatalytic activity and stability for formic acid oxidation, which is attributed to the high dispersion of PtAu nanoparticles and the specific interaction between PtAu and graphene, indicating a promising catalyst for direct formic acid fuel cells. The facile method can be readily extended to the synthesis of other alloy nanoparticles.

  20. Gold Cluster Formation on C60 Surfaces: Au-Cluster Beads and Self-Organized Structures

    NASA Astrophysics Data System (ADS)

    Reinke, Petra; Liu, Hui

    2007-03-01

    Petra Reinke, Hui Liu, Department of Materials Science and Engineering, University of Virginia The investigation of C60-Au interaction is central to the advancement of solar cell and nanotechnology applications of C60. C60 grows in a quasi-layer-by-layer mode on a pristine graphite surface and form a special surface structure (coexistence of round and fractal islands). The deposition of Au leads to the formation of a complex array of different surface structures, while the basic island structure of the C60 is preserved. The Au-clusters nucleate preferentially at the graphite-first fullerene layer islands edge forming beadlike structures. A roughness analysis of the fullerene surface indicates the presence of Au atoms embedded in the fullerene surface, situated in the troughs in between the large molecules. The analysis of the spatial and size distributions of Au clusters provides the basis for the development of a qualitative model which describes the relevant surface processes in the Au-fullerene system. The simultaneous deposition of Au and C60 leads to the formation of organized structures, in which Au clusters are embedded in a ring of fullerene molecules with a constant width.

  1. A Grand Avenue to Au Nanocluster Electrochemiluminescence.

    PubMed

    Hesari, Mahdi; Ding, Zhifeng

    2017-02-21

    In most cases of semiconductor quantum dot nanocrystals, the inherent optical and electrochemical properties of these interesting nanomaterials do not translate into expected efficient electrochemiluminescence or electrogenerated chemiluminescence (ECL) because of the surface-state induction effect. Thus, their low ECL efficiencies, while very interesting to explore, limit their applications. As their electrochemistry is not well-defined, insight into their ECL mechanistic details is also limited. Alternatively, gold nanoclusters possess monodispersed sizes with atomic precision, low and well defined HOMO-LUMO energy gaps, and stable optical and electrochemical properties that make them suitable for potential ECL applications. In this Account, we demonstrate strong and sustainable ECL of gold nanoclusters Au25(z) (i.e., Au25(SR)18(z), z = 1-, 0, 1+), Au38(SR)24, and Au144(SR)60, where the ligand SR is 2-phenylethanethiol. By correlation of the optical and electrochemical features of Au25 nanoclusters, a Latimer-type diagram can be constructed to reveal thermodynamic relationships of five oxidation states (Au25(2+), Au25(+), Au25(0), Au25(-), and Au25(2-)) and three excited states (Au25(-)*, Au25(0)*, and Au25(+)*). We describe ECL mechanisms and reaction kinetics by means of conventional ECL-voltage curves and novel spooling ECL spectroscopy. Notably, their ECL in the presence of tri-n-propylamine (TPrA), as a coreactant, is attributed to emissions from Au25(-)* (950 nm, strong), Au25(0)* (890 nm, very strong), and Au25(+)* (890 nm, very strong), as confirmed by the photoluminescence (PL) spectra of the three Au25 clusters electrogenerated in situ. The ECL emissions are controllable by adjustment of the concentrations of TPrA· and Au25(-), Au25(0), and Au25(+) species in the vicinity of the working electrode and ultimately the applied potential. It was determined that the Au25(-)/TPrA coreactant system should have an ECL efficiency of >50% relative to the Ru(bpy)3

  2. Au-Pt bimetallic nanoparticles supported on nest-like MnO2: synthesis and application in HCHO decomposition

    NASA Astrophysics Data System (ADS)

    Yu, Xuehua; He, Junhui; Wang, Donghui; Hu, Yucai; Tian, Hua; Dong, Tongxin; He, Zhicheng

    2012-11-01

    Facile synthesis of Au-Pt bimetallic nanoparticles (Au1- x Pt x NPs) and mixtures of Au NPs and Pt NPs ((100 % - y)Au/ yPt NPs) and their subsequent deposition on nest-like MnO2 nanostructures were presented. The as-prepared products were characterized by means of UV-visible spectroscopy, X-ray diffraction, scanning and transmission electron microscopy, and energy dispersive spectroscopy. TEM analyses showed that noble metal NPs were evenly dispersed on the surface of nest-like MnO2 nanostructures and no agglomeration was observed. The as-prepared metal NPs supported catalysts showed higher catalytic activities than MnO2 nanostructures for oxidative decomposition of formaldehyde (HCHO). The forms of noble metal NPs and Au/Pt molar ratio have significant effects on the catalytic performance, and Au0.5Pt0.5/MnO2 has the highest catalytic activity among all the as-prepared metal NPs supported MnO2 catalysts, and the temperature for complete decomposition of HCHO reached as low as 313 K. The high catalytic activities of Au1- x Pt x /MnO2 catalysts resulted from the synergistic effect between Au1- x Pt x NPs and MnO2 nanostructure, as well as the synergistic effect between Au and Pt. The current Au1- x Pt x /MnO2 catalysts are among the first trials to apply bimetallic NP-supported catalysts to the decomposition of HCHO, and proved that the Au1- x Pt x /MnO2 catalysts are promising for indoor decomposition of formaldehyde due to their easy synthesis, low cost, and excellent catalytic performance.

  3. Isolation of humic acid from peat soil and its application as an adsorbent for AuCl4- in solution

    NASA Astrophysics Data System (ADS)

    Lestari, Puji

    2017-03-01

    Humic acid (HA) has been isolated from South Kalimantan (Indonesia) peat soil using alkali extraction method. The isolated HA then was applied on the adsorption process of AuCl4- in solution. Parameters investigated in the adsorption process consisted of the effect of initial pH, adsorption rate constant (k) and the adsorption capacity of AuCl4- on peat soil HA. The adsorption rate constant was determined according to the kinetic model proposed by Santosa (2007). The adsorption of AuCl4- on peat soil HA was optimum at pH 2. The adsorption rate constant (k) was 1.11 × 10-3 min-1. Adsorption of AuCl4- on peat soil HA fitted the Langmuir isotherm with the adsorption capacity of 90.91 mg.g-1. The adsorption of AuCl4- on peat soil HA was accompanied by the reduction of AuCl4- to Au(0), clarified by the existence of several peaks belonging to Au(0) in the XRD pattern of HA after the adsorption process.

  4. Application of an asymmetric flow field flow fractionation multi-detector approach for metallic engineered nanoparticle characterization--prospects and limitations demonstrated on Au nanoparticles.

    PubMed

    Hagendorfer, Harald; Kaegi, Ralf; Traber, Jacqueline; Mertens, Stijn F L; Scherrers, Roger; Ludwig, Christian; Ulrich, Andrea

    2011-11-14

    In this work we discuss about the method development, applicability and limitations of an asymmetric flow field flow fractionation (A4F) system in combination with a multi-detector setup consisting of UV/vis, light scattering, and inductively coupled plasma mass spectrometry (ICPMS). The overall aim was to obtain a size dependent-, element specific-, and quantitative method appropriate for the characterization of metallic engineered nanoparticle (ENP) dispersions. Thus, systematic investigations of crucial method parameters were performed by employing well characterized Au nanoparticles (Au-NPs) as a defined model system. For good separation performance, the A4F flow-, membrane-, and carrier conditions were optimized. To obtain reliable size information, the use of laser light scattering based detectors was evaluated, where an online dynamic light scattering (DLS) detector showed good results for the investigated Au-NP up to a size of 80 nm in hydrodynamic diameter. To adapt large sensitivity differences of the various detectors, as well as to guarantee long term stability and minimum contamination of the mass spectrometer a split-flow concept for coupling ICPMS was evaluated. To test for reliable quantification, the ICPMS signal response of ionic Au standards was compared to that of Au-NP. Using proper stabilization with surfactants, no difference for concentrations of 1-50 μg Au L(-1) in the size range from 5 to 80 nm for citrate stabilized dispersions was observed. However, studies using different A4F channel membranes showed unspecific particle-membrane interaction resulting in retention time shifts and unspecific loss of nanoparticles, depending on the Au-NP system as well as membrane batch and type. Thus, reliable quantification and discrimination of ionic and particular species was performed using ICPMS in combination with ultracentrifugation instead of direct quantification with the A4F multi-detector setup. Figures of merit were obtained, by comparing the

  5. Seed-induced growth of flower-like Au-Ni-ZnO metal-semiconductor hybrid nanocrystals for photocatalytic applications.

    PubMed

    Chen, Yuanzhi; Zeng, Deqian; Cortie, Michael B; Dowd, Annette; Guo, Huizhang; Wang, Junbao; Peng, Dong-Liang

    2015-03-25

    The combination of metal and semiconductor components in nanoscale to form a hybrid nanocrystal provides an important approach for achieving advanced functional materials with special optical, magnetic and photocatalytic functionalities. Here, a facile solution method is reported for the synthesis of Au-Ni-ZnO metal-semiconductor hybrid nanocrystals with a flower-like morphology and multifunctional properties. This synthetic strategy uses noble and magnetic metal Au@Ni nanocrystal seeds formed in situ to induce the heteroepitaxial growth of semiconducting ZnO nanopyramids onto the surface of metal cores. Evidence of epitaxial growth of ZnO{0001} facets on Ni {111} facets is observed on the heterojunction, even though there is a large lattice mismatch between the semiconducting and magnetic components. Adjustment of the amount of Au and Ni precursors can control the size and composition of the metal core, and consequently modify the surface plasmon resonance (SPR) and magnetic properties. Room-temperature superparamagnetic properties can be achieved by tuning the size of Ni core. The as-prepared Au-Ni-ZnO nanocrystals are strongly photocatalytic and can be separated and re-cycled by virtue of their magnetic properties. The simultaneous combination of plasmonic, semiconducting and magnetic components within a single hybrid nanocrystal furnishes it multifunctionalities that may find wide potential applications.

  6. A rapid green strategy for the synthesis of Au "meatball"-like nanoparticles using green tea for SERS applications

    NASA Astrophysics Data System (ADS)

    Wu, Shichao; Zhou, Xi; Yang, Xiangrui; Hou, Zhenqing; Shi, Yanfeng; Zhong, Lubin; Jiang, Qian; Zhang, Qiqing

    2014-09-01

    We report a simple and rapid biological approach to synthesize water-soluble and highly roughened "meatball"-like Au nanoparticles using green tea extract under microwave irradiation. The synthesized Au meatball-like nanoparticles possess excellent monodispersity and uniform size (250 nm in diameter). Raman measurements show that these tea-generated meatball-like gold nanostructures with high active surface areas exhibit a high enhancement of surface-enhanced Raman scattering. In addition, the Au meatball-like nanoparticles demonstrate good biocompatibility and remarkable in vitro stability at the biological temperature. Meanwhile, the factors that influence the Au meatball-like nanoparticles morphology are investigated, and the mechanisms behind the nonspherical shape evolution are discussed.

  7. An enhanced photocatalytic response of nanometric TiO2 wrapping of Au nanoparticles for eco-friendly water applications

    NASA Astrophysics Data System (ADS)

    Scuderi, Viviana; Impellizzeri, Giuliana; Romano, Lucia; Scuderi, Mario; Brundo, Maria V.; Bergum, Kristin; Zimbone, Massimo; Sanz, Ruy; Buccheri, Maria A.; Simone, Francesca; Nicotra, Giuseppe; Svensson, Bengt G.; Grimaldi, Maria G.; Privitera, Vittorio

    2014-09-01

    We propose a ground-breaking approach by an upside-down vision of the Au/TiO2 nano-system in order to obtain an enhanced photocatalytic response. The system was synthesized by wrapping Au nanoparticles (~8 nm mean diameter) with a thin layer of TiO2 (~4 nm thick). The novel idea of embedding Au nanoparticles with titanium dioxide takes advantage of the presence of metal nanoparticles, in terms of electron trapping, without losing any of the TiO2 exposed surface, so as to favor the photocatalytic performance of titanium dioxide. A complete structural characterization was made by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The remarkable photocatalytic performance together with the stability of the nano-system was demonstrated by degradation of the methylene blue dye in water. The non-toxicity of the nano-system was established by testing the effect of the material on the reproductive cycle of Mytilus galloprovincialis in an aquatic environment. The originally synthesized material was also compared to conventional TiO2 with Au nanoparticles on top. The latter system showed a dispersion of Au nanoparticles in the liquid environment, due to their instability in the aqueous solution that clearly represents an environmental contamination issue. Thus, the results show that nanometric TiO2 wrapping of Au nanoparticles has great potential in eco-friendly water/wastewater purification.

  8. Quantitative and qualitative research across cultures and languages: cultural metrics and their application.

    PubMed

    Wagner, Wolfgang; Hansen, Karolina; Kronberger, Nicole

    2014-12-01

    Growing globalisation of the world draws attention to cultural differences between people from different countries or from different cultures within the countries. Notwithstanding the diversity of people's worldviews, current cross-cultural research still faces the challenge of how to avoid ethnocentrism; comparing Western-driven phenomena with like variables across countries without checking their conceptual equivalence clearly is highly problematic. In the present article we argue that simple comparison of measurements (in the quantitative domain) or of semantic interpretations (in the qualitative domain) across cultures easily leads to inadequate results. Questionnaire items or text produced in interviews or via open-ended questions have culturally laden meanings and cannot be mapped onto the same semantic metric. We call the culture-specific space and relationship between variables or meanings a 'cultural metric', that is a set of notions that are inter-related and that mutually specify each other's meaning. We illustrate the problems and their possible solutions with examples from quantitative and qualitative research. The suggested methods allow to respect the semantic space of notions in cultures and language groups and the resulting similarities or differences between cultures can be better understood and interpreted.

  9. Application de la methode des sous-groupes au calcul Monte-Carlo multigroupe

    NASA Astrophysics Data System (ADS)

    Martin, Nicolas

    This thesis is dedicated to the development of a Monte Carlo neutron transport solver based on the subgroup (or multiband) method. In this formalism, cross sections for resonant isotopes are represented in the form of probability tables on the whole energy spectrum. This study is intended in order to test and validate this approach in lattice physics and criticality-safety applications. The probability table method seems promising since it introduces an alternative computational way between the legacy continuous-energy representation and the multigroup method. In the first case, the amount of data invoked in continuous-energy Monte Carlo calculations can be very important and tend to slow down the overall computational time. In addition, this model preserves the quality of the physical laws present in the ENDF format. Due to its cheap computational cost, the multigroup Monte Carlo way is usually at the basis of production codes in criticality-safety studies. However, the use of a multigroup representation of the cross sections implies a preliminary calculation to take into account self-shielding effects for resonant isotopes. This is generally performed by deterministic lattice codes relying on the collision probability method. Using cross-section probability tables on the whole energy range permits to directly take into account self-shielding effects and can be employed in both lattice physics and criticality-safety calculations. Several aspects have been thoroughly studied: (1) The consistent computation of probability tables with a energy grid comprising only 295 or 361 groups. The CALENDF moment approach conducted to probability tables suitable for a Monte Carlo code. (2) The combination of the probability table sampling for the energy variable with the delta-tracking rejection technique for the space variable, and its impact on the overall efficiency of the proposed Monte Carlo algorithm. (3) The derivation of a model for taking into account anisotropic

  10. Eco-friendly synthesis of TiO2, Au and Pt doped TiO2 nanoparticles for dye sensitized solar cell applications and evaluation of toxicity

    NASA Astrophysics Data System (ADS)

    Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Thirumal, S.; Arumugam, A.

    2016-04-01

    Driven by the demand of pure TiO2, Au and Pt doped TiO2 NPs were successfully synthesized using Terminalia arjuna bark extract. The eco-friendly synthesized NPs were characterized by UV-Vis-DRS, ATR-FT-IR, PL, XRD, Raman, SEM with EDX and TEM analysis. The synthesized NPs were investigation for dye sensitized solar cell applications. UV-Vis-Diffused Reflectance Spectra clearly showed that the expected TiO2 inter band absorption below 306 nm, incorporation of gold shows surface plasma resonant (SPR) near 555 nm and platinum incorporated TiO2 NPs shows absorbance at 460 nm. The energy conversion efficiency for Au doped TiO2 NPs when compared to pure and Pt doped TiO2 NPs. In addition to that, Au noble metal present TiO2 matrix and an improve open-circuit voltage (Voc) of DSSC. Synthesized NPs was evaluated into antibacterial and antifungal activities by disk diffusion method. It is observed that NPs have not shown any activities in all tested bacterial and fungal strains. In this eco-friendly synthesis method to provide non toxic and environmental friendly nanomaterials can be used for solar energy device application.

  11. Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction.

    PubMed

    Shi, Jianping; Ma, Donglin; Han, Gao-Feng; Zhang, Yu; Ji, Qingqing; Gao, Teng; Sun, Jingyu; Song, Xiuju; Li, Cong; Zhang, Yanshuo; Lang, Xing-You; Zhang, Yanfeng; Liu, Zhongfan

    2014-10-28

    Controllable synthesis of monolayer MoS2 is essential for fulfilling the application potentials of MoS2 in optoelectronics and valleytronics, etc. Herein, we report the scalable growth of high quality, domain size tunable (edge length from ∼ 200 nm to 50 μm), strictly monolayer MoS2 flakes or even complete films on commercially available Au foils, via low pressure chemical vapor deposition method. The as-grown MoS2 samples can be transferred onto arbitrary substrates like SiO2/Si and quartz with a perfect preservation of the crystal quality, thus probably facilitating its versatile applications. Of particular interest, the nanosized triangular MoS2 flakes on Au foils are proven to be excellent electrocatalysts for hydrogen evolution reaction, featured by a rather low Tafel slope (61 mV/decade) and a relative high exchange current density (38.1 μA/cm(2)). The excellent electron coupling between MoS2 and Au foils is considered to account for the extraordinary hydrogen evolution reaction activity. Our work reports the synthesis of monolayer MoS2 when introducing metal foils as substrates, and presents sound proof that monolayer MoS2 assembled on a well selected electrode can manifest a hydrogen evolution reaction property comparable with that of nanoparticles or few-layer MoS2 electrocatalysts.

  12. Part two: Qualitative research.

    PubMed

    Quick, J; Hall, S

    2015-01-01

    This second article in the series Spotlight on Research focuses on qualitative research, its applications, principles and methodologies. It provides an insight into how this approach can be used within the perioperative setting and gives advice for practitioners looking to undertake a qualitative research study.

  13. Low temperature activation of Au/Ti getter film for application to wafer-level vacuum packaging

    NASA Astrophysics Data System (ADS)

    Wu, Ming; Moulin, Johan; Lani, Sébastien; Hallais, Géraldine; Renard, Charles; Bosseboeuf, Alain

    2015-03-01

    Non-evaporable getter (NEG) thin films based on alloys of transition metals have been studied by various authors for vacuum control in wafer-level packages of micro electro mechanical systems (MEMS). These materials have typically a relatively high activation temperature (300-450 °C) which is incompatible with some temperature sensitive MEMS devices. In this work we investigate the potential of Au/Ti system with a thin or ultrathin non oxidizable Au layer as a low activation temperature getter material. In this bilayer system, gettering activation is produced by thermal outdiffusion of titanium atoms through the gold film. The outdiffusion kinetics of titanium was modelled and characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Rutherford backscattering spectrometry (RBS) at various temperatures. Results confirm that Au/Ti bilayer is a promising getter material for wafer-level packaging with an activation temperature below 300 °C for 1 h annealing time.

  14. Qualitative research.

    PubMed

    Gelling, Leslie

    2015-03-25

    Qualitative research has an important role in helping nurses and other healthcare professionals understand patient experiences of health and illness. Qualitative researchers have a large number of methodological options and therefore should take care in planning and conducting their research. This article offers a brief overview of some of the key issues qualitative researchers should consider.

  15. Observation of dynamic water microadsorption on Au surface

    SciTech Connect

    Huang, Xiaokang Gupta, Gaurav; Gao, Weixiang; Tran, Van; Nguyen, Bang; McCormick, Eric; Cui, Yongjie; Yang, Yinbao; Hall, Craig; Isom, Harold

    2014-05-15

    Experimental and theoretical research on water wettability, adsorption, and condensation on solid surfaces has been ongoing for many decades because of the availability of new materials, new detection and measurement techniques, novel applications, and different scales of dimensions. Au is a metal of special interest because it is chemically inert, has a high surface energy, is highly conductive, and has a relatively high melting point. It has wide applications in semiconductor integrated circuitry, microelectromechanical systems, microfluidics, biochips, jewelry, coinage, and even dental restoration. Therefore, its surface condition, wettability, wear resistance, lubrication, and friction attract a lot of attention from both scientists and engineers. In this paper, the authors experimentally investigated Au{sub 2}O{sub 3} growth, wettability, roughness, and adsorption utilizing atomic force microscopy, scanning electron microscopy, reflectance spectrometry, and contact angle measurement. Samples were made using a GaAs substrate. Utilizing a super-hydrophilic Au surface and the proper surface conditions of the surrounding GaAs, dynamic microadsorption of water on the Au surface was observed in a clean room environment. The Au surface area can be as small as 12 μm{sup 2}. The adsorbed water was collected by the GaAs groove structure and then redistributed around the structure. A model was developed to qualitatively describe the dynamic microadsorption process. The effective adsorption rate was estimated by modeling and experimental data. Devices for moisture collection and a liquid channel can be made by properly arranging the wettabilities or contact angles of different materials. These novel devices will be very useful in microfluid applications or biochips.

  16. Battery energy storage and superconducting magnetic energy storage for utility applications: A qualitative analysis

    SciTech Connect

    Akhil, A.A.; Butler, P.; Bickel, T.C.

    1993-11-01

    This report was prepared at the request of the US Department of Energy`s Office of Energy Management for an objective comparison of the merits of battery energy storage with superconducting magnetic energy storage technology for utility applications. Conclusions are drawn regarding the best match of each technology with these utility application requirements. Staff from the Utility Battery Storage Systems Program and the superconductivity Programs at Sandia National contributed to this effort.

  17. The effect of Alexander technique training program: A qualitative study of ordinary behavior application

    PubMed Central

    Kim, Soo-Yeon; Baek, Soon Gi

    2014-01-01

    The purpose of this study was to configure and apply the Alexander technique training program and assess the effect of program through physical, emotional and behavioral aspects. To achieve the research aims, qualitative research method had been conducted, subjecting 8 people, who were participating in Alexander Technique training program for this study. The study used focus group interview method for collecting date and employed for the interview method by mixing the semi-structured and unstructured questionnaire. The results were followings. First, one could develop body awareness and body consciousness through experiencing lived bodily sensation. Second, from Alexander Technique training program, people experienced psycho & physical’s equilibrium. Third, one could change not only the manner of use of body but also the attitude to the life from conscious attention to daily ordinary movement. The results provided empirical evidence of Alexander Technique training program’s functions in terms of physical, emotional and behavioral aspect through the process of consciousness control from lived body education. PMID:25610819

  18. Can the caged bird sing? Reflections on the application of qualitative research methods to case study design in homeopathic medicine

    PubMed Central

    Thompson, Trevor DB

    2004-01-01

    Background Two main pathways exist for the development of knowledge in clinical homeopathy. These comprise clinical trials conducted primarily by university-based researchers and cases reports and homeopathic "provings" compiled by engaged homeopathic practitioners. In this paper the relative merits of these methods are examined and a middle way proposed. This consists of the "Formal Case Study" (FCS) in which qualitative methods are used to increase the rigour and sophistication with which homeopathic cases are studied. Before going into design issues this paper places the FCS in an historical and academic context and describes the relative merits of the method. Discussion Like any research, the FCS should have a clear focus. This focus can be both "internal", grounded in the discourse of homeopathy and also encompass issues of wider appeal. A selection of possible "internal" and "external" research questions is introduced. Data generation should be from multiple sources to ensure adequate triangulation. This could include the recording and transcription of actual consultations. Analysis is built around existing theory, involves cross-case comparison and the search for deviant cases. The trustworthiness of conclusions is ensured by the application of concepts from qualitative research including triangulation, groundedness, respondent validation and reflexivity. Though homeopathic case studies have been reported in mainstream literature, none has used formal qualitative methods – though some such studies are in progress. Summary This paper introduces the reader to a new strategy for homeopathic research. This strategy, termed the "formal case study", allows for a naturalistic enquiry into the players, processes and outcomes of homeopathic practice. Using ideas from qualitative research, it allows a rigorous approach to types of research question that cannot typically be addressed through clinical trials and numeric outcome studies. The FCS provides an opportunity

  19. Plethora or paucity: a systematic search and bibliometric study of the application and design of qualitative methods in nursing research 2008-2010.

    PubMed

    Ball, Elaine; McLoughlin, Moira; Darvill, Angela

    2011-04-01

    Qualitative methodology has increased in application and acceptability in all research disciplines. In nursing, it is appropriate that a plethora of qualitative methods can be found as nurses pose real-world questions to clinical, cultural and ethical issues of patient care (Johnson, 2007; Long and Johnson, 2007), yet the methods nurses readily use in pursuit of answers remains under intense scrutiny. One of the problems with qualitative methodology for nursing research is its place in the hierarchy of evidence (HOE); another is its comparison to the positivist constructs of what constitutes good research and the measurement of qualitative research against this. In order to position and strengthen its evidence base, nursing may well seek to distance itself from a qualitative perspective and utilise methods at the top of the HOE; yet given the relation of qualitative methods to nursing this would constrain rather than broaden the profession in search of answers and an evidence base. The comparison between qualitative and quantitative can be both mutually exclusive and rhetorical, by shifting the comparison this study takes a more reflexive position and critically appraises qualitative methods against the standards set by qualitative researchers. By comparing the design and application of qualitative methods in nursing over a two year period, the study examined how qualitative stands up to independent rather than comparative scrutiny. For the methods, a four-step mixed methods approach newly constructed by the first author was used to define the scope of the research question and develop inclusion criteria. 2. Synthesis tables were constructed to organise data, 3. Bibliometrics configured data. 4. Studies selected for inclusion in the review were critically appraised using a critical interpretive synthesis (Dixon-Woods et al., 2006). The paper outlines the research process as well as findings. Results showed of the 240 papers analysed, 27% used ad hoc or no

  20. Fabrication of Lab-on-Paper Using Porous Au-Paper Electrode: Application to Tumor Marker Electrochemical Immunoassays.

    PubMed

    Ge, Shenguang; Zhang, Yan; Yan, Mei; Huang, Jiadong; Yu, Jinghua

    2017-01-01

    A simple, low-cost, and sensitive electrochemical lab-on-paper assay is developed based on a novel gold nanoparticle modified porous paper working electrode for use in point-of-care testing (POCT). Electrochemical methods are introduced for lab-on-paper based on screen-printed paper electrodes. To further improve specificity, performance, and sensitivity for point-of-care testing, a novel porous Au-paper working electrode (Au-PWE) is designed for lab-on-paper using growth of an interconnected Au nanoparticle (NP) layer on the surface of cellulose fibers in order to enhance the conductivity of the paper sample zone and immobilize the primary antibodies (Ab1). With a sandwich-type immunoassay format, Pd-Au bimetallic nanoparticles possessing peroxidase-like activity are used as a matrix to immobilize secondary antibodies (Ab2) for rapid detection of targets. This lab-on-paper based immunodevice is applied to the diagnosis of a cancer biomarker in clinical serum samples.

  1. Synthesis of Au-decorated tripod-shaped Te hybrids for applications in the ultrasensitive detection of arsenic.

    PubMed

    Wang, Demeng; Zhao, Yuewu; Jin, Huile; Zhuang, Jinxia; Zhang, Weiming; Wang, Shun; Wang, Jichang

    2013-06-26

    Novel Au-decorated Te hybrids with a tripod-shaped planar microstructure were prepared through a two-step hydrothermal process: the synthesis of Te single crystals and the subsequent self-sacrificial reaction of Te template with HAuCl4. Based on the influences of reaction temperature and solvent compositions on the as-obtained microstructures, a plausible mechanism was proposed to account for the formation of the tripod-shaped Te and Au/Te crystals. The as-prepared Au/Te hybrids have the sensitivity of 6.35 μA/ppb in the electrochemical detection of As(III), which represents the highest sensitivity reported in literature. The Au/Te sensor also has a low detection limit of 0.0026 ppb and could work in complex mixtures containing As(III), Cu(II) and other heavy metal ions, exhibiting excellent selectivity on As(III) and Cu(II) ions. The enhanced electrocatalytic property may be attributed to the synergetic interactions between the noble metal and semiconductor and the presence of a large number of active sites on the hybrids surface.

  2. Adsorption between TC-stabilized AuNPs and the phosphate group: application of the PTP1B activity assay.

    PubMed

    Lv, Jun; Wang, Xiaonan; Zhang, Yuanyuan; Li, Defeng; Zhang, Juan; Sun, Lizhou

    2015-12-07

    Based on the adsorption between tetracycline (TC) and phosphate groups, a general colorimetric method is explored in this work by using TC-stabilized gold nanoparticles (TC/AuNPs) and 4-aminophenyl phosphate-functionalized Fe3O4 magnetic nanoparticles (APP/MNPs). Taking protein tyrosine phosphatase 1B (PTP1B) as an example, 4-aminophenyl phosphate (APP) can be hydrolyzed into 4-aminophenol (AP) by PTP1B, resulting in the disappearance of the phosphate group on the outer layer of MNPs and the loss of corresponding adsorptive ability. Upon addition of TC/AuNP solution, TC/AuNPs will remain in the supernatant solution after magnetic separation and a high absorbance value can be observed. So PTP1B activity is related to the concentrations of TC/AuNPs in the supernatant solution. In this work, the enzyme activity can be determined at levels as low as 0.0885 U mL(-1) and over a linear detection range as wide as 0.1 U mL(-1) to 0.9 U mL(-1). Moreover, using the proposed method, the inhibition effect of betulinic acid (BA) and sodium orthovanadate (Na3VO4) on PTP1B activity can be tested with IC50 values of 30 μM and 4 μM, respectively. Therefore, a universal platform for the accurate colorimetric analysis of kinase and phosphatase activities can be established through the adsorption between TC and phosphate groups.

  3. Magnetic gold nanocatalyst (nanocat-Fe–Au): catalytic applications for the oxidative esterification and hydrogen transfer reactions

    EPA Science Inventory

    An efficient and sustainable protocol is described for the oxidative esterification of aldehydes and the reduction of aromatic nitro compounds that uses magnetically separable and reusable maghemite-supported gold nanocatalyst (nanocat-Fe-Au) under mild conditions. The complex ch...

  4. MO-FG-303-08: PET-Detectable Bimetallic (Zn@Au) Nanoparticles for Radiotherapy and Molecular Imaging Applications

    SciTech Connect

    Cho, J; Cho, S; Wang, M; Zubarev, E; Gonzalez-Lepera, C

    2015-06-15

    Purpose: A technical challenge in clinical translation of GNP-mediated radiotherapy is lack of in-vivo imaging tools for monitoring biodistribution of GNPs. While several modalities (x-ray fluorescence, photoacoustic, etc.) are investigated, we propose a potentially more effective technique based on PET imaging. We developed Zn@Au NPs whose Zn core acts as positron emitters when activated by protons, while the Au shell plays the original role for GNP-mediated radiosensitization. Methods: Spherical Zn NPs (∼7nm diameter) were synthesized and then coated with ∼7nm thick Au layer to make Zn@Au NPs (∼20nm diameter). A water slurry containing 29mg of Zn@Au NPs was deposited (<10µm thickness) on a thin cellulose target and subsequently baked to remove the water. The cellulose matrix was placed in an aluminum target holder and irradiated with 14.5MeV protons from a GE PETtrace cyclotron with 4µA for 5min. After irradiation the cellulose matrix with the NPs was placed in a dose calibrator to assay radioactivity. Gamma spectroscopy using a HPGe detector was conducted on a very small fraction (<1mg) of the irradiated NPs. Results: We measured 158µCi of activity 32min after end of bombardment (EOB) using 66Ga setting on the dose calibrator (contribution from the cellulose matrix is negligible) which decreased to 2µCi over a 24hrs period. A gamma spectrum started one hour after EOB on the small fraction and acquired for 700sec showed a strong peak at 511keV (∼40,000 counts) with several other peaks (highest peak <1200 counts) of smaller magnitude. Conclusion: Strong 511keV gamma emission from proton-activated Zn cores can potentially be utilized to image the biodistribution of Zn@Au NPs using a PET scanner. The developed Zn@Au NPs are expected to retain radiosensitizing capability similar to solid GNPs, while observable through PET imaging for human-sized objects. Moreover, bioconjugated PET-detectable GNPs would allow a new option to perform molecular imaging.

  5. Preparation of Au-polydopamine functionalized carbon encapsulated Fe₃O₄ magnetic nanocomposites and their application for ultrasensitive detection of carcino-embryonic antigen.

    PubMed

    Ji, Lei; Yan, Tao; Li, Yan; Gao, Jian; Wang, Qi; Hu, Lihua; Wu, Dan; Wei, Qin; Du, Bin

    2016-02-12

    A novel carbon encapsulated Fe3O4 nanoparticles embedded in two-dimensional (2D) porous graphitic carbon nanocomposites (Fe3O4@C@PGC nanocomposites) were synthesized by situ synthesis strategy, which provided a sensor platform owing to a large aspect ratio and porous structure. Polydopamine (PDA) were modified on the surface of Fe3O4@C@PGC nanocomposites through self-polymerization of dopamine, acting as both the reductant and template for one-step synthesis of gold nanoparticles. The prepared Au/PDA/Fe3O4@C@PGC nanocomposites show ferromagnetic features, extremely excellent electron transfer, large specific surface area and excellent dispersing property. These are conducive to the electrochemical signal output and the immobilization of antibody. In this work, a highly label-free sensitive magnetic immunosensor was developed based on Au/PDA/Fe3O4@C@PGC nanocomposites for the detection of carcino-embryonic antigen (CEA). The magnetic glassy carbon electrode was used to fix the Au/PDA/Fe3O4@C@PGC nanocomposites with the help of magnetic force. Under the optimal conditions, the immunosensor exhibited a wide linear range (0.001 ng/mL-20.0 ng/mL), a low detection limit (0.33 pg/mL), good reproducibility, selectivity and acceptable stability. The proposed sensing strategy may provide a potential application in the detection of other cancer biomarkers.

  6. Development of ultrafine multichannel microfluidic mixer for synthesis of bimetallic nanoclusters: catalytic application of highly monodisperse AuPd nanoclusters stabilized by poly(N-vinylpyrrolidone).

    PubMed

    Hayashi, Naoto; Sakai, Yuka; Tsunoyama, Hironori; Nakajima, Atsushi

    2014-09-02

    On account of their novel properties, bimetallic nanoparticles and nanoclusters (NCs) are strong potential candidates for optical, magnetic, and catalytic functional materials. These properties depend on the chemical composition and size (number of constituent atoms) of the NCs. Control of size, structure, and composition is particularly important for fabricating highly functional materials based on bimetallic NCs. Size- and structure-controlled synthesis of two-element alloys can reveal their intrinsic electronic synergistic effects. However, because synergistic enhancement of activity is strongly affected by composition as well as by size and structure, controlled synthesis is a challenging task, particularly in catalytic applications. To investigate catalytic synergistic effects, we have synthesized highly monodisperse, sub-2 nm, solid-solution AuPd NCs stabilized with poly(N-vinylpyrrolidone) (AuPd:PVP) using a newly developed ultrafine microfluidic mixing device with 15 μm wide multiple lamination channels. The synergistic enhancement for catalytic aerobic oxidation of benzyl alcohol exhibited a volcano-shaped trend, with a maximum at 20-65 at. % Pd. From X-ray photoelectron spectroscopic measurements, we confirmed that the enhanced activity originates from the enhanced electron density at the Au sites, donated by Pd sites.

  7. Model-based analysis for qualitative data: an application in Drosophila germline stem cell regulation.

    PubMed

    Pargett, Michael; Rundell, Ann E; Buzzard, Gregery T; Umulis, David M

    2014-03-01

    Discovery in developmental biology is often driven by intuition that relies on the integration of multiple types of data such as fluorescent images, phenotypes, and the outcomes of biochemical assays. Mathematical modeling helps elucidate the biological mechanisms at play as the networks become increasingly large and complex. However, the available data is frequently under-utilized due to incompatibility with quantitative model tuning techniques. This is the case for stem cell regulation mechanisms explored in the Drosophila germarium through fluorescent immunohistochemistry. To enable better integration of biological data with modeling in this and similar situations, we have developed a general parameter estimation process to quantitatively optimize models with qualitative data. The process employs a modified version of the Optimal Scaling method from social and behavioral sciences, and multi-objective optimization to evaluate the trade-off between fitting different datasets (e.g. wild type vs. mutant). Using only published imaging data in the germarium, we first evaluated support for a published intracellular regulatory network by considering alternative connections of the same regulatory players. Simply screening networks against wild type data identified hundreds of feasible alternatives. Of these, five parsimonious variants were found and compared by multi-objective analysis including mutant data and dynamic constraints. With these data, the current model is supported over the alternatives, but support for a biochemically observed feedback element is weak (i.e. these data do not measure the feedback effect well). When also comparing new hypothetical models, the available data do not discriminate. To begin addressing the limitations in data, we performed a model-based experiment design and provide recommendations for experiments to refine model parameters and discriminate increasingly complex hypotheses.

  8. Model-Based Analysis for Qualitative Data: An Application in Drosophila Germline Stem Cell Regulation

    PubMed Central

    Pargett, Michael; Rundell, Ann E.; Buzzard, Gregery T.; Umulis, David M.

    2014-01-01

    Discovery in developmental biology is often driven by intuition that relies on the integration of multiple types of data such as fluorescent images, phenotypes, and the outcomes of biochemical assays. Mathematical modeling helps elucidate the biological mechanisms at play as the networks become increasingly large and complex. However, the available data is frequently under-utilized due to incompatibility with quantitative model tuning techniques. This is the case for stem cell regulation mechanisms explored in the Drosophila germarium through fluorescent immunohistochemistry. To enable better integration of biological data with modeling in this and similar situations, we have developed a general parameter estimation process to quantitatively optimize models with qualitative data. The process employs a modified version of the Optimal Scaling method from social and behavioral sciences, and multi-objective optimization to evaluate the trade-off between fitting different datasets (e.g. wild type vs. mutant). Using only published imaging data in the germarium, we first evaluated support for a published intracellular regulatory network by considering alternative connections of the same regulatory players. Simply screening networks against wild type data identified hundreds of feasible alternatives. Of these, five parsimonious variants were found and compared by multi-objective analysis including mutant data and dynamic constraints. With these data, the current model is supported over the alternatives, but support for a biochemically observed feedback element is weak (i.e. these data do not measure the feedback effect well). When also comparing new hypothetical models, the available data do not discriminate. To begin addressing the limitations in data, we performed a model-based experiment design and provide recommendations for experiments to refine model parameters and discriminate increasingly complex hypotheses. PMID:24626201

  9. Tailored synthesis of photoactive TiO ₂ nanofibers and Au/TiO ₂ nanofiber composites: structure and reactivity optimization for water treatment applications.

    PubMed

    Nalbandian, Michael J; Greenstein, Katherine E; Shuai, Danmeng; Zhang, Miluo; Choa, Yong-Ho; Parkin, Gene F; Myung, Nosang V; Cwiertny, David M

    2015-02-03

    Titanium dioxide (TiO2) nanofibers with tailored structure and composition were synthesized by electrospinning to optimize photocatalytic treatment efficiency. Nanofibers of controlled diameter (30-210 nm), crystal structure (anatase, rutile, mixed phases), and grain size (20-50 nm) were developed along with composite nanofibers with either surface-deposited or bulk-integrated Au nanoparticle cocatalysts. Their reactivity was then examined in batch suspensions toward model (phenol) and emerging (pharmaceuticals, personal care products) pollutants across various water qualities. Optimized TiO2 nanofibers meet or exceed the performance of traditional nanoparticulate photocatalysts (e.g., Aeroxide P25) with the greatest reactivity enhancements arising from (i) decreasing diameter (i.e., increasing surface area), (ii) mixed phase composition [74/26 (±0.5) % anatase/rutile], and (iii) small amounts (1.5 wt %) of surface-deposited, more so than bulk-integrated, Au nanoparticles. Surface Au deposition consistently enhanced photoactivity by 5- to 10-fold across our micropollutant suite independent of their solution concentration, behavior that we attribute to higher photocatalytic efficiency from improved charge separation. However, the practical value of Au/TiO2 nanofibers was limited by their greater degree of inhibition by solution-phase radical scavengers and higher rate of reactivity loss from surface fouling in nonidealized matrixes (e.g., partially treated surface water). Ultimately, unmodified TiO2 nanofibers appear most promising for use as reactive filtration materials because their performance was less influenced by water quality, although future efforts must increase the strength of TiO2 nanofiber mats to realize such applications.

  10. A Qualitative Application of Kirkpatrick's Model for Evaluating Workshops and Conferences.

    ERIC Educational Resources Information Center

    Moseley, James L.; Larson, Steven

    1994-01-01

    Discusses the evaluation of workshops and conferences and presents an application of Kirkpatrick's four-stage evaluation model, an accepted model for measuring performance and instructional interventions. Highlights include presurveys and postsurveys; participant reaction forms during the meetings; and assessing previous participants. (10…

  11. Qualitative Research and Case Study Applications in Education. Revised and Expanded from "Case Study Research in Education."

    ERIC Educational Resources Information Center

    Merriam, Sharan B.

    This book offers a resource guide for qualitative researchers in education, discussing data collection techniques, data analysis, reporting, and the issues of validity, reliability, and ethics. Part 1 reviews the nature and design of qualitative research; it discusses various types of qualitative research (including case studies), and how to…

  12. The qualitative research proposal.

    PubMed

    Klopper, H

    2008-12-01

    Qualitative research in the health sciences has had to overcome many prejudices and a number of misunderstandings, but today qualitative research is as acceptable as quantitative research designs and is widely funded and published. Writing the proposal of a qualitative study, however, can be a challenging feat, due to the emergent nature of the qualitative research design and the description of the methodology as a process. Even today, many sub-standard proposals at post-graduate evaluation committees and application proposals to be considered for funding are still seen. This problem has led the researcher to develop a framework to guide the qualitative researcher in writing the proposal of a qualitative study based on the following research questions: (i) What is the process of writing a qualitative research proposal? and (ii) What does the structure and layout of a qualitative proposal look like? The purpose of this article is to discuss the process of writing the qualitative research proposal, as well as describe the structure and layout of a qualitative research proposal. The process of writing a qualitative research proposal is discussed with regards to the most important questions that need to be answered in your research proposal with consideration of the guidelines of being practical, being persuasive, making broader links, aiming for crystal clarity and planning before you write. While the structure of the qualitative research proposal is discussed with regards to the key sections of the proposal, namely the cover page, abstract, introduction, review of the literature, research problem and research questions, research purpose and objectives, research paradigm, research design, research method, ethical considerations, dissemination plan, budget and appendices.

  13. A simple approach to the synthesis of eccentric Au@SiO2 Janus nanostructures and their catalytic applications

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Yang, Di; Hu, Huicheng; Chen, Lei; Xu, Yong; Qu, Lili; Yang, Peipei; Zhang, Qiao

    2016-06-01

    In this paper, we present a simple method to synthesize eccentric Au@SiO2 Janus nanoparticles. By simply tuning the concentration of poly(vinyl pyrrolidone) (PVP), the surface of gold nanoparticle can be partially or fully wrapped with the amphiphilic ligand. As a result, Janus nanoparticle or concentric core-shell nanostructures can be obtained, respectively. A systematic study has been carried out to confirm the function of PVP molecules. The as-prepared Janus nanoparticle can act as a catalyst to catalyze the reduction of 4-nitrophenol, while the core-shell nanostructure is not active due to the coverage of dense silica shell. This work provides a robust and scalable method to produce Au@SiO2 Janus nanoparticles.

  14. Computational criterion for application of the characteristic effective medium approximation to ultrathin Co Au multi-bilayer structures

    NASA Astrophysics Data System (ADS)

    Haija, A. J.; Larry Freeman, W.; DeNinno, Matthew

    2008-11-01

    The basic optical properties, reflectivity and transmissivity, of three sets of Co-Au bilayer structures are calculated for normal incidence in the wavelength range 300-700 nm. Each set consists of a total number of bilayer identity periods m=1, 2, 3, 4, 5, 6. The thickness of the bilayer in each set is 5, 7, and 9 nm. The composition of the bilayer is kept fixed: 40% Co and 60% Au. The calculations are done for ideal layered Co-Au stacks using the characteristic matrix technique. Calculations for each stack based on the thicknesses of the two composite layers and their optical constants are contrasted against calculations using the characteristic effective medium approximation, CEMA. A third calculation of the optical properties for each stack is performed, again using the CEMA, but when the whole stack, called the effective stack, ES, is treated as one uniform medium of effective optical constants. The comparison of the three sets of calculations for all sets is intended to shed more light onto the validity of the CEMA approximation that has been established for thin bilayer structures whose constituents have thicknesses much less than the wavelength of the incident radiation. The study establishes a limit based on the product of the number of layers m and the identity period of the stack h, beyond which the CEMA approximation cannot be applied. This limit is consistent with a previous study carried out on Ag-SiO ultrathin stacks.

  15. Application of cladistics to terrane history—parsimony analysis of qualitative geological data

    NASA Astrophysics Data System (ADS)

    Young, Gavin C.

    Hypotheses of terrane dispersal or accretion can be represented graphically as branching diagrams (cladograms), but an assessment of competing hypotheses of terrane history requires a method of analysis of supporting evidence which resolves the most parsimonious explanation of all available data. Cladistics is a rigorous analytical method first developed for phylogeny reconstruction (i.e. biological history), but applicable to any hierarchical data set. Given appropriate definitions, the various types of geological, geophysical and biological data used to support hypotheses of fragmentation or fusion history for geological regions (terranes) assumed to have had independent geological histories can be organized hierarchically. Terrane fragmentation is equivalent to phylogenetic splitting of biological taxa, and standard algorithms for parsimony analysis may be directly applied. Terrane accretion may be represented as a coalescing area cladogram, and the supporting evidence also forms a hierarchical data set, but with two main differences. The less general attributes historically precede the more general (the reverse applies in phylogeny reconstruction), and the branching points (nodes on the cladogram), unlike hypothetical common ancestors in phylogeny reconstruction, represent defined geographic areas, with a geological structure which can be investigated. In cladistic reconstruction of evolutionary history the common ancestors are hypothetical, and their attributes can only be inferred from the distribution of attributes amongst the terminals (known biological taxa); in contrast, the end product of terrane accretion is a composite structure (geological province) within which juxtaposition of terranes may eliminate some of the possible historical sequences which led to its formation.

  16. The Application of Vibrational Spectroscopy Techniques in the Qualitative Assessment of Material Traded as Ginseng.

    PubMed

    Sandasi, Maxleene; Vermaak, Ilze; Chen, Weiyang; Viljoen, Alvaro

    2016-04-12

    The name "ginseng" is collectively used to describe several plant species, including Panax ginseng (Asian/Oriental ginseng), P. quinquefolius (American ginseng), P. pseudoginseng (Pseudoginseng) and Eleutherococcus senticosus (Siberian ginseng), each with different applications in traditional medicine practices. The use of a generic name may lead to the interchangeable use or substitution of raw materials which poses quality control challenges. Quality control methods such as vibrational spectroscopy-based techniques are here proposed as fast, non-destructive methods for the distinction of four ginseng species and the identification of raw materials in commercial ginseng products. Certified ginseng reference material and commercial products were analysed using hyperspectral imaging (HSI), mid-infrared (MIR) and near-infrared (NIR) spectroscopy. Principal component analysis (PCA) and (orthogonal) partial least squares discriminant analysis models (OPLS-DA) were developed using multivariate analysis software. UHPLC-MS was used to analyse methanol extracts of the reference raw materials and commercial products. The holistic analysis of ginseng raw materials revealed distinct chemical differences using HSI, MIR and NIR. For all methods, Eleutherococcus senticosus displayed the greatest variation from the three Panax species that displayed closer chemical similarity. Good discrimination models with high R²X and Q² cum vales were developed. These models predicted that the majority of products contained either /P. ginseng or P. quinquefolius. Vibrational spectroscopy and HSI techniques in tandem with multivariate data analysis tools provide useful alternative methods in the authentication of ginseng raw materials and commercial products in a fast, easy, cost-effective and non-destructive manner.

  17. Development and Application of a Two-Tier Multiple Choice Diagnostic Instrument To Assess High School Students' Understanding of Inorganic Chemistry Qualitative Analysis.

    ERIC Educational Resources Information Center

    Tan, Kim Chwee Daniel; Goh, Ngoh Khang; Chia, Lian Sai; Treagust, David F.

    2002-01-01

    Describes the development and application of a two-tier multiple choice diagnostic instrument to assess high school students' understanding of inorganic chemistry qualitative analysis. Shows that the Grade 10 students had difficulty understanding the reactions involved in the identification of cations and anions, for example, double decomposition…

  18. EXAFS and XANES structural characterization of bimetallic AuPd vapor derived catalysts

    NASA Astrophysics Data System (ADS)

    Balerna, A.; Evangelisti, C.; Schiavi, E.; Vitulli, G.; Bertinetti, L.; Martra, G.; Mobilio, S.

    2013-04-01

    Using an innovative procedure known as metal vapor synthesis (MVS) to prepare bimetallic catalysts, starting from Au and Pd vapors, [AuPd] co-evaporated and [Au][Pd] separately evaporated bimetallic catalysts were achieved. After being tested, the catalytic activity and selectivity of the [AuPd] catalyst turned out to be higher than the [Au][Pd] ones. Using EXAFS spectroscopy it was shown that, in the [AuPd] samples, small bimetallic AuPd nanoparticles were present, having an Au rich core surrounded by an AuPd alloyed shell while in the [Au][Pd] sample there was the presence of monometallic Au and Pd nanoparticles showing some alloying only in the boundary regions. The EXAFS results were also qualitatively confirmed by the XANES spectra.

  19. Fixed-frequency and Frequency-agile (au, HTS) Microstrip Bandstop Filters for L-band Applications

    NASA Technical Reports Server (NTRS)

    Saenz, Eileen M.; Subramanyam, Guru; VanKeuls, Fred W.; Chen, Chonglin; Miranda, Felix A.

    2001-01-01

    In this work, we report on the performance of a highly selective, compact 1.83 x 2.08 cm(exp 2) (approx. 0.72 x 0.82 in(exp 2) microstrip line bandstop filter of YBa2CU3O(7-delta) (YBCO) on LaAlO3 (LAO) substrate. The filter is designed for a center frequency of 1.623 GHz for a bandwidth at 3 dB from reference baseline of less than 5.15 MHz, and a bandstop rejection of 30 dB or better. The design and optimization of the filter was performed using Zeland's IE3D circuit simulator. The optimized design was used to fabricate gold (Au) and High-Temperature Superconductor (HTS) versions of the filter. We have also studied an electronically tunable version of the same filter. Tunability of the bandstop characteristics is achieved by the integration of a thin film conductor (Au or HTS) and the nonlinear dielectric ferroelectric SrTiO3 in a conductor/ferroelectric/dielectric modified microstrip configuration. The performance of these filters and comparison with the simulated data will be presented.

  20. Design and application of Au decorated ZnO/TiO2 as a stable photocatalyst for wide spectral coverage.

    PubMed

    Mukhopadhyay, Soumita; Maiti, Debabrata; Chatterjee, Sabyasachi; Devi, Parukuttyamma Sujatha; Suresh Kumar, Gopinatha

    2016-11-23

    A ternary nanostructured photocatalyst consisting of ZnO/TiO2/Au was designed to achieve an enhanced solar absorption due to the coupling of surface enhanced plasmonic absorption of metal and semiconductor excitons. TiO2 coated ZnO rods with an aspect ratio of 8-12 were decorated with citrate capped gold nanoparticles for photocatalytic degradation of organic pollutants in simulated waste water under solar irradiation. Simulated waste water was prepared so as to get a mixture exhibiting a wide range of spectral distribution in the UV-visible region by deliberately mixing congo red, methylene blue and malachite green. Photo-oxidation of few phenolic compounds such as phenol, 4-chlorophenol and polycyclic aromatic hydrocarbons viz. anthracene and phenanthrene were also investigated in order to rule out the visible light sensitization of the dye molecules and confirm the photocatalytic efficacy of the ternary composite for a wide range of water pollutants under simulated solar irradiation. The composite exhibited enhanced photocatalytic activity and photoelectrochemical stability upon UV and visible light exposure. This enhanced efficiency was also corroborated with the photocarrier lifetime and chronoamperometric studies. Under simulated solar irradiation, UV light induced well separated charge carriers coupled with the visible light induced local surface plasmon resonance of AuNPs to exert significantly enhanced photocatalytic activity in a broad spectral region. This type of material may evolve as a novel photocatalyst for the efficient removal of organic contaminants in waste water and photoelectrochemical water splitting under the solar spectrum.

  1. Qualitative and quantitative evaluation of chrysotile and crocidolite fibres with infrared spectrophotometry: application to asbestos-cement products.

    PubMed

    Valerio, F; Balducci, D

    1989-01-01

    Infrared (IR) spectrophotometry allows simple and rapid qualitative and quantitative evaluations of different types of asbestos, as well as of other inorganic particles. In particular, chrysotile and crocidolite have characteristic IR spectra, and optical density measurements in the 2710 nm band for chrysotile and the 12820 nm band for crocidolite permit the quantitative evaluation of each fibre either alone or in mixtures. IR spectra also provide information on changes in fibre structure and in chemical composition as the result, for example, of thermal treatment or acid leaching. The analytical method that we have developed can detect amounts as small as 0.1 mg of fibre in a 300-mg disk of potassium bromide using a low-cost IR spectrophotometer. The use of a Fourier transform IR spectrophotometer dramatically improves the sensitivity and selectivity. Computer-assisted analysis of spectra offers the possibility of reducing matrix interference and of comparing different spectra. The application of the IR technique to asbestos-cement products and insulating materials is described.

  2. Precursor polymers for the carbon coating of Au@ZnO multipods for application as active material in lithium-ion batteries.

    PubMed

    Oschmann, Bernd; Tahir, Muhammad Nawaz; Mueller, Franziska; Bresser, Dominic; Lieberwirth, Ingo; Tremel, Wolfgang; Passerini, Stefano; Zentel, Rudolf

    2015-06-01

    The synthesis of statistical and block copolymers based on polyacrylonitrile, as a source for carbonaceous materials, and thiol-containing repeating units as inorganic nanoparticle anchoring groups is reported. These polymers are used to coat Au@ZnO multipod heteroparticles with polymer brushes. IR spectroscopy and transmission electron microscopy prove the successful binding of the polymer onto the inorganic nanostructures. Thermogravimetric analysis is applied to compare the binding ability of the block and statistical copolymers. Subsequently, the polymer coating is transformed into a carbonaceous (partially graphitic) coating by pyrolysis. The obtained carbon coating is characterized by Raman spectroscopy and energy-dispersive X-ray (EDX) spectroscopy. The benefit of the conformal carbon coating of the Au@ZnO multipods regarding its application as lithium-ion anode material is revealed by performing galvanostatic cycling, showing a highly enhanced and stabilized electrochemical performance of the carbon-coated particles (still 831 mAh g(-1) after 150 cycles) with respect to the uncoated ones (only 353 mAh g(-1) after 10 cycles).

  3. Synthesis of Au microwires by selective oxidation of Au-W thin-film composition spreads.

    PubMed

    Hamann, Sven; Brunken, Hayo; Salomon, Steffen; Meyer, Robert; Savan, Alan; Ludwig, Alfred

    2013-02-01

    We report on the stress-induced growth of Au microwires out of a surrounding Au-W matrix by selective oxidation, in view of a possible application as 'micro-Velcro'. The Au wires are extruded due to the high compressive stress in the tungsten oxide formed by oxidation of elemental W. The samples were fabricated as a thin-film materials library using combinatorial sputter deposition followed by thermal oxidation. Sizes and shapes of the Au microwires were investigated as a function of the W to Au ratio. The coherence length and stress state of the Au microwires were related to their shape and plastic deformation. Depending on the composition of the Au-W precursor, the oxidized samples showed regions with differently shaped Au microwires. The Au48W52 composition yielded wires with the maximum length to diameter ratio due to the high compressive stress in the tungsten oxide matrix. The values of wire length (35 μm) and diameter (2 μm) achieved at the Au48W52 composition are suitable for micro-Velcro applications.

  4. Qualitative Evaluation.

    ERIC Educational Resources Information Center

    Stone, James C., Ed.; James, Raymond A., Ed.

    1981-01-01

    "Qualitative evaluation" is the theme of this issue of the California Journal of Teacher Education. Ralph Tyler states that evaluation is essentially descriptive, and using numbers does not solve basic problems. Martha Elin Vernazza examines the issue of objectivity in history and its implications for evaluation. She posits that the…

  5. Superparamagnetic Au-Fe3O4 nanoparticles: one-pot synthesis, biofunctionalization and toxicity evaluation

    NASA Astrophysics Data System (ADS)

    Pariti, A.; Desai, P.; Maddirala, S. K. Y.; Ercal, N.; Katti, K. V.; Liang, X.; Nath, M.

    2014-09-01

    Superparamagnetic Au-Fe3O4 bifunctional nanoparticles have been synthesized using a single step hot-injection precipitation method. The synthesis involved using Fe(CO)5 as iron precursor and HAuCl4 as gold precursor in the presence of oleylamine and oleic acid. Oleylamine helps in reducing Au3+ to Au0 seeds which simultaneously oxidizes Fe(0) to form Au-Fe3O4 bifunctional nanoparticles. Triton® X-100 was employed as a highly viscous solvent to prevent agglomeration of Fe3O4 nanoparticles. Detailed characterization of these nanoparticles was performed by using x-ray powder diffraction, transmission electron microscopy, scanning tunneling electron microscopy, UV-visible spectroscopy, Mössbauer and magnetometry studies. To evaluate these nanoparticles’ applicability in biomedical applications, L-cysteine was attached to the Au-Fe3O4 nanoparticles and cytotoxicity of Au-Fe3O4 nanoparticles was tested using CHO cells by employing MTS assay. L-cysteine modified Au-Fe3O4 nanoparticles were qualitatively characterized using Fourier transform infrared spectroscopy and Raman spectroscopy; and quantitatively using acid ninhydrin assay. Investigations reveal that that this approach yields Au-Fe3O4 bifunctional nanoparticles with an average particle size of 80 nm. Mössbauer studies indicated the presence of Fe in Fe3+ in A and B sites (tetrahedral and octahedral, respectively) and Fe2+ in B sites (octahedral). Magnetic measurements also indicated that these nanoparticles were superparamagnetic in nature due to Fe3O4 region. The saturation magnetization for the bifunctional nanoparticles was observed to be ˜74 emu g-1, which is significantly higher than the previously reported Fe3O4 nanoparticles. Mössbauer studies indicated that there was no significant Fe(0) impurity that could be responsible for the superparamagnetic nature of these nanoparticles. None of the investigations showed any presence of other impurities such as Fe2O3 and FeOOH. These Au-Fe3O4 bifunctional

  6. Development of Ag-Pd-Au-Cu alloys for multiple dental applications. Part 2. Mechanical properties of experimental Ag-Pd-Au-Cu alloys containing Sn or Ga for ceramic-metal restorations.

    PubMed

    Goto, S; Nakai, A; Miyagawa, Y; Ogura, H

    2001-06-01

    Eighteen Ag-Pd-Au-Cu alloys, consisting of nine Ag-Pd-Au-Cu mother compositions (Pd: 20, 30 or 40%, Au: 20%, Cu: 10, 15 or 20%, Ag: balance) containing either 5% Sn or 5% Ga as an additive metal, were experimentally prepared. Tensile strength, proof stress, elongation, elastic modulus, and Vickers hardness of these alloys were evaluated to clarify the potential of these alloys for use as ceramic-metal restorations as well as the effects of the Pd and Cu contents on their mechanical properties. The tensile strength, proof stress, elongation, elastic modulus and Vickers hardness of the 18 experimental alloys were in the range of 410.0-984.0 MPa, 289.7-774.3 MPa, 2.2-23.7%, 81.3-123.0 GPa and 135.7-332.3 HV1, respectively. Ten of the 18 experimental alloys can be used for ultra-low fusing ceramics based on their proof stress, elastic modulus, elongation and hardness. Between the Ga- and Sn-added alloys, differences in tensile strength, proof stress, elongation and hardness were found at several Ag-Pd-Au-Cu compositions.

