Sample records for quality based routing

  1. History-based route selection for reactive ad hoc routing protocols

    NASA Astrophysics Data System (ADS)

    Medidi, Sirisha; Cappetto, Peter

    2007-04-01

    Ad hoc networks rely on cooperation in order to operate, but in a resource constrained environment not all nodes behave altruistically. Selfish nodes preserve their own resources and do not forward packets not in their own self interest. These nodes degrade the performance of the network, but judicious route selection can help maintain performance despite this behavior. Many route selection algorithms place importance on shortness of the route rather than its reliability. We introduce a light-weight route selection algorithm that uses past behavior to judge the quality of a route rather than solely on the length of the route. It draws information from the underlying routing layer at no extra cost and selects routes with a simple algorithm. This technique maintains this data in a small table, which does not place a high cost on memory. History-based route selection's minimalism suits the needs the portable wireless devices and is easy to implement. We implemented our algorithm and tested it in the ns2 environment. Our simulation results show that history-based route selection achieves higher packet delivery and improved stability than its length-based counterpart.

  2. Quality of service routing in the differentiated services framework

    NASA Astrophysics Data System (ADS)

    Oliveira, Marilia C.; Melo, Bruno; Quadros, Goncalo; Monteiro, Edmundo

    2001-02-01

    In this paper we present a quality of service routing strategy for network where traffic differentiation follows the class-based paradigm, as in the Differentiated Services framework. This routing strategy is based on a metric of quality of service. This metric represents the impact that delay and losses verified at each router in the network have in application performance. Based on this metric, it is selected a path for each class according to the class sensitivity to delay and losses. The distribution of the metric is triggered by a relative criterion with two thresholds, and the values advertised are the moving average of the last values measured.

  3. A Routing Protocol Based on Energy and Link Quality for Internet of Things Applications

    PubMed Central

    Machado, Kassio; Rosário, Denis; Cerqueira, Eduardo; Loureiro, Antonio A. F.; Neto, Augusto; de Souza, José Neuman

    2013-01-01

    The Internet of Things (IoT) is attracting considerable attention from the universities, industries, citizens and governments for applications, such as healthcare,environmental monitoring and smart buildings. IoT enables network connectivity between smart devices at all times, everywhere, and about everything. In this context, Wireless Sensor Networks (WSNs) play an important role in increasing the ubiquity of networks with smart devices that are low-cost and easy to deploy. However, sensor nodes are restricted in terms of energy, processing and memory. Additionally, low-power radios are very sensitive to noise, interference and multipath distortions. In this context, this article proposes a routing protocol based on Routing by Energy and Link quality (REL) for IoT applications. To increase reliability and energy-efficiency, REL selects routes on the basis of a proposed end-to-end link quality estimator mechanism, residual energy and hop count. Furthermore, REL proposes an event-driven mechanism to provide load balancing and avoid the premature energy depletion of nodes/networks. Performance evaluations were carried out using simulation and testbed experiments to show the impact and benefits of REL in small and large-scale networks. The results show that REL increases the network lifetime and services availability, as well as the quality of service of IoT applications. It also provides an even distribution of scarce network resources and reduces the packet loss rate, compared with the performance of well-known protocols. PMID:23385410

  4. A routing protocol based on energy and link quality for Internet of Things applications.

    PubMed

    Machado, Kássio; Rosário, Denis; Cerqueira, Eduardo; Loureiro, Antonio A F; Neto, Augusto; Souza, José Neuman de

    2013-02-04

    The Internet of Things (IoT) is attracting considerable attention from the universities, industries, citizens and governments for applications, such as healthcare, environmental monitoring and smart buildings. IoT enables network connectivity between smart devices at all times, everywhere, and about everything. In this context, Wireless Sensor Networks (WSNs) play an important role in increasing the ubiquity of networks with smart devices that are low-cost and easy to deploy. However, sensor nodes are restricted in terms of energy, processing and memory. Additionally, low-power radios are very sensitive to noise, interference and multipath distortions. In this context, this article proposes a routing protocol based on Routing by Energy and Link quality (REL) for IoT applications. To increase reliability and energy-efficiency, REL selects routes on the basis of a proposed end-to-end link quality estimator mechanism, residual energy and hop count. Furthermore, REL proposes an event-driven mechanism to provide load balancing and avoid the premature energy depletion of nodes/networks. Performance evaluations were carried out using simulation and testbed experiments to show the impact and benefits of REL in small and large-scale networks. The results show that REL increases the network lifetime and services availability, as well as the quality of service of IoT applications. It also provides an even distribution of scarce network resources and reduces the packet loss rate, compared with the performance of well-known protocols.

  5. A native Bayesian classifier based routing protocol for VANETS

    NASA Astrophysics Data System (ADS)

    Bao, Zhenshan; Zhou, Keqin; Zhang, Wenbo; Gong, Xiaolei

    2016-12-01

    Geographic routing protocols are one of the most hot research areas in VANET (Vehicular Ad-hoc Network). However, there are few routing protocols can take both the transmission efficient and the usage of ratio into account. As we have noticed, different messages in VANET may ask different quality of service. So we raised a Native Bayesian Classifier based routing protocol (Naive Bayesian Classifier-Greedy, NBC-Greedy), which can classify and transmit different messages by its emergency degree. As a result, we can balance the transmission efficient and the usage of ratio with this protocol. Based on Matlab simulation, we can draw a conclusion that NBC-Greedy is more efficient and stable than LR-Greedy and GPSR.

  6. A neural networks-based hybrid routing protocol for wireless mesh networks.

    PubMed

    Kojić, Nenad; Reljin, Irini; Reljin, Branimir

    2012-01-01

    The networking infrastructure of wireless mesh networks (WMNs) is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic-i.e., neural networks (NNs). This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission). The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance.

  7. A Neural Networks-Based Hybrid Routing Protocol for Wireless Mesh Networks

    PubMed Central

    Kojić, Nenad; Reljin, Irini; Reljin, Branimir

    2012-01-01

    The networking infrastructure of wireless mesh networks (WMNs) is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic—i.e., neural networks (NNs). This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission). The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance. PMID:22969360

  8. A Differential Evolution-Based Routing Algorithm for Environmental Monitoring Wireless Sensor Networks

    PubMed Central

    Li, Xiaofang; Xu, Lizhong; Wang, Huibin; Song, Jie; Yang, Simon X.

    2010-01-01

    The traditional Low Energy Adaptive Cluster Hierarchy (LEACH) routing protocol is a clustering-based protocol. The uneven selection of cluster heads results in premature death of cluster heads and premature blind nodes inside the clusters, thus reducing the overall lifetime of the network. With a full consideration of information on energy and distance distribution of neighboring nodes inside the clusters, this paper proposes a new routing algorithm based on differential evolution (DE) to improve the LEACH routing protocol. To meet the requirements of monitoring applications in outdoor environments such as the meteorological, hydrological and wetland ecological environments, the proposed algorithm uses the simple and fast search features of DE to optimize the multi-objective selection of cluster heads and prevent blind nodes for improved energy efficiency and system stability. Simulation results show that the proposed new LEACH routing algorithm has better performance, effectively extends the working lifetime of the system, and improves the quality of the wireless sensor networks. PMID:22219670

  9. Towards Internet QoS provisioning based on generic distributed QoS adaptive routing engine.

    PubMed

    Haikal, Amira Y; Badawy, M; Ali, Hesham A

    2014-01-01

    Increasing efficiency and quality demands of modern Internet technologies drive today's network engineers to seek to provide quality of service (QoS). Internet QoS provisioning gives rise to several challenging issues. This paper introduces a generic distributed QoS adaptive routing engine (DQARE) architecture based on OSPFxQoS. The innovation of the proposed work in this paper is its undependability on the used QoS architectures and, moreover, splitting of the control strategy from data forwarding mechanisms, so we guarantee a set of absolute stable mechanisms on top of which Internet QoS can be built. DQARE architecture is furnished with three relevant traffic control schemes, namely, service differentiation, QoS routing, and traffic engineering. The main objective of this paper is to (i) provide a general configuration guideline for service differentiation, (ii) formalize the theoretical properties of different QoS routing algorithms and then introduce a QoS routing algorithm (QOPRA) based on dynamic programming technique, and (iii) propose QoS multipath forwarding (QMPF) model for paths diversity exploitation. NS2-based simulations proved the DQARE superiority in terms of delay, packet delivery ratio, throughput, and control overhead. Moreover, extensive simulations are used to compare the proposed QOPRA algorithm and QMPF model with their counterparts in the literature.

  10. Towards Internet QoS Provisioning Based on Generic Distributed QoS Adaptive Routing Engine

    PubMed Central

    Haikal, Amira Y.; Badawy, M.; Ali, Hesham A.

    2014-01-01

    Increasing efficiency and quality demands of modern Internet technologies drive today's network engineers to seek to provide quality of service (QoS). Internet QoS provisioning gives rise to several challenging issues. This paper introduces a generic distributed QoS adaptive routing engine (DQARE) architecture based on OSPFxQoS. The innovation of the proposed work in this paper is its undependability on the used QoS architectures and, moreover, splitting of the control strategy from data forwarding mechanisms, so we guarantee a set of absolute stable mechanisms on top of which Internet QoS can be built. DQARE architecture is furnished with three relevant traffic control schemes, namely, service differentiation, QoS routing, and traffic engineering. The main objective of this paper is to (i) provide a general configuration guideline for service differentiation, (ii) formalize the theoretical properties of different QoS routing algorithms and then introduce a QoS routing algorithm (QOPRA) based on dynamic programming technique, and (iii) propose QoS multipath forwarding (QMPF) model for paths diversity exploitation. NS2-based simulations proved the DQARE superiority in terms of delay, packet delivery ratio, throughput, and control overhead. Moreover, extensive simulations are used to compare the proposed QOPRA algorithm and QMPF model with their counterparts in the literature. PMID:25309955

  11. A lightweight neighbor-info-based routing protocol for no-base-station taxi-call system.

    PubMed

    Zhu, Xudong; Wang, Jinhang; Chen, Yunchao

    2014-01-01

    Since the quick topology change and short connection duration, the VANET has had unstable routing and wireless signal quality. This paper proposes a kind of lightweight routing protocol-LNIB for call system without base station, which is applicable to the urban taxis. LNIB maintains and predicts neighbor information dynamically, thus finding the reliable path between the source and the target. This paper describes the protocol in detail and evaluates the performance of this protocol by simulating under different nodes density and speed. The result of evaluation shows that the performance of LNIB is better than AODV which is a classic protocol in taxi-call scene.

  12. The Route Analysis Based On Flight Plan

    NASA Astrophysics Data System (ADS)

    Feriyanto, Nur; Saleh, Chairul; Fauzi, Achmad; Rachman Dzakiyullah, Nur; Riza Iwaputra, Kahfi

    2016-02-01

    Economic development effects use of air transportation since the business process in every aspect was increased. Many people these days was prefer using airplane because it can save time and money. This situation also effects flight routes, many airlines offer new routes to deal with competition. Managing flight routes is one of the problems that must be faced in order to find the efficient and effective routes. This paper investigates the best routes based on flight performance by determining the amount of block fuel for the Jakarta-Denpasar flight route. Moreover, in this work compares a two kinds of aircraft and tracks by calculating flight distance, flight time and block fuel. The result shows Jakarta-Denpasar in the Track II has effective and efficient block fuel that can be performed by Airbus 320-200 aircraft. This study can contribute to practice in making an effective decision, especially helping executive management of company due to selecting appropriate aircraft and the track in the flight plan based on the block fuel consumption for business operation.

  13. Region based route planning - Multi-abstraction route planning based on intermediate level vision processing

    NASA Technical Reports Server (NTRS)

    Doshi, Rajkumar S.; Lam, Raymond; White, James E.

    1989-01-01

    Intermediate and high level processing operations are performed on vision data for the organization of images into more meaningful, higher-level topological representations by means of a region-based route planner (RBRP). The RBRP operates in terrain scenarios where some or most of the terrain is occluded, proceeding without a priori maps on the basis of two-dimensional representations and gradient-and-roughness information. Route planning is accomplished by three successive abstractions and yields a detailed point-by-point path by searching only within the boundaries of relatively small regions.

  14. Energy Aware Cluster-Based Routing in Flying Ad-Hoc Networks.

    PubMed

    Aadil, Farhan; Raza, Ali; Khan, Muhammad Fahad; Maqsood, Muazzam; Mehmood, Irfan; Rho, Seungmin

    2018-05-03

    Flying ad-hoc networks (FANETs) are a very vibrant research area nowadays. They have many military and civil applications. Limited battery energy and the high mobility of micro unmanned aerial vehicles (UAVs) represent their two main problems, i.e., short flight time and inefficient routing. In this paper, we try to address both of these problems by means of efficient clustering. First, we adjust the transmission power of the UAVs by anticipating their operational requirements. Optimal transmission range will have minimum packet loss ratio (PLR) and better link quality, which ultimately save the energy consumed during communication. Second, we use a variant of the K-Means Density clustering algorithm for selection of cluster heads. Optimal cluster heads enhance the cluster lifetime and reduce the routing overhead. The proposed model outperforms the state of the art artificial intelligence techniques such as Ant Colony Optimization-based clustering algorithm and Grey Wolf Optimization-based clustering algorithm. The performance of the proposed algorithm is evaluated in term of number of clusters, cluster building time, cluster lifetime and energy consumption.

  15. Routing Based on Length of Time of Available Connection

    NASA Technical Reports Server (NTRS)

    Anandappan, Thanga (Inventor); Roy, Aloke (Inventor); Malve, Sharath Babu (Inventor); Toth, Louis T. (Inventor)

    2016-01-01

    In an embodiment, a method of routing packets at a first node in an ad-hoc network is provided. The method includes receiving, at the first node, a plurality of route-alive messages corresponding to a destination, each of the plurality of route-alive messages including a route time indicating a length of time in which a communicative connection is available between the second node that sent the respective route-alive message and the destination. The method also includes determining an updated route time for each second node. The updated route time corresponds to a length of time in which a communication connection is available between the first node and the destination through the respective second node. A second node is selected for sending a packet to based on the updated route time for each of the second nodes, wherein a node having a longer updated route time is given higher priority for selection.

  16. CENTERA: a centralized trust-based efficient routing protocol with authentication for wireless sensor networks.

    PubMed

    Tajeddine, Ayman; Kayssi, Ayman; Chehab, Ali; Elhajj, Imad; Itani, Wassim

    2015-02-02

    In this paper, we present CENTERA, a CENtralized Trust-based Efficient Routing protocol with an appropriate authentication scheme for wireless sensor networks (WSN). CENTERA utilizes the more powerful base station (BS) to gather minimal neighbor trust information from nodes and calculate the best routes after isolating different types of "bad" nodes. By periodically accumulating these simple local observations and approximating the nodes' battery lives, the BS draws a global view of the network, calculates three quality metrics-maliciousness, cooperation, and compatibility-and evaluates the Data Trust and Forwarding Trust values of each node. Based on these metrics, the BS isolates "bad", "misbehaving" or malicious nodes for a certain period, and put some nodes on probation. CENTERA increases the node's bad/probation level with repeated "bad" behavior, and decreases it otherwise. Then it uses a very efficient method to distribute the routing information to "good" nodes. Based on its target environment, and if required, CENTERA uses an authentication scheme suitable for severely constrained nodes, ranging from the symmetric RC5 for safe environments under close administration, to pairing-based cryptography (PBC) for hostile environments with a strong attacker model. We simulate CENTERA using TOSSIM and verify its correctness and show some energy calculations.

  17. Research on dynamic routing mechanisms in wireless sensor networks.

    PubMed

    Zhao, A Q; Weng, Y N; Lu, Y; Liu, C Y

    2014-01-01

    WirelessHART is the most widely applied standard in wireless sensor networks nowadays. However, it does not provide any dynamic routing mechanism, which is important for the reliability and robustness of the wireless network applications. In this paper, a collection tree protocol based, dynamic routing mechanism was proposed for WirelessHART network. The dynamic routing mechanism was evaluated through several simulation experiments in three aspects: time for generating the topology, link quality, and stability of network. Besides, the data transmission efficiency of this routing mechanism was analyzed. The simulation and evaluation results show that this mechanism can act as a dynamic routing mechanism for the TDMA-based wireless sensor network.

  18. A Network Coding Based Routing Protocol for Underwater Sensor Networks

    PubMed Central

    Wu, Huayang; Chen, Min; Guan, Xin

    2012-01-01

    Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs). Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR).We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC) comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime. PMID:22666045

  19. A network coding based routing protocol for underwater sensor networks.

    PubMed

    Wu, Huayang; Chen, Min; Guan, Xin

    2012-01-01

    Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs). Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR).We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC) comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime.

  20. CENTERA: A Centralized Trust-Based Efficient Routing Protocol with Authentication for Wireless Sensor Networks †

    PubMed Central

    Tajeddine, Ayman; Kayssi, Ayman; Chehab, Ali; Elhajj, Imad; Itani, Wassim

    2015-01-01

    In this paper, we present CENTERA, a CENtralized Trust-based Efficient Routing protocol with an appropriate authentication scheme for wireless sensor networks (WSN). CENTERA utilizes the more powerful base station (BS) to gather minimal neighbor trust information from nodes and calculate the best routes after isolating different types of “bad” nodes. By periodically accumulating these simple local observations and approximating the nodes' battery lives, the BS draws a global view of the network, calculates three quality metrics—maliciousness, cooperation, and compatibility—and evaluates the Data Trust and Forwarding Trust values of each node. Based on these metrics, the BS isolates “bad”, “misbehaving” or malicious nodes for a certain period, and put some nodes on probation. CENTERA increases the node's bad/probation level with repeated “bad” behavior, and decreases it otherwise. Then it uses a very efficient method to distribute the routing information to “good” nodes. Based on its target environment, and if required, CENTERA uses an authentication scheme suitable for severely constrained nodes, ranging from the symmetric RC5 for safe environments under close administration, to pairing-based cryptography (PBC) for hostile environments with a strong attacker model. We simulate CENTERA using TOSSIM and verify its correctness and show some energy calculations. PMID:25648712

  1. An Opportunistic Routing Mechanism Combined with Long-Term and Short-Term Metrics for WMN

    PubMed Central

    Piao, Xianglan; Qiu, Tie

    2014-01-01

    WMN (wireless mesh network) is a useful wireless multihop network with tremendous research value. The routing strategy decides the performance of network and the quality of transmission. A good routing algorithm will use the whole bandwidth of network and assure the quality of service of traffic. Since the routing metric ETX (expected transmission count) does not assure good quality of wireless links, to improve the routing performance, an opportunistic routing mechanism combined with long-term and short-term metrics for WMN based on OLSR (optimized link state routing) and ETX is proposed in this paper. This mechanism always chooses the highest throughput links to improve the performance of routing over WMN and then reduces the energy consumption of mesh routers. The simulations and analyses show that the opportunistic routing mechanism is better than the mechanism with the metric of ETX. PMID:25250379

  2. An opportunistic routing mechanism combined with long-term and short-term metrics for WMN.

    PubMed

    Sun, Weifeng; Wang, Haotian; Piao, Xianglan; Qiu, Tie

    2014-01-01

    WMN (wireless mesh network) is a useful wireless multihop network with tremendous research value. The routing strategy decides the performance of network and the quality of transmission. A good routing algorithm will use the whole bandwidth of network and assure the quality of service of traffic. Since the routing metric ETX (expected transmission count) does not assure good quality of wireless links, to improve the routing performance, an opportunistic routing mechanism combined with long-term and short-term metrics for WMN based on OLSR (optimized link state routing) and ETX is proposed in this paper. This mechanism always chooses the highest throughput links to improve the performance of routing over WMN and then reduces the energy consumption of mesh routers. The simulations and analyses show that the opportunistic routing mechanism is better than the mechanism with the metric of ETX.

  3. Road Risk Modeling and Cloud-Aided Safety-Based Route Planning.

    PubMed

    Li, Zhaojian; Kolmanovsky, Ilya; Atkins, Ella; Lu, Jianbo; Filev, Dimitar P; Michelini, John

    2016-11-01

    This paper presents a safety-based route planner that exploits vehicle-to-cloud-to-vehicle (V2C2V) connectivity. Time and road risk index (RRI) are considered as metrics to be balanced based on user preference. To evaluate road segment risk, a road and accident database from the highway safety information system is mined with a hybrid neural network model to predict RRI. Real-time factors such as time of day, day of the week, and weather are included as correction factors to the static RRI prediction. With real-time RRI and expected travel time, route planning is formulated as a multiobjective network flow problem and further reduced to a mixed-integer programming problem. A V2C2V implementation of our safety-based route planning approach is proposed to facilitate access to real-time information and computing resources. A real-world case study, route planning through the city of Columbus, Ohio, is presented. Several scenarios illustrate how the "best" route can be adjusted to favor time versus safety metrics.

  4. Quality of service routing in wireless ad hoc networks

    NASA Astrophysics Data System (ADS)

    Sane, Sachin J.; Patcha, Animesh; Mishra, Amitabh

    2003-08-01

    An efficient routing protocol is essential to guarantee application level quality of service running on wireless ad hoc networks. In this paper we propose a novel routing algorithm that computes a path between a source and a destination by considering several important constraints such as path-life, availability of sufficient energy as well as buffer space in each of the nodes on the path between the source and destination. The algorithm chooses the best path from among the multiples paths that it computes between two endpoints. We consider the use of control packets that run at a priority higher than the data packets in determining the multiple paths. The paper also examines the impact of different schedulers such as weighted fair queuing, and weighted random early detection among others in preserving the QoS level guarantees. Our extensive simulation results indicate that the algorithm improves the overall lifetime of a network, reduces the number of dropped packets, and decreases the end-to-end delay for real-time voice application.

  5. An aggregate method to calibrate the reference point of cumulative prospect theory-based route choice model for urban transit network

    NASA Astrophysics Data System (ADS)

    Zhang, Yufeng; Long, Man; Luo, Sida; Bao, Yu; Shen, Hanxia

    2015-12-01

    Transit route choice model is the key technology of public transit systems planning and management. Traditional route choice models are mostly based on expected utility theory which has an evident shortcoming that it cannot accurately portray travelers' subjective route choice behavior for their risk preferences are not taken into consideration. Cumulative prospect theory (CPT), a brand new theory, can be used to describe travelers' decision-making process under the condition of uncertainty of transit supply and risk preferences of multi-type travelers. The method to calibrate the reference point, a key parameter to CPT-based transit route choice model, determines the precision of the model to a great extent. In this paper, a new method is put forward to obtain the value of reference point which combines theoretical calculation and field investigation results. Comparing the proposed method with traditional method, it shows that the new method can promote the quality of CPT-based model by improving the accuracy in simulating travelers' route choice behaviors based on transit trip investigation from Nanjing City, China. The proposed method is of great significance to logical transit planning and management, and to some extent makes up the defect that obtaining the reference point is solely based on qualitative analysis.

  6. Remotely Sensed Based Lake/Reservoir Routing in Congo River Basin

    NASA Astrophysics Data System (ADS)

    Raoufi, R.; Beighley, E.; Lee, H.

    2017-12-01

    Lake and reservoir dynamics can influence local to regional water cycles but are often not well represented in hydrologic models. One challenge that limits their inclusion in models is the need for detailed storage-discharge behavior that can be further complicated in reservoirs where specific operation rules are employed. Here, the Hillslope River Routing (HRR) model is combined with a remotely sensed based Reservoir Routing (RR) method and applied to the Congo River Basin. Given that topographic data are often continuous over the entire terrestrial surface (i.e., does not differentiate between land and open water), the HRR-RR model integrates topographic derived river networks and catchment boundaries (e.g., HydroSHEDs) with water boundary extents (e.g., Global Lakes and Wetlands Database) to develop the computational framework. The catchments bordering lakes and reservoirs are partitioned into water and land portions, where representative flowpath characteristics are determined and vertical water balance and lateral routings is performed separately on each partition based on applicable process models (e.g., open water evaporation vs. evapotranspiration). To enable reservoir routing, remotely sensed water surface elevations and extents are combined to determine the storage change time series. Based on the available time series, representative storage change patterns are determined. Lake/reservoir routing is performed by combining inflows from the HRR-RR model and the representative storage change patterns to determine outflows. In this study, a suite of storage change patterns derived from remotely sensed measurements are determined representative patterns for wet, dry and average conditions. The HRR-RR model dynamically selects and uses the optimal storage change pattern for the routing process based on these hydrologic conditions. The HRR-RR model results are presented to highlight the importance of lake attenuation/routing in the Congo Basin.

  7. Energy-Aware Multipath Routing Scheme Based on Particle Swarm Optimization in Mobile Ad Hoc Networks

    PubMed Central

    Robinson, Y. Harold; Rajaram, M.

    2015-01-01

    Mobile ad hoc network (MANET) is a collection of autonomous mobile nodes forming an ad hoc network without fixed infrastructure. Dynamic topology property of MANET may degrade the performance of the network. However, multipath selection is a great challenging task to improve the network lifetime. We proposed an energy-aware multipath routing scheme based on particle swarm optimization (EMPSO) that uses continuous time recurrent neural network (CTRNN) to solve optimization problems. CTRNN finds the optimal loop-free paths to solve link disjoint paths in a MANET. The CTRNN is used as an optimum path selection technique that produces a set of optimal paths between source and destination. In CTRNN, particle swarm optimization (PSO) method is primly used for training the RNN. The proposed scheme uses the reliability measures such as transmission cost, energy factor, and the optimal traffic ratio between source and destination to increase routing performance. In this scheme, optimal loop-free paths can be found using PSO to seek better link quality nodes in route discovery phase. PSO optimizes a problem by iteratively trying to get a better solution with regard to a measure of quality. The proposed scheme discovers multiple loop-free paths by using PSO technique. PMID:26819966

  8. Field study of the air quality impact of Route I-195 at Richmond, Virginia.

    DOT National Transportation Integrated Search

    1982-01-01

    This investigation attempted to assess the mesoscale and microscale effects of the recently built Interstate Route I-195 in Richmond, Virginia. Measurement of the air quality before and after completion of the expressway showed that on the mesoscale,...

  9. Route Prediction on Tracking Data to Location-Based Services

    NASA Astrophysics Data System (ADS)

    Petróczi, Attila István; Gáspár-Papanek, Csaba

    Wireless networks have become so widespread, it is beneficial to determine the ability of cellular networks for localization. This property enables the development of location-based services, providing useful information. These services can be improved by route prediction under the condition of using simple algorithms, because of the limited capabilities of mobile stations. This study gives alternative solutions for this problem of route prediction based on a specific graph model. Our models provide the opportunity to reach our destinations with less effort.

  10. Zone-Based Routing Protocol for Wireless Sensor Networks

    PubMed Central

    Venkateswarlu Kumaramangalam, Muni; Adiyapatham, Kandasamy; Kandasamy, Chandrasekaran

    2014-01-01

    Extensive research happening across the globe witnessed the importance of Wireless Sensor Network in the present day application world. In the recent past, various routing algorithms have been proposed to elevate WSN network lifetime. Clustering mechanism is highly successful in conserving energy resources for network activities and has become promising field for researches. However, the problem of unbalanced energy consumption is still open because the cluster head activities are tightly coupled with role and location of a particular node in the network. Several unequal clustering algorithms are proposed to solve this wireless sensor network multihop hot spot problem. Current unequal clustering mechanisms consider only intra- and intercluster communication cost. Proper organization of wireless sensor network into clusters enables efficient utilization of limited resources and enhances lifetime of deployed sensor nodes. This paper considers a novel network organization scheme, energy-efficient edge-based network partitioning scheme, to organize sensor nodes into clusters of equal size. Also, it proposes a cluster-based routing algorithm, called zone-based routing protocol (ZBRP), for elevating sensor network lifetime. Experimental results show that ZBRP out-performs interims of network lifetime and energy conservation with its uniform energy consumption among the cluster heads. PMID:27437455

  11. Zone-Based Routing Protocol for Wireless Sensor Networks.

    PubMed

    Venkateswarlu Kumaramangalam, Muni; Adiyapatham, Kandasamy; Kandasamy, Chandrasekaran

    2014-01-01

    Extensive research happening across the globe witnessed the importance of Wireless Sensor Network in the present day application world. In the recent past, various routing algorithms have been proposed to elevate WSN network lifetime. Clustering mechanism is highly successful in conserving energy resources for network activities and has become promising field for researches. However, the problem of unbalanced energy consumption is still open because the cluster head activities are tightly coupled with role and location of a particular node in the network. Several unequal clustering algorithms are proposed to solve this wireless sensor network multihop hot spot problem. Current unequal clustering mechanisms consider only intra- and intercluster communication cost. Proper organization of wireless sensor network into clusters enables efficient utilization of limited resources and enhances lifetime of deployed sensor nodes. This paper considers a novel network organization scheme, energy-efficient edge-based network partitioning scheme, to organize sensor nodes into clusters of equal size. Also, it proposes a cluster-based routing algorithm, called zone-based routing protocol (ZBRP), for elevating sensor network lifetime. Experimental results show that ZBRP out-performs interims of network lifetime and energy conservation with its uniform energy consumption among the cluster heads.

  12. Collaborative en-route and slot allocation algorithm based on fuzzy comprehensive evaluation

    NASA Astrophysics Data System (ADS)

    Yang, Shangwen; Guo, Baohua; Xiao, Xuefei; Gao, Haichao

    2018-01-01

    To allocate the en-routes and slots to the flights with collaborative decision making, a collaborative en-route and slot allocation algorithm based on fuzzy comprehensive evaluation was proposed. Evaluation indexes include flight delay costs, delay time and the number of turning points. Analytic hierarchy process is applied to determining index weights. Remark set for current two flights not yet obtained the en-route and slot in flight schedule is established. Then, fuzzy comprehensive evaluation is performed, and the en-route and slot for the current two flights are determined. Continue selecting the flight not yet obtained an en-route and a slot in flight schedule. Perform fuzzy comprehensive evaluation until all flights have obtained the en-routes and slots. MatlabR2007b was applied to numerical test based on the simulated data of a civil en-route. Test results show that, compared with the traditional strategy of first come first service, the algorithm gains better effect. The effectiveness of the algorithm was verified.

  13. An agenda-based routing protocol in delay tolerant mobile sensor networks.

    PubMed

    Wang, Xiao-Min; Zhu, Jin-Qi; Liu, Ming; Gong, Hai-Gang

    2010-01-01

    Routing in delay tolerant mobile sensor networks (DTMSNs) is challenging due to the networks' intermittent connectivity. Most existing routing protocols for DTMSNs use simplistic random mobility models for algorithm design and performance evaluation. In the real world, however, due to the unique characteristics of human mobility, currently existing random mobility models may not work well in environments where mobile sensor units are carried (such as DTMSNs). Taking a person's social activities into consideration, in this paper, we seek to improve DTMSN routing in terms of social structure and propose an agenda based routing protocol (ARP). In ARP, humans are classified based on their agendas and data transmission is made according to sensor nodes' transmission rankings. The effectiveness of ARP is demonstrated through comprehensive simulation studies.

  14. On Intelligent Design and Planning Method of Process Route Based on Gun Breech Machining Process

    NASA Astrophysics Data System (ADS)

    Hongzhi, Zhao; Jian, Zhang

    2018-03-01

    The paper states an approach of intelligent design and planning of process route based on gun breech machining process, against several problems, such as complex machining process of gun breech, tedious route design and long period of its traditional unmanageable process route. Based on gun breech machining process, intelligent design and planning system of process route are developed by virtue of DEST and VC++. The system includes two functional modules--process route intelligent design and its planning. The process route intelligent design module, through the analysis of gun breech machining process, summarizes breech process knowledge so as to complete the design of knowledge base and inference engine. And then gun breech process route intelligently output. On the basis of intelligent route design module, the final process route is made, edited and managed in the process route planning module.

  15. Caching Joint Shortcut Routing to Improve Quality of Service for Information-Centric Networking.

    PubMed

    Huang, Baixiang; Liu, Anfeng; Zhang, Chengyuan; Xiong, Naixue; Zeng, Zhiwen; Cai, Zhiping

    2018-05-29

    Hundreds of thousands of ubiquitous sensing (US) devices have provided an enormous number of data for Information-Centric Networking (ICN), which is an emerging network architecture that has the potential to solve a great variety of issues faced by the traditional network. A Caching Joint Shortcut Routing (CJSR) scheme is proposed in this paper to improve the Quality of service (QoS) for ICN. The CJSR scheme mainly has two innovations which are different from other in-network caching schemes: (1) Two routing shortcuts are set up to reduce the length of routing paths. Because of some inconvenient transmission processes, the routing paths of previous schemes are prolonged, and users can only request data from Data Centers (DCs) until the data have been uploaded from Data Producers (DPs) to DCs. Hence, the first kind of shortcut is built from DPs to users directly. This shortcut could release the burden of whole network and reduce delay. Moreover, in the second shortcut routing method, a Content Router (CR) which could yield shorter length of uploading routing path from DPs to DCs is chosen, and then data packets are uploaded through this chosen CR. In this method, the uploading path shares some segments with the pre-caching path, thus the overall length of routing paths is reduced. (2) The second innovation of the CJSR scheme is that a cooperative pre-caching mechanism is proposed so that QoS could have a further increase. Besides being used in downloading routing, the pre-caching mechanism can also be used when data packets are uploaded towards DCs. Combining uploading and downloading pre-caching, the cooperative pre-caching mechanism exhibits high performance in different situations. Furthermore, to address the scarcity of storage size, an algorithm that could make use of storage from idle CRs is proposed. After comparing the proposed scheme with five existing schemes via simulations, experiments results reveal that the CJSR scheme could reduce the total number of

  16. Enhancement of Beaconless Location-Based Routing with Signal Strength Assistance for Ad-Hoc Networks

    NASA Astrophysics Data System (ADS)

    Chen, Guowei; Itoh, Kenichi; Sato, Takuro

    Routing in Ad-hoc networks is unreliable due to the mobility of the nodes. Location-based routing protocols, unlike other protocols which rely on flooding, excel in network scalability. Furthermore, new location-based routing protocols, like, e. g. BLR [1], IGF [2], & CBF [3] have been proposed, with the feature of not requiring beacons in MAC-layer, which improve more in terms of scalability. Such beaconless routing protocols can work efficiently in dense network areas. However, these protocols' algorithms have no ability to avoid from routing into sparse areas. In this article, historical signal strength has been added as a factor into the BLR algorithm, which avoids routing into sparse area, and consequently improves the global routing efficiency.

  17. A two-hop based adaptive routing protocol for real-time wireless sensor networks.

    PubMed

    Rachamalla, Sandhya; Kancherla, Anitha Sheela

    2016-01-01

    One of the most important and challenging issues in wireless sensor networks (WSNs) is to optimally manage the limited energy of nodes without degrading the routing efficiency. In this paper, we propose an energy-efficient adaptive routing mechanism for WSNs, which saves energy of nodes by removing the much delayed packets without degrading the real-time performance of the used routing protocol. It uses the adaptive transmission power algorithm which is based on the attenuation of the wireless link to improve the energy efficiency. The proposed routing mechanism can be associated with any geographic routing protocol and its performance is evaluated by integrating with the well known two-hop based real-time routing protocol, PATH and the resulting protocol is energy-efficient adaptive routing protocol (EE-ARP). The EE-ARP performs well in terms of energy consumption, deadline miss ratio, packet drop and end-to-end delay.

  18. A novel communication mechanism based on node potential multi-path routing

    NASA Astrophysics Data System (ADS)

    Bu, Youjun; Zhang, Chuanhao; Jiang, YiMing; Zhang, Zhen

    2016-10-01

    With the network scales rapidly and new network applications emerge frequently, bandwidth supply for today's Internet could not catch up with the rapid increasing requirements. Unfortunately, irrational using of network sources makes things worse. Actual network deploys single-next-hop optimization paths for data transmission, but such "best effort" model leads to the imbalance use of network resources and usually leads to local congestion. On the other hand Multi-path routing can use the aggregation bandwidth of multi paths efficiently and improve the robustness of network, security, load balancing and quality of service. As a result, multi-path has attracted much attention in the routing and switching research fields and many important ideas and solutions have been proposed. This paper focuses on implementing the parallel transmission of multi next-hop data, balancing the network traffic and reducing the congestion. It aimed at exploring the key technologies of the multi-path communication network, which could provide a feasible academic support for subsequent applications of multi-path communication networking. It proposed a novel multi-path algorithm based on node potential in the network. And the algorithm can fully use of the network link resource and effectively balance network link resource utilization.

  19. Development of a Healthy Urban Route Planner for cyclists and pedestrians in Amsterdam

    NASA Astrophysics Data System (ADS)

    van der Molen, Michiel; Ligtenberg, Arend; Vreugdenhil, Corne; Steeneveld, Gert-Jan

    2017-04-01

    Cities are hotspots of air pollution and heat stress, the exposure to which results in nuisance, health risks, cost of medication, reduced labour productivity and sick leave for citizens. Yet the air pollution and heat stress are spatially and temporally unevenly distributed over the city, depending on pollutant emissions, street design and atmospheric turbulent mixing and radiation. This spatiotemporal variation allows pedestrians and bikers to choose alternative routes to minimize their exposure, if the distribution is known. In this project, we develop a route planner for bicyclists and pedestrians for Amsterdam (NL), that proposes routes and departure times based on model simulations of weather and air quality. We use the WRF-Chem atmosphere and air quality model at unprecedented grid spacing of 100-m (Ronda et al, 2015, Super et al, 2016), with an underlying urban canopy model and NOx and PM10 emissions. The emissions by traffic are calculated based on observed traffic intensities and emission factors. An urban land use map will characterize urban density and street configuration to estimate urban heat storage (Attema et al, 2015). WRF-Chem runs will be issued daily for a lead time of 48 hours, resulting in forecast maps of temperature and pollutant concentrations that will be uniquely expressed in a metric that combines both threats. The hourly fields of this metric are provided to the route planner based on the open source routing library pgRouting to identify the more healthy routes on the route network of Amsterdam. The objectives of the healthy urban route planner are to raise awareness of heat and air quality issues in Amsterdam, to provide an innovative adaptation tool for citizens and tourists, to locate the most important bottlenecks in (the exposure to) air pollution and heat stress, and ultimately to test the readiness of the travellers to use the information and adapt the route. We expect to particularly target a group of lung- and cardiovascular

  20. Route-based travel and shared routes in sympatric spider and woolly monkeys: cognitive and evolutionary implications.

    PubMed

    Di Fiore, Anthony; Suarez, Scott A

    2007-07-01

    Many wild primates occupy large home ranges and travel long distances each day. Navigating these ranges to find sufficient food presents a substantial cognitive challenge, but we are still far from understanding either how primates represent spatial information mentally or how they use this information to navigate under natural conditions. In the course of a long-term socioecological study, we investigated and compared the travel paths of sympatric spider monkeys (Ateles belzebuth) and woolly monkeys (Lagothrix poeppigii) in Amazonian Ecuador. During several field seasons spanning an 8-year period, we followed focal individuals or groups of both species continuously for periods of multiple days and mapped their travel paths in detail. We found that both primates typically traveled through their home ranges following repeatedly used paths, or "routes". Many of these routes were common to both species and were stable across study years. Several important routes appeared to be associated with distinct topographic features (e.g., ridgetops), which may constitute easily recognized landmarks useful for spatial navigation. The majority of all location records for both species fell along or near identified routes, as did most of the trees used for fruit feeding. Our results provide strong support for the idea that both woolly and spider monkey use route-based mental maps similar to those proposed by Poucet (Psychol Rev 100:163-182, 1993). We suggest that rather than remembering the specific locations of thousands of individual feeding trees and their phenological schedules, spider and woolly monkeys could nonetheless forage efficiently by committing to memory a series of route segments that, when followed, bring them into contact with many potential feeding sources for monitoring or visitation. Furthermore, because swallowed and defecated seeds are deposited in greater frequency along routes, the repeated use of particular travel paths over generations could profoundly

  1. Indoor 3D Route Modeling Based On Estate Spatial Data

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Wen, Y.; Jiang, J.; Huang, W.

    2014-04-01

    Indoor three-dimensional route model is essential for space intelligence navigation and emergency evacuation. This paper is motivated by the need of constructing indoor route model automatically and as far as possible. By comparing existing building data sources, this paper firstly explained the reason why the estate spatial management data is chosen as the data source. Then, an applicable method of construction three-dimensional route model in a building is introduced by establishing the mapping relationship between geographic entities and their topological expression. This data model is a weighted graph consist of "node" and "path" to express the spatial relationship and topological structure of a building components. The whole process of modelling internal space of a building is addressed by two key steps: (1) each single floor route model is constructed, including path extraction of corridor using Delaunay triangulation algorithm with constrained edge, fusion of room nodes into the path; (2) the single floor route model is connected with stairs and elevators and the multi-floor route model is eventually generated. In order to validate the method in this paper, a shopping mall called "Longjiang New City Plaza" in Nanjing is chosen as a case of study. And the whole building space is constructed according to the modelling method above. By integrating of existing path finding algorithm, the usability of this modelling method is verified, which shows the indoor three-dimensional route modelling method based on estate spatial data in this paper can support indoor route planning and evacuation route design very well.