  7. Catalysis of aptamer-modified AuPd nanoalloy probe and its application to resonance scattering detection of trace UO22+

    NASA Astrophysics Data System (ADS)

    Liang, Aihui; Zhang, Yi; Fan, Yanyan; Chen, Chunqiang; Wen, Guiqing; Liu, Qingye; Kang, Caiyan; Jiang, Zhiliang

    2011-08-01

    AuPd nanoalloy and nanopalladium with a diameter of 5 nm were prepared, using sodium citrate as the stabilizing agent and NaBH4 as the reductant. The nanocatalyst containing palladium on the surface exhibited a strong catalytic effect on the slow NiP particle reaction between NiCl2 and NaH2PO2, and the NiP particle system showed a resonance scattering (RS) peak at 508 nm. The RS results showed that the Pd atom on AuPd nanoalloy surface is the catalytic center. Combining the aptamer cracking reaction of double-stranded DNA (dsDNA)-UO22+, AuPd nanoalloy aggregation, and AuPd nanoalloy catalysis, both AuPd nanoalloy RS probe and AuPd nanoalloy catalytic RS assays were developed for the determination of 40-250 pmol L-1 UO22+ and 5.0-50 pmol L-1 UO22+, respectively.

  8. Fabrication and spectroscopic studies of folic acid-conjugated Fe3O4@Au core-shell for targeted drug delivery application

    NASA Astrophysics Data System (ADS)

    Karamipour, Sh.; Sadjadi, M. S.; Farhadyar, N.

    2015-09-01

    Gold coated magnetite core shell is a kind of nanoparticle that include magnetic iron oxide core with a thin layer nanogold. Fe3O4-gold core-shell nanostructure can be used in biomedical applications such as magnetic bioseparation, bioimaging, targeting drug delivery and cancer treatment. In this study, the synthesis and characterization of gold coated magnetite nanoparticles were discussed. Magnetite nanoparticles with an average size of 6 nm in diameter were synthesized by the chemical co-precipitation method and gold-coated Fe3O4 core-shell nanostructures were produced with an average size of 11.5 nm in diameter by reduction of Au3+ with citrate ion in the presence of Fe3O4. Folate-conjugated gold coated magnetite nanoparticles were synthesized to targeting folate receptor that is overexpressed on the surface of cancerous cells. For this purpose, we used L-cysteine, as a bi-functional linker for attachment to gold surface and it was linked to the gold nanoparticles surface through its thiol group. Then, we conjugated amino-terminated nanoparticles to folic acid with an amide-linkage formation. These gold magnetic nanoparticles were characterized by various techniques such as X-ray powder diffraction (XRD) analysis, Fourier transform infrared spectrometer (FT-IR), UV-visible spectroscopy, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), dispersive analysis of X-ray (EDAX) and vibrating sample magnetometer (VSM) analysis. The magnetic and optical properties of Fe3O4 nanostructure were changed by gold coating and attachment of L-cysteine and folic acid to Fe3O4@Au nanoparticles.

  9. Au-Ag@Au Hollow Nanostructure with Enhanced Chemical Stability and Improved Photothermal Transduction Efficiency for Cancer Treatment.

    PubMed

    Jiang, Tongtong; Song, Jiangluqi; Zhang, Wenting; Wang, Hao; Li, Xiaodong; Xia, Ruixiang; Zhu, Lixin; Xu, Xiaoliang

    2015-10-07

    Despite the fact that Au-Ag hollow nanoparticles (HNPs) have gained much attention as ablation agents for photothermal therapy, the instability of the Ag element limits their applications. Herein, excess Au atoms were deposited on the surface of a Au-Ag HNP by improving the reduction power of l-ascorbic acid (AA) and thereby preventing the reaction between HAuCl4 and the Ag element in the Au-Ag alloy nanostructure. Significantly, the obtained Au-Ag@Au HNPs show excellent chemical stability in an oxidative environment, together with remarkable increase in extinction peak intensity and obvious narrowing in peak width. Moreover, finite-difference time-domain (FDTD) was used to simulate the optical properties and electric field distribution of HNPs. The calculated results show that the proportion of absorption cross section in total extinction cross section increases with the improvement of Au content in HNP. As predicted by the theoretical calculation results, Au-Ag@Au nanocages (NCs) exhibit a photothermal transduction efficiency (η) as high as 36.5% at 808 nm, which is higher than that of Au-Ag NCs (31.2%). Irradiated by 808 nm laser at power densities of 1 W/cm(2), MCF-7 breast cancer cells incubated with PEGylated Au-Ag@Au NCs were seriously destroyed. Combined together, Au-Ag@Au HNPs with enhanced chemical stability and improved photothermal transduction efficiency show superior competitiveness as photothermal agents.

  10. Transport de particules massives dans un fluide turbulent: Application a l'erosion due au sable sur les parois d'une turbine hydraulique

    NASA Astrophysics Data System (ADS)

    Bergeron, Stephen

    Le transport de particules massives par un champ turbulent est un vaste domaine de la mécanique des fluides. Il possède de nombreuses applications comme par exemple le transport de sable dans une turbine hydraulique. En raison de la dureté des grains de quartz et des grandes vitesses de collision avec les parois métalliques, un phénomène d'érosion intensif se produit. Les dommages résultants peuvent diminuer le rendement de la turbine au cours des quelques mois suivant la mise en opération. L'objectif de cette thèse est de mettre au point un outil permettant de prédire ces zones d'érosion. Ce projet de recherche en contexte industriel a été réalisé en collaboration avec la compagnie General Electric Hydro du Canada. Dans un régime hautement turbulent, il est possible d'obtenir une expression suffisamment générale en utilisant une formulation partiellement empirique: l'équation de Basset- Boussinesq-Oseen modifiée. Ce choix de modèle tient compte du niveau de précision recherché et de la méthode numérique employée afin de résoudre la phase fluide. Il permet aussi d'éliminer plusieurs ambiguïtés fréquemment rencontrées dans la littérature et implementées dans certains codes commerciaux courants. La formulation mathématique du problème est effectuée dans un espace mixte Euler-Lagrange. Les paramètres dynamiques sont relies au type de particules et à l'intensité de la turbulence. Le code numérique résultant est le plus performant développé à ce jour (août 1998). Les trajectoires de plusieurs centaines de milliers de particules peuvent être simulées et visualisées de manière interactive sur une station de travail (SGI R4K, R8K et R10K). L'utilisateur du logiciel est libre de se déplacer dans l'espace à l'aide d'un environnement similaire a un ``simulateur de vol''. Il peut ainsi analyser les détails du processus d'érosion de même que l'écoulement du fluide dans la turbine. Les zones d'érosion obtenues à l

  11. Qualitative research in transfusion medicine.

    PubMed

    Arnold, E; Lane, S

    2011-10-01

    Transfusion medicine research has traditionally employed quantitative methods to answer clinical research questions. Increasingly, qualitative research methods are being used in the field to address a wide variety of research questions in areas such as blood donation, transfusion practices and policy development. This article describes the key characteristics, methodologies and methods of qualitative research and draws on examples to show how qualitative research approaches have been applied in the field of transfusion medicine. It is hoped that this overview will inform and encourage the application of qualitative research in the field of transfusion medicine.

  12. One-step synthesis of graphene-AuNPs by HMTA and the electrocatalytical application for O2 and H2O2.

    PubMed

    Hu, Jianguo; Li, Fenghua; Wang, Kaikai; Han, Dongxue; Zhang, Qixian; Yuan, Junhua; Niu, Li

    2012-05-15

    A green, one-step method for synthesis of graphene-Au nanoparticles (graphene-AuNPs) was introduced in this article, using an environmentally benign hexamethylenetetramine (HMTA) as reducing and stabilizing agent. HMTA slowly was hydrolyzed to generate aldehyde ammonia to reduce graphene oxides (GO) and hydrogen tetrachloroaurate (Au precursor). The structure and composition of the graphene-AuNPs nanocomposites were studied by means of ultraviolet visible (UV) absorption spectra, X-ray photoelectron spectroscopy (XPS) and Transmission electron microscopy (TEM). The AuNPs are well-dispersed on graphene nanosheets in narrow size range. The nanocomposites have excellent electrocatalytical properties for catalytic reduction of O(2) and H(2)O(2).

  13. [Application of qualitative interviews in inheritance research of famous old traditional Chinese medicine doctors: ideas and experience].

    PubMed

    Luo, Jing; Fu, Chang-geng; Xu, Hao

    2015-04-01

    The inheritance of famous old traditional Chinese medicine (TCM) doctors plays an essential role in the fields of TCM research. Qualitative interviews allow for subjectivity and individuality within clinical experience as well as academic ideas of doctors, making it a potential appropriate research method for inheritance of famous old TCM doctors. We summarized current situations of inheritance research on famous old TCM doctors, and then discussed the feasibility of applying qualitative interviews in inheritance of famous old TCM doctors. By combining our experience in research on inheritance of famous old TCM doctors, we gave some advice on study design, interview implementation, data transcription and analyses , and report writing, providing a reference for further relevant research.

  14. Qualitative and quantitative analyses of Compound Danshen extract based on (1)H NMR method and its application for quality control.

    PubMed

    Yan, Kai-Jing; Chu, Yang; Huang, Jian-Hua; Jiang, Miao-Miao; Li, Wei; Wang, Yue-Fei; Huang, Hui-Yong; Qin, Yu-Hui; Ma, Xiao-Hui; Zhou, Shui-Ping; Sun, Henry; Wang, Wei

    2016-11-30

    In this study, a new approach using (1)H NMR spectroscopy combined with chemometrics method was developed for qualitative and quantitative analyses of extracts of Compound Danshen Dripping Pills (CDDP). For the qualitative analysis, some metabolites presented in Compound Danshen extract (CDE, extraction intermediate of CDDP) were detected, including phenolic acids, saponins, saccharides, organic acids and amino acids, by the proposed (1)H NMR method, and metabolites profiles were further analyzed by selected chemometrics algorithms to define the threshold values for product quality evaluation. Moreover, three main phenolic acids (danshensu, salvianolic acid B, and procatechuic aldehyde) in CDE were determined simultaneously, and method validation in terms of linearity, precision, repeatability, accuracy, and stability of the dissolved target compounds in solution was performed. The average recoveries varied between 84.20% and 110.75% while the RSDs were below 6.34% for the three phenolic acids. This (1)H NMR method offers an integral view of the extract composition, allows the qualitative and quantitative analysis of CDDP, and has the potential to be a supplementary tool to UPLC/HPLC for quality assessment of Chinese herbal medicines.

  15. HCG blood test - qualitative

    MedlinePlus

    ... qualitative; Serum HCG - qualitative; HCG in blood serum - qualitative ... Henry's Clinical Diagnosis and Management by Laboratory Methods. 22nd ed. Philadelphia, PA: Elsevier Saunders; 2011:chap ...

  16. AuPdFe ternary solution model and applications to understanding the fO2 of hydrous, high-pressure experiments

    NASA Astrophysics Data System (ADS)

    Barr, Jay A.; Grove, Timothy L.

    2010-11-01

    This study provides an experimental calibration of the equilibrium constant for AuPdFe alloys with Fe-bearing silicate melts. The ideal metal capsules for H2O-bearing experiments are pure Au, because of its slow hydrogen diffusivity. However, above the melting point of Au, other materials must be used. The solution to this problem is to use AuPd alloy capsules. However, under most relevant fO2 conditions, this alloy absorbs Fe from the coexisting silicate melt, thus changing the bulk composition of the experimental charge. This study combines previous work on the Au-Pd, Pd-Fe, and Au-Fe binary systems to develop a ternary thermodynamic solution model for AuPdFe. This solution model is used with experiments to calculate an equilibrium reaction coefficient for the FeOmelt → Fealloy + 1/2O2 exchange reaction. Using a non-ideal ternary solution model, the fO2 conditions of hydrous, piston cylinder experiments can be estimated by analyzing the sample capsule alloy and the coexisting liquid composition.

  17. CO-free hydrogen production for fuel cell applications over Au/CeO2 catalysts: FTIR insight into the role of dopant.

    PubMed

    Tabakova, Tatyana; Manzoli, Maela; Vindigni, Floriana; Idakiev, Vasko; Boccuzzi, Flora

    2010-03-25

    The impact of ceria doping by Zn (atomic ratio Zn/(Zn + Ce) = 0.05) on the structural and catalytic properties of Au/CeO(2) catalyst was studied. The ceria modification influenced the catalytic activity toward purification of hydrogen via water-gas shift (WGS) and preferential CO oxidation (PROX) reactions in a different way: it diminished the WGS activity and improved the PROX performance. A characterization by FTIR spectroscopy was conducted to explain differences in the catalytic performance. The nature of gold active species after different pretreatments, under different atmospheres (H(2), D(2)), and after admission of CO and its subsequent interaction with (18)O(2) was investigated. Evidence has been found of the dissociation of hydrogen at room temperature on gold, producing on the oxidized sample a broad absorption assigned to Au-OH vibrations, whereas on the reduced one, bands at 3200 and 1800 cm(-1) ascribed, respectively, to Au-OH and Au-H species have been detected. For the first time, the formation of Au-hydride on supported heterogeneous catalysts was proposed. These features were stronger on the Au/CeO(2) sample than on the Au/Zn-CeO(2) sample. The availability of highly dispersed gold clusters in contact with oxygen vacancies on the ceria surface could contribute to higher WGS activity, whereas the steps of small gold particles are the active sites for both CO and oxygen activation during the PROX reaction.

  18. Conceptual design study of concentrator enhanced solar arrays for space applications. 2kW Si and GaAs systems at 1 AU

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The effect of concentration level on the specific power for a deployable, thin, gallium arsenide cell array in geosynchronous orbit for 10 years in conjunction with a two dimensional flat plate trough concentrator (V trough) and also with a multiple flat plate concentrator was investigated as well as the effects for a conventional silicon cell array on a rigid substrate. For application to a thin GaAs array at 1 AU for 10 years, the V trough produces a 19% benefit in specific power and a dramatic reduction in array area, while the multiple flat plate collector design is not only of no benefit, but is a considerable detriment. The benefit it achieves by reducing array area is duplicated by the 2D design. For the silicon array on a rigid substrate, improvement in performance due to a concentrator with ordinary mirror coating is quite small: 9% increase in specific power, and 13% reduction in array area. When the concentrator mirrors are coated with an improved cold mirror coating, somewhat more significant results are obtained: 31% specific power improvement; and 27% area reduction. In both cases, a 10 year exposure reduces BOL output by 23%.

  19. Au20Si12: A hollow Catalan pentakis dodecahedron.

    PubMed

    Guo, J J; Zhao, H Y; Wang, J; Ai, L Y; Liu, Y

    2017-02-14

    A stable hollow Au20Si12 cage with Ih symmetry has been predicted using first-principles density functional theory. The stability of the cage-like Au20Si12 structure is verified by vibrational frequency analysis and molecular dynamics simulations. A relatively large highest occupied molecular orbital-lowest unoccupied molecular orbital gap of 1.057 eV is found. Electronic structure analysis shows that clearly p-d hybridizations between Si atoms and Au atoms are of great importance for the stability of Au20Si12 cage. The cage-like Au20Si12 structure may have potential applications in semiconductor industry and microelectronics.

  20. Au20Si12: A hollow Catalan pentakis dodecahedron

    NASA Astrophysics Data System (ADS)

    Guo, J. J.; Zhao, H. Y.; Wang, J.; Ai, L. Y.; Liu, Y.

    2017-02-01

    A stable hollow Au20Si12 cage with Ih symmetry has been predicted using first-principles density functional theory. The stability of the cage-like Au20Si12 structure is verified by vibrational frequency analysis and molecular dynamics simulations. A relatively large highest occupied molecular orbital-lowest unoccupied molecular orbital gap of 1.057 eV is found. Electronic structure analysis shows that clearly p-d hybridizations between Si atoms and Au atoms are of great importance for the stability of Au20Si12 cage. The cage-like Au20Si12 structure may have potential applications in semiconductor industry and microelectronics.

  1. Advanced Characterization Techniques for Nanoparticles for Cancer Research: Applications of SEM and NanoSIMS for Locating Au Nanoparticles in Cells

    PubMed Central

    Kempen, Paul J; Hitzman, Chuck; Sasportas, Laura S; Gambhir, Sanjiv S; Sinclair, Robert

    2014-01-01

    The ability of nano secondary ion mass spectrometry (NanoSIMS) to locate and analyze Raman active gold core nanoparticles (R-AuNPs) in a biological system is compared with the standard analysis using the scanning electron microscope (SEM). The same cell with R-AuNPs on and inside the macrophage was analyzed with both techniques to directly compare them. SEM analysis showed a large number of nanoparticles within the cell. Subsequent NanoSIMS analysis showed fewer R-AuNPs with lower spatial resolution. SEM was determined to be superior to NanoSIMS for the analysis of inorganic nanoparticles in complex biological systems. PMID:25364091

  2. Advanced Characterization Techniques for Nanoparticles for Cancer Research: Applications of SEM and NanoSIMS for Locating Au Nanoparticles in Cells.

    PubMed

    Kempen, Paul J; Hitzman, Chuck; Sasportas, Laura S; Gambhir, Sanjiv S; Sinclair, Robert

    2013-05-13

    The ability of nano secondary ion mass spectrometry (NanoSIMS) to locate and analyze Raman active gold core nanoparticles (R-AuNPs) in a biological system is compared with the standard analysis using the scanning electron microscope (SEM). The same cell with R-AuNPs on and inside the macrophage was analyzed with both techniques to directly compare them. SEM analysis showed a large number of nanoparticles within the cell. Subsequent NanoSIMS analysis showed fewer R-AuNPs with lower spatial resolution. SEM was determined to be superior to NanoSIMS for the analysis of inorganic nanoparticles in complex biological systems.

  3. Effects of soft beam energy on the microstructure of Pb37Sn, Au20Sn, and Sn3.5Ag0.5Cu solder joints in lensed-SM-fiber to laser-diode-affixing application

    NASA Astrophysics Data System (ADS)

    Tan, C. W.; Chan, Y. C.; Leung, Bernard; Liu, H. D.

    2008-01-01

    This paper reports on the effectiveness of soft beam energy as a heat source to form an optimum solder joint to fix a lensed fiber permanently on a Ni/Au-plated substrate. Solders, i.e., Pb37Sn, Au20Sn, and Sn3.5Ag0.5Cu (SAC) [wt%] were evaluated for this fluxless application. The microstructures of the solder joints have been examined using scanning electron microscopy (SEM), in order to understand the response of these solder materials to the focussed white light. Obviously, the exposure time has a greater effect on the soldering temperature before reaching the peak temperature, which is determined by the power. A power setting of 40 W can reach approximately 340 °C, 30 W can reach about 310 °C while 25 W can easily reach 260 °C. In general, a higher soldering temperature than the melting temperature is required to form good wetting solder joints for fluxless applications. However, too high an input thermal energy may result in premature aging for the cases of Pb37Sn and SAC, and lateral cracks for the case of Au20Sn. The thermal cracks and voids observed in Au20Sn solder joint were attributed to the fact that the soft beam heating profile does not suit the AuSn preform. Out of these three solder types, SAC demonstrated just the right response to the soft beam, i.e., good wetting, fine and homogeneous structure, and no cracks or other visible failures.

  4. Performance Evaluation of Different Filter Media in Turbidity Removal from Water by Application of Modified Qualitative Indices

    PubMed Central

    Gholikandi, G Badalians; Dehghanifard, E; Sepehr, M Noori; Torabian, A; Moalej, S; Dehnavi, A; Yari, AR; Asgari, AR

    2012-01-01

    Background Water filtration units have been faced problems in water turbidity removal related to their media, which is determined by qualitative indices. Moreover, Current qualitative indices such as turbidity and escaping particle number could not precisely determine the efficiency of the media in water filtration, so defining new indices is essential. In this study, the efficiency of Anthracite-Silica and LECA-Silica media in turbidity removal were compared in different operating condition by using modified qualitative indices. Methods: The pilot consisted of a filter column (one meter depth) which consisted of a layer of LECA (450 mm depth) and a layer of Silica sand (350 mm depth. Turbidities of 10, 20, and 30 NTU, coagulant concentrations of 4, 8, and 12 ppm and filtration rates of 10, 15, and 20 m/h were considered as variables. Results: The LECA-Silica media is suitable media for water filtration. Averages of turbidity removal efficiencies in different condition for the LECA-Silica media were 85.8±5.37 percent in stable phase and 69.75±3.37 percent in whole operation phase, while the efficiency of total system were 98.31±0.63 and 94.49±2.97 percent, respectively. Conclusion: The LECA layer efficiency in turbidity removal was independent from filtration rates and due to its low head loss; LECA can be used as a proper medium for treatment plants. Results also showed that the particle index (PI) was a suitable index as a substitute for turbidity and EPN indices. PMID:23113169

  5. Qualitative Assessment of the Application of a Discrete Choice Experiment With Community Health Workers in Uganda: Aligning Incentives With Preferences

    PubMed Central

    Brunie, Aurélie; Chen, Mario; Akol, Angela

    2016-01-01

    ABSTRACT Background: Maximizing the benefits of community health worker (CHW) programs requires strategies for improving motivation, performance, and retention. Discrete choice experiments (DCE) are increasingly used to inform policy response to health workforce shortages in rural areas, and may be of value in the context of CHW programs. Participants are presented with pairs of hypothetical jobs that are described by job attributes with varying levels and are asked what their preferred job is within each pair. Responses are then analyzed quantitatively to obtain information on what attributes are important to participants. We conducted a qualitative assessment to examine the appropriateness and validity of applying a DCE to a new population of CHWs with lower literacy. Methods: In 2011, we conducted a mixed-method study with CHWs in Uganda, consisting of 183 surveys and 43 in-depth interviews (IDIs). The DCE was administered to both survey and IDI participants. This article reports on the qualitative assessment of the implementation of the DCE. We compare DCE responses between survey and IDI participants to determine whether administering the DCE in a qualitative (IDI) context altered responses. We then present additional information collected on CHWs' decision-making processes and their experiences with the DCE in the IDIs. Results: Choices made by IDI participants were consistent with the choices made by survey participants. In-depth exploration of CHWs' observations in answering the DCE suggest that, overall, CHWs comprehended the DCE exercise and made reasoned choices. However, the data revealed some level of cognitive difficulty and highlighted some design and implementation challenges that are important to consider, particularly when applying a DCE to populations with lower literacy. These include the need to keep the number of attributes small; to choose levels that are realistic yet show sufficient range; and to clearly define attributes and their levels

  6. Structural, electronic and magnetic properties of Au-based monolayer derivatives in honeycomb structure

    NASA Astrophysics Data System (ADS)

    Kapoor, Pooja; Sharma, Munish; Kumar, Ashok; Ahluwalia, P. K.

    2016-05-01

    We present electronic properties of atomic layer of Au, Au2-N, Au2-O and Au2-F in graphene-like structure within the framework of density functional theory (DFT). The lattice constant of derived monolayers are found to be higher than the pristine Au monolayer. Au monolayer is metallic in nature with quantum ballistic conductance calculated as 4G0. Similarly, Au2-N and Au2-F monolayers show 4G0 and 2G0 quantum conductance respectively while semiconducting nature with calculated band gap of 0.28 eV has been observed for Au2-O monolayer. Most interestingly, half metalicity has been predicted for Au2-N and Au2-F monolayers. Our findings may have importance for the application of these monolayers in nanoelectronic and spintronics.

  7. Plasmon coupling-enhanced two-photon photoluminescence of Au@Ag core-shell nanoparticles and applications in the nuclease assay

    NASA Astrophysics Data System (ADS)

    Yuan, Peiyan; Ma, Rizhao; Gao, Nengyue; Garai, Monalisa; Xu, Qing-Hua

    2015-05-01

    Au and Ag nanoparticles (NPs) have been known to display significantly enhanced two-photon photoluminescence (2PPL) upon the formation of nanoparticle aggregates. The enhancement effect of the core-shell nanoparticles has not been explored so far. Here we have prepared Au@Ag bimetallic core-shell nanoparticles with different thicknesses (1.1, 2.1, 3.5, 4.5, and 5.5 nm) of silver coating on 19 nm Au NPs to investigate the composition effects on plasmon coupling-enhanced 2PPL. A maximum 2PPL enhancement factor (IcoupledNPs/IisolatedNPs) of up to 840-fold was obtained for Au@Ag NPs with ~3.5 nm Ag nanoshells. These Au@Ag NPs were subsequently utilized in two-photon detection of S1 nuclease as a photoluminescence turn on probe. This method displayed high sensitivity with the limit of detection of 1.4 × 10-6 U μL-1 and an excellent selectivity.Au and Ag nanoparticles (NPs) have been known to display significantly enhanced two-photon photoluminescence (2PPL) upon the formation of nanoparticle aggregates. The enhancement effect of the core-shell nanoparticles has not been explored so far. Here we have prepared Au@Ag bimetallic core-shell nanoparticles with different thicknesses (1.1, 2.1, 3.5, 4.5, and 5.5 nm) of silver coating on 19 nm Au NPs to investigate the composition effects on plasmon coupling-enhanced 2PPL. A maximum 2PPL enhancement factor (IcoupledNPs/IisolatedNPs) of up to 840-fold was obtained for Au@Ag NPs with ~3.5 nm Ag nanoshells. These Au@Ag NPs were subsequently utilized in two-photon detection of S1 nuclease as a photoluminescence turn on probe. This method displayed high sensitivity with the limit of detection of 1.4 × 10-6 U μL-1 and an excellent selectivity. Electronic supplementary information (ESI) available: TEM images, histograms of the sizes of Au@Ag NPs; extinction, 2PPL spectra of aggregated NPs, cysteamine, ssDNA and S1 nuclease; 2-photon action cross section of aggregated NPs; lengths of ssDNA and [NaCl] effect; excitation power

  8. Β-cyclodextrin polymer as a linker to fabricate ternary nanocomposites AuNPs/pATP-β-CDP/rGO and their electrochemical application.

    PubMed

    Chen, Ming; Shen, Xiao; Liu, Peipei; Wei, Ying; Meng, Yang; Zheng, Gang; Diao, Guowang

    2015-03-30

    Based on the self-assembly strategy, β-cyclodextrin polymer (β-CDP) was used as a linker to connect reduced graphene oxide (rGO) and p-aminothiophenol (pATP). Then, pre-prepared gold nanoparticles (AuNPs) can self-assemble onto the surface of pATP-β-CDP/rGO to obtain new ternary nanocomposites AuNPs/pATP-β-CDP/rGO. The amount or the density of AuNPs can be adjusted by changing the concentration of pATP. UV-vis and (1)H NMR spectra confirmed the formation of inclusion complex between pATP and β-CDP. β-CDP might improve the dispersity of rGO in aqueous and the surface property of rGO. AuNPs/pATP-β-CDP/rGO modified electrode displayed high electrochemical response toward a pesticide-imidacloprid (IDP). The enrichment capability and molecular recognition of β-CDP and the catalytic property of AuNPs for IDP molecules synergistically promoted the electrochemical response of rGO modified electrode. Additionally, ternary nanocomposites exhibited the good electrocatalytic performance for oxygen reduction in O2-saturated 0.1M H2SO4 solution. The proposed synthesis strategy provided a facile, feasible and effective method for development of electrochemical sensors and Au-based catalysts for fuel cells.

  9. A study on the effect of low energy ion beam irradiation on Au/TiO2 system for its application in photoelectrochemical splitting of water

    NASA Astrophysics Data System (ADS)

    Verma, Anuradha; Srivastav, Anupam; Sharma, Dipika; Banerjee, Anamika; Sharma, Shailja; Satsangi, Vibha Rani; Shrivastav, Rohit; Avasthi, Devesh Kumar; Dass, Sahab

    2016-07-01

    Nanostructured TiO2 thin films were deposited on indium tin oxide (ITO) substrate via sol-gel technique and were modified by plasmonic Au layer. The plasmonic Au modified TiO2 (Au/TiO2) thin films were then irradiated with 500 keV Ar2+ ion beam at different ion fluences viz. 1 × 1016, 3 × 1016 and 1 × 1017 to study the effect of nuclear energy deposition on the morphology, crystallinity, band gap, surface plasmon resonance (SPR) peak exhibited by Au particles and photoelectrochemical properties of the system. Prepared thin films were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Rutherford backscattering spectrometry (RBS) measurements and UV-visible spectroscopy. The photoelectrochemical measurements revealed that both Au/TiO2 and Au/TiO2 thin film irradiated at 1 × 1016 fluence exhibits enhanced photoelectrochemical response in comparison to pristine TiO2. The film irradiated at 1 × 1016 fluence offered maximum applied bias photon-to-current efficiency (ABPE) and shows 6 times increment in photocurrent density which was attributed to more negative flat band potential, maximum decrease in band gap, high open circuit voltage (Voc) and reduced charge transfer resistance.

  10. Synthesis of double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres and their catalytic applications

    NASA Astrophysics Data System (ADS)

    Li, Jie; Tan, Li; Wang, Ge; Yang, Mu

    2015-03-01

    Double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres were successfully synthesized through loading Au nanoparticles on the Fe3O4/TiO2 support by a in situ reduction of HAuCl4 with NaBH4 aqueous solution. These microspheres possess tunable cavity size, adjustable shell layers, high structural stability and large specific surface area. The Au nanoparticles of approximately 5 nm in diameter were loaded both on the TiO2 nanofibers and inside the cavities of sea urchin-like yolk-shell Fe3O4/TiO2 microspheres. The sea urchin-like structure composed of TiO2 nanofibers ensure the good distribution of the Au nanoparticles, while the novel double-shelled yolk-shell structure guarantees the high stability of the Au nanoparticles. Furthermore, the Fe3O4 magnetic core facilitates the convenient recovery of the catalyst by applying an external magnetic field. The Fe3O4/TiO2/Au microspheres display excellent activities and recycling properties in the catalytic reduction of 4-nitrophenol (4-NP): the rate constant is 1.84 min-1 and turnover frequency is 5457 h-1.

  11. Catalysis of aptamer-modified AuPd nanoalloy probe and its application to resonance scattering detection of trace UO(2)2+.

    PubMed

    Liang, Aihui; Zhang, Yi; Fan, Yanyan; Chen, Chunqiang; Wen, Guiqing; Liu, Qingye; Kang, Caiyan; Jiang, Zhiliang

    2011-08-01

    AuPd nanoalloy and nanopalladium with a diameter of 5 nm were prepared, using sodium citrate as the stabilizing agent and NaBH(4) as the reductant. The nanocatalyst containing palladium on the surface exhibited a strong catalytic effect on the slow NiP particle reaction between NiCl(2) and NaH(2)PO(2), and the NiP particle system showed a resonance scattering (RS) peak at 508 nm. The RS results showed that the Pd atom on AuPd nanoalloy surface is the catalytic center. Combining the aptamer cracking reaction of double-stranded DNA (dsDNA)-UO(2)(2+), AuPd nanoalloy aggregation, and AuPd nanoalloy catalysis, both AuPd nanoalloy RS probe and AuPd nanoalloy catalytic RS assays were developed for the determination of 40-250 pmol L(-1) UO(2)(2+) and 5.0-50 pmol L(-1) UO(2)(2+), respectively.

  12. Identification of Au–S complexes on Au(100)

    DOE PAGES

    Walen, Holly; Liu, Da -Jiang; Oh, Junepyo; ...

    2016-01-25

    In this study, using a combination of scanning tunneling microscopy and density functional theory (DFT) calculations, we have identified a set of related Au–S complexes that form on Au(100), when sulfur adsorbs and lifts the hexagonal surface reconstruction. The predominant complex is diamond-shaped with stoichiometry Au4S5. All of the complexes can be regarded as combinations of S–Au–S subunits. The complexes exist within, or at the edges of, p(2 × 2) sulfur islands that cover the unreconstructed Au regions, and are observed throughout the range of S coverage examined in this study, 0.009 to 0.12 monolayers. A qualitative model is developedmore » which incorporates competitive formation of complexes, Au rafts, and p(2 × 2) sulfur islands, as Au atoms are released by the surface structure transformation.« less

  13. Identification of Au–S complexes on Au(100)

    SciTech Connect

    Walen, Holly; Liu, Da -Jiang; Oh, Junepyo; Yang, Hyun Jin; Kim, Yousoo; Thiel, P. A.

    2016-01-25

    In this study, using a combination of scanning tunneling microscopy and density functional theory (DFT) calculations, we have identified a set of related Au–S complexes that form on Au(100), when sulfur adsorbs and lifts the hexagonal surface reconstruction. The predominant complex is diamond-shaped with stoichiometry Au4S5. All of the complexes can be regarded as combinations of S–Au–S subunits. The complexes exist within, or at the edges of, p(2 × 2) sulfur islands that cover the unreconstructed Au regions, and are observed throughout the range of S coverage examined in this study, 0.009 to 0.12 monolayers. A qualitative model is developed which incorporates competitive formation of complexes, Au rafts, and p(2 × 2) sulfur islands, as Au atoms are released by the surface structure transformation.

  14. A General Survey of Qualitative Research Methodology.

    ERIC Educational Resources Information Center

    Cary, Rick

    Current definitions and philosophical foundations of qualitative research are presented; and designs, evaluation methods, and issues in application of qualitative research to education are discussed. The effects of positivism and the post-positivist era on qualitative research are outlined, and naturalist and positivist approaches are contrasted.…

  15. Qualitative and quantitative evaluation of chrysotile and crocidolite fibers with IR-spectroscopy: application to asbestos-cement products.

    PubMed

    Balducci, D; Valerio, F

    1986-01-01

    Infrared (IR) spectrophotometry allows simple and quick qualitative and quantitative evaluations of different kinds of asbestos, as well as of other inorganic particles. In particular, chrysotile and crocidolite have characteristic IR spectra and optical density measures of 2,710 nm band for chrysotile, of 12,820 nm band for crocidolite permit quantitative evaluation of each fiber alone or in mixture. IR spectra also give informations about changes of fiber structure and of chemical composition due, for example, to thermal treatment or acid leaching. The analytical method we developed can detect levels as low as 0.1 mg of fiber in a 300 mg disk of KBr using a low cost IR spectrophotometer. The use of a Fourier Transform IR spectrophotometer (FTIR) improves dramatically the sensitivity and selectivity. Computer assisted analysis of spectra offers the possibility to reduce matrix interferences and to compare different spectra. Examples of IR technique applied to asbestos-cement products and insulating materials are presented.

  16. Growth of cedar-like Au nanoparticles coating on an etched stainless steel wire and its application for selective solid-phase microextraction.

    PubMed

    Zhang, Yida; Yang, Yaoxia; Li, Yi; Zhang, Min; Wang, Xuemei; Du, Xinzhen

    2015-05-30

    A novel cedar-like Au nanoparticles (AuNPs) coating was fabricated on an etched stainless steel (SS) wire by direct chemical deposition and used as an efficient and unbreakable solid phase microextraction (SPME) fiber. The etched SS wire offers a rough surface structure for subsequent growth of AuNPs in chloroauric acid solution. As a result, the uniform cedar-like AuNPs coating with larger surface area was tightly attached to the etched SS wire substrate. The AuNPs coated etched SS fiber (AuNPs/SS) was examined for SPME of ultraviolet (UV) filters, phthalate esters and aromatic hydrocarbons coupled to high-performance liquid chromatography with UV detection. The fabricated fiber exclusively exhibited excellent extraction efficiency and selectivity for some aromatic hydrocarbons. Influential parameters of extraction and desorption time, temperature, stirring rate and ionic strength were investigated and optimized. The limits of detection ranged from 0.008 μg L(-1) to 0.037 μg L(-1). The single fiber repeatability varied from 3.90% to 4.50% and the fiber-to-fiber reproducibility ranged from 5.15% to 6.87%. The recovery of aromatic hydrocarbons in real water samples spiked at 2.0 μg L(-1) and 20 μg L(-1) ranged from 94.38% to 106.2% with the relative standard deviations below 6.44%. Furthermore the growth of the cedar-like AuNPs coating can be performed in a highly reproducible manner. This fabricated fiber exhibits good stability and withstands at least 200 extraction and desorption replicates.

  17. Au@Ag Heterogeneous Nanorods as Nanozyme Interfaces with Peroxidase-Like Activity and Their Application for One-Pot Analysis of Glucose at Nearly Neutral pH.

    PubMed

    Han, Lei; Li, Cuncheng; Zhang, Tao; Lang, Qiaolin; Liu, Aihua

    2015-07-08

    As substitutes for natural peroxidases, most nanomaterial-based enzyme mimetics (nanozymes) have unique properties such as high stability, low-cost, large surface area, and high catalytic activity. However, they usually work in acidic conditions and thus impede their real applications. In this work, by modulating the nanostructure, composition, and surface property of the bimetallic materials, the positively charged poly(diallyldimethylammonium)-stabilized Au@Ag heterogeneous nanorods (NRs) were developed as synergistic peroxidase-like interfaces, which exhibited high activity over a wide pH range (pH 4.0-6.5) using 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) as the chromogenic substrate. At pH 6.5, the peroxidase-like activity for the Au@Ag heterogeneous NRs was stable and optimal within 20-40 °C. Moreover, the Au@Ag heterogeneous NRs showed excellent temperature stability and long-term storage stability. Given these characters, the detection of H2O2 at pH 6.5 was proposed on the basis of the Au@Ag heterogeneous NRs catalyzing the colorimetric reaction of H2O2 and ABTS, where the oxidized ABTS showed a typical absorption peak at 414 nm. The absorbance at 414 nm was linear with H2O2 concentration from 0.01 to 10 mM. Further, considering that Au@Ag heterogeneous NRs and glucose oxidase (GOx) have similar optimal pH for catalytic activities, a novel one-pot method for the detection of glucose was developed by the coupled catalytic reaction using GOx, Au@Ag heterogeneous NRs, and ABTS at nearly neutral pH (pH 6.5) and 37 °C. This proposed method had simple and rapid processes, wide linear range (0.05-20 mM), and reliability for the successful analysis of real samples. On the basis of these attractive and unique characteristics, Au@Ag heterogeneous NRs can become promising substitutes for peroxidase in analytical chemistry and environmental science.

  18. Directional light scattering from individual Au nanocup

    NASA Astrophysics Data System (ADS)

    Bai, Jinjun; Li, Yong; Zhao, Bo

    2017-03-01

    We investigate the optical scattering properties of gold nanocup with different orientation and fractional height by full vector finite element method. All of the scattering cross section, the distribution of electric field intensity, and the ability of directional light scattering are simulated, respectively. It is demonstrated that the scattering cross section of Au nanocup is a superposition of scattering spectrum of a transverse mode and an axial mode. The wavelength and the intensity of the maximum value of the scattering cross section increase initially then reduce with the fractional height increasing for transverse mode, while they increase monotonously with the fractional height increasing for axial mode. Furthermore, the calculation results show that the ability of redirecting incident light of Au nanocup mainly depends on the transverse mode. And the deflected angle of scattering increases with the fractional height of Au nanocup decreasing. These results indicate that Au nanocup has a promising application in the planar plasmon devices.

  19. Application of Qualitative and Quantitative Analyses of Self-Potential Anomaly in Caves Detection in Djuanda Forest Park, Bandung

    NASA Astrophysics Data System (ADS)

    Srigutomo, Wahyu; Arkanuddin, Muhammad R.; Pratomo, Prihandhanu M.; Novana, Eka C.; Agustina, Rena D.

    2010-12-01

    Self-Potential (SP) is naturally occurring electric potential difference observed at the surface. In the vicinity of a cave, SP anomaly is dominantly generated by the resistivity contrast of the cave with its environment and the current source associated with the streaming potential generated by fluid flow through the cave. In this study we applied a simple qualitative analysis to understand the SP values caused by streaming potential and values that are due to the presence of caves. Further, we conducted two-dimensional SP continuous modeling by solving the fluid velocity vector first in the modeling domain. Current source distribution and hence the SP value are obtained by incorporating resistivity value of the subsurface and calculating the divergence of the velocity vector. For validation, this scheme was applied in detection caves dug by Japanese army during WWII as at Djuanda Forest Park, Bandung. The results can be used to understand the characteristics of fluid flow and current source distribution around cavities that are responsible for the observed SP anomaly at the surface.

  20. A simple way to prepare Au@polypyrrole/Fe3O4 hollow capsules with high stability and their application in catalytic reduction of methylene blue dye.

    PubMed

    Yao, Tongjie; Cui, Tieyu; Wang, Hao; Xu, Linxu; Cui, Fang; Wu, Jie

    2014-07-07

    Metal nanoparticles are promising catalysts for dye degradation in treating wastewater despite the challenges of recycling and stability. In this study, we have introduced a simple way to prepare Au@polypyrrole (PPy)/Fe3O4 catalysts with Au nanoparticles embedded in a PPy/Fe3O4 capsule shell. The PPy/Fe3O4 capsule shell used as a support was constructed in one-step, which not only dramatically simplified the preparation process, but also easily controlled the magnetic properties of the catalysts through adjusting the dosage of FeCl2·4H2O. The component Au nanoparticles could catalyze the reduction of methylene blue dye with NaBH4 as a reducing agent and the reaction rate constant was calculated through the pseudo-first-order reaction equation. The Fe3O4 nanoparticles permitted quick recycling of the catalysts with a magnet due to their room-temperature superparamagnetic properties; therefore, the catalysts exhibited good reusability. In addition to catalytic activity and reusability, stability is also an important property for catalysts. Because both Au and Fe3O4 nanoparticles were wrapped in the PPy shell, compared with precursor polystyrene/Au composites and bare Fe3O4 nanoparticles, the stability of Au@PPy/Fe3O4 hollow capsules was greatly enhanced. Since the current method is simple and flexible to create recyclable catalysts with high stability, it would promote the practicability of metal nanoparticle catalysts in industrial polluted water treatment.

  1. Catalytic effect of ReAu nanoalloy on the Te particle reaction and its application to resonance scattering spectral assay of CA125.

    PubMed

    Cai, Wei; Liang, Aihui; Liu, Qingye; Liao, Xianjiu; Jiang, Zhiliang; Shang, Guangyi

    2011-01-01

    ReAu nanoparticles with a molar ratio of 2:8 Re and Te nanoparticles were prepared by NaBH₄ reduction. In HCl medium at 65°C, ultratrace Re, Te and ReAu bimetallic nanoparticles strongly catalyzed the slow reaction between Sn(II) and Te(VI) to form Te particles, which exhibited the strongest resonance scattering (RS) peak at 782 nm. As the amount of nanocatalyst increased, the RS intensity at 782 nm (I(782 nm) ) increased linearly, and the increase in intensity ΔI(782 nm) was linear to the ReAu, Re and Te concentrations in the ranges 0.07-9.0, 0.01-4.5 and 30-1200 nM, respectively. As a model, a ReAu immunonanoprobe catalytic Te-particle resonance scattering spectral (RSS) method was established for detection of CA125, using ReAu nanoparticle labeling CA125 antibody (CA125Ab) to obtain an immunonanoprobe (ReAuCA125Ab) for CA125. In pH 7.6 citric acid-Na₂HPO₄ buffer solution, ReAuCA125Ab aggregated nonspecifically. Upon addition of CA125, the immunonanoprobe reacted with it to form ReAuCA125Ab-CA125 dispersive immunocomplex in the solution. After the centrifugation, the supernatant containing the immunocomplex was used to catalyze the reaction of Te(VI)-Sn(II) to produce the Te particles that resulted in the I(782 nm) increasing. The ΔI(782 nm) was linear to CA125 concentration (C(CA125)) in the range 0.1-240 mU/mL. The regression equation, correlation coefficient and detection limit were ΔI(782 nm) = 1.61 C(CA125) + 1.5, 0.9978 and 0.02 mU/mL, respectively. The proposed method was applied to detect CA125 in serum samples, with satisfactory results.

  2. Au/ZnO nanoarchitectures with Au as both supporter and antenna of visible-light

    NASA Astrophysics Data System (ADS)

    Liu, Tianyu; Chen, Wei; Hua, Yuxiang; Liu, Xiaoheng

    2017-01-01

    In this paper, we fabricate Au/ZnO nanostructure with smaller ZnO nanoparticles loaded onto bigger gold nanoparticles via combining seed-mediated method and sol-gel method. The obtained Au/ZnO nanocomposites exhibit excellent properties in photocatalysis process like methyl orange (MO) degradation and oxidative conversion of methanol into formaldehyde under visible light irradiation. The enhanced properties were ascribed to the surface plasmon resonance (SPR) effect of Au nanoparticles, which could contribute to the separation of photo-excited electrons and holes and facilitate the process of absorbing visible light. This paper contributes to the emergence of multi-functional nanocomposites with possible applications in visible-light driven photocatalysts and makes the Au/ZnO photocatalyst an exceptional choice for practical applications such as environmental purification of organic pollutants in aqueous solution and the synthesis of fine chemicals and intermediates.

  3. @AuAg nanostructures

    NASA Astrophysics Data System (ADS)

    Singh, Rina; Soni, R. K.

    2014-09-01

    Bimetallic and trimetallic nanoparticles have attracted significant attention in recent times due to their enhanced electrochemical and catalytic properties compared to monometallic nanoparticles. The numerical calculations using Mie theory has been carried out for three-layered metal nanoshell dielectric-metal-metal (DMM) system consisting of a particle with a dielectric core (Al@Al2O3), a middle metal Ag (Au) layer and an outer metal Au (Ag) shell. The results have been interpreted using plasmon hybridization theory. We have also prepared Al@Al2O3@Ag@Au and Al@Al2O3@AgAu triple-layered core-shell or alloy nanostructure by two-step laser ablation method and compared with calculated results. The synthesis involves temporal separations of Al, Ag, and Au deposition for step-by-step formation of triple-layered core-shell structure. To form Al@Ag nanoparticles, we ablated silver for 40 min in aluminium nanoparticle colloidal solution. As aluminium oxidizes easily in water to form alumina, the resulting structure is core-shell Al@Al2O3. The Al@Al2O3 particle acts as a seed for the incoming energetic silver particles for multilayered Al@Al2O3@Ag nanoparticles is formed. The silver target was then replaced by gold target and ablation was carried out for different ablation time using different laser energy for generation of Al@Al2O3@Ag@Au core-shell or Al@Al2O3@AgAu alloy. The formation of core-shell and alloy nanostructure was confirmed by UV-visible spectroscopy. The absorption spectra show shift in plasmon resonance peak of silver to gold in the range 400-520 nm with increasing ablation time suggesting formation of Ag-Au alloy in the presence of alumina particles in the solution.

  4. A qualitative exploration of experiences of overweight young and older adults. An application of the integrated behaviour model.

    PubMed

    Robertson, Annaleise; Mullan, Barbara; Todd, Jemma

    2014-04-01

    While rates of obesity continue to increase, weight-loss interventions to date have not been hugely successful. The purpose of this study was to explore the specific factors that are relevant to weight control in overweight and obese young adults compared to older adults, within the context of the theory of planned behaviour (TPB). A qualitative methodology with purposive sampling was used. Semi-structured interviews were conducted with 23 young adults and older adults who were currently overweight or obese. The research was informed by thematic analysis. A mixed deductive-inductive approach that was structured around but not limited to TPB constructs was applied. Themes mapped onto the TPB behaviour well, with additional themes of motivation, and knowledge and experience emerging. Differences across groups included motivators to weight loss (e.g. appearance and confidence for young adults, health for older adults), importance of social influences, and perceptions of control (e.g. availability and cost for young adults, age and energy for older adults). Similarities across groups included attitudes towards being overweight and losing weight, and the value of preparation and establishment of a healthy routine. Finally, across both groups, knowledge and confidence in ability to lose weight appeared adequate, despite failed attempts to do so. The different experiences identified for younger and older adults can be used to inform future tailored weight-loss interventions that are relevant to these age groups, and the TPB could provide a useful framework. Additional intervention strategies, such as improving behavioural routine and improving self-regulation also warrant further investigation.

  5. Preparation and Characterization of Au-ZrO2-SiO2 Nanocomposite Spheres and Their Application in Enrichment and Detection of Organophosphorus Agents

    SciTech Connect

    Yang, Yuqi; Tu, Haiyang; Zhang, Aidong; Du, Dan; Lin, Yuehe

    2012-03-01

    Au-ZrO{sub 2}-SiO{sub 2} nanocomposite spheres were synthesized and used as selective sorbents for the solid-phase extraction (SPE) of orananophosphorous agents. A non-enzymatic electrochemical sensor based on an Au-ZrO{sub 2}-SiO{sub 2} modified electrode was developed for selective detection of orananophosphorous pesticides (OPs). The Au-ZrO{sub 2}-SiO{sub 2} nanocomposite spheres were synthesized by hydrolysis and condensation of zirconia n-butoxide (TBOZ) on the surface of SiO{sub 2} spheres and then introduction of gold nanoparticles on the surface. Transmission electron microscope and X-ray photoelectron spectroscopy were performed to characterize the formation of the nanocomposite sphere. Fast extraction of OP was achieved by Au-ZrO{sub 2}-SiO{sub 2} modified electrode within 5 min via the specific affinity between zirconia and phosphoric group. The assay yields a broad concentration range of paraoxon-ethyl from 1.0 to 500 ng/mL{sup -1} with a detection limit 0.5 ng/mL{sup -1}. This selective and sensitive method holds great promise for the enrichment and detection of OPs.

  6. The synthesis of Au@C@Pt core-double shell nanocomposite and its application in enzyme-free hydrogen peroxide sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Yayun; Li, Yuhui; Jiang, Yingying; Li, Yancai; Li, Shunxing

    2016-08-01

    A novel Au@C@Pt core-double shell nanocomposite was synthesized and used to fabricate enzyme-free electrochemical sensor for rapid and sensitive detection of hydrogen peroxide (H2O2). The well-designed Au@C@Pt core-double shell nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM) and energy-dispersed spectrum (EDS). The Au@C@Pt core-double shell nanocomposite modified glassy carbon electrode (Au@C@Pt/GCE) exhibits good electrocatalytic activity towards H2O2 reduction at 0.0 V and can be used as H2O2 sensor. The sensor displays two wide linear ranges towards H2O2 detection. The one is 9.0 μM-1.86 mM with high sensitivity of 144.7 μA mM-1 cm-2, and the other is 1.86 mM-7.11 mM with sensitivity of 80.1 μA mM-1 cm-2. When signal to noise (S/N) is 3, the calculated detection limit (LOD) is 0.13 μM. Furthermore, the interference from the common interfering species such as glucose, ascorbic acid, dopamine and uric acid can be effectively avoided to H2O2 detection. Additionally, the H2O2 sensor also displays good stability and reproducibility.

  7. Bioinspired polydopamine as the scaffold for the active AuNPs anchoring and the chemical simultaneously reduced graphene oxide: characterization and the enhanced biosensing application.

    PubMed

    Tian, Juan; Deng, Sheng-Yuan; Li, Da-Li; Shan, Dan; He, Wei; Zhang, Xue-Ji; Shi, You

    2013-11-15

    We report here an efficient approach to enhance the performance of biosensing platform based on graphene or graphene derivate. Initially, graphene oxides (GO) nanosheets were reduced and surface functionalized by one-step oxidative polymerization of dopamine in basic solution at environment friendly condition to obtain the polydopamine (Pdop) modified reduced graphene oxides (PDRGO). The bioinspired surface was further used as a support to anchor active gold nanoparticles (AuNPs). The morphology and structure of the as-prepared AuNPs/PDRGO nanocomposite were investigated by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform-infrared spectroscopy (FT-IR). Electrochemical studies demonstrate that the as-prepared AuNPs/PDRGO hybrid materials possess excellent electrochemical properties and electrocatalytic activity toward the oxidation of NADH at low potential (0.1 V vs. SCE) with the fast response (15s) and the broad linear range (5.0 × 10(-8)-4.2 × 10(-5)M). Thus, this AuNPs/PDRGO nanocomposite can be further used to fabricate a sensitive alcohol biosensor using alcohol dehydrogenase (ADH), by simply incorporating the specific enzyme within the composite matrix with the aid of chitosan (Chit).

  8. Technical Evaluation Report on Knowledge Based System Applications for Guidance and Control (Application des Systemes a Base de Connaissances au Guidage-Pilotage),

    DTIC Science & Technology

    1991-07-01

    Sanz-Aranguez SP ProfessorJohn T.Shcpherd UK Dr Elihu Zimet us HOST PAINEL COORDINATOR Mdr Carlos A. Garriga. Lopez SENER Ingenieria y Sistemas SA...real-time expert systems. This problem arises when the prototype phase is finished and the goal is to produce an industrialized system. A methodology...meaningful in terms of industrial applications. The industrial exploitation of AI technology is strictly associated with the combination of both

  9. Photoemission study of Au on a-Si:H

    NASA Astrophysics Data System (ADS)

    Pi, Tun-Wen; Yang, A.-B.; Olson, C. G.; Lynch, D. W.

    1990-11-01

    We report a high-resolution photoemission study of Au evaporated on rf-sputtered a-Si:H at room temperature. Three regions of coverage can be classified according to the behavior of the valence-band and core-level spectra: an unreacted region with an equivalent thickness of 2 Å, followed by an intermixed Au/a-Si overlayer (~9 Å), and a dual-phase region at higher coverage. Au adatoms are dispersed in the unreacted region. They subsequently cluster in the intermixed region, where they attach to Si atoms that are not hydrogen bonded, suggesting that the intermixed Si is mainly from those that have dangling bonds. In the dual-phase region, two sets of Au 4f core levels evolve with higher binding energy, one from Au intermixed with Si, and the lower one exhibiting pure gold character. The interface eventually ends up with the sequence: a-Si:H(sub.)+(pure Au mixed with intermixed Au/Si)+(vac). This is unlike the case of Au on c-Si, which has a pure gold layer sandwiched by intermixed Au/Si complexes along the surface normal. Traces of silicon atoms on top of composite surfaces appear even at the highest coverage, 205 Å, of the gold deposit. The applicability of the four models previously used for the Au/c-Si interface is also briefly discussed.

  10. Use of structural geology in exploration for and mining of sedimentary rock-hosted Au deposits

    USGS Publications Warehouse

    Peters, Stephen G.

    2001-01-01

    Structural geology is an important component in regional-, district- and orebody-scale exploration and development of sedimentary rock-hosted Au deposits.Identification of timing of important structural events in an ore district allows analysis and classification of fluid conduits and construction of genetic models for ore formation.The most practical uses of structural geology deal with measurement and definition of various elements that comprise orebodies, which can then be directly applied to ore-reserve estimation,ground control,grade control, safety issues,and mine planning.District- and regional-scale structural studies are directly applicable to long-term strategic planning,economic analysis,and land ownership. Orebodies in sedimentary rock-hosted Au deposits are discrete, hypogene, epigenetic masses usually hosted in a fault zone,breccia mass, or lithologic bed or unit. These attributes allow structural geology to be directly applied to the mining and exploration of sedimentary rock-hosted Au deposits. Internal constituents in orebodies reflect unique episodes relating to ore formation.The main internal constituents in orebodies are ore minerals, gangue, and alteration minerals that usually are mixed with one another in complex patterns, the relations among which may be used to interpret the processes of orebody formation and control.Controls of orebody location and shape usually are due to structural dilatant zones caused by changes in attitude, splays, lithologic contacts,and intersections of the host conduit or unit.In addition,conceptual parameters such as district fabric,predictable distances, and stacking also are used to understand the geometry of orebodies.Controls in ore districts and location and geometry of orebodies in ore districts can be predicted to various degrees by using a number of qualitative concepts such as internal and external orebody plunges,district plunge, district stacking, conduit classification, geochemical, geobarometric and

  11. Growth of Long Range Forward-Backward Multiplicity Correlations with Centrality in Au+Au Collisions at sqrt sNN = 200 GeV

    SciTech Connect

    STAR Collaboration; Abelev, Betty

    2010-07-05

    Forward-backward multiplicity correlation strengths have been measured with the STAR detector for Au+Au and p+p collisions at {radical}s{sub NN} = 200 GeV. Strong short and long range correlations (LRC) are seen in central Au+Au collisions. The magnitude of these correlations decrease with decreasing centrality until only short range correlations are observed in peripheral Au+Au collisions. Both the Dual Parton Model (DPM) and the Color Glass Condensate (CGC) predict the existence of the long range correlations. In the DPM the fluctuation in the number of elementary (parton) inelastic collisions produces the LRC. In the CGC longitudinal color flux tubes generate the LRC. The data is in qualitative agreement with the predictions from the DPM and indicates the presence of multiple parton interactions.

  12. Growth of long range forward-backward multiplicity correlations with centrality in Au + Au collisions at square root of sNN = 200 GeV.

    PubMed

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Beavis, D R; Bellwied, R; Benedosso, F; Betancourt, M J; Betts, R R; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Biritz, B; Bland, L C; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Braidot, E; Brandin, A V; Bruna, E; Bueltmann, S; Burton, T P; Bystersky, M; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Catu, O; Cebra, D; Cendejas, R; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Choi, K E; Christie, W; Clarke, R F; Codrington, M J M; Corliss, R; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Daugherity, M; De Silva, L C; Dedovich, T G; DePhillips, M; Derevschikov, A A; Derradi de Souza, R; Didenko, L; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Du, F; Dunlop, J C; Dutta Mazumdar, M R; Edwards, W R; Efimov, L G; Elhalhuli, E; Elnimr, M; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Eun, L; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Y; Gagliardi, C A; Gaillard, L; Gangadharan, D R; Ganti, M S; Garcia-Solis, E J; Geromitsos, A; Geurts, F; Ghazikhanian, V; Ghosh, P; Gorbunov, Y N; Gordon, A; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Guimaraes, K S F F; Gupta, A; Gupta, N; Guryn, W; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Heppelmann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Huang, H Z; Humanic, T J; Huo, L; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jena, C; Jin, F; Jones, C L; Jones, P G; Joseph, J; Judd, E G; Kabana, S; Kajimoto, K; Kang, K; Kapitan, J; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kikola, D P; Kiryluk, J; Kisiel, A; Knospe, A G; Kocoloski, A; Koetke, D D; Kopytine, M; Korsch, W; Kotchenda, L; Kouchpil, V; Kravtsov, P; Kravtsov, V I; Krueger, K; Krus, M; Kuhn, C; Kumar, L; Kurnadi, P; Lamont, M A C; Landgraf, J M; LaPointe, S; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lee, J H; Leight, W; Levine, M J; Li, N; Li, C; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Ma, G L; Ma, Y G; Mahapatra, D P; Majka, R; Mall, O I; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Matis, H S; Matulenko, Yu A; McShane, T S; Meschanin, A; Milner, R; Minaev, N G; Mioduszewski, S; Mischke, A; Mitchell, J; Mohanty, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Netrakanti, P K; Ng, M J; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okada, H; Okorokov, V; Olson, D; Pachr, M; Page, B S; Pal, S K; Pandit, Y; Panebratsev, Y; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Planinic, M; Pluta, J; Poljak, N; Poskanzer, A M; Potukuchi, B V K S; Prindle, D; Pruneau, C; Pruthi, N K; Pujahari, P R; Putschke, J; Raniwala, R; Raniwala, S; Redwine, R; Reed, R; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shi, S S; Shi, X-H; Sichtermann, E P; Simon, F; Singaraju, R N; Skoby, M J; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thein, D; Thomas, J H; Tian, J; Timmins, A R; Timoshenko, S; Tlusty, D; Tokarev, M; Tram, V N; Trattner, A L; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van Leeuwen, M; Vander Molen, A M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasilevski, I M; Vasiliev, A N; Videbaek, F; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Walker, M; Wang, F; Wang, G; Wang, J S; Wang, Q; Wang, X; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, Y; Xie, W; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yang, Y; Yepes, P; Yoo, I-K; Yue, Q; Zawisza, M; Zbroszczyk, H; Zhan, W; Zhang, S; Zhang, W M; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zuo, J X

    2009-10-23

    Forward-backward multiplicity correlation strengths have been measured with the STAR detector for Au + Au and p + p collisions at square root of s(NN) = 200 GeV. Strong short- and long-range correlations (LRC) are seen in central Au + Au collisions. The magnitude of these correlations decrease with decreasing centrality until only short-range correlations are observed in peripheral Au + Au collisions. Both the dual parton model (DPM) and the color glass condensate (CGC) predict the existence of the long-range correlations. In the DPM, the fluctuation in the number of elementary (parton) inelastic collisions produces the LRC. In the CGC, longitudinal color flux tubes generate the LRC. The data are in qualitative agreement with the predictions of the DPM and indicate the presence of multiple parton interactions.

  13. In-beam gamma-ray spectroscopy of states in /sup 197/Au and /sup 199/Au populated by the (t,2n) reaction

    SciTech Connect

    Nail, T.W.

    1982-08-01

    The (t,2n) reaction has been used to study /sup 197/Au and /sup 199/Au. Excitation function, pulsed beam and gamma-gamma coincidence experiments were performed on both nuclei, and gamma-ray angular distributions were measured in /sup 199/Au. Level schemes were constructed for each nucleus. The resulting levels indicate that the systematic trends seen in the lighter odd-mass gold nuclei, for both the positive-parity states and for the negative-partiy band built on the h/sub 11/2/ shell-model orbital, appear to continue in /sup 197/Au; but significant deviations occur in /sup 199/Au. A 6 +- 2 ns isomer was observed in /sup 197/Au. The cluster-vibration coupling model seems to give the best qualitative agreement with the observed levels.

  14. Design of Au/SPIO composite nanoparticle for facile and biocompatible surface functionalization via Au-S bond

    NASA Astrophysics Data System (ADS)

    Seino, Satoshi; Shibata, Yujin; Yamanaka, Masayuki; Nakagawa, Takashi; Mukai, Yohei; Nakagawa, Shinsaku; Yamamoto, Takao A.

    2013-01-01

    Immobilization of Au nanoparticles on super-paramagnetic iron-oxide (SPIO) enables facile and biocompatible surface functionalization via Au-S bond. Au/SPIO composite nanoparticle is easily modified by thiol-modified polyethylene glycol (PEG-SH), and they are successfully applied on MR tumor imaging. However, its large hydrodynamic size ( 150 nm) still causes the accumulation to liver in vivo. In this study, we controlled the hydrodynamic size of Au/SPIO by testing different raw SPIOs and stabilizing polymers. As the best candidate, Au/Molday-ION which was synthesized from Molday-ION and polyvinyl alcohol comprised the hydrodynamic size of 56 nm. Moreover, PEGylated Au/Molday-ION showed excellent dispersibility in blood serum, with the hydrodynamic size of 65 nm. This surface functionalization strategy is effective for the constructions of magnetic nanocarriers for in vivo applications.

  15. High-energy X-ray focusing and applications to pair distribution function investigation of Pt and Au nanoparticles at high pressures

    NASA Astrophysics Data System (ADS)

    Hong, Xinguo; Ehm, Lars; Zhong, Zhong; Ghose, Sanjit; Duffy, Thomas S.; Weidner, Donald J.

    2016-02-01

    We report development of micro-focusing optics for high-energy x-rays by combining a sagittally bent Laue crystal monchromator with Kirkpatrick-Baez (K–B) X-ray focusing mirrors. The optical system is able to provide a clean, high-flux X-ray beam suitable for pair distribution function (PDF) measurements at high pressure using a diamond anvil cell (DAC). A focused beam of moderate size (10–15 μm) has been achieved at energies of 66 and 81 keV. PDF data for nanocrystalline platinum (n-Pt) were collected at 12.5 GPa with a single 5 s X-ray exposure, showing that the in-situ compression, decompression, and relaxation behavior of samples in the DAC can be investigated with this technique. PDFs of n-Pt and nano Au (n-Au) under quasi-hydrostatic loading to as high as 71 GPa indicate the existence of substantial reduction of grain or domain size for Pt and Au nanoparticles at pressures below 10 GPa. The coupling of sagittally bent Laue crystals with K–B mirrors provides a useful means to focus high-energy synchrotron X-rays from a bending magnet or wiggler source.

  16. High-energy X-ray focusing and applications to pair distribution function investigation of Pt and Au nanoparticles at high pressures

    DOE PAGES

    Hong, Xinguo; Ehm, Lars; Zhong, Zhong; ...

    2016-02-23

    We report development of micro-focusing optics for high-energy x-rays by combining a sagittally bent Laue crystal monchromator with Kirkpatrick-Baez (K–B) X-ray focusing mirrors. The optical system is able to provide a clean, high-flux X-ray beam suitable for pair distribution function (PDF) measurements at high pressure using a diamond anvil cell (DAC). A focused beam of moderate size (10–15 μm) has been achieved at energies of 66 and 81keV. PDF data for nanocrystalline platinum (n-Pt) were collected at 12.5 GPa with a single 5 s X-ray exposure, showing that the in-situ compression, decompression, and relaxation behavior of samples in the DACmore » can be investigated with this technique. PDFs of n-Pt and nano Au (n-Au) under quasi-hydrostatic loading to as high as 71GPa indicate the existence of substantial reduction of grain or domain size for Pt and Au nanoparticles at pressures below 10 GPa. In conclusion, the coupling of sagittally bent Laue crystals with K–B mirrors provides a useful means to focus high-energy synchrotron X-rays from a bending magnet or wiggler source.« less

  17. High-energy X-ray focusing and applications to pair distribution function investigation of Pt and Au nanoparticles at high pressures

    SciTech Connect

    Hong, Xinguo; Ehm, Lars; Zhong, Zhong; Ghose, Sanjit; Duffy, Thomas S.; Weidner, Donald J.

    2016-02-23

    We report development of micro-focusing optics for high-energy x-rays by combining a sagittally bent Laue crystal monchromator with Kirkpatrick-Baez (K–B) X-ray focusing mirrors. The optical system is able to provide a clean, high-flux X-ray beam suitable for pair distribution function (PDF) measurements at high pressure using a diamond anvil cell (DAC). A focused beam of moderate size (10–15 μm) has been achieved at energies of 66 and 81keV. PDF data for nanocrystalline platinum (n-Pt) were collected at 12.5 GPa with a single 5 s X-ray exposure, showing that the in-situ compression, decompression, and relaxation behavior of samples in the DAC can be investigated with this technique. PDFs of n-Pt and nano Au (n-Au) under quasi-hydrostatic loading to as high as 71GPa indicate the existence of substantial reduction of grain or domain size for Pt and Au nanoparticles at pressures below 10 GPa. In conclusion, the coupling of sagittally bent Laue crystals with K–B mirrors provides a useful means to focus high-energy synchrotron X-rays from a bending magnet or wiggler source.

  18. Green synthesis, characterization of Au-Ag core-shell nanoparticles using gripe water and their applications in nonlinear optics and surface enhanced Raman studies

    NASA Astrophysics Data System (ADS)

    Kirubha, E.; Palanisamy, P. K.

    2014-12-01

    In recent years there has been excessive progress in the ‘green’ chemistry approach for the synthesis of gold and silver nanoparticles. Bimetallic nanoparticles have gained special significance due to their unique tunable optical properties. Herein we report a facile one-pot, eco-friendly synthesis of Au-Ag bimetallic core-shell nanoparticles using gripe water as reducing as well as stabilizing agent. The as-synthesized Au-Ag nanoparticles are characterized using UV-Vis spectroscopy to determine the surface plasmon resonance, and using transmission electron microscopy to study the morphology and the particle size. The optical nonlinearity of the bimetallic nanoparticles investigated by z-scan technique using femtosecond Ti:sapphire is in the order of 109. The nonlinear optical parameters such as the nonlinear refractive index n2, nonlinear absorption coefficient β and the third order nonlinear susceptibility χ3 are measured for various wavelengths from 700 nm to 950 nm. The Au-Ag nanoparticles are also used in surface enhanced Raman spectroscopic studies to enhance the Raman signals of rhodamine 6G.

  19. Pd-Au@carbon dots nanocomposite: Facile synthesis and application as an ultrasensitive electrochemical biosensor for determination of colitoxin DNA in human serum.

    PubMed

    Huang, Qitong; Lin, Xiaofeng; Zhu, Jie-Ji; Tong, Qing-Xiao

    2017-03-22

    In this study, a green and fast method was developed to synthesize high-yield carbon dots (CDs) via one-pot microwave treatment of banana peels without using any other surface passivation agents. Then the as-prepared CDs was used as the reducing agent and stabilizer to synthesize a Pd-Au@CDs nanocomposite by a simple sequential reduction strategy. Finally, Pd-Au@CDs nanocomposite modified glassy carbon electrode (Pd-Au@CDs/GCE) was obtained as a biosensor for target DNA after being immobilized a single-stranded probe DNA by a carboxyl ammonia condensation reaction. Under the optimal conditions, the sensor could detect target DNA concentrations in the range from 5.0×10(-16) to 1.0×10(-1)°molL(-1). The detection limit (LD) was estimated to be 1.82×10(-17)molL(-1), which showed higher sensitivity than other electrochemical biosensors reported. In addition, the DNA sensor was also successfully applied to detect colitoxin DNA in human serum.

  20. Contribution of β' and β precipitates to hardening in as-solutionized Ag-20Pd-12Au-14.5Cu alloys for dental prosthesis applications.

    PubMed

    Kim, Yonghwan; Niinomi, Mitsuo; Hieda, Junko; Nakai, Masaaki; Cho, Ken; Fukui, Hisao

    2014-04-01

    Dental Ag-20Pd-12Au-14.5Cu alloys exhibit a unique hardening behavior, which the mechanical strengths enhance significantly which enhances the mechanical strength significantly after high-temperature (1123K) solution treatment without aging treatment. The mechanism of the unique hardening is not clear. The contribution of two precipitates (β' and β phases) to the unique hardening behavior in the as-solutionized Ag-20Pd-12Au-14.5Cu alloys was investigated. In addition, the chemical composition of the β' phase was investigated. The fine β' phase densely precipitates in a matrix. The β' phase (semi-coherent precipitate), which causes lattice strain, contributes greatly to the unique hardening behavior. On the other hand, the coarse β phase sparsely precipitates in the matrix. The contribution of the β phase (incoherent precipitate), which does not cause lattice strain, is small. The chemical composition of the β' phase was determined. This study reveals that the fine β' phase precipitated by high-temperature solution treatment leads to the unique hardening behavior in dental Ag-20Pd-12Au-14.5Cu alloys in the viewpoints of the lattice strain contrast and interface coherency. It is expected to make the heat treatment process more practical for hardening. The determined chemical composition of β' phase would be helpful to study an unknown formation process of β' phase.

  1. High-energy X-ray focusing and applications to pair distribution function investigation of Pt and Au nanoparticles at high pressures

    PubMed Central

    Hong, Xinguo; Ehm, Lars; Zhong, Zhong; Ghose, Sanjit; Duffy, Thomas S.; Weidner, Donald J.

    2016-01-01

    We report development of micro-focusing optics for high-energy x-rays by combining a sagittally bent Laue crystal monchromator with Kirkpatrick-Baez (K–B) X-ray focusing mirrors. The optical system is able to provide a clean, high-flux X-ray beam suitable for pair distribution function (PDF) measurements at high pressure using a diamond anvil cell (DAC). A focused beam of moderate size (10–15 μm) has been achieved at energies of 66 and 81 keV. PDF data for nanocrystalline platinum (n-Pt) were collected at 12.5 GPa with a single 5 s X-ray exposure, showing that the in-situ compression, decompression, and relaxation behavior of samples in the DAC can be investigated with this technique. PDFs of n-Pt and nano Au (n-Au) under quasi-hydrostatic loading to as high as 71 GPa indicate the existence of substantial reduction of grain or domain size for Pt and Au nanoparticles at pressures below 10 GPa. The coupling of sagittally bent Laue crystals with K–B mirrors provides a useful means to focus high-energy synchrotron X-rays from a bending magnet or wiggler source. PMID:26902122

  2. The vital function of Fe3O4@Au nanocomposites for hydrolase biosensor design and its application in detection of methyl parathion.

    PubMed

    Zhao, Yuting; Zhang, Weiying; Lin, Yuehe; Du, Dan

    2013-02-07

    A nanocomposite of gold nanoparticles (AuNPs) decorating a magnetic Fe(3)O(4) core was synthesized using cysteamine (SH-NH(2)) as linker, and characterized by TEM, XPS, UV and electrochemistry. Then a hydrolase biosensor, based on self-assembly of methyl parathion hydrolase (MPH) on the Fe(3)O(4)@Au nanocomposite, was developed for sensitive and selective detection of the organophosphorus pesticide (OP) methyl parathion. The magnetic nanocomposite provides an easy way to construct the enzyme biosensor by simply exerting an external magnetic field, and also provides a simple way to renew the electrode surface by removing the magnet. Unlike inhibition-based enzyme biosensors, the hydrolase is not poisoned by OPs and thus is reusable for continuous measurement. AuNPs not only provide a large surface area, high loading efficiency and fast electron transfer, but also stabilize the enzyme through electrostatic interactions. The MPH biosensor shows rapid response and high selectivity for detection of methyl parathion, with a linear range from 0.5 to 1000 ng mL(-1) and a detection limit of 0.1 ng mL(-1). It also shows acceptable reproducibility and stability. The simplicity and ease of operation of the proposed method has great potential for on-site detection of P-S containing pesticides and provides a promising strategy to construct a robust biosensor.

  3. The Vital Function of Fe3O4@Au nanocomposites for Hydrolase Biosensor Design and Its Application in Detection of Methyl Parathion

    SciTech Connect

    Zhao, Yuting; Zhang, Weiying; Lin, Yuehe; Du, Dan

    2013-02-04

    A nanocomposite of gold nanoparticles (AuNPs) decorating a magnetic Fe3O4 core was synthesized using cysteamine (SH–NH2) as linker, and characterized by TEM, XPS, UV and electrochemistry. Then a hydrolase biosensor, based on self-assembly of methyl parathion hydrolase (MPH) on the Fe3O4@Au nanocomposite, was developed for sensitive and selective detection of the organophosphorus pesticide (OP) methyl parathion. The magnetic nanocomposite provides an easy way to construct the enzyme biosensor by simply exerting an external magnetic field, and also provides a simple way to renew the electrode surface by removing the magnet. Unlike inhibition-based enzyme biosensors, the hydrolase is not poisoned by OPs and thus is reusable for continuous measurement. AuNPs not only provide a large surface area, high loading efficiency and fast electron transfer, but also stabilize the enzyme through electrostatic interactions. The MPH biosensor shows rapid response and high selectivity for detection of methyl parathion, with a linear range from 0.5 to 1000 ng/mL and a detection limit of 0.1 ng/mL. It also shows acceptable reproducibility and stability. The simplicity and ease of operation of the proposed method has great potential for on-site detection of P–S containing pesticides and provides a promising strategy to construct a robust biosensor.

  4. Component conversion from pure Au nanorods to multiblock Ag-Au-Ag nanorods assisted by Pt nanoframe templates

    NASA Astrophysics Data System (ADS)

    Lee, Sangji; Jang, Hee-Jeong; Jang, Ho Young; Kim, Seong Kyu; Park, Sungho

    2016-06-01

    We developed a new method for synthesizing multiblock Ag-Au-Ag nanorods using Pt nanoframes that had been deposited on the edges of Au nanorod seeds. As a function of Au etching time, the length of the Au nanorod decreased symmetrically starting from the two ends, leading to the formation of empty inner space at the ends. Subsequent reduction of Ag ions could be selectively performed in the inner space confined by Pt nanoframes and the resulting Ag-Au-Ag nanorods exhibited characteristic LSPR modes originating from each block component (in a transverse direction) and SPR coupling (in a longitudinal direction). The high quality of the resulting multiblock nanorods enabled observation of the longitudinal quadrupole mode that was induced by Ag-Au SPR coupling in a long axis. The mode exhibited high sensitivity in accordance with the change in the surrounding media, demonstrating great potential for sensor applications.We developed a new method for synthesizing multiblock Ag-Au-Ag nanorods using Pt nanoframes that had been deposited on the edges of Au nanorod seeds. As a function of Au etching time, the length of the Au nanorod decreased symmetrically starting from the two ends, leading to the formation of empty inner space at the ends. Subsequent reduction of Ag ions could be selectively performed in the inner space confined by Pt nanoframes and the resulting Ag-Au-Ag nanorods exhibited characteristic LSPR modes originating from each block component (in a transverse direction) and SPR coupling (in a longitudinal direction). The high quality of the resulting multiblock nanorods enabled observation of the longitudinal quadrupole mode that was induced by Ag-Au SPR coupling in a long axis. The mode exhibited high sensitivity in accordance with the change in the surrounding media, demonstrating great potential for sensor applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03484e

  5. Spin resonance transport properties of a single Au atom in S-Au-S junction and Au-Au-Au junction

    NASA Astrophysics Data System (ADS)

    Fangyuan, Wang; Guiqin, Li

    2016-07-01

    The spin transport properties of S-Au-S junction and Au-Au-Au junction between Au nanowires are investigated with density functional theory and the non-equilibrium Green's function. We mainly focus on the spin resonance transport properties of the center Au atom. The breaking of chemical bonds between anchor atoms and center Au atom significantly influences their spin transmission characteristics. We find the 0.8 eV orbital energy shift between anchor S atoms and the center Au atom can well protect the spin state stored in the S-Au-S junction and efficiently extract its spin state to the current by spin resonance mechanism, while the spin interaction of itinerant electrons and the valence electron of the center Au atom in the Au-Au-Au junction can extract the current spin information into the center Au atom. Fermi energy drift and bias-dependent spin filtering properties of the Au-Au-Au junction may transform information between distance, bias, and electron spin. Those unique properties make them potential candidates for a logical nanocircuit. Project supported by the National Basic Research Program of China (Grants No. 2011CB921602) and the National Natural Science Foundation of China (Grants No. 20121318158).

  6. Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection.

    PubMed

    Buh Gasparic, Meti; Tengs, Torstein; La Paz, Jose Luis; Holst-Jensen, Arne; Pla, Maria; Esteve, Teresa; Zel, Jana; Gruden, Kristina

    2010-03-01

    Several techniques have been developed for detection and quantification of genetically modified organisms, but quantitative real-time PCR is by far the most popular approach. Among the most commonly used real-time PCR chemistries are TaqMan probes and SYBR green, but many other detection chemistries have also been developed. Because their performance has never been compared systematically, here we present an extensive evaluation of some promising chemistries: sequence-unspecific DNA labeling dyes (SYBR green), primer-based technologies (AmpliFluor, Plexor, Lux primers), and techniques involving double-labeled probes, comprising hybridization (molecular beacon) and hydrolysis (TaqMan, CPT, LNA, and MGB) probes, based on recently published experimental data. For each of the detection chemistries assays were included targeting selected loci. Real-time PCR chemistries were subsequently compared for their efficiency in PCR amplification and limits of detection and quantification. The overall applicability of the chemistries was evaluated, adding practicability and cost issues to the performance characteristics. None of the chemistries seemed to be significantly better than any other, but certain features favor LNA and MGB technology as good alternatives to TaqMan in quantification assays. SYBR green and molecular beacon assays can perform equally well but may need more optimization prior to use.

  7. Consensual Qualitative Research: An Update

    ERIC Educational Resources Information Center

    Hill, Clara E.; Knox, Sarah; Thompson, Barbara J.; Williams, Elizabeth Nutt; Hess, Shirley A.; Ladany, Nicholas

    2005-01-01

    The authors reviewed the application of consensual qualitative research (CQR) in 27 studies published since the method's introduction to the field in 1997 by C. E. Hill, B. J. Thompson, and E. N. Williams (1997). After first describing the core components and the philosophical underpinnings of CQR, the authors examined how it has been applied in…

  8. Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys

    SciTech Connect

    Ohno, S.; Shimakura, H.; Tahara, S.; Okada, T.

    2015-08-17

    The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquid Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.

  9. The vital function of Fe3O4@Au nanocomposites for hydrolase biosensor design and its application in detection of methyl parathion

    NASA Astrophysics Data System (ADS)

    Zhao, Yuting; Zhang, Weiying; Lin, Yuehe; Du, Dan

    2013-01-01

    A nanocomposite of gold nanoparticles (AuNPs) decorating a magnetic Fe3O4 core was synthesized using cysteamine (SH-NH2) as linker, and characterized by TEM, XPS, UV and electrochemistry. Then a hydrolase biosensor, based on self-assembly of methyl parathion hydrolase (MPH) on the Fe3O4@Au nanocomposite, was developed for sensitive and selective detection of the organophosphorus pesticide (OP) methyl parathion. The magnetic nanocomposite provides an easy way to construct the enzyme biosensor by simply exerting an external magnetic field, and also provides a simple way to renew the electrode surface by removing the magnet. Unlike inhibition-based enzyme biosensors, the hydrolase is not poisoned by OPs and thus is reusable for continuous measurement. AuNPs not only provide a large surface area, high loading efficiency and fast electron transfer, but also stabilize the enzyme through electrostatic interactions. The MPH biosensor shows rapid response and high selectivity for detection of methyl parathion, with a linear range from 0.5 to 1000 ng mL-1 and a detection limit of 0.1 ng mL-1. It also shows acceptable reproducibility and stability. The simplicity and ease of operation of the proposed method has great potential for on-site detection of P-S containing pesticides and provides a promising strategy to construct a robust biosensor.A nanocomposite of gold nanoparticles (AuNPs) decorating a magnetic Fe3O4 core was synthesized using cysteamine (SH-NH2) as linker, and characterized by TEM, XPS, UV and electrochemistry. Then a hydrolase biosensor, based on self-assembly of methyl parathion hydrolase (MPH) on the Fe3O4@Au nanocomposite, was developed for sensitive and selective detection of the organophosphorus pesticide (OP) methyl parathion. The magnetic nanocomposite provides an easy way to construct the enzyme biosensor by simply exerting an external magnetic field, and also provides a simple way to renew the electrode surface by removing the magnet. Unlike

  10. Stability, structural and electronic properties of benzene molecule adsorbed on free standing Au layer

    NASA Astrophysics Data System (ADS)

    Katoch, Neha; Kapoor, Pooja; Sharma, Munish; Kumar, Ashok; Ahluwalia, P. K.

    2016-05-01

    We report stability and electronic properties of benzene molecule adsorbed on the Au atomic layer within the framework of density function theory (DFT). Horizontal configuration of benzene on the top site of Au monolayer prefers energetically over other studied configurations. On the adsorption of benzene, the ballistic conductance of Au monolayer is found to decrease from 4G0 to 2G0 suggesting its applications for the fabrications of organic sensor devices based on the Au atomic layers.

  11. Application of a qualitative and quantitative real-time polymerase chain reaction method for detecting genetically modified papaya line 55-1 in papaya products.

    PubMed

    Nakamura, Kosuke; Akiyama, Hiroshi; Takahashi, Yuki; Kobayashi, Tomoko; Noguchi, Akio; Ohmori, Kiyomi; Kasahara, Masaki; Kitta, Kazumi; Nakazawa, Hiroyuki; Kondo, Kazunari; Teshima, Reiko

    2013-01-15

    Genetically modified (GM) papaya (Carica papaya L.) line 55-1 (55-1), which is resistant to papaya ringspot virus infection, has been marketed internationally. Many countries have mandatory labeling regulations for GM foods, and there is a need for specific methods for detecting 55-1. Here, an event- and construct-specific real-time polymerase chain reaction (PCR) method was developed for detecting 55-1 in papaya products. Quantitative detection was possible for fresh papaya fruit up to dilutions of 0.001% and 0.01% (weight per weight [w/w]) for homozygous SunUp and heterozygous Rainbow cultivars, respectively, in non-GM papaya. The limit of detection and quantification was as low as 250 copies of the haploid genome according to a standard reference plasmid. The method was applicable to qualitative detection of 55-1 in eight types of processed products (canned papaya, pickled papaya, dried fruit, papaya-leaf tea, jam, puree, juice, and frozen dessert) containing papaya as a main ingredient.

  12. HIV Care Providers’ Attitudes regarding Mobile Phone Applications and Web-Based Dashboards to support Patient Self-Management and Care Coordination: Results from a Qualitative Feasibility Study

    PubMed Central

    Swendeman, Dallas; Farmer, Shu; Mindry, Deborah; Lee, Sung-Jae; Medich, Melissa

    2016-01-01

    In-depth qualitative interviews were conducted with healthcare providers (HCPs) from five HIV medical care coordination teams in a large Los Angeles County HIV clinic, including physicians, nurses, and psychosocial services providers. HCPs reported on the potential utility, acceptability, and barriers for patient self-monitoring and notifications via mobile phones, and web-based dashboards for HCPs. Potential benefits included: 1) enhancing patient engagement, motivation, adherence, and self-management; and 2) improving provider-patient relationships and HCP care coordination. Newly diagnosed and patients with co-morbidities were highest priorities for mobile application support. Facilitators included universal mobile phone ownership and use of smartphones or text messaging. Patient-level barriers included concerns about low motivation and financial instability for consistent use by some patients. Organizational barriers, cited primarily by physicians, included concerns about privacy protections, easy dashboard access, non-integrated electronic records, and competing burdens in limited appointment times. Psychosocial services providers were most supportive of the proposed mobile tools. PMID:28066820

  13. Reduction of Fermi level pinning at Au-MoS2 interfaces by atomic passivation on Au surface

    NASA Astrophysics Data System (ADS)

    Min, Kyung-Ah; Park, Jinwoo; Wallace, Robert M.; Cho, Kyeongjae; Hong, Suklyun

    2017-03-01

    Monolayer molybdenum disulfide (MoS2), which is a semiconducting material with direct band gap of ˜1.8 eV, has drawn much attention for application in field effect transistors (FETs). In this connection, it is very important to understand the Fermi level pinning (FLP) which occurs at metal-semiconductor interfaces. It is known that MoS2 has an n-type contact with Au, which is a high work function metal, representing the strong FLP at Au-MoS2 interfaces. However, such FLP can obstruct the attainment of high performance of field effect devices. In this study, we investigate the reduction of FLP at Au-MoS2 interfaces by atomic passivation on Au(111) using first-principles calculations. To reduce the FLP at Au-MoS2 interfaces, we consider sulfur, oxygen, nitrogen, fluorine, and hydrogen atoms that can passivate the surface of Au(111). Calculations show that passivating atoms prevent the direct contact between Au(111) and MoS2, and thus FLP at Au-MoS2 interfaces is reduced by weak interaction between atom-passivated Au(111) and MoS2. Especially, FLP is greatly reduced at sulfur-passivated Au-MoS2 interfaces with the smallest binding energy. Furthermore, fluorine-passivated Au(111) can form ohmic contact with MoS2, representing almost zero Schottky barrier height (SBH). We suggest that SBH can be controlled depending on the passivating atoms on Au(111).

  14. Solid-Phase Equilibria in the Au-As, Au-Ga-Sb, Au-In-As, and Au-In-Sb Ternaries.

    DTIC Science & Technology

    1986-02-28

    AD6i5 469 SOLID- PHASE EQUILIBRIA IN THE Ru-As AU-GA-SB AU-IN-AS- 1/17 AND AU-IN-SB TERNAR (U) CALIFORNIA UNIV LOS ANGELES DEPT OF CHEMISTRY AND...REPORT & PERIOD COVERED SOLID- PHASE EQUILIBRIA IN THE Au-Ga-As, Au-Ga-Sb Thchnical Report Au-In-As, and Au-In-Sb TEARIEIS S. PERFORMING ORG. REPORT NUMBER...CLASSIFICATION OF THIS PAGEMI*n Does Entepd) 4./ lie- . .- - - - - -- -- Solid Phase Equilibria in the Au-Ga-As, Au-Ga-Sb, Au-In-As, and Au-In-Sb Ternaries C

  15. A collection of research reporting, theoretical analysis, and practical applications in science education: Examining qualitative research methods, action research, educator-researcher partnerships, and constructivist learning theory

    NASA Astrophysics Data System (ADS)

    Hartle, R. Todd

    2007-12-01

    Educator-researcher partnerships are increasingly being used to improve the teaching of science. Chapter 1 provides a summary of the literature concerning partnerships, and examines the justification of qualitative methods in studying these relationships. It also justifies the use of Participatory Action Research (PAR). Empirically-based studies of educator-researcher partnership relationships are rare despite investments in their implementation by the National Science Foundation (NSF) and others. Chapter 2 describes a qualitative research project in which participants in an NSF GK-12 fellowship program were studied using informal observations, focus groups, personal interviews, and journals to identify and characterize the cultural factors that influenced the relationships between the educators and researchers. These factors were organized into ten critical axes encompassing a range of attitudes, behaviors, or values defined by two stereotypical extremes. These axes were: (1) Task Dictates Context vs. Context Dictates Task; (2) Introspection vs. Extroversion; (3) Internal vs. External Source of Success; (4) Prior Planning vs. Implementation Flexibility; (5) Flexible vs. Rigid Time Sense; (6) Focused Time vs. Multi-tasking; (7) Specific Details vs. General Ideas; (8) Critical Feedback vs. Encouragement; (9) Short Procedural vs. Long Content Repetition; and (10) Methods vs. Outcomes are Well Defined. Another ten important stereotypical characteristics, which did not fit the structure of an axis, were identified and characterized. The educator stereotypes were: (1) Rapport/Empathy; (2) Like Kids; (3) People Management; (4) Communication Skills; and (5) Entertaining. The researcher stereotypes were: (1) Community Collaboration; (2) Focus Intensity; (3) Persistent; (4) Pattern Seekers; and (5) Curiosity/Skeptical. Chapter 3 summarizes the research presented in chapter 2 into a practical guide for participants and administrators of educator-researcher partnerships

  16. M\\TiO₂ (M=Au, Ag) transparent aqueous sols and its application on polymeric surface antibacterial post-treatment.

    PubMed

    Wu, Liangzhuan; Yu, Yuan; Song, Le; Zhi, Jinfang

    2015-05-15

    In this paper, we reported a simple and mild chemical method for synthesis of crystalline metal\\TiO2 (M=Au, Ag) transparent aqueous sols at low temperature (80°C). It should be found that the as-synthesized metal\\TiO2 sols could easily be coated on the flexible PET surfaces of the through the as-developed electroless-plating-like solution deposition (EPLSD) procedure. The as-prepared metal\\TiO2 sols and related flexible thin film were characterized by TEM, SEM, XRD, UV-vis, and FTIR analysis. The results showed that the Au and Ag nanoparticles can significantly improve the optical absorption properties of TiO2 due to the surface plasmon generated by the noble metal, which in turn enhanced the photo-induced antibacterial performance of the as-prepared metal\\TiO2 flexible film. Moreover, the photo-generated electrons could transfer between the metal and titanium dioxide under different irradiation (ultraviolet or visible light), which could significantly reduce the recombination of photo-induced electrons and holes, resulting in the better photo-induced antibacterial performance. Therefore, the EPLSD procedure may be used as a general polymeric surface antibacterial post-treatment procedure for preparing the metal\\TiO2 flexible film because of the noble metal enhanced antibacterial performance.

  17. Qualitative Student Models.

    ERIC Educational Resources Information Center

    Clancey, William J.

    The concept of a qualitative model is used as the focus of this review of qualitative student models in order to compare alternative computational models and to contrast domain requirements. The report is divided into eight sections: (1) Origins and Goals (adaptive instruction, qualitative models of processes, components of an artificial…

  18. Understanding & Conducting Qualitative Research.

    ERIC Educational Resources Information Center

    Stainback, Susan; Stainback, William

    In this book, which applies the state of the art in qualitative research to special education, qualitative research is used as a generic term for investigative methodologies described variously as ethnographic, naturalistic, anthropological, field research, or participant-observer research. Chapter 1 introduces and defines qualitative research and…

  19. The Qualitative Dimension.

    ERIC Educational Resources Information Center

    Lodge-Peters, Dianne S.

    The qualitative dimension of educational research methodology is explored, and the literature of qualitative methodology is reviewed so researchers may (1) understand more fully the qualitative dimension as it, in turn, fits within the parameters of educational research as a whole, and (2) have more informed access to the sometimes daunting array…

  20. Effectively Communicating Qualitative Research

    ERIC Educational Resources Information Center

    Ponterotto, Joseph G.; Grieger, Ingrid

    2007-01-01

    This article is a guide for counseling researchers wishing to communicate the methods and results of their qualitative research to varied audiences. The authors posit that the first step in effectively communicating qualitative research is the development of strong qualitative research skills. To this end, the authors review a process model for…

  1. Magnetoresistance of Au films

    DOE PAGES

    Zhang, D. L.; Song, X. H.; Zhang, X.; ...

    2014-12-10

    Measurement of the magnetoresistance (MR) of Au films as a function of temperature and film thickness reveals a strong dependence on grain size distribution and clear violation of the Kohler s rule. Using a model of random resistor network, we show that this result can be explained if the MR arises entirely from inhomogeneity due to grain boundary scattering and thermal activation of grain boundary atoms.

  2. Qualitative methods for assessing risk

    SciTech Connect

    Mahn, J.A.; Hannaman, G.W.; Kryska, P.

    1995-03-01

    The purpose of this document is to describe a qualitative risk assessment process that supplements the requirements of DOE/AL 5481.1B. Although facility managers have a choice of assessing risk either quantitatively or qualitatively, trade offs are involved in making the most appropriate choice for a given application. The results that can be obtained from a quantitative risk assessment are significantly more robust than those results derived from a qualitative approach. However, the advantages derived from quantitative risk assessment are achieved at a greater expenditure of money, time and convenience. This document provides the elements of a framework for performing a much less costly qualitative risk assessment, while retaining the best attributes of quantitative methods. The approach discussed herein will; (1) provide facility managers with the tools to prepare consistent, site wide assessments, and (2) aid the reviewers who may be tasked to evaluate the assessments. Added cost/benefit measures of the qualitative methodology include the identification of mechanisms for optimally allocating resources for minimizing risk in an expeditious, and fiscally responsible manner.

  3. Qualitative research as methodical hermeneutics.

    PubMed

    Rennie, David L

    2012-09-01

    The proportion of publications of qualitative research in mainstream psychology journals is small. Thus, in terms of this important criterion, despite its recent rapid growth, qualitative research is marginalized in psychology. The author suggests that contributing to this situation is the lack of a coherent and unifying methodology of qualitative research methods that elucidates their credibility. He groups the many qualitative research methods into 3 main kinds, then applies to them 4 propositions offered as such a methodology: (1) Qualitative research is hermeneutical, entailing application of the method of the hermeneutic circle to text about experience and/or action. (2) Implicit in the use of the hermeneutic circle method is the activity of educing and articulating the meaning of text, an activity that modifies and interacts with C. S. Peirce's (1965, 1966) logical operations of abduction, theorematic deduction, and induction. (3) The cycling of these 4 moments enables demonstration, achieved rhetorically, of the validity of the understandings resulting from the exegesis of the text under study. (4) This demonstrative rhetoric is enhanced when researchers disclose reflexively those aspects of their perspectives they judge to have most relevant bearing on their understandings. The author compares abduction as formulated here with other recent uptakes of it. As an installment on the generality of the methodology, he explores its fit with the descriptive phenomenological psychological method, conversation analysis, and thematic analysis.

  4. Development of Ag-Pd-Au-Cu alloy for multiple dental applications. Part 1. Effects of Pd and Cu contents, and addition of Ga or Sn on physical properties and bond with ultra-low fusing ceramic.

    PubMed

    Goto, S; Miyagawa, Y; Ogura, H

    2000-09-01

    Ag-Pd-Au-Cu quaternary alloys consisting of 30-50% Ag, 20-40% Pd, 10-20% Cu and 20% Au (mother alloys) were prepared. Then 5% Sn or 5% Ga was added to the mother alloy compositions, and another two alloy systems (Sn-added alloys and Ga-added alloys) were also prepared. The bond between the prepared alloys and an ultra-low fusing ceramic as well as their physical properties such as the solidus point, liquidus point and the coefficient of thermal expansion were evaluated. The solidus point and liquidus point of the prepared alloys ranged from 802 degrees C to 1142 degrees C and from 931 degrees C to 1223 degrees C, respectively. The coefficient of thermal expansion ranged from 14.6 to 17.1 x 10(-6)/degrees C for the Sn- and Ga-added alloys. In most cases, the Pd and Cu contents significantly influenced the solidus point, liquidus point and coefficient of thermal expansion. All Sn- and Ga-added alloys showed high area fractions of retained ceramic (92.1-100%), while the mother alloy showed relatively low area fractions (82.3%) with a high standard deviation (20.5%). Based on the evaluated properties, six Sn-added alloys and four Ga-added alloys among the prepared alloys were suitable for the application of the tested ultra-low fusing ceramic.

  5. Plasmon assisted enhanced second-harmonic generation in single hybrid Au/ZnS nanowires

    NASA Astrophysics Data System (ADS)

    Jassim, Nadia M.; Wang, Kai; Han, Xiaobo; Long, Hua; Wang, Bing; Lu, Peixiang

    2017-02-01

    We demonstrate the enhanced second-harmonic generation (SHG) in single ZnS nanowires (NWs) attached with gold nanoparticles (Au NPs). The hybrid Au/ZnS NWs with different densities of the attached Au NPs were prepared by a simple solution impregnation method. By comparing with bare ZnS NWs, ∼1.3, ∼6.6, ∼7 and ∼2 times enhancement of SH intensity was achieved in the hybrid Au/ZnS NWs with low, moderate, high and ultrahigh densities of the attached Au NPs, respectively. The enhanced SHG in the hybrid Au/ZnS NWs is attributed to the strong local-fields from the Au cluster under the near-resonant condition, which is supported by the related dark-field scattering spectra. This hybrid Au/ZnS NWs provide a simple platform for enhancing nonlinear optical responses, which have potential applications in nano-probing and nano-sensing.

  6. Synthesis of 4H/fcc-Au@Metal Sulfide Core-Shell Nanoribbons.

    PubMed

    Fan, Zhanxi; Zhang, Xiao; Yang, Jian; Wu, Xue-Jun; Liu, Zhengdong; Huang, Wei; Zhang, Hua

    2015-09-02

    Although great advances on the synthesis of Au-semiconductor heteronanostructures have been achieved, the crystal structure of Au components is limited to the common face-centered cubic (fcc) phase. Herein, we report the synthesis of 4H/fcc-Au@Ag2S core-shell nanoribbon (NRB) heterostructures from the 4H/fcc Au@Ag NRBs via the sulfurization of Ag. Remarkably, the obtained 4H/fcc-Au@Ag2S NRBs can be further converted to a novel class of 4H/fcc-Au@metal sulfide core-shell NRB heterostructures, referred to as 4H/fcc-Au@MS (M = Cd, Pb or Zn), through the cation exchange. We believe that these novel 4H/fcc-Au@metal sulfide NRB heteronanostructures may show some promising applications in catalysis, surface enhanced Raman scattering, solar cells, photothermal therapy, etc.

  7. Effect of Silicon on Activity Coefficients of Siderophile Elements (P, Au, Pd, As, Ge, Sb, and In) in Liquid Fe, with Application to Core Formation

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K.; Danielson, L. R.; Humayun, M.; Righter, M.; Lapen, T.; Boujibar, A.

    2016-01-01

    Earth's core contains approximately 10 percent light elements that are likely a combination of S, C, Si, and O, with Si possibly being the most abundant. Si dissolved into Fe liquids can have a large effect on the magnitude of the activity coefficient of siderophile elements (SE) in Fe liquids, and thus the partitioning behavior of those elements between core and mantle. The effect of Si can be small such as for Ni and Co, or large such as for Mo, Ge, Sb, As. The effect of Si on many siderophile elements is unknown yet could be an important, and as yet unquantified, influence on the core-mantle partitioning of SE. Here we report new experiments designed to quantify the effect of Si on the partitioning of P, Au, Pd, and many other SE between metal and silicate melt. The results will be applied to Earth, for which we have excellent constraints on the mantle siderophile element concentrations.

  8. Growth of GaN@InGaN Core-Shell and Au-GaN Hybrid Nanostructures for Energy Applications

    DOE PAGES

    Kuykendall, Tevye; Aloni, Shaul; Jen-La Plante, Ilan; ...

    2009-01-01

    We demonstrated a method to control the bandgap energy of GaN nanowires by forming GaN@InGaN core-shell hybrid structures using metal organic chemical vapor deposition (MOCVD). Furthermore, we show the growth of Au nanoparticles on the surface of GaN nanowires in solution at room temperature. The work shown here is a first step toward engineering properties that are crucial for the rational design and synthesis of a new class of photocatalytic materials. The hybrid structures were characterized by various techniques, including photoluminescence (PL), energy dispersive x-ray spectroscopy (EDS), transmission and scanning electron microscopy (TEM and SEM), and x-ray diffraction (XRD).

  9. Novel photoswitchable dielectric properties on nanomaterials of electronic core-shell γ-FeOx@Au@fullerosomes for GHz frequency applications

    NASA Astrophysics Data System (ADS)

    Wang, Min; Su, Chefu; Yu, Tzuyang; Tan, Loon-Seng; Hu, Bin; Urbas, Augustine; Chiang, Long Y.

    2016-03-01

    We unexpectedly observed a large amplification of the dielectric properties associated with the photoswitching effect and the new unusual phenomenon of delayed photoinduced capacitor-like (i.e. electric polarization) behavior at the interface on samples of three-layered core-shell (γ-FeOx@AuNP)@[C60(>DPAF-C9)]n2 nanoparticles (NPs) in frequencies of 0.5-4.0 GHz. The detected relative dielectric constant amplification was initiated upon switching off the light followed by relaxation to give an excellent recyclability. These NPs having e--polarizable fullerosomic structures located at the outer layer were fabricated from highly magnetic core-shell γ-FeOx@AuNPs. Surface-stabilized 2 in a core-shell structure was found to be capable of photoinducing the surface plasmonic resonance (SPR) effect by white LED light. The accumulated SPR energy was subsequently transferred to the partially bilayered C60(>DPAF-C9) fullerosomic membrane layer in a near-field (~1.5 nm) region without producing radiation heat. Since the monostatic SAR signal is dielectric property-dependent, we used these measurements to provide evidence of derived reflectivity changes on a surface coated with 2 at 0.5-4.0 GHz upon illumination of LED white light. We found that a high, >99%, efficiency of response amplification in image amplitude can be achieved.We unexpectedly observed a large amplification of the dielectric properties associated with the photoswitching effect and the new unusual phenomenon of delayed photoinduced capacitor-like (i.e. electric polarization) behavior at the interface on samples of three-layered core-shell (γ-FeOx@AuNP)@[C60(>DPAF-C9)]n2 nanoparticles (NPs) in frequencies of 0.5-4.0 GHz. The detected relative dielectric constant amplification was initiated upon switching off the light followed by relaxation to give an excellent recyclability. These NPs having e--polarizable fullerosomic structures located at the outer layer were fabricated from highly magnetic core-shell γ-FeOx@Au

  10. The transport of gold and molybdenum through hydration in aqueous vapor and vapor-like fluids: Application to porphyry Au and Mo deposits

    NASA Astrophysics Data System (ADS)

    Hurtig, N. C.; Williams-Jones, A. E.

    2013-12-01

    The hypothesis that vapor is a viable medium for the transport of gold and molybdenum in ore forming magmatic-hydrothermal systems is supported by fluid inclusion data, analyses of volcanic gas condensates and the occurrence of metal-rich incrustations around fumaroles. Experiments have shown that hydration of metal species in water vapor is an essential factor in making such transport possible [1,2,3]. Indeed, hydration has been shown to increase concentrations of Au and Mo in the aqueous vapor phase by several orders of magnitude over those calculated using volatility data. Nevertheless metal concentrations determined experimentally in previous studies are substantially lower than those reported for vapor inclusions in magmatic hydrothermal systems, and are limited to one or two dominant hydrated metal species. To bridge this gap, we performed a series of new experiments extending the density-range to near critical vapor density, and intermediate-density in the case of supercritical fluids. Experiments were carried out in batch-type Ti autoclaves at temperatures between 300 and 500 °C and pressures up to 366 bar in HCl-bearing water vapor. Oxygen fugacity was buffered either by the assemblage MoO2/MoO3 or WO2/WO3 or graphite. Gold and molybdenum concentrations measured in the experimental condensates ranged from 0.9 ppb and 3 ppm in low-density vapor at 300 °C to 4.6 ppm and 481 ppm at 297 bar and 400 °C, respectively. The fugacity of both metals increased exponentially with increasing water fugacity, resulting in an increase in metal solubility between 1 and 3 orders of magnitude from the lowest pressures investigated. Curves representing the experimentally determined relationship between metal fugacity and fH2O were fitted to a step-wise hydration model to extract a set of logarithmic equilibrium constants for P and T extrapolation. We have used the above data to model Au and Mo mobilization in magmatic-hydrothermal vapor plumes. This modeling shows that the

  11. meson production in Au+Au collisions at in STAR

    NASA Astrophysics Data System (ADS)

    Zhou, Long; STAR collaboration

    2017-01-01

    In this article, we report the measurements of the nuclear modification factor (R AA) and elliptic flow (v 2) for in Au+Au collisions at from the STAR experiment. These results are compared with the results of other open charm mesons to study the hadronization mechanism of the charm quarks and disentangle the transport properties of quark-gluon plasma and hadronic phase [1]. We found that the nuclear modification factor for D s are systematically higher than unity and D 0 R AA. The ratio of D s /D 0 for 10-40% central Au+Au collisions is also higher than that in p+p collisions as predicted by PYTHIA. The D s /D 0 ratio is also compared to that in Pb+Pb collisions at measured by the ALICE experiment. Our results indicate an enhancement of D s meson production in Au+Au collisions.

  12. Antibacterial Au nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It

  13. Being a qualitative researcher.

    PubMed

    Holloway, Immy; Biley, Francis C

    2011-07-01

    This article, from a keynote address, is the result of some of the things which I learned about qualitative research during my many years of doing and teaching it. The main point I make is that qualitative researchers should present a good story which is based on evidence but focused on meaning rather than measurement. In qualitative inquiry, the researchers' selves are involved, their experiences become a resource. Researchers cannot distance themselves from the other participants, although they cannot fully present their meaning and experience. I also discuss voice, paradigm, and innovation as potentially problematic issues in qualitative research. These are terms often used but not always examined for their meaning in qualitative inquiry. If researchers are aware and sensitive, rather than overemotional or self-absorbed, qualitative research can be enlightening, person-centered, and humanistic.

  14. Dynamic features of rod-shaped Au nanoclusters

    NASA Astrophysics Data System (ADS)

    So, Woong Young; Das, Anindita; Wang, Shuxin; Zhao, Shuo; Byun, Hee Young; Lee, Dana; Kumar, Santosh; Jin, Rongchao; Peteanu, Linda A.

    2015-08-01

    Gold nanoclusters hold many potential applications such as biosensing and optics due to their emission characteristics, small size, and non-toxicity. However, their low quantum yields remain problematic for further applications, and their fluorescence mechanism is still unclear. To increase the low quantum yields, various methods have been performed: doping, tuning structures, and changing number of gold atoms. In the past, most characterizations have been performed on spherical shaped nanoclusters; in this paper, several characterizations of various rod-shaped Au nanoclusters specifically on Au25 are shown. It has been determined that the central gold atom in Au25 nano-rod is crucial in fluorescence. Furthermore, single molecule analysis of silver doped Au25 nano-rod revealed that it has more photo-stability than conjugated polymers and quantum dots.

  15. Critiquing qualitative research.

    PubMed

    Beck, Cheryl Tatano

    2009-10-01

    The ability to critique research is a valuable skill that is fundamental to a perioperative nurse's ability to base his or her clinical practice on evidence derived from research. Criteria differ for critiquing a quantitative versus a qualitative study (ie, statistics are evaluated in a quantitative study, but not in a qualitative study). This article provides on guidelines for assessing qualitative research. Excerpts from a published qualitative research report are summarized and then critiqued. Questions are provided that help evaluate different sections of a research study (eg, sample, data collection methods, data analysis).

  16. Overview of qualitative research.

    PubMed

    Grossoehme, Daniel H

    2014-01-01

    Qualitative research methods are a robust tool for chaplaincy research questions. Similar to much of chaplaincy clinical care, qualitative research generally works with written texts, often transcriptions of individual interviews or focus group conversations and seeks to understand the meaning of experience in a study sample. This article describes three common methodologies: ethnography, grounded theory, and phenomenology. Issues to consider relating to the study sample, design, and analysis are discussed. Enhancing the validity of the data, as well reliability and ethical issues in qualitative research are described. Qualitative research is an accessible way for chaplains to contribute new knowledge about the sacred dimension of people's lived experience.

  17. Surface morphology and optical properties of porphyrin/Au and Au/porphyrin/Au systems

    PubMed Central

    2013-01-01

    Porphyrin/Au and Au/porphyrin/Au systems were prepared by vacuum evaporation and vacuum sputtering onto glass substrate. The surface morphology of as-prepared systems and those subjected to annealing at 160°C was studied by optical microscopy, atomic force microscopy, and scanning electron microscopy techniques. Absorption and luminescence spectra of as-prepared and annealed samples were measured. Annealing leads to disintegration of the initially continuous gold layer and formation of gold nanoclusters. An amplification of Soret band magnitude was observed on the Au/meso-tetraphenyl porphyrin (TPP) system in comparison with mere TPP. Additional enhancement of luminescence was observed after the sample annealing. In the case of sandwich Au/porphyrin/Au structure, suppression of one of the two porphyrins’ luminescence maxima and sufficient enhancement of the second one were observed. PMID:24373347

  18. Voltammogram spikes interpreted as envelopes of spikes resulting from electrode crystals of various sizes: Application to the UPD of Cu on Au(111)

    NASA Astrophysics Data System (ADS)

    Medved', Igor; Huckaby, Dale A.

    2003-06-01

    We study and explain shapes of voltammogram spikes, observed during underpotential deposition (UPD) on electrode surfaces, as averaged envelopes of mutually shifted spikes associated with first-order phase transitions that occur in crystalline domains of various sizes that are formed on the electrode surface. This concept, already used in our previous work for two-phase systems and symmetric voltammogram spike shapes, is here substantially generalized to systems with multiple-phase coexistence and asymmetric spike shapes, using the rigorous statistical mechanical techniques of Borgs and Kotecký. Rather than mere numerical plots, we extract explicit functions that accurately describe the spike shapes. For the sake of clarity, we present our analysis and apply our results to fit the voltammogram of the UPD of Cu on Au(111) in sulfuric acid medium. This voltammogram shows two distinct spikes with a broad foot region near the spike at higher potentials. As was done in earlier treatments, we explain each of the two spikes as a result of a first-order transition. Here, though, the spikes are obtained as envelopes of closely spaced spikes resulting from crystals of various sizes. In contrast to earlier studies, however, we also explain the foot region in the same way. The foot's shape, despite its large width and small height, can be equally well obtained as an envelope of shifted crystal spikes that are broader and smaller than those giving rise to the two distinct spikes. We achieve very good agreement with experiment.

  19. Perceptions of the feasibility and acceptability of a smartphone application for the treatment of binge eating disorders: Qualitative feedback from a user population and clinicians

    PubMed Central

    Goldstein, Stephanie P.; Manasse, Stephanie M.; Forman, Evan M.; Butryn, Meghan L.

    2016-01-01

    Background Binge eating, a major public health problem, is characterized by recurrent episodes of out-of-control eating in which an individual consumes an unusually large amount of food in a discrete time period. Limitations of existing treatments for binge eating (both in-person psychotherapy and guided self-help) indicate that smartphone applications (apps) may be an ideal alternative or enhancement. An app for binge eating could aid treatment dissemination, engagement, and/or compliance. However, no research to date has examined user perceptions of a therapeutic app for binge eating, which is critical for development. Objectives The purposes of the current study were to conceptualize a potential app for binge eating and obtain feedback regarding feasibility and acceptability from target users (i.e., individuals with binge eating) and clinicians specializing in the treatment of binge eating. Methods Our team conceptualized a smartphone app that contained self-help material, functions to monitor behavior, and provisions of in-the-moment interventions. We presented this app (e.g., feature explanations, mock screen shots) through phone interviews with clinicians who specialize in the treatment of binge eating (n=10), and focus groups with individuals experiencing binge eating (n=11). Participants were asked to discuss customization, user burden, terminology, attrition, data visualization, comprehensiveness, reminders, feasibility, acceptability, and perceived effectiveness of the proposed app. Thematic analyses were conducted from qualitative data (e.g., audio recordings and interview notes) obtained via the focus groups and interviews. Results Results indicated that our proposed app would be highly feasible and acceptable to users and clinicians, though concerns about the degree of personalization and customizability were noted. Conclusions The current study details highly specific feedback and ideas regarding essential app features from target users and clinicians

  20. Dependence of SERS enhancement on the chemical composition and structure of Ag/Au hybrid nanoparticles

    NASA Astrophysics Data System (ADS)

    Chaffin, Elise; O'Connor, Ryan T.; Barr, James; Huang, Xiaohua; Wang, Yongmei

    2016-08-01

    Noble metal nanoparticles (NPs) such as silver (Ag) and gold (Au) have unique plasmonic properties that give rise to surface enhanced Raman scattering (SERS). Generally, Ag NPs have much stronger plasmonic properties and, hence, provide stronger SERS signals than Au NPs. However, Ag NPs lack the chemical stability and biocompatibility of comparable Au NPs and typically exhibit the most intense plasmonic resonance at wavelengths much shorter than the optimal spectral region for many biomedical applications. To overcome these issues, various experimental efforts have been devoted to the synthesis of Ag/Au hybrid NPs for the purpose of SERS detections. However, a complete understanding on how the SERS enhancement depends on the chemical composition and structure of these nanoparticles has not been achieved. In this study, Mie theory and the discrete dipole approximation have been used to calculate the plasmonic spectra and near-field electromagnetic enhancements of Ag/Au hybrid NPs. In particular, we discuss how the electromagnetic enhancement depends on the mole fraction of Au in Ag/Au alloy NPs and how one may use extinction spectra to distinguish between Ag/Au alloyed NPs and Ag-Au core-shell NPs. We also show that for incident laser wavelengths between ˜410 nm and 520 nm, Ag/Au alloyed NPs provide better electromagnetic enhancement than pure Ag, pure Au, or Ag-Au core-shell structured NPs. Finally, we show that silica-core Ag/Au alloy shelled NPs provide even better performance than pure Ag/Au alloy or pure solid Ag and pure solid Au NPs. The theoretical results presented will be beneficial to the experimental efforts in optimizing the design of Ag/Au hybrid NPs for SERS-based detection methods.

  1. Stream dynamics between 1 AU and 2 AU: A detailed comparison of observations and theory

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Pizzo, V.; Lazarus, A.; Gazis, P. R.

    1984-01-01

    A radial alignment of three solar wind stream structures observed by IMP-7 and -8 (at 1.0 AU) and Voyager 1 and 2 (in the range 1.4 to 1.8 AU) in late 1977 is presented. It is demonstrated that several important aspects of the observed dynamical evolution can be both qualitatively and quantitatively described with a single-fluid 2-D MHD numerical model of quasi-steady corotating flow, including accurate prediction of: (1) the formation of a corotating shock pair at 1.75 AU in the case of a simple, quasi-steady stream; (2) the coalescence of the thermodynamic and magnetic structures associated with the compression regions of two neighboring, interacting, corotating streams; and (3) the dynamical destruction of a small (i.e., low velocity-amplitude, short spatial-scale) stream by its overtaking of a slower moving, high-density region associated with a preceding transient flow. The evolution of these flow systems is discussed in terms of the concepts of filtering and entrainment.

  2. Comparison of photoluminescence properties of HSA-protected and BSA-protected Au25 nanoclusters

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Masato; Kawasaki, Hideya; Saitoh, Tadashi; Inada, Mitsuru; Kansai Univ. Collaboration

    Gold nanoclusters (NCs) have attracted great interest for a wide range of applications. In particular, red light-emitting Au25 NCs have been prepared with various biological ligands. It has been shown that Au25 NCs have Au13-core/6Au2(SR)3-semiring structure. The red luminescence thought to be originated from both core (670 nm) and semiring (625 nm). It is important to reveal a structure of Au25 NCs to facilitate the progress of applications. However, the precise structure of Au25 NCs has not been clarified. There is a possibility of obtaining structural information about Au25 NCs to compare optical properties of the NCs that protected by slightly different molecules. Bovine and human serum albumin (BSA, HSA) are suitable one for this purpose. It has been suggested that rich tyrosine and cysteine residues in these molecules are important to produce the thiolate-protected Au NCs. If Au25 NCs have core/shell structure, only the luminescence of the semiring will be affected by the difference of the albumin molecules. We carefully compared PL characteristics of BSA- and HSA- protected Au25 NCs. As a result, there was no difference in the PL at 670 nm (core), while differences were observed in the PL at 625 nm (semiring). The results support that Au25 NCs have core/semiring structure.

  3. Visualizing Qualitative Information

    ERIC Educational Resources Information Center

    Slone, Debra J.

    2009-01-01

    The abundance of qualitative data in today's society and the need to easily scrutinize, digest, and share this information calls for effective visualization and analysis tools. Yet, no existing qualitative tools have the analytic power, visual effectiveness, and universality of familiar quantitative instruments like bar charts, scatter-plots, and…

  4. Teaching Qualitative Research

    ERIC Educational Resources Information Center

    Delyser, Dydia

    2008-01-01

    Explicitly qualitative research has never before been so popular in human geography, and this article hopes to encourage more graduate students and faculty members to undertake the teaching of qualitative geography. The article describes one such course for graduate students, highlighting its challenges and rewards, and focusing on exercises…

  5. Qualitative Studies: Historiographical Antecedents.

    ERIC Educational Resources Information Center

    Mills, Rilla Dean

    This paper provides an overview of qualitative studies' antecedents among historiographers and of the positivist tide which nearly engulfed them. Humans live by interpretations. The task of social science--the basic task of qualitative studies--is to study these interpretations so that we can better understand the meanings which people use to…

  6. Application of Criteria-Referenced Assessment and Qualitative Feedback to Develop Foreign Language Speaking Skills in the Context of E-Teaching/Learning

    ERIC Educational Resources Information Center

    Vitiene, Nijole; Miciuliene, Rita

    2008-01-01

    Responsive information is one of the factors that determine the quality of higher education. The factor is especially important for eLearning where a direct communication between a lecturer and a student is replaced with a virtual one. How may a qualitative responsive information, in other words feedback (see the definitions of key words), help…

  7. Fluctuations Magnetiques des Gaz D'electrons Bidimensionnels: Application AU Compose Supraconducteur LANTHANE(2-X) Strontium(x) Cuivre OXYGENE(4)

    NASA Astrophysics Data System (ADS)

    Benard, Pierre

    Nous presentons une etude des fluctuations magnetiques de la phase normale de l'oxyde de cuivre supraconducteur La_{2-x}Sr _{x}CuO_4 . Le compose est modelise par le Hamiltonien de Hubbard bidimensionnel avec un terme de saut vers les deuxiemes voisins (modele tt'U). Le modele est etudie en utilisant l'approximation de la GRPA (Generalized Random Phase Approximation) et en incluant les effets de la renormalisation de l'interaction de Hubbard par les diagrammes de Brueckner-Kanamori. Dans l'approche presentee dans ce travail, les maximums du facteur de structure magnetique observes par les experiences de diffusion de neutrons sont associes aux anomalies 2k _{F} de reseau du facteur de structure des gaz d'electrons bidimensionnels sans interaction. Ces anomalies proviennent de la diffusion entre particules situees a des points de la surface de Fermi ou les vitesses de Fermi sont tangentes, et conduisent a des divergences dont la nature depend de la geometrie de la surface de Fermi au voisinage de ces points. Ces resultats sont ensuite appliques au modele tt'U, dont le modele de Hubbard usuel tU est un cas particulier. Dans la majorite des cas, les interactions ne determinent pas la position des maximums du facteur de structure. Le role de l'interaction est d'augmenter l'intensite des structures du facteur de structure magnetique associees a l'instabilite magnetique du systeme. Ces structures sont souvent deja presentes dans la partie imaginaire de la susceptibilite sans interaction. Le rapport d'intensite entre les maximums absolus et les autres structures du facteur de structure magnetique permet de determiner le rapport U_ {rn}/U_{c} qui mesure la proximite d'une instabilite magnetique. Le diagramme de phase est ensuite etudie afin de delimiter la plage de validite de l'approximation. Apres avoir discute des modes collectifs et de l'effet d'une partie imaginaire non-nulle de la self-energie, l'origine de l'echelle d'energie des fluctuations magnetiques est examinee

  8. Sampling in Qualitative Research

    PubMed Central

    LUBORSKY, MARK R.; RUBINSTEIN, ROBERT L.