  2. Routing in Mobile Wireless Sensor Networks: A Leader-Based Approach.

    PubMed

    Burgos, Unai; Amozarrain, Ugaitz; Gómez-Calzado, Carlos; Lafuente, Alberto

    2017-07-07

    This paper presents a leader-based approach to routing in Mobile Wireless Sensor Networks (MWSN). Using local information from neighbour nodes, a leader election mechanism maintains a spanning tree in order to provide the necessary adaptations for efficient routing upon the connectivity changes resulting from the mobility of sensors or sink nodes. We present two protocols following the leader election approach, which have been implemented using Castalia and OMNeT++. The protocols have been evaluated, besides other reference MWSN routing protocols, to analyse the impact of network size and node velocity on performance, which has demonstrated the validity of our approach.

  3. DCBRP: a deterministic chain-based routing protocol for wireless sensor networks.

    PubMed

    Marhoon, Haydar Abdulameer; Mahmuddin, M; Nor, Shahrudin Awang

    2016-01-01

    Wireless sensor networks (WSNs) are a promising area for both researchers and industry because of their various applications The sensor node expends the majority of its energy on communication with other nodes. Therefore, the routing protocol plays an important role in delivering network data while minimizing energy consumption as much as possible. The chain-based routing approach is superior to other approaches. However, chain-based routing protocols still expend substantial energy in the Chain Head (CH) node. In addition, these protocols also have the bottleneck issues. A novel routing protocol which is Deterministic Chain-Based Routing Protocol (DCBRP). DCBRP consists of three mechanisms: Backbone Construction Mechanism, Chain Head Selection (CHS), and the Next Hop Connection Mechanism. The CHS mechanism is presented in detail, and it is evaluated through comparison with the CCM and TSCP using an ns-3 simulator. It show that DCBRP outperforms both CCM and TSCP in terms of end-to-end delay by 19.3 and 65%, respectively, CH energy consumption by 18.3 and 23.0%, respectively, overall energy consumption by 23.7 and 31.4%, respectively, network lifetime by 22 and 38%, respectively, and the energy*delay metric by 44.85 and 77.54%, respectively. DCBRP can be used in any deterministic node deployment applications, such as smart cities or smart agriculture, to reduce energy depletion and prolong the lifetimes of WSNs.

  4. Errorless-based techniques can improve route finding in early Alzheimer's disease: a case study.

    PubMed

    Provencher, Véronique; Bier, Nathalie; Audet, Thérèse; Gagnon, Lise

    2008-01-01

    Topographical disorientation is a common and early manifestation of dementia of Alzheimer type, which threatens independence in activities of daily living. Errorless-based techniques appear to be effective in helping patients with amnesia to learn routes, but little is known about their effectiveness in early dementia of Alzheimer type. A 77-year-old woman with dementia of Alzheimer type had difficulty in finding her way around her seniors residence, which reduced her social activities. This study used an ABA design (A is the baseline and B is the intervention) with multiple baselines across routes for going to the rosary (target), laundry, and game rooms (controls). The errorless-based technique intervention was applied to 2 of the 3 routes. Analyses showed significant improvement only for the routes learned with errorless-based techniques. Following the study, the participant increased her topographical knowledge of her surroundings. Route learning interventions based on errorless-based techniques appear to be a promising approach for improving the independence in early dementia of Alzheimer type.

  5. AIB-OR: improving onion routing circuit construction using anonymous identity-based cryptosystems.

    PubMed

    Wang, Changji; Shi, Dongyuan; Xu, Xilei

    2015-01-01

    The rapid growth of Internet applications has made communication anonymity an increasingly important or even indispensable security requirement. Onion routing has been employed as an infrastructure for anonymous communication over a public network, which provides anonymous connections that are strongly resistant to both eavesdropping and traffic analysis. However, existing onion routing protocols usually exhibit poor performance due to repeated encryption operations. In this paper, we first present an improved anonymous multi-receiver identity-based encryption (AMRIBE) scheme, and an improved identity-based one-way anonymous key agreement (IBOWAKE) protocol. We then propose an efficient onion routing protocol named AIB-OR that provides provable security and strong anonymity. Our main approach is to use our improved AMRIBE scheme and improved IBOWAKE protocol in onion routing circuit construction. Compared with other onion routing protocols, AIB-OR provides high efficiency, scalability, strong anonymity and fault tolerance. Performance measurements from a prototype implementation show that our proposed AIB-OR can achieve high bandwidths and low latencies when deployed over the Internet.

  6. An Adaptive QoS Routing Solution for MANET Based Multimedia Communications in Emergency Cases

    NASA Astrophysics Data System (ADS)

    Ramrekha, Tipu Arvind; Politis, Christos

    The Mobile Ad hoc Networks (MANET) is a wireless network deprived of any fixed central authoritative routing entity. It relies entirely on collaborating nodes forwarding packets from source to destination. This paper describes the design, implementation and performance evaluation of CHAMELEON, an adaptive Quality of Service (QoS) routing solution, with improved delay and jitter performances, enabling multimedia communication for MANETs in extreme emergency situations such as forest fire and terrorist attacks as defined in the PEACE project. CHAMELEON is designed to adapt its routing behaviour according to the size of a MANET. The reactive Ad Hoc on-Demand Distance Vector Routing (AODV) and proactive Optimized Link State Routing (OLSR) protocols are deemed appropriate for CHAMELEON through their performance evaluation in terms of delay and jitter for different MANET sizes in a building fire emergency scenario. CHAMELEON is then implemented in NS-2 and evaluated similarly. The paper concludes with a summary of findings so far and intended future work.

  7. Efficient and Stable Routing Algorithm Based on User Mobility and Node Density in Urban Vehicular Network.

    PubMed

    Al-Mayouf, Yusor Rafid Bahar; Ismail, Mahamod; Abdullah, Nor Fadzilah; Wahab, Ainuddin Wahid Abdul; Mahdi, Omar Adil; Khan, Suleman; Choo, Kim-Kwang Raymond

    2016-01-01

    Vehicular ad hoc networks (VANETs) are considered an emerging technology in the industrial and educational fields. This technology is essential in the deployment of the intelligent transportation system, which is targeted to improve safety and efficiency of traffic. The implementation of VANETs can be effectively executed by transmitting data among vehicles with the use of multiple hops. However, the intrinsic characteristics of VANETs, such as its dynamic network topology and intermittent connectivity, limit data delivery. One particular challenge of this network is the possibility that the contributing node may only remain in the network for a limited time. Hence, to prevent data loss from that node, the information must reach the destination node via multi-hop routing techniques. An appropriate, efficient, and stable routing algorithm must be developed for various VANET applications to address the issues of dynamic topology and intermittent connectivity. Therefore, this paper proposes a novel routing algorithm called efficient and stable routing algorithm based on user mobility and node density (ESRA-MD). The proposed algorithm can adapt to significant changes that may occur in the urban vehicular environment. This algorithm works by selecting an optimal route on the basis of hop count and link duration for delivering data from source to destination, thereby satisfying various quality of service considerations. The validity of the proposed algorithm is investigated by its comparison with ARP-QD protocol, which works on the mechanism of optimal route finding in VANETs in urban environments. Simulation results reveal that the proposed ESRA-MD algorithm shows remarkable improvement in terms of delivery ratio, delivery delay, and communication overhead.

  8. A workstation-based evaluation of a far-field route planner for helicopters

    NASA Technical Reports Server (NTRS)

    Warner, David N., Jr.; Moran, Francis J.

    1991-01-01

    Helicopter flight missions at very low, nap of the Earth, altitudes place a heavy workload on the pilot. To aid in reducing this workload, Ames Research Center has been investigating various types of automated route planners. As part of an automated preflight mission planner, a route planner algorithm aids in selecting the overall (far-field) route to be flown. During the mission, the route planner can be used to replan a new route in case of unexpected threats or change in mission requirements. An evaluation of a candidate route planning algorithm, based on dynamic programming techniques is described. This algorithm meets most of the requirements for route planning, both preflight and during the mission. In general, the requirements are to minimize the distance and/or fuel and the deviation from a flight time schedule, and must be flyable within the constraints of available fuel and time.

  9. Routing Protocols for Underwater Wireless Sensor Networks: Taxonomy, Research Challenges, Routing Strategies and Future Directions.

    PubMed

    Khan, Anwar; Ali, Ihsan; Ghani, Abdullah; Khan, Nawsher; Alsaqer, Mohammed; Rahman, Atiq Ur; Mahmood, Hasan

    2018-05-18

    Recent research in underwater wireless sensor networks (UWSNs) has gained the attention of researchers in academia and industry for a number of applications. They include disaster and earthquake prediction, water quality and environment monitoring, leakage and mine detection, military surveillance and underwater navigation. However, the aquatic medium is associated with a number of limitations and challenges: long multipath delay, high interference and noise, harsh environment, low bandwidth and limited battery life of the sensor nodes. These challenges demand research techniques and strategies to be overcome in an efficient and effective fashion. The design of routing protocols for UWSNs is one of the promising solutions to cope with these challenges. This paper presents a survey of the routing protocols for UWSNs. For the ease of description, the addressed routing protocols are classified into two groups: localization-based and localization-free protocols. These groups are further subdivided according to the problems they address or the major parameters they consider during routing. Unlike the existing surveys, this survey considers only the latest and state-of-the-art routing protocols. In addition, every protocol is described in terms of its routing strategy and the problem it addresses and solves. The merit(s) of each protocol is (are) highlighted along with the cost. A description of the protocols in this fashion has a number of advantages for researchers, as compared to the existing surveys. Firstly, the description of the routing strategy of each protocol makes its routing operation easily understandable. Secondly, the demerit(s) of a protocol provides (provide) insight into overcoming its flaw(s) in future investigation. This, in turn, leads to the foundation of new protocols that are more intelligent, robust and efficient with respect to the desired parameters. Thirdly, a protocol can be selected for the appropriate application based on its described

  10. Routing Protocols for Underwater Wireless Sensor Networks: Taxonomy, Research Challenges, Routing Strategies and Future Directions

    PubMed Central

    Ghani, Abdullah; Alsaqer, Mohammed; Rahman, Atiq Ur; Mahmood, Hasan

    2018-01-01

    Recent research in underwater wireless sensor networks (UWSNs) has gained the attention of researchers in academia and industry for a number of applications. They include disaster and earthquake prediction, water quality and environment monitoring, leakage and mine detection, military surveillance and underwater navigation. However, the aquatic medium is associated with a number of limitations and challenges: long multipath delay, high interference and noise, harsh environment, low bandwidth and limited battery life of the sensor nodes. These challenges demand research techniques and strategies to be overcome in an efficient and effective fashion. The design of routing protocols for UWSNs is one of the promising solutions to cope with these challenges. This paper presents a survey of the routing protocols for UWSNs. For the ease of description, the addressed routing protocols are classified into two groups: localization-based and localization-free protocols. These groups are further subdivided according to the problems they address or the major parameters they consider during routing. Unlike the existing surveys, this survey considers only the latest and state-of-the-art routing protocols. In addition, every protocol is described in terms of its routing strategy and the problem it addresses and solves. The merit(s) of each protocol is (are) highlighted along with the cost. A description of the protocols in this fashion has a number of advantages for researchers, as compared to the existing surveys. Firstly, the description of the routing strategy of each protocol makes its routing operation easily understandable. Secondly, the demerit(s) of a protocol provides (provide) insight into overcoming its flaw(s) in future investigation. This, in turn, leads to the foundation of new protocols that are more intelligent, robust and efficient with respect to the desired parameters. Thirdly, a protocol can be selected for the appropriate application based on its described

  11. A set-covering based heuristic algorithm for the periodic vehicle routing problem.

    PubMed

    Cacchiani, V; Hemmelmayr, V C; Tricoire, F

    2014-01-30

    We present a hybrid optimization algorithm for mixed-integer linear programming, embedding both heuristic and exact components. In order to validate it we use the periodic vehicle routing problem (PVRP) as a case study. This problem consists of determining a set of minimum cost routes for each day of a given planning horizon, with the constraints that each customer must be visited a required number of times (chosen among a set of valid day combinations), must receive every time the required quantity of product, and that the number of routes per day (each respecting the capacity of the vehicle) does not exceed the total number of available vehicles. This is a generalization of the well-known vehicle routing problem (VRP). Our algorithm is based on the linear programming (LP) relaxation of a set-covering-like integer linear programming formulation of the problem, with additional constraints. The LP-relaxation is solved by column generation, where columns are generated heuristically by an iterated local search algorithm. The whole solution method takes advantage of the LP-solution and applies techniques of fixing and releasing of the columns as a local search, making use of a tabu list to avoid cycling. We show the results of the proposed algorithm on benchmark instances from the literature and compare them to the state-of-the-art algorithms, showing the effectiveness of our approach in producing good quality solutions. In addition, we report the results on realistic instances of the PVRP introduced in Pacheco et al. (2011)  [24] and on benchmark instances of the periodic traveling salesman problem (PTSP), showing the efficacy of the proposed algorithm on these as well. Finally, we report the new best known solutions found for all the tested problems.

  12. A set-covering based heuristic algorithm for the periodic vehicle routing problem

    PubMed Central

    Cacchiani, V.; Hemmelmayr, V.C.; Tricoire, F.

    2014-01-01

    We present a hybrid optimization algorithm for mixed-integer linear programming, embedding both heuristic and exact components. In order to validate it we use the periodic vehicle routing problem (PVRP) as a case study. This problem consists of determining a set of minimum cost routes for each day of a given planning horizon, with the constraints that each customer must be visited a required number of times (chosen among a set of valid day combinations), must receive every time the required quantity of product, and that the number of routes per day (each respecting the capacity of the vehicle) does not exceed the total number of available vehicles. This is a generalization of the well-known vehicle routing problem (VRP). Our algorithm is based on the linear programming (LP) relaxation of a set-covering-like integer linear programming formulation of the problem, with additional constraints. The LP-relaxation is solved by column generation, where columns are generated heuristically by an iterated local search algorithm. The whole solution method takes advantage of the LP-solution and applies techniques of fixing and releasing of the columns as a local search, making use of a tabu list to avoid cycling. We show the results of the proposed algorithm on benchmark instances from the literature and compare them to the state-of-the-art algorithms, showing the effectiveness of our approach in producing good quality solutions. In addition, we report the results on realistic instances of the PVRP introduced in Pacheco et al. (2011)  [24] and on benchmark instances of the periodic traveling salesman problem (PTSP), showing the efficacy of the proposed algorithm on these as well. Finally, we report the new best known solutions found for all the tested problems. PMID:24748696

  13. A Multi-Attribute Pheromone Ant Secure Routing Algorithm Based on Reputation Value for Sensor Networks

    PubMed Central

    Zhang, Lin; Yin, Na; Fu, Xiong; Lin, Qiaomin; Wang, Ruchuan

    2017-01-01

    With the development of wireless sensor networks, certain network problems have become more prominent, such as limited node resources, low data transmission security, and short network life cycles. To solve these problems effectively, it is important to design an efficient and trusted secure routing algorithm for wireless sensor networks. Traditional ant-colony optimization algorithms exhibit only local convergence, without considering the residual energy of the nodes and many other problems. This paper introduces a multi-attribute pheromone ant secure routing algorithm based on reputation value (MPASR). This algorithm can reduce the energy consumption of a network and improve the reliability of the nodes’ reputations by filtering nodes with higher coincidence rates and improving the method used to update the nodes’ communication behaviors. At the same time, the node reputation value, the residual node energy and the transmission delay are combined to formulate a synthetic pheromone that is used in the formula for calculating the random proportion rule in traditional ant-colony optimization to select the optimal data transmission path. Simulation results show that the improved algorithm can increase both the security of data transmission and the quality of routing service. PMID:28282894

  14. Metabolic routing of dietary nutrients in birds: effects of diet quality and macronutrient composition revealed using stable isotopes.

    PubMed

    Podlesak, David W; McWilliams, Scott R

    2006-01-01

    During fall migration many songbirds switch from consuming primarily insects to consuming mostly fruit. Fruits with more carbohydrates and less protein may be sufficient to rebuild expended fat stores, but such fruits may be inadequate to replace catabolized protein. We manipulated the concentrations and isotopic signatures of macronutrients in diets fed to birds to study the effects of diet quality on metabolic routing of dietary nutrients. We estimated that approximately 45% and 75%, respectively, of the carbon in proteinaceous tissue of birds switched to high- or low-protein diets came from nonprotein dietary sources. In contrast, we estimated that approximately 100% and 20%-80%, respectively, of the nitrogen in proteinaceous tissues of birds switched to high- or low-protein diets was attributable to dietary protein. Thus, the routing and assimilation of dietary carbon and nitrogen differed depending on diet composition. As a result, delta (15)N of tissues collected from wild animals that consume high-quality diets may reliably indicate the dietary protein source, whereas delta (13)C of these same tissues is likely the product of metabolic routing of carbon from several macronutrients. These results have implications for how isotopic discrimination is best estimated and how we can study macronutrient routing in wild animals.

  15. Route-choice modeling using GPS-based travel surveys.

    DOT National Transportation Integrated Search

    2013-06-01

    The advent of GPS-based travel surveys offers an opportunity to develop empirically-rich route-choice models. However, the GPS traces must first be mapped to the roadway network, map-matching, to identify the network-links actually traversed. For thi...

  16. Management of Energy Consumption on Cluster Based Routing Protocol for MANET

    NASA Astrophysics Data System (ADS)

    Hosseini-Seno, Seyed-Amin; Wan, Tat-Chee; Budiarto, Rahmat; Yamada, Masashi

    The usage of light-weight mobile devices is increasing rapidly, leading to demand for more telecommunication services. Consequently, mobile ad hoc networks and their applications have become feasible with the proliferation of light-weight mobile devices. Many protocols have been developed to handle service discovery and routing in ad hoc networks. However, the majority of them did not consider one critical aspect of this type of network, which is the limited of available energy in each node. Cluster Based Routing Protocol (CBRP) is a robust/scalable routing protocol for Mobile Ad hoc Networks (MANETs) and superior to existing protocols such as Ad hoc On-demand Distance Vector (AODV) in terms of throughput and overhead. Therefore, based on this strength, methods to increase the efficiency of energy usage are incorporated into CBRP in this work. In order to increase the stability (in term of life-time) of the network and to decrease the energy consumption of inter-cluster gateway nodes, an Enhanced Gateway Cluster Based Routing Protocol (EGCBRP) is proposed. Three methods have been introduced by EGCBRP as enhancements to the CBRP: improving the election of cluster Heads (CHs) in CBRP which is based on the maximum available energy level, implementing load balancing for inter-cluster traffic using multiple gateways, and implementing sleep state for gateway nodes to further save the energy. Furthermore, we propose an Energy Efficient Cluster Based Routing Protocol (EECBRP) which extends the EGCBRP sleep state concept into all idle member nodes, excluding the active nodes in all clusters. The experiment results show that the EGCBRP decreases the overall energy consumption of the gateway nodes up to 10% and the EECBRP reduces the energy consumption of the member nodes up to 60%, both of which in turn contribute to stabilizing the network.

  17. Dynamic autonomous routing technology for IP-based satellite ad hoc networks

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofei; Deng, Jing; Kostas, Theresa; Rajappan, Gowri

    2014-06-01

    IP-based routing for military LEO/MEO satellite ad hoc networks is very challenging due to network and traffic heterogeneity, network topology and traffic dynamics. In this paper, we describe a traffic priority-aware routing scheme for such networks, namely Dynamic Autonomous Routing Technology (DART) for satellite ad hoc networks. DART has a cross-layer design, and conducts routing and resource reservation concurrently for optimal performance in the fluid but predictable satellite ad hoc networks. DART ensures end-to-end data delivery with QoS assurances by only choosing routing paths that have sufficient resources, supporting different packet priority levels. In order to do so, DART incorporates several resource management and innovative routing mechanisms, which dynamically adapt to best fit the prevailing conditions. In particular, DART integrates a resource reservation mechanism to reserve network bandwidth resources; a proactive routing mechanism to set up non-overlapping spanning trees to segregate high priority traffic flows from lower priority flows so that the high priority flows do not face contention from low priority flows; a reactive routing mechanism to arbitrate resources between various traffic priorities when needed; a predictive routing mechanism to set up routes for scheduled missions and for anticipated topology changes for QoS assurance. We present simulation results showing the performance of DART. We have conducted these simulations using the Iridium constellation and trajectories as well as realistic military communications scenarios. The simulation results demonstrate DART's ability to discriminate between high-priority and low-priority traffic flows and ensure disparate QoS requirements of these traffic flows.

  18. AIB-OR: Improving Onion Routing Circuit Construction Using Anonymous Identity-Based Cryptosystems

    PubMed Central

    Wang, Changji; Shi, Dongyuan; Xu, Xilei

    2015-01-01

    The rapid growth of Internet applications has made communication anonymity an increasingly important or even indispensable security requirement. Onion routing has been employed as an infrastructure for anonymous communication over a public network, which provides anonymous connections that are strongly resistant to both eavesdropping and traffic analysis. However, existing onion routing protocols usually exhibit poor performance due to repeated encryption operations. In this paper, we first present an improved anonymous multi-receiver identity-based encryption (AMRIBE) scheme, and an improved identity-based one-way anonymous key agreement (IBOWAKE) protocol. We then propose an efficient onion routing protocol named AIB-OR that provides provable security and strong anonymity. Our main approach is to use our improved AMRIBE scheme and improved IBOWAKE protocol in onion routing circuit construction. Compared with other onion routing protocols, AIB-OR provides high efficiency, scalability, strong anonymity and fault tolerance. Performance measurements from a prototype implementation show that our proposed AIB-OR can achieve high bandwidths and low latencies when deployed over the Internet. PMID:25815879

  19. Enhanced Contact Graph Routing (ECGR) MACHETE Simulation Model

    NASA Technical Reports Server (NTRS)

    Segui, John S.; Jennings, Esther H.; Clare, Loren P.

    2013-01-01

    Contact Graph Routing (CGR) for Delay/Disruption Tolerant Networking (DTN) space-based networks makes use of the predictable nature of node contacts to make real-time routing decisions given unpredictable traffic patterns. The contact graph will have been disseminated to all nodes before the start of route computation. CGR was designed for space-based networking environments where future contact plans are known or are independently computable (e.g., using known orbital dynamics). For each data item (known as a bundle in DTN), a node independently performs route selection by examining possible paths to the destination. Route computation could conceivably run thousands of times a second, so computational load is important. This work refers to the simulation software model of Enhanced Contact Graph Routing (ECGR) for DTN Bundle Protocol in JPL's MACHETE simulation tool. The simulation model was used for performance analysis of CGR and led to several performance enhancements. The simulation model was used to demonstrate the improvements of ECGR over CGR as well as other routing methods in space network scenarios. ECGR moved to using earliest arrival time because it is a global monotonically increasing metric that guarantees the safety properties needed for the solution's correctness since route re-computation occurs at each node to accommodate unpredicted changes (e.g., traffic pattern, link quality). Furthermore, using earliest arrival time enabled the use of the standard Dijkstra algorithm for path selection. The Dijkstra algorithm for path selection has a well-known inexpensive computational cost. These enhancements have been integrated into the open source CGR implementation. The ECGR model is also useful for route metric experimentation and comparisons with other DTN routing protocols particularly when combined with MACHETE's space networking models and Delay Tolerant Link State Routing (DTLSR) model.

  20. Constraint-Based Routing Models for the Transport of Radioactive Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Steven K

    2015-01-01

    The Department of Energy (DOE) has a historic programmatic interest in the safe and secure routing, tracking, and transportation risk analysis of radiological materials in the United States. In order to address these program goals, DOE has funded the development of several tools and related systems designed to provide insight to planners and other professionals handling radioactive materials shipments. These systems include the WebTRAGIS (Transportation Routing Analysis Geographic Information System) platform. WebTRAGIS is a browser-based routing application developed at Oak Ridge National Laboratory (ORNL) focused primarily on the safe transport of spent nuclear fuel from US nuclear reactors via railway,more » highway, or waterway. It is also used for the transport planning of low-level radiological waste to depositories such as the Waste Isolation Pilot Plant (WIPP) facility. One particular feature of WebTRAGIS is its coupling with high-resolution population data from ORNL s LandScan project. This allows users to obtain highly accurate population count and density information for use in route planning and risk analysis. To perform the routing and risk analysis WebTRAGIS incorporates a basic routing model methodology, with the additional application of various constraints designed to mimic US Department of Transportation (DOT), DOE, and Nuclear Regulatory Commission (NRC) regulations. Aside from the routing models available in WebTRAGIS, the system relies on detailed or specialized modal networks for the route solutions. These include a highly detailed network model of the US railroad system, the inland and coastal waterways, and a specialized highway network that focuses on the US interstate system and the designated hazardous materials and Highway Route Controlled Quantity (HRCQ) -designated roadways. The route constraints in WebTRAGIS rely upon a series of attributes assigned to the various components of the different modal networks. Routes are determined via

  1. Efficient and Stable Routing Algorithm Based on User Mobility and Node Density in Urban Vehicular Network

    PubMed Central

    Al-Mayouf, Yusor Rafid Bahar; Ismail, Mahamod; Abdullah, Nor Fadzilah; Wahab, Ainuddin Wahid Abdul; Mahdi, Omar Adil; Khan, Suleman; Choo, Kim-Kwang Raymond

    2016-01-01

    Vehicular ad hoc networks (VANETs) are considered an emerging technology in the industrial and educational fields. This technology is essential in the deployment of the intelligent transportation system, which is targeted to improve safety and efficiency of traffic. The implementation of VANETs can be effectively executed by transmitting data among vehicles with the use of multiple hops. However, the intrinsic characteristics of VANETs, such as its dynamic network topology and intermittent connectivity, limit data delivery. One particular challenge of this network is the possibility that the contributing node may only remain in the network for a limited time. Hence, to prevent data loss from that node, the information must reach the destination node via multi-hop routing techniques. An appropriate, efficient, and stable routing algorithm must be developed for various VANET applications to address the issues of dynamic topology and intermittent connectivity. Therefore, this paper proposes a novel routing algorithm called efficient and stable routing algorithm based on user mobility and node density (ESRA-MD). The proposed algorithm can adapt to significant changes that may occur in the urban vehicular environment. This algorithm works by selecting an optimal route on the basis of hop count and link duration for delivering data from source to destination, thereby satisfying various quality of service considerations. The validity of the proposed algorithm is investigated by its comparison with ARP-QD protocol, which works on the mechanism of optimal route finding in VANETs in urban environments. Simulation results reveal that the proposed ESRA-MD algorithm shows remarkable improvement in terms of delivery ratio, delivery delay, and communication overhead. PMID:27855165

  2. VANET Clustering Based Routing Protocol Suitable for Deserts.

    PubMed

    Nasr, Mohammed Mohsen Mohammed; Abdelgader, Abdeldime Mohamed Salih; Wang, Zhi-Gong; Shen, Lian-Feng

    2016-04-06

    In recent years, there has emerged applications of vehicular ad hoc networks (VANETs) towards security, safety, rescue, exploration, military and communication redundancy systems in non-populated areas, besides its ordinary use in urban environments as an essential part of intelligent transportation systems (ITS). This paper proposes a novel algorithm for the process of organizing a cluster structure and cluster head election (CHE) suitable for VANETs. Moreover, it presents a robust clustering-based routing protocol, which is appropriate for deserts and can achieve high communication efficiency, ensuring reliable information delivery and optimal exploitation of the equipment on each vehicle. A comprehensive simulation is conducted to evaluate the performance of the proposed CHE and routing algorithms.

  3. VANET Clustering Based Routing Protocol Suitable for Deserts

    PubMed Central

    Mohammed Nasr, Mohammed Mohsen; Abdelgader, Abdeldime Mohamed Salih; Wang, Zhi-Gong; Shen, Lian-Feng

    2016-01-01

    In recent years, there has emerged applications of vehicular ad hoc networks (VANETs) towards security, safety, rescue, exploration, military and communication redundancy systems in non-populated areas, besides its ordinary use in urban environments as an essential part of intelligent transportation systems (ITS). This paper proposes a novel algorithm for the process of organizing a cluster structure and cluster head election (CHE) suitable for VANETs. Moreover, it presents a robust clustering-based routing protocol, which is appropriate for deserts and can achieve high communication efficiency, ensuring reliable information delivery and optimal exploitation of the equipment on each vehicle. A comprehensive simulation is conducted to evaluate the performance of the proposed CHE and routing algorithms. PMID:27058539

  4. Energy Efficient Link Aware Routing with Power Control in Wireless Ad Hoc Networks.

    PubMed

    Katiravan, Jeevaa; Sylvia, D; Rao, D Srinivasa

    2015-01-01

    In wireless ad hoc networks, the traditional routing protocols make the route selection based on minimum distance between the nodes and the minimum number of hop counts. Most of the routing decisions do not consider the condition of the network such as link quality and residual energy of the nodes. Also, when a link failure occurs, a route discovery mechanism is initiated which incurs high routing overhead. If the broadcast nature and the spatial diversity of the wireless communication are utilized efficiently it becomes possible to achieve improvement in the performance of the wireless networks. In contrast to the traditional routing scheme which makes use of a predetermined route for packet transmission, such an opportunistic routing scheme defines a predefined forwarding candidate list formed by using single network metrics. In this paper, a protocol is proposed which uses multiple metrics such as residual energy and link quality for route selection and also includes a monitoring mechanism which initiates a route discovery for a poor link, thereby reducing the overhead involved and improving the throughput of the network while maintaining network connectivity. Power control is also implemented not only to save energy but also to improve the network performance. Using simulations, we show the performance improvement attained in the network in terms of packet delivery ratio, routing overhead, and residual energy of the network.

  5. Energy Efficient Link Aware Routing with Power Control in Wireless Ad Hoc Networks

    PubMed Central

    Katiravan, Jeevaa; Sylvia, D.; Rao, D. Srinivasa

    2015-01-01

    In wireless ad hoc networks, the traditional routing protocols make the route selection based on minimum distance between the nodes and the minimum number of hop counts. Most of the routing decisions do not consider the condition of the network such as link quality and residual energy of the nodes. Also, when a link failure occurs, a route discovery mechanism is initiated which incurs high routing overhead. If the broadcast nature and the spatial diversity of the wireless communication are utilized efficiently it becomes possible to achieve improvement in the performance of the wireless networks. In contrast to the traditional routing scheme which makes use of a predetermined route for packet transmission, such an opportunistic routing scheme defines a predefined forwarding candidate list formed by using single network metrics. In this paper, a protocol is proposed which uses multiple metrics such as residual energy and link quality for route selection and also includes a monitoring mechanism which initiates a route discovery for a poor link, thereby reducing the overhead involved and improving the throughput of the network while maintaining network connectivity. Power control is also implemented not only to save energy but also to improve the network performance. Using simulations, we show the performance improvement attained in the network in terms of packet delivery ratio, routing overhead, and residual energy of the network. PMID:26167529

  6. Web-based routing assistance tool to reduce pavement damage by overweight and oversize vehicles.

    DOT National Transportation Integrated Search

    2016-10-30

    This report documents the results of a completed project titled Web-Based Routing Assistance Tool to Reduce Pavement Damage by Overweight and Oversize Vehicles. The tasks involved developing a Web-based GIS routing assistance tool and evaluate ...

  7. A hop count based heuristic routing protocol for mobile delay tolerant networks.

    PubMed

    You, Lei; Li, Jianbo; Wei, Changjiang; Dai, Chenqu; Xu, Jixing; Hu, Lejuan

    2014-01-01

    Routing in delay tolerant networks (DTNs) is a challenge since it must handle network partitioning, long delays, and dynamic topology. Meanwhile, routing protocols of the traditional mobile ad hoc networks (MANETs) cannot work well due to the failure of its assumption that most network connections are available. In this paper, we propose a hop count based heuristic routing protocol by utilizing the information carried by the peripatetic packets in the network. A heuristic function is defined to help in making the routing decision. We formally define a custom operation for square matrices so as to transform the heuristic value calculation into matrix manipulation. Finally, the performance of our proposed algorithm is evaluated by the simulation results, which show the advantage of such self-adaptive routing protocol in the diverse circumstance of DTNs.

  8. A Hop Count Based Heuristic Routing Protocol for Mobile Delay Tolerant Networks

    PubMed Central

    Wei, Changjiang; Dai, Chenqu; Xu, Jixing; Hu, Lejuan

    2014-01-01

    Routing in delay tolerant networks (DTNs) is a challenge since it must handle network partitioning, long delays, and dynamic topology. Meanwhile, routing protocols of the traditional mobile ad hoc networks (MANETs) cannot work well due to the failure of its assumption that most network connections are available. In this paper, we propose a hop count based heuristic routing protocol by utilizing the information carried by the peripatetic packets in the network. A heuristic function is defined to help in making the routing decision. We formally define a custom operation for square matrices so as to transform the heuristic value calculation into matrix manipulation. Finally, the performance of our proposed algorithm is evaluated by the simulation results, which show the advantage of such self-adaptive routing protocol in the diverse circumstance of DTNs. PMID:25110736

  9. Cluster Based Location-Aided Routing Protocol for Large Scale Mobile Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Dong, Liang; Liang, Taotao; Yang, Xinyu; Zhang, Deyun

    Routing algorithms with low overhead, stable link and independence of the total number of nodes in the network are essential for the design and operation of the large-scale wireless mobile ad hoc networks (MANET). In this paper, we develop and analyze the Cluster Based Location-Aided Routing Protocol for MANET (C-LAR), a scalable and effective routing algorithm for MANET. C-LAR runs on top of an adaptive cluster cover of the MANET, which can be created and maintained using, for instance, the weight-based distributed algorithm. This algorithm takes into consideration the node degree, mobility, relative distance, battery power and link stability of mobile nodes. The hierarchical structure stabilizes the end-to-end communication paths and improves the networks' scalability such that the routing overhead does not become tremendous in large scale MANET. The clusterheads form a connected virtual backbone in the network, determine the network's topology and stability, and provide an efficient approach to minimizing the flooding traffic during route discovery and speeding up this process as well. Furthermore, it is fascinating and important to investigate how to control the total number of nodes participating in a routing establishment process so as to improve the network layer performance of MANET. C-LAR is to use geographical location information provided by Global Position System to assist routing. The location information of destination node is used to predict a smaller rectangle, isosceles triangle, or circle request zone, which is selected according to the relative location of the source and the destination, that covers the estimated region in which the destination may be located. Thus, instead of searching the route in the entire network blindly, C-LAR confines the route searching space into a much smaller estimated range. Simulation results have shown that C-LAR outperforms other protocols significantly in route set up time, routing overhead, mean delay and packet

  10. Cooperative Opportunistic Pressure Based Routing for Underwater Wireless Sensor Networks.

    PubMed

    Javaid, Nadeem; Muhammad; Sher, Arshad; Abdul, Wadood; Niaz, Iftikhar Azim; Almogren, Ahmad; Alamri, Atif

    2017-03-19

    In this paper, three opportunistic pressure based routing techniques for underwater wireless sensor networks (UWSNs) are proposed. The first one is the cooperative opportunistic pressure based routing protocol (Co-Hydrocast), second technique is the improved Hydrocast (improved-Hydrocast), and third one is the cooperative improved Hydrocast (Co-improved Hydrocast). In order to minimize lengthy routing paths between the source and the destination and to avoid void holes at the sparse networks, sensor nodes are deployed at different strategic locations. The deployment of sensor nodes at strategic locations assure the maximum monitoring of the network field. To conserve the energy consumption and minimize the number of hops, greedy algorithm is used to transmit data packets from the source to the destination. Moreover, the opportunistic routing is also exploited to avoid void regions by making backward transmissions to find reliable path towards the destination in the network. The relay cooperation mechanism is used for reliable data packet delivery, when signal to noise ratio (SNR) of the received signal is not within the predefined threshold then the maximal ratio combining (MRC) is used as a diversity technique to improve the SNR of the received signals at the destination. Extensive simulations validate that our schemes perform better in terms of packet delivery ratio and energy consumption than the existing technique; Hydrocast.

  11. Cooperative Opportunistic Pressure Based Routing for Underwater Wireless Sensor Networks

    PubMed Central

    Javaid, Nadeem; Muhammad; Sher, Arshad; Abdul, Wadood; Niaz, Iftikhar Azim; Almogren, Ahmad; Alamri, Atif

    2017-01-01

    In this paper, three opportunistic pressure based routing techniques for underwater wireless sensor networks (UWSNs) are proposed. The first one is the cooperative opportunistic pressure based routing protocol (Co-Hydrocast), second technique is the improved Hydrocast (improved-Hydrocast), and third one is the cooperative improved Hydrocast (Co-improved Hydrocast). In order to minimize lengthy routing paths between the source and the destination and to avoid void holes at the sparse networks, sensor nodes are deployed at different strategic locations. The deployment of sensor nodes at strategic locations assure the maximum monitoring of the network field. To conserve the energy consumption and minimize the number of hops, greedy algorithm is used to transmit data packets from the source to the destination. Moreover, the opportunistic routing is also exploited to avoid void regions by making backward transmissions to find reliable path towards the destination in the network. The relay cooperation mechanism is used for reliable data packet delivery, when signal to noise ratio (SNR) of the received signal is not within the predefined threshold then the maximal ratio combining (MRC) is used as a diversity technique to improve the SNR of the received signals at the destination. Extensive simulations validate that our schemes perform better in terms of packet delivery ratio and energy consumption than the existing technique; Hydrocast. PMID:28335494

  12. Formal Approach For Resilient Reachability based on End-System Route Agility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauf, Usman; Gillani, Fida; Al-Shaer, Ehab

    The deterministic nature of existing routing protocols has resulted into an ossified Internet with static and predictable network routes. This gives persistent attackers (e.g. eavesdroppers and DDoS attackers) plenty of time to study the network and identify the vulnerable links (critical) to plan a devastating and stealthy attack. Recently, route mutation approaches have been proposed to address such issues. However, these approaches incur significantly high overhead and depend upon the availability of disjoint routes in the network, which inherently limit their use for mission critical services. To cope with these issues, we extend the current routing architecture to consider end-hostsmore » as routing elements, and present a formal method based agile defense mechanism to increase resiliency of the existing cyber infrastructure. The major contributions of this paper include: (1) formalization of efficient and resilient End to End (E2E) reachability problem as a constraint satisfaction problem, which identifies the potential end-hosts to reach a destination while satisfying resilience and QoS constraints, (2) design and implementation of a novel decentralized End Point Route Mutation (EPRM) protocol, and (3) design and implementation of planning algorithm to minimize the overlap between multiple flows, for the sake of maximizing the agility in the system. Our implementation and evaluation validates the correctness, effectiveness and scalability of the proposed approach.« less

  13. A novel wavelength availability advertisement based ASON routing protocol implementation

    NASA Astrophysics Data System (ADS)

    Li, Jian; Liu, Juan; Zhang, Jie; Gu, Wanyi

    2005-11-01

    A novel wavelength availability advertisement based ASON routing protocol implementation is proposed in this paper which is derived from Open Shortest Path First protocol (OSPF) version 2. It can be applied to ASON network with a single control domain and can be easily extended to support routing in the multi-domain scenarios. Two new types of link state advertisement (LSA) are suggested for disseminating wavelength availability and network topology information. The OSPF mechanisms are inherited to ensure that the routing messages are delivered more reliably and converged more quickly while with fewer overheads. The topology auto discovery is realized through LSA flooding interacting with auto neighbor discovery using Link Management Protocol. The new LSA formats are given and how the link state database (LSD) is comprised is described. The new data structures proposed include topology resource list, adjacency list and route table. Then we analyze the differences of ASON in link state exchange, routing information flooding procedure, flushing procedure and new resources participating, i.e. new links or nodes join in an existing ASON. The link or node failure and recovery effect and how to deal with them are settled as well. In order to adopt different Routing and Wavelength Assignment (RWA) algorithms, a standard and efficient interface is designed. After extensive simulation we give the numerical analysis and come to the following conclusions: wavelength availability information flooding Convergence Time is about 30 milliseconds and it is not affected by RWA algorithms and the call traffic load; routing Protocol Average Overhead rises linearly with the increase of traffic load; Average Connection Setup Time decreases with the increase of traffic load because of the decrease of Average Routing Distance of the successfully lightpaths; Wavelength availability advertisement can greatly promote the blocking performance of ASON in relatively low traffic load; ASON

  14. A Distance-based Energy Aware Routing algorithm for wireless sensor networks.

    PubMed

    Wang, Jin; Kim, Jeong-Uk; Shu, Lei; Niu, Yu; Lee, Sungyoung

    2010-01-01

    Energy efficiency and balancing is one of the primary challenges for wireless sensor networks (WSNs) since the tiny sensor nodes cannot be easily recharged once they are deployed. Up to now, many energy efficient routing algorithms or protocols have been proposed with techniques like clustering, data aggregation and location tracking etc. However, many of them aim to minimize parameters like total energy consumption, latency etc., which cause hotspot nodes and partitioned network due to the overuse of certain nodes. In this paper, a Distance-based Energy Aware Routing (DEAR) algorithm is proposed to ensure energy efficiency and energy balancing based on theoretical analysis of different energy and traffic models. During the routing process, we consider individual distance as the primary parameter in order to adjust and equalize the energy consumption among involved sensors. The residual energy is also considered as a secondary factor. In this way, all the intermediate nodes will consume their energy at similar rate, which maximizes network lifetime. Simulation results show that the DEAR algorithm can reduce and balance the energy consumption for all sensor nodes so network lifetime is greatly prolonged compared to other routing algorithms.