    2011-01-01

    In gerontology the most recognized and elaborate discourse about sampling is generally thought to be in quantitative research associated with survey research and medical research. But sampling has long been a central concern in the social and humanistic inquiry, albeit in a different guise suited to the different goals. There is a need for more explicit discussion of qualitative sampling issues. This article will outline the guiding principles and rationales, features, and practices of sampling in qualitative research. It then describes common questions about sampling in qualitative research. In conclusion it proposes the concept of qualitative clarity as a set of principles (analogous to statistical power) to guide assessments of qualitative sampling in a particular study or proposal. PMID:22058580

  9. [Application of near infrared spectroscopy to qualitative identification and quantitative determination of Puccinia strii formis f. sp. tritici and P. recondita f. sp. tritici].

    PubMed

    Li, Xiao-Long; Ma, Zhan-Hong; Zhao, Long-Lian; Li, Jun-Hui; Wang, Hai-Guang

    2014-03-01

    To realize qualitative identification and quantitative determination of Puccinia strii formis f. sp. tritici (Pst) and P. recondita f. sp. tritici (Prt), a qualitative identification model was built using near infrared reflectance spectroscopy (NIRS) combined with distinguished partial least squares (DPLS), and a quantitative determination model was built using NIRS combined with quantitative partial least squares (QPLS). In this study, 100 pure samples including 50 samples of Pst and 50 samples of Prt were obtained, and 120 mixed samples including three replicates of mixed urediospores of the two kinds of pathogen in different proportions (the content of Pst was within the range of 2. 5% 100% with 2. 5% as the gradient) were obtained. Then the spectra of the samples were collected using MPA spectrometer, respectively. Both pure samples and mixed samples were divided into training set and testing set with the ratio equal to 2:1. Qualitative identification model and quantitative determination model were built using internal cross-validation method in the spectral region 4,000--10,000 cm(-1) based on the training sets from pure samples and mixed samples, respectively. The results showed that the identification rates of the Pst-Prt qualitative identification model for training set and testing set were both up to 100. 00% when scatter correction was used as the preprocessing method of the spectra and the number of principal components was 3. When 'range normalization + scatter correction' was used as the preprocessing method of the spectra and the number of principal components was 6, determination coefficient (RZ), standard error of calibration (SEC) and average absolute relative deviation(AARD) of the Pst-Prt quantitative determination model for training set were 99.36%, 2.31% and 8.94%, respectively, and R2, standard error of prediction (SEP) and AARD for testing set were 99.37%, 2.29% and 5. 0%, respectively. The results indicated that qualitative identification

  10. Magnetoresistance of Au films

    SciTech Connect

    Zhang, D. L. Song, X. H.; Zhang, X.; Zhang, X.-G.

    2014-12-14

    Classical magnetoresistance (MR) in nonmagnetic metals are conventionally understood in terms of the Kohler rule, with violation usually viewed as anomalous electron transport, in particular, as evidence of non-Fermi liquid behavior. Measurement of the MR of Au films as a function of temperature and film thickness reveals a strong dependence on grain size distribution and clear violation of the Kohler rule. Using a model of random resistor network, we show that this result can be explained if the MR arises entirely from inhomogeneity due to grain boundary scattering and thermal activation of grain boundary atoms. Consequently, the Kohler rule should not be used to distinguish normal and anomalous electron transport in solids.

  11. Corrosion resistance evaluation of Pd-free Ag-Au-Pt-Cu dental alloys.

    PubMed

    Fujita, Takeshi; Shiraishi, Takanobu; Takuma, Yasuko; Hisatsune, Kunihiro

    2011-01-01

    The corrosion resistance of nine experimental Pd-free Ag-Au-Pt-Cu dental alloys in a 0.9% NaCl solution was investigated using cyclic voltammetry (CV), optical microscopy, and scanning electron microscopy (SEM). CV measurements revealed that the breakdown potential (E(bd)) and zero current potential (E(zc)) increased with increasing Au/(Au+Ag) atomic ratio. Thus, the Au/(Au+Ag) atomic ratio, but not the Cu content, influenced the corrosion resistance of Ag-Au-Pt-Cu alloys. After the forward scan of CV, both optical and scanning electron microscope images showed that in all the experimental alloys, the matrix phase was corroded but not the second phase. From corrosion resistance viewpoint, the Ag-Au-Pt-Cu alloys seemed to be suitable for clinical application.

  12. Effects of cooling treatment and glutaraldehyde on the morphology of Au nanostructures synthesized from chitosan.

    PubMed

    Wei, Dongwei; Qian, Weiping; Shi, Yi; Ding, Shaohua; Xia, Yan

    2008-02-25

    A facile approach for the synthesis of chitosan-based Au nanostructures that have interesting absorptions in the near-infrared (NIR) region is presented. The effects of cooling treatment and the cross-linking agent glutaraldehyde on the formation of Au nanostructures based on chitosan were investigated. It has been demonstrated that the size and shape, and thus the optical properties of Au nanostructures, could be modulated via cooling treatment. The optical absorption extension of these Au nanostructures in the NIR region is promising in biomedical applications. The presence of a cross-linking agent, glutaraldehyde, during synthesis accelerated the reduction of the Au precursor and favored the growth of isotropic Au nanoparticles. A possible mechanism for the change in growth modality of Au nanostructures with and without glutaraldehyde was elucidated.

  13. Significant Broadband Photocurrent Enhancement by Au-CZTS Core-Shell Nanostructured Photocathodes

    NASA Astrophysics Data System (ADS)

    Zhang, Xuemei; Wu, Xu; Centeno, Anthony; Ryan, Mary P.; Alford, Neil M.; Riley, D. Jason; Xie, Fang

    2016-03-01

    Copper zinc tin sulfide (CZTS) is a promising material for harvesting solar energy due to its abundance and non-toxicity. However, its poor performance hinders their wide application. In this paper gold (Au) nanoparticles are successfully incorporated into CZTS to form Au@CZTS core-shell nanostructures. The photocathode of Au@CZTS nanostructures exhibits enhanced optical absorption characteristics and improved incident photon-to-current efficiency (IPCE) performance. It is demonstrated that using this photocathode there is a significant increase of the power conversion efficiency (PCE) of a photoelectrochemical solar cell of 100% compared to using a CZTS without Au core. More importantly, the PCE of Au@CZTS photocathode improved by 15.8% compared to standard platinum (Pt) counter electrode. The increased efficiency is attributed to plasmon resonance energy transfer (PRET) between the Au nanoparticle core and the CZTS shell at wavelengths shorter than the localized surface plasmon resonance (LSPR) peak of the Au and the semiconductor bandgap.

  14. Knowledge representation and qualitative simulation of salmon redd functioning. Part I: qualitative modeling and simulation.

    PubMed

    Guerrin, F; Dumas, J

    2001-02-01

    This work aims at representing empirical knowledge of freshwater ecologists on the functioning of salmon redds (spawning areas of salmon) and its impact on mortality of early stages. For this, we use Qsim, a qualitative simulator. In this first part, we provide unfamiliar readers with the underlying qualitative differential equation (QDE) ontology of Qsim: representing quantities, qualitative variables, qualitative constraints, QDE structure. Based on a very simple example taken of the salmon redd application, we show how informal biological knowledge may be represented and simulated using an approach that was first intended to analyze qualitatively ordinary differential equations systems. A companion paper (Part II) gives the full description and simulation of the salmon redd qualitative model. This work was part of a project aimed at assessing the impact of the environment on salmon populations dynamics by the use of models of processes acting at different levels: catchment, river, and redds. Only the latter level is dealt with in this paper.

  15. On the electron affinity of Au3

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.

    1989-01-01

    The EA of Au3 is estimated to be 3.93 eV. The calculations also show that the feature in the photodetachment spectrum at about 2 eV electron binding energy is due to a two-photon process involving fragmentation of Au3(-) to Au and Au2(-) and subsequent photodetachment of Au2(-). Au3 is found to have a 2B2 ground state that is only slightly distorted from an equilateral triangle.

  16. Analyse multiechelle d'images radar: Application au filtrage, a la classification et a la fusion d'images radar et optique

    NASA Astrophysics Data System (ADS)

    Foucher, Samuel

    Les images radar sont perturbees par un bruit multiplicatif (chatoiement) reduisant sensiblement la resolution radiometrique des cibles homogenes etendues. Le but de cette these est d'etudier l'apport de l'analyse multiechelle, plus particulierement de la transformee en ondelettes, dans le probleme de la reduction du chatoiement et de la classification non dirigee des images radar. Dans le cadre de la transformee en ondelettes stationnaire, garantissant l'invariance par translation de la representation, les techniques usuelles de filtrage adaptatif sont etendues au domaine multiechelle. Nous proposons de prendre en compte les specificites statistiques de l'image radar (modele multiplicatif, loi K) afin de separer les coefficients d'ondelettes engendres par le bruit seul de ceux engendres par les structures significatives de l'image. Le systeme de distribution de Pearson est applique afin de modeliser la distribution de probabilites des coefficients d'ondelettes. Lorsque l'intensite observee obeit a une loi K, le systeme de Pearson conduit a une loi de type IV (loi Beta complexe). Le type IV de Pearson est mis en oeuvre dans une ponderation de type MAP (Maximum A Posteriori). L'influence de la correlation du chatoiement sur les moments d'ordre superieur est ensuite evaluee quantitativement a partir d'une modelisation MA ("Moving Average") de l'image radar correlee. Les resultats obtenus sur un ensemble d'images artificielles montrent que l'approche multiechelle permet d'atteindre un meilleur compromis entre preservation des details et lissage des regions homogenes par rapport aux methodes de filtrage traditionnelles. En classification, la representation multiechelle permet de faire fluctuer le compromis precision spatiale/incertitude radiometrique. La theorie des croyances fournit un cadre theorique afin de manipuler les notions d'incertitude et d'imprecision. Nous proposons de combiner directement les decisions multiechelles par la regle de Dempster en integrant l

  17. Studies of the structure and phase transitions of nano-confined pentanedithiol and its application in directing hierarchical molecular assemblies on Au(1 1 1)

    NASA Astrophysics Data System (ADS)

    Pawlicki, Alison; Avery, Erin; Jurow, Matthew; Ewers, Bradley; Vilan, Ayelet; Drain, Charles Michael; Batteas, James

    2016-03-01

    Directing molecular devices into pre-designed integrated electronic circuits while enforcing selectivity and hierarchy is an inherent challenge for molecular electronics. Here we explore ways to direct the assembly of electrically-active molecular monolayers into specific locations as well as controlling their internal organization. We have accomplished this by two consecutive surface reactions: (1) forming pentanedithiol (C5DT) domains within an inert alkanethiol self-assembled monolayer (SAM) on Au; and (2) selectively binding porphyrin derivatives to the C5DT domains. The C5DT domains were fabricated by phase segregation during co-adsorption from a mixed C5DT/dodecanethiol (C12) solution and nanografting with Atomic Force Microscopy (AFM). AFM revealed that co-absorbed and nanografted C5DT domains were in a standing-up phase and scanning tunneling microscopy (STM) showed that their molecular organization within about 5 nm, 40 nm, 50 nm and 120 nm domains, was dependent upon the size of the domain, such that structure of the C5DT transitions from (\\sqrt{3}   ×  \\sqrt{3} ) R30°, to (2  ×  2), and ultimately to a disordered phase with increasing domain size. This is due to the varying degrees of influence of the surrounding C12; providing sufficient van der Waals interactions as well as a geometric confinement to stabilize the standing-up phase of the C5DT. Understanding the molecular configuration of dithiol SAMs affords their use as a reactive template to subsequently bind active head groups. As a proof of principle, porphyrins with a pendant pentafluorophenyl ring were attached to the C5DT domains by a ‘click’ reaction between the fluorinated ring and the free thiol on the surface. From AFM and STM, these porphyrin derivatives reacted selectively with the C5DT domains with some porphyrins binding directly to the C5DT, subsequently allowing additional localized porphyrin deposition through pi-stacking.

  18. Synthesis of Au@Pt bimetallic nanoparticles with concave Au nanocuboids as seeds and their enhanced electrocatalytic properties in the ethanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Tan, Lingyu; Li, Lidong; Peng, Yi; Guo, Lin

    2015-12-01

    Herein, a new type of uniform and well-structured Au@Pt bimetallic nanoparticles (BNPs) with highly active concave Au nanocuboids (NCs) as seeds was successfully synthesized by using the classic seed-mediated method. Electrochemical measurements were conducted to demonstrate their greatly enhanced catalytic performance in the ethanol oxidation reaction (EOR). It was found that the electrochemical performance for Au@Pt BNPs with the concave Au NCs as seeds, which were enclosed by {611} high-index facets, could be seven times higher than that of the Au@Pt bimetallic nanoparticles with regular spherical Au NPs as seeds. Furthermore, our findings show that the morphology and electrocatalytic activity of the Au@Pt BNPs can be tuned simply by changing the compositional ratios of the growth solution. The lower the amount of H2PtCl6 used in the growth solution, the thinner the Pt shell grew, and the more high-index facets of concave Au NCs seeds were exposed in Au@Pt BNPs, leading to higher electrochemical activity. These as-prepared concave Au@Pt BNPs will open up new strategies for improving catalytic efficiency and reducing the use of the expensive and scarce resource of platinum in the ethanol oxidation reaction, and are potentially applicable as electrochemical catalysts for direct ethanol fuel cells.

  19. Synthesis of Au@Pt bimetallic nanoparticles with concave Au nanocuboids as seeds and their enhanced electrocatalytic properties in the ethanol oxidation reaction.

    PubMed

    Tan, Lingyu; Li, Lidong; Peng, Yi; Guo, Lin

    2015-12-18

    Herein, a new type of uniform and well-structured Au@Pt bimetallic nanoparticles (BNPs) with highly active concave Au nanocuboids (NCs) as seeds was successfully synthesized by using the classic seed-mediated method. Electrochemical measurements were conducted to demonstrate their greatly enhanced catalytic performance in the ethanol oxidation reaction (EOR). It was found that the electrochemical performance for Au@Pt BNPs with the concave Au NCs as seeds, which were enclosed by {611} high-index facets, could be seven times higher than that of the Au@Pt bimetallic nanoparticles with regular spherical Au NPs as seeds. Furthermore, our findings show that the morphology and electrocatalytic activity of the Au@Pt BNPs can be tuned simply by changing the compositional ratios of the growth solution. The lower the amount of H2PtCl6 used in the growth solution, the thinner the Pt shell grew, and the more high-index facets of concave Au NCs seeds were exposed in Au@Pt BNPs, leading to higher electrochemical activity. These as-prepared concave Au@Pt BNPs will open up new strategies for improving catalytic efficiency and reducing the use of the expensive and scarce resource of platinum in the ethanol oxidation reaction, and are potentially applicable as electrochemical catalysts for direct ethanol fuel cells.

  20. [Framework analysis method in qualitative research].

    PubMed

    Liao, Xing; Liu, Jian-ping; Robison, Nicola; Xie, Ya-ming

    2014-05-01

    In recent years a number of qualitative research methods have gained popularity within the health care arena. Despite this popularity, different qualitative analysis methods pose many challenges to most researchers. The present paper responds to the needs expressed by recent Chinese medicine researches. The present paper is mainly focused on the concepts, nature, application of framework analysis, especially on how to use it, in such a way to assist the newcomer of Chinese medicine researchers to engage with the methodology.

  1. Qualitative research in thanatology.

    PubMed

    Carverhill, Philip A

    2002-04-01

    A new research paradigm has been emerging which holds significant potential for the field of death studies. The qualitative project is a diverse collection of methodologies that focuses its interests on the words, narratives, and stories of individuals and groups. Part of its appeal may lie in the inherent closeness of fit between qualitative inquiry and applied work with the dying and the bereaved. The author introduces the individual articles in this special issue and outlines the development of the project as well as some current issues in qualitative research in thanatology.

  2. Determination of relative sensitivity factors during secondary ion sputtering of silicate glasses by Au+, Au2+ and Au3+ ions.

    PubMed

    King, Ashley; Henkel, Torsten; Rost, Detlef; Lyon, Ian C

    2010-01-01

    In recent years, Au-cluster ions have been successfully used for organic analysis in secondary ion mass spectrometry. Cluster ions, such as Au(2)(+) and Au(3)(+), can produce secondary ion yield enhancements of up to a factor of 300 for high mass organic molecules with minimal sample damage. In this study, the potential for using Au(+), Au(2)(+) and Au(3)(+) primary ions for the analysis of inorganic samples is investigated by analyzing a range of silicate glass standards. Practical secondary ion yields for both Au(2)(+) and Au(3)(+) ions are enhanced relative to those for Au(+), consistent with their increased sputter rates. No elevation in ionization efficiency was found for the cluster primary ions. Relative sensitivity factors for major and trace elements in the standards showed no improvement in quantification with Au(2)(+) and Au(3)(+) ions over the use of Au(+) ions. Higher achievable primary ion currents for Au(+) ions than for Au(2)(+) and Au(3)(+) allow for more precise analyses of elemental abundances within inorganic samples, making them the preferred choice, in contrast to the choice of Au(2)(+) and Au(3)(+) for the analysis of organic samples. The use of delayed secondary ion extraction can also boost secondary ion signals, although there is a loss of overall sensitivity.

  3. Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging.

    PubMed

    He, Weiwei; Zhou, Yu-Ting; Wamer, Wayne G; Hu, Xiaona; Wu, Xiaochun; Zheng, Zhi; Boudreau, Mary D; Yin, Jun-Jie

    2013-01-01

    Gold nanoparticles have received a great deal of interest due to their unique optical and catalytic properties and biomedical applications. Developing applications as well as assessing associated risks requires an understanding of the interactions between Au nanoparticles (NPs) and biologically active substances. In this paper, electron spin resonance spectroscopy (ESR) was used to investigate the catalytic activity of Au NPs in biologically relevant reactions. We report here that Au NPs can catalyze the rapid decomposition of hydrogen peroxide. Decomposition of hydrogen peroxide is accompanied by the formation of hydroxyl radicals at lower pH and oxygen at higher pH. In addition, we found that, mimicking SOD, Au NPs efficiently catalyze the decomposition of superoxide. These results demonstrate that Au NPs can act as SOD and catalase mimetics. Since reactive oxygen species are biologically relevant products being continuously generated in cells, these results obtained under conditions resembling different biological microenvironments may provide insights for evaluating risks associated with Au NPs.

  4. Structural and electronic properties of uranium-encapsulated Au14 cage

    PubMed Central

    Gao, Yang; Dai, Xing; Kang, Seung-gu; Jimenez-Cruz, Camilo Andres; Xin, Minsi; Meng, Yan; Han, Jie; Wang, Zhigang; Zhou, Ruhong

    2014-01-01

    The structural properties of the uranium-encapsulated nano-cage U@Au14 are predicted using density functional theory. The presence of the uranium atom makes the Au14 structure more stable than the empty Au14-cage, with a triplet ground electronic state for U@Au14. Analysis of the electronic structure shows that the two frontier single-occupied molecular orbital electrons of U@Au14 mainly originate from the 5f shell of the U atom after charge transfer. Meanwhile, the bonding orbitals and charge population indicate that the designed U@Au14 nano-cage structure is stabilized by ionocovalent interactions. The current findings provide theoretical basis for future syntheses and further study of actinide doped gold nanoclusters, which might subsequently facilitate applications of such structure in radio-labeling, nanodrug carrier and other biomedical applications. PMID:25069968

  5. Pion Interferometry in AU+AU Collisions at the AGS

    SciTech Connect

    Lee, J. H.

    1999-01-09

    Two-pion Bose-Einstein correlations have been studied using the BNL-E866 Forward Spectrometer in 11.6 A {center_dot} GeV/c Au + Au collisions. The data were analyzed using three-dimensional correlation parameterizations to study transverse momentum-dependent source parameters. The freeze-out time and the duration of emission were derived from the source radii parameters.

  6. Optical nonlinearities of Au nanoparticles and Au/Ag coreshells.

    PubMed

    Seo, Jae Tae; Yang, Qiguang; Kim, Wan-Joong; Heo, Jinhwa; Ma, Seong-Min; Austin, Jasmine; Yun, Wan Soo; Jung, Sung Soo; Han, Sang Woo; Tabibi, Bagher; Temple, Doyle

    2009-02-01

    Au nanoparticles exhibited both negative and positive nonlinear absorptions with ground-state plasmon bleaching and free-carrier absorption that could be origins of the saturable and reverse-saturable optical properties. Au/Ag coreshells displayed only positive nonlinear absorption and reverse-saturable optical properties as a function of excitation intensity at the edge of surface-plasmon resonance, which implies no ground-state plasmon bleaching and the existence of two-photon absorption.

  7. Qualitative Case Study Guidelines

    DTIC Science & Technology

    2013-11-01

    methods in public relations and marketing communications. New York, Routledge 166-185 13. Denzin , N. K. (1978) The Research Act: A Theoretical...Introduction to Sociological Methods. 2nd ed. New York, McGraw-Hill 14. Denzin , N. K. and Lincoln, Y. S. (2011) The SAGE Handbook of Qualitative...The Art of Science. In: Denzin , N. K. and Lincoln, Y. S. (eds.) Handbook of Qualitative Research. Thousand Oaks, Sage 19. GAO (1990) Case Study

  8. Formation of Pd/Au Nanostructures from Pd Nanowires via Galvanic Replacement Reaction

    SciTech Connect

    Teng,X.; Wang, Q.; Liu, P.; Han, W.; Frenkel, A.; Wen, W.; Marinkovic, N.; Hanson, J.; Rodriguez, J.

    2008-01-01

    Bimetallic nanostructures with non-random metal atoms distribution are very important for various applications. To synthesize such structures via benign wet chemistry approach remains challenging. This paper reports a synthesis of a Au/Pd alloy nanostructure through the galvanic replacement reaction between Pd ultrathin nanowires (2.4 {+-} 0.2 nm in width, over 30 nm in length) and AuCl3 in toluene. Both morphological and structural changes were monitored during the reaction up to 10 h. Continuous changes of chemical composition and crystalline structure from Pd nanowires to Pd68Au32 and Pd45Au55 alloys, and to Au nanoparticles were observed. More interestingly, by using combined techniques such as high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDS), UV-vis absorption, and extended X-ray absorption fine structure (EXAFS) spectroscopy, we found the formation of Pd68Au32 non-random alloy with Au-rich core and Pd-rich shell, and random Pd45Au55 alloy with uniformly mixed Pd and Au atom inside the nanoparticles, respectively. Density functional theory (DFT) calculations indicated that alkylamine will strongly stabilize Pd to the surface, resulting in diffusion of Au atoms into the core region to form a non-random alloy. We believe such benign synthetic techniques can also enable the large scale preparation of various types of non-random alloys for several technically important catalysis applications.

  9. Photoionization of Au+ ions and developments in the synthesis of the metallofullerene Au@C60

    NASA Astrophysics Data System (ADS)

    Bogolub, Kyren; Macaluso, David; Mueller, Allison; Johnson, Andrea; Müller, Alfred; Schippers, Stefan; Hellhund, Jonas; Borovik, Alexander; Anders, Andre; Aguilar, Alex; Kilcoyne, A. L. David

    2014-05-01

    Single photoionization of Au+ ions was investigated via the merged-beams technique at AMO Beamline 10.0.1.2 of the Advanced Light Source at Lawrence Berkeley National Laboratory. The relative single photoionization yield was measured as a function of photon energy in the 45 eV to 120 eV energy range. These measurements were made in preparation for future photoionization studies of the endohedral metallofullerene Au@C60, the production of which was also investigated. In proof-of-principle measurements a mass-resolved beam of Au@C60+was produced with a primary ion beam current in the single picoamp range without optimization of the ion source or synthesis parameters. Plans are presented for improved metallofullere production yield to be used in photoionization measurements of the endohedral fullerene ions in conjunction with the continuing study of pure Au. We would like to acknowledge the generous sharing of equipment vital to this work by Andre Anders, the Plasma Applications group leader at the Advanced Light Source, LBNL.

  10. Au-Ag-Au double shell nanoparticles-based localized surface plasmon resonance and surface-enhanced Raman scattering biosensor for sensitive detection of 2-mercapto-1-methylimidazole.

    PubMed

    Liao, Xue; Chen, Yanhua; Qin, Meihong; Chen, Yang; Yang, Lei; Zhang, Hanqi; Tian, Yuan

    2013-12-15

    In this paper, Au-Ag-Au double shell nanoparticles were prepared based on the reduction of the metal salts HAuCl4 and AgNO3 at the surface of seed particles. Due to the synergistic effect between Au and Ag, the hybrid nanoparticles are particularly stable and show excellent performances on the detection of 2-mercapto-1-methylimidazole (methimazole). The binding of target molecule at the surface of Au-Ag-Au double shell nanoparticles was demonstrated based on both localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) spectra. The LSPR intensity is directly proportional to the methimazole concentration in the range of 0.10-3.00×10(-7) mol L(-1). The SERS spectrum can be applied in identification of methimazole molecule. The LSPR coupled with SERS based on the Au-Ag-Au double shell nanoparticles would be very attractive for the quantitative determination and qualitative analysis of the analytes in medicines.

  11. Qualitative model-based diagnosis using possibility theory

    NASA Technical Reports Server (NTRS)

    Joslyn, Cliff

    1994-01-01

    The potential for the use of possibility in the qualitative model-based diagnosis of spacecraft systems is described. The first sections of the paper briefly introduce the Model-Based Diagnostic (MBD) approach to spacecraft fault diagnosis; Qualitative Modeling (QM) methodologies; and the concepts of possibilistic modeling in the context of Generalized Information Theory (GIT). Then the necessary conditions for the applicability of possibilistic methods to qualitative MBD, and a number of potential directions for such an application, are described.

  12. Mn2Au: body-centered-tetragonal bimetallic antiferromagnets grown by molecular beam epitaxy.

    PubMed

    Wu, Han-Chun; Liao, Zhi-Min; Sofin, R G Sumesh; Feng, Gen; Ma, Xiu-Mei; Shick, Alexander B; Mryasov, Oleg N; Shvets, Igor V

    2012-12-11

    Mn(2)Au, a layered bimetal, is successfully grown using molecular beam epitaxy (MBE). The experiments and theoretical calculations presented suggest that Mn(2)Au film is antiferromagnetic with a very low critical temperature. The antiferromagnetic nature is demonstrated by measuring the exchange-bias effect of Mn(2)Au/Fe bilayers. This study establishes a primary basis for further research of this new antiferromagnet in spin-electronic device applications.

  13. Al-Au-La (010)

    NASA Astrophysics Data System (ADS)

    Carow-Watamura, U.; Louzguine, D. V.; Takeuchi, A.

    This document is part of Part 1 http://dx.doi.org/10.1007/9getType="URL"/> 'Systems from Ag-Al-Ca to Au-Pd-Si' of Subvolume B 'Physical Properties of Ternary Amorphous Alloys' of Volume 37 'Phase Diagrams and Physical Properties of Nonequilibrium Alloys' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains the Chapter 'Al-Au-La (010)' with the content:

  14. Qualitative models for space system engineering

    NASA Astrophysics Data System (ADS)

    Forbus, Kenneth D.

    1990-06-01

    The objectives of this project were: (1) to investigate the implications of qualitative modeling techniques for problems arising in the monitoring, diagnosis, and design of Space Station subsystems and procedures; (2) to identify the issues involved in using qualitative models to enhance and automate engineering functions. These issues include representing operational criteria, fault models, alternate ontologies, and modeling continuous signals at a functional level of description; and (3) to develop a prototype collection of qualitative models for fluid and thermal systems commonly found in Space Station subsystems. Potential applications of qualitative modeling to space-systems engineering, including the notion of intelligent computer-aided engineering are summarized. Emphasis is given to determining which systems of the proposed Space Station provide the most leverage for study, given the current state of the art. Progress on using qualitative models, including development of the molecular collection ontology for reasoning about fluids, the interaction of qualitative and quantitative knowledge in analyzing thermodynamic cycles, and an experiment on building a natural language interface to qualitative reasoning is reported. Finally, some recommendations are made for future research.

  15. Qualitative models for space system engineering

    NASA Technical Reports Server (NTRS)

    Forbus, Kenneth D.

    1990-01-01

    The objectives of this project were: (1) to investigate the implications of qualitative modeling techniques for problems arising in the monitoring, diagnosis, and design of Space Station subsystems and procedures; (2) to identify the issues involved in using qualitative models to enhance and automate engineering functions. These issues include representing operational criteria, fault models, alternate ontologies, and modeling continuous signals at a functional level of description; and (3) to develop a prototype collection of qualitative models for fluid and thermal systems commonly found in Space Station subsystems. Potential applications of qualitative modeling to space-systems engineering, including the notion of intelligent computer-aided engineering are summarized. Emphasis is given to determining which systems of the proposed Space Station provide the most leverage for study, given the current state of the art. Progress on using qualitative models, including development of the molecular collection ontology for reasoning about fluids, the interaction of qualitative and quantitative knowledge in analyzing thermodynamic cycles, and an experiment on building a natural language interface to qualitative reasoning is reported. Finally, some recommendations are made for future research.

  16. Architecture effects of glucose oxidase/Au nanoparticle composite Langmuir-Blodgett films on glucose sensing performance

    NASA Astrophysics Data System (ADS)

    Wang, Ke-Hsuan; Wu, Jau-Yann; Chen, Liang-Huei; Lee, Yuh-Lang

    2016-03-01

    The Langmuir-Blodgett (LB) deposition technique is employed to prepare nano-composite films consisting of glucose oxidase (GOx) and gold nanoparticles (AuNPs) for glucose sensing applications. The GOx and AuNPs are co-adsorbed from an aqueous solution onto an air/liquid interface in the presence of an octadecylamine (ODA) template monolayer, forming a mixed (GOx-AuNP) monolayer. Alternatively, a composite film with a cascade architecture (AuNP/GOx) is also prepared by sequentially depositing monolayers of AuNPs and GOx. The architecture effects of the composite LB films on the glucose sensing are studied. The results show that the presence of AuNPs in the co-adsorption system does not affect the adsorption amount and preferred conformation (α-helix) of GOx. Furthermore, the incorporation of AuNPs in both composite films can significantly improve the sensing performance. However, the enhancement effects of the AuNPs in the two architectures are distinct. The major effect of the AuNPs is on the facilitation of charge-transfer in the (GOx-AuNP) film, but on the increase of catalytic activity in the (AuNP/GOx) one. Therefore, the sensing performance can be greatly improved by utilizing a film combining both architectures (AuNP/GOx-AuNP).

  17. Charge-dependent anisotropic flow in Cu + Au collisions

    NASA Astrophysics Data System (ADS)

    Niida, Takafumi

    2016-12-01

    We present the first measurements of charge-dependent directed flow in Cu+Au collisions at √{sNN} = 200 GeV. The directed flow has been measured as functions of the transverse momentum and pseudorapidity with the STAR detector. The results show a small but finite difference between positively and negatively charged particles. The difference is qualitatively explained by the patron-hadron-string-dynamics (PHSD) model including the effect of the electric field, but much smaller than the model calculation, which indicates only a small fraction of all final state quarks are created within the lifetime of the initial electric field. Higher-order azimuthal anisotropic flow is also presented up to the fourth-order for unidentified charged particles and up to the third-order for identified charged particles (π, K, and p). For unidentified particles, the results are reasonably described by the event-by-event viscous hydrodynamic model with η / s = 0.08 - 0.16. The trends observed for identified particles in Cu+Au collisions are similar to those observed in symmetric (Au+Au) collisions.

  18. Validity, reliability, and generalizability in qualitative research

    PubMed Central

    Leung, Lawrence

    2015-01-01

    In general practice, qualitative research contributes as significantly as quantitative research, in particular regarding psycho-social aspects of patient-care, health services provision, policy setting, and health administrations. In contrast to quantitative research, qualitative research as a whole has been constantly critiqued, if not disparaged, by the lack of consensus for assessing its quality and robustness. This article illustrates with five published studies how qualitative research can impact and reshape the discipline of primary care, spiraling out from clinic-based health screening to community-based disease monitoring, evaluation of out-of-hours triage services to provincial psychiatric care pathways model and finally, national legislation of core measures for children's healthcare insurance. Fundamental concepts of validity, reliability, and generalizability as applicable to qualitative research are then addressed with an update on the current views and controversies. PMID:26288766

  19. Sulfur-induced mobilization of Au surface atoms on Au(1 1 1) studied by real-time STM

    NASA Astrophysics Data System (ADS)

    Biener, Monika M.; Biener, Juergen; Friend, Cynthia M.

    2007-04-01

    The interaction of sulfur with gold surfaces has attracted considerable interest due to numerous technological applications such as the formation of self-assembled monolayers and as a chemical sensor. Here, we report on the interaction of sulfur with Au(1 1 1) at two different temperatures (300 K and 420 K) studied by real-time scanning tunnelling microscopy, low energy electron diffraction and Auger electron spectroscopy. In the low coverage regime (<0.1 ML), S adsorption lifts the herringbone reconstruction of the clean Au(1 1 1) surface indicating a lateral expansion of the surface layer. An ordered (√3 × √3) R30° sulfur adlayer develops as the coverage reaches ˜0.3 ML. At higher S coverages (>0.3 ML) gold surface atoms are removed from regular terrace sites and incorporated into a growing gold sulfide phase. At 300 K this process leads to the formation of a rough pit and mound surface morphology. This gold sulfide exhibits short-range order and an incommensurate, long-range ordered AuS phase develops upon annealing at 450-525 K. In contrast, formation of an ordered AuS phase via rapid step-retraction rather than etch pit formation is observed during S-interaction with Au(1 1 1) surfaces at 420 K. Our results shed new light on the S-Au(1 1 1) interaction.

  20. Heterojunction metal-oxide-metal Au-Fe{sub 3}O{sub 4}-Au single nanowire device for spintronics

    SciTech Connect

    Reddy, K. M. Punnoose, Alex; Hanna, Charles; Padture, Nitin P.

    2015-05-07

    In this report, we present the synthesis of heterojunction magnetite nanowires in alumina template and describe magnetic and electrical properties from a single nanowire device for spintronics applications. Heterojunction Au-Fe-Au nanowire arrays were electrodeposited in porous aluminum oxide templates, and an extensive and controlled heat treatment process converted Fe segment to nanocrystalline cubic magnetite phase with well-defined Au-Fe{sub 3}O{sub 4} interfaces as confirmed by the transmission electron microscopy. Magnetic measurements revealed Verwey transition shoulder around 120 K and a room temperature coercive field of 90 Oe. Current–voltage (I-V) characteristics of a single Au-Fe{sub 3}O{sub 4}-Au nanowire have exhibited Ohmic behavior. Anomalous positive magnetoresistance of about 0.5% is observed on a single nanowire, which is attributed to the high spin polarization in nanowire device with pure Fe{sub 3}O{sub 4} phase and nanocontact barrier. This work demonstrates the ability to preserve the pristine Fe{sub 3}O{sub 4} and well defined electrode contact metal (Au)–magnetite interface, which helps in attaining high spin polarized current.

  1. Fundamental interaction between Au quantum dots and DNA

    NASA Astrophysics Data System (ADS)

    Karna, Molleshree; Mallick, Govind; Karna, Shashi

    2010-03-01

    Semiconductor quantum dots (QDs) and metal nanoparticles (NPs) have attracted a great deal of attention in biology community due to their application as fluorescent labels and sensors. The optical properties of QDs and NPs allow them to be effective imaging agents. However, QDs have the potential to be used as more than just sensors and labels. Their biological sensing abilities include identifying target DNA through a linker followed by color change and electrical signaling. If this property can be combined with the direct binding of QDs with DNA, many other applications in bio-nanotechnological field are possible. In this paper, we investigate the interaction between colloidal Au QDs and 30-base sequence single strand DNA. Our preliminary results indicate that the DNA strand tend to form different structures in the presence of Au QDs. Furthermore, small as well as large agglomerated Au particles appear to be linked along the DNA strand.

  2. Controlled electrodeposition of Au monolayer film on ionic liquid

    NASA Astrophysics Data System (ADS)

    Ma, Qiang; Pang, Liuqing; Li, Man; Zhang, Yunxia; Ren, Xianpei; Liu, Shengzhong Frank

    2016-05-01

    Gold (Au) nanoparticles have been attractive for centuries for their vibrant appearance enhanced by their interaction with sunlight. Nowadays, there have been tremendous research efforts to develop them for high-tech applications including therapeutic agents, sensors, organic photovoltaics, medical applications, electronics and catalysis. However, there remains to be a challenge to fabricate a monolayer Au coating with complete coverage in controlled fashion. Here we present a facile method to deposit a uniform Au monolayer (ML) film on the [BMIM][PF6] ionic liquid substrate using an electrochemical deposition process. It demonstrates that it is feasible to prepare a solid phase coating on the liquid-based substrate. Moreover, the thickness of the monolayer coating can be controlled to a layer-by-layer accuracy.

  3. A study of the electronic properties of Au nanowires and Au nanoislands on Au(111) surfaces.

    PubMed

    Schouteden, K; Lijnen, E; Muzychenko, D A; Ceulemans, A; Chibotaru, Liviu F; Lievens, P; Van Haesendonck, C

    2009-09-30

    By means of ion bombardment of clean Au(111) films, atomically flat nanoparticles of various shapes and sizes were created, ranging from several tens of nm(2) down to only a few nm(2). Both two-dimensional Au islands as well as one-dimensional Au nanowire-like structures have been investigated by means of low-temperature scanning tunneling microscopy and spectroscopy. We were able to probe their local electronic structure in a broad energy range, which was found to be dominated by pronounced size-dependent confinement effects. Mapping of the local density of states revealed complex standing wave patterns that arise due to interference of scattered Au surface state electrons at the edges of the Au nanoparticles. The observed phenomena could be modeled with high accuracy by theoretical particle-in-a-box calculations based on a variational method that can be applied to '2D boxes' of arbitrary polygonal shape and that we have previously successfully applied to explain the electronic wave patterns on Co islands on Au(111). Our findings support the general validity of this particle-in-a-box model.

  4. Interface effects on tunneling magnetoresistance in organic spintronics with flexible amine-Au links.

    PubMed

    Gorjizadeh, Narjes; Quek, Su Ying

    2013-10-18

    Organic spintronics is a promising emerging field, but the sign of the tunneling magnetoresistance (TMR) is highly sensitive to interface effects, a crucial hindrance to applications. A key breakthrough in molecular electronics was the discovery of amine-Au link groups that give a reproducible conductance. Using first-principles calculations, we predict that amine-Au links give improved reproducibility in organic spintronics junctions with Au-covered Fe leads. The Au layers allow only states with sp character to tunnel into the molecule, and the flexibility of amine-Au links results in a narrow range of TMR for a fixed number of Au layers. Even as the Au thickness changes, the TMR remains positive as long as the number of Au layers is the same on both sides of the junction. Since the number of Au layers on Fe surfaces or Fe nanoparticles can now be experimentally controlled, amine-Au links provide a route towards robust TMR in organic spintronics.

  5. Methylene blue and neutral red electropolymerisation on AuQCM and on modified AuQCM electrodes: an electrochemical and gravimetric study.

    PubMed

    Barsan, Madalina M; Pinto, Edilson M; Brett, Christopher M A

    2011-03-28

    The phenazine monomers neutral red (NR) and methylene blue (MB) have been electropolymerised on different quartz crystal microbalance (QCM) substrates: MB at AuQCM and nanostructured ultrathin sputtered carbon AuQCM (AuQCM/C), and NR on AuQCM and on layer-by-layer films of hyaluronic acid with myoglobin deposited on AuQCM (AuQCM-{HA/Mb}(6)). The surface of the electrode substrates was characterised by atomic force microscopy (AFM), and the frequency changes during potential cycling electropolymerisation of the monomer were monitored by the QCM. The study investigates how the monomer chemical structure together with the electrode morphology and surface structure can influence the electropolymerisation process and the electrochemical properties of the phenazine-modified electrodes. Differences between MB and NR polymerisation, as well as between the different substrates were found. The electrochemical properties of the PNR-modified electrodes were analysed by cyclic voltammetry and electrochemical impedance spectroscopy and compared with the unmodified AuQCM. The results are valuable for future applications of modified AuQCM as substrates for electroactive polymer film deposition and applications in redox-mediated electrochemical sensors and biosensors.

  6. Resonance energy transfer between fluorescent BSA protected Au nanoclusters and organic fluorophores

    NASA Astrophysics Data System (ADS)

    Raut, Sangram; Rich, Ryan; Fudala, Rafal; Butler, Susan; Kokate, Rutika; Gryczynski, Zygmunt; Luchowski, Rafal; Gryczynski, Ignacy

    2013-12-01

    Bovine serum albumin (BSA) protected nanoclusters (Au and Ag) represent a group of nanomaterials that holds great promise in biophysical applications due to their unique fluorescence properties and lack of toxicity. These metal nanoclusters have utility in a variety of disciplines including catalysis, biosensing, photonics, imaging and molecular electronics. However, they suffer from several disadvantages such as low fluorescence quantum efficiency (typically near 6%) and broad emission spectrum (540 nm to 800 nm). We describe an approach to enhance the apparent brightness of BSA Au clusters by linking them with a high extinction donor organic dye pacific blue (PB). In this conjugate PB acts as a donor to BSA Au clusters and enhances its brightness by resonance energy transfer (RET). We found that the emission of BSA Au clusters can be enhanced by a magnitude of two-fold by resonance energy transfer (RET) from the high extinction donor PB, and BSA Au clusters can act as an acceptor to nanosecond lifetime organic dyes. By pumping the BSA Au clusters using a high extinction donor, one can increase the effective brightness of less bright fluorophores like BSA Au clusters. Moreover, we prepared another conjugate of BSA Au clusters with the near infrared (NIR) dye Dylight 750 (Dy750), where BSA Au clusters act as a donor to Dy750. We observed that BSA Au clusters can function as a donor, showing 46% transfer efficiency to the NIR dye Dy750 with a long lifetime component in the acceptor decay through RET. Such RET-based probes can be used to prevent the problems of a broad emission spectrum associated with the BSA Au clusters. Moreover, transferring energy from BSA Au clusters to Dy750 will result in a RET probe with a narrow emission spectrum and long lifetime component which can be utilized in imaging applications.Bovine serum albumin (BSA) protected nanoclusters (Au and Ag) represent a group of nanomaterials that holds great promise in biophysical applications due to

  7. Photoluminescence enhancement in few-layer WS{sub 2} films via Au nanoparticles

    SciTech Connect

    Choi, Sin Yuk; Yip, Cho Tung; Li, Guang-Can; Lei, Dang Yuan; Fung, Kin Hung; Yu, Siu Fung E-mail: jh.hao@polyu.edu.hk; Hao, Jianhua E-mail: jh.hao@polyu.edu.hk

    2015-06-15

    Nano-composites of two-dimensional atomic layered WS{sub 2} and Au nanoparticles (AuNPs) have been fabricated by sulfurization of sputtered W films followed by immersing into HAuCl{sub 4} aqueous solution. The morphology, structure and AuNPs distribution have been characterized by electron microscopy. The decorated AuNPs can be more densely formed on the edge and defective sites of triangle WS{sub 2}. We have compared the optical absorption and photoluminescence of bare WS{sub 2} and Au-decorated WS{sub 2} layers. Enhancement in the photoluminescence is observed in the Au-WS{sub 2} nano-composites, attributed to localized surface plasmonic effect. This work provides the possibility to develop photonic application in two-dimensional materials.

  8. Au nanoinjectors for electrotriggered gene delivery into the cell nucleus.

    PubMed

    Kang, Mijeong; Kim, Bongsoo

    2015-01-01

    Intracellular delivery of exogenous materials is an essential technique required for many fundamental biological researches and medical treatments. As our understanding of cell structure and function has been improved and diverse therapeutic agents with a subcellular site of action have been continuously developed, there is a demand to enhance the performance of delivering devices. Ideal intracellular delivery devices should convey various kinds of exogenous materials without deteriorating cell viability regardless of cell type and, furthermore, precisely control the location and the timing of delivery as well as the amount of delivered materials for advanced researches.In this chapter the development of a new intracellular delivery device, a nanoinjector made of a Au (gold) nanowire (a Au nanoinjector) is described in which delivery is triggered by external application of an electric pulse. As a model study, a gene was delivered directly into the nucleus of a neuroblastoma cell, and successful delivery without cell damage was confirmed by the expression of the delivered gene. The insertion of a Au nanoinjector directly into a cell can be generally applied to any kind of cell, and a high degree of surface modification of Au allows attachment of diverse materials such as proteins, small molecules, or nanoparticles as well as genes on Au nanoinjectors. This expands their applicability, and it is expected that they will provide important information on the effects of delivered exogenous materials and consequently contribute to the development of related therapeutic or clinical technologies.

  9. PHENIX results on low-mass dileptons in Au + Au collisions with the Hadron Blind Detector

    NASA Astrophysics Data System (ADS)

    Makek, M.

    2016-12-01

    We present e+e- continuum measurement in Au+Au collisions at √{sNN} = 200 GeV from the RHIC 2010 run with the Hadron Blind Detector upgrade of PHENIX. The measurement reaches a high purity of the electron sample of ≥ 95% at all centralities and provides an excellent qualitative and quantitative understanding of the background. The e+e- invariant yields show an enhancement in the low-mass region (mee = 0.30 - 0.76 GeV /c2) compared to the expectations from hadronic sources, but not as large as the one previously reported by PHENIX. The observed excess is well reproduced by models incorporating the broadening of the ρ meson due to scattering off baryons in the hot hadronic gas. The measured invariant yields in the intermediate-mass region (mee = 1.2 - 2.8 GeV /c2) leave room for additional sources when compared to the cocktail dominated by the semileptonic decays of heavy flavor mesons.

  10. Beam-Energy Dependence of the Directed Flow of Protons, Antiprotons, and Pions in Au+Au Collisions

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2014-04-01

    Rapidity-odd directed flow (v1) measurements for charged pions, protons, and antiprotons near midrapidity (y =0) are reported in √sNN =7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV Au+Au collisions as recorded by the STAR detector at the Relativistic Heavy Ion Collider. At intermediate impact parameters, the proton and net-proton slope parameter dv1/dy|y=0 shows a minimum between 11.5 and 19.6 GeV. In addition, the net-proton dv1/dy|y=0 changes sign twice between 7.7 and 39 GeV. The proton and net-proton results qualitatively resemble predictions of a hydrodynamic model with a first-order phase transition from hadronic matter to deconfined matter, and differ from hadronic transport calculations.

  11. Beam-energy dependence of the directed flow of protons, antiprotons, and pions in Au+Au collisions.

    PubMed

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Derradi de Souza, R; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Levine, M J; Li, C; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Madagodagettige Don, D M M D; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-04-25

    Rapidity-odd directed flow (v1) measurements for charged pions, protons, and antiprotons near midrapidity (y=0) are reported in sNN=7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV Au+Au collisions as recorded by the STAR detector at the Relativistic Heavy Ion Collider. At intermediate impact parameters, the proton and net-proton slope parameter dv1/dy|y=0 shows a minimum between 11.5 and 19.6 GeV. In addition, the net-proton dv1/dy|y=0 changes sign twice between 7.7 and 39 GeV. The proton and net-proton results qualitatively resemble predictions of a hydrodynamic model with a first-order phase transition from hadronic matter to deconfined matter, and differ from hadronic transport calculations.

  12. Characterization of Au/PbTi0.5Fe0.5O3/Si structure for possible multiferroic based non-volatile memory applications

    NASA Astrophysics Data System (ADS)

    Nawaz, S.; Roy, S.; Tulapurkar, A. A.; Palkar, V. R.

    2017-03-01

    Magnetoelectric multiferroic PbTi0.5Fe0.5O3 films are deposited on a ⟨100⟩ conducting p-Si substrate without any buffer layer by using pulsed laser deposition and characterized for possible non-volatile memory applications. Their crystalline structure and surface morphology were characterized by using x-ray diffraction and AFM techniques. HRTEM was employed to determine the film-substrate interface. The electronic structure of the film was investigated by XPS, and no signature of metal was found for all the elements. The chemical shift of the Ti 2p XPS peak is attributed to the replacement of Ti with Fe in the PbTiO3 matrix. Piezoelectric force microscopy (PFM) results indicate the 180° phase shift of ferroelectric polarization. The upward self-polarization phenomenon is also observed in the PFM study. Magnetic and magneto-electric coupling measurements were carried out to confirm the magnetic nature and electro-magnetic coupling characteristics. C-V measurements exhibit clock-wise hysteresis loops with a maximum memory window of 1.2 V and a sweep voltage of ±7 V. This study could influence the fabrication of silicon compatible multiple memory device structures.

  13. Electrografting of thionine diazonium cation onto the graphene edges and decorating with Au nano-dendrites or glucose oxidase: Characterization and electrocatalytic applications.

    PubMed

    Shervedani, Reza Karimi; Amini, Akbar; Sadeghi, Nima

    2016-03-15

    Thionine (Th) diazonium cation is covalently attached onto the glassy carbon (GC) electrode via graphene nanosheets (GNs) (GC-GNs-Th). The GC-GNs-Th electrode is subjected to further modifications to fabricate (i) glucose and (ii) nitrite sensors. Further modifications include: (i) direct immobilization of glucose oxidase (GOx) and (ii) electrodeposition of gold dendrite-like nanostructures (DGNs) on the GC-GNs-Th surface, constructing GC-GNs-Th-GOx and GC-GNs-Th-DGNs modified electrodes, respectively. The GC-GNs-Th-GOx biosensor exhibited a linear response range to glucose, from 0.5 to 6.0mM, with a limit of detection (LOD) of 9.6 μM and high sensitivity of 43.2 µAcm(-2)mM(-1). Also, the GC-GNs-Th-DGNs sensor showed a wide dynamic response range for NO2(-) ion with two linear parts, from 0.05 μM to 1.0 μM and 30.0 μM to 1.0mM, a sensitivity of 263.2 μAmM(-1) and a LOD of 0.01 μM. Applicability of the modified electrodes was successfully tested by determination of glucose in human blood serum and nitrite in water based on addition/recovery tests.

  14. Individualised Qualitative Evaluation.

    ERIC Educational Resources Information Center

    O'Sullivan, Denis

    1987-01-01

    The author discusses student evaluation in relation to adult and continuing education programs offered by the Department of Adult Education, University College, Cork. He highlights the need for a more individualized and interactive approach to evaluation, allowing the student to benefit from qualitative feedback in the process of being evaluated.…

  15. First Semester Qualitative Analysis

    ERIC Educational Resources Information Center

    DeLap, James H.

    1969-01-01

    Describes a two-hour laboratory course entitled "Chemical Periodicity offered first semester of the freshman year. Three cation groups, one anion group, and a final unkown salt are qualitatively analyzed. Course fosters scientific thinking in experimentation by encouraging student-initiated schemes of analyses rather than "cookbook schemes. (RR)

  16. The Qualitative Similarity Hypothesis

    ERIC Educational Resources Information Center

    Paul, Peter V.; Lee, Chongmin

    2010-01-01

    Evidence is presented for the qualitative similarity hypothesis (QSH) with respect to children and adolescents who are d/Deaf or hard of hearing. The primary focus is on the development of English language and literacy skills, and some information is provided on the acquisition of English as a second language. The QSH is briefly discussed within…

  17. Advances in Qualitative Research.

    ERIC Educational Resources Information Center

    1998

    This document contains five papers from a symposium on advances in qualitative research in human resource development (HRD). "Case Study and Its Virtuoso Possibilities" (Verna J. Willis) asserts that the case study method is particularly well suited for research in HRD because its creative and investigative possibilities have not yet…

  18. Disciplining Qualitative Research

    ERIC Educational Resources Information Center

    Denzin, Norman K.; Lincoln, Yvonna S.; Giardina, Michael D.

    2006-01-01

    Qualitative research exists in a time of global uncertainty. Around the world, governments are attempting to regulate scientific inquiry by defining what counts as "good" science. These regulatory activities raise fundamental, philosophical epistemological, political and pedagogical issues for scholarship and freedom of speech in the…

  19. Entropy Is Simple, Qualitatively.

    ERIC Educational Resources Information Center

    Lambert, Frank L.

    2002-01-01

    Suggests that qualitatively, entropy is simple. Entropy increase from a macro viewpoint is a measure of the dispersal of energy from localized to spread out at a temperature T. Fundamentally based on statistical and quantum mechanics, this approach is superior to the non-fundamental "disorder" as a descriptor of entropy change. (MM)

  20. Propagating Qualitative Values Through Quantitative Equations

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak

    1992-01-01

    In most practical problems where traditional numeric simulation is not adequate, one need to reason about a system with both qualitative and quantitative equations. In this paper, we address the problem of propagating qualitative values represented as interval values through quantitative equations. Previous research has produced exponential-time algorithms for approximate solution of the problem. These may not meet the stringent requirements of many real time applications. This paper advances the state of art by producing a linear-time algorithm that can propagate a qualitative value through a class of complex quantitative equations exactly and through arbitrary algebraic expressions approximately. The algorithm was found applicable to Space Shuttle Reaction Control System model.

  1. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract

    NASA Astrophysics Data System (ADS)

    Philip, Daizy

    2009-07-01

    Integration of green chemistry principles to nanotechnology is one of the key issues in nanoscience research. There is growing need to develop environmentally benign metal nanoparticle synthesis process that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on extracellular synthesis method for the preparation of Au, Ag and Au-Ag nanoparticles in water, using the extract of Volvariella volvacea, a naturally occurring edible mushroom, as reducing and protecting agents. Gold nanoparticles of different sizes (20-150 nm) and shapes from triangular nanoprisms to nearly spherical and hexagonal are obtained by this novel method. The size and shape of gold nanoparticles are also found to depend on temperature of the extract. The silver nanoparticles are spherical with size ˜15 nm. There is increased productivity of nanoparticles as shown by sharp and intense surface plasmon resonance bands for the nanoparticles prepared using an excess of the extract. The Au-Ag nanoparticles prepared by co-reduction has only one plasmon band due to alloying of the constituents. All the synthesized nanoparticles are found to be photoluminescent and are highly crystalline as shown by SAED and XRD patterns with fcc phase oriented along the (1 1 1) plane. FTIR measurements were carried out to identify the possible biomolecules responsible for capping and efficient stabilization of the nanoparticles. It is found that Au nanoparticles are bound to proteins through free amino groups and silver nanoparticles through the carboxylate group of the amino acid residues. The position and intensity of the emission band is found to depend on composition of the nanoparticles indicating the possible use in therapeutic applications.

  2. Au/Si Nanorod-Based Biosensor for Salmonella Detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among several potentials of nanotechnology applications for food industry, development of nanoscale sensors for food safety and quality measurement are emerging. A novel biosensor for Salmonella detection was developed using Au/Si/ nanorods. The Si nanorods were fabricated by glancing angle depositi...

  3. Nitrogen mineralization from 'AU Golden' sunn hemp residue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tropical legume sunn hemp (Crotalaria juncea) cultivar ‘AU Golden’ has the potential to provide substantial amounts of nitrogen (N) to subsequent crops that could reduce recommended application rates of synthetic N fertilizers. Nitrogen fertilization problems via legumes are often due to asynch...

  4. The unusual effect of AgNO3 on the growth of Au nanostructures and their catalytic performance.

    PubMed

    Li, Xingliang; Yang, Yun; Zhou, Guangju; Han, Shuhua; Wang, Wenfang; Zhang, Lijie; Chen, Wei; Zou, Chao; Huang, Shaoming

    2013-06-07

    Au nanostructures attract much attention due to their potential applications in many fields. The controlled synthesis is critical to their properties modulation and applications. AgNO3-assisted synthesis is a widely used method for controllably preparing Au nanostructures in aqueous system. Herein, the effect of AgNO3 on the growth of Au nanostructures in polyol is studied. We observe an unusual effect that AgNO3 can induce the formation of pentatwinned Au nanostructures (nanorods and decahedra) and block the growth of Au nanorods. More interestingly, this blocking effect can be tuned through controlling the amount of AgNO3. A moderate amount of AgNO3 facilitates the formation of Au nanorods. A large amount of AgNO3 completely blocks the growth of nanorods and favors the formation of high quality decahedra (decahedra can be considered as nanorods with 0 nm longitudinal length). Besides, this blocking effect also allows preparation of different high-index-faceted Au nanobipyramids. These prepared Au nanostructures further serve as starting templates to fabricate other heterostructured Au/Ag nanomaterials, such as Ag-Au-Ag segmental nanorods, Au@Ag core-shelled nanostructures. The prepared nanostructures exhibit size- and structure-dependent catalytic performance in the reduction of p-nitrophenol to p-aminophenol by sodium borohydride.

  5. Graphene nanoribbons synthesized from molecular precursor polymerization on Au(110)

    SciTech Connect

    Massimi, Lorenzo; Ourdjini, Oualid; Della Pia, Ada; Mariani, Carlo; Betti, Maria Grazia; Cavaliere, Emanuele; Gavioli, Luca

    2015-06-23

    A spectroscopic study of 10,10-dibromo-9,9 bianthracene (DBBA) molecules deposited on the Au(110) surface is presented, by means of ultraviolet and X-ray photoemission, and X-ray absorption spectroscopy. Through a thermally activated procedure, these molecular precursors polymerize and eventually form graphene nanoribbons (GNRs) with atomically controlled shape and width, very important building blocks for several technological applications. The GNRs observed by scanning tunneling microscopy (STM) appear as short segments on top of the gold surface reconstruction, pointing out the delicate balance among surface diffusion and surface corrugation in their synthesis on the Au(110) surface.

  6. Dielectric function dependence on temperature for Au and Ag

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Jen; Lee, Meng-Chang; Wang, Chih-Ming

    2014-08-01

    The dielectric functions of Au and Ag are measured using a spectral ellipsometer. The temperature dependence parameters ωp, τ, and ɛ∞, in the Drude-Sommerfeld model have been studied. Furthermore, we provide an empirical function to describe the temperature dependence of the dielectric function for Au and Ag. The empirical function shows a good agreement with previous results. Through the empirical function, one can obtain the dielectric constant at arbitrary temperature and wavelength. This database is useful for the applications that use surface plasmon (SP) resonance at high temperatures, such as the plasmonic thermal emitter, SP-assisted thermal cancer treatment and so on.

  7. Blue and red shifts of interband transition energy in supported Au nanoclusters on SiO2 and HOPG investigated by reflection electron energy-loss spectroscopy.

    PubMed

    Borisyuk, P V; Troyan, V I; Pushkin, M A; Borman, V D; Tronin, V N

    2012-11-01

    Gold nanoclusters supported on SiO2 and HOPG are experimentally investigated by the reflection electron energy-loss spectroscopy. Two different trends in the size-dependence of the position of the energy-loss peak corresponding to the interband Au 5d --> 6s6p transition is observed: a blue shift for Au clusters on SiO2 and a red shift for Au clusters on HOPG. The different behaviors are qualitatively explained by the influence of the substrate on the spectrum of electronic states in Au nanoclusters.