  15. Transmission Scheduling and Routing Algorithms for Delay Tolerant Networks

    NASA Technical Reports Server (NTRS)

    Dudukovich, Rachel; Raible, Daniel E.

    2016-01-01

    The challenges of data processing, transmission scheduling and routing within a space network present a multi-criteria optimization problem. Long delays, intermittent connectivity, asymmetric data rates and potentially high error rates make traditional networking approaches unsuitable. The delay tolerant networking architecture and protocols attempt to mitigate many of these issues, yet transmission scheduling is largely manually configured and routes are determined by a static contact routing graph. A high level of variability exists among the requirements and environmental characteristics of different missions, some of which may allow for the use of more opportunistic routing methods. In all cases, resource allocation and constraints must be balanced with the optimization of data throughput and quality of service. Much work has been done researching routing techniques for terrestrial-based challenged networks in an attempt to optimize contact opportunities and resource usage. This paper examines several popular methods to determine their potential applicability to space networks.

  16. A Rule-Based Spatial Reasoning Approach for OpenStreetMap Data Quality Enrichment; Case Study of Routing and Navigation

    PubMed Central

    2017-01-01

    Finding relevant geospatial information is increasingly critical because of the growing volume of geospatial data available within the emerging “Big Data” era. Users are expecting that the availability of massive datasets will create more opportunities to uncover hidden information and answer more complex queries. This is especially the case with routing and navigation services where the ability to retrieve points of interest and landmarks make the routing service personalized, precise, and relevant. In this paper, we propose a new geospatial information approach that enables the retrieval of implicit information, i.e., geospatial entities that do not exist explicitly in the available source. We present an information broker that uses a rule-based spatial reasoning algorithm to detect topological relations. The information broker is embedded into a framework where annotations and mappings between OpenStreetMap data attributes and external resources, such as taxonomies, support the enrichment of queries to improve the ability of the system to retrieve information. Our method is tested with two case studies that leads to enriching the completeness of OpenStreetMap data with footway crossing points-of-interests as well as building entrances for routing and navigation purposes. It is concluded that the proposed approach can uncover implicit entities and contribute to extract required information from the existing datasets. PMID:29088125

  17. A game theory-based obstacle avoidance routing protocol for wireless sensor networks.

    PubMed

    Guan, Xin; Wu, Huayang; Bi, Shujun

    2011-01-01

    The obstacle avoidance problem in geographic forwarding is an important issue for location-based routing in wireless sensor networks. The presence of an obstacle leads to several geographic routing problems such as excessive energy consumption and data congestion. Obstacles are hard to avoid in realistic environments. To bypass obstacles, most routing protocols tend to forward packets along the obstacle boundaries. This leads to a situation where the nodes at the boundaries exhaust their energy rapidly and the obstacle area is diffused. In this paper, we introduce a novel routing algorithm to solve the obstacle problem in wireless sensor networks based on a game-theory model. Our algorithm forms a concave region that cannot forward packets to achieve the aim of improving the transmission success rate and decreasing packet transmission delays. We consider the residual energy, out-degree and forwarding angle to determine the forwarding probability and payoff function of forwarding candidates. This achieves the aim of load balance and reduces network energy consumption. Simulation results show that based on the average delivery delay, energy consumption and packet delivery ratio performances our protocol is superior to other traditional schemes.

  18. A human-machine cooperation route planning method based on improved A* algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengsheng; Cai, Chao

    2011-12-01

    To avoid the limitation of common route planning method to blindly pursue higher Machine Intelligence and autoimmunization, this paper presents a human-machine cooperation route planning method. The proposed method includes a new A* path searing strategy based on dynamic heuristic searching and a human cooperated decision strategy to prune searching area. It can overcome the shortage of A* algorithm to fall into a local long term searching. Experiments showed that this method can quickly plan a feasible route to meet the macro-policy thinking.

  19. Reliable Freestanding Position-Based Routing in Highway Scenarios

    PubMed Central

    Galaviz-Mosqueda, Gabriel A.; Aquino-Santos, Raúl; Villarreal-Reyes, Salvador; Rivera-Rodríguez, Raúl; Villaseñor-González, Luis; Edwards, Arthur

    2012-01-01

    Vehicular Ad Hoc Networks (VANETs) are considered by car manufacturers and the research community as the enabling technology to radically improve the safety, efficiency and comfort of everyday driving. However, before VANET technology can fulfill all its expected potential, several difficulties must be addressed. One key issue arising when working with VANETs is the complexity of the networking protocols compared to those used by traditional infrastructure networks. Therefore, proper design of the routing strategy becomes a main issue for the effective deployment of VANETs. In this paper, a reliable freestanding position-based routing algorithm (FPBR) for highway scenarios is proposed. For this scenario, several important issues such as the high mobility of vehicles and the propagation conditions may affect the performance of the routing strategy. These constraints have only been partially addressed in previous proposals. In contrast, the design approach used for developing FPBR considered the constraints imposed by a highway scenario and implements mechanisms to overcome them. FPBR performance is compared to one of the leading protocols for highway scenarios. Performance metrics show that FPBR yields similar results when considering freespace propagation conditions, and outperforms the leading protocol when considering a realistic highway path loss model. PMID:23202159

  20. Reliable freestanding position-based routing in highway scenarios.

    PubMed

    Galaviz-Mosqueda, Gabriel A; Aquino-Santos, Raúl; Villarreal-Reyes, Salvador; Rivera-Rodríguez, Raúl; Villaseñor-González, Luis; Edwards, Arthur

    2012-10-24

    Vehicular Ad Hoc Networks (VANETs) are considered by car manufacturers and the research community as the enabling technology to radically improve the safety, efficiency and comfort of everyday driving. However, before VANET technology can fulfill all its expected potential, several difficulties must be addressed. One key issue arising when working with VANETs is the complexity of the networking protocols compared to those used by traditional infrastructure networks. Therefore, proper design of the routing strategy becomes a main issue for the effective deployment of VANETs. In this paper, a reliable freestanding position-based routing algorithm (FPBR) for highway scenarios is proposed. For this scenario, several important issues such as the high mobility of vehicles and the propagation conditions may affect the performance of the routing strategy. These constraints have only been partially addressed in previous proposals. In contrast, the design approach used for developing FPBR considered the constraints imposed by a highway scenario and implements mechanisms to overcome them. FPBR performance is compared to one of the leading protocols for highway scenarios. Performance metrics show that FPBR yields similar results when considering freespace propagation conditions, and outperforms the leading protocol when considering a realistic highway path loss model.

  1. Hybrid Packet-Pheromone-Based Probabilistic Routing for Mobile Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Kashkouli Nejad, Keyvan; Shawish, Ahmed; Jiang, Xiaohong; Horiguchi, Susumu

    Ad-Hoc networks are collections of mobile nodes communicating using wireless media without any fixed infrastructure. Minimal configuration and quick deployment make Ad-Hoc networks suitable for emergency situations like natural disasters or military conflicts. The current Ad-Hoc networks can only support either high mobility or high transmission rate at a time because they employ static approaches in their routing schemes. However, due to the continuous expansion of the Ad-Hoc network size, node-mobility and transmission rate, the development of new adaptive and dynamic routing schemes has become crucial. In this paper we propose a new routing scheme to support high transmission rates and high node-mobility simultaneously in a big Ad-Hoc network, by combining a new proposed packet-pheromone-based approach with the Hint Based Probabilistic Protocol (HBPP) for congestion avoidance with dynamic path selection in packet forwarding process. Because of using the available feedback information, the proposed algorithm does not introduce any additional overhead. The extensive simulation-based analysis conducted in this paper indicates that the proposed algorithm offers small packet-latency and achieves a significantly higher delivery probability in comparison with the available Hint-Based Probabilistic Protocol (HBPP).

  2. A new routing enhancement scheme based on node blocking state advertisement in wavelength-routed WDM networks

    NASA Astrophysics Data System (ADS)

    Hu, Peigang; Jin, Yaohui; Zhang, Chunlei; He, Hao; Hu, WeiSheng

    2005-02-01

    The increasing switching capacity brings the optical node with considerable complexity. Due to the limitation in cost and technology, an optical node is often designed with partial switching capability and partial resource sharing. It means that the node is of blocking to some extent, for example multi-granularity switching node, which in fact is a structure using pass wavelength to reduce the dimension of OXC, and partial sharing wavelength converter (WC) OXC. It is conceivable that these blocking nodes will have great effects on the problem of routing and wavelength assignment. Some previous works studied the blocking case, partial WC OXC, using complicated wavelength assignment algorithm. But the complexities of these schemes decide them to be not in practice in real networks. In this paper, we propose a new scheme based on the node blocking state advertisement to reduce the retry or rerouting probability and improve the efficiency of routing in the networks with blocking nodes. In the scheme, node blocking state are advertised to the other nodes in networks, which will be used for subsequent route calculation to find a path with lowest blocking probability. The performance of the scheme is evaluated using discrete event model in 14-node NSFNET, all the nodes of which employ a kind of partial sharing WC OXC structure. In the simulation, a simple First-Fit wavelength assignment algorithm is used. The simulation results demonstrate that the new scheme considerably reduces the retry or rerouting probability in routing process.

  3. Assessment of air quality in and around a steel industry with direct reduction iron route.

    PubMed

    Jena, Pradip K; Behera, Dillip K; Mishra, C S K; Mohanty, Saswat K

    2011-10-01

    The coal based Direct Reduced Iron (DRI) route for secondary steel production is now a preferred choice in India. Steel making is invariably associated with emission of air pollutants into the environment. Air quality monitoring was carried out in Winter, Summer and Rainy seasons of 2008 in eight monitoring stations in the work zone and five stations in the residential zone of an Integrated Steel Industry located in Orissa state, India. Four air quality parameters i.e. SPM, RSPM, SO2 and NO2 were monitored. Mean SPM and RSPM values were found to be significantly high (p < 0.01) at stations nearer to source in both work zone and residential zone .The highest average SPM and RSPM values in the work zone recorded were 4869 microg/m3 and 1420 microg/m3 and in the residential zone 294 microg/m3 and 198 microg/m3 respectively. No significant difference in the SO2 and NO2 levels was observed between the work and residential zones. In general, the values of air pollutants were highest in Winter followed by Summer and Rainy season. SPM and RSPM values exceeded the National Air Quality Standards (NAAQS) in both the residential and work zones.

  4. Iconic memory-based omnidirectional route panorama navigation.

    PubMed

    Yagi, Yasushi; Imai, Kousuke; Tsuji, Kentaro; Yachida, Masahiko

    2005-01-01

    A route navigation method for a mobile robot with an omnidirectional image sensor is described. The route is memorized from a series of consecutive omnidirectional images of the horizon when the robot moves to its goal. While the robot is navigating to the goal point, input is matched against the memorized spatio-temporal route pattern by using dual active contour models and the exact robot position and orientation is estimated from the converged shape of the active contour models.

  5. Role of Distance-Based Routing in Traffic Dynamics on Mobile Networks

    NASA Astrophysics Data System (ADS)

    Yang, Han-Xin; Wang, Wen-Xu

    2013-06-01

    Despite of intensive investigations on transportation dynamics taking place on complex networks with fixed structures, a deep understanding of networks consisting of mobile nodes is challenging yet, especially the lacking of insight into the effects of routing strategies on transmission efficiency. We introduce a distance-based routing strategy for networks of mobile agents toward enhancing the network throughput and the transmission efficiency. We study the transportation capacity and delivering time of data packets associated with mobility and communication ability. Interestingly, we find that the transportation capacity is optimized at moderate moving speed, which is quite different from random routing strategy. In addition, both continuous and discontinuous transitions from free flow to congestions are observed. Degree distributions are explored in order to explain the enhancement of network throughput and other observations. Our work is valuable toward understanding complex transportation dynamics and designing effective routing protocols.

  6. mizuRoute version 1: A river network routing tool for a continental domain water resources applications

    USGS Publications Warehouse

    Mizukami, Naoki; Clark, Martyn P.; Sampson, Kevin; Nijssen, Bart; Mao, Yixin; McMillan, Hilary; Viger, Roland; Markstrom, Steven; Hay, Lauren E.; Woods, Ross; Arnold, Jeffrey R.; Brekke, Levi D.

    2016-01-01

    This paper describes the first version of a stand-alone runoff routing tool, mizuRoute. The mizuRoute tool post-processes runoff outputs from any distributed hydrologic model or land surface model to produce spatially distributed streamflow at various spatial scales from headwater basins to continental-wide river systems. The tool can utilize both traditional grid-based river network and vector-based river network data. Both types of river network include river segment lines and the associated drainage basin polygons, but the vector-based river network can represent finer-scale river lines than the grid-based network. Streamflow estimates at any desired location in the river network can be easily extracted from the output of mizuRoute. The routing process is simulated as two separate steps. First, hillslope routing is performed with a gamma-distribution-based unit-hydrograph to transport runoff from a hillslope to a catchment outlet. The second step is river channel routing, which is performed with one of two routing scheme options: (1) a kinematic wave tracking (KWT) routing procedure; and (2) an impulse response function – unit-hydrograph (IRF-UH) routing procedure. The mizuRoute tool also includes scripts (python, NetCDF operators) to pre-process spatial river network data. This paper demonstrates mizuRoute's capabilities to produce spatially distributed streamflow simulations based on river networks from the United States Geological Survey (USGS) Geospatial Fabric (GF) data set in which over 54 000 river segments and their contributing areas are mapped across the contiguous United States (CONUS). A brief analysis of model parameter sensitivity is also provided. The mizuRoute tool can assist model-based water resources assessments including studies of the impacts of climate change on streamflow.

  7. Prospect theory based estimation of drivers' risk attitudes in route choice behaviors.

    PubMed

    Zhou, Lizhen; Zhong, Shiquan; Ma, Shoufeng; Jia, Ning

    2014-12-01

    This paper applied prospect theory (PT) to describe drivers' route choice behavior under Variable Message Sign (VMS), which presented visual traffic information to assist them to make route choice decisions. A quite rich empirical data from questionnaire and field spot was used to estimate parameters of PT. In order to make the parameters more realistic with drivers' attitudes, they were classified into different types by significant factors influencing their behaviors. Based on the travel time distribution of alternative routes and route choice results from questionnaire, the parameterized value function of each category was figured out, which represented drivers' risk attitudes and choice characteristics. The empirical verification showed that the estimates were acceptable and effective. The result showed drivers' risk attitudes and route choice characteristics could be captured by PT under real-time information shown on VMS. For practical application, once drivers' route choice characteristics and parameters were identified, their route choice behavior under different road conditions could be predicted accurately, which was the basis of traffic guidance measures formulation and implementation for targeted traffic management. Moreover, the heterogeneous risk attitudes among drivers should be considered when releasing traffic information and regulating traffic flow. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Contact Graph Routing

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott C.

    2011-01-01

    Contact Graph Routing (CGR) is a dynamic routing system that computes routes through a time-varying topology of scheduled communication contacts in a network based on the DTN (Delay-Tolerant Networking) architecture. It is designed to enable dynamic selection of data transmission routes in a space network based on DTN. This dynamic responsiveness in route computation should be significantly more effective and less expensive than static routing, increasing total data return while at the same time reducing mission operations cost and risk. The basic strategy of CGR is to take advantage of the fact that, since flight mission communication operations are planned in detail, the communication routes between any pair of bundle agents in a population of nodes that have all been informed of one another's plans can be inferred from those plans rather than discovered via dialogue (which is impractical over long one-way-light-time space links). Messages that convey this planning information are used to construct contact graphs (time-varying models of network connectivity) from which CGR automatically computes efficient routes for bundles. Automatic route selection increases the flexibility and resilience of the space network, simplifying cross-support and reducing mission management costs. Note that there are no routing tables in Contact Graph Routing. The best route for a bundle destined for a given node may routinely be different from the best route for a different bundle destined for the same node, depending on bundle priority, bundle expiration time, and changes in the current lengths of transmission queues for neighboring nodes; routes must be computed individually for each bundle, from the Bundle Protocol agent's current network connectivity model for the bundle s destination node (the contact graph). Clearly this places a premium on optimizing the implementation of the route computation algorithm. The scalability of CGR to very large networks remains a research topic

  9. U-Access: a web-based system for routing pedestrians of differing abilities

    NASA Astrophysics Data System (ADS)

    Sobek, Adam D.; Miller, Harvey J.

    2006-09-01

    For most people, traveling through urban and built environments is straightforward. However, for people with physical disabilities, even a short trip can be difficult and perhaps impossible. This paper provides the design and implementation of a web-based system for the routing and prescriptive analysis of pedestrians with different physical abilities within built environments. U-Access, as a routing tool, provides pedestrians with the shortest feasible route with respect to one of three differing ability levels, namely, peripatetic (unaided mobility), aided mobility (mobility with the help of a cane, walker or crutches) and wheelchair users. U-Access is also an analytical tool that can help identify obstacles in built environments that create routing discrepancies among pedestrians with different physical abilities. This paper discusses the system design, including database, algorithm and interface specifications, and technologies for efficiently delivering results through the World Wide Web (WWW). This paper also provides an illustrative example of a routing problem and an analytical evaluation of the existing infrastructure which identifies the obstacles that pose the greatest discrepancies between physical ability levels. U-Access was evaluated by wheelchair users and route experts from the Center for Disability Services at The University of Utah, USA.

  10. Effective Social Relationship Measurement and Cluster Based Routing in Mobile Opportunistic Networks.

    PubMed

    Zeng, Feng; Zhao, Nan; Li, Wenjia

    2017-05-12

    In mobile opportunistic networks, the social relationship among nodes has an important impact on data transmission efficiency. Motivated by the strong share ability of "circles of friends" in communication networks such as Facebook, Twitter, Wechat and so on, we take a real-life example to show that social relationships among nodes consist of explicit and implicit parts. The explicit part comes from direct contact among nodes, and the implicit part can be measured through the "circles of friends". We present the definitions of explicit and implicit social relationships between two nodes, adaptive weights of explicit and implicit parts are given according to the contact feature of nodes, and the distributed mechanism is designed to construct the "circles of friends" of nodes, which is used for the calculation of the implicit part of social relationship between nodes. Based on effective measurement of social relationships, we propose a social-based clustering and routing scheme, in which each node selects the nodes with close social relationships to form a local cluster, and the self-control method is used to keep all cluster members always having close relationships with each other. A cluster-based message forwarding mechanism is designed for opportunistic routing, in which each node only forwards the copy of the message to nodes with the destination node as a member of the local cluster. Simulation results show that the proposed social-based clustering and routing outperforms the other classic routing algorithms.

  11. An adaptive density-based routing protocol for flying Ad Hoc networks

    NASA Astrophysics Data System (ADS)

    Zheng, Xueli; Qi, Qian; Wang, Qingwen; Li, Yongqiang

    2017-10-01

    An Adaptive Density-based Routing Protocol (ADRP) for Flying Ad Hoc Networks (FANETs) is proposed in this paper. The main objective is to calculate forwarding probability adaptively in order to increase the efficiency of forwarding in FANETs. ADRP dynamically fine-tunes the rebroadcasting probability of a node for routing request packets according to the number of neighbour nodes. Indeed, it is more interesting to privilege the retransmission by nodes with little neighbour nodes. We describe the protocol, implement it and evaluate its performance using NS-2 network simulator. Simulation results reveal that ADRP achieves better performance in terms of the packet delivery fraction, average end-to-end delay, normalized routing load, normalized MAC load and throughput, which is respectively compared with AODV.

  12. SACFIR: SDN-Based Application-Aware Centralized Adaptive Flow Iterative Reconfiguring Routing Protocol for WSNs.

    PubMed

    Aslam, Muhammad; Hu, Xiaopeng; Wang, Fan

    2017-12-13

    Smart reconfiguration of a dynamic networking environment is offered by the central control of Software-Defined Networking (SDN). Centralized SDN-based management architectures are capable of retrieving global topology intelligence and decoupling the forwarding plane from the control plane. Routing protocols developed for conventional Wireless Sensor Networks (WSNs) utilize limited iterative reconfiguration methods to optimize environmental reporting. However, the challenging networking scenarios of WSNs involve a performance overhead due to constant periodic iterative reconfigurations. In this paper, we propose the SDN-based Application-aware Centralized adaptive Flow Iterative Reconfiguring (SACFIR) routing protocol with the centralized SDN iterative solver controller to maintain the load-balancing between flow reconfigurations and flow allocation cost. The proposed SACFIR's routing protocol offers a unique iterative path-selection algorithm, which initially computes suitable clustering based on residual resources at the control layer and then implements application-aware threshold-based multi-hop report transmissions on the forwarding plane. The operation of the SACFIR algorithm is centrally supervised by the SDN controller residing at the Base Station (BS). This paper extends SACFIR to SDN-based Application-aware Main-value Centralized adaptive Flow Iterative Reconfiguring (SAMCFIR) to establish both proactive and reactive reporting. The SAMCFIR transmission phase enables sensor nodes to trigger direct transmissions for main-value reports, while in the case of SACFIR, all reports follow computed routes. Our SDN-enabled proposed models adjust the reconfiguration period according to the traffic burden on sensor nodes, which results in heterogeneity awareness, load-balancing and application-specific reconfigurations of WSNs. Extensive experimental simulation-based results show that SACFIR and SAMCFIR yield the maximum scalability, network lifetime and stability

  13. SACFIR: SDN-Based Application-Aware Centralized Adaptive Flow Iterative Reconfiguring Routing Protocol for WSNs

    PubMed Central

    Hu, Xiaopeng; Wang, Fan

    2017-01-01

    Smart reconfiguration of a dynamic networking environment is offered by the central control of Software-Defined Networking (SDN). Centralized SDN-based management architectures are capable of retrieving global topology intelligence and decoupling the forwarding plane from the control plane. Routing protocols developed for conventional Wireless Sensor Networks (WSNs) utilize limited iterative reconfiguration methods to optimize environmental reporting. However, the challenging networking scenarios of WSNs involve a performance overhead due to constant periodic iterative reconfigurations. In this paper, we propose the SDN-based Application-aware Centralized adaptive Flow Iterative Reconfiguring (SACFIR) routing protocol with the centralized SDN iterative solver controller to maintain the load-balancing between flow reconfigurations and flow allocation cost. The proposed SACFIR’s routing protocol offers a unique iterative path-selection algorithm, which initially computes suitable clustering based on residual resources at the control layer and then implements application-aware threshold-based multi-hop report transmissions on the forwarding plane. The operation of the SACFIR algorithm is centrally supervised by the SDN controller residing at the Base Station (BS). This paper extends SACFIR to SDN-based Application-aware Main-value Centralized adaptive Flow Iterative Reconfiguring (SAMCFIR) to establish both proactive and reactive reporting. The SAMCFIR transmission phase enables sensor nodes to trigger direct transmissions for main-value reports, while in the case of SACFIR, all reports follow computed routes. Our SDN-enabled proposed models adjust the reconfiguration period according to the traffic burden on sensor nodes, which results in heterogeneity awareness, load-balancing and application-specific reconfigurations of WSNs. Extensive experimental simulation-based results show that SACFIR and SAMCFIR yield the maximum scalability, network lifetime and stability

  14. An Eccentricity Based Data Routing Protocol with Uniform Node Distribution in 3D WSN.

    PubMed

    Hosen, A S M Sanwar; Cho, Gi Hwan; Ra, In-Ho

    2017-09-16

    Due to nonuniform node distribution, the energy consumption of nodes are imbalanced in clustering-based wireless sensor networks (WSNs). It might have more impact when nodes are deployed in a three-dimensional (3D) environment. In this regard, we propose the eccentricity based data routing (EDR) protocol in a 3D WSN with uniform node distribution. It includes network partitions called 3D subspaces/clusters of equal member nodes, an energy-efficient routing centroid (RC) nodes election and data routing algorithm. The RC nodes election conducts in a quasi-static nature until a certain period unlike the periodic cluster heads election of typical clustering-based routing. It not only reduces the energy consumption of nodes during the election phase, but also in intra-communication. At the same time, the routing algorithm selects a forwarding node in such a way that balances the energy consumption among RC nodes and reduces the number of hops towards the sink. The simulation results validate and ensure the performance supremacy of the EDR protocol compared to existing protocols in terms of various metrics such as steady state and network lifetime in particular. Meanwhile, the results show the EDR is more robust in uniform node distribution compared to nonuniform.

  15. An Eccentricity Based Data Routing Protocol with Uniform Node Distribution in 3D WSN

    PubMed Central

    Hosen, A. S. M. Sanwar; Cho, Gi Hwan; Ra, In-Ho

    2017-01-01

    Due to nonuniform node distribution, the energy consumption of nodes are imbalanced in clustering-based wireless sensor networks (WSNs). It might have more impact when nodes are deployed in a three-dimensional (3D) environment. In this regard, we propose the eccentricity based data routing (EDR) protocol in a 3D WSN with uniform node distribution. It includes network partitions called 3D subspaces/clusters of equal member nodes, an energy-efficient routing centroid (RC) nodes election and data routing algorithm. The RC nodes election conducts in a quasi-static nature until a certain period unlike the periodic cluster heads election of typical clustering-based routing. It not only reduces the energy consumption of nodes during the election phase, but also in intra-communication. At the same time, the routing algorithm selects a forwarding node in such a way that balances the energy consumption among RC nodes and reduces the number of hops towards the sink. The simulation results validate and ensure the performance supremacy of the EDR protocol compared to existing protocols in terms of various metrics such as steady state and network lifetime in particular. Meanwhile, the results show the EDR is more robust in uniform node distribution compared to nonuniform. PMID:28926958

  16. Does the route of immunoglobin replacement therapy impact quality of life and satisfaction in patients with primary immunodeficiency? Insights from the French cohort "Visages".

    PubMed

    Bienvenu, B; Cozon, G; Hoarau, C; Pasquet, M; Cherin, P; Clerson, P; Hachulla, E; Crave, J C; Delain, J C; Jaussaud, R

    2016-06-22

    IgG replacement therapy (IgRT) in primary immunodeficiencies (PID) is a lifelong treatment which may be administered intravenously (IVIg) or subcutaneously (SCIg), at hospital or at home. The objective of the VISAGE study was to investigate if route and/or place for IgRT impact patients' satisfaction regarding IgRT and quality of life (QoL) in real-life conditions. The study enrolled PID patients at least 15 years old receiving IgRT for at least 3 months. Satisfaction and QoL were evaluated at enrollment and over a 12-month follow-up period by Life Quality Index (LQI) which measures 3 dimensions of satisfaction: treatment interference, therapy related problems and therapy settings (factors I, II and III) and SF-36 v2 questionnaire. The study included 116 PID patients (mean age 42 ± 18 years, 44 % males, 58 % with scholar or professional occupation) receiving IgRT for a mean of 8.5 ± 8.4 years. At enrollment they were receiving either home-based SCIg (51 %), hospital-based IVIg (40 %) or home-based IVIg (9 %). Patients exhibited a high degree of satisfaction regarding IgRT whatever the route and place for administration. LQI factor I was higher for home-based SCIg (86 ± 2) than for hospital-based IVIg (81 ± 3) and home-based IVIg (73 ± 5; p = 0.02 versus home-based SCIg); no difference was found for LQI factor II; LQI factor III was higher for home-based SCIg (92 ± 2) than for hospital-based IVIg (87 ± 5) and hospital-based IVIg (82 ± 3; p = 0.005 versus home-based SCIg). By contrast, every dimension of QoL was impaired. Over the follow-up period, 10 patients switched from hospital-based IVIg to home-based SCIg and improved LQI factor I (p = 0.004) and factor III (p = 0.02), while no change was noticed in LQI factors II and QoL. Meanwhile, no change in satisfaction or QoL was found in patients with stable route of IgRT. When asked on their preferred place of treatment all but one patient with home-based

  17. Route visualization using detail lenses.

    PubMed

    Karnick, Pushpak; Cline, David; Jeschke, Stefan; Razdan, Anshuman; Wonka, Peter

    2010-01-01

    We present a method designed to address some limitations of typical route map displays of driving directions. The main goal of our system is to generate a printable version of a route map that shows the overview and detail views of the route within a single, consistent visual frame. Our proposed visualization provides a more intuitive spatial context than a simple list of turns. We present a novel multifocus technique to achieve this goal, where the foci are defined by points of interest (POI) along the route. A detail lens that encapsulates the POI at a finer geospatial scale is created for each focus. The lenses are laid out on the map to avoid occlusion with the route and each other, and to optimally utilize the free space around the route. We define a set of layout metrics to evaluate the quality of a lens layout for a given route map visualization. We compare standard lens layout methods to our proposed method and demonstrate the effectiveness of our method in generating aesthetically pleasing layouts. Finally, we perform a user study to evaluate the effectiveness of our layout choices.

  18. Computer-based route-definition system for peripheral bronchoscopy.

    PubMed

    Graham, Michael W; Gibbs, Jason D; Higgins, William E

    2012-04-01

    Multi-detector computed tomography (MDCT) scanners produce high-resolution images of the chest. Given a patient's MDCT scan, a physician can use an image-guided intervention system to first plan and later perform bronchoscopy to diagnostic sites situated deep in the lung periphery. An accurate definition of complete routes through the airway tree leading to the diagnostic sites, however, is vital for avoiding navigation errors during image-guided bronchoscopy. We present a system for the robust definition of complete airway routes suitable for image-guided bronchoscopy. The system incorporates both automatic and semiautomatic MDCT analysis methods for this purpose. Using an intuitive graphical user interface, the user invokes automatic analysis on a patient's MDCT scan to produce a series of preliminary routes. Next, the user visually inspects each route and quickly corrects the observed route defects using the built-in semiautomatic methods. Application of the system to a human study for the planning and guidance of peripheral bronchoscopy demonstrates the efficacy of the system.

  19. Prediction based Greedy Perimeter Stateless Routing Protocol for Vehicular Self-organizing Network

    NASA Astrophysics Data System (ADS)

    Wang, Chunlin; Fan, Quanrun; Chen, Xiaolin; Xu, Wanjin

    2018-03-01

    PGPSR (Prediction based Greedy Perimeter Stateless Routing) is based on and extended the GPSR protocol to adapt to the high speed mobility of the vehicle auto organization network (VANET) and the changes in the network topology. GPSR is used in the VANET network environment, the network loss rate and throughput are not ideal, even cannot work. Aiming at the problems of the GPSR, the proposed PGPSR routing protocol, it redefines the hello and query packet structure, in the structure of the new node speed and direction information, which received the next update before you can take advantage of its speed and direction to predict the position of node and new network topology, select the right the next hop routing and path. Secondly, the update of the outdated node information of the neighbor’s table is deleted in time. The simulation experiment shows the performance of PGPSR is better than that of GPSR.

  20. A Hydrologic Routing Model Based on Geomorphological Characteristics of the River Network

    NASA Astrophysics Data System (ADS)

    Krajewski, W. F.; Quintero, F.; Ghimire, G.; Rojas, M.

    2017-12-01

    The Iowa Flood Center (IFC) provides streamflow forecasts for about 2000 locations in Iowa using a real-time distributed hydrologic model, forced with radar and raingage rainfall information. The model structure is based on ordinary differential equations that represent the flow of water from the hillslopes to the channels of the river network. The formulation of the routing of water across the rivers constitutes a fundamental aspect of the model, because this component is mostly responsible for providing estimates of the time-to-peak and peak magnitude. The routing model structure of the system is based on the scaling properties of river velocity with the discharge and drainage area of the channel, which can be written in terms of a power-law function. This study examines how this scaling relation is connected to the Horton-Strahler order of the channel network. This evaluation represents a step forward towards formulating model structures that are based on characteristics that are invariant across spatial scales. We proposed a routing model for every different Horton orders of the network, by adjusting a power-law function to available observations of velocity and discharge provided by USGS. The models were implemented into the Hillslope-Link Model (HLM) of the IFC for offline evaluation. Model simulations were compared to discharge observations to assess their performance, and compared to simulations obtained with other hydrologic routing schemes, to determine if the new formulation improves performance of the model.

  1. Potential air pollutant emission from private vehicles based on vehicle route

    NASA Astrophysics Data System (ADS)

    Huboyo, H. S.; Handayani, W.; Samadikun, B. P.

    2017-06-01

    Air emissions related to the transportation sector has been identified as the second largest emitter of ambient air quality in Indonesia. This is due to large numbers of private vehicles commuting within the city as well as inter-city. A questionnaire survey was conducted in Semarang city involving 711 private vehicles consisting of cars and motorcycles. The survey was conducted in random parking lots across the Semarang districts and in vehicle workshops. Based on the parking lot survey, the average distance private cars travelled in kilometers (VKT) was 17,737 km/year. The machine start-up number of cars during weekdays; weekends were on average 5.19 and 3.79 respectively. For motorcycles the average of kilometers travelled was 27,092 km/year. The machine start-up number of motorcycles during weekdays and weekends were on average 5.84 and 3.98, respectively. The vehicle workshop survey showed the average kilometers travelled to be 9,510 km/year for motorcycles, while for private cars the average kilometers travelled was 21,347 km/year. Odometer readings for private cars showed a maximum of 3,046,509 km and a minimum of 700 km. Meanwhile, for motorcycles, odometer readings showed a maximum of 973,164 km and a minimum of roughly 54.24 km. Air pollutant emissions on East-West routes were generally higher than those on South-North routes. Motorcycles contribute significantly to urban air pollution, more so than cars. In this study, traffic congestion and traffic volume contributed much more to air pollution than the impact of fluctuating terrain.

  2. Effective Social Relationship Measurement and Cluster Based Routing in Mobile Opportunistic Networks †

    PubMed Central

    Zeng, Feng; Zhao, Nan; Li, Wenjia

    2017-01-01

    In mobile opportunistic networks, the social relationship among nodes has an important impact on data transmission efficiency. Motivated by the strong share ability of “circles of friends” in communication networks such as Facebook, Twitter, Wechat and so on, we take a real-life example to show that social relationships among nodes consist of explicit and implicit parts. The explicit part comes from direct contact among nodes, and the implicit part can be measured through the “circles of friends”. We present the definitions of explicit and implicit social relationships between two nodes, adaptive weights of explicit and implicit parts are given according to the contact feature of nodes, and the distributed mechanism is designed to construct the “circles of friends” of nodes, which is used for the calculation of the implicit part of social relationship between nodes. Based on effective measurement of social relationships, we propose a social-based clustering and routing scheme, in which each node selects the nodes with close social relationships to form a local cluster, and the self-control method is used to keep all cluster members always having close relationships with each other. A cluster-based message forwarding mechanism is designed for opportunistic routing, in which each node only forwards the copy of the message to nodes with the destination node as a member of the local cluster. Simulation results show that the proposed social-based clustering and routing outperforms the other classic routing algorithms. PMID:28498309

  3. Developing an eco-routing application.

    DOT National Transportation Integrated Search

    2014-01-01

    The study develops eco-routing algorithms and investigates and quantifies the system-wide impacts of implementing an eco-routing system. Two eco-routing algorithms are developed: one based on vehicle sub-populations (ECO-Subpopulation Feedback Assign...

  4. Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state

    NASA Astrophysics Data System (ADS)

    Xiong, Pei-Ying; Yu, Xu-Tao; Zhang, Zai-Chen; Zhan, Hai-Tao; Hua, Jing-Yu

    2017-08-01

    Quantum multi-hop teleportation is important in the field of quantum communication. In this study, we propose a quantum multi-hop communication model and a quantum routing protocol with multihop teleportation for wireless mesh backbone networks. Based on an analysis of quantum multi-hop protocols, a partially entangled Greenberger-Horne-Zeilinger (GHZ) state is selected as the quantum channel for the proposed protocol. Both quantum and classical wireless channels exist between two neighboring nodes along the route. With the proposed routing protocol, quantum information can be transmitted hop by hop from the source node to the destination node. Based on multi-hop teleportation based on the partially entangled GHZ state, a quantum route established with the minimum number of hops. The difference between our routing protocol and the classical one is that in the former, the processes used to find a quantum route and establish quantum channel entanglement occur simultaneously. The Bell state measurement results of each hop are piggybacked to quantum route finding information. This method reduces the total number of packets and the magnitude of air interface delay. The deduction of the establishment of a quantum channel between source and destination is also presented here. The final success probability of quantum multi-hop teleportation in wireless mesh backbone networks was simulated and analyzed. Our research shows that quantum multi-hop teleportation in wireless mesh backbone networks through a partially entangled GHZ state is feasible.

  5. Intelligent QoS routing algorithm based on improved AODV protocol for Ad Hoc networks

    NASA Astrophysics Data System (ADS)

    Huibin, Liu; Jun, Zhang

    2016-04-01

    Mobile Ad Hoc Networks were playing an increasingly important part in disaster reliefs, military battlefields and scientific explorations. However, networks routing difficulties are more and more outstanding due to inherent structures. This paper proposed an improved cuckoo searching-based Ad hoc On-Demand Distance Vector Routing protocol (CSAODV). It elaborately designs the calculation methods of optimal routing algorithm used by protocol and transmission mechanism of communication-package. In calculation of optimal routing algorithm by CS Algorithm, by increasing QoS constraint, the found optimal routing algorithm can conform to the requirements of specified bandwidth and time delay, and a certain balance can be obtained among computation spending, bandwidth and time delay. Take advantage of NS2 simulation software to take performance test on protocol in three circumstances and validate the feasibility and validity of CSAODV protocol. In results, CSAODV routing protocol is more adapt to the change of network topological structure than AODV protocol, which improves package delivery fraction of protocol effectively, reduce the transmission time delay of network, reduce the extra burden to network brought by controlling information, and improve the routing efficiency of network.

  6. Minimum expected delay-based routing protocol (MEDR) for Delay Tolerant Mobile Sensor Networks.

    PubMed

    Feng, Yong; Liu, Ming; Wang, Xiaomin; Gong, Haigang

    2010-01-01

    It is a challenging work to develop efficient routing protocols for Delay Tolerant Mobile Sensor Networks (DTMSNs), which have several unique characteristics such as sensor mobility, intermittent connectivity, energy limit, and delay tolerability. In this paper, we propose a new routing protocol called Minimum Expected Delay-based Routing (MEDR) tailored for DTMSNs. MEDR achieves a good routing performance by finding and using the connected paths formed dynamically by mobile sensors. In MEDR, each sensor maintains two important parameters: Minimum Expected Delay (MED) and its expiration time. According to MED, messages will be delivered to the sensor that has at least a connected path with their hosting nodes, and has the shortest expected delay to communication directly with the sink node. Because of the changing network topology, the path is fragile and volatile, so we use the expiration time of MED to indicate the valid time of the path, and avoid wrong transmissions. Simulation results show that the proposed MEDR achieves a higher message delivery ratio with lower transmission overhead and data delivery delay than other DTMSN routing approaches.