  8. Qualitative science policy.

    PubMed

    Mitcham, Carl

    2007-12-01

    Qualitative research struggles against a tide of quantitative methods. To assist in this struggle, it is useful to consider the historical and philosophical origins of quantitative methods as well as criticisms that have been raised against them. Although these criticisms have often been restricted to discussions in the philosophy of science, they have become increasingly prominent in debates regarding science policy. This article thus reviews current science policy debates concerning scientific autonomy and the linear model of science-society relationships. Then, having considered the multiple meanings of quality, it argues for a science policy reassessment of quantitative research, for deeper engagements between science policy and the social sciences, and finally, for a more explicit alliance between science policy and qualitative methods.

  9. Interviews in qualitative research.

    PubMed

    Peters, Kath; Halcomb, Elizabeth

    2015-03-01

    Interviews are a common method of data collection in nursing research. They are frequently used alone in a qualitative study or combined with other data collection methods in mixed or multi-method research. Semi-structured interviews, where the researcher has some predefined questions or topics but then probes further as the participant responds, can produce powerful data that provide insights into the participants' experiences, perceptions or opinions.

  10. Water-soluble Au25(Capt)18 nanoclusters: synthesis, thermal stability, and optical properties

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Jin, Rongchao

    2012-06-01

    This work was motivated by the unsatisfactory stability of Au25(SG)18 in solution under thermal conditions (e.g. 70-90 °C for DNA melting). Thus, we searched for a better, water-soluble thiol ligand. Herein, we report a one-pot synthesis and investigation of the stability and optical properties of captopril (abbreviated Capt)-protected Au25(Capt)18 nanoclusters. The Au25(Capt)18 (anionic, counterion: Na+) nanoclusters were formed via size focusing under ambient conditions. Significantly, Au25(Capt)18 nanoclusters exhibit largely improved thermal stability compared to the glutathione (HSG) capped Au25(SG)18. Both Au25(Capt)18 and Au25(SG)18 nanoclusters show fluorescence centered at ~700 nm. The chiral ligands (Capt, SG, as well as chirally modified phenylethanethiol (PET*)) give rise to distinct chiroptical features. The high thermal stability and distinct optical properties of Au25(Capt)18 nanoclusters render this material quite promising for biological applications.This work was motivated by the unsatisfactory stability of Au25(SG)18 in solution under thermal conditions (e.g. 70-90 °C for DNA melting). Thus, we searched for a better, water-soluble thiol ligand. Herein, we report a one-pot synthesis and investigation of the stability and optical properties of captopril (abbreviated Capt)-protected Au25(Capt)18 nanoclusters. The Au25(Capt)18 (anionic, counterion: Na+) nanoclusters were formed via size focusing under ambient conditions. Significantly, Au25(Capt)18 nanoclusters exhibit largely improved thermal stability compared to the glutathione (HSG) capped Au25(SG)18. Both Au25(Capt)18 and Au25(SG)18 nanoclusters show fluorescence centered at ~700 nm. The chiral ligands (Capt, SG, as well as chirally modified phenylethanethiol (PET*)) give rise to distinct chiroptical features. The high thermal stability and distinct optical properties of Au25(Capt)18 nanoclusters render this material quite promising for biological applications. Electronic supplementary

  11. Au-Ag hollow nanostructures with tunable SERS properties

    NASA Astrophysics Data System (ADS)

    Jiji, S. G.; Gopchandran, K. G.

    2017-01-01

    Fabrication of hollow Au-Ag nanoparticles is done by the sequential action of galvanic replacement and Kirkendall effect. Polyol synthesized silver nanoparticles were used as templates and the size of cavities is controlled by the systematic addition of the HAuCl4. Au-Ag nanoparticles carved in different depths were tested for application as substrates for surface enhanced Raman scattering. Two medically important Raman active analytes-Nile blue chloride and Crystal violet were used in the surface enhanced Raman scattering (SERS) performance analysis. A systematic study has been made on the Raman enhancement of hollow nanoparticles fabricated with different cavity dimensions and compared with that of the silver templates used. The enhancement observed for these hollow substrates with cavities is of interest since Au protected hollow nanostructures are vital and an active area of interest in drug delivery systems.

  12. Crystallography of Martensite in TiAu Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Inamura, T.; Hosoda, H.

    2011-01-01

    The twin structure, habit plane orientation, and morphology of B19 martensite in TiAu, which is a candidate shape memory alloy (SMA) for high-temperature and biomedical applications, were investigated by conventional transmission electron microscopy. Almost all internal twins were {111} type I twins as lattice-invariant deformation (LID). The <211> type II twin was scarcely observed in TiAu, unlike in TiPd and TiPt SMAs. The habit plane roughly corresponded to the twinning plane ( K 1 plane) of the <211> type II twin because of the superb lattice parameter ratio of TiAu. As a result, an energy-minimizing microstructure referred to as "twins within twins" appears as the major microstructure. The selection rules for the twinning of LID are also discussed considering the results of extensive studies on LID in SMAs.

  13. The adsorption of CO on charged and neutral Au and Au2: a comparison between wave-function based and density functional theory.

    PubMed

    Schwerdtfeger, Peter; Lein, Matthias; Krawczyk, Robert P; Jacob, Christoph R

    2008-03-28

    Quantum theoretical calculations are presented for CO attached to charged and neutral Au and Au(2) with the aim to test the performance of currently applied density functional theory (DFT) by comparison with accurate wave-function based results. For this, we developed a compact sized correlation-consistent valence basis set which accompanies a small-core energy-consistent scalar relativistic pseudopotential for gold. The properties analyzed are geometries, dissociation energies, vibrational frequencies, ionization potentials, and electron affinities. The important role of the basis-set superposition error is addressed which can be substantial for the negatively charged systems. The dissociation energies decrease along the series Au(+)-CO, Au-CO, and Au(-)-CO and as well as along the series Au(2)(+)-CO, Au(2)-CO, and Au(2)(-)-CO. As one expects, a negative charge on gold weakens the carbon oxygen bond considerably, with a consequent redshift in the CO stretching frequency when moving from the positively charged to the neutral and the negatively charged gold atom or dimer. We find that the different density functional approximations applied are not able to correctly describe the rather weak interaction between CO and gold, thus questioning the application of DFT to CO adsorption on larger gold clusters or surfaces.

  14. A facile and green strategy for the synthesis of Au, Ag and Au-Ag alloy nanoparticles using aerial parts of R. hypocrateriformis extract and their biological evaluation.

    PubMed

    Godipurge, S S; Yallappa, S; Biradar, Naveen J; Biradar, J S; Dhananjaya, B L; Hegde, Gajanan; Jagadish, K; Hegde, Gurumurthy

    2016-12-01

    A facile and green strategy is reported here to synthesize gold (Au), silver (Ag) and gold-silver (Au-Ag) alloy nanoparticles (NPs) through bio-reduction reactions of aqueous corresponding metal precursors mediated by extracts of aerial parts of R. hypocrateriformis, which act as both reducing and stabilizing agents, under microwave irradiation. UV-vis spectrophotometer, XRD, FT-IR, FESEM/TEM, TGA and EDAX analysis were used to characterize the obtained NPs. The formation of NPs is evident from their surface plasmon resonance peak observed at λmax=∼550, 450 and 500nm for Au, Ag and Au-Ag alloy NPs respectively. XRD pattern revealed that fcc structure, while FT-IR spectra signify the presence of phytochemicals adsorbed on NPs. Such a biofunctionalized NPs were characterized by their weight loss, 30% due to thermal degradation of plant phytochemicals observed in TG analysis. The spherical shape of Au, Ag and Au-Ag alloy NPs (∼10-50nm) is observed by FE-SEM/TEM images. EDAX analysis confirms the expected elemental composition. Moreover, these NPs showed enhanced antimicrobial, antioxidant, and anticancer activities, though it is more pronounced for Au-Ag alloy NPs, which is due to the combining effect of phytochemicals, Au and Ag metals. Thus, the biosynthesized NPs could be applied as effective growth inhibitors for various biomedical applications.

  15. Slow Relaxation of Surface Plasmon Excitations in Au55: The Key to Efficient Plasmonic Heating in Au/TiO2.

    PubMed

    Ranasingha, Oshadha; Wang, Hong; Zobač, Vladimír; Jelínek, Pavel; Panapitiya, Gihan; Neukirch, Amanda J; Prezhdo, Oleg V; Lewis, James P

    2016-04-21

    Gold nanoparticles distinguish themselves from other nanoparticles due to their unique surface plasmon resonance properties that can be exploited for a multiplicity of applications. The promise of plasmonic heating in systems of Au nanoparticles on transition metal oxide supports, for example, Au/TiO2, rests with the ability of the surface plasmon in Au nanoparticles to effectively transfer energy into the transition metal oxide. Here, we report a critical observation regarding Au nanoparticle (Au55) surface plasmon excitations, that is, the relaxation of the surface plasmon excitation is very slow, on the order of several picoseconds. Starting from five plasmon states in Au55 nanoparticles using nonadiabatic molecular dynamics simulations, we find that the relaxation time constant resulting from these simulations is ∼6.8 ps, mainly resulting from a long-lived intermediate state found at around -0.8 eV. This long-lived intermediate state aligns with the conduction band edge of TiO2, thereby facilitating energy transfer injection from the Au55 nanoparticle into the TiO2. The current results rule out the previously reported molecular-like relaxation dynamics for Au55.

  16. Photoneutron cross sections for Au

    SciTech Connect

    Itoh, O.; Utsunomiya, H.; Akimune, H.; Yamagata, T.; Kondo, T.; Kamata, M.; Toyokawa, H.; Harada, H.; Kitatani, F.; Goko, S.; Nair, C.; Lui, Y.-W.

    2011-10-28

    Photoneutron cross sections were measured for Au in the entire energy range of the ({gamma},n) channel based on a direct neutron-counting technique with quasimonochromatic {gamma} rays produced in inverse Compton-scattering of laser photons with relativistic electrons. We present results of the measurement in comparison with the past data.

  17. A combined experimental and computational study of AuPd nanoparticles

    NASA Astrophysics Data System (ADS)

    Bruma, Alina

    The thesis is focused on the investigation of structural properties of AuPd nanoparticles via theoretical and experimental studies. For the first system, the 98-atom AuPd nanoclusters, a theoretical analysis has been employed to study the energetics and segregation effects and to assess how typical is the Leary Tetrahedron (LT). Although this motif is the most stable at the empirical level, it loses stability at the DFT level against FCC or Marks Decahedron. The second system is the Au24Pd1 nanoclusters. Theoretically, by performing a search at the DFT level using Basin Hopping Monte Carlo, we identified pyramidal cage structures as putative global minima, where Pd sits in the core and Au occupies surface positions. The Lowdin analysis emphasized charge transfer between Pd and Au, explaining the enhanced catalytic activity with respect to Au25 clusters. Experimentally, STEM has been employed for the structural characterization of Au24Pd1 clusters supported on Multiwall Carbon Nanotubes. Whenever possible, we have tried to link the experimental analysis to the theoretical findings. The third system has been the evaporated AuPd nanoparticles. We observed that the annealing process led to the formation of L12 ordered phases as well as layered and core-shell structures. This study aimed to bring an insight on the segregation and energetics effects of AuPd nanoparticles with potential applications in nanocatalysis.

  18. Learning and Teaching Qualitative Research with Qualitative Data Analysis Software.

    ERIC Educational Resources Information Center

    Mahlamaki-Kultanen, Seija

    This study examined the way qualitative data analysis software and virtual teaching methods can support the learning of qualitative research. Study methodology was based on phenomenology, and data were gathered in a pilot course on qualitative research methodology in which 22 adult part time graduate students participated. The course was built…

  19. Au-TiO(2) nanoscale heterodimers synthesis from an ambient spark discharge for efficient photocatalytic and photothermal activity.

    PubMed

    Byeon, Jeong Hoon; Kim, Young-Woo

    2014-01-22

    Ultrafine Au particles incorporating TiO2 heterodimers were synthesized using an ambient heterogeneous spark discharge and the resultant materials were employed both in oxidizing photocatalytically CO gas and killing photothermally cancerous cells. Ti-Au spark configuration was employed to vaporize Ti and Au components into an airflow and finally ultrafine Au particles (∼2 nm in lateral dimension) were incorporated with TiO2 nanoparticles in the form of Au-TiO2 heterodimers (∼38 nm in lateral dimension) with enhanced photocatalytic (in CO oxidation) and photothermal activity (in cancerous cell killing) under visible light. We propose that the localized surface plasmon resonance of ultrafine Au particles on TiO2 supports, induced by the visible light, would promote the adsorption-oxidation of CO and photothermal killing of HeLa cells. The present strategy may be suitable to fabricate other Au-metal oxide nanocomposites for catalytic and biomedical applications.

  20. Reasoning about energy in qualitative simulation

    NASA Technical Reports Server (NTRS)

    Fouche, Pierre; Kuipers, Benjamin J.

    1992-01-01

    While possible behaviors of a mechanism that are consistent with an incomplete state of knowledge can be predicted through qualitative modeling and simulation, spurious behaviors corresponding to no solution of any ordinary differential equation consistent with the model may be generated. The present method for energy-related reasoning eliminates an important source of spurious behaviors, as demonstrated by its application to a nonlinear, proportional-integral controlled. It is shown that such qualitative properties of such a system as stability and zero-offset control are captured by the simulation.

  1. Qualitative and quantitative analysis of a group of volatile organic compounds in biological samples by HS-GC/FID: application in practical cases.

    PubMed

    Monteiro, C; Franco, J M; Proença, P; Castañera, A; Claro, A; Vieira, D N; Corte-Real, F

    2014-10-01

    A simple and sensitive procedure, using n-propanol as internal standard (IS), was developed and validated for the qualitative and quantitative analysis of a group of 11 volatile organic substances with different physicochemical properties (1-butanol, 2-propanol, acetaldehyde, ethyl acetate, acetone, acetonitrile, chloroform, diethyl ether, methanol, toluene and p-xylene) in whole blood, urine and vitreous humor. Samples were prepared by dilution with an aqueous solution of internal standard followed by Headspace Gas Chromatography with a Flame-ionization Detector (HS GC-FID) analysis. Chromatographic separation was performed using two capillary columns with different polarities (DB-ALC2: 30m×0.320mm×1.2μm and DB-ALC1: 30m×0.320mm×1.8μm), thus providing a change in the retention and elution order of volatiles. This dual column confirmation increases the specificity, since the risk of another substance co-eluting at the same time in both columns is very small. The method was linear from 5 to 1000mg/L for toluene and p-xylene, 50-1000mg/L for chloroform, and 50-2000mg/L for the remaining substances, with correlation coefficients of over 0.99 for all compounds. The limits of detection (LOD) ranged 1 to 10mg/L, while the limits of quantification (LOQ) ranged from 2 to 31mg/L. The intra-day precision (CV<6.4%), intermediate precision (CV<7.0%) and accuracy (relative error ±10%) of the method were in conformity with the criteria normally accepted in bioanalytical method validation. The method developed has been applied to forensic cases, with the advantages that it uses a small sample volume and does not require any extraction procedure as it makes use of a headspace injection technique.

  2. Application of qualitative phase diagrams for the inferrence of detailed P-T paths from migmatitic rocks: an example from the Beit Bridge Compex (Limpopo Belt, South Africa)

    NASA Astrophysics Data System (ADS)

    Zeh, A.; Klemd, R.; Buhlmann, S.; Barton, J. M.

    2003-04-01

    Qualitative phase diagrams (P-T pseudosections) are powerful tools to gain detailed information about the P-T evolution of high-grade metamorphic rocks. Such diagrams enable metamorphic petrologists to explain observed mineral compositions, zonations and textures in migmatic rocks, and consequently allow the detailed inferrence of P-T paths from high-grade gneiss terranes. Examples are presented for three migmatitic rocks from the Beit Bridge Complex of the Central Zone in the Limpopo Belt (South Africa). These rocks have very distinct bulk compositions and, thus show different mineral assemblages: (1) a K, Al-rich gneiss sample with the assemblage Grt-Bt-Crd-Sil-Kfs-Pl-Qtz-Grh-liquid, a (2) K-poor, Al-rich gneiss with the assemblage Grt-Bt-St-Crd-Ky-Sil-Pl-Qtz-Rt-liquid, and a (3) K,Al-poor, Fe-rich gneiss with the assemblage Grt-Opx-Bt-Chl-Pl-Qtz-Rt-Ilm-liquid. P-T pseudosections calculated in the model system CaO-Na2O-K2O-TiO2-MnO-FeO-MgO-Al2O3-SiO2-H2O provide for the first time unambiguous evidence that the mineral assemblages, zonations and textures observed in all three gneiss samples result from a prograde (pre-peak) P-T increase from c. 600°C at 7.0 kbar to 810°C at 8-9kbar, followed by a simultaneous P and T decrease to c. 600°C at 4 kbar.

  3. Ecosystems and People: Qualitative Insights

    EPA Science Inventory

    Both qualitative and quantitative techniques are crucial in researching human impacts from ecological changes. This matches the importance of ?mixed methods? approaches in other disciplines. Qualitative research helps explore the relevancy and transferability of the foundational ...

  4. Final Technical Report: First Principles Investigations for the Ensemble Effects of PdAu and PtAu Bimetallic Nanocatalysts

    SciTech Connect

    Ruqian Wu

    2012-05-18

    Bimetallic surfaces with tunable chemical properties have attracted broad attention in recent years due to their ample potential for heterogeneous catalysis applications. The local chemical properties of constituents are strongly altered from their parent metals by 'ligand effect', a term encompassing the influences of charge transfer, orbital rehybridization and lattice strain. In comparison to the aforementioned, the 'ensemble effect' associated with particular arrangements of the active constituents have received much less attention, despite their notable importance towards the determination of reactivity and selectivity of bimetallic catalysts. We performed theoretical studies for understanding the ensemble effects on bimetallic catalysis: (i) simulations for the formation of different ensembles on PdAu and PtAu nanoclusters; (ii) studies of the size, shape, and substrate dependence of their electronic properties; and (iii) simulations for model reactions such as CO oxidation, methanol, ethylene and water dehydrogenation on PdAu and PtAu nanoclusters. In close collaboration with leading experimental groups, our theoretical research elucidated the fundamentals of Au based bimetallic nanocatalysts.

  5. Biological synthesis of Au nanoparticles using liquefied mash of cassava starch and their functionalization for enhanced hydrolysis of xylan by recombinant xylanase.

    PubMed

    Zeng, Sumei; Du, Liangwei; Huang, Meiying; Feng, Jia-Xun

    2016-05-01

    Au nanoparticles (AuNPs) have shown the potential for a variety of applications due to their unique physical and chemical properties. In this study, a facile and affordable method for the synthesis of AuNPs via the liquefied mash of cassava starch has been described and the functionalized AuNPs by L-cysteine improved activity of recombinant xylanase was demonstrated. UV-Vis absorption spectroscopy, transmission electron microscopy, and zeta potential measurements were performed to characterize the AuNPs and monitor their synthesis. The presence of Au was confirmed by energy-dispersive X-ray spectroscopy (EDX) and the X-ray diffraction patterns showed that Au nanocrystals were face-centered cubic. The C=O stretching vibration in the Fourier transform infrared spectrum of AuNPs suggested that the hemiacetal C-OH of sugar molecules performed the reduction of Au³⁺ to Au⁰. The presence of C and O in the EDX spectrum and the negative zeta potential of AuNPs suggested that the biomolecules present in liquefied cassava mash were responsible for the stabilization of AuNPs. The surface of AuNPs was easily functionalized by L-cysteine, which improved the stability of AuNPs. Moreover, cysteine-functionalized AuNPs could significantly improve recombinant xylanase efficiency and stability.

  6. Using Blogs in Qualitative Educational Research: An Exploration of Method

    ERIC Educational Resources Information Center

    Harricharan, Michelle; Bhopal, Kalwant

    2014-01-01

    When compared with wider social research, qualitative educational research has been relatively slow to take up online research methods (ORMs). There is some very notable research in the area but, in general, ORMs have not achieved wide applicability in qualitative educational contexts apart from research that is inherently linked to the Internet,…

  7. Incorporating Translation in Qualitative Studies: Two Case Studies in Education

    ERIC Educational Resources Information Center

    Sutrisno, Agustian; Nguyen, Nga Thanh; Tangen, Donna

    2014-01-01

    Cross-language qualitative research in education continues to increase. However, there has been inadequate discussion in the literature concerning the translation process that ensures research trustworthiness applicable for bilingual researchers. Informed by the literature on evaluation criteria for qualitative data translation, this paper…

  8. Direct electrochemical oxidation of S-captopril using gold electrodes modified with graphene-AuAg nanocomposites

    PubMed Central

    Pogacean, Florina; Biris, Alexandru R; Coros, Maria; Lazar, Mihaela Diana; Watanabe, Fumiya; Kannarpady, Ganesh K; Al Said, Said A Farha; Biris, Alexandru S; Pruneanu, Stela

    2014-01-01

    In this paper, we present a novel approach for the electrochemical detection of S-captopril based on graphene AuAg nanostructures used to modify an Au electrode. Multi-layer graphene (Gr) sheets decorated with embedded bimetallic AuAg nanoparticles were successfully synthesized catalytically with methane as the carbon source. The two catalytic systems contained 1.0 wt% Ag and 1.0 wt% Au, while the second had a larger concentration of metals (1.5 wt% Ag and 1.5 wt% Au) and was used for the synthesis of the Gr-AuAg-1 and Gr-AuAg-1.5 multicomponent samples. High-resolution transmission electron microscopy analysis indicated the presence of graphene flakes that had regular shapes (square or rectangular) and dimensions in the tens to hundreds of nanometers. We found that the size of the embedded AuAg nanoparticles varied between 5 and 100 nm, with the majority being smaller than 20 nm. Advanced scanning transmission electron microscopy studies indicated a bimetallic characteristic of the metallic clusters. The resulting Gr-AuAg-1 and Gr-AuAg-1.5 samples were used to modify the surface of commonly used Au substrates and subsequently employed for the direct electrochemical oxidation of S-captopril. By comparing the differential pulse voltammograms recorded with the two modified electrodes at various concentrations of captopril, the peak current was determined to be well-defined, even at relatively low concentration (10−5 M), for the Au/Gr-AuAg-1.5 electrode. In contrast, the signals recorded with the Au/Gr-AuAg-1 electrode were poorly defined within a 5×10−6 to 5×10−3 M concentration range, and many of them overlapped with the background. Such composite materials could find significant applications in nanotechnology, sensing, or nanomedicine. PMID:24596464

  9. CeO2-modified Au@SBA-15 nanocatalysts for liquid-phase selective oxidation of benzyl alcohol.

    PubMed

    Wang, Tuo; Yuan, Xiang; Li, Shuirong; Zeng, Liang; Gong, Jinlong

    2015-05-07

    Tuning the interfacial perimeter and structure is crucial to understanding the origin of catalytic performance. This paper describes the design, characterization, and application of CeO2 modified Au@SBA-15 (Au-CeO2@SBA-15) catalysts in selective oxidation of benzyl alcohol. The reaction results showed that Au-CeO2@SBA-15 catalysts exhibited higher catalytic activity compared with Au@SBA-15 and Au/CeO2 catalysts under identical conditions along with the high selectivity towards benzaldehyde (>99%). The turnover frequency of benzyl alcohol over the Au-100CeO2@SBA-15 catalyst is about nine-fold and four-fold higher than those of Au@SBA-15 and Au/CeO2 catalysts, respectively. The supported catalysts were characterized by N2 adsorption-desorption, inductively coupled plasma optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, high-angle annular dark-field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive spectrometry, and X-ray photoelectron spectroscopy. It was found that the Au and small CeO2 nanoparticles (∼5 nm) were homogeneously mixed in the channels of SBA-15, which led to an increase in the interfacial area between Au and CeO2 and consequently a better catalytic performance of Au-CeO2@SBA-15 catalysts for the selective oxidation of benzyl alcohol to benzaldehyde compared with that of Au/CeO2. The prevention of agglomeration and leaching of Au nanoparticles by restricting them inside the mesopores of SBA-15 was conducive to the stable existence of large quantities of Au-CeO2 interface, which leads to high stability of the Au-CeO2@SBA-15 catalyst.

  10. Direct electrochemical oxidation of S-captopril using gold electrodes modified with graphene-AuAg nanocomposites.

    PubMed

    Pogacean, Florina; Biris, Alexandru R; Coros, Maria; Lazar, Mihaela Diana; Watanabe, Fumiya; Kannarpady, Ganesh K; Al Said, Said A Farha; Biris, Alexandru S; Pruneanu, Stela

    2014-01-01

    In this paper, we present a novel approach for the electrochemical detection of S-captopril based on graphene AuAg nanostructures used to modify an Au electrode. Multi-layer graphene (Gr) sheets decorated with embedded bimetallic AuAg nanoparticles were successfully synthesized catalytically with methane as the carbon source. The two catalytic systems contained 1.0 wt% Ag and 1.0 wt% Au, while the second had a larger concentration of metals (1.5 wt% Ag and 1.5 wt% Au) and was used for the synthesis of the Gr-AuAg-1 and Gr-AuAg-1.5 multicomponent samples. High-resolution transmission electron microscopy analysis indicated the presence of graphene flakes that had regular shapes (square or rectangular) and dimensions in the tens to hundreds of nanometers. We found that the size of the embedded AuAg nanoparticles varied between 5 and 100 nm, with the majority being smaller than 20 nm. Advanced scanning transmission electron microscopy studies indicated a bimetallic characteristic of the metallic clusters. The resulting Gr-AuAg-1 and Gr-AuAg-1.5 samples were used to modify the surface of commonly used Au substrates and subsequently employed for the direct electrochemical oxidation of S-captopril. By comparing the differential pulse voltammograms recorded with the two modified electrodes at various concentrations of captopril, the peak current was determined to be well-defined, even at relatively low concentration (10(-5) M), for the Au/Gr-AuAg-1.5 electrode. In contrast, the signals recorded with the Au/Gr-AuAg-1 electrode were poorly defined within a 5×10(-6) to 5×10(-3) M concentration range, and many of them overlapped with the background. Such composite materials could find significant applications in nanotechnology, sensing, or nanomedicine.

  11. Spiral Patterning of Au Nanoparticles on Au Nanorod Surface to Form Chiral AuNR@AuNP Helical Superstructures Templated by DNA Origami.

    PubMed

    Shen, Chenqi; Lan, Xiang; Zhu, Chenggan; Zhang, Wei; Wang, Leyu; Wang, Qiangbin

    2017-02-20

    Plasmonic motifs with precise surface recognition sites are crucial for assembling defined nanostructures with novel functionalities and properties. In this work, a unique and effective strategy is successfully developed to pattern DNA recognition sites in a helical arrangement around a gold nanorod (AuNR), and a new set of heterogeneous AuNR@AuNP plasmonic helices is fabricated by attaching complementary-DNA-modified gold nanoparticles (AuNPs) to the predesigned sites on the AuNR surface. AuNR is first assembled to one side of a bifacial rectangular DNA origami, where eight groups of capture strands are selectively patterned on the other side. The subsequently added link strands make the rectangular DNA origami roll up around the AuNR into a tubular shape, therefore giving birth to a chiral patterning of DNA recognition sites on the surface of AuNR. Following the hybridization with the AuNPs capped with the complementary strands to the capture strands on the DNA origami, left-handed and right-handed AuNR@AuNP helical superstructures are precisely formed by tuning the pattern of the recognition sites on the AuNR surface. Our strategy of nanoparticle surface patterning innovatively realizes hierarchical self-assembly of plasmonic superstructures with tunable chiroptical responses, and will certainly broaden the horizon of bottom-up construction of other functional nanoarchitectures with growing complexity.

  12. Dewetting process of Au films on SiO2 nanowires: Activation energy evaluation

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Grimaldi, M. G.

    2015-05-01

    SiO2 nanowires gain scientific and technological interest in application fields ranging from nano-electronics, optics and photonics to bio-sensing. Furthermore, the SiO2 nanowires chemical and physical properties, and so their performances in devices, can be enhanced if decorated by metal nanoparticles (such Au) due to local plasmonic effects. In the present paper, we propose a simple, low-cost and high-throughput three-steps methodology for the mass-production of Au nanoparticles coated SiO2 nanowires. It is based on (1) production of the SiO2 nanowires on Si surface by solid state reaction of an Au film with the Si substrate at high temperature; (2) sputtering deposition of Au on the SiO2 nanowires to obtain the nanowires coated by an Au film; and (3) furnace annealing processes to induce the Au film dewetting on the SiO2 nanowires surface. Using scanning electron microscopy analyses, we followed the change of the Au nanoparticles mean versus the annealing time extracting values for the characteristic activation energy of the dewetting process of the Au film on the SiO2 nanowires surface. Such a study can allow the tuning of the nanowires/nanoparticles sizes for desired technological applications.

  13. New Structure Model of Au22(SR)18: Bitetrahederon Golden Kernel Enclosed by [Au6(SR)6] Au(I) Complex.

    PubMed

    Pei, Yong; Tang, Jian; Tang, Xianqiong; Huang, Yunqing; Zeng, Xiao Cheng

    2015-04-16

    The study of atomic structure of thiolate-protected gold with decreased core size is important to explore the structural evolution from Au(I) complex to Au nanoclusters. In this work, we theoretically predicted the structure of recently synthesized four valence electron (4e) Au22(SR)18 cluster. The Au22(SR)18 cluster is proposed to possess a bitetrahedron Au7 kernel that is surrounded by a unique [Au6(SR)6] Au(I) complex and three Au3(SR)4 staple motifs. More interestingly, the Au22(SR)18 exhibits structural connections with Au24(SR)20 and Au20(SR)16. The stability of Au22(SR)18 can be understood from the superatom electronic configuration of the Au kernel as well as the formation of superatomic network. The present study can offer new insight into the structural evolution as well as electronic structure of thiolate-protected Au nanoclusters.

  14. Onset of nuclear matter expansion in Au+Au collisions

    NASA Astrophysics Data System (ADS)

    Crochet, P.; Rami, F.; Gobbi, A.; Dona, R.; Coffin, J. P.; Fintz, P.; Guillaume, G.; Jundt, F.; Kuhn, C.; Roy, C.; de Schauenburg, B.; Tizniti, L.; Wagner, P.; Alard, J. P.; Amouroux, V.; Andronic, A.; Basrak, Z.; Bastid, N.; Belyaev, I.; Best, D.; Biegansky, J.; Buta, A.; Čaplar, R.; Cindro, N.; Dupieux, P.; Dželalija, M.; Fan, Z. G.; Fodor, Z.; Fraysse, L.; Freifelder, R. P.; Berrmann, N.; Hildenbrand, K. D.; Hong, B.; Jeong, S. C.; Kecskemeti, J.; Kirejczyk, M.; Koncz, P.; Korolija, M.; Kotte, R.; Lebedev, A.; Leifels, Y.; Manko, V.; Moisa, D.; Mösner, J.; Neubert, W.; Pelte, D.; Petrovici, M.; Pinkenburg, C.; Pras, P.; Ramillien, V.; Reisdorf, W.; Ritman, J. L.; Sadchikov, A. G.; Schüll, D.; Seres, Z.; Sikora, B.; Simion, V.; Siwek-Wilczyńska, K.; Sodan, U.; Teh, K. M.; Trzaska, M.; Vasiliev, M.; Wang, G. S.; Wessels, J. P.; Wienold, T.; Wisniewski, K.; Wohlfarth, D.; Zhilin, A.; FOPI Collaboration

    1997-02-01

    Using the FOPI detector at GSI Darmstadt, excitation functions of collective flow components were measured for the Au+Au system, in the reaction plane and out of this plane, at seven incident energies ranging from 100 A MeV to 800 A MeV. The threshold energies, corresponding to the onset of sideward-flow (balance energy) and squeeze-out effect (transition energy), are extracted from extrapolations of these excitation functions toward lower beam energies for charged products with Z ⩾ 2. The transition energy is found to be larger than the balance energy. The impact parameter dependence of both balance and transition energies, when extrapolated to central collisions, suggests comparable although slightly higher values than the threshold energy for the radial flow. The relevant parameter seems to be the energy deposited into the system in order to overcome the attractive nuclear forces.

  15. Universality in fragment inclusive yields from Au+Au collisions

    NASA Astrophysics Data System (ADS)

    Insolia, A.; Tuvè, C.; Albergo, S.; Bieser, F.; Brady, F. P.; Caccia, Z.; Cebra, D.; Chacon, A. D.; Chance, J. L.; Choi, Y.; Costa, S.; Elliott, J. B.; Gilkes, M.; Hauger, J. A.; Hirsch, A. S.; Hjort, E. L.; Justice, M.; Keane, D.; Kintner, J.; Lisa, M.; Matis, H. S.; McMahan, M.; McParland, C.; Olson, D. L.; Partlan, M. D.; Porile, N. T.; Potenza, R.; Rai, G.; Rasmussen, J.; Ritter, H. G.; Romero, J. L.; Russo, G. V.; Scharenberg, R.; Scott, A.; Shao, Y.; Srivastava, B. K.; Symons, T. J. M.; Tincknell, M. L.; Wang, S.; Warren, P. G.; Wieman, H. H.; Wolf, K. L.

    2001-11-01

    The inclusive light fragment (Z⩽7) yield data in Au+Au reactions, measured by the EOS Collaboration at the LBNL Bevalac, are presented and discussed. For peripheral collisions the measured charge distributions develop progressively according to a power law which can be fitted by a single τ exponent independently of the bombarding energy in the range 250-1200 A MeV. In addition to this universal feature, we observe that the location of the maximum in the individual yields of different charged fragments shift towards lower multiplicity as the fragment charge increases from Z=3 to Z=7. This trend is common to all six measured beam energies. Moments of charge distributions and correlations among different moments are reported. Finally, the THe,DT thermometer has been constructed for central and peripheral collisions using the double yield ratios of He and D, T projectile fragments. The measured nuclear temperatures are in agreement with experimental findings in other fragmentation reactions.

  16. Promoting and evaluating scientific rigour in qualitative research.

    PubMed

    Baillie, Lesley

    2015-07-15

    This article explores perspectives on qualitative research and the variety of views concerning rigour in the research process. Evaluating and ensuring the quality of research are essential considerations for practitioners who are appraising evidence to inform their practice or research. Several criteria and principles for evaluating quality in qualitative research are presented, recognising that their application in practice is influenced by the qualitative methodology used. The article examines a range of techniques that a qualitative researcher can use to promote rigour and apply it to practice.

  17. Successful synthesis and thermal stability of immiscible metal Au-Rh, Au-Ir and Au-Ir-Rh nanoalloys.

    PubMed

    Shubin, Yury; Plusnin, Pavel; Sharafutdinov, Marat; Makotchenko, Evgenia; Korenev, Sergey

    2017-04-06

    We successfully prepared face-centred cubic nanoalloys in systems of Au-Ir, Au-Rh and Au-Ir-Rh, with large bulk miscibility gaps, in one-run reactions under thermal decomposition of specially synthesised single-source precursors, namely, [AuEn2][Ir(NO2)6], [AuEn2][Ir(NO2)6]х[Rh(NO2)6]1-х and [AuEn2][Rh(NO2)6]. The precursors employed contain all desired metals "mixed" at the molecular level, thus providing significant advantages for obtaining alloys. The observations using HR TEM show that the nanoalloy structures are composed of well-dispersed aggregates of crystalline domains with a mean size of 5±3 nm. EDX and XRD measurements confirm the formation of AuIr, AuRh, AuIr0.75Rh0.25, AuIr0.50Rh0.50 and AuIr0.25Rh0.75 metastable solid solutions. In-situ real-time synchrotron XRD was used to study the formation mechanism of nanoalloys. The observed transformations are described by the "conversion chemistry" mechanism characterised by the primary development of particles comprising atoms of only one type, followed by a chemical reaction resulting in the final formation of a nanoalloy. The obtained metastable nanoalloys exhibit essential thermal stability. Exposure to 180 ºC for 30 h does not cause any dealloying process.

  18. The impact of qualitative research on gynaecologic oncology guidelines.

    PubMed

    How, Jeffrey Andrew; Abitbol, Jeremie; Lau, Susie; Gotlieb, Walter Henri; Abenhaim, Haim Arie

    2015-02-01

    Objectif : Les soins offerts aux patientes atteintes d’un cancer comptent une importante composante psychosociale, laquelle a été explorée de façon scientifique par l’intermédiaire de la recherche qualitative. Notre étude avait pour objectif d’évaluer la disponibilité de la recherche qualitative en gynéco-oncologie et d’en mesurer l’intégration aux directives cliniques relevant du domaine de la gynéco-oncologie. Méthodes : Nous avons mené des recherches dans diverses bases de données (Medline, CINHAL, Scopus et Web of Science) en vue de cerner la disponibilité de la recherche qualitative menée au cours des 20 dernières années au sujet des trois cancers gynécologiques les plus prévalents : les cancers de l’endomètre, de l’ovaire et du col utérin. Des directives cliniques nationales et internationales portant sur la prise en charge des cancers gynécologiques ont été sélectionnées au moyen du site Web National Guideline Clearinghouse, du site Web de la Société des obstétriciens et gynécologues du Canada, et du répertoire Standards and Guidelines Evidence de lignes directrices sur le cancer. Une analyse bibliométrique a été utilisée pour déterminer la fréquence des références qualitatives citées dans les directives cliniques en question. Résultats : Nous avons identifié 113 mémoires de recherche qualitative portant sur des cancers gynécologiques qui se centraient sur les effets psychologiques, sur la dynamique sociale et sur les interactions médecin-patiente dans le cadre du traitement anticancéreux et de la récupération. Au sein des 15 directives cliniques nationales et internationales portant sur la prise en charge des cancers gynécologiques que nous avons identifiées, nous avons dénombré un total de 2 272 références; parmi ces dernières, seules trois références citant une recherche qualitative ont été identifiées (0,1 %), et ce, au sein d’une seule directive clinique parmi les 15

  19. Evolution of Self-Assembled Au NPs by Controlling Annealing Temperature and Dwelling Time on Sapphire (0001).

    PubMed

    Lee, Jihoon; Pandey, Puran; Sui, Mao; Li, Ming-Yu; Zhang, Quanzhen; Kunwar, Sundar

    2015-12-01

    Au nanoparticles (NPs) have been utilized in a wide range of device applications as well as catalysts for the fabrication of nanopores and nanowires, in which the performance of the associated devices and morphology of nanopores and nanowires are strongly dependent on the size, density, and configuration of the Au NPs. In this paper, the evolution of the self-assembled Au nanostructures and NPs on sapphire (0001) is systematically investigated with the variation of annealing temperature (AT) and dwelling time (DT). At the low-temperature range between 300 and 600 °C, three distinct regimes of the Au nanostructure configuration are observed, i.e., the vermiform-like Au piles, irregular Au nano-mounds, and Au islands. Subsequently, being provided with relatively high thermal energy between 700 and 900 °C, the round dome-shaped Au NPs are fabricated based on the Volmer-Weber growth model. With the increased AT, the size of the Au NPs is gradually increased due to a more favorable surface diffusion while the density is gradually decreased as a compensation. On the other hand, with the increased DT, the size and density of Au NPs decrease due to the evaporation of Au at relatively high annealing temperature at 950 °C.

  20. Approximate Qualitative Temporal Reasoning

    DTIC Science & Technology

    2001-01-01

    i.e., their boundaries can be placed in such a way that they coincide with the cell boundaries of the appropriate partition of the time-line. (Think of...respect to some appropriate partition of the time-line. For example, I felt well on Saturday. When I measured my temperature I had a fever on Monday and on...Bittner / Approximate Qualitative Temporal Reasoning 49 [27] I. A. Goralwalla, Y. Leontiev , M. T. Özsu, D. Szafron, and C. Combi. Temporal granularity for

  1. d + Au hadron correlation measurements at PHENIX

    SciTech Connect

    Anne M. Sickles

    2014-05-13

    In these proceedings, we discuss recent results from d + Au collisions in PHENIX ridge related measurements and their possible hydrodynamic origin. We present the v2 at midrapidity and measurements of the pseudorapidity dependence of the ridge, distinguishing between the d-going and Au-going directions. We investigate the possible geometrical origin by comparing v2 in d + Au to that in p + Pb, Au + Au and Pb + Pb collisions. Future plans to clarify the role of geometry in small collision systems at RHIC are discussed.

  2. Theoretical prediction of thermodynamic activities of liquid Au-Sn-X (X=Bi, Sb, Zn) solder systems

    NASA Astrophysics Data System (ADS)

    Awe, O. E.; Oshakuade, O. M.

    2017-02-01

    Molecular interaction volume model has been theoretically used to predict the thermodynamic activities of tin in Au-Sn-Bi and Au-Sn-Sb and the thermodynamic activity of zinc in Au-Sn-Zn at experimental temperatures 800 K, 873 K and 973 K, respectively. On the premise of agreement between the predicted and experimental values, we predicted the activities of the remaining two components in each of the three systems. This prediction was extended from three cross-sections to five cross-sections, and to temperature range 400-600 K, relevant for applications. Iso-activities were plotted. Results show that addition of tin reduces the tendency for chemical short range order in both Au-Sb and Au-Zn systems, while addition of gold and bismuth, respectively, reduce the tendency for chemical short range order in Sn-Sb and Au-Sn systems. Also, we found that, in the desired high-temperature region for applications, while a combination of chemical order and miscibility of components exist in both Au-Sn-Bi and Au-Sn-Zn systems, only chemical order exist in the Au-Sn-Sb system. Results, further show that increase in temperature reduces the phase separation tendency in Au-Sn-Bi system.

  3. Co-Determination of Crystal Structures at High Pressure: Combined Application of Theory and Experiment to the AuGa2 Intermetallic analog to High-Pressure SiO2

    NASA Astrophysics Data System (ADS)

    Godwal, B. K.; Stackhouse, S.; Yan, J.; Speziale, S.; Militzer, B.; Jeanloz, R.

    2012-12-01

    The intermetallic compounds AuX2 (X = In, Ga, Al) crystallize in the calcium fluorite (CaF2) structure, making them analogs for SiO2 at TPa pressures. A combination of high-pressure x-ray diffraction experiments and first-principles calculations reveals the sequence of crystal-structural phase transitions in AuGa2 from cubic (Fm3m) to orthorhombic (Pnma) at 10 (± 4) GPa, and then to monoclinic (P21/n) at 33 (± 6) GPa. The post-cotunnite (P1121/a) phase identified as the final step in the phase-transition sequence for other AX2 compounds is found to be unstable. As the structural sequence followed by AuGa2 is similar to that observed in ACl2 (A = Pb, Sn) compounds it implies that AX2 compounds iso-structural to PbCl2 will acquire the monoclinic (P21/n) structure at extreme pressures. Neither theory nor experiment would have been adequate, on their own, in documenting this sequence of phases, but together they confirm a sequence differing from the Fm3m → Pnma → P63/mmc transitions predicted for CaF2, and observed for the intermetallic analog compounds AuIn2 and AuAl2 under pressure. Experimental [and theoretical] values of zero-pressure volume and bulk modulus are 224.5 (± 0.2) [219.5] Å3 and 81 (± 5) [95] GPa; 204.0 (± 1) [204.8] Å3 and 112 (± 12) [96] GPa; and 192 (± 4) [201.1] Å3 and 157 (± 5) [99] GPa for the cubic, orthorhombic and monoclinic phases, respectively.

  4. Calculated magneto-optical Kerr spectra of the half-Heusler compounds AuMnX (X = In, Sn, Sb).

    PubMed

    Amft, M; Oppeneer, P M

    2007-08-08

    The ferromagnetic ground states of the half-Heusler compounds AuMnX (X = In, Sn, Sb) have been calculated in the framework of the local spin-density approximation (LSDA) to density functional theory (DFT). AuMnSn is computed to be a half-metallic ferromagnet, whereas AuMnIn and AuMnSb are not half-metallic, due to their different band filling. The computed relativistic electronic structures served as inputs to calculate the magneto-optical Kerr rotations and ellipticities for all three materials. In the case of AuMnSn the largest, zero-temperature, polar Kerr rotation has been found to be -0.45° at about 1 eV photon energy. The computed MOKE spectra of AuMnSn are in qualitative agreement with recent experiments. The largest Kerr rotations of AuMnIn and AuMnSb have been calculated to be +0.64° at 4.3 eV and -0.85° at 0.9 eV, respectively.

  5. Electrotriggered, spatioselective, quantitative gene delivery into a single cell nucleus by Au nanowire nanoinjector.

    PubMed

    Yoo, Seung Min; Kang, Mijeong; Kang, Taejoon; Kim, Dong Min; Lee, Sang Yup; Kim, Bongsoo

    2013-06-12

    Delivery of bioactive materials into a cell is highly important in the study of cell biology and medical treatments. Ideal nanoinjectors should be able to deliver biomaterials with high spatial resolution while causing minimum cell damage. We developed a Au nanowire (NW) nanoinjector that has the thinnest diameter (100–150 nm) among the DNA delivering devices as well as optimum mechanical properties, minimizing cell damage. Well-defined (111) single-crystalline Au surface and high electric conductivity of a Au NW nanoinjector allow precisely timed and efficient electrochemical release of DNA molecules attached on a Au NW surface. Both linear DNA and plasmid DNA were delivered separately and showed successful expression. The Au NW nanoinjector would find important biomedical applications in the fields such as gene therapy, DNA vaccination, targeted drug delivery, and probe/control of cell signaling events.

  6. QUALITATIVE INTERPRETATION OF GALAXY SPECTRA

    SciTech Connect

    Sanchez Almeida, J.; Morales-Luis, A. B.; Terlevich, R.; Terlevich, E.; Cid Fernandes, R. E-mail: abml@iac.es E-mail: eterlevi@inaoep.mx

    2012-09-10

    We describe a simple step-by-step guide to qualitative interpretation of galaxy spectra. Rather than an alternative to existing automated tools, it is put forward as an instrument for quick-look analysis and for gaining physical insight when interpreting the outputs provided by automated tools. Though the recipe is for general application, it was developed for understanding the nature of the Automatic Spectroscopic K-means-based (ASK) template spectra. They resulted from the classification of all the galaxy spectra in the Sloan Digital Sky Survey data release 7, thus being a comprehensive representation of the galaxy spectra in the local universe. Using the recipe, we give a description of the properties of the gas and the stars that characterize the ASK classes, from those corresponding to passively evolving galaxies, to H II galaxies undergoing a galaxy-wide starburst. The qualitative analysis is found to be in excellent agreement with quantitative analyses of the same spectra. We compare the mean ages of the stellar populations with those inferred using the code STARLIGHT. We also examine the estimated gas-phase metallicity with the metallicities obtained using electron-temperature-based methods. A number of byproducts follow from the analysis. There is a tight correlation between the age of the stellar population and the metallicity of the gas, which is stronger than the correlations between galaxy mass and stellar age, and galaxy mass and gas metallicity. The galaxy spectra are known to follow a one-dimensional sequence, and we identify the luminosity-weighted mean stellar age as the affine parameter that describes the sequence. All ASK classes happen to have a significant fraction of old stars, although spectrum-wise they are outshined by the youngest populations. Old stars are metal-rich or metal-poor depending on whether they reside in passive galaxies or in star-forming galaxies.

  7. Weakened negative effect of Au/TiO2 photocatalytic activity by CdS quantum dots deposited under UV-vis light illumination at different intensity ratios.

    PubMed

    Song, Kang; Wang, Xiaohong; Xiang, Qun; Xu, Jiaqiang

    2016-10-26

    Herein, we demonstrate experimentally the coexistence of photocatalytic dual opposite roles of Au nanoparticles in a UV-vis light irradiated Au/TiO2 system. We have investigated that the photocatalytic performance curves of Au/TiO2 and CdS/Au/TiO2 for degradation of methylene blue (MB) all present a V-shape with different radiation power ratios. However, through the comparison of photocatalytic activities of Au/TiO2 and CdS/Au/TiO2 by statistics and mathematical simulation, we propose qualitatively that the deposition of CdS used as a photosensitizer could extend the Au/TiO2 light absorption range and weaken the negative effect of Au/TiO2. Compared with Au/TiO2, it is proven indirectly that the photo-excited electrons of CdS/Au/TiO2 transfer from CdS to Au, and then to TiO2. Furthermore, we discuss the photocatalytic dual opposite roles of Au nanoparticles between CdS and TiO2, the positive effect includes localized surface plasmon resonance (LSPR) and Schottky barrier (SB), and the negative effect is that Au nanoparticles can be used as a new charge-carrier recombination center. In addition, we have analyzed that the dual opposite relationship of Au/TiO2 under the irradiation of mixed-light could be regulated by changing the intensity ratio of visible to UV light as well.

  8. Structural and morphological peculiarities of hybrid Au/nanodiamond engineered nanostructures

    PubMed Central

    Matassa, Roberto; Orlanducci, Silvia; Reina, Giacomo; Cassani, Maria Cristina; Passeri, Daniele; Terranova, Maria Letizia; Rossi, Marco

    2016-01-01

    Nanostructured Au nano-platelets have been synthesized from an Au(III) complex by growth process triggered by nanodiamond (ND). An electroless synthetic route has been used to obtain 2D Au/ND architectures, where individual nanodiamond particles are intimately embedded into face-centered cubic Au platelets. The combined use of high resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED), was able to reveal the unusual organization of these hybrid nanoparticles, ascertaining the existence of preferential crystallographic orientations for both nanocrystalline species and highlighting their mutual locations. Detailed information on the sample microstructure have been gathered by fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) of HR-TEM images, allowing us to figure out the role of Au defects, able to anchor ND crystallites and to provide specific sites for heteroepitaxial Au growth. Aggregates constituted by coupled ND and Au, represent interesting systems conjugating the best optoelectronics and plasmonics properties of the two different materials. In order to promote realistically the applications of such outstanding Au/ND materials, the cooperative mechanisms at the basis of material synthesis and their influence on the details of the hybrid nanostructures have to be deeply understood. PMID:27514638

  9. Structural and morphological peculiarities of hybrid Au/nanodiamond engineered nanostructures

    NASA Astrophysics Data System (ADS)

    Matassa, Roberto; Orlanducci, Silvia; Reina, Giacomo; Cassani, Maria Cristina; Passeri, Daniele; Terranova, Maria Letizia; Rossi, Marco

    2016-08-01

    Nanostructured Au nano-platelets have been synthesized from an Au(III) complex by growth process triggered by nanodiamond (ND). An electroless synthetic route has been used to obtain 2D Au/ND architectures, where individual nanodiamond particles are intimately embedded into face-centered cubic Au platelets. The combined use of high resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED), was able to reveal the unusual organization of these hybrid nanoparticles, ascertaining the existence of preferential crystallographic orientations for both nanocrystalline species and highlighting their mutual locations. Detailed information on the sample microstructure have been gathered by fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) of HR-TEM images, allowing us to figure out the role of Au defects, able to anchor ND crystallites and to provide specific sites for heteroepitaxial Au growth. Aggregates constituted by coupled ND and Au, represent interesting systems conjugating the best optoelectronics and plasmonics properties of the two different materials. In order to promote realistically the applications of such outstanding Au/ND materials, the cooperative mechanisms at the basis of material synthesis and their influence on the details of the hybrid nanostructures have to be deeply understood.

  10. Polarization properties of fluorescent BSA protected Au25 nanoclusters

    NASA Astrophysics Data System (ADS)

    Raut, Sangram; Chib, Rahul; Rich, Ryan; Shumilov, Dmytro; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2013-03-01

    BSA protected gold nanoclusters (Au25) are attracting a great deal of attention due to their unique spectroscopic properties and possible use in biophysical applications. Although there are reports on synthetic strategies, spectroscopy and applications, little is known about their polarization behavior. In this study, we synthesized the BSA protected Au25 nanoclusters and studied their steady state and time resolved fluorescence properties including polarization behavior in different solvents: glycerol, propylene glycol and water. We demonstrated that the nanocluster absorption spectrum can be separated from the extinction spectrum by subtraction of Rayleigh scattering. The nanocluster absorption spectrum is well approximated by three Gaussian components. By a comparison of the emissions from BSA Au25 clusters and rhodamine B in water, we estimated the quantum yield of nanoclusters to be higher than 0.06. The fluorescence lifetime of BSA Au25 clusters is long and heterogeneous with an average value of 1.84 μs. In glycerol at -20 °C the anisotropy is high, reaching a value of 0.35. However, the excitation anisotropy strongly depends on the excitation wavelengths indicating a significant overlap of the different transition moments. The anisotropy decay in water reveals a correlation time below 0.2 μs. In propylene glycol the measured correlation time is longer and the initial anisotropy depends on the excitation wavelength. BSA Au25 clusters, due to long lifetime and high polarization, can potentially be used in studying large macromolecules such as protein complexes with large molecular weight.BSA protected gold nanoclusters (Au25) are attracting a great deal of attention due to their unique spectroscopic properties and possible use in biophysical applications. Although there are reports on synthetic strategies, spectroscopy and applications, little is known about their polarization behavior. In this study, we synthesized the BSA protected Au25 nanoclusters and

  11. Chemical shift and diffusion-weighted magnetic resonance imaging of the anterior mediastinum in oncology: Current clinical applications in qualitative and quantitative assessment.

    PubMed

    Priola, Adriano Massimiliano; Gned, Dario; Veltri, Andrea; Priola, Sandro Massimo

    2016-02-01

    Recently, the use of magnetic resonance (MR) in clinical practice for the evaluation of the anterior mediastinum has considerably increased due to technological improvements and standardization of thoracic protocols. Currently, MR imaging is increasingly seen as a useful problem-solving modality, especially in equivocal cases at computed tomography, with the advantage of a higher contrast resolution and no radiation exposure. Chemical shift and diffusion-weighted MR are helpful in tissue characterization and present advantages over conventional MR imaging, first in providing quantitative data, without the need for the administration of contrast medium. By detecting microscopic fat in tissue, chemical shift imaging is useful for differentiating normal thymus and rebound hyperplasia from cancer tissue at diagnosis and after chemotherapy in oncologic patients, and for distinguishing lymphoid hyperplasia from thymoma in autoimmune diseases such as myasthenia gravis. Diffusion-weighted MR reflects diffusivity of water molecules within tissue and is increasingly used as a cancer biomarker, even in the thorax, for the detection and characterization of tumors, for their differentiation from benign conditions, and for monitoring treatment response. In this review, based on the current literature, technical considerations about image acquisition and data analysis of chemical shift and diffusion-weighted MR are discussed along with clinical applications in the field of benign and malignant disease of the anterior mediastinum.

  12. Situating methodology within qualitative research.

    PubMed

    Kramer-Kile, Marnie L

    2012-01-01

    Qualitative nurse researchers are required to make deliberate and sometimes complex methodological decisions about their work. Methodology in qualitative research is a comprehensive approach in which theory (ideas) and method (doing) are brought into close alignment. It can be difficult, at times, to understand the concept of methodology. The purpose of this research column is to: (1) define qualitative methodology; (2) illuminate the relationship between epistemology, ontology and methodology; (3) explicate the connection between theory and method in qualitative research design; and 4) highlight relevant examples of methodological decisions made within cardiovascular nursing research. Although there is no "one set way" to do qualitative research, all qualitative researchers should account for the choices they make throughout the research process and articulate their methodological decision-making along the way.

  13. Restructuring hollow Au-Ag nanostructures for improved SERS activity

    NASA Astrophysics Data System (ADS)

    Jiji, S. G.; Gopchandran, K. G.

    2016-10-01

    Hollow Au-Ag nanostructures with improved SERS performance were prepared by using a modified galvanic replacement reaction. The plasmon characteristics of the hollow structures are found to be highly sensitive to the volume of cathode, whether or not a co-reductant was used in the synthesis. It is found that the presence of a co-reductant viz., ascorbic acid (AA) during the reaction make the hollow structures capable to maintain its physical structure even after addition of excess cathode and also it transformes sacrificial templates into highly efficient hollow Au-Ag SERS substrates. In the galvanic replacement reaction conducted in presence of AA, where on one side the removal of Ag atoms make cavities to occur and on the other side a coating on the surface with Au and Ag atoms due to co-reduction take place simultaneously. Morphological observations indicated that it is possible to control the competition between these two mechanisms and to make Au-Ag hollow structures in tune with applications by optimizing the volume of cathode or AA. The SERS activity of these substrates were tested with crystal violet molecule as probe, using two different laser lines, 514 and 784.8 nm. In this report, the enhancement observed for hollow structures fabricated under optimum conditions are in the order of 106. SERS measurements have shown that for a specific volume of cathode, substrates fabricated in presence of AA are superior to the other type and also the increase in enhancement factor is ˜10 fold.

  14. Fluorogenic Gold Nanoparticle (AuNP) Substrate: A Model for the Controlled Release of Molecules from AuNP Nanocarriers via Interfacial Staudinger-Bertozzi Ligation.

    PubMed

    Luo, Wilson; Gobbo, Pierangelo; Gunawardene, Praveen N; Workentin, Mark S

    2017-02-28

    The ability to regulate small-molecule release from metallic nanoparticle substrates offers unprecedented opportunities for nanocarrier-based imaging, sensing, and drug-delivery applications. Herein we report a novel and highly specific release methodology off gold nanoparticle (AuNP) surfaces based on the bioorthogonal Staudinger-Bertozzi ligation. A thiol ligand bearing the molecular cargo, a Rhodamine B dye derivative, was synthesized and used to modify small water-soluble 5 nm AuNPs. Upon incorporation into the AuNP monolayer, we observed efficient quenching of the dye emission, resulting in a very low level of fluorescence emission that provided the baseline from which cargo release was monitored. We examined the ability of these AuNPs to react with azide molecules via Staudinger-Bertozzi ligation on the nanoparticle surface by monitoring the fluorescence emission after the introduction of an organic azide. We observed an immediate increase in emission intensity upon azide addition, which corresponded to the release of the dye into the bulk solution. The (31)P NMR spectrum of the AuNP product also agrees with the formation of the ligation product. Thus this system represents a novel and highly specific release methodology off AuNP surfaces that can have potential applications in drug delivery, sensing, and materials science.

  15. Au-assisted fabrication of nano-holes on c-plane sapphire via thermal treatment guided by Au nanoparticles as catalysts

    NASA Astrophysics Data System (ADS)

    Sui, Mao; Pandey, Puran; Li, Ming-Yu; Zhang, Quanzhen; Kunwar, Sundar; Lee, Jihoon

    2017-01-01

    Nanoscale patterning of sapphires is a challenging task due to the high mechanical strength, chemical stability as well as thermal durability. In this paper, we demonstrate a gold droplet assisted approach of nano-hole fabrication on c-plane sapphire via a thermal treatment. Uniformly distributed nano-holes are fabricated on the sapphire surface guided by dome shaped Au nanoparticles (NPs) as catalysts and the patterning process is discussed based on the disequilibrium of vapor, liquid, solid interface energies at the Au NP/sapphire interface induced by the Au evaporation at high temperature. Followed by the re-equilibration of interface energy, transport of alumina from the beneath of NPs to the sapphire surface can occur along the NP/sapphire interface resulting in the formation of nano-holes. The fabrication of nano-holes using Au NPs as catalysts is a flexible, economical and convenient approach and can find applications in various optoelectronics.

  16. Mentoring Qualitative Research Authors Globally: "The Qualitative Report" Experience

    ERIC Educational Resources Information Center

    Chenail, Ronald J.; St. George, Sally; Wulff, Dan; Duffy, Maureen; Laughlin, Martha; Warner, Kate; Sahni, Tarmeen

    2007-01-01

    Authoring quality qualitative inquiry is a challenge for most researchers. A lack of local mentors can make writing even more difficult. To meet this need, The "Qualitative Report (TQR)" has helped authors from around the world develop their papers into published articles. "TQR" editorial team members will discuss the history of the journal, their…

  17. Structure and Electrical Properties of an Assembly of Au Nanoclusters

    DTIC Science & Technology

    2001-01-01

    Nanoclusters DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Materials Research...Materials Research Society Structure and Electrical Properties of an Assembly of Au Nanoclusters G. Muralidharan, L. Maya and T. Thundat Oak Ridge National...interest both for understanding the fundamental physics involved and for potential applications. In this study, we describe a technique for preparing

  18. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances.