  7. An Efficient Framework Model for Optimizing Routing Performance in VANETs

    PubMed Central

    Zulkarnain, Zuriati Ahmad; Subramaniam, Shamala

    2018-01-01

    Routing in Vehicular Ad hoc Networks (VANET) is a bit complicated because of the nature of the high dynamic mobility. The efficiency of routing protocol is influenced by a number of factors such as network density, bandwidth constraints, traffic load, and mobility patterns resulting in frequency changes in network topology. Therefore, Quality of Service (QoS) is strongly needed to enhance the capability of the routing protocol and improve the overall network performance. In this paper, we introduce a statistical framework model to address the problem of optimizing routing configuration parameters in Vehicle-to-Vehicle (V2V) communication. Our framework solution is based on the utilization of the network resources to further reflect the current state of the network and to balance the trade-off between frequent changes in network topology and the QoS requirements. It consists of three stages: simulation network stage used to execute different urban scenarios, the function stage used as a competitive approach to aggregate the weighted cost of the factors in a single value, and optimization stage used to evaluate the communication cost and to obtain the optimal configuration based on the competitive cost. The simulation results show significant performance improvement in terms of the Packet Delivery Ratio (PDR), Normalized Routing Load (NRL), Packet loss (PL), and End-to-End Delay (E2ED). PMID:29462884

  8. An Efficient Framework Model for Optimizing Routing Performance in VANETs.

    PubMed

    Al-Kharasani, Nori M; Zulkarnain, Zuriati Ahmad; Subramaniam, Shamala; Hanapi, Zurina Mohd

    2018-02-15

    Routing in Vehicular Ad hoc Networks (VANET) is a bit complicated because of the nature of the high dynamic mobility. The efficiency of routing protocol is influenced by a number of factors such as network density, bandwidth constraints, traffic load, and mobility patterns resulting in frequency changes in network topology. Therefore, Quality of Service (QoS) is strongly needed to enhance the capability of the routing protocol and improve the overall network performance. In this paper, we introduce a statistical framework model to address the problem of optimizing routing configuration parameters in Vehicle-to-Vehicle (V2V) communication. Our framework solution is based on the utilization of the network resources to further reflect the current state of the network and to balance the trade-off between frequent changes in network topology and the QoS requirements. It consists of three stages: simulation network stage used to execute different urban scenarios, the function stage used as a competitive approach to aggregate the weighted cost of the factors in a single value, and optimization stage used to evaluate the communication cost and to obtain the optimal configuration based on the competitive cost. The simulation results show significant performance improvement in terms of the Packet Delivery Ratio (PDR), Normalized Routing Load (NRL), Packet loss (PL), and End-to-End Delay (E2ED).

  9. A radio-aware routing algorithm for reliable directed diffusion in lossy wireless sensor networks.

    PubMed

    Kim, Yong-Pyo; Jung, Euihyun; Park, Yong-Jin

    2009-01-01

    In Wireless Sensor Networks (WSNs), transmission errors occur frequently due to node failure, battery discharge, contention or interference by objects. Although Directed Diffusion has been considered as a prominent data-centric routing algorithm, it has some weaknesses due to unexpected network errors. In order to address these problems, we proposed a radio-aware routing algorithm to improve the reliability of Directed Diffusion in lossy WSNs. The proposed algorithm is aware of the network status based on the radio information from MAC and PHY layers using a cross-layer design. The cross-layer design can be used to get detailed information about current status of wireless network such as a link quality or transmission errors of communication links. The radio information indicating variant network conditions and link quality was used to determine an alternative route that provides reliable data transmission under lossy WSNs. According to the simulation result, the radio-aware reliable routing algorithm showed better performance in both grid and random topologies with various error rates. The proposed solution suggested the possibility of providing a reliable transmission method for QoS requests in lossy WSNs based on the radio-awareness. The energy and mobility issues will be addressed in the future work.

  10. A Secure Region-Based Geographic Routing Protocol (SRBGR) for Wireless Sensor Networks

    PubMed Central

    Adnan, Ali Idarous; Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad

    2017-01-01

    Due to the lack of dependency for routing initiation and an inadequate allocated sextant on responding messages, the secure geographic routing protocols for Wireless Sensor Networks (WSNs) have attracted considerable attention. However, the existing protocols are more likely to drop packets when legitimate nodes fail to respond to the routing initiation messages while attackers in the allocated sextant manage to respond. Furthermore, these protocols are designed with inefficient collection window and inadequate verification criteria which may lead to a high number of attacker selections. To prevent the failure to find an appropriate relay node and undesirable packet retransmission, this paper presents Secure Region-Based Geographic Routing Protocol (SRBGR) to increase the probability of selecting the appropriate relay node. By extending the allocated sextant and applying different message contention priorities more legitimate nodes can be admitted in the routing process. Moreover, the paper also proposed the bound collection window for a sufficient collection time and verification cost for both attacker identification and isolation. Extensive simulation experiments have been performed to evaluate the performance of the proposed protocol in comparison with other existing protocols. The results demonstrate that SRBGR increases network performance in terms of the packet delivery ratio and isolates attacks such as Sybil and Black hole. PMID:28121992

  11. A Secure Region-Based Geographic Routing Protocol (SRBGR) for Wireless Sensor Networks.

    PubMed

    Adnan, Ali Idarous; Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad

    2017-01-01

    Due to the lack of dependency for routing initiation and an inadequate allocated sextant on responding messages, the secure geographic routing protocols for Wireless Sensor Networks (WSNs) have attracted considerable attention. However, the existing protocols are more likely to drop packets when legitimate nodes fail to respond to the routing initiation messages while attackers in the allocated sextant manage to respond. Furthermore, these protocols are designed with inefficient collection window and inadequate verification criteria which may lead to a high number of attacker selections. To prevent the failure to find an appropriate relay node and undesirable packet retransmission, this paper presents Secure Region-Based Geographic Routing Protocol (SRBGR) to increase the probability of selecting the appropriate relay node. By extending the allocated sextant and applying different message contention priorities more legitimate nodes can be admitted in the routing process. Moreover, the paper also proposed the bound collection window for a sufficient collection time and verification cost for both attacker identification and isolation. Extensive simulation experiments have been performed to evaluate the performance of the proposed protocol in comparison with other existing protocols. The results demonstrate that SRBGR increases network performance in terms of the packet delivery ratio and isolates attacks such as Sybil and Black hole.

  12. Optical slotted circuit switched network: a bandwidth efficient alternative to wavelength-routed network

    NASA Astrophysics Data System (ADS)

    Li, Yan; Collier, Martin

    2007-11-01

    Wavelength-routed networks have received enormous attention due to the fact that they are relatively simple to implement and implicitly offer Quality of Service (QoS) guarantees. However, they suffer from a bandwidth inefficiency problem and require complex Routing and Wavelength Assignment (RWA). Most attempts to address the above issues exploit the joint use of WDM and TDM technologies. The resultant TDM-based wavelength-routed networks partition the wavelength bandwidth into fixed-length time slots organized as a fixed-length frame. Multiple connections can thus time-share a wavelength and the grooming of their traffic leads to better bandwidth utilization. The capability of switching in both wavelength and time domains in such networks also mitigates the RWA problem. However, TMD-based wavelength-routed networks work in synchronous mode and strict synchronization among all network nodes is required. Global synchronization for all-optical networks which operate at extremely high speed is technically challenging, and deploying an optical synchronizer for each wavelength involves considerable cost. An Optical Slotted Circuit Switching (OSCS) architecture is proposed in this paper. In an OSCS network, slotted circuits are created to better utilize the wavelength bandwidth than in classic wavelength-routed networks. The operation of the protocol is such as to avoid the need for global synchronization required by TDM-based wavelength-routed networks.

  13. Improved routing strategy based on gravitational field theory

    NASA Astrophysics Data System (ADS)

    Song, Hai-Quan; Guo, Jin

    2015-10-01

    Routing and path selection are crucial for many communication and logistic applications. We study the interaction between nodes and packets and establish a simple model for describing the attraction of the node to the packet in transmission process by using the gravitational field theory, considering the real and potential congestion of the nodes. On the basis of this model, we propose a gravitational field routing strategy that considers the attractions of all of the nodes on the travel path to the packet. In order to illustrate the efficiency of proposed routing algorithm, we introduce the order parameter to measure the throughput of the network by the critical value of phase transition from a free flow phase to a congested phase, and study the distribution of betweenness centrality and traffic jam. Simulations show that, compared with the shortest path routing strategy, the gravitational field routing strategy considerably enhances the throughput of the network and balances the traffic load, and nearly all of the nodes are used efficiently. Project supported by the Technology and Development Research Project of China Railway Corporation (Grant No. 2012X007-D) and the Key Program of Technology and Development Research Foundation of China Railway Corporation (Grant No. 2012X003-A).

  14. Receiver-Based Ad Hoc On Demand Multipath Routing Protocol for Mobile Ad Hoc Networks.

    PubMed

    Al-Nahari, Abdulaziz; Mohamad, Mohd Murtadha

    2016-01-01

    Decreasing the route rediscovery time process in reactive routing protocols is challenging in mobile ad hoc networks. Links between nodes are continuously established and broken because of the characteristics of the network. Finding multiple routes to increase the reliability is also important but requires a fast update, especially in high traffic load and high mobility where paths can be broken as well. The sender node keeps re-establishing path discovery to find new paths, which makes for long time delay. In this paper we propose an improved multipath routing protocol, called Receiver-based ad hoc on demand multipath routing protocol (RB-AOMDV), which takes advantage of the reliability of the state of the art ad hoc on demand multipath distance vector (AOMDV) protocol with less re-established discovery time. The receiver node assumes the role of discovering paths when finding data packets that have not been received after a period of time. Simulation results show the delay and delivery ratio performances are improved compared with AOMDV.

  15. Improving Operational Acceptability of Dynamic Weather Routes Through Analysis of Commonly Use Routings

    NASA Technical Reports Server (NTRS)

    Evans, Antony D.; Sridhar, Banavar; McNally, David

    2016-01-01

    The Dynamic Weather Routes (DWR) tool is a ground-based trajectory automation system that continuously and automatically analyzes active in-flight aircraft in en route airspace to find simple modifications to flight plan routes that can save significant flying time, while avoiding weather and considering traffic conflicts, airspace sector congestion, special use airspace, and FAA routing restrictions. Trials of the DWR system have shown that significant delay savings are possible. However, some DWR advised routes are also rejected by dispatchers or modified before being accepted. Similarly, of those sent by dispatchers to flight crews as proposed route change requests, many are not accepted by air traffic control, or are modified before implementation as Center route amendments. Such actions suggest that the operational acceptability of DWR advised route corrections could be improved, which may reduce workload and increase delay savings. This paper analyzes the historical usage of different flight routings, varying from simple waypoint pairs to lengthy strings of waypoints incorporating jet routes, in order to improve DWR route acceptability. An approach is developed that can be incorporated into DWR, advising routings with high historical usage and savings potential similar to that of the nominal DWR advisory. It is hypothesized that modifying a nominal DWR routing to one that is commonly used, and nearby, will result in more actual savings since common routings are generally familiar and operationally acceptable to air traffic control. The approach allows routing segments with high historical usage to be concatenated to form routes that meet all DWR constraints. The relevance of a route's historical usage to its acceptance by dispatchers and air traffic control is quantified by analyzing historical DWR data. Results indicate that while historical usage may be less of a concern to flight dispatchers accepting or rejecting DWR advised route corrections, it may be

  16. Integer Optimization Model for a Logistic System based on Location-Routing Considering Distance and Chosen Route

    NASA Astrophysics Data System (ADS)

    Mulyasari, Joni; Mawengkang, Herman; Efendi, Syahril

    2018-02-01

    In a distribution network it is important to decide the locations of facilities that impacts not only the profitability of an organization but the ability to serve customers.Generally the location-routing problem is to minimize the overall cost by simultaneously selecting a subset of candidate facilities and constructing a set of delivery routes that satisfy some restrictions. In this paper we impose restriction on the route that should be passed for delivery. We use integer programming model to describe the problem. A feasible neighbourhood search is proposed to solve the result model.

  17. Impairments Computation for Routing Purposes in a Transparent-Access Optical Network Based on Optical CDMA and WDM

    NASA Astrophysics Data System (ADS)

    Musa, Ahmed

    2016-06-01

    Optical access networks are becoming more widespread and the use of multiple services might require a transparent optical network (TON). Multiplexing and privacy could benefit from the combination of wavelength division multiplexing (WDM) and optical coding (OC) and wavelength conversion in optical switches. The routing process needs to be cognizant of different resource types and characteristics such as fiber types, fiber linear impairments such as attenuation, dispersion, etc. as well as fiber nonlinear impairments such as four-wave mixing, cross-phase modulation, etc. Other types of impairments, generated by optical nodes or photonic switches, also affect the signal quality (Q) or the optical signal to noise ratio (OSNR), which is related to the bit error rate (BER). Therefore, both link and switch impairments must be addressed and somehow incorporated into the routing algorithm. However, it is not practical to fully integrate all photonic-specific attributes in the routing process. In this study, new routing parameters and constraints are defined that reflect the distinct characteristics of photonic networking. These constraints are applied to the design phase of TON and expressed as a cost or metric form that will be used in the network routing algorithm.

  18. WEAMR-a weighted energy aware multipath reliable routing mechanism for hotline-based WSNs.

    PubMed

    Tufail, Ali; Qamar, Arslan; Khan, Adil Mehmood; Baig, Waleed Akram; Kim, Ki-Hyung

    2013-05-13

    Reliable source to sink communication is the most important factor for an efficient routing protocol especially in domains of military, healthcare and disaster recovery applications. We present weighted energy aware multipath reliable routing (WEAMR), a novel energy aware multipath routing protocol which utilizes hotline-assisted routing to meet such requirements for mission critical applications. The protocol reduces the number of average hops from source to destination and provides unmatched reliability as compared to well known reactive ad hoc protocols i.e., AODV and AOMDV. Our protocol makes efficient use of network paths based on weighted cost calculation and intelligently selects the best possible paths for data transmissions. The path cost calculation considers end to end number of hops, latency and minimum energy node value in the path. In case of path failure path recalculation is done efficiently with minimum latency and control packets overhead. Our evaluation shows that our proposal provides better end-to-end delivery with less routing overhead and higher packet delivery success ratio compared to AODV and AOMDV. The use of multipath also increases overall life time of WSN network using optimum energy available paths between sender and receiver in WDNs.

  19. A Physically Based Runoff Routing Model for Land Surface and Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hongyi; Wigmosta, Mark S.; Wu, Huan

    2013-06-13

    A new physically based runoff routing model, called the Model for Scale Adaptive River Transport (MOSART), has been developed to be applicable across local, regional, and global scales. Within each spatial unit, surface runoff is first routed across hillslopes and then discharged along with subsurface runoff into a ‘‘tributary subnetwork’’ before entering the main channel. The spatial units are thus linked via routing through the main channel network, which is constructed in a scale-consistent way across different spatial resolutions. All model parameters are physically based, and only a small subset requires calibration.MOSART has been applied to the Columbia River basinmore » at 1/ 168, 1/ 88, 1/ 48, and 1/ 28 spatial resolutions and was evaluated using naturalized or observed streamflow at a number of gauge stations. MOSART is compared to two other routing models widely used with land surface models, the River Transport Model (RTM) in the Community Land Model (CLM) and the Lohmann routing model, included as a postprocessor in the Variable Infiltration Capacity (VIC) model package, yielding consistent performance at multiple resolutions. MOSART is further evaluated using the channel velocities derived from field measurements or a hydraulic model at various locations and is shown to be capable of producing the seasonal variation and magnitude of channel velocities reasonably well at different resolutions. Moreover, the impacts of spatial resolution on model simulations are systematically examined at local and regional scales. Finally, the limitations ofMOSART and future directions for improvements are discussed.« less

  20. Integrated consensus-based frameworks for unmanned vehicle routing and targeting assignment

    NASA Astrophysics Data System (ADS)

    Barnawi, Waleed T.

    Unmanned aerial vehicles (UAVs) are increasingly deployed in complex and dynamic environments to perform multiple tasks cooperatively with other UAVs that contribute to overarching mission effectiveness. Studies by the Department of Defense (DoD) indicate future operations may include anti-access/area-denial (A2AD) environments which limit human teleoperator decision-making and control. This research addresses the problem of decentralized vehicle re-routing and task reassignments through consensus-based UAV decision-making. An Integrated Consensus-Based Framework (ICF) is formulated as a solution to the combined single task assignment problem and vehicle routing problem. The multiple assignment and vehicle routing problem is solved with the Integrated Consensus-Based Bundle Framework (ICBF). The frameworks are hierarchically decomposed into two levels. The bottom layer utilizes the renowned Dijkstra's Algorithm. The top layer addresses task assignment with two methods. The single assignment approach is called the Caravan Auction Algorithm (CarA) Algorithm. This technique extends the Consensus-Based Auction Algorithm (CBAA) to provide awareness for task completion by agents and adopt abandoned tasks. The multiple assignment approach called the Caravan Auction Bundle Algorithm (CarAB) extends the Consensus-Based Bundle Algorithm (CBBA) by providing awareness for lost resources, prioritizing remaining tasks, and adopting abandoned tasks. Research questions are investigated regarding the novelty and performance of the proposed frameworks. Conclusions regarding the research questions will be provided through hypothesis testing. Monte Carlo simulations will provide evidence to support conclusions regarding the research hypotheses for the proposed frameworks. The approach provided in this research addresses current and future military operations for unmanned aerial vehicles. However, the general framework implied by the proposed research is adaptable to any unmanned

  1. Data-centric multiobjective QoS-aware routing protocol for body sensor networks.

    PubMed

    Razzaque, Md Abdur; Hong, Choong Seon; Lee, Sungwon

    2011-01-01

    In this paper, we address Quality-of-Service (QoS)-aware routing issue for Body Sensor Networks (BSNs) in delay and reliability domains. We propose a data-centric multiobjective QoS-Aware routing protocol, called DMQoS, which facilitates the system to achieve customized QoS services for each traffic category differentiated according to the generated data types. It uses modular design architecture wherein different units operate in coordination to provide multiple QoS services. Their operation exploits geographic locations and QoS performance of the neighbor nodes and implements a localized hop-by-hop routing. Moreover, the protocol ensures (almost) a homogeneous energy dissipation rate for all routing nodes in the network through a multiobjective Lexicographic Optimization-based geographic forwarding. We have performed extensive simulations of the proposed protocol, and the results show that DMQoS has significant performance improvements over several state-of-the-art approaches.

  2. AVQS: attack route-based vulnerability quantification scheme for smart grid.

    PubMed

    Ko, Jongbin; Lim, Hyunwoo; Lee, Seokjun; Shon, Taeshik

    2014-01-01

    A smart grid is a large, consolidated electrical grid system that includes heterogeneous networks and systems. Based on the data, a smart grid system has a potential security threat in its network connectivity. To solve this problem, we develop and apply a novel scheme to measure the vulnerability in a smart grid domain. Vulnerability quantification can be the first step in security analysis because it can help prioritize the security problems. However, existing vulnerability quantification schemes are not suitable for smart grid because they do not consider network vulnerabilities. We propose a novel attack route-based vulnerability quantification scheme using a network vulnerability score and an end-to-end security score, depending on the specific smart grid network environment to calculate the vulnerability score for a particular attack route. To evaluate the proposed approach, we derive several attack scenarios from the advanced metering infrastructure domain. The experimental results of the proposed approach and the existing common vulnerability scoring system clearly show that we need to consider network connectivity for more optimized vulnerability quantification.

  3. AVQS: Attack Route-Based Vulnerability Quantification Scheme for Smart Grid

    PubMed Central

    Lim, Hyunwoo; Lee, Seokjun; Shon, Taeshik

    2014-01-01

    A smart grid is a large, consolidated electrical grid system that includes heterogeneous networks and systems. Based on the data, a smart grid system has a potential security threat in its network connectivity. To solve this problem, we develop and apply a novel scheme to measure the vulnerability in a smart grid domain. Vulnerability quantification can be the first step in security analysis because it can help prioritize the security problems. However, existing vulnerability quantification schemes are not suitable for smart grid because they do not consider network vulnerabilities. We propose a novel attack route-based vulnerability quantification scheme using a network vulnerability score and an end-to-end security score, depending on the specific smart grid network environment to calculate the vulnerability score for a particular attack route. To evaluate the proposed approach, we derive several attack scenarios from the advanced metering infrastructure domain. The experimental results of the proposed approach and the existing common vulnerability scoring system clearly show that we need to consider network connectivity for more optimized vulnerability quantification. PMID:25152923

  4. Bellman Ford algorithm - in Routing Information Protocol (RIP)

    NASA Astrophysics Data System (ADS)

    Krianto Sulaiman, Oris; Mahmud Siregar, Amir; Nasution, Khairuddin; Haramaini, Tasliyah

    2018-04-01

    In a large scale network need a routing that can handle a lot number of users, one of the solutions to cope with large scale network is by using a routing protocol, There are 2 types of routing protocol that is static and dynamic, Static routing is manually route input based on network admin, while dynamic routing is automatically route input formed based on existing network. Dynamic routing is efficient used to network extensively because of the input of route automatic formed, Routing Information Protocol (RIP) is one of dynamic routing that uses the bellman-ford algorithm where this algorithm will search for the best path that traversed the network by leveraging the value of each link, so with the bellman-ford algorithm owned by RIP can optimize existing networks.

  5. A Proposal for IoT Dynamic Routes Selection Based on Contextual Information.

    PubMed

    Araújo, Harilton da Silva; Filho, Raimir Holanda; Rodrigues, Joel J P C; Rabelo, Ricardo de A L; Sousa, Natanael de C; Filho, José C C L S; Sobral, José V V

    2018-01-26

    The Internet of Things (IoT) is based on interconnection of intelligent and addressable devices, allowing their autonomy and proactive behavior with Internet connectivity. Data dissemination in IoT usually depends on the application and requires context-aware routing protocols that must include auto-configuration features (which adapt the behavior of the network at runtime, based on context information). This paper proposes an approach for IoT route selection using fuzzy logic in order to attain the requirements of specific applications. In this case, fuzzy logic is used to translate in math terms the imprecise information expressed by a set of linguistic rules. For this purpose, four Objective Functions (OFs) are proposed for the Routing Protocol for Low Power and Loss Networks (RPL); such OFs are dynamically selected based on context information. The aforementioned OFs are generated from the fusion of the following metrics: Expected Transmission Count (ETX), Number of Hops (NH) and Energy Consumed (EC). The experiments performed through simulation, associated with the statistical data analysis, conclude that this proposal provides high reliability by successfully delivering nearly 100% of data packets, low delay for data delivery and increase in QoS. In addition, an 30% improvement is attained in the network life time when using one of proposed objective function, keeping the devices alive for longer duration.

  6. A Proposal for IoT Dynamic Routes Selection Based on Contextual Information

    PubMed Central

    Filho, Raimir Holanda; Rabelo, Ricardo de A. L.; Sousa, Natanael de C.; Filho, José C. C. L. S.

    2018-01-01

    The Internet of Things (IoT) is based on interconnection of intelligent and addressable devices, allowing their autonomy and proactive behavior with Internet connectivity. Data dissemination in IoT usually depends on the application and requires context-aware routing protocols that must include auto-configuration features (which adapt the behavior of the network at runtime, based on context information). This paper proposes an approach for IoT route selection using fuzzy logic in order to attain the requirements of specific applications. In this case, fuzzy logic is used to translate in math terms the imprecise information expressed by a set of linguistic rules. For this purpose, four Objective Functions (OFs) are proposed for the Routing Protocol for Low Power and Loss Networks (RPL); such OFs are dynamically selected based on context information. The aforementioned OFs are generated from the fusion of the following metrics: Expected Transmission Count (ETX), Number of Hops (NH) and Energy Consumed (EC). The experiments performed through simulation, associated with the statistical data analysis, conclude that this proposal provides high reliability by successfully delivering nearly 100% of data packets, low delay for data delivery and increase in QoS. In addition, an 30% improvement is attained in the network life time when using one of proposed objective function, keeping the devices alive for longer duration. PMID:29373499

  7. Real-Time QoS Routing Protocols in Wireless Multimedia Sensor Networks: Study and Analysis.

    PubMed

    Alanazi, Adwan; Elleithy, Khaled

    2015-09-02

    Many routing protocols have been proposed for wireless sensor networks. These routing protocols are almost always based on energy efficiency. However, recent advances in complementary metal-oxide semiconductor (CMOS) cameras and small microphones have led to the development of Wireless Multimedia Sensor Networks (WMSN) as a class of wireless sensor networks which pose additional challenges. The transmission of imaging and video data needs routing protocols with both energy efficiency and Quality of Service (QoS) characteristics in order to guarantee the efficient use of the sensor nodes and effective access to the collected data. Also, with integration of real time applications in Wireless Senor Networks (WSNs), the use of QoS routing protocols is not only becoming a significant topic, but is also gaining the attention of researchers. In designing an efficient QoS routing protocol, the reliability and guarantee of end-to-end delay are critical events while conserving energy. Thus, considerable research has been focused on designing energy efficient and robust QoS routing protocols. In this paper, we present a state of the art research work based on real-time QoS routing protocols for WMSNs that have already been proposed. This paper categorizes the real-time QoS routing protocols into probabilistic and deterministic protocols. In addition, both categories are classified into soft and hard real time protocols by highlighting the QoS issues including the limitations and features of each protocol. Furthermore, we have compared the performance of mobility-aware query based real-time QoS routing protocols from each category using Network Simulator-2 (NS2). This paper also focuses on the design challenges and future research directions as well as highlights the characteristics of each QoS routing protocol.

  8. Real-Time QoS Routing Protocols in Wireless Multimedia Sensor Networks: Study and Analysis

    PubMed Central

    Alanazi, Adwan; Elleithy, Khaled

    2015-01-01

    Many routing protocols have been proposed for wireless sensor networks. These routing protocols are almost always based on energy efficiency. However, recent advances in complementary metal-oxide semiconductor (CMOS) cameras and small microphones have led to the development of Wireless Multimedia Sensor Networks (WMSN) as a class of wireless sensor networks which pose additional challenges. The transmission of imaging and video data needs routing protocols with both energy efficiency and Quality of Service (QoS) characteristics in order to guarantee the efficient use of the sensor nodes and effective access to the collected data. Also, with integration of real time applications in Wireless Senor Networks (WSNs), the use of QoS routing protocols is not only becoming a significant topic, but is also gaining the attention of researchers. In designing an efficient QoS routing protocol, the reliability and guarantee of end-to-end delay are critical events while conserving energy. Thus, considerable research has been focused on designing energy efficient and robust QoS routing protocols. In this paper, we present a state of the art research work based on real-time QoS routing protocols for WMSNs that have already been proposed. This paper categorizes the real-time QoS routing protocols into probabilistic and deterministic protocols. In addition, both categories are classified into soft and hard real time protocols by highlighting the QoS issues including the limitations and features of each protocol. Furthermore, we have compared the performance of mobility-aware query based real-time QoS routing protocols from each category using Network Simulator-2 (NS2). This paper also focuses on the design challenges and future research directions as well as highlights the characteristics of each QoS routing protocol. PMID:26364639

  9. Research on the optimization of vehicle distribution routes in logistics enterprises

    NASA Astrophysics Data System (ADS)

    Fan, Zhigou; Ma, Mengkun

    2018-01-01

    With the rapid development of modern logistics, the vehicle routing problem has become one of the urgent problems in the logistics industry. The rationality of distribution route planning directly affects the efficiency and quality of logistics distribution. This paper first introduces the definition of logistics distribution and the three methods of optimizing the distribution routes, and then analyzes the current vehicle distribution route by using a representative example, finally puts forward the optimization schemes of logistics distribution route.

  10. Porous starch-based drug delivery systems processed by a microwave route.

    PubMed

    Malafaya, P B; Elvira, C; Gallardo, A; San Román, J; Reis, R L

    2001-01-01

    Abstract-A new simple processing route to produce starch-based porous materials was developed based on a microwave baking methodology. This innovative processing route was used to obtain non-loaded controls and loaded drug delivery carriers, incorporating a non-steroid anti-inflammatory agent. This bioactive agent was selected as model drug with expectations that the developed methodology might be used for other drugs and growth factors. The prepared systems were characterized by 1H and 13C NMR spectroscopy which allow the study of the interactions between the starch-based materials and the processing components, i.e, the blowing agents. The porosity of the prepared materials was estimated by measuring their apparent density and studied by comparing drug-loaded and non-loaded carriers. The behaviour of the porous structures, while immersed in aqueous media, was studied in terms of swelling and degradation, being intimately related to their porosity. Finally, in vitro drug release studies were performed showing a clear burst effect, followed by a slow controlled release of the drug over several days (up to 10 days).

  11. Receiver-Based Ad Hoc On Demand Multipath Routing Protocol for Mobile Ad Hoc Networks

    PubMed Central

    Al-Nahari, Abdulaziz; Mohamad, Mohd Murtadha

    2016-01-01

    Decreasing the route rediscovery time process in reactive routing protocols is challenging in mobile ad hoc networks. Links between nodes are continuously established and broken because of the characteristics of the network. Finding multiple routes to increase the reliability is also important but requires a fast update, especially in high traffic load and high mobility where paths can be broken as well. The sender node keeps re-establishing path discovery to find new paths, which makes for long time delay. In this paper we propose an improved multipath routing protocol, called Receiver-based ad hoc on demand multipath routing protocol (RB-AOMDV), which takes advantage of the reliability of the state of the art ad hoc on demand multipath distance vector (AOMDV) protocol with less re-established discovery time. The receiver node assumes the role of discovering paths when finding data packets that have not been received after a period of time. Simulation results show the delay and delivery ratio performances are improved compared with AOMDV. PMID:27258013

  12. Elementary students' evacuation route choice in a classroom: A questionnaire-based method

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Tang, Tie-Qiao; Huang, Hai-Jun; Song, Ziqi

    2018-02-01

    Children evacuation is a critical but challenging issue. Unfortunately, existing researches fail to effectively describe children evacuation, which is likely due to the lack of experimental and empirical data. In this paper, a questionnaire-based experiment was conducted with children aged 8-12 years to study children route choice behavior during evacuation from in a classroom with two exits. 173 effective questionnaires were collected and the corresponding data were analyzed. From the statistical results, we obtained the following findings: (1) position, congestion, group behavior, and backtracking behavior have significant effects on children route choice during evacuation; (2) age only affects children backtracking behavior, and (3) no prominent effects based on gender and guidance were observed. The above findings may help engineers design some effective evacuation strategies for children.

  13. Performance Improvement in Geographic Routing for Vehicular Ad Hoc Networks

    PubMed Central

    Kaiwartya, Omprakash; Kumar, Sushil; Lobiyal, D. K.; Abdullah, Abdul Hanan; Hassan, Ahmed Nazar

    2014-01-01

    Geographic routing is one of the most investigated themes by researchers for reliable and efficient dissemination of information in Vehicular Ad Hoc Networks (VANETs). Recently, different Geographic Distance Routing (GEDIR) protocols have been suggested in the literature. These protocols focus on reducing the forwarding region towards destination to select the Next Hop Vehicles (NHV). Most of these protocols suffer from the problem of elevated one-hop link disconnection, high end-to-end delay and low throughput even at normal vehicle speed in high vehicle density environment. This paper proposes a Geographic Distance Routing protocol based on Segment vehicle, Link quality and Degree of connectivity (SLD-GEDIR). The protocol selects a reliable NHV using the criteria segment vehicles, one-hop link quality and degree of connectivity. The proposed protocol has been simulated in NS-2 and its performance has been compared with the state-of-the-art protocols: P-GEDIR, J-GEDIR and V-GEDIR. The empirical results clearly reveal that SLD-GEDIR has lower link disconnection and end-to-end delay, and higher throughput as compared to the state-of-the-art protocols. It should be noted that the performance of the proposed protocol is preserved irrespective of vehicle density and speed. PMID:25429415

  14. Performance improvement in geographic routing for Vehicular Ad Hoc Networks.

    PubMed

    Kaiwartya, Omprakash; Kumar, Sushil; Lobiyal, D K; Abdullah, Abdul Hanan; Hassan, Ahmed Nazar

    2014-11-25

    Geographic routing is one of the most investigated themes by researchers for reliable and efficient dissemination of information in Vehicular Ad Hoc Networks (VANETs). Recently, different Geographic Distance Routing (GEDIR) protocols have been suggested in the literature. These protocols focus on reducing the forwarding region towards destination to select the Next Hop Vehicles (NHV). Most of these protocols suffer from the problem of elevated one-hop link disconnection, high end-to-end delay and low throughput even at normal vehicle speed in high vehicle density environment. This paper proposes a Geographic Distance Routing protocol based on Segment vehicle, Link quality and Degree of connectivity (SLD-GEDIR). The protocol selects a reliable NHV using the criteria segment vehicles, one-hop link quality and degree of connectivity. The proposed protocol has been simulated in NS-2 and its performance has been compared with the state-of-the-art protocols: P-GEDIR, J-GEDIR and V-GEDIR. The empirical results clearly reveal that SLD-GEDIR has lower link disconnection and end-to-end delay, and higher throughput as compared to the state-of-the-art protocols. It should be noted that the performance of the proposed protocol is preserved irrespective of vehicle density and speed.

  15. A survey on the taxonomy of cluster-based routing protocols for homogeneous wireless sensor networks.

    PubMed

    Naeimi, Soroush; Ghafghazi, Hamidreza; Chow, Chee-Onn; Ishii, Hiroshi

    2012-01-01

    The past few years have witnessed increased interest among researchers in cluster-based protocols for homogeneous networks because of their better scalability and higher energy efficiency than other routing protocols. Given the limited capabilities of sensor nodes in terms of energy resources, processing and communication range, the cluster-based protocols should be compatible with these constraints in either the setup state or steady data transmission state. With focus on these constraints, we classify routing protocols according to their objectives and methods towards addressing the shortcomings of clustering process on each stage of cluster head selection, cluster formation, data aggregation and data communication. We summarize the techniques and methods used in these categories, while the weakness and strength of each protocol is pointed out in details. Furthermore, taxonomy of the protocols in each phase is given to provide a deeper understanding of current clustering approaches. Ultimately based on the existing research, a summary of the issues and solutions of the attributes and characteristics of clustering approaches and some open research areas in cluster-based routing protocols that can be further pursued are provided.

  16. Robustness of airline route networks

    NASA Astrophysics Data System (ADS)

    Lordan, Oriol; Sallan, Jose M.; Escorihuela, Nuria; Gonzalez-Prieto, David

    2016-03-01

    Airlines shape their route network by defining their routes through supply and demand considerations, paying little attention to network performance indicators, such as network robustness. However, the collapse of an airline network can produce high financial costs for the airline and all its geographical area of influence. The aim of this study is to analyze the topology and robustness of the network route of airlines following Low Cost Carriers (LCCs) and Full Service Carriers (FSCs) business models. Results show that FSC hubs are more central than LCC bases in their route network. As a result, LCC route networks are more robust than FSC networks.

  17. Real-Time Global Flood Estimation Using Satellite-Based Precipitation and a Coupled Land Surface and Routing Model

    NASA Technical Reports Server (NTRS)

    Wu, Huan; Adler, Robert F.; Tian, Yudong; Huffman, George J.; Li, Hongyi; Wang, JianJian

    2014-01-01

    A widely used land surface model, the Variable Infiltration Capacity (VIC) model, is coupled with a newly developed hierarchical dominant river tracing-based runoff-routing model to form the Dominant river tracing-Routing Integrated with VIC Environment (DRIVE) model, which serves as the new core of the real-time Global Flood Monitoring System (GFMS). The GFMS uses real-time satellite-based precipitation to derive flood monitoring parameters for the latitude band 50 deg. N - 50 deg. S at relatively high spatial (approximately 12 km) and temporal (3 hourly) resolution. Examples of model results for recent flood events are computed using the real-time GFMS (http://flood.umd.edu). To evaluate the accuracy of the new GFMS, the DRIVE model is run retrospectively for 15 years using both research-quality and real-time satellite precipitation products. Evaluation results are slightly better for the research-quality input and significantly better for longer duration events (3 day events versus 1 day events). Basins with fewer dams tend to provide lower false alarm ratios. For events longer than three days in areas with few dams, the probability of detection is approximately 0.9 and the false alarm ratio is approximately 0.6. In general, these statistical results are better than those of the previous system. Streamflow was evaluated at 1121 river gauges across the quasi-global domain. Validation using real-time precipitation across the tropics (30 deg. S - 30 deg. N) gives positive daily Nash-Sutcliffe Coefficients for 107 out of 375 (28%) stations with a mean of 0.19 and 51% of the same gauges at monthly scale with a mean of 0.33. There were poorer results in higher latitudes, probably due to larger errors in the satellite precipitation input.

  18. Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Huan; Adler, Robert F.; Tian, Yudong

    2014-03-01

    A widely used land surface model, the Variable Infiltration Capacity (VIC) model, is coupled with a newly developed hierarchical dominant river tracing-based runoff-routing model to form the Dominant river tracing-Routing Integrated with VIC Environment (DRIVE) model, which serves as the new core of the real-time Global Flood Monitoring System (GFMS). The GFMS uses real-time satellite-based precipitation to derive flood monitoring parameters for the latitude band 50°N–50°S at relatively high spatial (~12 km) and temporal (3 hourly) resolution. Examples of model results for recent flood events are computed using the real-time GFMS (http://flood.umd.edu). To evaluate the accuracy of the new GFMS,more » the DRIVE model is run retrospectively for 15 years using both research-quality and real-time satellite precipitation products. Evaluation results are slightly better for the research-quality input and significantly better for longer duration events (3 day events versus 1 day events). Basins with fewer dams tend to provide lower false alarm ratios. For events longer than three days in areas with few dams, the probability of detection is ~0.9 and the false alarm ratio is ~0.6. In general, these statistical results are better than those of the previous system. Streamflow was evaluated at 1121 river gauges across the quasi-global domain. Validation using real-time precipitation across the tropics (30°S–30°N) gives positive daily Nash-Sutcliffe Coefficients for 107 out of 375 (28%) stations with a mean of 0.19 and 51% of the same gauges at monthly scale with a mean of 0.33. Finally, there were poorer results in higher latitudes, probably due to larger errors in the satellite precipitation input.« less

  19. Multicast Routing of Hierarchical Data

    NASA Technical Reports Server (NTRS)

    Shacham, Nachum

    1992-01-01

    The issue of multicast of broadband, real-time data in a heterogeneous environment, in which the data recipients differ in their reception abilities, is considered. Traditional multicast schemes, which are designed to deliver all the source data to all recipients, offer limited performance in such an environment, since they must either force the source to overcompress its signal or restrict the destination population to those who can receive the full signal. We present an approach for resolving this issue by combining hierarchical source coding techniques, which allow recipients to trade off reception bandwidth for signal quality, and sophisticated routing algorithms that deliver to each destination the maximum possible signal quality. The field of hierarchical coding is briefly surveyed and new multicast routing algorithms are presented. The algorithms are compared in terms of network utilization efficiency, lengths of paths, and the required mechanisms for forwarding packets on the resulting paths.

  20. Vehicle Routing Problem Using Genetic Algorithm with Multi Compartment on Vegetable Distribution

    NASA Astrophysics Data System (ADS)

    Kurnia, Hari; Gustri Wahyuni, Elyza; Cergas Pembrani, Elang; Gardini, Syifa Tri; Kurnia Aditya, Silfa

    2018-03-01

    The problem that is often gained by the industries of managing and distributing vegetables is how to distribute vegetables so that the quality of the vegetables can be maintained properly. The problems encountered include optimal route selection and little travel time or so-called TSP (Traveling Salesman Problem). These problems can be modeled using the Vehicle Routing Problem (VRP) algorithm with rating ranking, a cross order based crossing, and also order based mutation mutations on selected chromosomes. This study uses limitations using only 20 market points, 2 point warehouse (multi compartment) and 5 vehicles. It is determined that for one distribution, one vehicle can only distribute to 4 market points only from 1 particular warehouse, and also one such vehicle can only accommodate 100 kg capacity.

  1. A Novel Cross-Layer Routing Protocol Based on Network Coding for Underwater Sensor Networks

    PubMed Central

    Wang, Hao; Wang, Shilian; Bu, Renfei; Zhang, Eryang

    2017-01-01

    Underwater wireless sensor networks (UWSNs) have attracted increasing attention in recent years because of their numerous applications in ocean monitoring, resource discovery and tactical surveillance. However, the design of reliable and efficient transmission and routing protocols is a challenge due to the low acoustic propagation speed and complex channel environment in UWSNs. In this paper, we propose a novel cross-layer routing protocol based on network coding (NCRP) for UWSNs, which utilizes network coding and cross-layer design to greedily forward data packets to sink nodes efficiently. The proposed NCRP takes full advantages of multicast transmission and decode packets jointly with encoded packets received from multiple potential nodes in the entire network. The transmission power is optimized in our design to extend the life cycle of the network. Moreover, we design a real-time routing maintenance protocol to update the route when detecting inefficient relay nodes. Substantial simulations in underwater environment by Network Simulator 3 (NS-3) show that NCRP significantly improves the network performance in terms of energy consumption, end-to-end delay and packet delivery ratio compared with other routing protocols for UWSNs. PMID:28786915

  2. WEAMR — A Weighted Energy Aware Multipath Reliable Routing Mechanism for Hotline-Based WSNs

    PubMed Central

    Tufail, Ali; Qamar, Arslan; Khan, Adil Mehmood; Baig, Waleed Akram; Kim, Ki-Hyung

    2013-01-01

    Reliable source to sink communication is the most important factor for an efficient routing protocol especially in domains of military, healthcare and disaster recovery applications. We present weighted energy aware multipath reliable routing (WEAMR), a novel energy aware multipath routing protocol which utilizes hotline-assisted routing to meet such requirements for mission critical applications. The protocol reduces the number of average hops from source to destination and provides unmatched reliability as compared to well known reactive ad hoc protocols i.e., AODV and AOMDV. Our protocol makes efficient use of network paths based on weighted cost calculation and intelligently selects the best possible paths for data transmissions. The path cost calculation considers end to end number of hops, latency and minimum energy node value in the path. In case of path failure path recalculation is done efficiently with minimum latency and control packets overhead. Our evaluation shows that our proposal provides better end-to-end delivery with less routing overhead and higher packet delivery success ratio compared to AODV and AOMDV. The use of multipath also increases overall life time of WSN network using optimum energy available paths between sender and receiver in WDNs. PMID:23669714

  3. A Novel Cross-Layer Routing Protocol Based on Network Coding for Underwater Sensor Networks.

    PubMed

    Wang, Hao; Wang, Shilian; Bu, Renfei; Zhang, Eryang

    2017-08-08

    Underwater wireless sensor networks (UWSNs) have attracted increasing attention in recent years because of their numerous applications in ocean monitoring, resource discovery and tactical surveillance. However, the design of reliable and efficient transmission and routing protocols is a challenge due to the low acoustic propagation speed and complex channel environment in UWSNs. In this paper, we propose a novel cross-layer routing protocol based on network coding (NCRP) for UWSNs, which utilizes network coding and cross-layer design to greedily forward data packets to sink nodes efficiently. The proposed NCRP takes full advantages of multicast transmission and decode packets jointly with encoded packets received from multiple potential nodes in the entire network. The transmission power is optimized in our design to extend the life cycle of the network. Moreover, we design a real-time routing maintenance protocol to update the route when detecting inefficient relay nodes. Substantial simulations in underwater environment by Network Simulator 3 (NS-3) show that NCRP significantly improves the network performance in terms of energy consumption, end-to-end delay and packet delivery ratio compared with other routing protocols for UWSNs.

  4. Optimization for Service Routes of Pallet Service Center Based on the Pallet Pool Mode

    PubMed Central

    He, Shiwei; Song, Rui

    2016-01-01

    Service routes optimization (SRO) of pallet service center should meet customers' demand firstly and then, through the reasonable method of lines organization, realize the shortest path of vehicle driving. The routes optimization of pallet service center is similar to the distribution problems of vehicle routing problem (VRP) and Chinese postman problem (CPP), but it has its own characteristics. Based on the relevant research results, the conditions of determining the number of vehicles, the one way of the route, the constraints of loading, and time windows are fully considered, and a chance constrained programming model with stochastic constraints is constructed taking the shortest path of all vehicles for a delivering (recycling) operation as an objective. For the characteristics of the model, a hybrid intelligent algorithm including stochastic simulation, neural network, and immune clonal algorithm is designed to solve the model. Finally, the validity and rationality of the optimization model and algorithm are verified by the case. PMID:27528865

  5. A social activity and physical contact-based routing algorithm in mobile opportunistic networks for emergency response to sudden disasters

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoming; Lin, Yaguang; Zhang, Shanshan; Cai, Zhipeng

    2017-05-01

    Sudden disasters such as earthquake, flood and hurricane necessitate the employment of communication networks to carry out emergency response activities. Routing has a significant impact on the functionality, performance and flexibility of communication networks. In this article, the routing problem is studied considering the delivery ratio of messages, the overhead ratio of messages and the average delay of messages in mobile opportunistic networks (MONs) for enterprise-level emergency response communications in sudden disaster scenarios. Unlike the traditional routing methods for MONS, this article presents a new two-stage spreading and forwarding dynamic routing algorithm based on the proposed social activity degree and physical contact factor for mobile customers. A new modelling method for describing a dynamic evolving process of the topology structure of a MON is first proposed. Then a multi-copy spreading strategy based on the social activity degree of nodes and a single-copy forwarding strategy based on the physical contact factor between nodes are designed. Compared with the most relevant routing algorithms such as Epidemic, Prophet, Labelled-sim, Dlife-comm and Distribute-sim, the proposed routing algorithm can significantly increase the delivery ratio of messages, and decrease the overhead ratio and average delay of messages.

  6. Multi-hop routing mechanism for reliable sensor computing.

    PubMed

    Chen, Jiann-Liang; Ma, Yi-Wei; Lai, Chia-Ping; Hu, Chia-Cheng; Huang, Yueh-Min

    2009-01-01

    Current research on routing in wireless sensor computing concentrates on increasing the service lifetime, enabling scalability for large number of sensors and supporting fault tolerance for battery exhaustion and broken nodes. A sensor node is naturally exposed to various sources of unreliable communication channels and node failures. Sensor nodes have many failure modes, and each failure degrades the network performance. This work develops a novel mechanism, called Reliable Routing Mechanism (RRM), based on a hybrid cluster-based routing protocol to specify the best reliable routing path for sensor computing. Table-driven intra-cluster routing and on-demand inter-cluster routing are combined by changing the relationship between clusters for sensor computing. Applying a reliable routing mechanism in sensor computing can improve routing reliability, maintain low packet loss, minimize management overhead and save energy consumption. Simulation results indicate that the reliability of the proposed RRM mechanism is around 25% higher than that of the Dynamic Source Routing (DSR) and ad hoc On-demand Distance Vector routing (AODV) mechanisms.

  7. Certification Requirements and Teacher Quality: A Comparison of Alternative Routes to Teaching. Working Paper 64

    ERIC Educational Resources Information Center

    Sass, Tim R.

    2011-01-01

    Traditionally, states have required individuals complete a program of study in a university-based teacher preparation program in order to be licensed to teach. In recent years, however, various "alternative certification" programs have been developed and the number of teachers obtaining teaching certificates through routes other than…

  8. ROUTES: a computer program for preliminary route location.

    Treesearch

    S.E. Reutebuch

    1988-01-01

    An analytical description of the ROUTES computer program is presented. ROUTES is part of the integrated preliminary harvest- and transportation-planning software package, PLANS. The ROUTES computer program is useful where grade and sideslope limitations are important in determining routes for vehicular travel. With the program, planners can rapidly identify route...

  9. A Survey on the Taxonomy of Cluster-Based Routing Protocols for Homogeneous Wireless Sensor Networks

    PubMed Central

    Naeimi, Soroush; Ghafghazi, Hamidreza; Chow, Chee-Onn; Ishii, Hiroshi

    2012-01-01

    The past few years have witnessed increased interest among researchers in cluster-based protocols for homogeneous networks because of their better scalability and higher energy efficiency than other routing protocols. Given the limited capabilities of sensor nodes in terms of energy resources, processing and communication range, the cluster-based protocols should be compatible with these constraints in either the setup state or steady data transmission state. With focus on these constraints, we classify routing protocols according to their objectives and methods towards addressing the shortcomings of clustering process on each stage of cluster head selection, cluster formation, data aggregation and data communication. We summarize the techniques and methods used in these categories, while the weakness and strength of each protocol is pointed out in details. Furthermore, taxonomy of the protocols in each phase is given to provide a deeper understanding of current clustering approaches. Ultimately based on the existing research, a summary of the issues and solutions of the attributes and characteristics of clustering approaches and some open research areas in cluster-based routing protocols that can be further pursued are provided. PMID:22969350

  10. Stability-Aware Geographic Routing in Energy Harvesting Wireless Sensor Networks

    PubMed Central

    Hieu, Tran Dinh; Dung, Le The; Kim, Byung-Seo

    2016-01-01

    A new generation of wireless sensor networks that harvest energy from environmental sources such as solar, vibration, and thermoelectric to power sensor nodes is emerging to solve the problem of energy limitation. Based on the photo-voltaic model, this research proposes a stability-aware geographic routing for reliable data transmissions in energy-harvesting wireless sensor networks (EH-WSNs) to provide a reliable routes selection method and potentially achieve an unlimited network lifetime. Specifically, the influences of link quality, represented by the estimated packet reception rate, on network performance is investigated. Simulation results show that the proposed method outperforms an energy-harvesting-aware method in terms of energy consumption, the average number of hops, and the packet delivery ratio. PMID:27187414

  11. Routing optimization in networks based on traffic gravitational field model

    NASA Astrophysics Data System (ADS)

    Liu, Longgeng; Luo, Guangchun

    2017-04-01

    For research on the gravitational field routing mechanism on complex networks, we further analyze the gravitational effect of paths. In this study, we introduce the concept of path confidence degree to evaluate the unblocked reliability of paths that it takes the traffic state of all nodes on the path into account from the overall. On the basis of this, we propose an improved gravitational field routing protocol considering all the nodes’ gravities on the path and the path confidence degree. In order to evaluate the transmission performance of the routing strategy, an order parameter is introduced to measure the network throughput by the critical value of phase transition from a free-flow phase to a jammed phase, and the betweenness centrality is used to evaluate the transmission performance and traffic congestion of the network. Simulation results show that compared with the shortest-path routing strategy and the previous gravitational field routing strategy, the proposed algorithm improves the network throughput considerably and effectively balances the traffic load within the network, and all nodes in the network are utilized high efficiently. As long as γ ≥ α, the transmission performance can reach the maximum and remains unchanged for different α and γ, which ensures that the proposed routing protocol is high efficient and stable.

  12. A Near-Optimal Distributed QoS Constrained Routing Algorithm for Multichannel Wireless Sensor Networks

    PubMed Central

    Lin, Frank Yeong-Sung; Hsiao, Chiu-Han; Yen, Hong-Hsu; Hsieh, Yu-Jen

    2013-01-01

    One of the important applications in Wireless Sensor Networks (WSNs) is video surveillance that includes the tasks of video data processing and transmission. Processing and transmission of image and video data in WSNs has attracted a lot of attention in recent years. This is known as Wireless Visual Sensor Networks (WVSNs). WVSNs are distributed intelligent systems for collecting image or video data with unique performance, complexity, and quality of service challenges. WVSNs consist of a large number of battery-powered and resource constrained camera nodes. End-to-end delay is a very important Quality of Service (QoS) metric for video surveillance application in WVSNs. How to meet the stringent delay QoS in resource constrained WVSNs is a challenging issue that requires novel distributed and collaborative routing strategies. This paper proposes a Near-Optimal Distributed QoS Constrained (NODQC) routing algorithm to achieve an end-to-end route with lower delay and higher throughput. A Lagrangian Relaxation (LR)-based routing metric that considers the “system perspective” and “user perspective” is proposed to determine the near-optimal routing paths that satisfy end-to-end delay constraints with high system throughput. The empirical results show that the NODQC routing algorithm outperforms others in terms of higher system throughput with lower average end-to-end delay and delay jitter. In this paper, for the first time, the algorithm shows how to meet the delay QoS and at the same time how to achieve higher system throughput in stringently resource constrained WVSNs.

  13. An energy-aware routing protocol for query-based applications in wireless sensor networks.

    PubMed

    Ahvar, Ehsan; Ahvar, Shohreh; Lee, Gyu Myoung; Crespi, Noel

    2014-01-01

    Wireless sensor network (WSN) typically has energy consumption restriction. Designing energy-aware routing protocol can significantly reduce energy consumption in WSNs. Energy-aware routing protocols can be classified into two categories, energy savers and energy balancers. Energy saving protocols are used to minimize the overall energy consumed by a WSN, while energy balancing protocols attempt to efficiently distribute the consumption of energy throughout the network. In general terms, energy saving protocols are not necessarily good at balancing energy consumption and energy balancing protocols are not always good at reducing energy consumption. In this paper, we propose an energy-aware routing protocol (ERP) for query-based applications in WSNs, which offers a good trade-off between traditional energy balancing and energy saving objectives and supports a soft real time packet delivery. This is achieved by means of fuzzy sets and learning automata techniques along with zonal broadcasting to decrease total energy consumption.

  14. Using Ant Colony Optimization for Routing in VLSI Chips

    NASA Astrophysics Data System (ADS)

    Arora, Tamanna; Moses, Melanie

    2009-04-01

    Rapid advances in VLSI technology have increased the number of transistors that fit on a single chip to about two billion. A frequent problem in the design of such high performance and high density VLSI layouts is that of routing wires that connect such large numbers of components. Most wire-routing problems are computationally hard. The quality of any routing algorithm is judged by the extent to which it satisfies routing constraints and design objectives. Some of the broader design objectives include minimizing total routed wire length, and minimizing total capacitance induced in the chip, both of which serve to minimize power consumed by the chip. Ant Colony Optimization algorithms (ACO) provide a multi-agent framework for combinatorial optimization by combining memory, stochastic decision and strategies of collective and distributed learning by ant-like agents. This paper applies ACO to the NP-hard problem of finding optimal routes for interconnect routing on VLSI chips. The constraints on interconnect routing are used by ants as heuristics which guide their search process. We found that ACO algorithms were able to successfully incorporate multiple constraints and route interconnects on suite of benchmark chips. On an average, the algorithm routed with total wire length 5.5% less than other established routing algorithms.

  15. Region-Based Collision Avoidance Beaconless Geographic Routing Protocol in Wireless Sensor Networks.

    PubMed

    Lee, JeongCheol; Park, HoSung; Kang, SeokYoon; Kim, Ki-Il

    2015-06-05

    Due to the lack of dependency on beacon messages for location exchange, the beaconless geographic routing protocol has attracted considerable attention from the research community. However, existing beaconless geographic routing protocols are likely to generate duplicated data packets when multiple winners in the greedy area are selected. Furthermore, these protocols are designed for a uniform sensor field, so they cannot be directly applied to practical irregular sensor fields with partial voids. To prevent the failure of finding a forwarding node and to remove unnecessary duplication, in this paper, we propose a region-based collision avoidance beaconless geographic routing protocol to increase forwarding opportunities for randomly-deployed sensor networks. By employing different contention priorities into the mutually-communicable nodes and the rest of the nodes in the greedy area, every neighbor node in the greedy area can be used for data forwarding without any packet duplication. Moreover, simulation results are given to demonstrate the increased packet delivery ratio and shorten end-to-end delay, rather than well-referred comparative protocols.

  16. Region-Based Collision Avoidance Beaconless Geographic Routing Protocol in Wireless Sensor Networks

    PubMed Central

    Lee, JeongCheol; Park, HoSung; Kang, SeokYoon; Kim, Ki-Il

    2015-01-01

    Due to the lack of dependency on beacon messages for location exchange, the beaconless geographic routing protocol has attracted considerable attention from the research community. However, existing beaconless geographic routing protocols are likely to generate duplicated data packets when multiple winners in the greedy area are selected. Furthermore, these protocols are designed for a uniform sensor field, so they cannot be directly applied to practical irregular sensor fields with partial voids. To prevent the failure of finding a forwarding node and to remove unnecessary duplication, in this paper, we propose a region-based collision avoidance beaconless geographic routing protocol to increase forwarding opportunities for randomly-deployed sensor networks. By employing different contention priorities into the mutually-communicable nodes and the rest of the nodes in the greedy area, every neighbor node in the greedy area can be used for data forwarding without any packet duplication. Moreover, simulation results are given to demonstrate the increased packet delivery ratio and shorten end-to-end delay, rather than well-referred comparative protocols. PMID:26057037

  17. An Adaptive Clustering Approach Based on Minimum Travel Route Planning for Wireless Sensor Networks with a Mobile Sink

    PubMed Central

    Tang, Jiqiang; Yang, Wu; Zhu, Lingyun; Wang, Dong; Feng, Xin

    2017-01-01

    In recent years, Wireless Sensor Networks with a Mobile Sink (WSN-MS) have been an active research topic due to the widespread use of mobile devices. However, how to get the balance between data delivery latency and energy consumption becomes a key issue of WSN-MS. In this paper, we study the clustering approach by jointly considering the Route planning for mobile sink and Clustering Problem (RCP) for static sensor nodes. We solve the RCP problem by using the minimum travel route clustering approach, which applies the minimum travel route of the mobile sink to guide the clustering process. We formulate the RCP problem as an Integer Non-Linear Programming (INLP) problem to shorten the travel route of the mobile sink under three constraints: the communication hops constraint, the travel route constraint and the loop avoidance constraint. We then propose an Imprecise Induction Algorithm (IIA) based on the property that the solution with a small hop count is more feasible than that with a large hop count. The IIA algorithm includes three processes: initializing travel route planning with a Traveling Salesman Problem (TSP) algorithm, transforming the cluster head to a cluster member and transforming the cluster member to a cluster head. Extensive experimental results show that the IIA algorithm could automatically adjust cluster heads according to the maximum hops parameter and plan a shorter travel route for the mobile sink. Compared with the Shortest Path Tree-based Data-Gathering Algorithm (SPT-DGA), the IIA algorithm has the characteristics of shorter route length, smaller cluster head count and faster convergence rate. PMID:28445434

  18. An Adaptive Clustering Approach Based on Minimum Travel Route Planning for Wireless Sensor Networks with a Mobile Sink.

    PubMed

    Tang, Jiqiang; Yang, Wu; Zhu, Lingyun; Wang, Dong; Feng, Xin

    2017-04-26

    In recent years, Wireless Sensor Networks with a Mobile Sink (WSN-MS) have been an active research topic due to the widespread use of mobile devices. However, how to get the balance between data delivery latency and energy consumption becomes a key issue of WSN-MS. In this paper, we study the clustering approach by jointly considering the Route planning for mobile sink and Clustering Problem (RCP) for static sensor nodes. We solve the RCP problem by using the minimum travel route clustering approach, which applies the minimum travel route of the mobile sink to guide the clustering process. We formulate the RCP problem as an Integer Non-Linear Programming (INLP) problem to shorten the travel route of the mobile sink under three constraints: the communication hops constraint, the travel route constraint and the loop avoidance constraint. We then propose an Imprecise Induction Algorithm (IIA) based on the property that the solution with a small hop count is more feasible than that with a large hop count. The IIA algorithm includes three processes: initializing travel route planning with a Traveling Salesman Problem (TSP) algorithm, transforming the cluster head to a cluster member and transforming the cluster member to a cluster head. Extensive experimental results show that the IIA algorithm could automatically adjust cluster heads according to the maximum hops parameter and plan a shorter travel route for the mobile sink. Compared with the Shortest Path Tree-based Data-Gathering Algorithm (SPT-DGA), the IIA algorithm has the characteristics of shorter route length, smaller cluster head count and faster convergence rate.

  19. An Energy-Aware Routing Protocol for Query-Based Applications in Wireless Sensor Networks

    PubMed Central

    Crespi, Noel

    2014-01-01

    Wireless sensor network (WSN) typically has energy consumption restriction. Designing energy-aware routing protocol can significantly reduce energy consumption in WSNs. Energy-aware routing protocols can be classified into two categories, energy savers and energy balancers. Energy saving protocols are used to minimize the overall energy consumed by a WSN, while energy balancing protocols attempt to efficiently distribute the consumption of energy throughout the network. In general terms, energy saving protocols are not necessarily good at balancing energy consumption and energy balancing protocols are not always good at reducing energy consumption. In this paper, we propose an energy-aware routing protocol (ERP) for query-based applications in WSNs, which offers a good trade-off between traditional energy balancing and energy saving objectives and supports a soft real time packet delivery. This is achieved by means of fuzzy sets and learning automata techniques along with zonal broadcasting to decrease total energy consumption. PMID:24696640

  20. Automatic Extraction of Destinations, Origins and Route Parts from Human Generated Route Directions

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Mitra, Prasenjit; Klippel, Alexander; Maceachren, Alan

    Researchers from the cognitive and spatial sciences are studying text descriptions of movement patterns in order to examine how humans communicate and understand spatial information. In particular, route directions offer a rich source of information on how cognitive systems conceptualize movement patterns by segmenting them into meaningful parts. Route directions are composed using a plethora of cognitive spatial organization principles: changing levels of granularity, hierarchical organization, incorporation of cognitively and perceptually salient elements, and so forth. Identifying such information in text documents automatically is crucial for enabling machine-understanding of human spatial language. The benefits are: a) creating opportunities for large-scale studies of human linguistic behavior; b) extracting and georeferencing salient entities (landmarks) that are used by human route direction providers; c) developing methods to translate route directions to sketches and maps; and d) enabling queries on large corpora of crawled/analyzed movement data. In this paper, we introduce our approach and implementations that bring us closer to the goal of automatically processing linguistic route directions. We report on research directed at one part of the larger problem, that is, extracting the three most critical parts of route directions and movement patterns in general: origin, destination, and route parts. We use machine-learning based algorithms to extract these parts of routes, including, for example, destination names and types. We prove the effectiveness of our approach in several experiments using hand-tagged corpora.

  1. A Survey on Underwater Acoustic Sensor Network Routing Protocols.

    PubMed

    Li, Ning; Martínez, José-Fernán; Meneses Chaus, Juan Manuel; Eckert, Martina

    2016-03-22

    Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research.

  2. A Survey on Underwater Acoustic Sensor Network Routing Protocols

    PubMed Central

    Li, Ning; Martínez, José-Fernán; Meneses Chaus, Juan Manuel; Eckert, Martina

    2016-01-01

    Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research. PMID:27011193

  3. Population resizing on fitness improvement genetic algorithm to optimize promotion visit route based on android and google maps API

    NASA Astrophysics Data System (ADS)

    Listyorini, Tri; Muzid, Syafiul

    2017-06-01

    The promotion team of Muria Kudus University (UMK) has done annual promotion visit to several senior high schools in Indonesia. The visits were done to numbers of schools in Kudus, Jepara, Demak, Rembang and Purwodadi. To simplify the visit, each visit round is limited to 15 (fifteen) schools. However, the team frequently faces some obstacles during the visit, particularly in determining the route that they should take toward the targeted school. It is due to the long distance or the difficult route to reach the targeted school that leads to elongated travel duration and inefficient fuel cost. To solve these problems, the development of a certain application using heuristic genetic algorithm method based on the dynamic of population size or Population Resizing on Fitness lmprovement Genetic Algorithm (PRoFIGA), was done. This android-based application was developed to make the visit easier and to determine a shorter route for the team, hence, the visiting period will be effective and efficient. The result of this research was an android-based application to determine the shortest route by combining heuristic method and Google Maps Application Programming lnterface (API) that display the route options for the team.

  4. Towards a Hybrid Energy Efficient Multi-Tree-Based Optimized Routing Protocol for Wireless Networks

    PubMed Central

    Mitton, Nathalie; Razafindralambo, Tahiry; Simplot-Ryl, David; Stojmenovic, Ivan

    2012-01-01

    This paper considers the problem of designing power efficient routing with guaranteed delivery for sensor networks with unknown geographic locations. We propose HECTOR, a hybrid energy efficient tree-based optimized routing protocol, based on two sets of virtual coordinates. One set is based on rooted tree coordinates, and the other is based on hop distances toward several landmarks. In HECTOR, the node currently holding the packet forwards it to its neighbor that optimizes ratio of power cost over distance progress with landmark coordinates, among nodes that reduce landmark coordinates and do not increase distance in tree coordinates. If such a node does not exist, then forwarding is made to the neighbor that reduces tree-based distance only and optimizes power cost over tree distance progress ratio. We theoretically prove the packet delivery and propose an extension based on the use of multiple trees. Our simulations show the superiority of our algorithm over existing alternatives while guaranteeing delivery, and only up to 30% additional power compared to centralized shortest weighted path algorithm. PMID:23443398

  5. Towards a hybrid energy efficient multi-tree-based optimized routing protocol for wireless networks.

    PubMed

    Mitton, Nathalie; Razafindralambo, Tahiry; Simplot-Ryl, David; Stojmenovic, Ivan

    2012-12-13

    This paper considers the problem of designing power efficient routing with guaranteed delivery for sensor networks with unknown geographic locations. We propose HECTOR, a hybrid energy efficient tree-based optimized routing protocol, based on two sets of virtual coordinates. One set is based on rooted tree coordinates, and the other is based on hop distances toward several landmarks. In HECTOR, the node currently holding the packet forwards it to its neighbor that optimizes ratio of power cost over distance progress with landmark coordinates, among nodes that reduce landmark coordinates and do not increase distance in tree coordinates. If such a node does not exist, then forwarding is made to the neighbor that reduces tree-based distance only and optimizes power cost over tree distance progress ratio. We theoretically prove the packet delivery and propose an extension based on the use of multiple trees. Our simulations show the superiority of our algorithm over existing alternatives while guaranteeing delivery, and only up to 30% additional power compared to centralized shortest weighted path algorithm.

  6. Association Rule Analysis for Tour Route Recommendation and Application to Wctsnop

    NASA Astrophysics Data System (ADS)

    Fang, H.; Chen, C.; Lin, J.; Liu, X.; Fang, D.

    2017-09-01

    The increasing E-tourism systems provide intelligent tour recommendation for tourists. In this sense, recommender system can make personalized suggestions and provide satisfied information associated with their tour cycle. Data mining is a proper tool that extracting potential information from large database for making strategic decisions. In the study, association rule analysis based on FP-growth algorithm is applied to find the association relationship among scenic spots in different cities as tour route recommendation. In order to figure out valuable rules, Kulczynski interestingness measure is adopted and imbalance ratio is computed. The proposed scheme was evaluated on Wangluzhe cultural tourism service network operation platform (WCTSNOP), where it could verify that it is able to quick recommend tour route and to rapidly enhance the recommendation quality.

  7. An Energy Centric Cluster-Based Routing Protocol for Wireless Sensor Networks.

    PubMed

    Hosen, A S M Sanwar; Cho, Gi Hwan

    2018-05-11

    Clustering is an effective way to prolong the lifetime of a wireless sensor network (WSN). The common approach is to elect cluster heads to take routing and controlling duty, and to periodically rotate each cluster head's role to distribute energy consumption among nodes. However, a significant amount of energy dissipates due to control messages overhead, which results in a shorter network lifetime. This paper proposes an energy-centric cluster-based routing mechanism in WSNs. To begin with, cluster heads are elected based on the higher ranks of the nodes. The rank is defined by residual energy and average distance from the member nodes. With the role of data aggregation and data forwarding, a cluster head acts as a caretaker for cluster-head election in the next round, where the ranks' information are piggybacked along with the local data sending during intra-cluster communication. This reduces the number of control messages for the cluster-head election as well as the cluster formation in detail. Simulation results show that our proposed protocol saves the energy consumption among nodes and achieves a significant improvement in the network lifetime.

  8. An Energy Centric Cluster-Based Routing Protocol for Wireless Sensor Networks

    PubMed Central

    Hosen, A. S. M. Sanwar; Cho, Gi Hwan

    2018-01-01

    Clustering is an effective way to prolong the lifetime of a wireless sensor network (WSN). The common approach is to elect cluster heads to take routing and controlling duty, and to periodically rotate each cluster head’s role to distribute energy consumption among nodes. However, a significant amount of energy dissipates due to control messages overhead, which results in a shorter network lifetime. This paper proposes an energy-centric cluster-based routing mechanism in WSNs. To begin with, cluster heads are elected based on the higher ranks of the nodes. The rank is defined by residual energy and average distance from the member nodes. With the role of data aggregation and data forwarding, a cluster head acts as a caretaker for cluster-head election in the next round, where the ranks’ information are piggybacked along with the local data sending during intra-cluster communication. This reduces the number of control messages for the cluster-head election as well as the cluster formation in detail. Simulation results show that our proposed protocol saves the energy consumption among nodes and achieves a significant improvement in the network lifetime. PMID:29751663

  9. Route Generation for a Synthetic Character (BOT) Using a Partial or Incomplete Knowledge Route Generation Algorithm in UT2004 Virtual Environment

    NASA Technical Reports Server (NTRS)

    Hanold, Gregg T.; Hanold, David T.

    2010-01-01

    This paper presents a new Route Generation Algorithm that accurately and realistically represents human route planning and navigation for Military Operations in Urban Terrain (MOUT). The accuracy of this algorithm in representing human behavior is measured using the Unreal Tournament(Trademark) 2004 (UT2004) Game Engine to provide the simulation environment in which the differences between the routes taken by the human player and those of a Synthetic Agent (BOT) executing the A-star algorithm and the new Route Generation Algorithm can be compared. The new Route Generation Algorithm computes the BOT route based on partial or incomplete knowledge received from the UT2004 game engine during game play. To allow BOT navigation to occur continuously throughout the game play with incomplete knowledge of the terrain, a spatial network model of the UT2004 MOUT terrain is captured and stored in an Oracle 11 9 Spatial Data Object (SOO). The SOO allows a partial data query to be executed to generate continuous route updates based on the terrain knowledge, and stored dynamic BOT, Player and environmental parameters returned by the query. The partial data query permits the dynamic adjustment of the planned routes by the Route Generation Algorithm based on the current state of the environment during a simulation. The dynamic nature of this algorithm more accurately allows the BOT to mimic the routes taken by the human executing under the same conditions thereby improving the realism of the BOT in a MOUT simulation environment.

  10. A General Self-Organized Tree-Based Energy-Balance Routing Protocol for Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Han, Zhao; Wu, Jie; Zhang, Jie; Liu, Liefeng; Tian, Kaiyun

    2014-04-01

    Wireless sensor network (WSN) is a system composed of a large number of low-cost micro-sensors. This network is used to collect and send various kinds of messages to a base station (BS). WSN consists of low-cost nodes with limited battery power, and the battery replacement is not easy for WSN with thousands of physically embedded nodes, which means energy efficient routing protocol should be employed to offer a long-life work time. To achieve the aim, we need not only to minimize total energy consumption but also to balance WSN load. Researchers have proposed many protocols such as LEACH, HEED, PEGASIS, TBC and PEDAP. In this paper, we propose a General Self-Organized Tree-Based Energy-Balance routing protocol (GSTEB) which builds a routing tree using a process where, for each round, BS assigns a root node and broadcasts this selection to all sensor nodes. Subsequently, each node selects its parent by considering only itself and its neighbors' information, thus making GSTEB a dynamic protocol. Simulation results show that GSTEB has a better performance than other protocols in balancing energy consumption, thus prolonging the lifetime of WSN.

  11. A memetic optimization algorithm for multi-constrained multicast routing in ad hoc networks

    PubMed Central

    Hammad, Karim; El Bakly, Ahmed M.

    2018-01-01

    A mobile ad hoc network is a conventional self-configuring network where the routing optimization problem—subject to various Quality-of-Service (QoS) constraints—represents a major challenge. Unlike previously proposed solutions, in this paper, we propose a memetic algorithm (MA) employing an adaptive mutation parameter, to solve the multicast routing problem with higher search ability and computational efficiency. The proposed algorithm utilizes an updated scheme, based on statistical analysis, to estimate the best values for all MA parameters and enhance MA performance. The numerical results show that the proposed MA improved the delay and jitter of the network, while reducing computational complexity as compared to existing algorithms. PMID:29509760

  12. A memetic optimization algorithm for multi-constrained multicast routing in ad hoc networks.

    PubMed

    Ramadan, Rahab M; Gasser, Safa M; El-Mahallawy, Mohamed S; Hammad, Karim; El Bakly, Ahmed M

    2018-01-01

    A mobile ad hoc network is a conventional self-configuring network where the routing optimization problem-subject to various Quality-of-Service (QoS) constraints-represents a major challenge. Unlike previously proposed solutions, in this paper, we propose a memetic algorithm (MA) employing an adaptive mutation parameter, to solve the multicast routing problem with higher search ability and computational efficiency. The proposed algorithm utilizes an updated scheme, based on statistical analysis, to estimate the best values for all MA parameters and enhance MA performance. The numerical results show that the proposed MA improved the delay and jitter of the network, while reducing computational complexity as compared to existing algorithms.

  13. Parallel algorithms for placement and routing in VLSI design. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Brouwer, Randall Jay

    1991-01-01

    The computational requirements for high quality synthesis, analysis, and verification of very large scale integration (VLSI) designs have rapidly increased with the fast growing complexity of these designs. Research in the past has focused on the development of heuristic algorithms, special purpose hardware accelerators, or parallel algorithms for the numerous design tasks to decrease the time required for solution. Two new parallel algorithms are proposed for two VLSI synthesis tasks, standard cell placement and global routing. The first algorithm, a parallel algorithm for global routing, uses hierarchical techniques to decompose the routing problem into independent routing subproblems that are solved in parallel. Results are then presented which compare the routing quality to the results of other published global routers and which evaluate the speedups attained. The second algorithm, a parallel algorithm for cell placement and global routing, hierarchically integrates a quadrisection placement algorithm, a bisection placement algorithm, and the previous global routing algorithm. Unique partitioning techniques are used to decompose the various stages of the algorithm into independent tasks which can be evaluated in parallel. Finally, results are presented which evaluate the various algorithm alternatives and compare the algorithm performance to other placement programs. Measurements are presented on the parallel speedups available.

  14. On using multiple routing metrics with destination sequenced distance vector protocol for MultiHop wireless ad hoc networks

    NASA Astrophysics Data System (ADS)

    Mehic, M.; Fazio, P.; Voznak, M.; Partila, P.; Komosny, D.; Tovarek, J.; Chmelikova, Z.

    2016-05-01

    A mobile ad hoc network is a collection of mobile nodes which communicate without a fixed backbone or centralized infrastructure. Due to the frequent mobility of nodes, routes connecting two distant nodes may change. Therefore, it is not possible to establish a priori fixed paths for message delivery through the network. Because of its importance, routing is the most studied problem in mobile ad hoc networks. In addition, if the Quality of Service (QoS) is demanded, one must guarantee the QoS not only over a single hop but over an entire wireless multi-hop path which may not be a trivial task. In turns, this requires the propagation of QoS information within the network. The key to the support of QoS reporting is QoS routing, which provides path QoS information at each source. To support QoS for real-time traffic one needs to know not only minimum delay on the path to the destination but also the bandwidth available on it. Therefore, throughput, end-to-end delay, and routing overhead are traditional performance metrics used to evaluate the performance of routing protocol. To obtain additional information about the link, most of quality-link metrics are based on calculation of the lost probabilities of links by broadcasting probe packets. In this paper, we address the problem of including multiple routing metrics in existing routing packets that are broadcasted through the network. We evaluate the efficiency of such approach with modified version of DSDV routing protocols in ns-3 simulator.

  15. A novel power efficient location-based cooperative routing with transmission power-upper-limit for wireless sensor networks.

    PubMed

    Shi, Juanfei; Calveras, Anna; Cheng, Ye; Liu, Kai

    2013-05-15

    The extensive usage of wireless sensor networks (WSNs) has led to the development of many power- and energy-efficient routing protocols. Cooperative routing in WSNs can improve performance in these types of networks. In this paper we discuss the existing proposals and we propose a routing algorithm for wireless sensor networks called Power Efficient Location-based Cooperative Routing with Transmission Power-upper-limit (PELCR-TP). The algorithm is based on the principle of minimum link power and aims to take advantage of nodes cooperation to make the link work well in WSNs with a low transmission power. In the proposed scheme, with a determined transmission power upper limit, nodes find the most appropriate next nodes and single-relay nodes with the proposed algorithm. Moreover, this proposal subtly avoids non-working nodes, because we add a Bad nodes Avoidance Strategy (BAS). Simulation results show that the proposed algorithm with BAS can significantly improve the performance in reducing the overall link power, enhancing the transmission success rate and decreasing the retransmission rate.

  16. A Novel Power Efficient Location-Based Cooperative Routing with Transmission Power-Upper-Limit for Wireless Sensor Networks

    PubMed Central

    Shi, Juanfei; Calveras, Anna; Cheng, Ye; Liu, Kai

    2013-01-01

    The extensive usage of wireless sensor networks (WSNs) has led to the development of many power- and energy-efficient routing protocols. Cooperative routing in WSNs can improve performance in these types of networks. In this paper we discuss the existing proposals and we propose a routing algorithm for wireless sensor networks called Power Efficient Location-based Cooperative Routing with Transmission Power-upper-limit (PELCR-TP). The algorithm is based on the principle of minimum link power and aims to take advantage of nodes cooperation to make the link work well in WSNs with a low transmission power. In the proposed scheme, with a determined transmission power upper limit, nodes find the most appropriate next nodes and single-relay nodes with the proposed algorithm. Moreover, this proposal subtly avoids non-working nodes, because we add a Bad nodes Avoidance Strategy (BAS). Simulation results show that the proposed algorithm with BAS can significantly improve the performance in reducing the overall link power, enhancing the transmission success rate and decreasing the retransmission rate. PMID:23676625

  17. A Study of Driver's Route Choice Behavior Based on Evolutionary Game Theory

    PubMed Central

    Jiang, Xiaowei; Ji, Yanjie; Deng, Wei

    2014-01-01

    This paper proposes a route choice analytic method that embeds cumulative prospect theory in evolutionary game theory to analyze how the drivers adjust their route choice behaviors under the influence of the traffic information. A simulated network with two alternative routes and one variable message sign is built to illustrate the analytic method. We assume that the drivers in the transportation system are bounded rational, and the traffic information they receive is incomplete. An evolutionary game model is constructed to describe the evolutionary process of the drivers' route choice decision-making behaviors. Here we conclude that the traffic information plays an important role in the route choice behavior. The driver's route decision-making process develops towards different evolutionary stable states in accordance with different transportation situations. The analysis results also demonstrate that employing cumulative prospect theory and evolutionary game theory to study the driver's route choice behavior is effective. This analytic method provides an academic support and suggestion for the traffic guidance system, and may optimize the travel efficiency to a certain extent. PMID:25610455

  18. A study of driver's route choice behavior based on evolutionary game theory.

    PubMed

    Jiang, Xiaowei; Ji, Yanjie; Du, Muqing; Deng, Wei

    2014-01-01

    This paper proposes a route choice analytic method that embeds cumulative prospect theory in evolutionary game theory to analyze how the drivers adjust their route choice behaviors under the influence of the traffic information. A simulated network with two alternative routes and one variable message sign is built to illustrate the analytic method. We assume that the drivers in the transportation system are bounded rational, and the traffic information they receive is incomplete. An evolutionary game model is constructed to describe the evolutionary process of the drivers' route choice decision-making behaviors. Here we conclude that the traffic information plays an important role in the route choice behavior. The driver's route decision-making process develops towards different evolutionary stable states in accordance with different transportation situations. The analysis results also demonstrate that employing cumulative prospect theory and evolutionary game theory to study the driver's route choice behavior is effective. This analytic method provides an academic support and suggestion for the traffic guidance system, and may optimize the travel efficiency to a certain extent.

  19. Variable neighborhood search to solve the vehicle routing problem for hazardous materials transportation.

    PubMed

    Bula, Gustavo Alfredo; Prodhon, Caroline; Gonzalez, Fabio Augusto; Afsar, H Murat; Velasco, Nubia

    2017-02-15

    This work focuses on the Heterogeneous Fleet Vehicle Routing problem (HFVRP) in the context of hazardous materials (HazMat) transportation. The objective is to determine a set of routes that minimizes the total expected routing risk. This is a nonlinear function, and it depends on the vehicle load and the population exposed when an incident occurs. Thus, a piecewise linear approximation is used to estimate it. For solving the problem, a variant of the Variable Neighborhood Search (VNS) algorithm is employed. To improve its performance, a post-optimization procedure is implemented via a Set Partitioning (SP) problem. The SP is solved on a pool of routes obtained from executions of the local search procedure embedded on the VNS. The algorithm is tested on two sets of HFVRP instances based on literature with up to 100 nodes, these instances are modified to include vehicle and arc risk parameters. The results are competitive in terms of computational efficiency and quality attested by a comparison with Mixed Integer Linear Programming (MILP) previously proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Central East Pacific Flight Routing

    NASA Technical Reports Server (NTRS)

    Grabbe, Shon; Sridhar, Banavar; Kopardekar, Parimal; Cheng, Nadia

    2006-01-01

    With the introduction of the Federal Aviation Administration s Advanced Technology and Oceanic Procedures system at the Oakland Oceanic Center, a level of automation now exists in the oceanic environment to potentially begin accommodating increased user preferred routing requests. This paper presents the results of an initial feasibility assessment which examines the potential benefits of transitioning from the fixed Central East Pacific routes to user preferred routes. As a surrogate for the actual user-provided routing requests, a minimum-travel-time, wind-optimal dynamic programming algorithm was developed and utilized in this paper. After first describing the characteristics (e.g., origin airport, destination airport, vertical distribution and temporal distribution) of the westbound flights utilizing the Central East Pacific routes on Dec. 14-16 and 19-20, the results of both a flight-plan-based simulation and a wind-optimal-based simulation are presented. Whereas the lateral and longitudinal distribution of the aircraft trajectories in these two simulations varied dramatically, the number of simulated first-loss-of-separation events remained relatively constant. One area of concern that was uncovered in this initial analysis was a potential workload issue associated with the redistribution of traffic in the oceanic sectors due to thc prevailing wind patterns.