    PubMed

    Kuai, Long; Geng, Baoyou; Wang, Shaozhen; Sang, Yan

    2012-07-23

    In this work, we utilize the galvanic displacement synthesis and make it a general and efficient method for the preparation of Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells, which consist of multilayer nanoparticles. The method is generally applicable to the preparation of Au-Au, Au-Pd, and Au-Pt core-shell nanostructures with typical porous shells. Moreover, the Au-Au isomeric core-shell nanostructure is reported for the first time. The lower oxidation states of Au(I), Pd(II), and Pt(II) are supposed to contribute to the formation of porous core-shell nanostructures instead of yolk-shell nanostructures. The electrocatalytic ethanol oxidation and oxygen reduction reaction (ORR) performance of porous Au-Pd core-shell nanostructures are assessed as a typical example for the investigation of the advantages of the obtained core-shell nanostructures. As expected, the Au-Pd core-shell nanostructure indeed exhibits a significantly reduced overpotential (the peak potential is shifted in the positive direction by 44 mV and 32 mV), a much improved CO tolerance (I(f)/I(b) is 3.6 and 1.63 times higher), and an enhanced catalytic stability in comparison with Pd nanoparticles and Pt/C catalysts. Thus, porous Au-M (M = Au, Pd, and Pt) core-shell nanostructures may provide many opportunities in the fields of organic catalysis, direct alcohol fuel cells, surface-enhanced Raman scattering, and so forth.

  19. Surface plasmon resonance of Au-Cu bimetallic nanoparticles predicted by a quasi-chemical model

    NASA Astrophysics Data System (ADS)

    Su, Yen-Hsun; Wang, Wen-Lin

    2013-10-01

    Au-Cu alloys are functional materials with nonlinear optical applications. However, the optical properties of such alloys are difficult to predict due to the random mixing of materials. In this paper, we present a quasi-chemical model to simulate the optical properties of Au-Cu alloy systems based on the mixing of Gibbs free energy. This model is also able to predict the position of the surface plasmon resonance peaks for Au-Cu alloy nanoparticles. The model can be applied to predict the optical properties of alloy systems in the fields of plasmonics and nanophotonics.

  20. Topological Insulators as Substrates for CO Oxidation Catalysis by Ultrathin Au Films

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Zhu, Wenguang; Xiao, Di; Zhang, Zhenyu

    2011-03-01

    We propose a novel application of three dimensional topological insulators (3DTIs) in heterogeneous catalysis based on first- principles calculations within density functional theory. We use a Bi 2 Se 3 substrate as the support of an ultrathin Au film, and show that the Au adatoms are strongly bound to and able to wet the surface of Bi 2 Se 3 . More importantly, we find the topological surface states of Bi 2 Se 3 are robust against Au deposition, and it can enhance the interaction between Au and CO, O2 molecules by acting as an electron bath . The present study may broaden the potential technological applications of 3DTIs, and shine some new light on the understanding of the role of surface states in heterogeneous catalysis. Supported by DMSE/BES of USDOE, USNSF, and NNSFC.

  1. Qualitative interviewing as measurement.

    PubMed

    Paley, John

    2010-04-01

    The attribution of beliefs and other propositional attitudes is best understood as a form of measurement, however counter-intuitive this may seem. Measurement theory does not require that the thing measured should be a magnitude, or that the calibration of the measuring instrument should be numerical. It only requires a homomorphism between the represented domain and the representing domain. On this basis, maps measure parts of the world, usually geographical locations, and 'belief' statements measure other parts of the world, namely people's aptitudes. Having outlined an argument for this view, I deal with an obvious objection to it: that self-attribution of belief cannot be an exercise in measurement, because we are all aware, from introspection, that our beliefs have an intrinsically semantic form. Subsequently, I turn to the philosophical and methodological ramifications of the measurement theoretic view. I argue, first, that it undermines at least one version of constructivism and, second, that it provides an effective alternative to the residually Cartesian philosophy that underpins much qualitative research. Like other anti-Cartesian strategies, belief-attribution-as-measurement implies that the objective world is far more knowable than the subjective one, and that reality is ontologically prior to meaning. I regard this result as both plausible and welcome.

  2. Split resonance modes of a AuBRC plasmonic nanosystem caused by the coupling effect

    NASA Astrophysics Data System (ADS)

    Ni, Yuan; Kan, Caixia; Xu, Haiying; Wang, Changshun

    2016-12-01

    A plasmonic nanosystem can give rise to particular optical responses due to a coupling effect. In this work, we investigate the optical properties and field distributions of a novel ‘matrioska’ nanocavity structure composed of a Au nanorod (AuNR) within a nanobox (AuNB) via finite-difference time-domain (FDTD) simulation. This nanocavity can be fabricated by a two-step wet-chemical method. The multiple SPR modes of optical spectrum for nanocavity are caused by the strong interaction between the AuNR-core and AuNB-shell when the incident light is perpendicular or parallel to the long axis of the Au box/rod nanocavity (AuBRC). The SPR modes are known as the dipole-dipole bonding resonance mode in the lower-energy region and the antibonding resonance mode in the higher-energy region. It is proposed that AuBRC can escape the orientation confinement of AuNR because the multiple modes occur and provide a potential application for the enhancement of the photoluminescence signal. Additionally, the SPR modes red-shift with increasing the offset of the AuNR-core, whereas the SPR mode dramatically blue-shifts when the conductive coupling is formed. The intense ‘hot-spot’ could be induced within a small interaction region in the conductive coupled system. The SPR line-shape of high quality would also be promoted. The SPR is highly sensitive to the medium, which is promising in the sensing and detecting devices.

  3. Interface effects between germanene and Au(1 1 1) from first principles

    NASA Astrophysics Data System (ADS)

    Li, Fengping; Wei, Wei; Yu, Lin; Huang, Baibiao; Dai, Ying

    2017-03-01

    We study two-dimensional (2D) germanene supported on Au(1 1 1) to determine the structural, electronic and interface interaction properties on the basis of first-principles electronic calculations. In light of the lattice commensurability, (2  ×  2)/(√7  ×  √7) and (√3  ×  √3)/(√7  ×  √7) germanene/Au(1 1 1) superstructures are obtained with low-binding energy. We find that the interface effects between germanene and Au(1 1 1) break the inversion symmetry of germanene to a significant extent. The electron accumulation layer between germanene and Au(1 1 1) bonds the adlayer and substrate together, indicating strong adsorption behavior. Charge transfer occurs from Au(1 1 1) to germanene with the formation of a dipole layer. In addition, the intense electronic orbital hybridization effects between germanene and Au(1 1 1) are revealed through the atomic projected band structures. Clearly, resonant behavior occurs between germanene p orbitals and Au(1 1 1) s orbitals. As germanene is peeled off from Au(1 1 1), the band structures are characterized as metallic, and in the absence of the Au(1 1 1) substrate the band structure of (√3  ×  √3) single layer germanene demonstrates a lower effective mass due to its higher geometrical symmetry, which is similar to that of planar graphene. This paper shows that Au(1 1 1) is a suitable candidate for the growth of germanene, and our results offer useful information for the application of germanene in electronic devices.

  4. Optimizing Au/Ag core-shell nanorods: purification, stability, and surface modification

    NASA Astrophysics Data System (ADS)

    Ma, Yanan; Zhou, Jun; Shu, Lei; Li, Tianhua; Petti, Lucia; Mormile, Pasquale

    2014-06-01

    The purification, stability, and surface modification of Au/Ag core-shell nanorods (Au/Ag NRs) in a biological buffer solution were systematically studied for the first time. In this study, Au/Ag NRs were synthesized by chemically reducing silver on the surface of gold nanorods using cetyltrimethylammonium bromide as surfactant and then purified by centrifugation washing. Based on the analysis of UV-Vis absorption spectra, TEM images, Raman spectra, and the ξ-potential, it was observed that after the second washing step, the Au/Ag NRs displayed good stability and high surface-enhanced Raman scattering (SERS) enhancement. When the as-prepared Au/Ag NRs were centrifuged more than twice, a structural transition in the surfactant layer was manifested with a sudden increase in the Raman signal intensities at 760 and 1,455 cm-1. Moreover, 4-mercaptobenzoic acid (4MBA) was used as a Raman reporter molecule to investigate the SERS characteristics of the purified Au/Ag NRs. The Raman signal intensity was enhanced with increasing the concentration of 4MBA and reached its highest intensity at the saturation concentration of 1.0 µM 4MBA in a 5 ml solution of the purified Au/Ag NRs. To prevent significant aggregation of the 4MBA-tagged Au/Ag NRs, a poly(styrenesulfonate) (PSS) layer was assembled on the nanorod surfaces by electrostatic adsorption for further surface modification, which made the 4MBA-tagged Au/Ag NRs suitable for the labeled biosensing. Subsequently, the characteristics of the PSS-coated Au/Ag NRs were demonstrated for the potential applications of label-free biosensing.

  5. Using Numbers in Qualitative Research

    ERIC Educational Resources Information Center

    Maxwell, Joseph A.

    2010-01-01

    The use of numerical/quantitative data in qualitative research studies and reports has been controversial. Prominent qualitative researchers such as Howard Becker and Martyn Hammersley have supported the inclusion of what Becker called "quasi-statistics": simple counts of things to make statements such as "some," "usually," and "most" more…

  6. Beyond PICO: the SPIDER tool for qualitative evidence synthesis.

    PubMed

    Cooke, Alison; Smith, Debbie; Booth, Andrew

    2012-10-01

    Standardized systematic search strategies facilitate rigor in research. Current search tools focus on retrieval of quantitative research. In this article we address issues relating to using existing search strategy tools, most typically the PICO (Population, Intervention, Comparison, Outcome) formulation for defining key elements of a review question, when searching for qualitative and mixed methods research studies. An alternative search strategy tool for qualitative/mixed methods research is outlined: SPIDER (Sample, Phenomenon of Interest, Design, Evaluation, Research type). We used both the SPIDER and PICO search strategy tools with a qualitative research question. We have used the SPIDER tool to advance thinking beyond PICO in its suitable application to qualitative and mixed methods research. However, we have highlighted once more the need for improved indexing of qualitative articles in databases. To constitute a viable alternative to PICO, SPIDER needs to be refined and tested on a wider range of topics.

  7. The Electronic Properties and L3 XANES of Au and Nano-Au

    SciTech Connect

    Yiu, Y.M.; Zhang, P.; Sham, T.K.

    2004-04-20

    The electronic properties of Au crystal and nano Au have been investigated by theory and experiment. Molecularly capped nano-Au was synthesized using the two-phase method. Au nano-particles have been characterized by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). They retain the fcc crystal structure. Their sizes have been determined to be in a range from 5.5 nm to 1.7 nm. The L3 X-ray Absorption Near Edge Structure (XANES) of nano-Au and Au foil have been recorded using synchrotron radiation, and examined by theoretical calculation based on the first principles. Both theory and experiment show that the nano-Au particles have essentially all the Au L3 XANES features of bulk Au in the near edge region with less pronounced resonance peaks. It is also shown that nano Au exhibits lower 4f binding energy than bulk Au in good agreement with quantum confined Au systems reported previously.

  8. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Enhanced nonlinear optical absorption of Au/SiO2 nano-composite thin films

    NASA Astrophysics Data System (ADS)

    Zhao, Cui-Hua; Zhang, Bo-Ping; Shang, Peng-Peng

    2009-12-01

    Nano metal-particle dispersed glasses are the attractive candidates for nonlinear optical material applications. Au/SiO2 nano-composite thin films with 3 vol% to 65 vol% Au are prepared by inductively coupled plasma sputtering. Au particles as perfect spheres with diameters between 10 nm and 30 nm are uniformly dispersed in the SiO2 matrix. Optical absorption peaks due to the surface plasmon resonance of Au particles are observed. The absorption property is enhanced with the increase of Au content, showing a maximum value in the films with 37 vol% Au. The absorption curves of the Au/SiO2 thin films with 3 vol% to 37 vol% Au accord well with the theoretical optical absorption spectra obtained from Mie resonance theory. Increasing Au content over 37 vol% results in the partial connection of Au particles, whereby the intensity of the absorption peak is weakened and ultimately replaced by the optical absorption of the bulk. The band gap decreases with Au content increasing from 3 vol% to 37 vol% but increases as Au content further increases.

  9. Centrality dependence of charged-hadron transverse-momentum spectra in d+Au collisions at sqrt[s(NN)]=200 GeV.

    PubMed

    Back, B B; Baker, M D; Ballintijn, M; Barton, D S; Becker, B; Betts, R R; Bickley, A A; Bindel, R; Budzanowski, A; Busza, W; Carroll, A; Decowski, M P; García, E; Gburek, T; George, N; Gulbrandsen, K; Gushue, S; Halliwell, C; Hamblen, J; Harrington, A S; Henderson, C; Hofman, D J; Hollis, R S; Hołyński, R; Holzman, B; Iordanova, A; Johnson, E; Kane, J L; Khan, N; Kulinich, P; Kuo, C M; Lee, J W; Lin, W T; Manly, S; Mignerey, A C; Noell, A; Nouicer, R; Olszewski, A; Pak, R; Park, I C; Pernegger, H; Reed, C; Remsberg, L P; Roland, C; Roland, G; Sagerer, J; Sarin, P; Sawicki, P; Sedykh, I; Skulski, W; Smith, C E; Steinberg, P; Stephans, G S F; Sukhanov, A; Teng, R; Tonjes, M B; Trzupek, A; Vale, C; van Nieuwenhuizen, G J; Verdier, R; Veres, G I; Wadsworth, B; Wolfs, F L H; Wosiek, B; Woźniak, K; Wuosmaa, A H; Wysłouch, B; Zhang, J

    2003-08-15

    We have measured transverse momentum distributions of charged hadrons produced in d+Au collisions at sqrt[s(NN)]=200 GeV. The spectra were obtained for transverse momenta 0.25qualitatively different from observations in Au+Au collisions at the same energy. The results provide important information for discriminating between different models for the suppression of high-p(T) hadrons observed in Au+Au collisions.

  10. Managing occurrence branching in qualitative simulation

    SciTech Connect

    Tokuda, L.

    1996-12-31

    Qualitative simulators can produce common sense abstractions of complex behaviors given only partial knowledge about a system. One of the problems which limits the applicability of qualitative simulators is the intractable branching of successor states encountered with model of even modest size. Some branches may be unavoidable due to the complex nature of a system. Other branches may be accidental results of the model chosen. A common source of intractability is occurrence branching. Occurrence branching occurs when the state transitions of two variables are unordered with respect to each other. This paper extends the QSIM model to distinguish between interesting occurrence branching and uninteresting occurrence branching. A representation, algorithm, and simulator for efficiently handling uninteresting branching is presented.

  11. Large extrinsic spin Hall effect in Au-Cu alloys by extensive atomic disorder scattering

    NASA Astrophysics Data System (ADS)

    Zou, L. K.; Wang, S. H.; Zhang, Y.; Sun, J. R.; Cai, J. W.; Kang, S. S.

    2016-01-01

    Spin Hall angle, which denotes the conversion efficiency between spin and charge current, is a key parameter in the pure spin current phenomenon. The search for materials with large spin Hall angle is indeed important for scientific interest and potential application in spintronics. Here the large enhanced spin Hall effect (SHE) of Au-Cu alloy is reported by investigating the spin Seebeck effect, spin Hall anomalous Hall effect, and spin Hall magnetoresistance of the Y3F e5O12 (YIG)/A uxC u1 -x hybrid structure over the full composition. At the near equiatomic Au-Cu composition with maximum atomic disorder scattering, the spin Hall angle of the Au-Cu alloy increases by two to three times together with a moderate spin diffusion length in comparison with Au. The longitudinal spin Seebeck voltage and the spin Hall magnetoresistance ratio also increase by two to three times. More importantly, no evidence of anomalous Hall effect is observed in all YIG/Au-Cu samples, in contrast to the cases of other giant SHE materials Pt(Pd), Ta, and W. This behavior makes Au-Cu free from any suspicion of the magnetic proximity effect involved in the hybrid structure, and thus the Au-Cu alloy can be an ideal material for pure spin current study.

  12. From the Au nano-clusters to the nanoparticles on 4H-SiC (0001).

    PubMed

    Li, Ming-Yu; Zhang, Quanzhen; Pandey, Puran; Sui, Mao; Kim, Eun-Soo; Lee, Jihoon

    2015-09-10

    The control over the configuration, size, and density of Au nanoparticles (NPs) has offered a promising route to control the spatial confinement of electrons and photons, as a result, Au NPs with a various configuration, size and density are witnessed in numerous applications. In this work, we investigate the evolution of self-assembled Au nanostructures on 4H-SiC (0001) by the systematic variation of annealing temperature (AT) with several deposition amount (DA). With the relatively high DAs (8 and 15 nm), depending on the AT variation, the surface morphology drastically evolve in two distinctive phases, i.e. (I) irregular nano-mounds and (II) hexagonal nano-crystals. The thermal energy activates adatoms to aggregate resulting in the formation of self-assembled irregular Au nano-mounds based on diffusion limited agglomeration at comparatively low annealing temperature, which is also accompanied with the formations of hillocks and granules due to the dewetting of Au films and surface reordering. At high temperature, hexagonal Au nano-crystals form with facets along {111} and {100} likely due to anisotropic distribution of surface energy induced by the increased volume of NPs. With the small DA (3 nm), only dome shaped Au NPs are fabricated along with the variation of AT from low to elevated temperature.

  13. From the Au nano-clusters to the nanoparticles on 4H-SiC (0001)

    PubMed Central

    Li, Ming-Yu; Zhang, Quanzhen; Pandey, Puran; Sui, Mao; Kim, Eun-Soo; Lee, Jihoon

    2015-01-01

    The control over the configuration, size, and density of Au nanoparticles (NPs) has offered a promising route to control the spatial confinement of electrons and photons, as a result, Au NPs with a various configuration, size and density are witnessed in numerous applications. In this work, we investigate the evolution of self-assembled Au nanostructures on 4H-SiC (0001) by the systematic variation of annealing temperature (AT) with several deposition amount (DA). With the relatively high DAs (8 and 15 nm), depending on the AT variation, the surface morphology drastically evolve in two distinctive phases, i.e. (I) irregular nano-mounds and (II) hexagonal nano-crystals. The thermal energy activates adatoms to aggregate resulting in the formation of self-assembled irregular Au nano-mounds based on diffusion limited agglomeration at comparatively low annealing temperature, which is also accompanied with the formations of hillocks and granules due to the dewetting of Au films and surface reordering. At high temperature, hexagonal Au nano-crystals form with facets along {111} and {100} likely due to anisotropic distribution of surface energy induced by the increased volume of NPs. With the small DA (3 nm), only dome shaped Au NPs are fabricated along with the variation of AT from low to elevated temperature. PMID:26354098

  14. Synthesis of Au/Graphene Oxide Composites for Selective and Sensitive Electrochemical Detection of Ascorbic Acid

    NASA Astrophysics Data System (ADS)

    Song, Jian; Xu, Lin; Xing, Ruiqing; Li, Qingling; Zhou, Chunyang; Liu, Dali; Song, Hongwei

    2014-12-01

    In this work, we present a novel ascorbic acid (AA) sensor applied to the detection of AA in human sera and pharmaceuticals. A series of Au nanoparticles (NPs) and graphene oxide sheets (Au NP/GO) composites were successfully synthesized by reduction of gold (III) using sodium citrate. Then the Au NP/GO composites were used to construct nonenzymatic electrodes in practical AA measurement. The electrode that has the best performance presents attractive analytical features, such as a low working potential of +0.15 V, a high sensitivity of 101.86 μA mM-1 cm-2 to AA, a low detection limit of 100 nM, good reproducibility and excellent selectivity. And more,it was also employed to accurately and practically detect AA in human serum and clinical vitamin C tablet with the existence of some food additive. The enhanced AA electrochemical properties of the Au NP/GO modified electrode in our work can be attributed to the improvement of electroactive surface area of Au NPs and the synergistic effect from the combination of Au NPs and GO sheets. This work shows that the Au NP/GO/GCEs hold the prospect for sensitive and selective determination of AA in practical clinical application.

  15. Synthesis of Au/Graphene Oxide Composites for Selective and Sensitive Electrochemical Detection of Ascorbic Acid

    PubMed Central

    Song, Jian; Xu, Lin; Xing, Ruiqing; Li, Qingling; Zhou, Chunyang; Liu, Dali; Song, Hongwei

    2014-01-01

    In this work, we present a novel ascorbic acid (AA) sensor applied to the detection of AA in human sera and pharmaceuticals. A series of Au nanoparticles (NPs) and graphene oxide sheets (Au NP/GO) composites were successfully synthesized by reduction of gold (III) using sodium citrate. Then the Au NP/GO composites were used to construct nonenzymatic electrodes in practical AA measurement. The electrode that has the best performance presents attractive analytical features, such as a low working potential of +0.15 V, a high sensitivity of 101.86 μA mM−1 cm−2 to AA, a low detection limit of 100 nM, good reproducibility and excellent selectivity. And more,it was also employed to accurately and practically detect AA in human serum and clinical vitamin C tablet with the existence of some food additive. The enhanced AA electrochemical properties of the Au NP/GO modified electrode in our work can be attributed to the improvement of electroactive surface area of Au NPs and the synergistic effect from the combination of Au NPs and GO sheets. This work shows that the Au NP/GO/GCEs hold the prospect for sensitive and selective determination of AA in practical clinical application. PMID:25515430

  16. Significant Broadband Photocurrent Enhancement by Au-CZTS Core-Shell Nanostructured Photocathodes

    PubMed Central

    Zhang, Xuemei; Wu, Xu; Centeno, Anthony; Ryan, Mary P.; Alford, Neil M.; Riley, D. Jason; Xie, Fang

    2016-01-01

    Copper zinc tin sulfide (CZTS) is a promising material for harvesting solar energy due to its abundance and non-toxicity. However, its poor performance hinders their wide application. In this paper gold (Au) nanoparticles are successfully incorporated into CZTS to form Au@CZTS core-shell nanostructures. The photocathode of Au@CZTS nanostructures exhibits enhanced optical absorption characteristics and improved incident photon-to-current efficiency (IPCE) performance. It is demonstrated that using this photocathode there is a significant increase of the power conversion efficiency (PCE) of a photoelectrochemical solar cell of 100% compared to using a CZTS without Au core. More importantly, the PCE of Au@CZTS photocathode improved by 15.8% compared to standard platinum (Pt) counter electrode. The increased efficiency is attributed to plasmon resonance energy transfer (PRET) between the Au nanoparticle core and the CZTS shell at wavelengths shorter than the localized surface plasmon resonance (LSPR) peak of the Au and the semiconductor bandgap. PMID:26997140

  17. First-principles study of SF6 decomposed gas adsorbed on Au-decorated graphene

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxing; Yu, Lei; Gui, Yingang; Hu, Weihua

    2016-03-01

    We theoretically investigated the decomposed gaseous components of sulfur hexafluoride (SF6), namely, H2S, SO2, SOF2, and SO2F2, adsorbed on pristine and Au-embedded graphene based on the revised Perdew-Burke-Ernzerhof calculation, which empirically includes a dispersion correction (DFT-D) for van der Waals interaction with standard generalized gradient approximation. Pristine graphene exhibits weak adsorption and absence of charge transfer, which indicates barely satisfactory sensing for decomposed components. The Au atom introduces magnetism to the pristine graphene after metal-embedded decoration as well as enhances conductivity. All four molecules induce certain hybridization between the molecules and Au-graphene, which results in chemical interactions. SOF2 and SO2F2 exhibit a strong chemisorption interaction with Au-graphene, while H2S and SO2 exhibit quasi-molecular binding effects. Only H2S exhibits n-type doping to Au-graphene, whereas the rest gases exhibit p-type doping. Magnetic moments fluctuate substantially in the original Au-graphene when H2S and SO2 are adsorbed. While the adsorption effects of SOF2 and SO2F2 generate magnetism quenching. The charge transfer mechanism is also discussed in this paper. These results will shed light on the valuable application of Au-embedded graphene for selective gas sensing and spintronics.

  18. From the Au nano-clusters to the nanoparticles on 4H-SiC (0001)

    NASA Astrophysics Data System (ADS)

    Li, Ming-Yu; Zhang, Quanzhen; Pandey, Puran; Sui, Mao; Kim, Eun-Soo; Lee, Jihoon

    2015-09-01

    The control over the configuration, size, and density of Au nanoparticles (NPs) has offered a promising route to control the spatial confinement of electrons and photons, as a result, Au NPs with a various configuration, size and density are witnessed in numerous applications. In this work, we investigate the evolution of self-assembled Au nanostructures on 4H-SiC (0001) by the systematic variation of annealing temperature (AT) with several deposition amount (DA). With the relatively high DAs (8 and 15 nm), depending on the AT variation, the surface morphology drastically evolve in two distinctive phases, i.e. (I) irregular nano-mounds and (II) hexagonal nano-crystals. The thermal energy activates adatoms to aggregate resulting in the formation of self-assembled irregular Au nano-mounds based on diffusion limited agglomeration at comparatively low annealing temperature, which is also accompanied with the formations of hillocks and granules due to the dewetting of Au films and surface reordering. At high temperature, hexagonal Au nano-crystals form with facets along {111} and {100} likely due to anisotropic distribution of surface energy induced by the increased volume of NPs. With the small DA (3 nm), only dome shaped Au NPs are fabricated along with the variation of AT from low to elevated temperature.

  19. Positivism and qualitative nursing research.

    PubMed

    Paley, J

    2001-01-01

    Despite the hostility to positivism shown by qualitative methodologists in nursing, as in other disciplines, the epistemological and ontological instincts of qualitative researchers seem to coincide with those of the positivists, especially Bayesian positivists. This article suggests that positivists and qualitative researchers alike are pro-observation, proinduction, pro-plausibility and pro-subjectivity. They are also anti-cause, anti-realist, anti-explanation, anti-correspondence, anti-truth. In only one respect is there a significant difference between positivist and qualitative methodologists: most positivists have believed that, methodologically, the natural sciences and the social sciences are the same; most qualitative researchers are adamant that they are not. However, if positivism fails as a philosophy of the natural sciences (which it probably does), it might well succeed as a philosophy of the social sciences, just because there is a methodological watershed between the two. Reflex antagonism to positivism might therefore be a major obstacle to understanding the real reasons why qualitative research and the natural sciences are methodologically divergent; and less hostility on the part of qualitative nurse researchers might bring certain advantages in its wake.

  20. A comparison of risk assessment techniques from qualitative to quantitative

    SciTech Connect

    Altenbach, T.J.

    1995-02-13

    Risk assessment techniques vary from purely qualitative approaches, through a regime of semi-qualitative to the more traditional quantitative. Constraints such as time, money, manpower, skills, management perceptions, risk result communication to the public, and political pressures all affect the manner in which risk assessments are carried out. This paper surveys some risk matrix techniques, examining the uses and applicability for each. Limitations and problems for each technique are presented and compared to the others. Risk matrix approaches vary from purely qualitative axis descriptions of accident frequency vs consequences, to fully quantitative axis definitions using multi-attribute utility theory to equate different types of risk from the same operation.

  1. Efficient H{sub 2} production over Au/graphene/TiO{sub 2} induced by surface plasmon resonance of Au and band-gap excitation of TiO{sub 2}

    SciTech Connect

    Liu, Yang; Yu, Hongtao; Wang, Hua; Chen, Shuo; Quan, Xie

    2014-11-15

    Highlights: • Both surface plasmon resonance and band-gap excitation were used for H{sub 2} production. • Au/Gr/TiO{sub 2} composite photocatalyst was synthesized. • Au/Gr/TiO{sub 2} exhibited enhancement of light absorption and charge separation. • H{sub 2} production rate of Au/Gr/TiO{sub 2} was about 2 times as high as that of Au/TiO{sub 2}. - Abstract: H{sub 2} production over Au/Gr/TiO{sub 2} composite photocatalyst induced by surface plasmon resonance of Au and band-gap excitation of TiO{sub 2} using graphene (Gr) as an electron acceptor has been investigated. Electron paramagnetic resonance study indicated that, in this composite, Gr collected electrons not only from Au with surface plasmon resonance but also from TiO{sub 2} with band-gap excitation. Surface photovoltage and UV–vis absorption measurements revealed that compared with Au/TiO{sub 2}, Au/Gr/TiO{sub 2} displayed more effective photogenerated charge separation and higher optical absorption. Benefiting from these advantages, the H{sub 2} production rate of Au/Gr/TiO{sub 2} composite with Gr content of 1.0 wt% and Au content of 2.0 wt% was about 2 times as high as that of Au/TiO{sub 2}. This work represents an important step toward the efficient application of both surface plasmon resonance and band-gap excitation on the way to converting solar light into chemical energy.

  2. Enhanced production of direct photons in Au + Au collisions at square root(S(NN)) = 200 GeV and implications for the initial temperature.

    PubMed

    Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Al-Jamel, A; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Asai, J; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Baksay, G; Baksay, L; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Bazilevsky, A; Belikov, S; Bennett, R; Berdnikov, Y; Bickley, A A; Bjorndal, M T; Boissevain, J G; Borel, H; Boyle, K; Brooks, M L; Brown, D S; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Campbell, S; Chai, J-S; Chang, B S; Charvet, J-L; Chernichenko, S; Chiba, J; Chi, C Y; Chiu, M; Choi, I J; Chujo, T; Chung, P; Churyn, A; Cianciolo, V; Cleven, C R; Cobigo, Y; Cole, B A; Comets, M P; Constantin, P; Csanád, M; Csörgo, T; Dahms, T; Das, K; David, G; Deaton, M B; Dehmelt, K; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Donadelli, M; Drachenberg, J L; Drapier, O; Drees, A; Dubey, A K; Durum, A; Dzhordzhadze, V; Efremenko, Y V; Egdemir, J; Ellinghaus, F; Emam, W S; Enokizono, A; En'yo, H; Espagnon, B; Esumi, S; Eyser, K O; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Forestier, B; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fung, S-Y; Fusayasu, T; Gadrat, S; Garishvili, I; Gastineau, F; Germain, M; Glenn, A; Gong, H; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-A; Hachiya, T; Hadj Henni, A; Haegemann, C; Haggerty, J S; Hagiwara, M N; Hamagaki, H; Han, R; Harada, H; Hartouni, E P; Haruna, K; Harvey, M; Haslum, E; Hasuko, K; Hayano, R; Heffner, M; Hemmick, T K; Hester, T; Heuser, J M; He, X; Hiejima, H; Hill, J C; Hobbs, R; Hohlmann, M; Holmes, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Hur, M G; Ichihara, T; Imai, K; Inaba, M; Inoue, Y; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Jacak, B V; Jia, J; Jin, J; Jinnouchi, O; Johnson, B M; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kaneta, M; Kang, J H; Kanou, H; Kawagishi, T; Kawall, D; Kazantsev, A V; Kelly, S; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, E; Kim, Y-S; Kinney, E; Kiss, A; Kistenev, E; Kiyomichi, A; Klay, J; Klein-Boesing, C; Kochenda, L; Kochetkov, V; Komkov, B; Konno, M; Kotchetkov, D; Kozlov, A; Král, A; Kravitz, A; Kroon, P J; Kubart, J; Kunde, G J; Kurihara, N; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y-S; Lajoie, J G; Lebedev, A; Le Bornec, Y; Leckey, S; Lee, D M; Lee, M K; Lee, T; Leitch, M J; Leite, M A L; Lenzi, B; Lim, H; Liska, T; Litvinenko, A; Liu, M X; Li, X; Li, X H; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mao, Y; Masek, L; Masui, H; Matathias, F; McCain, M C; McCumber, M; McGaughey, P L; Miake, Y; Mikes, P; Miki, K; Miller, T E; Milov, A; Mioduszewski, S; Mishra, G C; Mishra, M; Mitchell, J T; Mitrovski, M; Morreale, A; Morrison, D P; Moss, J M; Moukhanova, T V; Mukhopadhyay, D; Murata, J; Nagamiya, S; Nagata, Y; Nagle, J L; Naglis, M; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Norman, B E; Nyanin, A S; Nystrand, J; O'Brien, E; Oda, S X; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, H; Okada, K; Oka, M; Omiwade, O O; Oskarsson, A; Otterlund, I; Ouchida, M; Ozawa, K; Pak, R; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Pisani, R P; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Rembeczki, S; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Rykov, V L; Ryu, S S; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Sakata, H; Samsonov, V; Sato, H D; Sato, S; Sawada, S; Seele, J; Seidl, R; Semenov, V; Seto, R; Sharma, D; Shea, T K; Shein, I; Shevel, A; Shibata, T-A; Shigaki, K; Shimomura, M; Shohjoh, T; Shoji, K; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, C P; Singh, V; Skutnik, S; Slunecka, M; Smith, W C; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sullivan, J P; Sziklai, J; Tabaru, T; Takagi, S; Takagui, E M; Taketani, A; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarján, P; Thomas, T L; Togawa, M; Toia, A; Tojo, J; Tomásek, L; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Tuli, S K; Tydesjö, H; Tyurin, N; Vale, C; Valle, H; van Hecke, H W; Velkovska, J; Vertesi, R; Vinogradov, A A; Virius, M; Vrba, V; Vznuzdaev, E; Wagner, M; Walker, D; Wang, X R; Watanabe, Y; Wessels, J; White, S N; Willis, N; Winter, D; Woody, C L; Wysocki, M; Xie, W; Yamaguchi, Y L; Yanovich, A; Yasin, Z; Ying, J; Yokkaichi, S; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zhou, S; Zimányi, J; Zolin, L

    2010-04-02

    The production of e+ e- pairs for m(e+ e-)<0.3 GeV/c2 and 1Au+Au collisions at square root(S(NN))=200 GeV. An enhanced yield above hadronic sources is observed. Treating the excess as photon internal conversions, the invariant yield of direct photons is deduced. In central Au+Au collisions, the excess of the direct photon yield over p+p is exponential in transverse momentum, with an inverse slope T=221+/-19(stat)+/-19(syst) MeV. Hydrodynamical models with initial temperatures ranging from T(init) approximately 300-600 MeV at times of approximately 0.6-0.15 fm/c after the collision are in qualitative agreement with the data. Lattice QCD predicts a phase transition to quark gluon plasma at approximately 170 MeV.

  3. Au25(SG)18 as a fluorescent iodide sensor

    NASA Astrophysics Data System (ADS)

    Wang, Man; Wu, Zhikun; Yang, Jiao; Wang, Guozhong; Wang, Hongzhi; Cai, Weiping

    2012-06-01

    The recently emerging gold nanoclusters (GNC) are of major importance for both basic science studies and practical applications. Based on its surface-induced fluorescence properties, we investigated the potential use of Au25(SG)18 (GSH: glutathione) as a fluorescent iodide sensor. The current detection limit of 400 nM, which can possibly be further enhanced by optimizing the conditions, and excellent selectivity among 12 types of anion (F-, Cl-, Br-, I-, NO3-, ClO4-, HCO3-, IO3-, SO42-, SO32-, CH3COO- and C6H5O73-) make Au25(SG)18 a good candidate for iodide sensing. Furthermore, our work has revealed the particular sensing mechanism, which was found to be affinity-induced ratiometric and enhanced fluorescence (abbreviated to AIREF), which has rarely been reported previously and may provide an alternative strategy for devising nanoparticle-based sensors.The recently emerging gold nanoclusters (GNC) are of major importance for both basic science studies and practical applications. Based on its surface-induced fluorescence properties, we investigated the potential use of Au25(SG)18 (GSH: glutathione) as a fluorescent iodide sensor. The current detection limit of 400 nM, which can possibly be further enhanced by optimizing the conditions, and excellent selectivity among 12 types of anion (F-, Cl-, Br-, I-, NO3-, ClO4-, HCO3-, IO3-, SO42-, SO32-, CH3COO- and C6H5O73-) make Au25(SG)18 a good candidate for iodide sensing. Furthermore, our work has revealed the particular sensing mechanism, which was found to be affinity-induced ratiometric and enhanced fluorescence (abbreviated to AIREF), which has rarely been reported previously and may provide an alternative strategy for devising nanoparticle-based sensors. Electronic supplementary information (ESI) available: fluorescence spectra of Au25(SG)18 (1.6 μM in H2O) with successive titration of I- and the time-dependent fluorescence of Au25(SG)18. See DOI: 10.1039/c2nr30169e.

  4. The unusual effect of AgNO3 on the growth of Au nanostructures and their catalytic performance

    NASA Astrophysics Data System (ADS)

    Li, Xingliang; Yang, Yun; Zhou, Guangju; Han, Shuhua; Wang, Wenfang; Zhang, Lijie; Chen, Wei; Zou, Chao; Huang, Shaoming

    2013-05-01

    Au nanostructures attract much attention due to their potential applications in many fields. The controlled synthesis is critical to their properties modulation and applications. AgNO3-assisted synthesis is a widely used method for controllably preparing Au nanostructures in aqueous system. Herein, the effect of AgNO3 on the growth of Au nanostructures in polyol is studied. We observe an unusual effect that AgNO3 can induce the formation of pentatwinned Au nanostructures (nanorods and decahedra) and block the growth of Au nanorods. More interestingly, this blocking effect can be tuned through controlling the amount of AgNO3. A moderate amount of AgNO3 facilitates the formation of Au nanorods. A large amount of AgNO3 completely blocks the growth of nanorods and favors the formation of high quality decahedra (decahedra can be considered as nanorods with 0 nm longitudinal length). Besides, this blocking effect also allows preparation of different high-index-faceted Au nanobipyramids. These prepared Au nanostructures further serve as starting templates to fabricate other heterostructured Au/Ag nanomaterials, such as Ag-Au-Ag segmental nanorods, Au@Ag core-shelled nanostructures. The prepared nanostructures exhibit size- and structure-dependent catalytic performance in the reduction of p-nitrophenol to p-aminophenol by sodium borohydride.Au nanostructures attract much attention due to their potential applications in many fields. The controlled synthesis is critical to their properties modulation and applications. AgNO3-assisted synthesis is a widely used method for controllably preparing Au nanostructures in aqueous system. Herein, the effect of AgNO3 on the growth of Au nanostructures in polyol is studied. We observe an unusual effect that AgNO3 can induce the formation of pentatwinned Au nanostructures (nanorods and decahedra) and block the growth of Au nanorods. More interestingly, this blocking effect can be tuned through controlling the amount of AgNO3. A moderate

  5. Stabilization of Au at edges of bimetallic PdAu nanocrystallites.

    PubMed

    Yudanov, Ilya V; Neyman, Konstantin M

    2010-05-21

    Density functional calculations were performed to study the distribution of Au atoms in bimetallic PdAu nanoparticles. A series of Pd(79-n)Au(n) clusters of truncated octahedral shape with different content of Au ranging from n = 1 to 60 was used to model such bimetallic nanosystems. Segregation of Au to the particle surface is found to be thermodynamically favorable. The most stable sites for Au substitution are located at the edges of the PdAu nanoclusters. The stabilization at the edges is rationalized by their higher flexibility for surface relaxation which minimizes the strain induced by larger atomic radius of Au as compared to Pd. This stabilization of Au at the edges indicates the possibility to synthesize PdAu particles with Pd atoms located mainly on the facets, and edges "decorated" by Au atoms. Such nanocrystallites are expected to exhibit peculiar catalytic properties and, being thermodynamically stable, should be prone to retaining their initial shape under catalytic conditions.

  6. Trajectory constraints in qualitative simulation

    SciTech Connect

    Brajnik, G.; Clancy, D.J.

    1996-12-31

    We present a method for specifying temporal constraints on trajectories of dynamical systems and enforcing them during qualitative simulation. This capability can be used to focus a simulation, simulate non-autonomous and piecewise-continuous systems, reason about boundary condition problems and incorporate observations into the simulation. The method has been implemented in TeQSIM, a qualitative simulator that combines the expressive power of qualitative differential equations with temporal logic. It interleaves temporal logic model checking with the simulation to constrain and refine the resulting predicted behaviors and to inject discontinuous changes into the simulation.

  7. Qualitative tools and experimental philosophy

    PubMed Central

    Andow, James

    2016-01-01

    Abstract Experimental philosophy brings empirical methods to philosophy. These methods are used to probe how people think about philosophically interesting things such as knowledge, morality, and freedom. This paper explores the contribution that qualitative methods have to make in this enterprise. I argue that qualitative methods have the potential to make a much greater contribution than they have so far. Along the way, I acknowledge a few types of resistance that proponents of qualitative methods in experimental philosophy might encounter, and provide reasons to think they are ill-founded.

  8. Preparation of Au-Pt nanostructures by combining top-down with bottom-up strategies and application in label-free electrochemical immunosensor for detection of NMP22.

    PubMed

    Jia, Hongying; Gao, Picheng; Ma, Hongmin; Wu, Dan; Du, Bin; Wei, Qin

    2015-02-01

    A novel label-free amperometric immunosensor for sensitive detection of nuclear matrix protein 22 (NMP22) was developed based on Au-Pt bimetallic nanostructures, which were prepared by combining top-down with bottom-up strategies. Nanoporous gold (NPG) was prepared by "top-down" dealloying of commercial Au/Ag alloy film. After deposition of NPG on an electrode, Pt nanoparticles (PtNPs) were further decorated on NPG by "bottom-up" electrodeposition. The prepared bimetallic nanostructures combine the merits of both NPG and PtNPs, and show a high electrocatalytic activity towards the reduction of H2O2. The label-free immunosensor was constructed by directly immobilizing antibody of NMP22 (anti-NMP22) on the surface of bimetallic nanostructures. The immunoreaction induced amperometric response could be detected and negatively correlated to the concentration of NMP22. Bimetallic nanostructure morphologies and detection conditions were investigated to obtain the best sensing performance. Under the optimal conditions, a linear range from 0.01ng/mL to 10ng/mL and a detection limit of 3.33pg/mL were obtained. The proposed immunosensor showed high sensitivity, good selectivity, stability, reproducibility, and regeneration for the detection of NMP22, and it was evaluated in urine samples, receiving satisfactory results.

  9. Chitosan-induced Au/Ag nanoalloy dispersed in IL and application in fabricating an ultrasensitive glucose biosensor based on luminol-H₂O₂-Cu²⁺/IL chemiluminescence system.

    PubMed

    Chaichi, M J; Alijanpour, S O

    2014-11-01

    A novel glucose biosensor based on the chemiluminescence (CL) detection of enzymatically generated hydrogen peroxide (H₂O₂) was constructed by one covalent immobilization of glucose oxidase (GOD) in glutaraldehyde-functionalized glass cell. In following, chitosan-induced Au/Ag nanoparticles dispersed in ion liquid (IL) were synthesised and immobilized on it. Herein, chitosan molecules acted as both the reducing and stabilizing agent for the preparation of NPs and also, as a coupling agent GOD and Au/Ag alloy NPs. In addition to catalyze luminol CL reaction, these NPs offered excellent catalytic activity toward hydrogen peroxide generation in enzymatic reaction between GOD and glucose. The used IL in fabrication of biosensor increased its stability. Also, IL alongside Cu(2+) accelerated enzymatic and CL reaction kinetic, and decreased luminol CL reaction optimum pH to 7.5 which would enable sensitive and precision determination of glucose. Under optimum condition, linear response range of glucose was found to be 1.0 × 10(-6)-7.5 × 10(-3)M, and detection limit was 4.0 × 10(-7)M. The CL biosensor exhibited good storage stability, i.e., 90% of its initial response was retained after 2 months storage at pH 7.0. The present CL biosensor has been applied satisfactory to analysis of glucose in real serum and urine samples.

  10. Synthesis of triangular Au core-Ag shell nanoparticles

    SciTech Connect

    Rai, Akhilesh; Chaudhary, Minakshi; Ahmad, Absar; Bhargava, Suresh; Sastry, Murali . E-mail: msastry@tatachemicals.com

    2007-07-03

    In this paper, we demonstrate a simple and reproducible method for the synthesis of triangular Au core-Ag shell nanoparticles. The triangular gold core is obtained by the reduction of gold ions by lemongrass extract. Utilizing the negative charge on the gold nanotriangles, silver ions are bound to their surface and thereafter reduced by ascorbic acid under alkaline conditions. The thickness of the silver shell may be modulated by varying the pH of the reaction medium. The formation of the Au core-Ag shell triangular nanostructures has been followed by UV-vis-NIR Spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM) and atomic force microscopy (AFM) measurements. The sharp vertices of the triangles coupled with the core-shell structure is expected to have potential for application in surface enhanced Raman spectroscopy and in the sensitive detection of biomolecules.

  11. Well-defined linear Au n (n = 2-4) chains encapsulated in SWCNTs: a DFT study.

    PubMed

    Liu, Yiliang; Hua, Yawen; Yan, Anying; Wu, Shuang; Kong, Fanjie

    2017-01-01

    One-dimensional (1D) gold nanostructures have been extensively studied due to their potential applications in nanoelectronic devices. Using first-principles calculations, composites consisting of a well-defined linear Au n (n = 2-4) chain encapsulated in a (9,0) single-walled carbon nanotube (SWCNT) were studied. The translational energy barrier of a single Au atom in a (9,0) SWCNT was found to be 0.03 eV. This low barrier guaranteed the formation of Au n @ (9,0) SWCNT (n = 1-4) composites. Bond lengths, differential charge densities, and electronic band structures of the composites were studied. The average Au-Au bond lengths in the composites were found to be almost the same as those in the corresponding free-standing linear Au n . The average bond length increased as the number of Au atoms increased. Charge transfer in all of these composites was slight, although a few valence electrons were transferred from the (9,0) SWCNT and the Au chains to intercalations. The conductivities of the encapsulated linear Au n (n = 2-4) chains were enhanced to some extent by encapsulating them in the SWCNT.

  12. Impact of Ni/Ge/Au/Ti/Au and Ti/Pt/Au collector metal on GaInP/GaAs HBT characteristics

    NASA Astrophysics Data System (ADS)

    Park, Jae-Woo; Mohammadi, Saeed; Pavlidis, Dimitris

    2000-10-01

    The collector-emitter offset voltage of GaInP/GaAs HBTs grown by chemical-beam epitaxy with reduced toxicity precursors is investigated for Ni/Ge/Au/Ti/Au and Ti/Pt/Au collector contact metals. The offset voltage for HBTs with Ti/Pt/Au collector metal is increased by 0.26 V compared to Ni/Ge/Au/Ti/Au due to the 0.26 eV barrier existing between the n-GaAs subcollector and the Ti/Pt/Au contact metal. Other parameters affected by the collector contact barrier and impacting transistor performance include DC gain, microwave and power performance.

  13. The development of a quantitative and qualitative method based on UHPLC-QTOF MS/MS for evaluation paclitaxel-tetrandrine interaction and its application to a pharmacokinetic study.

    PubMed

    Li, Dan; Cao, Zhonglian; Liao, Xueling; Yang, Ping; Liu, Li

    2016-11-01

    Paclitaxel is a broad-spectrum anti-cancer drug by targeting microtubulin. However, multidrug resistant (MDR) makes its clinical application more difficult and results in failure of chemotherapy. Tetrandrine as a potential multidrug resistant modulator could be combined with other anti-cancer drugs. In this study, ultra-performance liquid chromatography (UHPLC) combined with quadrupole time-of-flight mass spectrometry (QTOF) was applied to simultaneously qualitative and quantitative analysis of paclitaxel for the pharmacokinetic studies while combined with tetrandrine. This method was developed based on non-target screening mode IDA (Information Dependent Acquisition). As a result, the validated range was 0.25-64ng/ml (30µl plasma) for paclitaxel. Totally 33 metabolites of paclitaxel and tetrandine were identified in vivo and in vitro. The main metabolites of PTX were dose-dependent decreased with different amounts of tetrandine co-administration no matter in vivo and in vitro, the exposure of PTX increased in pharmacokinetic study. The verified method is sensitive accurate and effective for the simultaneous determination of paclitaxel and its metabolites in blood, urine and live microsome incubation samples and it was successfully applied to evaluate the pharmacokinetics and drug-drug interaction between paclitaxel and tetrandine. Furthermore, a biosensor technology, surface plasmon resonance (SPR) analysis was applied to preliminary evaluate the competitive protein binding of multiple components. The SPR analysis indicated that the affinity between 6-hydroxy-paclitaxel and micotubulin is similar to that between paclitaxel and micotubulin, and tetrandrine also does not form a competitive combination with paclitaxel. For human, 6-hydroxy-paclitaxel is the one of main metabolites of paclitaxel, so the results suggested that tetrandine has an influence on the metabolite of paclitaxel, but tetrandine and the main metabolites of PTX probably do not affect PTX

  14. Quarkonium measurements via the di-muon decay channel in p+p and Au+Au collisions with the STAR experiment

    NASA Astrophysics Data System (ADS)

    Todoroki, Takahito; STAR collaboration

    2017-01-01

    We present the rst J/ψ and measurements in the di-muon decay channel at mid-rapidity at RHIC using the newly installed Muon Telescope Detector. In p+p collisions at , inclusive J/ψ cross section can be described by CGC+NRQCD and NLO NRQCD model calculations for 0 < pT < 20 GeV/c. In Au+Au collisions at , we observe (i) clear J/ψ suppression indicating dissociation; (ii) J/ψ RAA can be qualitatively described by transport models including dissociation and regeneration with a tension at high pT ; and (iii) hint of less melting of ϒ(2S + 3S) relative to ϒ(1S) at RHIC compared to that at LHC.

  15. Systematic study of charged-pion and kaon femtoscopy in Au+Au collisions at √sNN = 200 GeV

    DOE PAGES

    Adare, A.

    2015-09-23

    We present a systematic study of charged pion and kaon interferometry in Au+Au collisions at √sNN=200 GeV. The kaon mean source radii are found to be larger than pion radii in the outward and longitudinal directions for the same transverse mass; this difference increases for more central collisions. The azimuthal-angle dependence of the radii was measured with respect to the second-order event plane and similar oscillations of the source radii were found for pions and kaons. Hydrodynamic models qualitatively describe the similar oscillations of the mean source radii for pions and kaons, but they do not fully describe the transverse-massmore » dependence of the oscillations.« less

  16. Systematic study of charged-pion and kaon femtoscopy in Au+Au collisions at √sNN = 200 GeV

    SciTech Connect

    Adare, A.

    2015-09-23

    We present a systematic study of charged pion and kaon interferometry in Au+Au collisions at √sNN=200 GeV. The kaon mean source radii are found to be larger than pion radii in the outward and longitudinal directions for the same transverse mass; this difference increases for more central collisions. The azimuthal-angle dependence of the radii was measured with respect to the second-order event plane and similar oscillations of the source radii were found for pions and kaons. Hydrodynamic models qualitatively describe the similar oscillations of the mean source radii for pions and kaons, but they do not fully describe the transverse-mass dependence of the oscillations.

  17. Heterostructured CIGS-Au nanoparticles: from Au-CIGS side-by-side structure to Au-core/CIGS-shell configuration.

    PubMed

    Xu, Yeming; Li, Quan

    2011-08-01

    Heterostructured Au-Copper Indium Gallium Selenide (CIGS) nanoparticles (nps) with Au-CIGS side-by-side and Au-core/CIGS-shell configurations have been synthesized in a controllable manner using seed mediated growth. Detailed microstructure analysis reveals that (112) planes in the tetragonal chalcopyrite CIGS serve as the predominant termination surfaces during single phase CIGS nanoparticle growth. Preferential nucleation of Au on such planes determines the Au-CIGS side-by-side configuration when the pre-synthesized CIGS nps are used as the seeds for further Au growth. Reversing the growth sequence by employing Au nano-seeds results in Au-core/CIGS-shell configuration, as determined by the non-preferential nucleation of CIGS on the spherical Au nanoparticle surface. The different morphological configurations of the heterostructures are found to modify the surface plasmon resonance of Au in the corresponding samples.

  18. Cu-Au Alloys Using Monte Carlo Simulations and the BFS Method for Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Good, Brian; Ferrante, John

    1996-01-01

    Semi empirical methods have shown considerable promise in aiding in the calculation of many properties of materials. Materials used in engineering applications have defects that occur for various reasons including processing. In this work we present the first application of the BFS method for alloys to describe some aspects of microstructure due to processing for the Cu-Au system (Cu-Au, CuAu3, and Cu3Au). We use finite temperature Monte Carlo calculations, in order to show the influence of 'heat treatment' in the low-temperature phase of the alloy. Although relatively simple, it has enough features that could be used as a first test of the reliability of the technique. The main questions to be answered in this work relate to the existence of low temperature ordered structures for specific concentrations, for example, the ability to distinguish between rather similar phases for equiatomic alloys (CuAu I and CuAu II, the latter characterized by an antiphase boundary separating two identical phases).

  19. Ballistic-electron-emission microscopy of subsurface defects at the Au-GaAs(100) interface

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; Bell, L. D.; Kaiser, W. J.

    1989-01-01

    The application of ballistic-electron-emission microscopy (BEEM) to a study of the influence of GaAs(100) substrate conditions on the formation of a multidefect structure at the Au-GaAs(100) Schottky barrier interface is described. Interfaces prepared on both melt-grown GaAs(100) wafer substrates and MBF-deposited GaAs(100) buffer layers are considered. As a comparison to the study of Au-GaAs(100) interfaces, BEEM imaging is performed on Au-Si(100) interfaces. It is noted that Au-GaAs(100) interface formation is relatively insensitive to the effects of substrate surface condition and substrate bulk defect density, and that the combination of BEEM imaging and BEEM spectroscopy indicates that the heterogeneous interface defects are the result of diffusion between the Schottky barrier electrodes.

  20. Supported Pd-Au Membrane Reactor for Hydrogen Production: Membrane Preparation, Characterization and Testing.

    PubMed

    Iulianelli, Adolfo; Alavi, Marjan; Bagnato, Giuseppe; Liguori, Simona; Wilcox, Jennifer; Rahimpour, Mohammad Reza; Eslamlouyan, Reza; Anzelmo, Bryce; Basile, Angelo

    2016-05-09

    A supported Pd-Au (Au 7wt%) membrane was produced by electroless plating deposition. Permeation tests were performed with pure gas (H₂, H₂, N₂, CO₂, CH₄) for long time operation. After around 400 h under testing, the composite Pd-Au membrane achieved steady state condition, with an H₂/N₂ ideal selectivity of around 500 at 420 °C and 50 kPa as transmembrane pressure, remaining stable up to 1100 h under operation. Afterwards, the membrane was allocated in a membrane reactor module for methane steam reforming reaction tests. As a preliminary application, at 420 °C, 300 kPa of reaction pressure, space velocity of 4100 h(-1), 40% methane conversion and 35% hydrogen recovery were reached using a commercial Ni/Al₂O₃ catalyst. Unfortunately, a severe coke deposition affected irreversibly the composite membrane, determining the loss of the hydrogen permeation characteristics of the supported Pd-Au membrane.

  1. Dumbbell-like Au-Fe3O4 nanoparticles: a new nanostructure for supercapacitors.

    PubMed

    Liu, Sheng; Guo, Shaojun; Sun, Shouheng; You, Xiao-Zeng

    2015-03-21

    Monodispersed dumbbell-like Au-Fe3O4 nanoparticles (NPs) were synthesized and studied for use in supercapacitors. These dumbbell NPs show Au/Fe3O4-size dependent capacitive behaviors and the 7-14 nm Au-Fe3O4 NPs have the best specific capacitance of 464 F g(-1) at 1 A g(-1) and capacity retention of 86.4% after 1000 cycles, much larger than pure Fe3O4 NPs (160 F g(-1) and 72.8% retention). This capacitive enhancement is believed to arise from the Au-induced increase in electron transfer across the dumbbell-like NPs. Thise report demonstrates a new strategy to enhance oxide NP capacitance for applications in high performance supercapacitors.

  2. Formation and Stabilization of Single-Crystalline Metastable AuGe Phases in Ge Nanowires

    SciTech Connect

    Sutter, E.; Sutter, P.

    2011-07-22

    We use in situ observations by variable temperature transmission electron microscopy on AuGe alloy drops at the tips of Ge nanowires (NWs) with systematically varying composition to demonstrate the controlled formation of metastable solid phases integrated in NWs. The process, which operates in the regime of vapor-liquid-solid growth, involves a size-dependent depression of the alloy liquidus at the nanoscale that leads to extremely Ge-rich AuGe melts at low temperatures. During slow cooling, these liquid AuGe alloy drops show pronounced departures from equilibrium, i.e., a frustrated phase separation of Ge into the adjacent solid NW, and ultimately crystallize as single-crystalline segments of metastable {gamma}-AuGe. Our findings demonstrate a general avenue for synthesizing NW heterostructures containing stable and metastable solid phases, applicable to a wide range of materials of which NWs form by the vapor-liquid-solid method.

  3. Structure-induced enhancement in electrooxidation of trimetallic FePtAu nanoparticles.

    PubMed

    Zhang, Sen; Guo, Shaojun; Zhu, Huiyuan; Su, Dong; Sun, Shouheng

    2012-03-21

    Using FePtAu nanoparticles (NPs) as an example, this Communication demonstrates a new structure-control strategy to tune and optimize NP catalysis. The presence of Au in FePtAu facilitates FePt structure transformation from chemically disordered face-centered cubic (fcc) structure to chemically ordered face-centered tetragonal (fct) structure, and further promotes formic acid oxidation reaction (FAOR). The fct-FePtAu NPs have mass activity as high as 2809.9 mA/mg Pt and retain 92.5% of this activity after a 13 h stability test. They become the most efficient NP catalyst ever reported for FAOR. This structure-control strategy can be extended to other multimetallic NP systems, providing a general approach to advanced NP catalysts with desired activity and durability control for practical applications.

  4. Functionalized silicate sol-gel-supported TiO2-Au core-shell nanomaterials and their photoelectrocatalytic activity.

    PubMed

    Pandikumar, Alagarsamy; Murugesan, Sepperumal; Ramaraj, Ramasamy

    2010-07-01

    The N-[3-(trimethoxysilyl)propyl]ethylenediamine (EDAS) derived silicate matrix supported core-shell TiO(2)-Au nanoparticles (EDAS/(TiO(2)-Au)(nps)) were prepared by NaBH(4) reduction of HAuCl(4) precursor on preformed TiO(2) nanoparticles in the presence of EDAS monomer. The core-shell (TiO(2)-Au)(nps) nanoparticles were stabilized by the amine functional group of the EDAS silicate sol-gel network. The potential application of this EDAS/(TiO(2)-Au)(nps) modified electrode toward the photoelectrochemical oxidation of methanol was explored. The EDAS/(TiO(2)-Au)(nps) modified electrode showed a 12-fold enhancement in the catalytic activity toward photoelectrooxidation of methanol when compared to TiO(2) dispersed in EDAS silicate sol-gel matrix. This improved photoelectrochemical performance is explained on the basis of beneficial promotion of interfacial charge transfer processes of the EDAS/(TiO(2)-Au)(nps) nanocomposite. A methanol oxidation peak current density of 12.3 mA cm(-2) was achieved at an optimum loading of Au(nps) on TiO(2) particles. This novel amine functionalized EDAS silicate sol-gel stabilized core-shell (TiO(2)-Au)(nps) nanomaterial could be an excellent candidate for the photocatalytic and photoelectrochemical applications.

  5. Au Fixed Point Development at NRC

    NASA Astrophysics Data System (ADS)

    Dedyulin, S. N.; Gotoh, M.; Todd, A. D. W.

    2017-04-01

    Two Au fixed points filled using metal of different nominal purities in carbon crucibles have been developed at the National Research Council Canada (NRC). The primary motivation behind this project was to provide the means for direct thermocouple calibrations at the Au freezing point (1064.18°C). Using a Au fixed point filled with the metal of maximum available purity [99.9997 % pure according to glow discharge mass spectroscopy (GDMS)], multiple freezing plateaus were measured in a commercial high-temperature furnace. Four Pt/Pd thermocouples constructed and calibrated in-house were used to measure the freezing plateaus. From the calibration at Sn, Zn, Al and Ag fixed points, the linear deviation function from the NIST-IMGC reference function (IEC 62460:2008 Standard) was determined and extrapolated to the freezing temperature of Au. For all the Pt/Pd thermocouples used in this study, the measured EMF values agree with the extrapolated values within expanded uncertainty, thus substantiating the use of 99.9997 % pure Au fixed point cell for thermocouple calibrations at NRC. Using the Au fixed point filled with metal of lower purity (99.99 % pure according to GDMS), the effect of impurities on the Au freezing temperature measured with Pt/Pd thermocouple was further investigated.

  6. Au/Au@polythiophene core/shell nanospheres for heterogeneous catalysis of nitroarenes.

    PubMed

    Shin, Hye-Seon; Huh, Seong

    2012-11-01

    Monodisperse Au/Au@polythiophene core/shell nanospheres were facilely prepared through the reduction of gold precursor, AuCl₄⁻, by 2-thiopheneacetonitrile in an aqueous solution. Concomitantly, 2-thiopheneacetonitrile polymerized during this redox process. As a result, Au nanoparticle was encapsulated by conductive polymer shell to afford novel core/shell nanospheres. Interestingly, the shell was composed of very tiny Au nanoparticles surrounded with thiophene polymers. Thus, the new material is best described as Au/Au@polythiophene core/shell nanospheres. FT-IR spectroscopy revealed that the Au nanoparticles were coordinated by the C≡N groups of the polythiophene shell. Some of the C≡N groups were partially hydrolyzed into COOH groups during the redox process because of the acidic reaction condition. The shell was conductive based on the typical ohmic behavior found in electrical measurement. The Au/Au@polythiophene core/shell nanospheres were found to be very active catalysts for the hydrogenation of various nitroarene compounds into corresponding aminoarene compounds in the presence of NaBH₄. Both hydrophilic and hydrophobic nitroarenes were efficiently hydrogenated under mild conditions.

  7. Mono- and Bis-Terpyridine-Based Dimer and Metallo-Organic Polymers as Ionic Templates for Preparation of Multi-Metallic Au Nanocluster and Nanowires.

    PubMed

    Liu, Die; Cao, Hongda; Jiang, Zhilong; Wu, Tun; Sun, Xiaoyi; Wang, Pingshan; Moorefield, Charles N; Dai, Liming; Newkome, George R

    2016-03-01

    The preparation of multi-metallic Au nanocluster and nanowires has been achieved using terpyridine-based metallo-organic polymers as multi-ionic templates through a straightforward counterion exchange with aqueous NaAuCl4 followed by a mild reduction in-situ with sodium citrate. The mild reduction of the [TpyFeTpy]2+ x 2[AuCl4]- complex, derived from [TpyFeTpy]2+ x 2Cl- 1 (tpy = 2,2':6',2"-terpyridine), led to the formation of Au nanoclusters (Au NC) with diameters ranging from 7.5-88 nm. Each Au NC alone contained multiple nanoparticles, with diameters ranging from 2.5-4.5 nm. 1,4-bis-terpyridine based metallo-oraganic polymer [-TpyFeTpy-TpyFeTpy-]n(2n+) x [Cl]2n- 2 was found to generate a multi-ionic metallo-polymer with AuCl4- as the counterion, after mild reduction with sodium citrate, resulting in irregular zigzag shaped Au nanowires (Au NW). The prepared Au NW from the di-metallic complex 3 should find applications within electronic devices. Both Au NC and NW were also found to possess excellent catalytic properties.

  8. Au40: A Large Tetrahedral Magic Cluster

    SciTech Connect

    Jiang, Deen; Walter, Michael

    2011-01-01

    40 is a magic number for tetrahedral symmetry predicted in both nuclear physics and the electronic jellium model. We show that Au{sub 40} could be such a magic cluster from density functional theory-based basin hopping for global minimization. The putative global minimum found for Au{sub 40} has a twisted pyramid structure, reminiscent of the famous tetrahedral Au{sub 20}, and a sizable HOMO-LUMO gap of 0.69 eV, indicating its molecular nature. Analysis of the electronic states reveals that the gap is related to shell closings of the metallic electrons in a tetrahedrally distorted effective potential.

  9. [Qualitative research in health services research - discussion paper, Part 1: What is the idea?].

    PubMed

    Meyer, T; Karbach, U; Holmberg, C; Güthlin, C; Patzelt, C; Stamer, M

    2012-08-01

    In this first part of a 3-part discussion paper the working group "Qualitative Methods" in the German Network of Health Services Research (DNVF) identifies the potentials and opportunities qualitative research methods provide for health services research. Many research questions relevant for health services research require the use of qualitative methods. However, the potential of and need for qualitative research in health services research has not yet received sufficient attention from funding bodies. We discuss the applicability and importance of qualitative research for the field of health services research. We then move on to describe the key characteristics of qualitative research that need to be taken into account in health services research. We discuss characteristics such as open-ended (qualitative) data, interpretation of meanings, the search for contradictions, closeness to everyday life, openness towards change or modification of the research question and processes in the context of health services research. To ensure a high-quality approach in qualitative methods for the health services research, sufficient competency in methods and appropriate settings that account for the peculiarities of qualitative methods need to be developed. These include an appropriate time frame and sufficient and qualified personnel to conduct qualitative research. Qualitative research is not a research paradigm in itself rather it comprises of many different and diverging approaches. The goal of this paper is to show the diversity of qualitative research methods, its importance for health services research, and to open up the discussion on strategies for integrating qualitative methods into health services research.

  10. Joint association analysis of bivariate quantitative and qualitative traits.

    PubMed

    Yuan, Mengdie; Diao, Guoqing

    2011-11-29

    Univariate genome-wide association analysis of quantitative and qualitative traits has been investigated extensively in the literature. In the presence of correlated phenotypes, it is more intuitive to analyze all phenotypes simultaneously. We describe an efficient likelihood-based approach for the joint association analysis of quantitative and qualitative traits in unrelated individuals. We assume a probit model for the qualitative trait, under which an unobserved latent variable and a prespecified threshold determine the value of the qualitative trait. To jointly model the quantitative and qualitative traits, we assume that the quantitative trait and the latent variable follow a bivariate normal distribution. The latent variable is allowed to be correlated with the quantitative phenotype. Simultaneous modeling of the quantitative and qualitative traits allows us to make more precise inference on the pleiotropic genetic effects. We derive likelihood ratio tests for the testing of genetic effects. An application to the Genetic Analysis Workshop 17 data is provided. The new method yields reasonable power and meaningful results for the joint association analysis of the quantitative trait Q1 and the qualitative trait disease status at SNPs with not too small MAF.

  11. Ir-induced activation of Au towards CO adsorption: Ir films deposited on Au{111}

    NASA Astrophysics Data System (ADS)

    Zhang, Tianfu; Driver, Stephen M.; Pratt, Stephanie J.; Jenkins, Stephen J.; King, David A.

    2016-06-01

    We have investigated the interaction of CO with Ir/Au{111} bimetallic surfaces, and the influence of morphology changes as Ir moves sub-surface into the Au bulk, using reflection-absorption infrared spectroscopy (RAIRS). The presence of Ir stabilises CO on exposed regions of the Au surface at temperatures up to around 200 K: we attribute this to low-coordinated Au sites, probably associated with lifting of the clean-surface 'herringbone' reconstruction by Ir deposition. The highest density of active Au sites is obtained after annealing the bimetallic surface to 500-600 K: we attribute this to morphology changes associated with the movement of Ir into bulk Au.

  12. Regulating the surface plasmon resonance coupling between Au-nanoparticle and Au-film

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; Li, Kewu; Zhang, Rui; Jing, Ning; Chen, Youhua; Chen, Yuanyuan; Wang, Zhibin

    2017-01-01

    In this paper, we report the coupling between the localized surface plasmon resonance (LSPR) of Au-nanoparticles and surface plasmon resonance (SPR) of the Au-film. According to the conditions for SPR excitation of the classical Kretschmann-Raether structure with 50nm Au thin film, the commonly used classes of spherical Au-nanoparticle is studied and optimized. We used the finite element analysis (COMSOL Multiphysics 5.0), to simulate the coupling. The results from calculation and simulation indicate that the resonant plasmonic coupling between Au-nanoparticles and Au-film could lead to a large field enhancement and thus improve SPR. We demonstrate that the resonant plasmonic coupling could be regulated by the size of nanoparticles, the distance between nanoparticles .

  13. An ultrafast look at Au nanoclusters.

    PubMed

    Yau, Sung Hei; Varnavski, Oleg; Goodson, Theodore

    2013-07-16

    In the past 20 years, researchers studying nanomaterials have uncovered many new and interesting properties not found in bulk materials. Extensive research has focused on metal nanoparticles (>3 nm) because of their potential applications, such as in molecular electronics, image markers, and catalysts. In particular, the discovery of metal nanoclusters (<3 nm) has greatly expanded the horizon of nanomaterial research. These nanosystems exhibit molecular-like characteristics as their size approaches the Fermi-wavelength of an electron. The relationships between size and physical properties for nanomaterials are intriguing, because for metal nanosystems in this size regime both size and shape determine electronic properties. Remarkably, changes in the optical properties of nanomaterials have provided tremendous insight into the electronic structure of nanoclusters. The success of synthesizing monolayer protected clusters (MPCs) in the condensed phase has allowed scientists to probe the metal core directly. Au MPCs have become the "gold" standard in nanocluster science, thanks to the rigorous structural characterization already accomplished. The use of ultrafast laser spectroscopy on MPCs in solution provides the benefit of directly studying the chemical dynamics of metal nanoclusters (core), and their nonlinear optical properties. In this Account, we investigate the optical properties of MPCs in the visible region using ultrafast spectroscopy. Based on fluorescence up-conversion spectroscopy, we propose an emission mechanism for these nanoclusters. These clusters behave differently from nanoparticles in terms of emission lifetimes as well as two-photon cross sections. Through further investigation of the transient (excited state) absorption, we have found many unique phenomena of nanoclusters, such as quantum confinement effects and vibrational breathing modes. In summary, based on the differences in the optical properties, the distinction between nanoclusters and

  14. Controlled synthesis of FePt-Au hybrid nanoparticles triggered by reaction atmosphere and FePt seeds.

    PubMed

    Zhu, Jinghan; Wu, Jiajia; Liu, Fei; Xing, Ruijun; Zhang, Chenzhen; Yang, Ce; Yin, Han; Hou, Yanglong

    2013-10-07

    We report an effective and facile method for synthesis of FePt-Au hybrid nanoparticles (HNPs). The typical secondary growth of Au proceeded in the presence of FePt seeds in organic solvents under a specific atmosphere. Interestingly, the type of atmosphere (Ar or Ar-H₂) and the size of selected FePt seeds were two major parameters determining the final morphology of FePt-Au HNPs. Enhancement of catalytic activity and stability of FePt-Au HNPs in methanol oxidation were achieved owing to interactions between Au and FePt. The optical properties of the resulting products can be steadily tuned which sheds light on their potential application in optical devices and bioimaging. The novel synthetic strategy offers an important tool towards multifunctional nanomaterials with designed architectures.

  15. An introduction to qualitative research for food and nutrition professionals.

    PubMed

    Harris, Jeffrey E; Gleason, Philip M; Sheean, Patricia M; Boushey, Carol; Beto, Judith A; Bruemmer, Barbara

    2009-01-01

    The purpose of this article is to define qualitative research, explain its design, explore its congruence with quantitative research, and provide examples of its applications in dietetics. Also, methods to ensure validity, reliability, and relevance are addressed. Readers will gain increased knowledge about qualitative research and greater competency in evaluating this type of research. The hope is that food and nutrition professionals will be inspired to conduct and publish qualitative research, adding to the body of peer-reviewed dietetics-related qualitative publications. This type of research must be methodically planned and implemented with attention to validity, reliability, and relevance. This rigorous approach boosts the probability that the research will add to the scientific literature and qualify for publication.

  16. PHENIX results on jets in d + Au

    NASA Astrophysics Data System (ADS)

    Hanks, J. Ali

    2016-12-01

    We present recently published results [A. Adare, et al., arxiv:arXiv:1509.04657] on fully reconstructed R=0.3 anti-kt jets measured in p+p and d+Au collisions at 200 GeV center-of-mass energy. The jet yields for four centrality classes along with the p+p reference are presented, as well as both the minimum bias RdAu and centrality dependent RdAu and RCP. We find that while the minimum bias RdA is consistent with unity, providing a strong constraint on models including cold-nuclear-matter effects or energy loss in small systems, the centrality dependent RdAu show a striking variation which presents a challenge to models attempting to describe the interplay between soft and hard processes in these systems.

  17. RHIC Au beam in Run 2014

    SciTech Connect

    Zhang, S. Y.

    2014-09-15

    Au beam at the RHIC ramp in run 2014 is reviewed together with the run 2011 and run 2012. Observed bunch length and longitudinal emittance are compared with the IBS simulations. The IBS growth rate of the longitudinal emittance in run 2014 is similar to run 2011, and both are larger than run 2012. This is explained by the large transverse emittance at high intensity observed in run 2012, but not in run 2014. The big improvement of the AGS ramping in run 2014 might be related to this change. The importance of the injector intensity improvement in run 2014 is emphasized, which gives rise to the initial luminosity improvement of 50% in run 2014, compared with the previous Au-Au run 2011. In addition, a modified IBS model, which is calibrated using the RHIC Au runs from 9.8 GeV/n to 100 GeV/n, is presented and used in the study.

  18. Thermal Expansion of AuIn2

    SciTech Connect

    Saw, C K; Siekhaus, W J

    2004-07-12

    The thermal expansion of AuIn{sub 2} gold is of great interest in soldering technology. Indium containing solders have been used to make gold wire interconnects at low soldering temperature and over time, AuIn{sub 2} is formed between the gold wire and the solder due to the high heat of formation and the high inter-metallic diffusion of indium. Hence, the thermal expansion of AuIn{sub 2} alloy in comparison with that of the gold wire and the indium-containing solder is critical in determining the integrity of the connection. We present the results of x-ray diffraction measurement of the coefficient of linear expansion of AuIn{sub 2} as well as the bulk expansion and density changes over the temperature range of 30 to 500 C.

  19. Experimental evidences of a large extrinsic spin Hall effect in AuW alloy

    SciTech Connect

    Laczkowski, P.; Rojas-Sánchez, J.-C.

    2014-04-07

    We report an experimental study of a gold-tungsten alloy (7 at. % W concentration in Au host) displaying remarkable properties for spintronics applications using both magneto-transport in lateral spin valve devices and spin-pumping with inverse spin Hall effect experiments. A very large spin Hall angle of about 10% is consistently found using both techniques with the reliable spin diffusion length of 2 nm estimated by the spin sink experiments in the lateral spin valves. With its chemical stability, high resistivity, and small induced damping, this AuW alloy may find applications in the nearest future.

  20. 3D Interdigital Au/MnO2 /Au Stacked Hybrid Electrodes for On-Chip Microsupercapacitors.

    PubMed

    Hu, Haibo; Pei, Zhibin; Fan, Hongjin; Ye, Changhui

    2016-06-01

    On-chip microsupercapacitors (MSCs) have application in powering microelectronic devices. Most of previous MSCs are made from carbon materials, which have high power but low energy density. In this work, 3D interdigital Au/MnO2 /Au stacked MSCs have been fabricated based on laser printed flexible templates. This vertical-stacked electrode configuration can effectively increase the contact area between MnO2 active layer and Au conductive layer, and thus improve the electron transport and electrolyte ion diffusion, resulting in enhanced pseudocapacitive performance of MnO2 . The stacked electrode can achieve an areal capacitance up to 11.9 mF cm(-2) . Flexible and all-solid-state MSCs are assembled based on the sandwich hybrid electrodes and PVA/LiClO4 gel electrolyte and show outstanding high-rate capacity and mechanical flexibility. The laser printing technique in this work combined with the physical sputtering and electrodeposition allows fabrication of MSC array with random sizes and patterns, making them promising power sources for small-scale flexible microelectronic energy storage systems (e.g., next-generation smart phones).

  1. Counterion-Mediated Assembly of Spherical Nucleic Acid-Au Nanoparticle Conjugates (SNA-AuNPs)

    NASA Astrophysics Data System (ADS)

    Kewalramani, Sumit; Moreau, Liane; Guerrero-García, Guillermo; Mirkin, Chad; Olvera de La Cruz, Monica; Bedzyk, Michael; Afosr Muri Team

    2015-03-01

    Controlled crystallization of colloids from solution has been a goal of material scientists for decades. Recently, nucleic acid functionalized spherical Au nanoparticles (SNA-AuNPs) have been programmed to assemble in a wide variety of crystal structures. In this approach, the assembly is driven by Watson-Crick hybridization between DNAs coating the AuNPs. Here, we show that counterions can induce ordered assembly of SNA-AuNPs in bulk solutions, even in the absence of base pairing interactions. The electrostatics-driven assembly of spherical nucleic acid-Au nanoparticle conjugates (SNA-AuNPs) is probed as a function of counterion concentration and counterion valency [ +1 (Na+) or +2 (Ca2+) ] by in situ solution X-ray scattering. Assemblies of AuNPs capped with single-stranded (ss-) or double-stranded (ds-) DNA are examined. SAXS reveals disordered (gas-like) --> face-centered-cubic (FCC) --> glass-like phase transitions with increasing solution ionic strength. These studies demonstrate how non-base-pairing interactions can be tuned to create crystalline assemblies of SNA-AuNPs. The dependence of the inter-SNA-AuNP interactions on counterion valency and stiffness of the DNA corona will be discussed.

  2. DFT study on cysteine adsorption mechanism on Au(111) and Au(110)

    SciTech Connect

    Buimaga-Iarinca, Luiza; Floare, Calin G.; Calborean, Adrian; Turcu, Ioan

    2013-11-13

    Periodic density functional theory calculations were used to investigate relevant aspects of adsorption mechanisms of cysteine dimers in protonated form on Au(111) and Au(110) surfaces. The projected densities of states are explicitly discussed for all main chemical groups of cysteine, i.e. the amino group (NH2), the thiol group (SH) and the carboxylic group (COOH) to identify differences in adsorption mechanism. Special emphasis is put on the analysis of changes in the electronic structure of molecules adsorbed on Au(111) and Au(110) surfaces as well as the accompanying charge transfer mechanisms at molecule-substrate interaction.

  3. Fabrication of photoactive heterostructures based on quantum dots decorated with Au nanoparticles

    PubMed Central

    Fanizza, Elisabetta; Urso, Carmine; Iacobazzi, R. Maria; Depalo, Nicoletta; Corricelli, Michela; Panniello, Annamaria; Agostiano, Angela; Denora, Nunzio; Laquintana, Valentino; Striccoli, Marinella; Curri, M. Lucia

    2016-01-01

    Abstract Silica based multifunctional heterostructures, exhibiting near infrared (NIR) absorption (650–1200 nm) and luminescence in the visible region, represent innovative nanosystems useful for diagnostic or theranostic applications. Herein, colloidal synthetic procedures are applied to design a photoactive multifunctional nanosystem. Luminescent silica (SiO2) coated quantum dots (QDs) have been used as versatile nanoplatforms to assemble on their surface gold (Au) seeds, further grown into Au spackled structures. The synthesized nanostructures combine the QD emission in the visible region, and, concomitantly, the distinctive NIR absorption of Au nanodomains. The possibility of having multiple QDs in a single heterostructure, the SiO2 shell thickness, and the extent of Au deposition onto SiO2 surface have been carefully controlled. The work shows that a single QD entrapped in 16 nm thick SiO2 shell, coated with Au speckles, represents the most suitable geometry to preserve the QD emission in the visible region and to generate NIR absorption from metal NPs. The resulting architectures present a biomedical potential as an effective optical multimodal probes and as promising therapeutic agents due to the Au NP mediated photothermal effect. PMID:27877861

  4. Highly Efficient AuPd/Carbon Nanotube Nanocatalysts for the Electro-Fenton Process.

    PubMed

    Sun, Meng; Zhang, Gong; Liu, Yang; Liu, Huijuan; Qu, Jiuhui; Li, Jinghong

    2015-05-11

    Development of novel nanocatalysts for the highly efficient in situ synthesis of H2 O2 from H2 and O2 in the electro-Fenton (EF) process has potential for the remediation of water pollution. In this work, AuPd/carbon nanotube (CNT) nanocatalysts were successfully synthesized by the facile aggregation of AuPd bimetals on CNTs. Characterization by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy indicated that pure AuPd bimetallic heterogeneous nanospheres (≈20 nm) were well dispersed outside the CNTs, which resulted in better catalytic performance than Pd/CNTs alone: 0.36 M H2 O2 was synthesized; 0.05 M Fe(2+) optimally initiated the EF process due to the superior in situ Fe(2+) regeneration; and the organic pollutant removal reached 100 % at 37 min, with a pseudo-first-order kinetic constant k1 =0.051 min(-1) . Moreover, structural insights before/after catalysis revealed that Au strengthened the construction of the nanocrystals, avoided negative deactivation caused by AuPd agglomeration, and immobilized the active Pd(111). The catalytic stability of AuPd/CNTs over ten cycles implied long durability and promising applications of this material.

  5. The impact of fabrication conditions on the quality of Au nanoparticle arrays on dimpled Ta templates

    NASA Astrophysics Data System (ADS)

    El-Sayed, Hany A.; Molero, Hebert M.; Birss, Viola I.

    2012-11-01

    Highly ordered dimpled Ta (DT) nanotemplates, prepared by electrochemical anodization of Ta, were recently reported to be ideally suited for the fabrication of a Au nanoparticle (NP) array using a Au thin film dewetting method. Here, we provide guidance and understanding of the effect of the DT fabrication and Au film deposition steps on the characteristics of the resulting NP array. Specifically, the optimum anodization time, voltage and solution composition are established, and the thickness of the sputter-deposited metal film is shown to be a very important parameter in achieving the desired single Au NP per dimple. The resulting high quality Au NP arrays are demonstrated to be electrochemically addressable, with the total Au surface area, measured electrochemically for large-scale samples, agreeing with the calculated area, based on scanning electron microscope determination of average particle shape and distribution. As the NP formation process proceeds via confined thin film dewetting, the protocol developed here should be applicable to the formation of NP arrays of a range of other metals and alloys.

  6. Photoelectrochemical sensing of 4-chlorophenol based on Au/BiOCl nanocomposites.

    PubMed

    Yan, Pengcheng; Xu, Li; Xia, Jiexiang; Huang, Yan; Qiu, Jingxia; Xu, Qian; Zhang, Qi; Li, Huaming

    2016-08-15

    The Au/BiOCl composites have been prepared by a facile one-pot ethylene glycol (EG) assisted solvothermal reaction in the presence of ionic liquid 1-hexadecyl-3-methylimidazolium chloride ([C16mim]Cl). During the synthesis procedure, the [C16mim]Cl has been used as Cl source, solvent of this system, and dispersing agent to effectively disperse Au on the surface of BiOCl. The as-prepared samples have been systematically characterized by multiple instruments to investigate the structure, morphology, and photoelectrochemical properties. According to the photoelectrochemical data, the Au/BiOCl composites exhibit better photoelectrochemical performance toward the detection of 4-chlorophenol than that of the pure BiOCl. The photocurrent response of Au/BiOCl modified electrode is high and stable under light irradiation. The proposed Au/BiOCl modified electrode shows a wide linear response ranging from 0.16 to 20mgL(-1) with detection limit of 0.05mgL(-1). It indicates a dramatically promising application of bismuth oxyhalides in photoelectrochemical detection. It will be expected that the present study may be lightly extended to the monitor of other organic pollutants by photoelectrochemical detection of the Au/BiOCl composites.

  7. Evidence for Bioavailability of Au Nanoparticles from Soil and Biodistribution within Earthworms (Eisenia fetida)

    SciTech Connect

    J Unrine; S Hunyadi; O Tsyusko; W Rao; A Shoults-Wilson; P Bertsch

    2011-12-31

    Because Au nanoparticles (NPs) are resistant to oxidative dissolution and are easily detected, they have been used as stable probes for the behavior of nanomaterials within biological systems. Previous studies provide somewhat limited evidence for bioavailability of Au NPs in food webs, because the spatial distribution within tissues and the speciation of Au was not determined. In this study, we provide multiple lines of evidence, including orthogonal microspectroscopic techniques, as well as evidence from biological responses, that Au NPs are bioavailable from soil to a model detritivore (Eisenia fetida). We also present limited evidence that Au NPs may cause adverse effects on earthworm reproduction. This is perhaps the first study to demonstrate that Au NPs can be taken up by detritivores from soil and distributed among tissues. We found that primary particle size (20 or 55 nm) did not consistently influence accumulated concentrations on a mass concentration basis; however, on a particle number basis the 20 nm particles were more bioavailable. Differences in bioavailability between the treatments may have been explained by aggregation behavior in pore water. The results suggest that nanoparticles present in soil from activities such as biosolids application have the potential to enter terrestrial food webs.

  8. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells

    PubMed Central

    Yu, Qilin; Li, Jianrong; Zhang, Yueqi; Wang, Yufan; Liu, Lu; Li, Mingchun

    2016-01-01

    Owing to the growing infectious diseases caused by eukaryotic and prokaryotic pathogens, it is urgent to develop novel antimicrobial agents against clinical pathogenic infections. Biofilm formation and invasion into the host cells are vital processes during pathogenic colonization and infection. In this study, we tested the inhibitory effect of Au nanoparticles (AuNPs) on pathogenic growth, biofilm formation and invasion. Interestingly, although the synthesized AuNPs had no significant toxicity to the tested pathogens, Candida albicans and Pseudomonas aeruginosa, the nanoparticles strongly inhibited pathogenic biofilm formation and invasion to dental pulp stem cells (DPSCs). Further investigations revealed that AuNPs abundantly bound to the pathogen cells, which likely contributed to their inhibitory effect on biofilm formation and invasion. Moreover, treatment of AuNPs led to activation of immune response-related genes in DPSCs, which may enhance the activity of host immune system against the pathogens. Zeta potential analysis and polyethylene glycol (PEG)/polyethyleneimine (PEI) coating tests further showed that the interaction between pathogen cells and AuNPs is associated with electrostatic attractions. Our findings shed novel light on the application of nanomaterials in fighting against clinical pathogens, and imply that the traditional growth inhibition test is not the only way to evaluate the drug effect during the screening of antimicrobial agents. PMID:27220400

  9. Real-time imaging and elemental mapping of AgAu nanoparticle transformations.

    PubMed

    Lewis, E A; Slater, T J A; Prestat, E; Macedo, A; O'Brien, P; Camargo, P H C; Haigh, S J

    2014-11-21

    We report the controlled alloying, oxidation, and subsequent reduction of individual AgAu nanoparticles in the scanning transmission electron microscope (STEM). Through sequential application of electron beam induced oxidation and in situ heating and quenching, we demonstrate the transformation of Ag-Au core-shell nanoparticles into: AgAu alloyed, Au-Ag core-shell, hollow Au-Ag2O core-shell, and Au-Ag2O yolk-shell nanoparticles. We are able to directly image these morphological transformations in real-time at atomic resolution and perform energy dispersive X-ray (EDX) spectrum imaging to map changing elemental distributions with sub-nanometre resolution. By combining aberration corrected STEM imaging and high efficiency EDX spectroscopy we are able to quantify not only the growth and coalescence of Kirkendall voids during oxidation but also the compositional changes occurring during this reaction. This is the first time that it has been possible to track the changing distribution of elements in an individual nanoparticle undergoing oxidation driven shell growth and hollowing.

  10. Systematic Measurements of Identified Particle Spectra in pp, d+Au and Au+Au Collisions from STAR

    SciTech Connect

    STAR Coll

    2009-04-11

    Identified charged particle spectra of {pi}{sup {+-}}, K{sup {+-}}, p and {bar p} at mid-rapidity (|y| < 0.1) measured by the dE/dx method in the STAR-TPC are reported for pp and d + Au collisions at {radical}s{sub NN} = 200 GeV and for Au + Au collisions at 62.4 GeV, 130 GeV, and 200 GeV. Average transverse momenta, total particle production, particle yield ratios, strangeness and baryon production rates are investigated as a function of the collision system and centrality. The transverse momentum spectra are found to be flatter for heavy particles than for light particles in all collision systems; the effect is more prominent for more central collisions. The extracted average transverse momentum of each particle species follows a trend determined by the total charged particle multiplicity density. The Bjorken energy density estimate is at least several GeV/fm{sub 3} for a formation time less than 1 fm/c. A significantly larger net-baryon density and a stronger increase of the net-baryon density with centrality are found in Au + Au collisions at 62.4 GeV than at the two higher energies. Antibaryon production relative to total particle multiplicity is found to be constant over centrality, but increases with the collision energy. Strangeness production relative to total particle multiplicity is similar at the three measured RHIC energies. Relative strangeness production increases quickly with centrality in peripheral Au + Au collisions, to a value about 50% above the pp value, and remains rather constant in more central collisions. Bulk freeze-out properties are extracted from thermal equilibrium model and hydrodynamics-motivated blast-wave model fits to the data. Resonance decays are found to have little effect on the extracted kinetic freeze-out parameters due to the transverse momentum range of our measurements. The extracted chemical freeze-out temperature is constant, independent of collision system or centrality; its value is close to the predicted phase

  11. Advanced catalytic performance of Au-Pt double-walled nanotubes and their fabrication through galvanic replacement reaction.

    PubMed

    Chen, Lu; Kuai, Long; Yu, Xue; Li, Wenzheng; Geng, Baoyou

    2013-08-26

    Bimetallic tubular nanostructures have been the focus of intensive research as they have very interesting potential applications in various fields including catalysis and electronics. In this paper, we demonstrate a facile method for the fabrication of Au-Pt double-walled nanotubes (Au-Pt DWNTs). The DWNTs are fabricated through the galvanic displacement reaction between Ag nanowires and various metal ions, and the Au-Pt DWNT catalysts exhibit high active catalytic performances toward both methanol electro-oxidation and 4-nitrophenol (4-NP) reduction. First, they have a high electrochemically active surface area of 61.66 m(2)  g(-1), which is close to the value of commercial Pt/C catalysts (64.76 m(2) g(-1)), and the peak current density of Au-Pt DWNTs in methanol oxidation is recorded as 138.25 mA mg(-1), whereas those of Pt nanotubes, Au/Pt nanotubes (simple mixture), and commercial Pt/C are 24.12, 40.95, and 120.65 mA mg(-1), respectively. The Au-Pt DWNTs show a markedly enhanced electrocatalytic activity for methanol oxidation compared with the other three catalysts. They also show an excellent catalytic performance in comparison with common Au nanotubes for 4-nitrophenol (4-NP) reduction. The attractive performance exhibited by these prepared Au-Pt DWNTs can be attributed to their unique structures, which make them promising candidates as high-performance catalysts.

  12. Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate

    PubMed Central

    Jun Yin, Hong; Yang Chen, Zhao; Mei Zhao, Yong; Yang Lv, Ming; An Shi, Chun; Long Wu, Zheng; Zhang, Xin; Liu, Luo; Li Wang, Ming; Jun Xu, Hai

    2015-01-01

    Surface enhanced Raman scattering (SERS) substrate based on fabricated Ag@Au core-shell dendrite was achieved. Ag dendrites were grown on Si wafer by the hydrothermal corrosion method and Au nanofilm on the surface of Ag dendritic nanostructure was then fabricated by chemical reduction. With the help of sodium borohydride in water, Au surface absorbates such as thiophene, adenine, rhodamine, small anions (Br– and I–), and a polymer (PVP, poly(N-vinylpyrrolidone)) can be completely and rapidly removed. After four repeatable experiments, the substrate SERS function did not decrease at all, indicating that the Ag@Au dendrite should be of great significance to SERS application because it can save much resource. Six-month-duration stability tests showed that the Ag@Au core-shell dendrite substrate is much more stable than the Ag dendrite substrates. We have also experimented on fast detection of Cd2+ at 10−8  M concentration by decorating single-stranded DNA containing adenine and guanine bases on the surface of this Ag@Au dendrite. Finite-difference time-domain simulations were carried out to investigate the influence of Au nanolayer on Ag dendrites, which showed that the local electric fields and enhancement factor are hardly affected when a 4 nm Au nanolayer is coated on Ag dendrite surface. PMID:26412773

  13. Efficient Removal of Methane over Cobalt-Monoxide-Doped AuPd Nanocatalysts.

    PubMed

    Xie, Shaohua; Liu, Yuxi; Deng, Jiguang; Zang, Simiao; Zhang, Zhenhua; Arandiyan, Hamidreza; Dai, Hongxing

    2017-02-21

    To overcome deactivation of Pd-based catalysts at high temperatures, we herein design a novel pathway by introducing a certain amount of CoO to the supported Au-Pd alloy nanoparticles (NPs) to generate high-performance Au-Pd-xCoO/three-dimensionally ordered macroporous (3DOM) Co3O4 (x is the Co/Pd molar ratio) catalysts. The doping of CoO induced the formation of PdO-CoO active sites, which was beneficial for the improvement in adsorption and activation of CH4 and catalytic performance. The Au-Pd-0.40CoO/3DOM Co3O4 sample performed the best (T90% = 341 °C at a space velocity of 20 000 mL g(-1) h(-1)). Deactivation of the 3DOM Co3O4-supported Au-Pd, Pd-CoO, and Au-Pd-xCoO nanocatalysts resulting from water vapor addition was due to the formation and accumulation of hydroxyl on the catalyst surface, whereas deactivation of the Pd-CoO/3DOM Co3O4 catalyst at high temperatures (680-800 °C) might be due to decomposition of the PdOy active phase into aggregated Pd(0) NPs. The Au-Pd-xCoO/3DOM Co3O4 nanocatalysts exhibited better thermal stability and water tolerance ability compared to the 3DOM Co3O4-supported Au-Pd and Pd-CoO nanocatalysts. We believe that the supported Au-Pd-xCoO nanomaterials are promising catalysts in practical applications for organic combustion.

  14. Commentary: Writing and evaluating qualitative research reports

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An overview of qualitative methods is provided, particularly for reviewers and authors who may be less familiar with qualitative research. A question and answer format is used to address considerations for writing and evaluating qualitative research. When producing qualitative research, individuals ...

  15. Doing Qualitative Research in Education Settings.

    ERIC Educational Resources Information Center

    Hatch, J. Amos

    This book, designed for novice researchers, provides a step-by-step guide to the development of a research project. It emphasizes learning how to do qualitative work and provides specific examples from real studies. The chapters are: (1) "Deciding To Do a Qualitative Study"; (2) "Designing Qualitative Studies"; (3) "Collecting Qualitative Data";…

  16. Considerations for Readers of Qualitative Research. Editorial.

    ERIC Educational Resources Information Center

    Ferguson, Dianne L.; Halle, James W.

    1995-01-01

    This article distinguishes between "using qualitative methods" and "doing qualitative research." It highlights the qualitative approaches of the authors of five articles in this issue and considers the challenges of this type of qualitative research manuscript for the editorial process. (DB)

  17. Gold nanoparticles production using reactor and cyclotron based methods in assessment of (196,198)Au production yields by (197)Au neutron absorption for therapeutic purposes.

    PubMed

    Khorshidi, Abdollah

    2016-11-01

    Medical nano-gold radioisotopes is produced regularly using high-flux nuclear reactors, and an accelerator-driven neutron activator can turn out higher yield of (197)Au(n,γ)(196,198)Au reactions. Here, nano-gold production via radiative/neutron capture was investigated using irradiated Tehran Research Reactor flux and also simulated proton beam of Karaj cyclotron in Iran. (197)Au nano-solution, including 20nm shaped spherical gold and water, was irradiated under Tehran reactor flux at 2.5E+13n/cm(2)/s for (196,198)Au activity and production yield estimations. Meanwhile, the yield was examined using 30MeV proton beam of Karaj cyclotron via simulated new neutron activator containing beryllium target, bismuth moderator around the target, and also PbF2 reflector enclosed the moderator region. Transmutation in (197)Au nano-solution samples were explored at 15 and 25cm distances from the target. The neutron flux behavior inside the water and bismuth moderators was investigated for nano-gold particles transmutation. The transport of fast neutrons inside bismuth material as heavy nuclei with a lesser lethargy can be contributed in enhanced nano-gold transmutation with long duration time than the water moderator in reactor-based method. Cyclotron-driven production of βeta-emitting radioisotopes for brachytherapy applications can complete the nano-gold production technology as a safer approach as compared to the reactor-based method.

  18. Fully Cationized Gold Clusters: Synthesis of Au25(SR(+))18.

    PubMed

    Ishida, Yohei; Narita, Kunihiro; Yonezawa, Tetsu; Whetten, Robert L

    2016-10-06

    Although many thiolate-protected Au clusters with different numbers of Au atoms and a variety of thiolate ligands have been synthesized, to date there has been no report of a fully cationized Au cluster protected with cationic thiolates. Herein, we report the synthesis of the first member of a new series of thiolate-protected Au cluster molecules: a fully cationized Au25(SR(+))18 cluster.

  19. One-pot synthesis of M (M = Ag, Au)@SiO2 yolk-shell structures via an organosilane-assisted method: preparation, formation mechanism and application in heterogeneous catalysis.

    PubMed

    Chen, Yu; Wang, Qihua; Wang, Tingmei

    2015-05-21

    We demonstrate the fabrication of yolk-shell catalysts consisting of a single M (M = Ag, Au) nanoparticle encapsulated within a hollow mesoporous organosilica shell via an organosilane-assisted strategy. The advantages of our method lie in its good controllability of the void space as well as the thickness of the mesoporous shell. The M@CTAB/SiO2 synthesized through a modified Stöber method can transform to yolk-shell structures after adding (3-aminopropyl)trimethoxysilane (APTMS)/TEOS or (3-aminopropyl)triethoxysilane (APTES)/TEOS into the synthetic medium. We give unambiguous evidence that the middle CTAB/SiO2 layer transforms into a less dense APTMS-rich organic-inorganic layer which was selectively removed in alkaline aqueous solution, while the amino-functionalized hybrid shells remain intact. Moreover, we discuss the role of alkylamino groups in the shell in the transformation from Ag@SiO2 nanorattles to hollow structures when impregnating the as-synthesized Ag@SiO2 nanorattles in HAuCl4 aqueous solution. The nanorattles also exhibit high catalytic activity for the catalytic reduction of p-nitrophenol.

  20. High hardness in the biocompatible intermetallic compound β-Ti3Au

    PubMed Central

    Svanidze, Eteri; Besara, Tiglet; Ozaydin, M. Fevsi; Tiwary, Chandra Sekhar; Wang, Jiakui K.; Radhakrishnan, Sruthi; Mani, Sendurai; Xin, Yan; Han, Ke; Liang, Hong; Siegrist, Theo; Ajayan, Pulickel M.; Morosan, E.

    2016-01-01

    The search for new hard materials is often challenging, but strongly motivated by the vast application potential such materials hold. Ti3Au exhibits high hardness values (about four times those of pure Ti and most steel alloys), reduced coefficient of friction and wear rates, and biocompatibility, all of which are optimal traits for orthopedic, dental, and prosthetic applications. In addition, the ability of this compound to adhere to ceramic parts can reduce both the weight and the cost of medical components. The fourfold increase in the hardness of Ti3Au compared to other Ti–Au alloys and compounds can be attributed to the elevated valence electron density, the reduced bond length, and the pseudogap formation. Understanding the origin of hardness in this intermetallic compound provides an avenue toward designing superior biocompatible, hard materials. PMID:27453942

  1. High hardness in the biocompatible intermetallic compound β-Ti3Au.

    PubMed

    Svanidze, Eteri; Besara, Tiglet; Ozaydin, M Fevsi; Tiwary, Chandra Sekhar; Wang, Jiakui K; Radhakrishnan, Sruthi; Mani, Sendurai; Xin, Yan; Han, Ke; Liang, Hong; Siegrist, Theo; Ajayan, Pulickel M; Morosan, E

    2016-07-01

    The search for new hard materials is often challenging, but strongly motivated by the vast application potential such materials hold. Ti3Au exhibits high hardness values (about four times those of pure Ti and most steel alloys), reduced coefficient of friction and wear rates, and biocompatibility, all of which are optimal traits for orthopedic, dental, and prosthetic applications. In addition, the ability of this compound to adhere to ceramic parts can reduce both the weight and the cost of medical components. The fourfold increase in the hardness of Ti3Au compared to other Ti-Au alloys and compounds can be attributed to the elevated valence electron density, the reduced bond length, and the pseudogap formation. Understanding the origin of hardness in this intermetallic compound provides an avenue toward designing superior biocompatible, hard materials.

  2. Caregiving: A Qualitative Concept Analysis

    ERIC Educational Resources Information Center

    Hermanns, Melinda; Mastel-Smith, Beth

    2012-01-01

    A common definition of caregiving does not exist. In an attempt to define the concept of caregiving, the authors used a hybrid qualitative model of concept development to analyze caregiving. The model consists of three phases: (a) theoretical, (b) fieldwork, and (c) analytical. The theoretical phase involves conducting an interdisciplinary…

  3. Qualitative Assessment of Arts Education

    ERIC Educational Resources Information Center

    Stake, Robert; Munson, April

    2008-01-01

    Exploring the complicated issues of assessment in the arts, the authors discuss assessment of arts education and arts programs from a qualitative perspective: experiential, naturalistic, and ethnographic interpretation. With special attention to the practices of teaching, learning, and administration of education in the arts, quality is sought…

  4. Determining Validity in Qualitative Inquiry.

    ERIC Educational Resources Information Center

    Creswell, John W.; Miller, Dana L.

    2000-01-01

    Suggests that the choice of validity procedures in qualitative inquiry is governed by two perspectives: the lens researchers choose to validate their studies and the researchers' paradigm assumptions. The article advances a two-dimensional framework to help researchers identify appropriate validity procedures for their studies. Nine validity…

  5. Teaching Reflexivity in Qualitative Interviewing

    ERIC Educational Resources Information Center

    Hsiung, Ping-Chun

    2008-01-01

    Reflexivity has gained paramount status in qualitative inquiry. It is central to debates on subjectivity, objectivity, and, ultimately, the scientific foundation of social science knowledge and research. Although much work on doing reflexivity by researchers and practitioners has been published, scholars have only recently begun to explore how one…

  6. Historical Perspectives toward Qualitative Research

    ERIC Educational Resources Information Center

    Watras, Joseph

    2009-01-01

    The keynote address on which this article is based considers four stages or types of studies that qualitative researchers undertake in the field of education. The reason that I explored this focus was to illustrate the benefits and the dangers of designing studies to serve policy makers. The research that I selected sought to uncover information…

  7. Reconsidering Constructivism in Qualitative Research

    ERIC Educational Resources Information Center

    Lee, Cheu-Jey George

    2012-01-01

    This article examines constructivism, a paradigm in qualitative research that has been propagated by Egon Guba, Yvonna Lincoln, and Norman Denzin. A distinction is made between whether the basic presuppositions of constructivism are credible compared to those of a competing paradigm and whether constructivism's beliefs are internally consistent.…

  8. Qualitative Research in Rehabilitation Counseling

    ERIC Educational Resources Information Center

    Hanley-Maxwell, Cheryl; Al Hano, Ibrahim; Skivington, Michael

    2007-01-01

    Qualitative research approaches offer rehabilitation scholars and practitioners avenues into understanding the lives and experiences of people with disabilities and those people and systems with whom they interact. The methods used often parallel those used in counseling and appear to be well matched with the field of rehabilitation counseling.…

  9. Transparent, conductive, and SERS-active Au nanofiber films assembled on an amphiphilic peptide template

    NASA Astrophysics Data System (ADS)

    Vinod, T. P.; Zarzhitsky, Shlomo; Morag, Ahiud; Zeiri, Leila; Levi-Kalisman, Yael; Rapaport, Hanna; Jelinek, Raz

    2013-10-01

    The use of biological materials as templates for functional molecular assemblies is an active research field at the interface between chemistry, biology, and materials science. We demonstrate the formation of gold nanofiber films on β-sheet peptide domains assembled at the air/water interface. The gold deposition scheme employed a recently discovered chemical process involving spontaneous crystallization and reduction of water-soluble Au(SCN)41- upon anchoring to surface-displayed amine moieties. Here we show that an interlinked network of crystalline Au nanofibers is readily formed upon incubation of the Au(iii) thiocyanate complex with the peptide monolayers. Intriguingly, the resultant films were optically transparent, enabled electrical conductivity, and displayed pronounced surface enhanced Raman spectroscopy (SERS) activity, making the approach a promising avenue for construction of nano-structured films exhibiting practical applications.The use of biological materials as templates for functional molecular assemblies is an active research field at the interface between chemistry, biology, and materials science. We demonstrate the formation of gold nanofiber films on β-sheet peptide domains assembled at the air/water interface. The gold deposition scheme employed a recently discovered chemical process involving spontaneous crystallization and reduction of water-soluble Au(SCN)41- upon anchoring to surface-displayed amine moieties. Here we show that an interlinked network of crystalline Au nanofibers is readily formed upon incubation of the Au(iii) thiocyanate complex with the peptide monolayers. Intriguingly, the resultant films were optically transparent, enabled electrical conductivity, and displayed pronounced surface enhanced Raman spectroscopy (SERS) activity, making the approach a promising avenue for construction of nano-structured films exhibiting practical applications. Electronic supplementary information (ESI) available: AFM analysis of the

  10. Multifunctional compact hybrid Au nanoshells: a new generation of nanoplasmonic probes for biosensing, imaging, and controlled release.

    PubMed

    Jin, Yongdong

    2014-01-21

    Gold nanoshells (AuNSs) with tunable localized surface plasmon resonance (LSPR) peaks in the near-infrared (NIR) region possess unique optical properties-particularly that soft tissues are "transparent" at these wavelengths-making them of great interest in cancer diagnosis and treatment. Since 1998 when Halas and co-workers invented the first generation of AuNS, with a silica core and Au shell, researchers have studied and designed AuNSs for theranostic-individualized, combination diagnosis and therapy-nanomedicine. As demand has increased for more powerful and practical theranostic applications, so has demand for the next generation of AuNSs-compact yet complex multifunctional AuNSs with finely integrated plasmonic and nonplasmonic inorganic components. For in vivo biomedical applications, such a hybrid AuNS offers the desirable optical properties of NIR LSPR. Size, however, has proved a more challenging parameter to control in hybrid AuNSs. The ideal size of therapeutic NPs is 10-100 nm. Larger particles have limited diffusion in the extracellular space, while particles less than 5 nm are rapidly cleared from the circulation through extravasation or renal clearance. Conventional methods of preparing AuNS have failed to obtain small-sized hybrid AuNSs with NIR LSPR responses. In this Account, we present a new class of multifunctional hybrid AuNSs with ultrathin AuNSs and varied, functional (nonplasmonic) core components ranging from "hard" semiconductor quantum dots (QDs), to superparamagnetic NPs, to "soft" liposomes made using poly-l-histidine as a template to direct Au deposition. The resultant hybrid AuNSs are uniform and compact (typically 15-60 nm) but also preserve the optical properties and shell-type NIR response necessary for biomedical use. We also demonstrate these particles' innovative plasmonic applications in biosensing, multimodal imaging and controlled release. More importantly, the magnetic-plasmonic Fe3O4/Au core-shell NP enables a new

  11. Ultrasensitive luminol electrochemiluminescence for protein detection based on in situ generated hydrogen peroxide as coreactant with glucose oxidase anchored AuNPs@MWCNTs labeling.

    PubMed

    Cao, Yaling; Yuan, Ruo; Chai, Yaqin; Mao, Li; Niu, Huan; Liu, Huijing; Zhuo, Ying

    2012-01-15

    In this study, an ultrasensitive luminol electrochemiluminescence (ECL) immunosensor was constructed using carboxyl group functionalized multi-walled carbon nanotubes (MWCNTs) as platform and glucose oxidase (GOD) supported on Au nanoparticles (AuNPs) decorated MWCNTs (AuNPs@MWCNTs-GOD) as labels. Firstly, using poly(ethylenimine) (PEI) as linkage reagents, AuNPs@MWCNTs were prepared and introduced for binding of the secondary antibody (Ab(2)) and glucose oxidase (GOD) with high loading amount and good biological activity due to the improved surface area of AuNPs@MWCNTs and excellent biocompatibility of AuNPs. Then the GOD and Ab(2) labeled AuNPs@MWCNTs were linked to the electrode surface via sandwich immunoreactions. These localized GOD and AuNPs amplified luminol ECL signals dramatically, which was achieved by efficient catalysis of the GOD and AuNPs towards the oxidation of glucose to in situ generate improved amount of hydrogen peroxide (H(2)O(2)) as coreactant and the enhancement of AuNPs to the ECL reaction of luminol-H(2)O(2). The experimental results demonstrated that the proposed immunosensor exhibited sensitive and stable response for the detection of α-1-fetoprotein (AFP), ranging from 0.0001 to 80 ng mL(-1) with a limit of detection down to 0.03 pg mL(-1) (S/N=3). With excellent stability, sensitivity, selectivity and simplicity, the proposed luminol ECL immunosensor showed great potential in clinical applications.

  12. Using supported Au nanoparticles as starting material for preparing uniform Au/Pd bimetallic catalysts.

    PubMed

    Villa, Alberto; Wang, Di; Su, Dangsheng; Veith, Gabriel M; Prati, Laura

    2010-03-07

    One of the best methods for producing bulk homogeneous (composition) supported bimetallic AuPd clusters involves the immobilization of a protected Au seed followed by the addition of Pd. This paper investigates the importance of this gold seed in controlling the resulting bimetallic AuPd clusters structures, sizes and catalytic activities by investigating three different gold seeds. Uniform Au-Pd alloy were obtained when a steric/electrostatic protecting group, poly(vinyl alcohol) (PVA), was used to form the gold clusters on activated carbon (AC). In contrast Au/AC precursors prepared using Au nanoparticles with only electrostatic stabilization (tetrakis(hydroxypropyl)phosphonium chloride (THPC)), or no stabilization (magnetron sputtering) produced inhomogeneous alloys and segregation of the gold and palladium. The uniform alloyed catalyst (Pd@Au(PVA)/AC) is the most active and selective catalyst, while the inhomogenous catalysts are less active and selective. Further study of the PVA protected Au clusters revealed that the amount of PVA used is also critical for the preparation of uniform alloyed catalyst, their stability, and their catalytic activity.

  13. Using supported Au nanoparticles as starting material for preparing uniform Au/Pd bimetallic catalysts

    SciTech Connect

    Villa, Alberto; Prati, Laura; Su, Dangshen; Wang, Di; Veith, Gabriel M

    2010-01-01

    One of the best methods for producing bulk homogeneous (composition) supported bimetallic AuPd clusters involves the immobilization of a protected Au seed followed by the addition of Pd. This paper investigates the importance of this gold seed in controlling the resulting bimetallic AuPd clusters structures, sizes and catalytic activities by investigating three different gold seeds. Uniform Au-Pd alloy were obtained when a steric/electrostatic protecting group, poly(vinyl alcohol) (PVA), was used to form the gold clusters on activated carbon (AC). In contrast Au/AC precursors prepared using Au nanoparticles with only electrostatic stabilization (tetrakis(hydroxypropyl)phosphonium chloride (THPC)), or no stabilization (magnetron sputtering) produced inhomogeneous alloys and segregation of the gold and palladium. The uniform alloyed catalyst (Pd{at}Au{sub PVA}/AC) is the most active and selective catalyst, while the inhomogenous catalysts are less active and selective. Further study of the PVA protected Au clusters revealed that the amount of PVA used is also critical for the preparation of uniform alloyed catalyst, their stability, and their catalytic activity.

  14. LaAu2 and CeAu2 surface intermetallic compounds grown by high-temperature deposition on Au(111)

    NASA Astrophysics Data System (ADS)

    Ormaza, M.; Fernández, L.; Lafuente, S.; Corso, M.; Schiller, F.; Xu, B.; Diakhate, M.; Verstraete, M. J.; Ortega, J. E.

    2013-09-01

    We report on the crystal structure and electronic bands of LaAu2 and CeAu2 surface intermetallic compounds grown by high-temperature deposition on Au(111). By scanning-tunneling microscopy we study the formation of different alloy phases as a function of growth temperature and lanthanide coverage. We determine the specific growth conditions to achieve monolayers and bilayers of LaAu2 and CeAu2 with high crystalline quality. Due to lattice mismatch with the underlying Au substrate, both LaAu2 and CeAu2 exhibit long-range moiré patterns, which can serve as templates for further nanostructure growth. By angle-resolved photoemission we map the two-dimensional band structure of these surface alloys, discussing the nature of the different spectral features in the light of first-principles calculations.

  15. Fabrication of Au nanoparticle composite TiO2 shell arrays by controlled decomposition of polymer particles

    NASA Astrophysics Data System (ADS)

    Yan, Wei-Guo; Luo, Chun-Li; Zhao, Jian; Guo, Mei-Li; Ye, Qing; Li, Zu-Bin; Tian, Jian-Guo

    2014-11-01

    In the paper, the novel TiO2 nanoshell arrays coated with Au nanoparticles (NPs) were prepared by a simple and effective fabrication method with thermal decomposing polymer particles. Surface structure and composition of these arrays were evaluated by Scanning Electron Microscope (SEM), Energy Dispersive Spectrometer (EDS), and X-ray photoelectron spectroscopy (XPS). The results indicated that TiO2 nanoshell coated with Au NPs was changed into Au@TiO2 composite NPs with the rise of annealing temperature. These novel nanostructures have the potential applications in some research fields, such as photocatalysis, single molecule detection, and novel optoelectronic devices.

  16. Self-grown Ni(OH)(2) layer on bimodal nanoporous AuNi alloys for enhanced electrocatalytic activity and stability.

    PubMed

    Han, Gao-Feng; Xiao, Bei-Bei; Lang, Xing-You; Wen, Zi; Zhu, Yong-Fu; Zhao, Ming; Li, Jian-Chen; Jiang, Qing

    2014-10-08

    Au nanostructures as catalysts toward electrooxidation of small molecules generally suffer from ultralow surface adsorption capability and stability. Here, we report Ni(OH)2 layer decorated nanoporous (NP) AuNi alloys with a three-dimensional and bimodal porous architecture, which are facilely fabricated by a combination of chemical dealloying and in situ surface segregation, for the enhanced electrocatalytic performance in biosensors. As a result of the self-grown Ni(OH)2 on the AuNi alloys with a coherent interface, which not only enhances adsorption energy of Au and electron transfer of AuNi/Ni(OH)2 but also prohibits the surface diffusion of Au atoms, the NP composites are enlisted to exhibit significant enhancement in both electrocatalytic activity and stability toward glucose electrooxidation. The highly reliable glucose biosensing with exceptional reproducibility and selectivity as well as quick response makes it a promising candidate as electrode materials for the application in nonenzymatic glucose biosensors.

  17. Qualitative GIS and the Visualization of Narrative Activity Space Data

    PubMed Central

    Mennis, Jeremy; Mason, Michael J.; Cao, Yinghui

    2012-01-01

    Qualitative activity space data, i.e. qualitative data associated with the routine locations and activities of individuals, are recognized as increasingly useful by researchers in the social and health sciences for investigating the influence of environment on human behavior. However, there has been little research on techniques for exploring qualitative activity space data. This research illustrates the theoretical principles of combining qualitative and quantitative data and methodologies within the context of GIS, using visualization as the means of inquiry. Through the use of a prototype implementation of a visualization system for qualitative activity space data, and its application in a case study of urban youth, we show how these theoretical methodological principles are realized in applied research. The visualization system uses a variety of visual variables to simultaneously depict multiple qualitative and quantitative attributes of individuals’ activity spaces. The visualization is applied to explore the activity spaces of a sample of urban youth participating in a study on the geographic and social contexts of adolescent substance use. Examples demonstrate how the visualization may be used to explore individual activity spaces to generate hypotheses, investigate statistical outliers, and explore activity space patterns among subject subgroups. PMID:26190932

  18. Adsorbate-modified Electron Relaxation in Au-Au_2S Nanoshells

    NASA Astrophysics Data System (ADS)

    Westcott, Sarah; Averitt, Richard; Wolfgang, John; Nordlander, Peter; Halas, Naomi

    2001-03-01

    Au-Au_2S nanoshells are 50 nm nanoparticles consisting of an Au_2S core encapsulated by a thin (<5 nm) Au shell. Their optical properties are determined by the metallic shell layer, whose inner and outer radii control plasmon frequency and whose thickness determines plasmon linewidth[1]. We studied the time-resolved relaxation of hot electrons in the Au shell, using degenerate pump-probe spectroscopy. The electron relaxation for nanoshells in solution was appreciably slower than relaxation for bulk gold, moreover, adsorbed molecules on the nanoshell surface strongly modify this relaxation. Density functional theory calculations indicate that the molecules providing the strongest modification of relaxation possess the largest induced dipole moments above a metal surface, indicating that the adsorbate-induced perturbation of the nanoshell electron dynamics appears to be primarily electronic in nature. [1] R. D. Averitt, D. Sarkar and N. J. Halas, Phys. Rev. Lett. 78, 4217 (1997).

  19. Immobilization of a human epidermal growth factor receptor 2 mimotope-derived synthetic peptide on Au and its potential application for detection of herceptin in human serum by quartz crystal microbalance.

    PubMed

    Shang, Yuqin; Singh, Pankaj R; Chisti, Mohammad M; Mernaugh, Ray; Zeng, Xiangqun

    2011-12-01

    Therapeutic antibodies are antigenically similar to human antibodies and are difficult to detect in assays of human serum samples without the use of the therapeutic antibody's complementary antigen. Herein for the first time, we established a platform to detect Herceptin in solutions by using a small (<2.2 kDa), inexpensive, highly stable human epidermal growth factor receptor (HER2) mimotope-derived synthetic peptide immobilized on the surface of a Au quartz electrode. We used the HER2 mimotope as a substitute for the HER2 receptor protein in piezoimmunosensor or quartz crystal microbalance (QCM) assays to detect Herceptin in human serum. We demonstrated that assay sensitivity was dependent upon the amino acids used to tether and link the peptide to the sensor surface and the buffers used to carry out the assays. The detection limit of the piezoimmunosensor assay was 0.038 nM with a linear operating range of 0.038-0.859 nM. Little nonspecific binding to other therapeutic antibodies (Avastin and Rituxan) was observed. Levels of Herceptin in serum samples obtained from treated patients, as ascertained using the synthetic peptide-based QCM assay, were typical for those treated with Herceptin. The findings of this study are significant in that low-cost synthetic peptides could be used in a QCM assay, in lieu of native or recombinant antigens or capture antibodies, to rapidly detect a therapeutic antibody in human serum. The results suggested that a synthetic peptide bearing a particular functional sequence could be applied for developing a new generation of affinity-based immunosensors to detect a broad range of clinical biomarkers.

  20. Jets and dijets in Au+Au and p+p collisions at RHIC

    SciTech Connect

    Hardtke, D.; STAR Collaboration

    2002-12-09

    Recent data from RHIC suggest novel nuclear effects in the production of high p{sub T} hadrons. We present results from the STAR detector on high p{sub T} angular correlations in Au+Au and p+p collisions at {radical}S = 200 GeV/c. These two-particle angular correlation measurements verify the presence of a partonic hard scattering and fragmentation component at high p{sub T} in both central and peripheral Au+Au collisions. When triggering on a leading hadron with p{sub T}>4 GeV, we observe a quantitative agreement between the jet cone properties in p+p and all centralities of Au+Au collisions. This quantitative agreement indicates that nearly all hadrons with p{sub T}>4 GeV/c come from jet fragmentation and that jet fragmentation properties are not substantially modified in Au+Au collisions. STAR has also measured the strength of back-to-back high p{sub T} charged hadron correlations, and observes a small suppression of the back-to-back correlation strength in peripheral collisions, and a nearly complete disappearance o f back-to-back correlations in central Au+Au events. These phenomena, together with the observed strong suppression of inclusive yields and large value of elliptic flow at high p{sub T}, are consistent with a model where high p{sub T} hadrons come from partons created near the surface of the collision region, and where partons that originate or propagate towards the center of the collision region are substantially slowed or completely absorbed.