  1. Real-time multiple-objective path search for in-vehicle route guidance systems

    DOT National Transportation Integrated Search

    1997-01-01

    The application of multiple-objective route choice for in-vehicle route guidance systems is discussed. A bi-objective path search algorithm is presented and its use demonstrated. A concept of trip quality is introduced that is composed of two objecti...

  2. Strategic Air Traffic Planning Using Eulerian Route Based Modeling and Optimization

    NASA Astrophysics Data System (ADS)

    Bombelli, Alessandro

    Due to a soaring air travel growth in the last decades, air traffic management has become increasingly challenging. As a consequence, planning tools are being devised to help human decision-makers achieve a better management of air traffic. Planning tools are divided into two categories, strategic and tactical. Strategic planning generally addresses a larger planning domain and is performed days to hours in advance. Tactical planning is more localized and is performed hours to minutes in advance. An aggregate route model for strategic air traffic flow management is presented. It is an Eulerian model, describing the flow between cells of unidirectional point-to-point routes. Aggregate routes are created from flight trajectory data based on similarity measures. Spatial similarity is determined using the Frechet distance. The aggregate routes approximate actual well-traveled traffic patterns. By specifying the model resolution, an appropriate balance between model accuracy and model dimension can be achieved. For a particular planning horizon, during which weather is expected to restrict the flow, a procedure for designing airborne reroutes and augmenting the traffic flow model is developed. The dynamics of the traffic flow on the resulting network take the form of a discrete-time, linear time-invariant system. The traffic flow controls are ground holding, pre-departure rerouting and airborne rerouting. Strategic planning--determining how the controls should be used to modify the future traffic flow when local capacity violations are anticipated--is posed as an integer programming problem of minimizing a weighted sum of flight delays subject to control and capacity constraints. Several tests indicate the effectiveness of the modeling and strategic planning approach. In the final, most challenging, test, strategic planning is demonstrated for the six western-most Centers of the 22-Center national airspace. The planning time horizon is four hours long, and there is

  3. A Secure Cluster-Based Multipath Routing Protocol for WMSNs

    PubMed Central

    Almalkawi, Islam T.; Zapata, Manel Guerrero; Al-Karaki, Jamal N.

    2011-01-01

    The new characteristics of Wireless Multimedia Sensor Network (WMSN) and its design issues brought by handling different traffic classes of multimedia content (video streams, audio, and still images) as well as scalar data over the network, make the proposed routing protocols for typical WSNs not directly applicable for WMSNs. Handling real-time multimedia data requires both energy efficiency and QoS assurance in order to ensure efficient utility of different capabilities of sensor resources and correct delivery of collected information. In this paper, we propose a Secure Cluster-based Multipath Routing protocol for WMSNs, SCMR, to satisfy the requirements of delivering different data types and support high data rate multimedia traffic. SCMR exploits the hierarchical structure of powerful cluster heads and the optimized multiple paths to support timeliness and reliable high data rate multimedia communication with minimum energy dissipation. Also, we present a light-weight distributed security mechanism of key management in order to secure the communication between sensor nodes and protect the network against different types of attacks. Performance evaluation from simulation results demonstrates a significant performance improvement comparing with existing protocols (which do not even provide any kind of security feature) in terms of average end-to-end delay, network throughput, packet delivery ratio, and energy consumption. PMID:22163854

  4. A secure cluster-based multipath routing protocol for WMSNs.

    PubMed

    Almalkawi, Islam T; Zapata, Manel Guerrero; Al-Karaki, Jamal N

    2011-01-01

    The new characteristics of Wireless Multimedia Sensor Network (WMSN) and its design issues brought by handling different traffic classes of multimedia content (video streams, audio, and still images) as well as scalar data over the network, make the proposed routing protocols for typical WSNs not directly applicable for WMSNs. Handling real-time multimedia data requires both energy efficiency and QoS assurance in order to ensure efficient utility of different capabilities of sensor resources and correct delivery of collected information. In this paper, we propose a Secure Cluster-based Multipath Routing protocol for WMSNs, SCMR, to satisfy the requirements of delivering different data types and support high data rate multimedia traffic. SCMR exploits the hierarchical structure of powerful cluster heads and the optimized multiple paths to support timeliness and reliable high data rate multimedia communication with minimum energy dissipation. Also, we present a light-weight distributed security mechanism of key management in order to secure the communication between sensor nodes and protect the network against different types of attacks. Performance evaluation from simulation results demonstrates a significant performance improvement comparing with existing protocols (which do not even provide any kind of security feature) in terms of average end-to-end delay, network throughput, packet delivery ratio, and energy consumption.

  5. Spatial, temporal, and hybrid decompositions for large-scale vehicle routing with time windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bent, Russell W

    This paper studies the use of decomposition techniques to quickly find high-quality solutions to large-scale vehicle routing problems with time windows. It considers an adaptive decomposition scheme which iteratively decouples a routing problem based on the current solution. Earlier work considered vehicle-based decompositions that partitions the vehicles across the subproblems. The subproblems can then be optimized independently and merged easily. This paper argues that vehicle-based decompositions, although very effective on various problem classes also have limitations. In particular, they do not accommodate temporal decompositions and may produce spatial decompositions that are not focused enough. This paper then proposes customer-based decompositionsmore » which generalize vehicle-based decouplings and allows for focused spatial and temporal decompositions. Experimental results on class R2 of the extended Solomon benchmarks demonstrates the benefits of the customer-based adaptive decomposition scheme and its spatial, temporal, and hybrid instantiations. In particular, they show that customer-based decompositions bring significant benefits over large neighborhood search in contrast to vehicle-based decompositions.« less

  6. Sigma Routing Metric for RPL Protocol.

    PubMed

    Sanmartin, Paul; Rojas, Aldo; Fernandez, Luis; Avila, Karen; Jabba, Daladier; Valle, Sebastian

    2018-04-21

    This paper presents the adaptation of a specific metric for the RPL protocol in the objective function MRHOF. Among the functions standardized by IETF, we find OF0, which is based on the minimum hop count, as well as MRHOF, which is based on the Expected Transmission Count (ETX). However, when the network becomes denser or the number of nodes increases, both OF0 and MRHOF introduce long hops, which can generate a bottleneck that restricts the network. The adaptation is proposed to optimize both OFs through a new routing metric. To solve the above problem, the metrics of the minimum number of hops and the ETX are combined by designing a new routing metric called SIGMA-ETX, in which the best route is calculated using the standard deviation of ETX values between each node, as opposed to working with the ETX average along the route. This method ensures a better routing performance in dense sensor networks. The simulations are done through the Cooja simulator, based on the Contiki operating system. The simulations showed that the proposed optimization outperforms at a high margin in both OF0 and MRHOF, in terms of network latency, packet delivery ratio, lifetime, and power consumption.

  7. Sigma Routing Metric for RPL Protocol

    PubMed Central

    Rojas, Aldo; Fernandez, Luis

    2018-01-01

    This paper presents the adaptation of a specific metric for the RPL protocol in the objective function MRHOF. Among the functions standardized by IETF, we find OF0, which is based on the minimum hop count, as well as MRHOF, which is based on the Expected Transmission Count (ETX). However, when the network becomes denser or the number of nodes increases, both OF0 and MRHOF introduce long hops, which can generate a bottleneck that restricts the network. The adaptation is proposed to optimize both OFs through a new routing metric. To solve the above problem, the metrics of the minimum number of hops and the ETX are combined by designing a new routing metric called SIGMA-ETX, in which the best route is calculated using the standard deviation of ETX values between each node, as opposed to working with the ETX average along the route. This method ensures a better routing performance in dense sensor networks. The simulations are done through the Cooja simulator, based on the Contiki operating system. The simulations showed that the proposed optimization outperforms at a high margin in both OF0 and MRHOF, in terms of network latency, packet delivery ratio, lifetime, and power consumption. PMID:29690524

  8. Self-Organized Link State Aware Routing for Multiple Mobile Agents in Wireless Network

    NASA Astrophysics Data System (ADS)

    Oda, Akihiro; Nishi, Hiroaki

    Recently, the importance of data sharing structures in autonomous distributed networks has been increasing. A wireless sensor network is used for managing distributed data. This type of distributed network requires effective information exchanging methods for data sharing. To reduce the traffic of broadcasted messages, reduction of the amount of redundant information is indispensable. In order to reduce packet loss in mobile ad-hoc networks, QoS-sensitive routing algorithm have been frequently discussed. The topology of a wireless network is likely to change frequently according to the movement of mobile nodes, radio disturbance, or fading due to the continuous changes in the environment. Therefore, a packet routing algorithm should guarantee QoS by using some quality indicators of the wireless network. In this paper, a novel information exchanging algorithm developed using a hash function and a Boolean operation is proposed. This algorithm achieves efficient information exchanges by reducing the overhead of broadcasting messages, and it can guarantee QoS in a wireless network environment. It can be applied to a routing algorithm in a mobile ad-hoc network. In the proposed routing algorithm, a routing table is constructed by using the received signal strength indicator (RSSI), and the neighborhood information is periodically broadcasted depending on this table. The proposed hash-based routing entry management by using an extended MAC address can eliminate the overhead of message flooding. An analysis of the collision of hash values contributes to the determination of the length of the hash values, which is minimally required. Based on the verification of a mathematical theory, an optimum hash function for determining the length of hash values can be given. Simulations are carried out to evaluate the effectiveness of the proposed algorithm and to validate the theory in a general wireless network routing algorithm.

  9. Pheromone routing protocol on a scale-free network.

    PubMed

    Ling, Xiang; Hu, Mao-Bin; Jiang, Rui; Wang, Ruili; Cao, Xian-Bin; Wu, Qing-Song

    2009-12-01

    This paper proposes a routing strategy for network systems based on the local information of "pheromone." The overall traffic capacity of a network system can be evaluated by the critical packet generating rate R(c). Under this critical generating rate, the total packet number in the system first increases and then decreases to reach a balance state. The system behaves differently from that with a local routing strategy based on the node degree or shortest path routing strategy. Moreover, the pheromone routing strategy performs much better than the local routing strategy, which is demonstrated by a larger value of the critical generating rate. This protocol can be an alternation for superlarge networks, in which the global topology may not be available.

  10. Pheromone routing protocol on a scale-free network

    NASA Astrophysics Data System (ADS)

    Ling, Xiang; Hu, Mao-Bin; Jiang, Rui; Wang, Ruili; Cao, Xian-Bin; Wu, Qing-Song

    2009-12-01

    This paper proposes a routing strategy for network systems based on the local information of “pheromone.” The overall traffic capacity of a network system can be evaluated by the critical packet generating rate Rc . Under this critical generating rate, the total packet number in the system first increases and then decreases to reach a balance state. The system behaves differently from that with a local routing strategy based on the node degree or shortest path routing strategy. Moreover, the pheromone routing strategy performs much better than the local routing strategy, which is demonstrated by a larger value of the critical generating rate. This protocol can be an alternation for superlarge networks, in which the global topology may not be available.

  11. Automation of route identification and optimisation based on data-mining and chemical intuition.

    PubMed

    Lapkin, A A; Heer, P K; Jacob, P-M; Hutchby, M; Cunningham, W; Bull, S D; Davidson, M G

    2017-09-21

    Data-mining of Reaxys and network analysis of the combined literature and in-house reactions set were used to generate multiple possible reaction routes to convert a bio-waste feedstock, limonene, into a pharmaceutical API, paracetamol. The network analysis of data provides a rich knowledge-base for generation of the initial reaction screening and development programme. Based on the literature and the in-house data, an overall flowsheet for the conversion of limonene to paracetamol was proposed. Each individual reaction-separation step in the sequence was simulated as a combination of the continuous flow and batch steps. The linear model generation methodology allowed us to identify the reaction steps requiring further chemical optimisation. The generated model can be used for global optimisation and generation of environmental and other performance indicators, such as cost indicators. However, the identified further challenge is to automate model generation to evolve optimal multi-step chemical routes and optimal process configurations.

  12. Intelligent deflection routing in buffer-less networks.

    PubMed

    Haeri, Soroush; Trajković, Ljiljana

    2015-02-01

    Deflection routing is employed to ameliorate packet loss caused by contention in buffer-less architectures such as optical burst-switched networks. The main goal of deflection routing is to successfully deflect a packet based only on a limited knowledge that network nodes possess about their environment. In this paper, we present a framework that introduces intelligence to deflection routing (iDef). iDef decouples the design of the signaling infrastructure from the underlying learning algorithm. It consists of a signaling and a decision-making module. Signaling module implements a feedback management protocol while the decision-making module implements a reinforcement learning algorithm. We also propose several learning-based deflection routing protocols, implement them in iDef using the ns-3 network simulator, and compare their performance.

  13. A TOTP-Based Enhanced Route Optimization Procedure for Mobile IPv6 to Reduce Handover Delay and Signalling Overhead

    PubMed Central

    Shah, Peer Azmat; Hasbullah, Halabi B.; Lawal, Ibrahim A.; Aminu Mu'azu, Abubakar; Tang Jung, Low

    2014-01-01

    Due to the proliferation of handheld mobile devices, multimedia applications like Voice over IP (VoIP), video conferencing, network music, and online gaming are gaining popularity in recent years. These applications are well known to be delay sensitive and resource demanding. The mobility of mobile devices, running these applications, across different networks causes delay and service disruption. Mobile IPv6 was proposed to provide mobility support to IPv6-based mobile nodes for continuous communication when they roam across different networks. However, the Route Optimization procedure in Mobile IPv6 involves the verification of mobile node's reachability at the home address and at the care-of address (home test and care-of test) that results in higher handover delays and signalling overhead. This paper presents an enhanced procedure, time-based one-time password Route Optimization (TOTP-RO), for Mobile IPv6 Route Optimization that uses the concepts of shared secret Token, time based one-time password (TOTP) along with verification of the mobile node via direct communication and maintaining the status of correspondent node's compatibility. The TOTP-RO was implemented in network simulator (NS-2) and an analytical analysis was also made. Analysis showed that TOTP-RO has lower handover delays, packet loss, and signalling overhead with an increased level of security as compared to the standard Mobile IPv6's Return-Routability-based Route Optimization (RR-RO). PMID:24688398

  14. A TOTP-based enhanced route optimization procedure for mobile IPv6 to reduce handover delay and signalling overhead.

    PubMed

    Shah, Peer Azmat; Hasbullah, Halabi B; Lawal, Ibrahim A; Aminu Mu'azu, Abubakar; Tang Jung, Low

    2014-01-01

    Due to the proliferation of handheld mobile devices, multimedia applications like Voice over IP (VoIP), video conferencing, network music, and online gaming are gaining popularity in recent years. These applications are well known to be delay sensitive and resource demanding. The mobility of mobile devices, running these applications, across different networks causes delay and service disruption. Mobile IPv6 was proposed to provide mobility support to IPv6-based mobile nodes for continuous communication when they roam across different networks. However, the Route Optimization procedure in Mobile IPv6 involves the verification of mobile node's reachability at the home address and at the care-of address (home test and care-of test) that results in higher handover delays and signalling overhead. This paper presents an enhanced procedure, time-based one-time password Route Optimization (TOTP-RO), for Mobile IPv6 Route Optimization that uses the concepts of shared secret Token, time based one-time password (TOTP) along with verification of the mobile node via direct communication and maintaining the status of correspondent node's compatibility. The TOTP-RO was implemented in network simulator (NS-2) and an analytical analysis was also made. Analysis showed that TOTP-RO has lower handover delays, packet loss, and signalling overhead with an increased level of security as compared to the standard Mobile IPv6's Return-Routability-based Route Optimization (RR-RO).

  15. A Machine Learning Concept for DTN Routing

    NASA Technical Reports Server (NTRS)

    Dudukovich, Rachel; Hylton, Alan; Papachristou, Christos

    2017-01-01

    This paper discusses the concept and architecture of a machine learning based router for delay tolerant space networks. The techniques of reinforcement learning and Bayesian learning are used to supplement the routing decisions of the popular Contact Graph Routing algorithm. An introduction to the concepts of Contact Graph Routing, Q-routing and Naive Bayes classification are given. The development of an architecture for a cross-layer feedback framework for DTN (Delay-Tolerant Networking) protocols is discussed. Finally, initial simulation setup and results are given.

  16. Residual energy level based clustering routing protocol for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Yuan, Xu; Zhong, Fangming; Chen, Zhikui; Yang, Deli

    2015-12-01

    The wireless sensor networks, which nodes prone to premature death, with unbalanced energy consumption and a short life time, influenced the promotion and application of this technology in internet of things in agriculture. This paper proposes a clustering routing protocol based on the residual energy level (RELCP). RELCP includes three stages: the selection of cluster head, establishment of cluster and data transmission. RELCP considers the remaining energy level and distance to base station, while election of cluster head nodes and data transmitting. Simulation results demonstrate that the protocol can efficiently balance the energy dissipation of all nodes, and prolong the network lifetime.

  17. A Trust-Based Secure Routing Scheme Using the Traceback Approach for Energy-Harvesting Wireless Sensor Networks.

    PubMed

    Tang, Jiawei; Liu, Anfeng; Zhang, Jian; Xiong, Neal N; Zeng, Zhiwen; Wang, Tian

    2018-03-01

    The Internet of things (IoT) is composed of billions of sensing devices that are subject to threats stemming from increasing reliance on communications technologies. A Trust-Based Secure Routing (TBSR) scheme using the traceback approach is proposed to improve the security of data routing and maximize the use of available energy in Energy-Harvesting Wireless Sensor Networks (EHWSNs). The main contributions of a TBSR are (a) the source nodes send data and notification to sinks through disjoint paths, separately; in such a mechanism, the data and notification can be verified independently to ensure their security. (b) Furthermore, the data and notification adopt a dynamic probability of marking and logging approach during the routing. Therefore, when attacked, the network will adopt the traceback approach to locate and clear malicious nodes to ensure security. The probability of marking is determined based on the level of battery remaining; when nodes harvest more energy, the probability of marking is higher, which can improve network security. Because if the probability of marking is higher, the number of marked nodes on the data packet routing path will be more, and the sink will be more likely to trace back the data packet routing path and find malicious nodes according to this notification. When data packets are routed again, they tend to bypass these malicious nodes, which make the success rate of routing higher and lead to improved network security. When the battery level is low, the probability of marking will be decreased, which is able to save energy. For logging, when the battery level is high, the network adopts a larger probability of marking and smaller probability of logging to transmit notification to the sink, which can reserve enough storage space to meet the storage demand for the period of the battery on low level; when the battery level is low, increasing the probability of logging can reduce energy consumption. After the level of battery

  18. A Trust-Based Secure Routing Scheme Using the Traceback Approach for Energy-Harvesting Wireless Sensor Networks

    PubMed Central

    Tang, Jiawei; Zhang, Jian; Zeng, Zhiwen; Wang, Tian

    2018-01-01

    The Internet of things (IoT) is composed of billions of sensing devices that are subject to threats stemming from increasing reliance on communications technologies. A Trust-Based Secure Routing (TBSR) scheme using the traceback approach is proposed to improve the security of data routing and maximize the use of available energy in Energy-Harvesting Wireless Sensor Networks (EHWSNs). The main contributions of a TBSR are (a) the source nodes send data and notification to sinks through disjoint paths, separately; in such a mechanism, the data and notification can be verified independently to ensure their security. (b) Furthermore, the data and notification adopt a dynamic probability of marking and logging approach during the routing. Therefore, when attacked, the network will adopt the traceback approach to locate and clear malicious nodes to ensure security. The probability of marking is determined based on the level of battery remaining; when nodes harvest more energy, the probability of marking is higher, which can improve network security. Because if the probability of marking is higher, the number of marked nodes on the data packet routing path will be more, and the sink will be more likely to trace back the data packet routing path and find malicious nodes according to this notification. When data packets are routed again, they tend to bypass these malicious nodes, which make the success rate of routing higher and lead to improved network security. When the battery level is low, the probability of marking will be decreased, which is able to save energy. For logging, when the battery level is high, the network adopts a larger probability of marking and smaller probability of logging to transmit notification to the sink, which can reserve enough storage space to meet the storage demand for the period of the battery on low level; when the battery level is low, increasing the probability of logging can reduce energy consumption. After the level of battery

  19. 13. VIEW SOUTH, ROUTE 130 SOUTH FROM ROUTE 130 SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW SOUTH, ROUTE 130 SOUTH FROM ROUTE 130 SOUTH ISLAND - White Horse Pike Rond Point, Intersection of Crescent Boulevard (U.S. Route 130), White Horse Pike (U.S. Route 30), & Clay Avenue, Collingswood, Camden County, NJ

  20. 12. VIEW EAST, ROUTE 30 EAST FROM ROUTE 130 SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW EAST, ROUTE 30 EAST FROM ROUTE 130 SOUTH ISLAND - White Horse Pike Rond Point, Intersection of Crescent Boulevard (U.S. Route 130), White Horse Pike (U.S. Route 30), & Clay Avenue, Collingswood, Camden County, NJ

  1. Pithy Review on Routing Protocols in Wireless Sensor Networks and Least Routing Time Opportunistic Technique in WSN

    NASA Astrophysics Data System (ADS)

    Salman Arafath, Mohammed; Rahman Khan, Khaleel Ur; Sunitha, K. V. N.

    2018-01-01

    Nowadays due to most of the telecommunication standard development organizations focusing on using device-to-device communication so that they can provide proximity-based services and add-on services on top of the available cellular infrastructure. An Oppnets and wireless sensor network play a prominent role here. Routing in these networks plays a significant role in fields such as traffic management, packet delivery etc. Routing is a prodigious research area with diverse unresolved issues. This paper firstly focuses on the importance of Opportunistic routing and its concept then focus is shifted to prime aspect i.e. on packet reception ratio which is one of the highest QoS Awareness parameters. This paper discusses the two important functions of routing in wireless sensor networks (WSN) namely route selection using least routing time algorithm (LRTA) and data forwarding using clustering technique. Finally, the simulation result reveals that LRTA performs relatively better than the existing system in terms of average packet reception ratio and connectivity.

  2. 1. Intersection of US Route 4 and NH Route 143, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Intersection of US Route 4 and NH Route 143, showing farmhouse on left, barn at right. Looking east. - Batchelder-Edgerly Farmstead, Barn, U.S. Route 4, southwest side, southeast corner of New Hampshire Route 43, Northwood, Rockingham County, NH

  3. An Adaptive Jitter Mechanism for Reactive Route Discovery in Sensor Networks

    PubMed Central

    Cordero, Juan Antonio; Yi, Jiazi; Clausen, Thomas

    2014-01-01

    This paper analyses the impact of jitter when applied to route discovery in reactive (on-demand) routing protocols. In multi-hop non-synchronized wireless networks, jitter—a small, random variation in the timing of message emission—is commonly employed, as a means to avoid collisions of simultaneous transmissions by adjacent routers over the same channel. In a reactive routing protocol for sensor and ad hoc networks, jitter is recommended during the route discovery process, specifically, during the network-wide flooding of route request messages, in order to avoid collisions. Commonly, a simple uniform jitter is recommended. Alas, this is not without drawbacks: when applying uniform jitter to the route discovery process, an effect called delay inversion is observed. This paper, first, studies and quantifies this delay inversion effect. Second, this paper proposes an adaptive jitter mechanism, designed to alleviate the delay inversion effect and thereby to reduce the route discovery overhead and (ultimately) allow the routing protocol to find more optimal paths, as compared to uniform jitter. This paper presents both analytical and simulation studies, showing that the proposed adaptive jitter can effectively decrease the cost of route discovery and increase the path quality. PMID:25111238

  4. Adaptive MANET multipath routing algorithm based on the simulated annealing approach.

    PubMed

    Kim, Sungwook

    2014-01-01

    Mobile ad hoc network represents a system of wireless mobile nodes that can freely and dynamically self-organize network topologies without any preexisting communication infrastructure. Due to characteristics like temporary topology and absence of centralized authority, routing is one of the major issues in ad hoc networks. In this paper, a new multipath routing scheme is proposed by employing simulated annealing approach. The proposed metaheuristic approach can achieve greater and reciprocal advantages in a hostile dynamic real world network situation. Therefore, the proposed routing scheme is a powerful method for finding an effective solution into the conflict mobile ad hoc network routing problem. Simulation results indicate that the proposed paradigm adapts best to the variation of dynamic network situations. The average remaining energy, network throughput, packet loss probability, and traffic load distribution are improved by about 10%, 10%, 5%, and 10%, respectively, more than the existing schemes.

  5. Gis-Based Route Finding Using ANT Colony Optimization and Urban Traffic Data from Different Sources

    NASA Astrophysics Data System (ADS)

    Davoodi, M.; Mesgari, M. S.

    2015-12-01

    Nowadays traffic data is obtained from multiple sources including GPS, Video Vehicle Detectors (VVD), Automatic Number Plate Recognition (ANPR), Floating Car Data (FCD), VANETs, etc. All such data can be used for route finding. This paper proposes a model for finding the optimum route based on the integration of traffic data from different sources. Ant Colony Optimization is applied in this paper because the concept of this method (movement of ants in a network) is similar to urban road network and movements of cars. The results indicate that this model is capable of incorporating data from different sources, which may even be inconsistent.

  6. An energy efficient multiple mobile sinks based routing algorithm for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Zhong, Peijun; Ruan, Feng

    2018-03-01

    With the fast development of wireless sensor networks (WSNs), more and more energy efficient routing algorithms have been proposed. However, one of the research challenges is how to alleviate the hot spot problem since nodes close to static sink (or base station) tend to die earlier than other sensors. The introduction of mobile sink node can effectively alleviate this problem since sink node can move along certain trajectories, causing hot spot nodes more evenly distributed. In this paper, we mainly study the energy efficient routing method with multiple mobile sinks support. We divide the whole network into several clusters and study the influence of mobile sink number on network lifetime. Simulation results show that the best network performance appears when mobile sink number is about 3 under our simulation environment.

  7. IJS: An Intelligent Junction Selection Based Routing Protocol for VANET to Support ITS Services.

    PubMed

    Bhoi, Sourav Kumar; Khilar, Pabitra Mohan

    2014-01-01

    Selecting junctions intelligently for data transmission provides better intelligent transportation system (ITS) services. The main problem in vehicular communication is high disturbances of link connectivity due to mobility and less density of vehicles. If link conditions are predicted earlier, then there is a less chance of performance degradation. In this paper, an intelligent junction selection based routing protocol (IJS) is proposed to transmit the data in a quickest path, in which the vehicles are mostly connected and have less link connectivity problem. In this protocol, a helping vehicle is set at every junction to control the communication by predicting link failures or network gaps in a route. Helping vehicle at the junction produces a score for every neighboring junction to forward the data to the destination by considering the current traffic information and selects that junction which has minimum score. IJS protocol is implemented and compared with GyTAR, A-STAR, and GSR routing protocols. Simulation results show that IJS performs better in terms of average end-to-end delay, network gap encounter, and number of hops.

  8. IJS: An Intelligent Junction Selection Based Routing Protocol for VANET to Support ITS Services

    PubMed Central

    Khilar, Pabitra Mohan

    2014-01-01

    Selecting junctions intelligently for data transmission provides better intelligent transportation system (ITS) services. The main problem in vehicular communication is high disturbances of link connectivity due to mobility and less density of vehicles. If link conditions are predicted earlier, then there is a less chance of performance degradation. In this paper, an intelligent junction selection based routing protocol (IJS) is proposed to transmit the data in a quickest path, in which the vehicles are mostly connected and have less link connectivity problem. In this protocol, a helping vehicle is set at every junction to control the communication by predicting link failures or network gaps in a route. Helping vehicle at the junction produces a score for every neighboring junction to forward the data to the destination by considering the current traffic information and selects that junction which has minimum score. IJS protocol is implemented and compared with GyTAR, A-STAR, and GSR routing protocols. Simulation results show that IJS performs better in terms of average end-to-end delay, network gap encounter, and number of hops. PMID:27433485

  9. A Family of ACO Routing Protocols for Mobile Ad Hoc Networks

    PubMed Central

    Rupérez Cañas, Delfín; Sandoval Orozco, Ana Lucila; García Villalba, Luis Javier; Kim, Tai-hoon

    2017-01-01

    In this work, an ACO routing protocol for mobile ad hoc networks based on AntHocNet is specified. As its predecessor, this new protocol, called AntOR, is hybrid in the sense that it contains elements from both reactive and proactive routing. Specifically, it combines a reactive route setup process with a proactive route maintenance and improvement process. Key aspects of the AntOR protocol are the disjoint-link and disjoint-node routes, separation between the regular pheromone and the virtual pheromone in the diffusion process and the exploration of routes, taking into consideration the number of hops in the best routes. In this work, a family of ACO routing protocols based on AntOR is also specified. These protocols are based on protocol successive refinements. In this work, we also present a parallelized version of AntOR that we call PAntOR. Using programming multiprocessor architectures based on the shared memory protocol, PAntOR allows running tasks in parallel using threads. This parallelization is applicable in the route setup phase, route local repair process and link failure notification. In addition, a variant of PAntOR that consists of having more than one interface, which we call PAntOR-MI (PAntOR-Multiple Interface), is specified. This approach parallelizes the sending of broadcast messages by interface through threads. PMID:28531159

  10. A Family of ACO Routing Protocols for Mobile Ad Hoc Networks.

    PubMed

    Rupérez Cañas, Delfín; Sandoval Orozco, Ana Lucila; García Villalba, Luis Javier; Kim, Tai-Hoon

    2017-05-22

    In this work, an ACO routing protocol for mobile ad hoc networks based on AntHocNet is specified. As its predecessor, this new protocol, called AntOR, is hybrid in the sense that it contains elements from both reactive and proactive routing. Specifically, it combines a reactive route setup process with a proactive route maintenance and improvement process. Key aspects of the AntOR protocol are the disjoint-link and disjoint-node routes, separation between the regular pheromone and the virtual pheromone in the diffusion process and the exploration of routes, taking into consideration the number of hops in the best routes. In this work, a family of ACO routing protocols based on AntOR is also specified. These protocols are based on protocol successive refinements. In this work, we also present a parallelized version of AntOR that we call PAntOR. Using programming multiprocessor architectures based on the shared memory protocol, PAntOR allows running tasks in parallel using threads. This parallelization is applicable in the route setup phase, route local repair process and link failure notification. In addition, a variant of PAntOR that consists of having more than one interface, which we call PAntOR-MI (PAntOR-Multiple Interface), is specified. This approach parallelizes the sending of broadcast messages by interface through threads.

  11. A self-optimizing scheme for energy balanced routing in Wireless Sensor Networks using SensorAnt.

    PubMed

    Shamsan Saleh, Ahmed M; Ali, Borhanuddin Mohd; Rasid, Mohd Fadlee A; Ismail, Alyani

    2012-01-01

    Planning of energy-efficient protocols is critical for Wireless Sensor Networks (WSNs) because of the constraints on the sensor nodes' energy. The routing protocol should be able to provide uniform power dissipation during transmission to the sink node. In this paper, we present a self-optimization scheme for WSNs which is able to utilize and optimize the sensor nodes' resources, especially the batteries, to achieve balanced energy consumption across all sensor nodes. This method is based on the Ant Colony Optimization (ACO) metaheuristic which is adopted to enhance the paths with the best quality function. The assessment of this function depends on multi-criteria metrics such as the minimum residual battery power, hop count and average energy of both route and network. This method also distributes the traffic load of sensor nodes throughout the WSN leading to reduced energy usage, extended network life time and reduced packet loss. Simulation results show that our scheme performs much better than the Energy Efficient Ant-Based Routing (EEABR) in terms of energy consumption, balancing and efficiency.

  12. System Proposal for Mass Transit Service Quality Control Based on GPS Data

    PubMed Central

    Padrón, Gabino; Cristóbal, Teresa; Alayón, Francisco; Quesada-Arencibia, Alexis; García, Carmelo R.

    2017-01-01

    Quality is an essential aspect of public transport. In the case of regular public passenger transport by road, punctuality and regularity are criteria used to assess quality of service. Calculating metrics related to these criteria continuously over time and comprehensively across the entire transport network requires the handling of large amounts of data. This article describes a system for continuously and comprehensively monitoring punctuality and regularity. The system uses location data acquired continuously in the vehicles and automatically transferred for analysis. These data are processed intelligently by elements that are commonly used by transport operators: GPS-based tracking system, onboard computer and wireless networks for mobile data communications. The system was tested on a transport company, for which we measured the punctuality of one of the routes that it operates; the results are presented in this article. PMID:28621745

  13. System Proposal for Mass Transit Service Quality Control Based on GPS Data.

    PubMed

    Padrón, Gabino; Cristóbal, Teresa; Alayón, Francisco; Quesada-Arencibia, Alexis; García, Carmelo R

    2017-06-16

    Quality is an essential aspect of public transport. In the case of regular public passenger transport by road, punctuality and regularity are criteria used to assess quality of service. Calculating metrics related to these criteria continuously over time and comprehensively across the entire transport network requires the handling of large amounts of data. This article describes a system for continuously and comprehensively monitoring punctuality and regularity. The system uses location data acquired continuously in the vehicles and automatically transferred for analysis. These data are processed intelligently by elements that are commonly used by transport operators: GPS-based tracking system, onboard computer and wireless networks for mobile data communications. The system was tested on a transport company, for which we measured the punctuality of one of the routes that it operates; the results are presented in this article.

  14. A double candidate survivable routing protocol for HAP network

    NASA Astrophysics Data System (ADS)

    He, Panfeng; Li, Chunyue; Ni, Shuyan

    2016-11-01

    To improve HAP network invulnerability, and at the same time considering the quasi-dynamic topology in HAP network, a simple and reliable routing protocol is proposed in the paper. The protocol firstly uses a double-candidate strategy for the next-node select to provide better robustness. Then during the maintenance stage, short hello packets instead of long routing packets are used only to check link connectivity in the quasi-dynamic HAP network. The route maintenance scheme based on short hello packets can greatly reduce link spending. Simulation results based on OPNET demonstrate the effectiveness of the proposed routing protocol.

  15. Capacitated vehicle-routing problem model for scheduled solid waste collection and route optimization using PSO algorithm.

    PubMed

    Hannan, M A; Akhtar, Mahmuda; Begum, R A; Basri, H; Hussain, A; Scavino, Edgar

    2018-01-01

    Waste collection widely depends on the route optimization problem that involves a large amount of expenditure in terms of capital, labor, and variable operational costs. Thus, the more waste collection route is optimized, the more reduction in different costs and environmental effect will be. This study proposes a modified particle swarm optimization (PSO) algorithm in a capacitated vehicle-routing problem (CVRP) model to determine the best waste collection and route optimization solutions. In this study, threshold waste level (TWL) and scheduling concepts are applied in the PSO-based CVRP model under different datasets. The obtained results from different datasets show that the proposed algorithmic CVRP model provides the best waste collection and route optimization in terms of travel distance, total waste, waste collection efficiency, and tightness at 70-75% of TWL. The obtained results for 1 week scheduling show that 70% of TWL performs better than all node consideration in terms of collected waste, distance, tightness, efficiency, fuel consumption, and cost. The proposed optimized model can serve as a valuable tool for waste collection and route optimization toward reducing socioeconomic and environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Modeling and Simulation of a Novel Relay Node Based Secure Routing Protocol Using Multiple Mobile Sink for Wireless Sensor Networks.

    PubMed

    Perumal, Madhumathy; Dhandapani, Sivakumar

    2015-01-01

    Data gathering and optimal path selection for wireless sensor networks (WSN) using existing protocols result in collision. Increase in collision further increases the possibility of packet drop. Thus there is a necessity to eliminate collision during data aggregation. Increasing the efficiency is the need of the hour with maximum security. This paper is an effort to come up with a reliable and energy efficient WSN routing and secure protocol with minimum delay. This technique is named as relay node based secure routing protocol for multiple mobile sink (RSRPMS). This protocol finds the rendezvous point for optimal transmission of data using a "splitting tree" technique in tree-shaped network topology and then to determine all the subsequent positions of a sink the "Biased Random Walk" model is used. In case of an event, the sink gathers the data from all sources, when they are in the sensing range of rendezvous point. Otherwise relay node is selected from its neighbor to transfer packets from rendezvous point to sink. A symmetric key cryptography is used for secure transmission. The proposed relay node based secure routing protocol for multiple mobile sink (RSRPMS) is experimented and simulation results are compared with Intelligent Agent-Based Routing (IAR) protocol to prove that there is increase in the network lifetime compared with other routing protocols.

  17. On the Miller-Tucker-Zemlin Based Formulations for the Distance Constrained Vehicle Routing Problems

    NASA Astrophysics Data System (ADS)

    Kara, Imdat

    2010-11-01

    Vehicle Routing Problem (VRP), is an extension of the well known Traveling Salesman Problem (TSP) and has many practical applications in the fields of distribution and logistics. When the VRP consists of distance based constraints it is called Distance Constrained Vehicle Routing Problem (DVRP). However, the literature addressing on the DVRP is scarce. In this paper, existing two-indexed integer programming formulations, having Miller-Tucker-Zemlin based subtour elimination constraints, are reviewed. Existing formulations are simplified and obtained formulation is presented as formulation F1. It is shown that, the distance bounding constraints of the formulation F1, may not generate the distance traveled up to the related node. To do this, we redefine the auxiliary variables of the formulation and propose second formulation F2 with new and easy to use distance bounding constraints. Adaptation of the second formulation to the cases where new restrictions such as minimal distance traveled by each vehicle or other objectives such as minimizing the longest distance traveled is discussed.

  18. Development of flood routing simulation system of digital Qingjiang based on integrated spatial information technology

    NASA Astrophysics Data System (ADS)

    Yuan, Yanbin; Zhou, You; Zhu, Yaqiong; Yuan, Xiaohui; Sælthun, N. R.

    2007-11-01

    Based on digital technology, flood routing simulation system development is an important component of "digital catchment". Taking QingJiang catchment as a pilot case, in-depth analysis on informatization of Qingjiang catchment management being the basis, aiming at catchment data's multi-source, - dimension, -element, -subject, -layer and -class feature, the study brings the design thought and method of "subject-point-source database" (SPSD) to design system structure in order to realize the unified management of catchments data in great quantity. Using the thought of integrated spatial information technology for reference, integrating hierarchical structure development model of digital catchment is established. The model is general framework of the flood routing simulation system analysis, design and realization. In order to satisfy the demands of flood routing three-dimensional simulation system, the object-oriented spatial data model are designed. We can analyze space-time self-adapting relation between flood routing and catchments topography, express grid data of terrain by using non-directed graph, apply breadth first search arithmetic, set up search method for the purpose of dynamically searching stream channel on the basis of simulated three-dimensional terrain. The system prototype is therefore realized. Simulation results have demonstrated that the proposed approach is feasible and effective in the application.

  19. Economic and quality of life impacts of route 21 freeway construction : final report, October 2009.

    DOT National Transportation Integrated Search

    2009-10-01

    Opened to traffic in December 2000, the missing section of the Route 21 Freeway in Clifton : and Passaic (Hope Ave. to the Route 46 Interchange) was designed utilizing the equivalent to : the Context Sensitive Solutions (CSS) approach at ...

  20. Cascade defense via routing in complex networks

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Lan; Du, Wen-Bo; Hong, Chen

    2015-05-01

    As the cascading failures in networked traffic systems are becoming more and more serious, research on cascade defense in complex networks has become a hotspot in recent years. In this paper, we propose a traffic-based cascading failure model, in which each packet in the network has its own source and destination. When cascade is triggered, packets will be redistributed according to a given routing strategy. Here, a global hybrid (GH) routing strategy, which uses the dynamic information of the queue length and the static information of nodes' degree, is proposed to defense the network cascade. Comparing GH strategy with the shortest path (SP) routing, efficient routing (ER) and global dynamic (GD) routing strategies, we found that GH strategy is more effective than other routing strategies in improving the network robustness against cascading failures. Our work provides insight into the robustness of networked traffic systems.

  1. Dynamic Weather Routes: A Weather Avoidance Concept for Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    McNally, B. David; Love, John

    2011-01-01

    The integration of convective weather modeling with trajectory automation for conflict detection, trial planning, direct routing, and auto resolution has uncovered a concept that could help controllers, dispatchers, and pilots identify improved weather routes that result in significant savings in flying time and fuel burn. Trajectory automation continuously and automatically monitors aircraft in flight to find those that could potentially benefit from improved weather reroutes. Controllers, dispatchers, and pilots then evaluate reroute options to assess their suitability given current weather and traffic. In today's operations aircraft fly convective weather avoidance routes that were implemented often hours before aircraft approach the weather and automation does not exist to automatically monitor traffic to find improved weather routes that open up due to changing weather conditions. The automation concept runs in real-time and employs two keysteps. First, a direct routing algorithm automatically identifies flights with large dog legs in their routes and therefore potentially large savings in flying time. These are common - and usually necessary - during convective weather operations and analysis of Fort Worth Center traffic shows many aircraft with short cuts that indicate savings on the order of 10 flying minutes. The second and most critical step is to apply trajectory automation with weather modeling to determine what savings could be achieved by modifying the direct route such that it avoids weather and traffic and is acceptable to controllers and flight crews. Initial analysis of Fort Worth Center traffic suggests a savings of roughly 50% of the direct route savings could be achievable.The core concept is to apply trajectory automation with convective weather modeling in real time to identify a reroute that is free of weather and traffic conflicts and indicates enough time and fuel savings to be considered. The concept is interoperable with today

  2. Adaptive Reliable Routing Protocol Using Combined Link Stability Estimation for Mobile Ad hoc Networks

    NASA Astrophysics Data System (ADS)

    Vadivel, R.; Bhaskaran, V. Murali

    2010-10-01

    The main reason for packet loss in ad hoc networks is the link failure or node failure. In order to increase the path stability, it is essential to distinguish and moderate the failures. By knowing individual link stability along a path, path stability can be identified. In this paper, we develop an adaptive reliable routing protocol using combined link stability estimation for mobile ad hoc networks. The main objective of this protocol is to determine a Quality of Service (QoS) path along with prolonging the network life time and to reduce the packet loss. We calculate a combined metric for a path based on the parameters Link Expiration Time, Node Remaining Energy and Node Velocity and received signal strength to predict the link stability or lifetime. Then, a bypass route is established to retransmit the lost data, when a link failure occurs. By simulation results, we show that the proposed reliable routing protocol achieves high delivery ratio with reduced delay and packet drop.

  3. CCS-DTN: clustering and network coding-based efficient routing in social DTNs.

    PubMed

    Zhang, Zhenjing; Ma, Maode; Jin, Zhigang

    2014-12-25

    With the development of mobile Internet, wireless communication via mobile devices has become a hot research topic, which is typically in the form of Delay Tolerant Networks (DTNs). One critical issue in the development of DTNs is routing. Although there is a lot research work addressing routing issues in DTNs, they cannot produce an advanced solution to the comprehensive challenges since only one or two aspects (nodes' movements, clustering, centricity and so on) are considered when the routing problem is handled. In view of these defects in the existing works, we propose a novel solution to address the routing issue in social DTNs. By this solution, mobile nodes are divided into different clusters. The scheme, Spray and Wait, is used for the intra-cluster communication while a new forwarding mechanism is designed for the inter-cluster version. In our solution, the characteristics of nodes and the relation between nodes are fully considered. The simulation results show that our proposed scheme can significantly improve the performance of the routing scheme in social DTNs.

  4. CCS-DTN: Clustering and Network Coding-Based Efficient Routing in Social DTNs

    PubMed Central

    Zhang, Zhenjing; Ma, Maode; Jin, Zhigang

    2015-01-01

    With the development of mobile Internet, wireless communication via mobile devices has become a hot research topic, which is typically in the form of Delay Tolerant Networks (DTNs). One critical issue in the development of DTNs is routing. Although there is a lot research work addressing routing issues in DTNs, they cannot produce an advanced solution to the comprehensive challenges since only one or two aspects (nodes' movements, clustering, centricity and so on) are considered when the routing problem is handled. In view of these defects in the existing works, we propose a novel solution to address the routing issue in social DTNs. By this solution, mobile nodes are divided into different clusters. The scheme, Spray and Wait, is used for the intra-cluster communication while a new forwarding mechanism is designed for the inter-cluster version. In our solution, the characteristics of nodes and the relation between nodes are fully considered. The simulation results show that our proposed scheme can significantly improve the performance of the routing scheme in social DTNs. PMID:25609047

  5. Nonlinear relative-proportion-based route adjustment process for day-to-day traffic dynamics: modeling, equilibrium and stability analysis

    NASA Astrophysics Data System (ADS)

    Zhu, Wenlong; Ma, Shoufeng; Tian, Junfang; Li, Geng

    2016-11-01

    Travelers' route adjustment behaviors in a congested road traffic network are acknowledged as a dynamic game process between them. Existing Proportional-Switch Adjustment Process (PSAP) models have been extensively investigated to characterize travelers' route choice behaviors; PSAP has concise structure and intuitive behavior rule. Unfortunately most of which have some limitations, i.e., the flow over adjustment problem for the discrete PSAP model, the absolute cost differences route adjustment problem, etc. This paper proposes a relative-Proportion-based Route Adjustment Process (rePRAP) maintains the advantages of PSAP and overcomes these limitations. The rePRAP describes the situation that travelers on higher cost route switch to those with lower cost at the rate that is unilaterally depended on the relative cost differences between higher cost route and its alternatives. It is verified to be consistent with the principle of the rational behavior adjustment process. The equivalence among user equilibrium, stationary path flow pattern and stationary link flow pattern is established, which can be applied to judge whether a given network traffic flow has reached UE or not by detecting the stationary or non-stationary state of link flow pattern. The stability theorem is proved by the Lyapunov function approach. A simple example is tested to demonstrate the effectiveness of the rePRAP model.

  6. An economical route to high quality lubricants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andre, J.P.; Hahn, S.K.; Kwon, S.H.

    1996-12-01

    The current rends in the automotive and industrial markets toward more efficient engines, longer drain intervals, and lower emissions all contribute to placing increasingly stringent performance requirements on lubricants. The demand for higher quality synthetic and non-conventional basestocks is expected to grow at a much faster rate than that of conventional lube basestocks to meet these higher performance standards. Yukong Limited has developed a novel technology (the Yukong UCO Lube Process) for the economic production of high quality, high-viscosity-index lube basestocks from a fuels hydrocracker unconverted oil stream. A pilot plant based on this process has been producing oils formore » testing purposes since May 1994. A commercial facility designed to produce 3,500 BPD of VHVI lube basestocks cane on-stream at Yukong`s Ulsan refinery in October 1995. The Badger Technology Center of Raytheon Engineers and Constructors assisted Yukong during the development of the technology and prepared the basic process design package for the commercial facility. This paper presents process aspects of the technology and comparative data on investment and operating costs. Yukong lube basestock product properties and performance data are compared to basestocks produced by conventional means and by lube hydrocracking.« less

  7. Optical sensors based on photonic crystal: a new route

    NASA Astrophysics Data System (ADS)

    Romano, S.; Torino, S.; Coppola, G.; Cabrini, S.; Mocella, V.

    2017-05-01

    The realization of miniaturized devices able to accumulate a higher number of information in a smallest volume is a challenge of the technological development. This trend increases the request of high sensitivity and selectivity sensors which can be integrated in microsystems. In this landscape, optical sensors based on photonic crystal technology can be an appealing solution. Here, a new refractive index sensor device, based on the bound states in the continuum (BIC) resonance shift excited in a photonic crystal membrane, is presented. A microfluidic cell was used to control the injection of fluids with different refractive indices over the photonic crystal surface. The shift of very high Q-factor resonances excited into the photonic crystal open cavity was monitored as a function of the refractive index n of the test liquid. The excellent stability we found and the minimal, loss-free optical equipment requirement, provide a new route for achieving high performance in sensing applications.

  8. A Q-Learning-Based Delay-Aware Routing Algorithm to Extend the Lifetime of Underwater Sensor Networks.

    PubMed

    Jin, Zhigang; Ma, Yingying; Su, Yishan; Li, Shuo; Fu, Xiaomei

    2017-07-19

    Underwater sensor networks (UWSNs) have become a hot research topic because of their various aquatic applications. As the underwater sensor nodes are powered by built-in batteries which are difficult to replace, extending the network lifetime is a most urgent need. Due to the low and variable transmission speed of sound, the design of reliable routing algorithms for UWSNs is challenging. In this paper, we propose a Q-learning based delay-aware routing (QDAR) algorithm to extend the lifetime of underwater sensor networks. In QDAR, a data collection phase is designed to adapt to the dynamic environment. With the application of the Q-learning technique, QDAR can determine a global optimal next hop rather than a greedy one. We define an action-utility function in which residual energy and propagation delay are both considered for adequate routing decisions. Thus, the QDAR algorithm can extend the network lifetime by uniformly distributing the residual energy and provide lower end-to-end delay. The simulation results show that our protocol can yield nearly the same network lifetime, and can reduce the end-to-end delay by 20-25% compared with a classic lifetime-extended routing protocol (QELAR).

  9. A Q-Learning-Based Delay-Aware Routing Algorithm to Extend the Lifetime of Underwater Sensor Networks

    PubMed Central

    Ma, Yingying; Su, Yishan; Li, Shuo; Fu, Xiaomei

    2017-01-01

    Underwater sensor networks (UWSNs) have become a hot research topic because of their various aquatic applications. As the underwater sensor nodes are powered by built-in batteries which are difficult to replace, extending the network lifetime is a most urgent need. Due to the low and variable transmission speed of sound, the design of reliable routing algorithms for UWSNs is challenging. In this paper, we propose a Q-learning based delay-aware routing (QDAR) algorithm to extend the lifetime of underwater sensor networks. In QDAR, a data collection phase is designed to adapt to the dynamic environment. With the application of the Q-learning technique, QDAR can determine a global optimal next hop rather than a greedy one. We define an action-utility function in which residual energy and propagation delay are both considered for adequate routing decisions. Thus, the QDAR algorithm can extend the network lifetime by uniformly distributing the residual energy and provide lower end-to-end delay. The simulation results show that our protocol can yield nearly the same network lifetime, and can reduce the end-to-end delay by 20–25% compared with a classic lifetime-extended routing protocol (QELAR). PMID:28753951

  10. Reverse Flood Routing with the Lag-and-Route Storage Model

    NASA Astrophysics Data System (ADS)

    Mazi, K.; Koussis, A. D.

    2010-09-01

    This work presents a method for reverse routing of flood waves in open channels, which is an inverse problem of the signal identification type. Inflow determination from outflow measurements is useful in hydrologic forensics and in optimal reservoir control, but has been seldom studied. Such problems are ill posed and their solution is sensitive to small perturbations present in the data, or to any related uncertainty. Therefore the major difficulty in solving this inverse problem consists in controlling the amplification of errors that inevitably befall flow measurements, from which the inflow signal is to be determined. The lag-and-route model offers a convenient framework for reverse routing, because not only is formal deconvolution not required, but also reverse routing is through a single linear reservoir. In addition, this inversion degenerates to calculating the intermediate inflow (prior to the lag step) simply as the sum of the outflow and of its time derivative multiplied by the reservoir’s time constant. The remaining time shifting (lag) of the intermediate, reversed flow presents no complications, as pure translation causes no error amplification. Note that reverse routing with the inverted Muskingum scheme (Koussis et al., submitted to the 12th Plinius Conference) fails when that scheme is specialised to the Kalinin-Miljukov model (linear reservoirs in series). The principal functioning of the reverse routing procedure was verified first with perfect field data (outflow hydrograph generated by forward routing of a known inflow hydrograph). The field data were then seeded with random error. To smooth the oscillations caused by the imperfect (measured) outflow data, we applied a multipoint Savitzky-Golay low-pass filter. The combination of reverse routing and filtering achieved an effective recovery of the inflow signal extremely efficiently. Specifically, we compared the reverse routing results of the inverted lag-and-route model and of the inverted

  11. A Survey on Clustering Routing Protocols in Wireless Sensor Networks

    PubMed Central

    Liu, Xuxun

    2012-01-01

    The past few years have witnessed increased interest in the potential use of wireless sensor networks (WSNs) in a wide range of applications and it has become a hot research area. Based on network structure, routing protocols in WSNs can be divided into two categories: flat routing and hierarchical or clustering routing. Owing to a variety of advantages, clustering is becoming an active branch of routing technology in WSNs. In this paper, we present a comprehensive and fine grained survey on clustering routing protocols proposed in the literature for WSNs. We outline the advantages and objectives of clustering for WSNs, and develop a novel taxonomy of WSN clustering routing methods based on complete and detailed clustering attributes. In particular, we systematically analyze a few prominent WSN clustering routing protocols and compare these different approaches according to our taxonomy and several significant metrics. Finally, we summarize and conclude the paper with some future directions. PMID:23112649

  12. A survey on clustering routing protocols in wireless sensor networks.

    PubMed

    Liu, Xuxun

    2012-01-01

    The past few years have witnessed increased interest in the potential use of wireless sensor networks (WSNs) in a wide range of applications and it has become a hot research area. Based on network structure, routing protocols in WSNs can be divided into two categories: flat routing and hierarchical or clustering routing. Owing to a variety of advantages, clustering is becoming an active branch of routing technology in WSNs. In this paper, we present a comprehensive and fine grained survey on clustering routing protocols proposed in the literature for WSNs. We outline the advantages and objectives of clustering for WSNs, and develop a novel taxonomy of WSN clustering routing methods based on complete and detailed clustering attributes. In particular, we systematically analyze a few prominent WSN clustering routing protocols and compare these different approaches according to our taxonomy and several significant metrics. Finally, we summarize and conclude the paper with some future directions.

  13. Using Sphinx to Improve Onion Routing Circuit Construction

    NASA Astrophysics Data System (ADS)

    Kate, Aniket; Goldberg, Ian

    This paper presents compact message formats for onion routing circuit construction using the Sphinx methodology developed for mixes. We significantly compress the circuit construction messages for three onion routing protocols that have emerged as enhancements to the Tor anonymizing network; namely, Tor with predistributed Diffie-Hellman values, pairing-based onion routing, and certificateless onion routing. Our new circuit constructions are also secure in the universal composability framework, a property that was missing from the original constructions. Further, we compare the performance of our schemes with their older counterparts as well as with each other.

  14. Topographical memory for newly-learned maps is differentially affected by route-based versus landmark-based learning: a functional MRI study.

    PubMed

    Beatty, Erin L; Muller-Gass, Alexandra; Wojtarowicz, Dorothy; Jobidon, Marie-Eve; Smith, Ingrid; Lam, Quan; Vartanian, Oshin

    2018-04-11

    Humans rely on topographical memory to encode information about spatial aspects of environments. However, even though people adopt different strategies when learning new maps, little is known about the impact of those strategies on topographical memory, and their neural correlates. To examine that issue, we presented participants with 40 unfamiliar maps, each of which displayed one major route and three landmarks. Half were instructed to memorize the maps by focusing on the route, whereas the other half memorized the maps by focusing on the landmarks. One day later, the participants were tested on their ability to distinguish previously studied 'old' maps from completely unfamiliar 'new' maps under conditions of high and low working memory load in the functional MRI scanner. Viewing old versus new maps was associated with relatively greater activation in a distributed set of regions including bilateral inferior temporal gyrus - an important region for recognizing visual objects. Critically, whereas the performance of participants who had followed a route-based strategy dropped to chance level under high working memory load, participants who had followed a landmark-based strategy performed at above chance levels under both high and low working memory load - reflected by relatively greater activation in the left inferior parietal lobule (i.e. rostral part of the supramarginal gyrus known as area PFt). Our findings suggest that landmark-based learning may buffer against the effects of working memory load during recognition, and that this effect is represented by the greater involvement of a brain region implicated in both topographical and working memory.

  15. Differences in physical environmental characteristics between adolescents' actual and shortest cycling routes: a study using a Google Street View-based audit.

    PubMed

    Verhoeven, Hannah; Van Hecke, Linde; Van Dyck, Delfien; Baert, Tim; Van de Weghe, Nico; Clarys, Peter; Deforche, Benedicte; Van Cauwenberg, Jelle

    2018-05-29

    The objective evaluation of the physical environmental characteristics (e.g. speed limit, cycling infrastructure) along adolescents' actual cycling routes remains understudied, although it may provide important insights into why adolescents prefer one cycling route over another. The present study aims to gain insight into the physical environmental characteristics determining the route choice of adolescent cyclists by comparing differences in physical environmental characteristics between their actual cycling routes and the shortest possible cycling routes. Adolescents (n = 204; 46.5% boys; 14.4 ± 1.2 years) recruited at secondary schools in and around Ghent (city in Flanders, northern part of Belgium) were instructed to wear a Global Positioning System device in order to identify cycling trips. For all identified cycling trips, the shortest possible route that could have been taken was calculated. Actual cycling routes that were not the shortest possible cycling routes were divided into street segments. Segments were audited with a Google Street View-based tool to assess physical environmental characteristics along actual and shortest cycling routes. Out of 160 actual cycling trips, 73.1% did not differ from the shortest possible cycling route. For actual cycling routes that were not the shortest cycling route, a speed limit of 30 km/h, roads having few buildings with windows on the street side and roads without cycle lane were more frequently present compared to the shortest possible cycling routes. A mixed land use, roads with commercial destinations, arterial roads, cycle lanes separated from traffic by white lines, small cycle lanes and cycle lanes covered by lighting were less frequently present along actual cycling routes compared to the shortest possible cycling routes. Results showed that distance mainly determines the route along which adolescents cycle. In addition, adolescents cycled more along residential streets (even if no cycle lane was

  16. How Effective is Routing for Wireless Networking

    DTIC Science & Technology

    2016-03-05

    Routing (LAR) [31]. The basic mechanism of how link-based routing schemes operate is as follows: a user broadcasts a control message (called a “ hello ...to all of its neighbors. If a series of hello messages are exchanged between two users, a link is considered to exist between them. Routes are then be...description of ETX is as follows. For a given window of time, the number of hello packets that a user receives from a neighbor is counted. A cost is then

  17. A multipath routing protocol based on clustering and ant colony optimization for wireless sensor networks.

    PubMed

    Yang, Jing; Xu, Mai; Zhao, Wei; Xu, Baoguo

    2010-01-01

    For monitoring burst events in a kind of reactive wireless sensor networks (WSNs), a multipath routing protocol (MRP) based on dynamic clustering and ant colony optimization (ACO) is proposed. Such an approach can maximize the network lifetime and reduce the energy consumption. An important attribute of WSNs is their limited power supply, and therefore some metrics (such as energy consumption of communication among nodes, residual energy, path length) were considered as very important criteria while designing routing in the MRP. Firstly, a cluster head (CH) is selected among nodes located in the event area according to some parameters, such as residual energy. Secondly, an improved ACO algorithm is applied in the search for multiple paths between the CH and sink node. Finally, the CH dynamically chooses a route to transmit data with a probability that depends on many path metrics, such as energy consumption. The simulation results show that MRP can prolong the network lifetime, as well as balance of energy consumption among nodes and reduce the average energy consumption effectively.

  18. Generalized networking engineering: optimal pricing and routing in multiservice networks

    NASA Astrophysics Data System (ADS)

    Mitra, Debasis; Wang, Qiong

    2002-07-01

    One of the functions of network engineering is to allocate resources optimally to forecasted demand. We generalize the mechanism by incorporating price-demand relationships into the problem formulation, and optimizing pricing and routing jointly to maximize total revenue. We consider a network, with fixed topology and link bandwidths, that offers multiple services, such as voice and data, each having characteristic price elasticity of demand, and quality of service and policy requirements on routing. Prices, which depend on service type and origin-destination, determine demands, that are routed, subject to their constraints, so as to maximize revenue. We study the basic properties of the optimal solution and prove that link shadow costs provide the basis for both optimal prices and optimal routing policies. We investigate the impact of input parameters, such as link capacities and price elasticities, on prices, demand growth, and routing policies. Asymptotic analyses, in which network bandwidth is scaled to grow, give results that are noteworthy for their qualitative insights. Several numerical examples illustrate the analyses.

  19. Analysis of Pervasive Mobile Ad Hoc Routing Protocols

    NASA Astrophysics Data System (ADS)

    Qadri, Nadia N.; Liotta, Antonio

    Mobile ad hoc networks (MANETs) are a fundamental element of pervasive networks and therefore, of pervasive systems that truly support pervasive computing, where user can communicate anywhere, anytime and on-the-fly. In fact, future advances in pervasive computing rely on advancements in mobile communication, which includes both infrastructure-based wireless networks and non-infrastructure-based MANETs. MANETs introduce a new communication paradigm, which does not require a fixed infrastructure - they rely on wireless terminals for routing and transport services. Due to highly dynamic topology, absence of established infrastructure for centralized administration, bandwidth constrained wireless links, and limited resources in MANETs, it is challenging to design an efficient and reliable routing protocol. This chapter reviews the key studies carried out so far on the performance of mobile ad hoc routing protocols. We discuss performance issues and metrics required for the evaluation of ad hoc routing protocols. This leads to a survey of existing work, which captures the performance of ad hoc routing algorithms and their behaviour from different perspectives and highlights avenues for future research.

  20. Route Repetition and Route Reversal: Effects of Age and Encoding Method

    PubMed Central

    Allison, Samantha; Head, Denise

    2017-01-01

    Previous research indicates age-related impairments in learning routes from a start location to a target destination. There is less research on age effects on the ability to reverse a learned path. The method used to learn routes may also influence performance. This study examined how encoding methods influence the ability of younger and older adults to recreate a route in a virtual reality environment in forward and reverse directions. Younger (n=50) and older (n=50) adults learned a route by either self-navigation through the virtual environment or through studying a map. At test, participants recreated the route in the forward and reverse directions. Older adults in the map study condition had greater difficulty learning the route in the forward direction compared to younger adults. Older adults who learned the route by self-navigation were less accurate in traversing the route in the reverse compared to forward direction after a delay. In contrast, for older adults who learned via map study there were no significant differences between forward and reverse directions. Results suggest that older adults may not as readily develop and retain a sufficiently flexible representation of the environment during self-navigation to support accurate route reversal. Thus, initially learning a route from a map may be more difficult for older adults, but may ultimately be beneficial in terms of better supporting the ability to return to a start location. PMID:28504535

  1. Assessment of Novel Routes of Biomethane Utilization in a Life Cycle Perspective

    PubMed Central

    Moghaddam, Elham Ahmadi; Ahlgren, Serina; Nordberg, Åke

    2016-01-01

    Biomethane, as a replacement for natural gas, reduces the use of fossil-based sources and supports the intended change from fossil to bio-based industry. The study assessed different biomethane utilization routes for production of methanol, dimethyl ether (DME), and ammonia, as fuel or platform chemicals and combined heat and power (CHP). Energy efficiency and environmental impacts of the different pathways was studied in a life cycle perspective covering the technical system from biomass production to the end product. Among the routes studied, CHP had the highest energy balance and least environmental impact. DME and methanol performed competently in energy balance and environmental impacts in comparison with the ammonia route. DME had the highest total energy output, as fuel, heat, and steam, among the different routes studied. Substituting the bio-based routes for fossil-based alternatives would give a considerable reduction in environmental impacts such as global warming potential and acidification potential for all routes studied, especially CHP, DME, and methanol. Eutrophication potential was mainly a result of biomass and biomethane production, with marginal differences between the different routes. PMID:28066762

  2. An efficient group multicast routing for multimedia communication

    NASA Astrophysics Data System (ADS)

    Wang, Yanlin; Sun, Yugen; Yan, Xinfang

    2004-04-01

    Group multicasting is a kind of communication mechanism whereby each member of a group sends messages to all the other members of the same group. Group multicast routing algorithms capable of satisfying quality of service (QoS) requirements of multimedia applications are essential for high-speed networks. We present a heuristic algorithm for group multicast routing with end to end delay constraint. Source-specific routing trees for each member are generated in our algorithm, which satisfy member"s bandwidth and end to end delay requirements. Simulations over random network were carried out to compare proposed algorithm performance with Low and Song"s. The experimental results show that our proposed algorithm performs better in terms of network cost and ability in constructing feasible multicast trees for group members. Moreover, our algorithm achieves good performance in balancing traffic, which can avoid link blocking and enhance the network behavior efficiently.

  3. [Erythropoiesis-stimulating agents in chronic kidney disease: which route of administration?].

    PubMed

    Borrelli, S; Baldanza, D; Scigliano, R; Catapano, F; Grimaldi, M; Calabria, M; Zamboli, P; Minutolo, R; De Nicola, L; Conte, G

    2009-01-01

    In the last twenty years, erythropoiesis-stimulating agents (ESAs) have improved the management of renal anemia, with significant amelioration of quality of life in patients on hemodialysis. ESAs can be administered both intravenously and subcutaneously. In predialysis chronic kidney disease and in peritoneal dialysis, the administration route is necessarily subcutaneous. In hemodialysis the intravenous route was initially preferred because of the presence of ready vascular access for drug administration. Subsequent studies have demonstrated that the subcutaneous route allowed the achievement of optimal levels of hemoglobin with a reduction of mean administered dose, number of injections, and costs. A few years ago, the finding of a higher risk of pure red cell aplasia associated with subcutaneous administration of epoetin reopened the debate about the route of administration. We here review the studies on the preferable route of administration of epoetin and darbepoetin- alpha, in terms of efficacy and safety, and take a look at future perspectives.

  4. A Critical Review of Surveys Emphasizing on Routing in Wireless Sensor Networks—An Anatomization under General Survey Design Framework

    PubMed Central

    2017-01-01

    A large number of routing-related surveys are published so far for Wireless Sensor Networks (WSNs) that exhibit either complete or partial emphasis on routing in WSNs. These surveys classify and discuss the relevant routing protocols published mainly in the fields of classical, energy efficient, secure, hierarchical, geographic, intelligent, Quality of Service (QoS)-based and multipath WSNs. However, to the best of our knowledge, no study is presented so far which may clearly categorize the routing-related survey literature for WSNs.To fill this gap, an effort is made in this paper for presenting an in-depth review of already published routing-related survey literature in WSNs. Our review initially proposes a generalized survey design model and afterwards analyzes the routing-related survey literature in the light of the devised General Survey Design Framework (GSDF). Such an analysis describes the design soundness of the published routing-related surveys. Therefore, our review puts forth an original classification based on the frequency-of-survey-publication and taxonomizes the corresponding routing-related fields into high, medium and low focused areas of survey publication in WSNs. Furthermore, the surveys belonging to each main category are sub-categorized into various sub-classes and briefly discussed according to their design characteristics. On the one hand, this review is useful for beginners who may easily explore the already published routing-related survey literature in WSNs in a single document and investigate it by spending less effort. On the other hand, it is useful for expert researchers who may explore the trends and frequency of writing surveys in different areas of routing in WSNs. The experts may explore those areas of routing which are either neglected or least focused or lack in design soundness as per general survey design framework. In the end, insights and future research directions are outlined and a reasonable conclusion is put forth

  5. A Critical Review of Surveys Emphasizing on Routing in Wireless Sensor Networks-An Anatomization under General Survey Design Framework.

    PubMed

    Rehan, Waqas; Fischer, Stefan; Rehan, Maaz

    2017-07-26

    A large number of routing-related surveys are published so far for Wireless Sensor Networks (WSNs) that exhibit either complete or partial emphasis on routing in WSNs. These surveys classify and discuss the relevant routing protocols published mainly in the fields of classical, energy efficient, secure, hierarchical, geographic, intelligent, Quality of Service (QoS)-based and multipath WSNs. However, to the best of our knowledge, no study is presented so far which may clearly categorize the routing-related survey literature for WSNs.To fill this gap, an effort is made in this paper for presenting an in-depth review of already published routing-related survey literature in WSNs. Our review initially proposes a generalized survey design model and afterwards analyzes the routing-related survey literature in the light of the devised General Survey Design Framework (GSDF) . Such an analysis describes the design soundness of the published routing-related surveys. Therefore, our review puts forth an original classification based on the frequency-of-survey-publication and taxonomizes the corresponding routing-related fields into high, medium and low focused areas of survey publication in WSNs. Furthermore, the surveys belonging to each main category are sub-categorized into various sub-classes and briefly discussed according to their design characteristics. On the one hand, this review is useful for beginners who may easily explore the already published routing-related survey literature in WSNs in a single document and investigate it by spending less effort. On the other hand, it is useful for expert researchers who may explore the trends and frequency of writing surveys in different areas of routing in WSNs. The experts may explore those areas of routing which are either neglected or least focused or lack in design soundness as per general survey design framework. In the end, insights and future research directions are outlined and a reasonable conclusion is put forth

  6. Routing architecture and security for airborne networks

    NASA Astrophysics Data System (ADS)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  7. Routing Algorithm based on Minimum Spanning Tree and Minimum Cost Flow for Hybrid Wireless-optical Broadband Access Network

    NASA Astrophysics Data System (ADS)

    Le, Zichun; Suo, Kaihua; Fu, Minglei; Jiang, Ling; Dong, Wen

    2012-03-01

    In order to minimize the average end to end delay for data transporting in hybrid wireless optical broadband access network, a novel routing algorithm named MSTMCF (minimum spanning tree and minimum cost flow) is devised. The routing problem is described as a minimum spanning tree and minimum cost flow model and corresponding algorithm procedures are given. To verify the effectiveness of MSTMCF algorithm, extensively simulations based on OWNS have been done under different types of traffic source.

  8. Snow route optimization.

    DOT National Transportation Integrated Search

    2016-01-01

    Route optimization is a method of creating a set of winter highway treatment routes to meet a range of targets, including : service level improvements, resource reallocation and changes to overriding constraints. These routes will allow the : operato...

  9. Quantum chemistry-assisted synthesis route development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hori, Kenji; Sumimoto, Michinori; Murafuji, Toshihiro

    2015-12-31

    We have been investigating “quantum chemistry-assisted synthesis route development” using in silico screenings and applied the method to several targets. Another example was conducted to develop synthesis routes for a urea derivative, namely 1-(4-(trifluoromethyl)-2-oxo-2H-chromen-7-yl)urea. While five synthesis routes were examined, only three routes passed the second in silico screening. Among them, the reaction of 7-amino-4-(trifluoromethyl)-2H-chromen-2-one and O-methyl carbamate with BF{sub 3} as an additive was ranked as the first choice for synthetic work. We were able to experimentally obtain the target compound even though its yield was as low as 21 %. The theoretical result was thus consistent with thatmore » observed. The summary of transition state data base (TSDB) is also provided. TSDB is the key to reducing time of in silico screenings.« less

  10. Visualizing Internet routing changes.

    PubMed

    Lad, Mohit; Massey, Dan; Zhang, Lixia

    2006-01-01

    Today's Internet provides a global data delivery service to millions of end users and routing protocols play a critical role in this service. It is important to be able to identify and diagnose any problems occurring in Internet routing. However, the Internet's sheer size makes this task difficult. One cannot easily extract out the most important or relevant routing information from the large amounts of data collected from multiple routers. To tackle this problem, we have developed Link-Rank, a tool to visualize Internet routing changes at the global scale. Link-Rank weighs links in a topological graph by the number of routes carried over each link and visually captures changes in link weights in the form of a topological graph with adjustable size. Using Link-Rank, network operators can easily observe important routing changes from massive amounts of routing data, discover otherwise unnoticed routing problems, understand the impact of topological events, and infer root causes of observed routing changes.

  11. Trajectory-adaptive route choice models : specification, choice set generation, and estimation.

    DOT National Transportation Integrated Search

    2013-03-01

    The objective of the research is to investigate adaptive route choice behavior using individuallevel route choice data from GPS (Global Positioning System) observations in a real-life : network, where a traveler could revise the route choice based up...

  12. A dynamic routing strategy with limited buffer on scale-free network

    NASA Astrophysics Data System (ADS)

    Wang, Yufei; Liu, Feng

    2016-04-01

    In this paper, we propose an integrated routing strategy based on global static topology information and local dynamic data packet queue lengths to improve the transmission efficiency of scale-free networks. The proposed routing strategy is a combination of a global static routing strategy (based on the shortest path algorithm) and local dynamic queue length management, in which, instead of using an infinite buffer, the queue length of each node i in the proposed routing strategy is limited by a critical queue length Qic. When the network traffic is lower and the queue length of each node i is shorter than its critical queue length Qic, it forwards packets according to the global routing table. With increasing network traffic, when the buffers of the nodes with higher degree are full, they do not receive packets due to their limited buffers and the packets have to be delivered to the nodes with lower degree. The global static routing strategy can shorten the transmission time that it takes a packet to reach its destination, and the local limited queue length can balance the network traffic. The optimal critical queue lengths of nodes have been analysed. Simulation results show that the proposed routing strategy can get better performance than that of the global static strategy based on topology, and almost the same performance as that of the global dynamic routing strategy with less complexity.

  13. Acquisition of business intelligence from human experience in route planning

    NASA Astrophysics Data System (ADS)

    Bello Orgaz, Gema; Barrero, David F.; R-Moreno, María D.; Camacho, David

    2015-04-01

    The logistic sector raises a number of highly challenging problems. Probably one of the most important ones is the shipping planning, i.e. plan the routes that the shippers have to follow to deliver the goods. In this article, we present an artificial intelligence-based solution that has been designed to help a logistic company to improve its routes planning process. In order to achieve this goal, the solution uses the knowledge acquired by the company drivers to propose optimised routes. Hence, the proposed solution gathers the experience of the drivers, processes it and optimises the delivery process. The solution uses data mining to extract knowledge from the company information systems and prepares it for analysis with a case-based reasoning (CBR) algorithm. The CBR obtains critical business intelligence knowledge from the drivers experience that is needed by the planner. The design of the routes is done by a genetic algorithm that, given the processed information, optimises the routes following several objectives, such as minimise the distance or time. Experimentation shows that the proposed approach is able to find routes that improve, on average, the routes made by the human experts.

  14. Network-wide BGP route prediction for traffic engineering

    NASA Astrophysics Data System (ADS)

    Feamster, Nick; Rexford, Jennifer

    2002-07-01

    The Internet consists of about 13,000 Autonomous Systems (AS's) that exchange routing information using the Border Gateway Protocol (BGP). The operators of each AS must have control over the flow of traffic through their network and between neighboring AS's. However, BGP is a complicated, policy-based protocol that does not include any direct support for traffic engineering. In previous work, we have demonstrated that network operators can adapt the flow of traffic in an efficient and predictable fashion through careful adjustments to the BGP policies running on their edge routers. Nevertheless, many details of the BGP protocol and decision process make predicting the effects of these policy changes difficult. In this paper, we describe a tool that predicts traffic flow at network exit points based on the network topology, the import policy associated with each BGP session, and the routing advertisements received from neighboring AS's. We present a linear-time algorithm that computes a network-wide view of the best BGP routes for each destination prefix given a static snapshot of the network state, without simulating the complex details of BGP message passing. We describe how to construct this snapshot using the BGP routing tables and router configuration files available from operational routers. We verify the accuracy of our algorithm by applying our tool to routing and configuration data from AT&T's commercial IP network. Our route prediction techniques help support the operation of large IP backbone networks, where interdomain routing is an important aspect of traffic engineering.

  15. Model of a Frame of Dynamic Routing and Its Equilibrium

    NASA Astrophysics Data System (ADS)

    Zhang, Shu; Yuan, Yuan; Xu, Jian

    Dynamic routing algorithm based on the shortest path principle is criticized due to the oscillation induced by such routing scheme. In the present work, we propose the model of TCP/RED algorithm by a new frame of dynamic routing, based on the measurement of occupation ratio of router buffer for different links, which only requires the information of the queue size at the buffer of the router, to stabilize the system. We classify several types of equilibrium and employ the numerical method to study the stability of the steady state. Our numerical results show that the careful selection of the parameters characterizing the dynamic routing algorithm can stabilize the system in some cases.

  16. Using Collective Intelligence to Route Internet Traffic

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Tumer, Kagan; Frank, Jeremy

    1998-01-01

    A Collective Intelligence (COIN) is a community of interacting reinforcement learning (RL) algorithms designed so that their collective behavior maximizes a global utility function. We introduce the theory of COINs, then present experiments using that theory to design COINs to control internet traffic routing. These experiments indicate that COINs outperform previous RL-based systems for such routing that have previously been investigated.

  17. Community-Based Participatory Research in Indian Country: Improving Health through Water Quality Research and Awareness

    PubMed Central

    Cummins, C.; Doyle, J.; Kindness, L.; Lefthand, M.J.; Bear Don't Walk, U.J.; Bends, A.; Broadaway, S.C.; Camper, A.K.; Fitch, R.; Ford, T.E.; Hamner, S.; Morrison, A.R.; Richards, C.L.; Young, S.L.; Eggers, M.J.

    2011-01-01

    Water has always been held in high respect by the Apsaálooke (Crow) people of Montana. Tribal members questioned the health of the rivers and well water due to visible water quality deterioration and potential connections to illnesses in the community. Community members initiated collaboration among local organizations, the Tribe and academic partners, resulting in genuine community based participatory research. The article shares what we have learned as tribal members and researchers about working together to examine surface and groundwater contaminants, assess routes of exposure and use our data to bring about improved health of our people and our waters. PMID:20531097

  18. Automated Flight Routing Using Stochastic Dynamic Programming

    NASA Technical Reports Server (NTRS)

    Ng, Hok K.; Morando, Alex; Grabbe, Shon

    2010-01-01

    Airspace capacity reduction due to convective weather impedes air traffic flows and causes traffic congestion. This study presents an algorithm that reroutes flights in the presence of winds, enroute convective weather, and congested airspace based on stochastic dynamic programming. A stochastic disturbance model incorporates into the reroute design process the capacity uncertainty. A trajectory-based airspace demand model is employed for calculating current and future airspace demand. The optimal routes minimize the total expected traveling time, weather incursion, and induced congestion costs. They are compared to weather-avoidance routes calculated using deterministic dynamic programming. The stochastic reroutes have smaller deviation probability than the deterministic counterpart when both reroutes have similar total flight distance. The stochastic rerouting algorithm takes into account all convective weather fields with all severity levels while the deterministic algorithm only accounts for convective weather systems exceeding a specified level of severity. When the stochastic reroutes are compared to the actual flight routes, they have similar total flight time, and both have about 1% of travel time crossing congested enroute sectors on average. The actual flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept more severe convective weather.

  19. Nudging socially isolated people towards well-being with the 'Happiness Route': design of a randomized controlled trial for the evaluation of a happiness-based intervention.

    PubMed

    Weiss, Laura A; Westerhof, Gerben J; Bohlmeijer, Ernst T

    2013-09-20

    The Happiness Route is an innovative intervention that uses a happiness-based approach for people with an accumulation of risk factors for low well-being: socially isolated people with health impairments and a low socioeconomic status. The goal of this intervention is to improve well-being by engaging participants in intrinsically motivated activities with methods from positive psychology. We hypothesize that the primary outcome measure, emotional, social and psychological well-being of participants of the Happiness Route, will increase in comparison to the traditional and commonly-used problem-based approach. Secondary outcome measures are health-related quality of life, psychosocial functioning and health care consumption. Participants will be socially isolated people with health problems and a low socioeconomic status. Participants will be recruited in ten Dutch communities and candidates will be signed up by intermediaries, professionals from the health and social sector. Randomly assigned, half of the participants will follow the Happiness Route and half of the participants will follow the active, problem-focused control group 'Customized Care'. In total, 256 participants will be included. In both conditions, participants will receive counseling sessions from trained counselors. In the control group, participants will talk about their problems and the care they get and counselors help to optimize their care. In the Happiness Route, the counselor ask questions such as "How do you want to live your life?". The intervention helps people to find their 'passion', i.e., a positive goal-engaged and intrinsically motivated activity. It enables them to follow their passion through by a once-only personal happiness budget (maximal €500). We use well-validated and reliable questionnaires to measure primary and secondary outcome measures at baseline, directly after the intervention and at a nine-month follow-up. Shortcomings of earlier intervention studies in positive

  20. Label-based routing for a family of small-world Farey graphs

    NASA Astrophysics Data System (ADS)

    Zhai, Yinhu; Wang, Yinhe

    2016-05-01

    We introduce an informative labelling method for vertices in a family of Farey graphs, and deduce a routing algorithm on all the shortest paths between any two vertices in Farey graphs. The label of a vertex is composed of the precise locating position in graphs and the exact time linking to graphs. All the shortest paths routing between any pair of vertices, which number is exactly the product of two Fibonacci numbers, are determined only by their labels, and the time complexity of the algorithm is O(n). It is the first algorithm to figure out all the shortest paths between any pair of vertices in a kind of deterministic graphs. For Farey networks, the existence of an efficient routing protocol is of interest to design practical communication algorithms in relation to dynamical processes (including synchronization and structural controllability) and also to understand the underlying mechanisms that have shaped their particular structure.