  1. Surface plasmon resonance-induced photocatalysis by Au nanoparticles decorated mesoporous g-C{sub 3}N{sub 4} nanosheets under direct sunlight irradiation

    SciTech Connect

    Tonda, Surendar; Kumar, Santosh; Shanker, Vishnu

    2016-03-15

    Highlights: • The Au/mp-g-C{sub 3}N{sub 4} was synthesized via a template-free and green in situ strategy. • Au/mp-g-C{sub 3}N{sub 4} nanosheets possesses high surface area and porous structure. • Au/mp-g-C{sub 3}N{sub 4} showed dramatic photocurrent response and photocatalytic activity. • The high performance is due to SPR of Au and mesoporous structure. • Au/mp-g-C{sub 3}N{sub 4} nanosheets exhibited high photostability. - Abstract: In recent years, surface plasmon-induced photocatalytic materials with tunable mesoporous framework have attracted considerable attention in energy conversion and environmental remediation. Herein we report a novel Au nanoparticles decorated mesoporous graphitic carbon nitride (Au/mp-g-C{sub 3}N{sub 4}) nanosheets via a template-free and green in situ photo-reduction method. The synthesized Au/mp-g-C{sub 3}N{sub 4} nanosheets exhibit a strong absorption edge in visible and near-IR region owing to the surface plasmon resonance effect of Au nanoparticles. More attractively, Au/mp-g-C{sub 3}N{sub 4} exhibited much higher photocatalytic activity than that of pure mesoporous and bulk g-C{sub 3}N{sub 4} for the degradation of rhodamine B under sunlight irradiation. Furthermore, the photocurrent and photoluminescence studies demonstrated that the deposition of Au nanoparticles on the surface of mesoporous g-C{sub 3}N{sub 4} could effectively inhibit the recombination of photogenerated charge carriers leading to the enhanced photocatalytic activity. More importantly, the synthesized Au/mp-g-C{sub 3}N{sub 4} nanosheets possess high reusability. Hence, Au/mp-g-C{sub 3}N{sub 4} could be promising photoactive material for energy and environmental applications.

  2. Evaluating Rigor in Qualitative Methodology and Research Dissemination

    ERIC Educational Resources Information Center

    Trainor, Audrey A.; Graue, Elizabeth

    2014-01-01

    Despite previous and successful attempts to outline general criteria for rigor, researchers in special education have debated the application of rigor criteria, the significance or importance of small n research, the purpose of interpretivist approaches, and the generalizability of qualitative empirical results. Adding to these complications, the…

  3. Au/Si nanorod-based biosensor for food pathogen detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract Among several potentials of nanotechnology applications for food industry, development of nanoscale sensors for food safety and quality measurement are emerging. A novel biosensor for Salmonella detection was developed using Au/Si nanorods. The Si nanorods were fabricated by gla...

  4. Au/Si Hetero-Nanorod-based Biosensor for Salmonella Detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract Among several potentials of nanotechnology applications for food industry, development of nanoscale sensors for food safety and biosecurity measurement are emerging. A novel biosensor for Salmonella detection was developed using Au/Si nanorods. The Si nanorods were fabricated by...

  5. Au/Si Hetero-nanorod-based Biosensor for Salmonella Detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among several potentials of nanotechnology applications for food industry, development of nanoscale sensors for food safety and biosecurity measurement are emerging. A novel biosensor for Salmonella detection was developed using Au/Si nanorods. The Si nanorods were fabricated by glancing angle depo...

  6. Green synthesis of noble nanometals (Au, Pt, Pd) using glycerol under microwave irradiation conditions

    EPA Science Inventory

    A newer application of glycerol in the field of nanomaterials synthesis has been developed from both the economic and environmental points of view. Glycerol can act as a reducing agent for the fabrication of noble nanometals, such as Au, Pt, and Pd, under microwave irradiation. T...

  7. Au nanoparticles films used in biological sensing

    NASA Astrophysics Data System (ADS)

    Rosales Pérez, M.; Delgado Macuil, R.; Rojas López, M.; Gayou, V. L.; Sánchez Ramírez, J. F.

    2009-05-01

    Lactobacillus para paracasei are used commonly as functional food and probiotic substances. In this work Au nanoparticles self-assembled films were used for Lactobacillus para paracasei determination at five different concentrations. Functionalized substrates were immersed in a colloidal solution for one and a half hour at room temperature and dried at room temperature during four hours. After that, drops of Lactobacillus para paracasei in aqueous solution were put into the Au nanoparticles film and let dry at room temperature for another two hours. Infrared spectroscopy in attenuated total reflectance sampling mode was used to observe generation peaks due to substrate silanization, enhancement of Si-O band intensity due to the Au colloids added to silanized substrate and also to observe the enhancement of Lactobacillus para paracasei infrared intensity of the characteristic frequencies at 1650, 1534 and 1450 cm-1 due to surface enhancement infrared absorption.

  8. Obstructions to Sampling Qualitative Properties

    PubMed Central

    Reimers, Arne C.

    2015-01-01

    Background Sampling methods have proven to be a very efficient and intuitive method to understand properties of complicated spaces that cannot easily be computed using deterministic methods. Therefore, sampling methods became a popular tool in the applied sciences. Results Here, we show that sampling methods are not an appropriate tool to analyze qualitative properties of complicated spaces unless RP = NP. We illustrate these results on the example of the thermodynamically feasible flux space of genome-scale metabolic networks and show that with artificial centering hit and run (ACHR) not all reactions that can have variable flux rates are sampled with variables flux rates. In particular a uniform sample of the flux space would not sample the flux variabilities completely. Conclusion We conclude that unless theoretical convergence results exist, qualitative results obtained from sampling methods should be considered with caution and if possible double checked using a deterministic method. PMID:26287384

  9. STM imaging ortho- and para-fluorothiophenol self-assembled monolayers on Au(111).

    PubMed

    Jiang, Peng; Deng, Ke; Fichou, Denis; Xie, Si-Shen; Nion, Aymeric; Wang, Chen

    2009-05-05

    Self-assembled monolayers (SAMs) of para- and ortho-fluorothiophenol (p- and o-FTP) spontaneously formed on Au(111) substrate have been contrasted through investigation by a scanning tunneling microscope (STM) at room temperature. High-resolution STM imaging reveals that p-FTP adopts a 6 x radical3R30 degrees molecule arrangement containing six molecules. Two different kinds of p-FTP molecule dimer line structures have been formed on Au(111) by intermolecular pi-pi stacking along 112 substrate directions, besides a single p-FTP molecule line. In contrast, o-FTP molecules self-assemble into a much looser wave-like SAM, which can be described as a 5 x 3 radical3R30 degrees structure containing two molecules. Periodic density functional theory (DFT) calculations for the two systems suggest that these kinds of FTP molecules preferentially take the asymmetrical positions between 3-fold face-centered cubic (fcc) hollow and bridge sites on Au(111), tilting from the substrate surface. Theoretical simulation gives apparent average tilted angles of 58 degrees and 68 degrees for p-FTP and o-FTP with respect to the surface normal, respectively. This simulation shows that o-FTP is more inclined to lie down toward the Au(111) surface compared to p-FTP. The difference between p-FTP and o-FTP SAM structures can be qualitatively understood in terms of the variation of intermolecular dipole-dipole orientation. This suggests that, besides well-known Au-S and pi-pi interactions, electrostatic interactions including dipole-dipole, quadrupole-quadrupole, and dipole-quadrupole interactions might also play an important role in influencing the SAM structures formed by aromatic thiols with a permanent dipole moment.

  10. Luminescent, bimetallic AuAg alloy quantum clusters in protein templates

    NASA Astrophysics Data System (ADS)

    Mohanty, Jyoti Sarita; Xavier, P. Lourdu; Chaudhari, Kamalesh; Bootharaju, M. S.; Goswami, N.; Pal, S. K.; Pradeep, T.

    2012-06-01

    We report the synthesis of luminescent AuAg alloy quantum clusters (QCs) in bovine serum albumin (BSA), for the first time, with experimentally determined atomic composition. Mixing of the as-synthesized protein-protected Au and Ag clusters resulted in the formation of alloy AuAg clusters within the BSA. Mass spectrometric analysis of the product of a 1 : 1 molar ratio reaction mixture of AuQC@BSA and AgQC@BSA suggested that the alloy clusters could be Au38-xAgx@BSA. Further analyses by standard techniques revealed that the alloy cluster core of ~1.2 nm diameter is composed of nearly zero valent Au and Ag atoms that exhibit distinctly different steady state and time resolved excited state luminescence profiles compared to the parent clusters. Tuning of the alloy composition was achieved by varying the molar ratio of the parent species in the reaction mixture and compositional changes were observed by mass spectrometry. In another approach, mixing of Au3+ ions with the as-synthesized AgQC@BSA also resulted in the formation of alloy clusters through galvanic exchange reactions. We believe that alloy clusters with the combined properties of the constituents in versatile protein templates would have potential applications in the future. The work presents interesting aspects of the reactivity of the protein-protected clusters.We report the synthesis of luminescent AuAg alloy quantum clusters (QCs) in bovine serum albumin (BSA), for the first time, with experimentally determined atomic composition. Mixing of the as-synthesized protein-protected Au and Ag clusters resulted in the formation of alloy AuAg clusters within the BSA. Mass spectrometric analysis of the product of a 1 : 1 molar ratio reaction mixture of AuQC@BSA and AgQC@BSA suggested that the alloy clusters could be Au38-xAgx@BSA. Further analyses by standard techniques revealed that the alloy cluster core of ~1.2 nm diameter is composed of nearly zero valent Au and Ag atoms that exhibit distinctly different

  11. Electrophoretic deposition of fluorescent Cu and Au sheets for light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Jiale; Wu, Zhennan; Li, Tingting; Zhou, Ding; Zhang, Kai; Sheng, Yu; Cui, Jianli; Zhang, Hao; Yang, Bai

    2015-12-01

    Electrophoretic deposition (EPD) is a conventional method for fabricating film materials from nanometer-sized building blocks, and exhibits the advantages of low-cost, high-efficiency, wide-range thickness adjustment, and uniform deposition. Inspired by the interest in the application of two-dimensional (2D) nanomaterials, the EPD technique has been recently extended to building blocks with 2D features. However, the studies are mainly focused on simplex building blocks. The utilization of multiplex building blocks is rarely reported. In this work, we demonstrate a controlled EPD of Cu and Au sheets, which are 2D assemblies of luminescent Cu and Au nanoclusters. Systematic investigations reveal that both the deposition efficiency and the thickness are determined by the lateral size of the sheets. For Cu sheets with a large lateral size, a high ζ-potential and strong face-to-face van der Waals interactions facilitate the deposition with high efficiency. However, for Au sheets, the small lateral size and ζ-potential limit the formation of a thick film. To solve this problem, the deposition dynamics are controlled by increasing the concentration of the Au sheets and adding acetone. This understanding permits the fabrication of a binary EPD film by the stepwise deposition of Cu and Au sheets, thus producing a luminescent film with both Cu green emission and Au red emission. A white light-emitting diode prototype with color coordinates (x, y) = (0.31, 0.36) is fabricated by employing the EPD film as a color conversion layer on a 365 nm GaN clip and further tuning the amount of deposited Cu and Au sheets.Electrophoretic deposition (EPD) is a conventional method for fabricating film materials from nanometer-sized building blocks, and exhibits the advantages of low-cost, high-efficiency, wide-range thickness adjustment, and uniform deposition. Inspired by the interest in the application of two-dimensional (2D) nanomaterials, the EPD technique has been recently extended to

  12. The role of interfaces in the magnetoresistance of Au/Fe/Au/Fe/GaAs(001)

    SciTech Connect

    Enders, A.; Monchesky, T. L.; Myrtle, K.; Urban, R.; Heinrich, B.; Kirschner, J.; Zhang, X.-G.; Butler, W. H.

    2001-06-01

    The electron transport and magnetoresistance (MR) were investigated in high quality crystalline epitaxial Fe(001) and Au(001) films and exchange coupled Au/Fe/Au/Fe/GaAs(001) trilayer structures. Fits to the experimental data were based on the semiclassical Boltzmann equation, which incorporates the electronic properties obtained from first-principles local density functional calculations. The fits require a surprisingly high asymmetry for the spin dependent electron lifetimes in Fe, {tau}{sup {down_arrow}}/{tau}{sup {up_arrow}}=10 at room temperature. Despite the large atomic terraces at the Au/vacuum and Fe/GaAs interfaces the scattering at the outer interfaces was found to be diffuse. The origin of MR in Au/Fe/Au/Fe/GaAs(001) structures is due to electron channeling in the Au spacer layer. The measured MR is consistent with the diffusivity parameters s{sup {up_arrow}}=0.55, s{sup {down_arrow}}=0.77 at the metal{endash}metal interfaces. {copyright} 2001 American Institute of Physics.

  13. On the nature of chemical bonding in the all-metal aromatic [Sb3Au3Sb3](3-) sandwich complex.

    PubMed

    You, Xue-Rui; Tian, Wen-Juan; Li, Da-Zhi; Wang, Ying-Jin; Li, Rui; Feng, Lin-Yan; Zhai, Hua-Jin

    2016-05-21

    In a recent communication, an all-metal aromatic sandwich [Sb3Au3Sb3](3-) was synthesized and characterized. We report herein a density-functional theory (DFT) study on the chemical bonding of this unique cluster, which makes use of a number of computational tools, including the canonical molecular orbital (CMO), adaptive natural density partitioning (AdNDP), Wiberg bond index, and orbital composition analyses. The 24-electron, triangular prismatic sandwich is intrinsically electron-deficient, being held together via six Sb-Sb, three Au-Au, and six Sb-Au links. A standard, qualitative bonding analysis suggests that all CMOs are primarily located on the three Sb3/Au3/Sb3 layers, three Au 6s based CMOs are fully occupied, and the three extra charges are equally shared by the two cyclo-Sb3 ligands. This bonding picture is referred to as the zeroth order model, in which the cluster can be formally formulated as [Sb3(1.5+)Au3(3-)Sb3(1.5+)](3-) or [Sb3(0)Au3(3-)Sb3(0)]. However, the system is far more complex and covalent than the above picture. Seventeen CMOs out of 33 in total involve remarkable Sb → Au electron donation and Sb ← Au back-donation, which are characteristic of covalent bonding and effectively redistribute electrons from the Sb3 and Au3 layers to the interlayer edges. This effect collectively leads to three Sb-Au-Sb three-center two-electron (3c-2e) σ bonds as revealed in the AdNDP analyses, despite the fact that not a single such bond can be identified from the CMOs. Orbital composition analyses for the 17 CMOs allow a quantitative understanding of how electron donation and back-donation redistribute the charges within the system from the formal Sb3(0)/Au3(3-) charge states in the zeroth order model to the effective Sb3(1.5-)/Au3(0) charge states, the latter being revealed from the natural bond orbital analysis.

  14. Qualitative assessment of silver and gold nanoparticle synthesis in various plants: a photobiological approach

    NASA Astrophysics Data System (ADS)

    Rajasekharreddy, Pala; Usha Rani, Pathipati; Sreedhar, Bojja

    2010-06-01

    The development of rapid and ecofriendly processes for the synthesis of silver (Ag) and gold (Au) nanoparticles is of great importance in the field of nanotechnology. In this study, the extracellular production of Ag and Au nanoparticles was carried out from the leaves of the plants, Tridax procumbens L. (Coat buttons), Jatropa curcas L. (Barbados nut), Calotropis gigantea L. (Calotropis), Solanum melongena L. (Eggplant), Datura metel L. (Datura), Carica papaya L. (Papaya) and Citrus aurantium L. (Bitter orange) by the sunlight exposure method. Qualitative comparisons of the synthesized nanoparticles between the plants were measured. Among these T. procumbens, J. curcas and C. gigantea plants synthesized <20 nm sized and spherical-shaped Ag particles, whereas C. papaya, D. metel and S. melongena produced <20 nm sized monodispersed Au particles. The amount of nanoparticles synthesized and its qualitative characterization was done by UV-vis spectroscopy and transmission electron microscopy (TEM), respectively. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used for structural confirmation. Further analysis carried out by fourier transform infrared spectroscopy (FTIR), provided evidence for the presence of amino groups, which increased the stability of the synthesized nanoparticles.

  15. Toxicity of citrate-capped AuNPs: an in vitro and in vivo assessment

    NASA Astrophysics Data System (ADS)

    Sabella, Stefania; Brunetti, Virgilio; Vecchio, Giuseppe; Galeone, Antonio; Maiorano, Gabriele; Cingolani, Roberto; Pompa, Pier Paolo

    2011-12-01

    In this study, we show that 15 nm citrate-capped AuNPs exert a remarkable toxicity in living systems. The assessment was performed by using well-characterized AuNPs, the combination of in vitro and in vivo models (namely two different cell lines and Drosophila melanogaster), exposure to low dosages of nanoparticles (in the sub-nanomolar concentration range), along with the application of several biological assays to monitor different aspects of the toxic effects, such as viability, genotoxicity, and molecular biomarkers.

  16. Plasmonic effect of spray-deposited Au nanoparticles on the performance of inverted organic solar cells.

    PubMed

    Chaturvedi, Neha; Swami, Sanjay Kumar; Dutta, Viresh

    2014-09-21

    Gold nanoparticles with varying sizes were prepared by the spray process under an electric field (DC voltages of 0 V and 1 kV applied to the nozzle) for studying their role in inverted organic solar cells (ITO/Au/ZnO/P3HT:PCBM/Ag). The application of electric field during the spray process resulted in a smaller size (35 nm as compared to 70 nm without the electric field) of the nanoparticles with more uniform distribution. This gave rise to a difference in the surface plasmon resonance (SPR) effect created by the gold nanoparticles (Au NPs), which then affected the solar cell performance. The photovoltaic performances of plasmonic inverted organic solar cells (ITO/Au/ZnO/P3HT:PCBM/Ag) using spray-deposited Au and ZnO layers (both at 1 kV) showed improved efficiency. Fast exciton quenching in the P3HT:PCBM layer was achieved by using a spray-deposited Au layer in between ITO and ZnO layers. The absorption spectra and internal power conversion efficiency (IPCE) curve showed that the Au nanoparticles provide significant plasmonic broadband light absorption enhancement which resulted in the enhancement of the JSC value. Maximum efficiency of 3.6% was achieved for the inverted organic solar cell (IOSC) with an exceptionally high short circuit current density of ∼15 mA cm(-2) which is due to the additional photon absorption and the corresponding increase observed in the IPCE spectrum. The spray technique can be easily applied for the direct formation of Au nanoparticles in the fabrication of IOSC with improved performance over a large area.

  17. Plasmonic effect of spray-deposited Au nanoparticles on the performance of inverted organic solar cells

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Neha; Swami, Sanjay Kumar; Dutta, Viresh

    2014-08-01

    Gold nanoparticles with varying sizes were prepared by the spray process under an electric field (DC voltages of 0 V and 1 kV applied to the nozzle) for studying their role in inverted organic solar cells (ITO/Au/ZnO/P3HT:PCBM/Ag). The application of electric field during the spray process resulted in a smaller size (35 nm as compared to 70 nm without the electric field) of the nanoparticles with more uniform distribution. This gave rise to a difference in the surface plasmon resonance (SPR) effect created by the gold nanoparticles (Au NPs), which then affected the solar cell performance. The photovoltaic performances of plasmonic inverted organic solar cells (ITO/Au/ZnO/P3HT:PCBM/Ag) using spray-deposited Au and ZnO layers (both at 1 kV) showed improved efficiency. Fast exciton quenching in the P3HT:PCBM layer was achieved by using a spray-deposited Au layer in between ITO and ZnO layers. The absorption spectra and internal power conversion efficiency (IPCE) curve showed that the Au nanoparticles provide significant plasmonic broadband light absorption enhancement which resulted in the enhancement of the JSC value. Maximum efficiency of 3.6% was achieved for the inverted organic solar cell (IOSC) with an exceptionally high short circuit current density of ~15 mA cm-2 which is due to the additional photon absorption and the corresponding increase observed in the IPCE spectrum. The spray technique can be easily applied for the direct formation of Au nanoparticles in the fabrication of IOSC with improved performance over a large area.

  18. Tuning the SERS Response with Ag-Au Nanoparticle-Embedded Polymer Thin Film Substrates.

    PubMed

    Rao, V Kesava; Radhakrishnan, T P

    2015-06-17

    Development of facile routes to the fabrication of thin film substrates with tunable surface enhanced Raman scattering (SERS) efficiency and identification of the optimal conditions for maximizing the enhancement factor (EF) are significant in terms of both fundamental and application aspects of SERS. In the present work, polymer thin films with embedded bimetallic nanoparticles of Ag-Au are fabricated by a simple two-stage protocol. Ag nanoparticles are formed in the first stage, by the in situ reduction of silver nitrate by the poly(vinyl alcohol) (PVA) film through mild thermal annealing, without any additional reducing agent. In the second stage, aqueous solutions of chloroauric acid spread on the Ag-PVA thin film under ambient conditions, lead to the galvanic displacement of Ag by Au in situ inside the film, and the formation of Ag-Au particles. Evolution of the morphology of the bimetallic nanoparticles into hollow cage structures and the distribution of Au on the nanoparticles are revealed through electron microscopy and energy dispersive X-ray spectroscopy. The localized surface plasmon resonance (LSPR) extinction of the nanocomposite thin film evolves with the Ag-Au composition; theoretical simulation of the extinction spectra provides insight into the observed trends. The Ag-Au-PVA thin films are found to be efficient substrates for SERS. The EF follows the variation of the LSPR extinction vis-à-vis the excitation laser wavelength, but with an offset, and the maximum SERS effect is obtained at very low Au content; experiments with Rhodamine 6G showed EFs on the order of 10(8) and a limit of detection of 0.6 pmol. The present study describes a facile and simple fabrication of a nanocomposite thin film that can be conveniently deployed in SERS investigations, and the utility of the bimetallic system to tune and maximize the EF.

  19. Synthesis of ultrathin face-centered-cubic au@pt and au@pd core-shell nanoplates from hexagonal-close-packed au square sheets.

    PubMed

    Fan, Zhanxi; Zhu, Yihan; Huang, Xiao; Han, Yu; Wang, Qingxiao; Liu, Qing; Huang, Ying; Gan, Chee Lip; Zhang, Hua

    2015-05-04

    The synthesis of ultrathin face-centered-cubic (fcc) Au@Pt rhombic nanoplates is reported through the epitaxial growth of Pt on hexagonal-close-packed (hcp) Au square sheets (AuSSs). The Pt-layer growth results in a hcp-to-fcc phase transformation of the AuSSs under ambient conditions. Interestingly, the obtained fcc Au@Pt rhombic nanoplates demonstrate a unique (101)f orientation with the same atomic arrangement extending from the Au core to the Pt shell. Importantly, this method can be extended to the epitaxial growth of Pd on hcp AuSSs, resulting in the unprecedented formation of fcc Au@Pd rhombic nanoplates with (101)f orientation. Additionally, a small amount of fcc (100)f -oriented Au@Pt and Au@Pd square nanoplates are obtained with the Au@Pt and Au@Pd rhombic nanoplates, respectively. We believe that these findings will shed new light on the synthesis of novel noble bimetallic nanostructures.

  20. Nanoporous Au structures by dealloying Au/Ag thermal- or laser-dewetted bilayers on surfaces

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Torrisi, V.; Grillo, R.; Cacciato, G.; Zimbone, M.; Piccitto, G.; Grimaldi, M. G.

    2017-03-01

    Nanoporous Au attracts great technological interest and it is a promising candidate for optical and electrochemical sensors. In addition to nanoporous Au leafs and films, recently, interest was focused on nanoporous Au micro- and nano-structures on surfaces. In this work we report on the study of the characteristics of nanoporous Au structures produced on surfaces. We developed the following procedures to fabricate the nanoporous Au structures: we deposited thin Au/Ag bilayers on SiO2 or FTO (fluorine-doped tin oxide) substrates with thickness xAu and xAg of the Au and Ag layers; we induced the alloying and dewetting processes of the bilayers by furnace annealing processes of the bilayers deposited on SiO2 and by laser irradiations of the bilayers deposited on FTO; the alloying and dewetting processes result in the formation of AuxAgy alloy sub-micron particles being x and y tunable by xAu and xAg. These particles are dealloyed in HNO3 solution to remove the Ag atoms. We obtain, so, nanoporous sub-micron Au particles on the substrates. Analyzing the characteristics of these particles we find that: a) the size and shape of the particles depend on the nature of the dewetting process (solid-state dewetting on SiO2, molten-state dewetting on FTO); b) the porosity fraction of the particles depends on how the alloying process is reached: about 32% of porosity for the particles fabricated by the furnace annealing at 900 °C, about 45% of porosity for the particles fabricated by the laser irradiation at 0.5 J/cm2, in both cases independently on the Ag concentration in the alloy; c) After the dealloying process the mean volume of the Au particles shrinks of about 39%; d) After an annealing at 400 °C the nanoporous Au particles reprise their initial volume while the porosity fraction is reduced. Arguments to justify these behaviors are presented.

  1. SHG anisotropy in Au/Co/Au/Cu/vicinal Si(1 1 1)

    NASA Astrophysics Data System (ADS)

    Cheikh-Rouhou, W.; Sampaio, L. C.; Bartenlian, B.; Beauvillain, P.; Brun, A.; Ferré, J.; Georges, P.; Jamet, J.-P.; Mathet, V.; Stupakewicz, Andrei

    2002-02-01

    The second harmonic generation (SHG) reflectivity on magnetic multilayers is a very sensitive technique to reveal the crystallography of buried interfaces. We have used the azimuthal anisotropy of SHG to demonstrate that the vicinal character of Si(1 1 1) substrate is duplicated in the metallic multilayer Au/Co/Au/Cu. The magnetic properties of these multilayers as anisotropy and magneto-optic polar Kerr rotation were studied by linear magneto-optic effects in correlation with SHG experiments, by varying the Co and Au buffer thicknesses as well as the Cu buffer deposition condition.

  2. Time Dependent Universal Conductance Fluctuations In AuPd, Ag, And Au Wires

    NASA Astrophysics Data System (ADS)

    Trionfi, A.; Lee, S.; Natelson, D.

    2006-09-01

    Quantum transport phenomena allow experimental determinations of the phase coherence information in metals. We report quantitative comparisons of inferred coherence lengths from independent measurements of the weak localization magnetoresistance and time-dependent universal conductance fluctuations' magnetic field dependence. Strong agreement is observed in both quasi-2D and quasi-1D AuPd samples. However, quantitative agreement is not seen in quasi-1D Ag wires below 10 K and quasi-1D Au wires below 14 K. A possible explanation for this disagreement will be discussed. Attempts to produce changes in the coherence length in Au by annealing have also been made and results will be reported.

  3. Revisiting the S-Au(111) interaction: Static or Dynamic?

    SciTech Connect

    Biener, M M; Biener, J; Friend, C M

    2004-08-17

    The chemical inertness typically observed for Au does not imply a general inability to form stable bonds with non-metals but is rather a consequence of high reaction barriers. The Au-S interaction is probably the most intensively studied interaction of Au surfaces with non-metals as, for example, it plays an important role in Au ore formation, and controls the structure and dynamics of thiol-based self-assembled-monolayers (SAMs). In recent years a quite complex picture of the interaction of sulfur with Au(111) surfaces emerged, and a variety of S-induced surface structures was reported under different conditions. The majority of these structures were interpreted in terms of a static Au surface, where the positions of the Au atoms remain essentially unperturbed. Here we demonstrate that the Au(111) surface exhibits a very dynamic character upon interaction with adsorbed sulfur: low sulfur coverages modify the surface stress of the Au surface leading to lateral expansion of the surface layer; large-scale surface restructuring and incorporation of Au atoms into a growing two-dimensional AuS phase were observed with increasing sulfur coverage. These results provide new insight into the Au-S surface chemistry, and reveal the dynamic character of the Au(111) surface.

  4. Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices.

    PubMed

    Gogurla, Narendar; Sinha, Arun Kumar; Santra, Sumita; Manna, Santanu; Ray, Samit Kumar

    2014-09-26

    In this study we report the enhancement of UV photodetection and wavelength tunable light induced NO gas sensing at room temperature using Au-ZnO nanocomposites synthesized by a simple photochemical process. Plasmonic Au-ZnO nanostructures with a size less than the incident wavelength have been found to exhibit a localized surface plasmon resonance (LSPR) that leads to a strong absorption, scattering and local field enhancement. The photoresponse of Au-ZnO nanocomposite can be effectively enhanced by 80 times at 335 nm over control ZnO. We also demonstrated Au-ZnO nanocomposite's application to wavelength tunable gas sensor operating at room temperature. The sensing response of Au-ZnO nancomposite is enhanced both in UV and visible region, as compared to control ZnO. The sensitivity is observed to be higher in the visible region due to the LSPR effect of Au NPs. The selectivity is found to be higher for NO gas over CO and some other volatile organic compounds (VOCs), with a minimum detection limit of 0.1 ppb for Au-ZnO sensor at 335 nm.

  5. Multifunctional Au-ZnO Plasmonic Nanostructures for Enhanced UV Photodetector and Room Temperature NO Sensing Devices

    PubMed Central

    Gogurla, Narendar; Sinha, Arun Kumar; Santra, Sumita; Manna, Santanu; Ray, Samit Kumar

    2014-01-01

    In this study we report the enhancement of UV photodetection and wavelength tunable light induced NO gas sensing at room temperature using Au-ZnO nanocomposites synthesized by a simple photochemical process. Plasmonic Au-ZnO nanostructures with a size less than the incident wavelength have been found to exhibit a localized surface plasmon resonance (LSPR) that leads to a strong absorption, scattering and local field enhancement. The photoresponse of Au-ZnO nanocomposite can be effectively enhanced by 80 times at 335 nm over control ZnO. We also demonstrated Au-ZnO nanocomposite's application to wavelength tunable gas sensor operating at room temperature. The sensing response of Au-ZnO nancomposite is enhanced both in UV and visible region, as compared to control ZnO. The sensitivity is observed to be higher in the visible region due to the LSPR effect of Au NPs. The selectivity is found to be higher for NO gas over CO and some other volatile organic compounds (VOCs), with a minimum detection limit of 0.1 ppb for Au-ZnO sensor at 335 nm. PMID:25255700

  6. AuPt Alloy Nanostructures with Tunable Composition and Enzyme-like Activities for Colorimetric Detection of Bisulfide

    NASA Astrophysics Data System (ADS)

    He, Weiwei; Han, Xiangna; Jia, Huimin; Cai, Junhui; Zhou, Yunlong; Zheng, Zhi

    2017-01-01

    Tuning the enzyme-like activity and studying the interaction between biologically relevant species and nano-enzymes may facilitate the applications of nanostructures in mimicking natural enzymes. In this work, AuPt alloy nanoparticles (NPs) with varying compositions were prepared through a facile method by co-reduction of Au3+ and Pt2+ in aqueous solutions. The composition could be tuned easily by adjusting the molar ratios of added Pt2+ to Au3+. It was found that both peroxidase-like and oxidase-like activity of AuPt alloy NPs were highly dependent on the alloy compositions, which thus suggesting an effective way to tailor their catalytic properties. By investigating the inhibitory effects of HS‑ on the enzyme-like activity of AuPt alloy NPs and natural enzyme, we have developed a method for colorimetric detection of HS‑ and evaluation of the inhibiting effects of inhibitors on natural and artificial enzymes. In addition, the responsive ability of this method was influenced largely by the composition: AuPt alloy NPs show much lower limit of detection for HS‑ than Pt NPs while Pt NPs show wider linear range than AuPt alloy NPs. This study suggests the facile way not only for synthesis of alloy nanostructures, but also for tuning their catalytic activities and for use in bioanalysis.

  7. AuPt Alloy Nanostructures with Tunable Composition and Enzyme-like Activities for Colorimetric Detection of Bisulfide

    PubMed Central

    He, Weiwei; Han, Xiangna; Jia, Huimin; Cai, Junhui; Zhou, Yunlong; Zheng, Zhi

    2017-01-01

    Tuning the enzyme-like activity and studying the interaction between biologically relevant species and nano-enzymes may facilitate the applications of nanostructures in mimicking natural enzymes. In this work, AuPt alloy nanoparticles (NPs) with varying compositions were prepared through a facile method by co-reduction of Au3+ and Pt2+ in aqueous solutions. The composition could be tuned easily by adjusting the molar ratios of added Pt2+ to Au3+. It was found that both peroxidase-like and oxidase-like activity of AuPt alloy NPs were highly dependent on the alloy compositions, which thus suggesting an effective way to tailor their catalytic properties. By investigating the inhibitory effects of HS− on the enzyme-like activity of AuPt alloy NPs and natural enzyme, we have developed a method for colorimetric detection of HS− and evaluation of the inhibiting effects of inhibitors on natural and artificial enzymes. In addition, the responsive ability of this method was influenced largely by the composition: AuPt alloy NPs show much lower limit of detection for HS− than Pt NPs while Pt NPs show wider linear range than AuPt alloy NPs. This study suggests the facile way not only for synthesis of alloy nanostructures, but also for tuning their catalytic activities and for use in bioanalysis. PMID:28051159

  8. Enhanced NO2 sensing characteristics of Au modified porous silicon/thorn-sphere-like tungsten oxide composites

    NASA Astrophysics Data System (ADS)

    Yuan, Lin; Hu, Ming; Wei, Yulong; Ma, Wenfeng

    2016-12-01

    The thorn-sphere-like tungsten oxide (WO3) made up by 1D nanorods has been successfully synthesized through hydrothermal method on the Au-modified porous silicon (PS) substrates with seed-layer induction. By using XRD, EDS, FESEM and TEM techniques, we tested and verified that the crystal structure and morphology evolution of WO3 hierarchical nanostructure on the Au-modified PS strongly depend on the Au-sputtering time and hydrothermal reaction time. In addition, by comparing the NO2-sensing properties of the prepared products, we found that the 10 s-Au decorated PS/WO3-3 h (sputtering Au for 10 s and hydrothermal reaction for 3 h) composites sensor behaving as a typical p-type semiconductor and operating at room temperature (RT) exhibits high sensitivity and response characteristics even to ppb-level NO2, which makes this kind of sensor a competitive candidate for NO2-sensing applications. Moreover, the enhanced response may not only due to the high specific surface area but the Au nanoparticles acting as promoters for the spillover effect and forming metal-semiconductor heterojunctions with the PS and WO3. The transmission of electrons and holes in the heterogeneous interface generated among PS, WO3 and Au is proposed to illustrate the p-type response mechanism.

  9. Highly sensitive immunoassay based on SERS using nano-Au immune probes and a nano-Ag immune substrate.

    PubMed

    Shu, Lei; Zhou, Jun; Yuan, Xiaocong; Petti, Lucia; Chen, Jinping; Jia, Zhenhong; Mormile, Pasquale

    2014-06-01

    A super-high-sensitivity immunoassay based on surface-enhanced Raman scattering (SERS) was implemented using the nano-Au immune probes and nano-Ag immune substrate. Ultraviolet-visible extinction spectra, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images, and SERS spectra were used to characterise the nano-Au immune probes and the nano-Ag immune substrate. The nano-Ag immune substrate was prepared by the in situ growth of Ag nanoparticles and the subsequent linkage of these nanoparticles with anti-apolipoprotein B on a silicon wafer. The nano-Ag immune substrate exhibited strong SERS activity, excellent reproducibility, and high biospecificity. The nano-Au immune probes were prepared by immobilising 4-mercaptobenzoic acid (4MBA) molecules as a Raman reporter and anti-apolipoprotein B onto the surfaces of Au nanoparticles. It was found that 4MBA induced the aggregation of Au nanoparticles, resulting in the generation of vast hot spots. Moreover, the nano-Au immune probes exhibited strong SERS activity and high biospecificity. A sandwich-type immunoassay structure consisting of the nano-Au immune probes and nano-Ag immune substrate was used to detect the concentration of apolipoprotein B, where the detection limit was as low as 2 fg/mL (3.878×10(-18) mol/L). Taken together, the experimental results indicate that the proposed immunoassay protocol has a great potential application in biological sensing and clinical diagnostics.

  10. A qualitative method for analysing multivoicedness

    PubMed Central

    Aveling, Emma-Louise; Gillespie, Alex; Cornish, Flora

    2015-01-01

    ‘Multivoicedness’ and the ‘multivoiced Self’ have become important theoretical concepts guiding research. Drawing on the tradition of dialogism, the Self is conceptualised as being constituted by a multiplicity of dynamic, interacting voices. Despite the growth in literature and empirical research, there remains a paucity of established methodological tools for analysing the multivoiced Self using qualitative data. In this article, we set out a systematic, practical ‘how-to’ guide for analysing multivoicedness. Using theoretically derived tools, our three-step method comprises: identifying the voices of I-positions within the Self’s talk (or text), identifying the voices of ‘inner-Others’, and examining the dialogue and relationships between the different voices. We elaborate each step and illustrate our method using examples from a published paper in which data were analysed using this method. We conclude by offering more general principles for the use of the method and discussing potential applications. PMID:26664292

  11. Using Generic Inductive Approach in Qualitative Educational Research: A Case Study Analysis

    ERIC Educational Resources Information Center

    Liu, Lisha

    2016-01-01

    Qualitative research strategy has been widely adopted by educational researchers in order to improve the quality of their empirical studies. This paper aims to introduce a generic inductive approach, pragmatic and flexible in qualitative theoretical support, by describing its application in a study of non-English major undergraduates' English…

  12. Suppression of Upsilon production in d + Au and Au + Au collisions at root s(NN) = 200 GeV (vol 735, pg 127, 2014)

    SciTech Connect

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Gliske, S.; Krueger, K.; Spinka, H. M.; Underwood, D. G.

    2014-07-30

    We report measurements of Υ meson production in p + p, d +Au, and Au+Aucollisions using the STAR detector at RHIC. We compare the Υ yield to the measured cross section in p + p collisions in order to quantify any modifications of the yield in cold nuclear matter using d +Au data and in hot nuclear matter using Au+Au data separated into three centrality classes. Our p +p measurement is based on three times the statistics of our previous result. We obtain a nuclear modification factor for Υ (1S + 2S + 3S) in the rapidity range |y| < 1 in d + Aucollisions of RdAu = 0.79 ± 0.24(stat.) ± 0.03(syst.) ± 0.10(p + p syst.). A comparison with models including shadowing and initial state parton energy loss indicates the presence of additional cold-nuclear matter suppression. Similarly, in the top 10% most-central Au + Au collisions, we measure a nuclear modification factor of R AA = 0.49 ±0.1(stat.) ±0.02(syst.) ±0.06(p + p syst.), which is a larger suppression factor than that seen in cold nuclear matter. Our results are consistent with complete suppression of excited-state Υ mesons in Au + Aucollisions. The additional suppression in Au + Au is consistent with the level expected in model calculations that include the presence of a hot, deconfined Quark–Gluon Plasma. However, understanding the suppression seen in d + Au is still needed before any definitive statements about the nature of the suppression in Au + Au can be made.

  13. Highly sensitive and rapid bacteria detection using molecular beacon-Au nanoparticles hybrid nanoprobes.

    PubMed

    Cao, Jing; Feng, Chao; Liu, Yan; Wang, Shouyu; Liu, Fei

    2014-07-15

    Since many diseases are caused by pathogenic bacterial infections, accurate and rapid detection of pathogenic bacteria is in urgent need to timely apply appropriate treatments and to reduce economic costs. To end this, we designed molecular beacon-Au nanoparticle hybrid nanoprobes to improve the bacterial detection efficiency and sensitivity. Here, we show that the designed molecular beacon modified Au nanoparticles could specifically recognize synthetic DNAs targets and can readily detect targets in clinical samples. Moreover, the hybrid nanoprobes can recognize Escherichia coli within an hour at a concentration of 10(2) cfu/ml, which is 1000-folds sensitive than using molecular beacon directly. Our results show that the molecular beacon-Au nanoparticle hybrid nanoprobes have great potential in medical and biological applications.

  14. A highly crystalline single Au wire network as a high temperature transparent heater.

    PubMed

    Rao, K D M; Kulkarni, Giridhar U

    2014-06-07

    A transparent conductor which can generate high temperatures finds important applications in optoelectronics. In this article, a wire network made of Au on quartz is shown to serve as an effective high temperature transparent heater. The heater has been fabricated by depositing Au onto a cracked sacrificial template. The highly interconnected Au wire network thus formed exhibited a transmittance of ∼87% in a wide spectral range with a sheet resistance of 5.4 Ω □(-1). By passing current through the network, it could be joule heated to ∼600 °C within a few seconds. The extraordinary thermal performance and stability owe much to the seamless junctions present in the wire network. Furthermore, the wire network gets self-annealed through joule heating as seen from its increased crystallinity. Interestingly, both transmittance and sheet resistance improved following annealing to 92% and 3.2 Ω □(-1), respectively.

  15. Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells.

    PubMed

    Lu, Luyao; Luo, Zhiqiang; Xu, Tao; Yu, Luping

    2013-01-09

    This article describes a cooperative plasmonic effect on improving the performance of polymer bulk heterojunction solar cells. When mixed Ag and Au nanoparticles are incorporated into the anode buffer layer, dual nanoparticles show superior behavior on enhancing light absorption in comparison with single nanoparticles, which led to the realization of a polymer solar cell with a power conversion efficiency of 8.67%, accounting for a 20% enhancement. The cooperative plasmonic effect aroused from dual resonance enhancement of two different nanoparticles. The idea was further unraveled by comparing Au nanorods with Au nanoparticles for solar cell application. Detailed studies shed light into the influence of plasmonic nanostructures on exciton generation, dissociation, and charge recombination and transport inside thin film devices.

  16. Photonic gene circuits by optically addressable siRNA-Au nanoantennas.

    PubMed

    Lee, Somin Eunice; Sasaki, Darryl Y; Park, Younggeun; Xu, Ren; Brennan, James S; Bissell, Mina J; Lee, Luke P

    2012-09-25

    The precise perturbation of gene circuits and the direct observation of signaling pathways in living cells are essential for both fundamental biology and translational medicine. Current optogenetic technology offers a new paradigm of optical control for cells; however, this technology relies on permanent genomic modifications with light-responsive genes, thus limiting dynamic reconfiguration of gene circuits. Here, we report precise control of perturbation and reconfiguration of gene circuits in living cells by optically addressable siRNA-Au nanoantennas. The siRNA-Au nanoantennas fulfill dual functions as selectively addressable optical receivers and biomolecular emitters of small interfering RNA (siRNA). Using siRNA-Au nanoantennas as optical inputs to existing circuit connections, photonic gene circuits are constructed in living cells. We show that photonic gene circuits are modular, enabling subcircuits to be combined on-demand. Photonic gene circuits open new avenues for engineering functional gene circuits useful for fundamental bioscience, bioengineering, and medical applications.

  17. Fabrication of Porous Ag/TiO2/Au Coatings with Excellent Multipactor Suppression.

    PubMed

    Wu, Duoduo; Ma, Jianzhong; Bao, Yan; Cui, Wanzhao; Hu, Tiancun; Yang, Jing; Bai, Yuanrui

    2017-03-10

    Porous Ag/TiO2/Au coatings with excellent multipactor suppression were prepared by fabrication of porous Ag surface through two-step wet chemical etching, synthesis of TiO2 coatings by electroless-plating-like solution deposition and deposition of Au coatings via electroless plating. Porous structure of Ag surface, TiO2 coatings on porous Ag surface and Au coatings on porous Ag/TiO2 surface were verified by field-emission scanning electron microscopy, the composition and crystal type of TiO2 coatings was characterized by X-ray photoelectron spectroscopy and X-ray diffraction. Secondary electron yield (SEY) measurement was used to monitor the SEY coefficient of the porous Ag coatings and Ag/TiO2/Au coatings. The as-obtained porous Ag coatings were proved exhibiting low SEY below 1.2, and the process was highly reproducible. In addition, the porous Ag/TiO2/Au coatings showed excellent multipactor suppression with the SEY 1.23 and good environmental stability. It is worth mentioning that the whole preparation process is simple and feasible, which would provide a promising application in RF devices.

  18. Fabrication of Porous Ag/TiO2/Au Coatings with Excellent Multipactor Suppression

    NASA Astrophysics Data System (ADS)

    Wu, Duoduo; Ma, Jianzhong; Bao, Yan; Cui, Wanzhao; Hu, Tiancun; Yang, Jing; Bai, Yuanrui

    2017-03-01

    Porous Ag/TiO2/Au coatings with excellent multipactor suppression were prepared by fabrication of porous Ag surface through two-step wet chemical etching, synthesis of TiO2 coatings by electroless-plating-like solution deposition and deposition of Au coatings via electroless plating. Porous structure of Ag surface, TiO2 coatings on porous Ag surface and Au coatings on porous Ag/TiO2 surface were verified by field-emission scanning electron microscopy, the composition and crystal type of TiO2 coatings was characterized by X-ray photoelectron spectroscopy and X-ray diffraction. Secondary electron yield (SEY) measurement was used to monitor the SEY coefficient of the porous Ag coatings and Ag/TiO2/Au coatings. The as-obtained porous Ag coatings were proved exhibiting low SEY below 1.2, and the process was highly reproducible. In addition, the porous Ag/TiO2/Au coatings showed excellent multipactor suppression with the SEY 1.23 and good environmental stability. It is worth mentioning that the whole preparation process is simple and feasible, which would provide a promising application in RF devices.

  19. Fabrication of Porous Ag/TiO2/Au Coatings with Excellent Multipactor Suppression

    PubMed Central

    Wu, Duoduo; Ma, Jianzhong; Bao, Yan; Cui, Wanzhao; Hu, Tiancun; Yang, Jing; Bai, Yuanrui

    2017-01-01

    Porous Ag/TiO2/Au coatings with excellent multipactor suppression were prepared by fabrication of porous Ag surface through two-step wet chemical etching, synthesis of TiO2 coatings by electroless-plating-like solution deposition and deposition of Au coatings via electroless plating. Porous structure of Ag surface, TiO2 coatings on porous Ag surface and Au coatings on porous Ag/TiO2 surface were verified by field-emission scanning electron microscopy, the composition and crystal type of TiO2 coatings was characterized by X-ray photoelectron spectroscopy and X-ray diffraction. Secondary electron yield (SEY) measurement was used to monitor the SEY coefficient of the porous Ag coatings and Ag/TiO2/Au coatings. The as-obtained porous Ag coatings were proved exhibiting low SEY below 1.2, and the process was highly reproducible. In addition, the porous Ag/TiO2/Au coatings showed excellent multipactor suppression with the SEY 1.23 and good environmental stability. It is worth mentioning that the whole preparation process is simple and feasible, which would provide a promising application in RF devices. PMID:28281546

  20. The fast diffusion of Au IN Pb

    NASA Technical Reports Server (NTRS)

    Mclellan, R. B.; Ko, C.; Brotzen, F. R.

    1990-01-01

    A treatment of the phenomenon of fast diffusion in lead is presented. The model used is based upon the fast diffusion of free solute interstitials. The very large negative enhancement coefficients found in the Pb-(Au, Ag) systems is explained by the formation of first and second order clusters of vacancies and substitutional solute atoms.

  1. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  2. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  3. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  4. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  5. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... pair participant with child development and child safety instruction, as follows: (1) Prior to... development instruction of which no less than 4 shall be devoted to specific training for children under the... and participate directly in the home life of the host family. All au pair participants provide...

  6. Nanoporous bimetallic Pt-Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Zhonghua; Wang, Yan; Wang, Xiaoguang

    2011-04-01

    We present a facile route to fabricate novel nanoporous bimetallic Pt-Au alloy nanocomposites by dealloying a rapidly solidified Al75Pt15Au10 precursor under free corrosion conditions. The microstructure of the precursor and the as-dealloyed sample was characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, and energy dispersive X-ray (EDX) analysis. The Al75Pt15Au10 precursor is composed of a single-phase Al2(Au,Pt) intermetallic compound, and can be fully dealloyed in a 20 wt.% NaOH or 5 wt.% HCl aqueous solution. The dealloying leads to the formation of the nanoporous Pt60Au40 nanocomposites (np-Pt60Au40 NCs) with an fcc structure. The morphology, size and crystal orientation of grains in the precursor can be conserved in the resultant nanoporous alloy. The np-Pt60Au40 NCs consist of two zones with distinct ligament/channel sizes and compositions. The formation mechanism of these np-Pt60Au40 NCs can be rationalized based upon surface diffusion of more noble elements and spinodal decomposition during dealloying. Electrochemical measurements demonstrate that the np-Pt60Au40 NCs show superior catalytic activity towards the electro-oxidation of methanol and formic acid in the acid media compared to the commercial JM-Pt/C catalyst. This material can find potential applications in catalysis related areas, such as direct methanol or formic acidfuelcells. Our findings demonstrate that dealloying is an effective and simple strategy to realize the alloying of immiscible systems under mild conditions, and to fabricate novel nanostructures with superior performance.We present a facile route to fabricate novel nanoporous bimetallic Pt-Au alloy nanocomposites by dealloying a rapidly solidified Al75Pt15Au10 precursor under free corrosion conditions. The microstructure of the precursor and the as-dealloyed sample was characterized using X-ray diffraction, scanning electron

  7. Using Qualitative Research Methods in Higher Education

    ERIC Educational Resources Information Center

    Savenye, Wilhelmina C.; Robinson, Rhonda S.

    2005-01-01

    Researchers investigating issues related to computing in higher education are increasingly using qualitative research methods to conduct their investigations. However, they may have little training or experience in qualitative research. The purpose of this paper is to introduce researchers to the appropriate use of qualitative methods. It begins…

  8. Quantifying Qualitative Data Using Cognitive Maps

    ERIC Educational Resources Information Center

    Scherp, Hans-Ake

    2013-01-01

    The aim of the article is to show how substantial qualitative material consisting of graphic cognitive maps can be analysed by using digital CmapTools, Excel and SPSS. Evidence is provided of how qualitative and quantitative methods can be combined in educational research by transforming qualitative data into quantitative data to facilitate…

  9. Strategies of Qualitative Inquiry. Third Edition

    ERIC Educational Resources Information Center

    Denzin, Norman K., Ed.; Lincoln, Yvonna S., Ed.

    2007-01-01

    "Strategies of Qualitative Inquiry, Third Edition," the second volume in the paperback version of "The SAGE Handbook of Qualitative Research, 3rd Edition," consists of Part III of the handbook ("Strategies of Inquiry"). "Strategies of Qualitative Inquiry, Third Edition" presents the major tactics--historically, the research methods--that…

  10. Understanding and critiquing qualitative research papers.

    PubMed

    Lee, Polly

    This article, the last in a series on research, examines the steps involved in qualitative research before introducing more terminology regarding the different approaches to qualitative studies. The process of evaluating qualitative research is explored by using an evaluative framework to further explain some of the terminology that researchers use.

  11. Teaching Qualitative Research to Practitioner-Researchers

    ERIC Educational Resources Information Center

    Cox, Rebecca D.

    2012-01-01

    Practitioner-researchers are well-positioned to apply qualitative methods to the study of significant problems of educational practice. However, while learning the skills of qualitative inquiry, practitioners may be compelled by forces outside of qualitative research classrooms to think quantitatively. In this article, the author considers two…

  12. Publishing Qualitative Research in Counseling Journals

    ERIC Educational Resources Information Center

    Hunt, Brandon

    2011-01-01

    This article focuses on the essential elements to be included when developing a qualitative study and preparing the findings for publication. Using the sections typically found in a qualitative article, the author describes content relevant to each section, with additional suggestions for publishing qualitative research.

  13. Infusing Qualitative Traditions in Counseling Research Designs

    ERIC Educational Resources Information Center

    Hays, Danica G.; Wood, Chris

    2011-01-01

    Research traditions serve as a blueprint or guide for a variety of design decisions throughout qualitative inquiry. This article presents 6 qualitative research traditions: grounded theory, phenomenology, consensual qualitative research, ethnography, narratology, and participatory action research. For each tradition, the authors describe its…

  14. Qualitative Research--Another Way of Knowing.

    ERIC Educational Resources Information Center

    Rogers, Vincent R.

    Qualitative research is based on the direct observation of human activity and interaction in an ongoing, naturalistic fashion. Qualitative researchers are concerned with the internal life of schools; what is really occurring in classrooms, corridors, cafeterias, and playgrounds. Qualitative researchers look at what people ordinarily take for…

  15. The sandwich-type electrochemiluminescence immunosensor for α-fetoprotein based on enrichment by Fe3O4-Au magnetic nano probes and signal amplification by CdS-Au composite nanoparticles labeled anti-AFP.

    PubMed

    Zhou, Hankun; Gan, Ning; Li, Tianhua; Cao, Yuting; Zeng, Saolin; Zheng, Lei; Guo, Zhiyong

    2012-10-09

    A novel and sensitive sandwich-type electrochemiluminescence (ECL) immunosensor was fabricated on a glassy carbon electrode (GCE) for ultra trace levels of α-fetoprotein (AFP) based on sandwich immunoreaction strategy by enrichment using magnetic capture probes and quantum dots coated with Au shell (CdS-Au) as the signal tag. The capture probe was prepared by immobilizing the primary antibody of AFP (Ab1) on the core/shell Fe(3)O(4)-Au nanoparticles, which was first employed to capture AFP antigens to form Fe(3)O(4)-Au/Ab1/AFP complex from the serum after incubation. The product can be separated from the background solution through the magnetic separation. Then the CdS-Au labeled secondary antibody (Ab2) as signal tag (CdS-Au/Ab2) was conjugated successfully with Fe(3)O(4)-Au/Ab1/AFP complex to form a sandwich-type immunocomplex (Fe(3)O(4)-Au/Ab1/AFP/Ab2/CdS-Au), which can be further separated by an external magnetic field and produce ECL signals at a fixed voltage. The signal was proportional to a certain concentration range of AFP for quantification. Thus, an easy-to-use immunosensor with magnetic probes and a quantum dots signal tag was obtained. The immunosensor performed at a level of high sensitivity and a broad concentration range for AFP between 0.0005 and 5.0 ng mL(-1) with a detection limit of 0.2 pg mL(-1). The use of magnetic probes was combined with pre-concentration and separation for trace levels of tumor markers in the serum. Due to the amplification of the signal tag, the immunosensor is highly sensitive, which can offer great promise for rapid, simple, selective and cost-effective detection of effective biomonitoring for clinical application.

  16. Using checklists and algorithms to improve qualitative exposure judgment accuracy.

    PubMed

    Arnold, Susan F; Stenzel, Mark; Drolet, Daniel; Ramachandran, Gurumurthy

    2016-01-01

    Most exposure assessments are conducted without the aid of robust personal exposure data and are based instead on qualitative inputs such as education and experience, training, documentation on the process chemicals, tasks and equipment, and other information. Qualitative assessments determine whether there is any follow-up, and influence the type that occurs, such as quantitative sampling, worker training, and implementing exposure and risk management measures. Accurate qualitative exposure judgments ensure appropriate follow-up that in turn ensures appropriate exposure management. Studies suggest that qualitative judgment accuracy is low. A qualitative exposure assessment Checklist tool was developed to guide the application of a set of heuristics to aid decision making. Practicing hygienists (n = 39) and novice industrial hygienists (n = 8) were recruited for a study evaluating the influence of the Checklist on exposure judgment accuracy. Participants generated 85 pre-training judgments and 195 Checklist-guided judgments. Pre-training judgment accuracy was low (33%) and not statistically significantly different from random chance. A tendency for IHs to underestimate the true exposure was observed. Exposure judgment accuracy improved significantly (p <0.001) to 63% when aided by the Checklist. Qualitative judgments guided by the Checklist tool were categorically accurate or over-estimated the true exposure by one category 70% of the time. The overall magnitude of exposure judgment precision also improved following training. Fleiss' κ, evaluating inter-rater agreement between novice assessors was fair to moderate (κ = 0.39). Cohen's weighted and unweighted κ were good to excellent for novice (0.77 and 0.80) and practicing IHs (0.73 and 0.89), respectively. Checklist judgment accuracy was similar to quantitative exposure judgment accuracy observed in studies of similar design using personal exposure measurements, suggesting that the tool could be useful in

  17. Synthesis and electron microscopy characterization of bimetallic nanoparticles and atomically controlled Au nanoclusters

    NASA Astrophysics Data System (ADS)

    Bhattarai, Nabraj

    The properties of metal nanoparticles are controlled by their composition, shape, size and crystalline structure. Nanoparticles and nanoclusters with controlled shape and size were synthesized and investigated using atomic resolution images from aberration corrected scanning/transmission electron microscopy (STEM) and mass spectrometry (MS). Gold-palladium (Au-Pd) core-shell nanocube and triangular nanoparticles were prepared by a seed-mediated growth process and the growth mechanism was studied by varying the volume of Pd precursors added to the Au seed solution. The atomic resolution STEM images revealed that the nanocube is formed from a single-crystal Au seed with rapid growth along <111> directions while the triangular nanoparticles were obtained with growth preferentially along <110> directions rather than <111> direction. The strain generated by the lattice mismatch between fcc-Au and fcc-Pd, is released by Shockley partial dislocations (SPD), combined with stacking faults (SF) that appear at the final (outer) Pd layer. Then, as the shell grows the SPDs and SFs appear at the interface and combine with misfit dislocations, which finally diffuse to the free surfaces due to the alloying of Au into the Pd shell. In related work, magneto-plasmonic gold-cobalt (Au-Co) nanoparticles of diameter 4-nm were generated by a phase-transfer process and investigated by STEM, where the Z-contrast imaging and energy dispersive x-ray spectroscopy (EDS) showed inhomogeneous alloying between Au and Co at the nanoscale. The observed ferromagnetic behavior carries significance in biomedical applications. In addition, selected metallic (Au144(SR)60) and bimetallic (CuAu144) nanoclusters were obtained with thiolate-ligand protection and characterized using optical, MS, and STEM techniques. The optical spectrum and MS results established the monodispersity and purity of the nanoclusters. Another important aspect is that the emergence of broad strong plasmonic band centered near 520

  18. Systematics of Global Observables in Cu+Cu and Au+Au Collisions at RHIC Energies

    SciTech Connect

    Nouicer, Rachid

    2006-07-11

    Charged particles produced in Cu+Cu collisions at {radical}(s{sub NN}) = 200 and 62.4 GeV have been measured in the PHOBOS experiment at RHIC. The comparison of the results for Cu+Cu and Au+Au for the most central collisions at the same energy reveals that the particle density per nucleon participant pair and the extended longitudinal scaling behavior are similar in both systems. This implies that for the most central events in symmetric nucleus-nucleus collisions the particle density per nucleon participant pair does not depend on the size of the two colliding nuclei but only on the collision energy. Also the extended longitudinal scaling seems independent of the colliding energy and species for central collisions. In addition, there is an overall factorization of dNch/d{eta} shapes as a function of collision centraliry between Au+Au and Cu+Cu collisions at the same energy.

  19. Charged-Particle Pseudorapidity Density Distributions from Au+Au Collisions at

    SciTech Connect

    Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.

    2001-09-03

    The charged-particle pseudorapidity density dN{sub ch}/d{eta} has been measured for Au+Au collisions at s{sub NN}=130 GeV at RHIC, using the PHOBOS apparatus. The total number of charged particles produced for the 3% most-central Au+Au collisions for |{eta}|{<=}5.4 is found to be 4200{+-}470 . The evolution of dN{sub ch}/d{eta} with centrality is discussed, and compared to model calculations and to data from proton-induced collisions. The data show an enhancement in charged-particle production at midrapidity, while in the fragmentation regions, the results are consistent with expectations from pp and pA scattering.

  20. High Resolution Photoelectron Spectroscopy of Au_2^- and Au_4^- by Photoelectron Imaging

    NASA Astrophysics Data System (ADS)

    Leon, Iker; Yang, Zheng; Wang, Lai-Sheng

    2013-06-01

    We report high resolution photoelectron spectra of Au_2^- and Au_4^- obtained with a newly-built photoelectron imaging apparatus. Gold anions are produced by laser vaporization and the desired specie is mass selected and focused into the collinear velocity-map imaging (VMI) lens assembly. The design of the imaging lens has allowed us to obtain less than 0.9% energy resolution for high kinetic energy electrons ( > 1eV) while maintaining wavenumber resolution for low kinetic energy electrons. Although gold dimer and tetramer have been studied in the past, we present spectroscopic results under high resolution. For Au_2^-, we report high resolution spectra with an accurate determination of the electron affinity together with a complete vibrational assignment, for both the anion and neutral ground states, while for Au_4^-, we are able to resolve a low frequency mode and obtain accurately the adiabatic detachment energy.