  1. Label-based routing for a family of small-world Farey graphs.

    PubMed

    Zhai, Yinhu; Wang, Yinhe

    2016-05-11

    We introduce an informative labelling method for vertices in a family of Farey graphs, and deduce a routing algorithm on all the shortest paths between any two vertices in Farey graphs. The label of a vertex is composed of the precise locating position in graphs and the exact time linking to graphs. All the shortest paths routing between any pair of vertices, which number is exactly the product of two Fibonacci numbers, are determined only by their labels, and the time complexity of the algorithm is O(n). It is the first algorithm to figure out all the shortest paths between any pair of vertices in a kind of deterministic graphs. For Farey networks, the existence of an efficient routing protocol is of interest to design practical communication algorithms in relation to dynamical processes (including synchronization and structural controllability) and also to understand the underlying mechanisms that have shaped their particular structure.

  2. Using Trust to Establish a Secure Routing Model in Cognitive Radio Network.

    PubMed

    Zhang, Guanghua; Chen, Zhenguo; Tian, Liqin; Zhang, Dongwen

    2015-01-01

    Specific to the selective forwarding attack on routing in cognitive radio network, this paper proposes a trust-based secure routing model. Through monitoring nodes' forwarding behaviors, trusts of nodes are constructed to identify malicious nodes. In consideration of that routing selection-based model must be closely collaborative with spectrum allocation, a route request piggybacking available spectrum opportunities is sent to non-malicious nodes. In the routing decision phase, nodes' trusts are used to construct available path trusts and delay measurement is combined for making routing decisions. At the same time, according to the trust classification, different responses are made specific to their service requests. By adopting stricter punishment on malicious behaviors from non-trusted nodes, the cooperation of nodes in routing can be stimulated. Simulation results and analysis indicate that this model has good performance in network throughput and end-to-end delay under the selective forwarding attack.

  3. Mobile Sinks Assisted Geographic and Opportunistic Routing Based Interference Avoidance for Underwater Wireless Sensor Network

    PubMed Central

    Ahmed, Farwa; Wadud, Zahid; Alrajeh, Nabil; Alabed, Mohamad Souheil

    2018-01-01

    The distinctive features of acoustic communication channel-like high propagation delay, multi-path fading, quick attenuation of acoustic signal, etc. limit the utilization of underwater wireless sensor networks (UWSNs). The immutable selection of forwarder node leads to dramatic death of node resulting in imbalanced energy depletion and void hole creation. To reduce the probability of void occurrence and imbalance energy dissipation, in this paper, we propose mobility assisted geo-opportunistic routing paradigm based on interference avoidance for UWSNs. The network volume is divided into logical small cubes to reduce the interference and to make more informed routing decisions for efficient energy consumption. Additionally, an optimal number of forwarder nodes is elected from each cube based on its proximity with respect to the destination to avoid void occurrence. Moreover, the data packets are recovered from void regions with the help of mobile sinks which also reduce the data traffic on intermediate nodes. Extensive simulations are performed to verify that our proposed work maximizes the network lifetime and packet delivery ratio. PMID:29614794

  4. Mobile Sinks Assisted Geographic and Opportunistic Routing Based Interference Avoidance for Underwater Wireless Sensor Network.

    PubMed

    Ahmed, Farwa; Wadud, Zahid; Javaid, Nadeem; Alrajeh, Nabil; Alabed, Mohamad Souheil; Qasim, Umar

    2018-04-02

    The distinctive features of acoustic communication channel-like high propagation delay, multi-path fading, quick attenuation of acoustic signal, etc. limit the utilization of underwater wireless sensor networks (UWSNs). The immutable selection of forwarder node leads to dramatic death of node resulting in imbalanced energy depletion and void hole creation. To reduce the probability of void occurrence and imbalance energy dissipation, in this paper, we propose mobility assisted geo-opportunistic routing paradigm based on interference avoidance for UWSNs. The network volume is divided into logical small cubes to reduce the interference and to make more informed routing decisions for efficient energy consumption. Additionally, an optimal number of forwarder nodes is elected from each cube based on its proximity with respect to the destination to avoid void occurrence. Moreover, the data packets are recovered from void regions with the help of mobile sinks which also reduce the data traffic on intermediate nodes. Extensive simulations are performed to verify that our proposed work maximizes the network lifetime and packet delivery ratio.

  5. Historical data learning based dynamic LSP routing for overlay IP/MPLS over WDM networks

    NASA Astrophysics Data System (ADS)

    Yu, Xiaojun; Xiao, Gaoxi; Cheng, Tee Hiang

    2013-08-01

    Overlay IP/MPLS over WDM network is a promising network architecture starting to gain wide deployments recently. A desirable feature of such a network is to achieve efficient routing with limited information exchanges between the IP/MPLS and the WDM layers. This paper studies dynamic label switched path (LSP) routing in the overlay IP/MPLS over WDM networks. To enhance network performance while maintaining its simplicity, we propose to learn from the historical data of lightpath setup costs maintained by the IP-layer integrated service provider (ISP) when making routing decisions. Using a novel historical data learning scheme for logical link cost estimation, we develop a new dynamic LSP routing method named Existing Link First (ELF) algorithm. Simulation results show that the proposed algorithm significantly outperforms the existing ones under different traffic loads, with either limited or unlimited numbers of optical ports. Effects of the number of candidate routes, add/drop ratio and the amount of historical data are also evaluated.

  6. Routing and wavelength assignment based on normalized resource and constraints for all-optical network

    NASA Astrophysics Data System (ADS)

    Joo, Seong-Soon; Nam, Hyun-Soon; Lim, Chang-Kyu

    2003-08-01

    With the rapid growth of the Optical Internet, high capacity pipes is finally destined to support end-to-end IP on the WDM optical network. Newly launched 2D MEMS optical switching module in the market supports that expectations of upcoming a transparent optical cross-connect in the network have encouraged the field applicable research on establishing real all-optical transparent network. To open up a customer-driven bandwidth services, design of the optical transport network becomes more challenging task in terms of optimal network resource usage. This paper presents a practical approach to finding a route and wavelength assignment for wavelength routed all-optical network, which has λ-plane OXC switches and wavelength converters, and supports that optical paths are randomly set up and released by dynamic wavelength provisioning to create bandwidth between end users with timescales on the order of seconds or milliseconds. We suggest three constraints to make the RWA problem become more practical one on deployment for wavelength routed all-optical network in network view: limitation on maximum hop of a route within bearable optical network impairments, limitation on minimum hops to travel before converting a wavelength, and limitation on calculation time to find all routes for connections requested at once. We design the NRCD (Normalized Resource and Constraints for All-Optical Network RWA Design) algorithm for the Tera OXC: network resource for a route is calculated by the number of internal switching paths established in each OXC nodes on the route, and is normalized by ratio of number of paths established and number of paths equipped in a node. We show that it fits for the RWA algorithm of the wavelength routed all-optical network through real experiments on the distributed objects platform.

  7. Improved Efficient Routing Strategy on Scale-Free Networks

    NASA Astrophysics Data System (ADS)

    Jiang, Zhong-Yuan; Liang, Man-Gui

    Since the betweenness of nodes in complex networks can theoretically represent the traffic load of nodes under the currently used routing strategy, we propose an improved efficient (IE) routing strategy to enhance to the network traffic capacity based on the betweenness centrality. Any node with the highest betweenness is susceptible to traffic congestion. An efficient way to improve the network traffic capacity is to redistribute the heavy traffic load from these central nodes to non-central nodes, so in this paper, we firstly give a path cost function by considering the sum of node betweenness with a tunable parameter β along the actual path. Then, by minimizing the path cost, our IE routing strategy achieved obvious improvement on the network transport efficiency. Simulations on scale-free Barabási-Albert (BA) networks confirmed the effectiveness of our strategy, when compared with the efficient routing (ER) and the shortest path (SP) routing.

  8. Metro passengers’ route choice model and its application considering perceived transfer threshold

    PubMed Central

    Jin, Fanglei; Zhang, Yongsheng; Liu, Shasha

    2017-01-01

    With the rapid development of the Metro network in China, the greatly increased route alternatives make passengers’ route choice behavior and passenger flow assignment more complicated, which presents challenges to the operation management. In this paper, a path sized logit model is adopted to analyze passengers’ route choice preferences considering such parameters as in-vehicle time, number of transfers, and transfer time. Moreover, the “perceived transfer threshold” is defined and included in the utility function to reflect the penalty difference caused by transfer time on passengers’ perceived utility under various numbers of transfers. Next, based on the revealed preference data collected in the Guangzhou Metro, the proposed model is calibrated. The appropriate perceived transfer threshold value and the route choice preferences are analyzed. Finally, the model is applied to a personalized route planning case to demonstrate the engineering practicability of route choice behavior analysis. The results show that the introduction of the perceived transfer threshold is helpful to improve the model’s explanatory abilities. In addition, personalized route planning based on route choice preferences can meet passengers’ diversified travel demands. PMID:28957376

  9. Case Study on Optimal Routing in Logistics Network by Priority-based Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoguang; Lin, Lin; Gen, Mitsuo; Shiota, Mitsushige

    Recently, research on logistics caught more and more attention. One of the important issues on logistics system is to find optimal delivery routes with the least cost for products delivery. Numerous models have been developed for that reason. However, due to the diversity and complexity of practical problem, the existing models are usually not very satisfying to find the solution efficiently and convinently. In this paper, we treat a real-world logistics case with a company named ABC Co. ltd., in Kitakyusyu Japan. Firstly, based on the natures of this conveyance routing problem, as an extension of transportation problem (TP) and fixed charge transportation problem (fcTP) we formulate the problem as a minimum cost flow (MCF) model. Due to the complexity of fcTP, we proposed a priority-based genetic algorithm (pGA) approach to find the most acceptable solution to this problem. In this pGA approach, a two-stage path decoding method is adopted to develop delivery paths from a chromosome. We also apply the pGA approach to this problem, and compare our results with the current logistics network situation, and calculate the improvement of logistics cost to help the management to make decisions. Finally, in order to check the effectiveness of the proposed method, the results acquired are compared with those come from the two methods/ software, such as LINDO and CPLEX.

  10. Producing High-Quality Titanium Alloy by a Cost-Effective Route Combining Fast Heating and Hot Processing

    NASA Astrophysics Data System (ADS)

    Yang, Fei; Raynova, Stella; Singh, Ajit; Zhao, Qinyang; Romero, Carlos; Bolzoni, Leandro

    2018-02-01

    Powder metallurgy is a very attractive method for producing titanium alloys, which can be near-net-shape formed and have freedom in composition selection. However, applications are still limited due to product affordability. In this paper, we will discuss a possible cost-effective route, combining fast heating and hot processing, to produce titanium alloys with similar or even better mechanical properties than that of ingot metallurgy titanium alloys. Two titanium alloys, Ti-5Al-5V-5Mo-3Cr (Ti-5553) and Ti-5Fe, were successfully produced from HDH titanium powder and other master alloy powders using the proposed processing route. The effect of the processing route on microstructural variation and mechanical properties have been discussed.

  11. Design and Analysis of A Beacon-Less Routing Protocol for Large Volume Content Dissemination in Vehicular Ad Hoc Networks.

    PubMed

    Hu, Miao; Zhong, Zhangdui; Ni, Minming; Baiocchi, Andrea

    2016-11-01

    Large volume content dissemination is pursued by the growing number of high quality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors' best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well.

  12. Design and Analysis of A Beacon-Less Routing Protocol for Large Volume Content Dissemination in Vehicular Ad Hoc Networks

    PubMed Central

    Hu, Miao; Zhong, Zhangdui; Ni, Minming; Baiocchi, Andrea

    2016-01-01

    Large volume content dissemination is pursued by the growing number of high quality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors’ best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well. PMID:27809285

  13. Revealed Preference Methods for Studying Bicycle Route Choice-A Systematic Review.

    PubMed

    Pritchard, Ray

    2018-03-07

    One fundamental aspect of promoting utilitarian bicycle use involves making modifications to the built environment to improve the safety, efficiency and enjoyability of cycling. Revealed preference data on bicycle route choice can assist greatly in understanding the actual behaviour of a highly heterogeneous group of users, which in turn assists the prioritisation of infrastructure or other built environment initiatives. This systematic review seeks to compare the relative strengths and weaknesses of the empirical approaches for evaluating whole journey route choices of bicyclists. Two electronic databases were systematically searched for a selection of keywords pertaining to bicycle and route choice. In total seven families of methods are identified: GPS devices, smartphone applications, crowdsourcing, participant-recalled routes, accompanied journeys, egocentric cameras and virtual reality. The study illustrates a trade-off in the quality of data obtainable and the average number of participants. Future additional methods could include dockless bikeshare, multiple camera solutions using computer vision and immersive bicycle simulator environments.

  14. Revealed Preference Methods for Studying Bicycle Route Choice—A Systematic Review

    PubMed Central

    2018-01-01

    One fundamental aspect of promoting utilitarian bicycle use involves making modifications to the built environment to improve the safety, efficiency and enjoyability of cycling. Revealed preference data on bicycle route choice can assist greatly in understanding the actual behaviour of a highly heterogeneous group of users, which in turn assists the prioritisation of infrastructure or other built environment initiatives. This systematic review seeks to compare the relative strengths and weaknesses of the empirical approaches for evaluating whole journey route choices of bicyclists. Two electronic databases were systematically searched for a selection of keywords pertaining to bicycle and route choice. In total seven families of methods are identified: GPS devices, smartphone applications, crowdsourcing, participant-recalled routes, accompanied journeys, egocentric cameras and virtual reality. The study illustrates a trade-off in the quality of data obtainable and the average number of participants. Future additional methods could include dockless bikeshare, multiple camera solutions using computer vision and immersive bicycle simulator environments. PMID:29518991

  15. Children's route choice during active transportation to school: difference between shortest and actual route.

    PubMed

    Dessing, Dirk; de Vries, Sanne I; Hegeman, Geertje; Verhagen, Evert; van Mechelen, Willem; Pierik, Frank H

    2016-04-12

    The purpose of this study is to increase our understanding of environmental correlates that are associated with route choice during active transportation to school (ATS) by comparing characteristics of actual walking and cycling routes between home and school with the shortest possible route to school. Children (n = 184; 86 boys, 98 girls; age range: 8-12 years) from seven schools in suburban municipalities in the Netherlands participated in the study. Actual walking and cycling routes to school were measured with a GPS-device that children wore during an entire school week. Measurements were conducted in the period April-June 2014. Route characteristics for both actual and shortest routes between home and school were determined for a buffer of 25 m from the routes and divided into four categories: Land use (residential, commercial, recreational, traffic areas), Aesthetics (presence of greenery/natural water ways along route), Traffic (safety measures such as traffic lights, zebra crossings, speed bumps) and Type of street (pedestrian, cycling, residential streets, arterial roads). Comparison of characteristics of shortest and actual routes was performed with conditional logistic regression models. Median distance of the actual walking routes was 390.1 m, whereas median distance of actual cycling routes was 673.9 m. Actual walking and cycling routes were not significantly longer than the shortest possible routes. Children mainly traveled through residential areas on their way to school (>80% of the route). Traffic lights were found to be positively associated with route choice during ATS. Zebra crossings were less often present along the actual routes (walking: OR = 0.17, 95% CI = 0.05-0.58; cycling: OR = 0.31, 95% CI = 0.14-0.67), and streets with a high occurrence of accidents were less often used during cycling to school (OR = 0.57, 95% CI = 0.43-0.76). Moreover, percentage of visible surface water along the actual route was higher

  16. Be-safe travel, a web-based geographic application to explore safe-route in an area

    NASA Astrophysics Data System (ADS)

    Utamima, Amalia; Djunaidy, Arif

    2017-08-01

    In large cities in developing countries, the various forms of criminality are often found. For instance, the most prominent crimes in Surabaya, Indonesia is 3C, that is theft with violence (curas), theft by weighting (curat), and motor vehicle theft (curanmor). 3C case most often occurs on the highway and residential areas. Therefore, new entrants in an area should be aware of these kind of crimes. Route Planners System or route planning system such as Google Maps only consider the shortest distance in the calculation of the optimal route. The selection of the optimal path in this study not only consider the shortest distance, but also involves other factors, namely the security level. This research considers at the need for an application to recommend the safest road to be passed by the vehicle passengers while drive an area. This research propose Be-Safe Travel, a web-based application using Google API that can be accessed by people who like to drive in an area, but still lack of knowledge of the pathways which are safe from crime. Be-Safe Travel is not only useful for the new entrants, but also useful for delivery courier of valuables goods to go through the safest streets.

  17. UMDR: Multi-Path Routing Protocol for Underwater Ad Hoc Networks with Directional Antenna

    NASA Astrophysics Data System (ADS)

    Yang, Jianmin; Liu, Songzuo; Liu, Qipei; Qiao, Gang

    2018-01-01

    This paper presents a new routing scheme for underwater ad hoc networks based on directional antennas. Ad hoc networks with directional antennas have become a hot research topic because of space reuse may increase networks capacity. At present, researchers have applied traditional self-organizing routing protocols (such as DSR, AODV) [1] [2] on this type of networks, and the routing scheme is based on the shortest path metric. However, such routing schemes often suffer from long transmission delays and frequent link fragmentation along the intermediate nodes of the selected route. This is caused by a unique feature of directional transmission, often called as “deafness”. In this paper, we take a different approach to explore the advantages of space reuse through multipath routing. This paper introduces the validity of the conventional routing scheme in underwater ad hoc networks with directional antennas, and presents a special design of multipath routing algorithm for directional transmission. The experimental results show a significant performance improvement in throughput and latency.

  18. Geo-Based Inter-Domain Routing (GIDR) Protocol for MANETS

    DTIC Science & Technology

    2009-10-01

    routing, and support for node mobility. Crowcroft et al. proposed Plutarch as architecture to translate address spaces and transport protocols among...Warfield, “ Plutarch : an argument for network pluralism,” ACM Computer Communication Review, vol. 33, no. 4, pp. 258–266, 2003. [6] S. Schmid, L

  19. Neighboring and connectivity-aware routing in VANETs.

    PubMed

    Ghafoor, Huma; Koo, Insoo; Gohar, Nasir-ud-Din

    2014-01-01

    A novel position-based routing protocol anchor-based connectivity-aware routing (ACAR) for vehicular ad hoc networks (VANETs) is proposed in this paper to ensure connectivity of routes with more successfully delivered packets. Both buses and cars are considered as vehicular nodes running in both clockwise and anticlockwise directions in a city scenario. Both directions are taken into account for faster communication. ACAR is a hybrid protocol, using both the greedy forwarding approach and the store-carry-and-forward approach to minimize the packet drop rate on the basis of certain assumptions. Our solution to situations that occur when the network is sparse and when any (source or intermediate) node has left its initial position makes this protocol different from those existing in the literature. We consider only vehicle-to-vehicle (V2V) communication in which both the source and destination nodes are moving vehicles. Also, no road-side units are considered. Finally, we compare our protocol with A-STAR (a plausible connectivity-aware routing protocol for city environments), and simulation results in NS-2 show improvement in the number of packets delivered to the destination using fewer hops. Also, we show that ACAR has more successfully-delivered long-distance packets with reasonable packet delay than A-STAR.

  20. Centralized Routing and Scheduling Using Multi-Channel System Single Transceiver in 802.16d

    NASA Astrophysics Data System (ADS)

    Al-Hemyari, A.; Noordin, N. K.; Ng, Chee Kyun; Ismail, A.; Khatun, S.

    This paper proposes a cross-layer optimized strategy that reduces the effect of interferences from neighboring nodes within a mesh networks. This cross-layer design relies on the routing information in network layer and the scheduling table in medium access control (MAC) layer. A proposed routing algorithm in network layer is exploited to find the best route for all subscriber stations (SS). Also, a proposed centralized scheduling algorithm in MAC layer is exploited to assign a time slot for each possible node transmission. The cross-layer optimized strategy is using multi-channel single transceiver and single channel single transceiver systems for WiMAX mesh networks (WMNs). Each node in WMN has a transceiver that can be tuned to any available channel for eliminating the secondary interference. Among the considered parameters in the performance analysis are interference from the neighboring nodes, hop count to the base station (BS), number of children per node, slot reuse, load balancing, quality of services (QoS), and node identifier (ID). Results show that the proposed algorithms significantly improve the system performance in terms of length of scheduling, channel utilization ratio (CUR), system throughput, and average end to end transmission delay.

  1. QoS and energy aware cooperative routing protocol for wildfire monitoring wireless sensor networks.

    PubMed

    Maalej, Mohamed; Cherif, Sofiane; Besbes, Hichem

    2013-01-01

    Wireless sensor networks (WSN) are presented as proper solution for wildfire monitoring. However, this application requires a design of WSN taking into account the network lifetime and the shadowing effect generated by the trees in the forest environment. Cooperative communication is a promising solution for WSN which uses, at each hop, the resources of multiple nodes to transmit its data. Thus, by sharing resources between nodes, the transmission quality is enhanced. In this paper, we use the technique of reinforcement learning by opponent modeling, optimizing a cooperative communication protocol based on RSSI and node energy consumption in a competitive context (RSSI/energy-CC), that is, an energy and quality-of-service aware-based cooperative communication routing protocol. Simulation results show that the proposed algorithm performs well in terms of network lifetime, packet delay, and energy consumption.

  2. STORM WATER MANAGEMENT MODEL QUALITY ASSURANCE REPORT: DYNAMIC WAVE FLOW ROUTING

    EPA Science Inventory

    The Storm Water Management Model (SWMM) is a computer-based tool for simulating storm water runoff quantity and quality from primarily urban areas. In 2002 the U.S. Environmental Protection Agency’s Water Supply and Water Resources Division partnered with the consulting firm CDM ...

  3. An optimal routing strategy on scale-free networks

    NASA Astrophysics Data System (ADS)

    Yang, Yibo; Zhao, Honglin; Ma, Jinlong; Qi, Zhaohui; Zhao, Yongbin

    Traffic is one of the most fundamental dynamical processes in networked systems. With the traditional shortest path routing (SPR) protocol, traffic congestion is likely to occur on the hub nodes on scale-free networks. In this paper, we propose an improved optimal routing (IOR) strategy which is based on the betweenness centrality and the degree centrality of nodes in the scale-free networks. With the proposed strategy, the routing paths can accurately bypass hub nodes in the network to enhance the transport efficiency. Simulation results show that the traffic capacity as well as some other indexes reflecting transportation efficiency are further improved with the IOR strategy. Owing to the significantly improved traffic performance, this study is helpful to design more efficient routing strategies in communication or transportation systems.

  4. Performance analysis of routing protocols for IoT

    NASA Astrophysics Data System (ADS)

    Manda, Sridhar; Nalini, N.

    2018-04-01

    Internet of Things (IoT) is an arrangement of advancements that are between disciplinary. It is utilized to have compelling combination of both physical and computerized things. With IoT physical things can have personal virtual identities and participate in distributed computing. Realization of IoT needs the usage of sensors based on the sector for which IoT is integrated. For instance, in healthcare domain, IoT needs to have integration with wearable sensors used by patients. As sensor devices produce huge amount of data, often called big data, there should be efficient routing protocols in place. To the extent remote systems is worried there are some current protocols, for example, OLSR, DSR and AODV. It additionally tosses light into Trust based routing protocol for low-power and lossy systems (TRPL) for IoT. These are broadly utilized remote directing protocols. As IoT is developing round the corner, it is basic to investigate routing protocols that and evaluate their execution regarding throughput, end to end delay, and directing overhead. The execution experiences can help in settling on very much educated choices while incorporating remote systems with IoT. In this paper, we analyzed different routing protocols and their performance is compared. It is found that AODV showed better performance than other routing protocols aforementioned.

  5. Anomaly detection of flight routes through optimal waypoint

    NASA Astrophysics Data System (ADS)

    Pusadan, M. Y.; Buliali, J. L.; Ginardi, R. V. H.

    2017-01-01

    Deciding factor of flight, one of them is the flight route. Flight route determined by coordinate (latitude and longitude). flight routed is determined by its coordinates (latitude and longitude) as defined is waypoint. anomaly occurs, if the aircraft is flying outside the specified waypoint area. In the case of flight data, anomalies occur by identifying problems of the flight route based on data ADS-B. This study has an aim of to determine the optimal waypoints of the flight route. The proposed methods: i) Agglomerative Hierarchical Clustering (AHC) in several segments based on range area coordinates (latitude and longitude) in every waypoint; ii) The coefficient cophenetics correlation (c) to determine the correlation between the members in each cluster; iii) cubic spline interpolation as a graphic representation of the has connected between the coordinates on every waypoint; and iv). Euclidean distance to measure distances between waypoints with 2 centroid result of clustering AHC. The experiment results are value of coefficient cophenetics correlation (c): 0,691≤ c ≤ 0974, five segments the generated of the range area waypoint coordinates, and the shortest and longest distance between the centroid with waypoint are 0.46 and 2.18. Thus, concluded that the shortest distance is used as the reference coordinates of optimal waypoint, and farthest distance can be indicated potentially detected anomaly.

  6. MODFLOW-based coupled surface water routing and groundwater-flow simulation

    USGS Publications Warehouse

    Hughes, Joseph D.; Langevin, Christian D.; White, Jeremy T.

    2015-01-01

    In this paper, we present a flexible approach for simulating one- and two-dimensional routing of surface water using a numerical surface water routing (SWR) code implicitly coupled to the groundwater-flow process in MODFLOW. Surface water routing in SWR can be simulated using a diffusive-wave approximation of the Saint-Venant equations and/or a simplified level-pool approach. SWR can account for surface water flow controlled by backwater conditions caused by small water-surface gradients or surface water control structures. A number of typical surface water control structures, such as culverts, weirs, and gates, can be represented, and it is possible to implement operational rules to manage surface water stages and streamflow. The nonlinear system of surface water flow equations formulated in SWR is solved by using Newton methods and direct or iterative solvers. SWR was tested by simulating the (1) Lal axisymmetric overland flow, (2) V-catchment, and (3) modified Pinder-Sauer problems. Simulated results for these problems compare well with other published results and indicate that SWR provides accurate results for surface water-only and coupled surface water/groundwater problems. Results for an application of SWR and MODFLOW to the Snapper Creek area of Miami-Dade County, Florida, USA are also presented and demonstrate the value of coupled surface water and groundwater simulation in managed, low-relief coastal settings.

  7. Improved efficient routing strategy on two-layer complex networks

    NASA Astrophysics Data System (ADS)

    Ma, Jinlong; Han, Weizhan; Guo, Qing; Zhang, Shuai; Wang, Junfang; Wang, Zhihao

    2016-10-01

    The traffic dynamics of multi-layer networks has become a hot research topic since many networks are comprised of two or more layers of subnetworks. Due to its low traffic capacity, the traditional shortest path routing (SPR) protocol is susceptible to congestion on two-layer complex networks. In this paper, we propose an efficient routing strategy named improved global awareness routing (IGAR) strategy which is based on the betweenness centrality of nodes in the two layers. With the proposed strategy, the routing paths can bypass hub nodes of both layers to enhance the transport efficiency. Simulation results show that the IGAR strategy can bring much better traffic capacity than the SPR and the global awareness routing (GAR) strategies. Because of the significantly improved traffic performance, this study is helpful to alleviate congestion of the two-layer complex networks.

  8. Path Diversity Improved Opportunistic Routing for Underwater Sensor Networks

    PubMed Central

    Wang, Haiyan; He, Ke

    2018-01-01

    The packets carried along a pre-defined route in underwater sensor networks are very vulnerble. Node mobility or intermittent channel availability easily leads to unreachable routing. Opportunistic routing has been proven to be a promising paradigm to design routing protocols for underwater sensor networks. It takes advantage of the broadcast nature of the wireless medium to combat packet losses and selects potential paths on the fly. Finding an appropriate forwarding candidate set is a key issue in opportunistic routing. Many existing solutions ignore the impact of candidates location distribution on packet forwarding. In this paper, a path diversity improved candidate selection strategy is applied in opportunistic routing to improve packet forwarding efficiency. It not only maximizes the packet forwarding advancements but also takes the candidate’s location distribution into account. Based on this strategy, we propose two effective routing protocols: position improved candidates selection (PICS) and position random candidates selection (PRCS). PICS employs two-hop neighbor information to make routing decisions. PRCS only uses one-hop neighbor information. Simulation results show that both PICS and PRCS can significantly improve network performance when compared with the previous solutions, in terms of packet delivery ratio, average energy consumption and end-to-end delay. PMID:29690621

  9. Path Diversity Improved Opportunistic Routing for Underwater Sensor Networks.

    PubMed

    Bai, Weigang; Wang, Haiyan; He, Ke; Zhao, Ruiqin

    2018-04-23

    The packets carried along a pre-defined route in underwater sensor networks are very vulnerble. Node mobility or intermittent channel availability easily leads to unreachable routing. Opportunistic routing has been proven to be a promising paradigm to design routing protocols for underwater sensor networks. It takes advantage of the broadcast nature of the wireless medium to combat packet losses and selects potential paths on the fly. Finding an appropriate forwarding candidate set is a key issue in opportunistic routing. Many existing solutions ignore the impact of candidates location distribution on packet forwarding. In this paper, a path diversity improved candidate selection strategy is applied in opportunistic routing to improve packet forwarding efficiency. It not only maximizes the packet forwarding advancements but also takes the candidate’s location distribution into account. Based on this strategy, we propose two effective routing protocols: position improved candidates selection (PICS) and position random candidates selection (PRCS). PICS employs two-hop neighbor information to make routing decisions. PRCS only uses one-hop neighbor information. Simulation results show that both PICS and PRCS can significantly improve network performance when compared with the previous solutions, in terms of packet delivery ratio, average energy consumption and end-to-end delay.

  10. Routing UAVs to Co-Optimize Mission Effectiveness and Network Performance with Dynamic Programming

    DTIC Science & Technology

    2011-03-01

    Heuristics on Hexagonal Connected Dominating Sets to Model Routing Dissemination," in Communication Theory, Reliability, and Quality of Service (CTRQ...24] Matthew Capt. USAF Compton, Improving the Quality of Service and Security of Military Networks with a Network Tasking Order Process, 2010. [25...Wesley, 2006. [32] James Haught, "Adaptive Quality of Service Engine with Dynamic Queue Control," Air Force Institute of Technology, Wright

  11. Adaptivity in Agent-Based Routing for Data Networks

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Kirshner, Sergey; Merz, Chris J.; Turner, Kagan

    2000-01-01

    Adaptivity, both of the individual agents and of the interaction structure among the agents, seems indispensable for scaling up multi-agent systems (MAS s) in noisy environments. One important consideration in designing adaptive agents is choosing their action spaces to be as amenable as possible to machine learning techniques, especially to reinforcement learning (RL) techniques. One important way to have the interaction structure connecting agents itself be adaptive is to have the intentions and/or actions of the agents be in the input spaces of the other agents, much as in Stackelberg games. We consider both kinds of adaptivity in the design of a MAS to control network packet routing. We demonstrate on the OPNET event-driven network simulator the perhaps surprising fact that simply changing the action space of the agents to be better suited to RL can result in very large improvements in their potential performance: at their best settings, our learning-amenable router agents achieve throughputs up to three and one half times better than that of the standard Bellman-Ford routing algorithm, even when the Bellman-Ford protocol traffic is maintained. We then demonstrate that much of that potential improvement can be realized by having the agents learn their settings when the agent interaction structure is itself adaptive.

  12. Route Recapitulation and Route Loyalty in Homing Pigeons: Pilotage From 25 km?

    NASA Astrophysics Data System (ADS)

    Biro, Dora; Meade, Jessica; Guilford, Tim

    2006-01-01

    We utilised precision Global Positioning System (GPS) tracking to examine the homing paths of pigeons (Columba livia) released 20 times consecutively 25 km from the loft. By the end of the training phase, birds had developed highly stereotyped yet individually distinct routes home, with detailed recapitulation evident at each stage of the journey. Following training, birds also participated in a series of releases from novel sites at perpendicular distances of up to 3 km from their established routes. Results showed that subjects were attracted back to their established routes and recapitulated them from the point of contact. Naïve conspecifics (yoked controls) released from the same off-route sites confirmed that the experienced birds' route choices were not influenced by constraints exerted by terrain features, but that increased experience with the general area conferred a homing advantage in the form of more efficient flight tracks, even from these novel sites. Patterns in the paths taken by experienced birds to rejoin their established routes are discussed with reference to navigational mechanisms employed by homing pigeons in their familiar area.

  13. Optimization-based channel constrained data aggregation routing algorithms in multi-radio wireless sensor networks.

    PubMed

    Yen, Hong-Hsu

    2009-01-01

    In wireless sensor networks, data aggregation routing could reduce the number of data transmissions so as to achieve energy efficient transmission. However, data aggregation introduces data retransmission that is caused by co-channel interference from neighboring sensor nodes. This kind of co-channel interference could result in extra energy consumption and significant latency from retransmission. This will jeopardize the benefits of data aggregation. One possible solution to circumvent data retransmission caused by co-channel interference is to assign different channels to every sensor node that is within each other's interference range on the data aggregation tree. By associating each radio with a different channel, a sensor node could receive data from all the children nodes on the data aggregation tree simultaneously. This could reduce the latency from the data source nodes back to the sink so as to meet the user's delay QoS. Since the number of radios on each sensor node and the number of non-overlapping channels are all limited resources in wireless sensor networks, a challenging question here is to minimize the total transmission cost under limited number of non-overlapping channels in multi-radio wireless sensor networks. This channel constrained data aggregation routing problem in multi-radio wireless sensor networks is an NP-hard problem. I first model this problem as a mixed integer and linear programming problem where the objective is to minimize the total transmission subject to the data aggregation routing, channel and radio resources constraints. The solution approach is based on the Lagrangean relaxation technique to relax some constraints into the objective function and then to derive a set of independent subproblems. By optimally solving these subproblems, it can not only calculate the lower bound of the original primal problem but also provide useful information to get the primal feasible solutions. By incorporating these Lagrangean multipliers

  14. Modeling and Tool Wear in Routing of CFRP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iliescu, D.; Fernandez, A.; Gutierrez-Orrantia, M. E.

    2011-01-17

    This paper presents the prediction and evaluation of feed force in routing of carbon composite material. In order to extend tool life and improve quality of the machined surface, a better understanding of uncoated and coated tool behaviors is required. This work describes (1) the optimization of the geometry of multiple teeth tools minimizing the tool wear and the feed force, (2) the optimization of tool coating and (3) the development of a phenomenological model between the feed force, the routing parameters and the tool wear. The experimental results indicate that the feed rate, the cutting speed and the toolmore » wear are the most significant factors affecting the feed force. In the case of multiple teeth tools, a particular geometry with 14 teeth right helix right cut and 11 teeth left helix right cut gives the best results. A thick AlTiN coating or a diamond coating can dramatically improve the tool life while minimizing the axial force, roughness and delamination. A wear model has then been developed based on an abrasive behavior of the tool. The model links the feed rate to the tool geometry parameters (tool diameter), to the process parameters (feed rate, cutting speed and depth of cut) and to the wear. The model presented has been verified by experimental tests.« less

  15. Routes of administration of antibiotic prophylaxis for preventing infection after caesarean section.

    PubMed

    Nabhan, Ashraf F; Allam, Nahed E; Hamed Abdel-Aziz Salama, Mohamed

    2016-06-17

    Post-caesarean section infection is a cause of maternal morbidity and mortality. Administration of antibiotic prophylaxis is recommended for preventing infection after caesarean delivery. The route of administration of antibiotic prophylaxis should be effective, safe and convenient. Currently, there is a lack of synthesised evidence regarding the benefits and harms of different routes of antibiotic prophylaxis for preventing infection after caesarean section. The aim of this review was to assess the benefits and harms of different routes of prophylactic antibiotics given for preventing infectious morbidity in women undergoing caesarean section. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 January 2016), ClinicalTrials.gov, the WHO International Clinical Trials Registry Platform (ICTRP) (6 January 2016) and reference lists of retrieved studies. We included randomised controlled trials (RCTs) comparing at least two alternative routes of antibiotic prophylaxis for caesarean section (both elective and emergency). Cross-over trials and quasi-RCTs were not eligible for inclusion. Two review authors independently assessed trials for inclusion, assessed the risk of bias and extracted data from the included studies. These steps were checked by a third review author. We included 10 studies (1354 women). The risk of bias was unclear or high in most of the included studies.All of the included trials involved women undergoing caesarean section whether elective or non-elective. Intravenous antibiotics versus antibiotic irrigation (nine studies, 1274 women) Nine studies (1274 women) compared the administration of intravenous antibiotics with antibiotic irrigation. There were no clear differences between groups in terms of this review's maternal primary outcomes: endometritis (risk ratio (RR) 0.95, 95% confidence interval (CI) 0.70 to 1.29; eight studies (966 women) (low-quality evidence)); wound infection (RR 0.49, 95% CI 0.17 to 1.43; seven

  16. Assessment of different route choice on commuters' exposure to air pollution in Taipei, Taiwan.

    PubMed

    Li, Hsien-Chih; Chiueh, Pei-Te; Liu, Shi-Ping; Huang, Yu-Yang

    2017-01-01

    The purposes of this study are to develop a healthy commute map indicating cleanest route in Taipei metropolitan area for any given journey and to evaluate the pollutant doses exposed in different commuting modes. In Taiwan, there are more than 13.6 million motorcycles and 7.7 million vehicles among the 23 million people. Exposure to traffic-related air pollutants can thus cause adverse health effects. Moreover, increasing the level of physical activity during commuting and longer distances will result in inhalation of more polluted air. In this study, we utilized air pollution monitoring data (CO, SO 2 , NO 2 , PM 10 , and PM 2.5 ) from Taiwan EPA's air quality monitoring stations in Taipei metropolitan area to estimate each pollutant exposure while commuting by different modes (motorcycling, bicycling, and walking). Spatial interpolation methods such as inverse distance weighting (IDW) were used to estimate each pollutant's distribution in Taipei metropolitan area. Three routes were selected to represent the variety of different daily commuting pathways. The cleanest route choice was based upon Dijkstra's algorithm to find the lowest cumulative pollutant exposure. The IDW interpolated values of CO, SO 2 , NO 2 , PM 10 , and PM 2.5 ranged from 0.42-2.2 (ppm), 2.6-4.8 (ppb), 17.8-42.9 (ppb), 32.4-65.6 (μg/m 3 ), and 14.2-38.9 (μg/m 3 ), respectively. To compare with the IDW results, concentration of particulate matter (PM 10 , PM 2.5 , and PM 1 ) along the motorcycle route was measured in real time. In conclusion, the results showed that the shortest commuting route for motorcyclists resulted in a much higher cumulative dose (PM 2.5 3340.8 μg/m 3 ) than the cleanest route (PM 2.5 912.5 μg/m 3 ). The mobile personal monitoring indicated that the motorcyclists inhaled significant high pollutants during commuting as a result of high-concentration exposure and short-duration peaks. The study could effectively present less polluted commuting routes for citizen

  17. A Multi-Agent Framework for Packet Routing in Wireless Sensor Networks

    PubMed Central

    Ye, Dayon; Zhang, Minji; Yang, Yu

    2015-01-01

    Wireless sensor networks (WSNs) have been widely investigated in recent years. One of the fundamental issues in WSNs is packet routing, because in many application domains, packets have to be routed from source nodes to destination nodes as soon and as energy efficiently as possible. To address this issue, a large number of routing approaches have been proposed. Although every existing routing approach has advantages, they also have some disadvantages. In this paper, a multi-agent framework is proposed that can assist existing routing approaches to improve their routing performance. This framework enables each sensor node to build a cooperative neighbour set based on past routing experience. Such cooperative neighbours, in turn, can help the sensor to effectively relay packets in the future. This framework is independent of existing routing approaches and can be used to assist many existing routing approaches. Simulation results demonstrate the good performance of this framework in terms of four metrics: average delivery latency, successful delivery ratio, number of live nodes and total sensing coverage. PMID:25928063

  18. Selective epidemic vaccination under the performant routing algorithms

    NASA Astrophysics Data System (ADS)

    Bamaarouf, O.; Alweimine, A. Ould Baba; Rachadi, A.; EZ-Zahraouy, H.

    2018-04-01

    Despite the extensive research on traffic dynamics and epidemic spreading, the effect of the routing algorithms strategies on the traffic-driven epidemic spreading has not received an adequate attention. It is well known that more performant routing algorithm strategies are used to overcome the congestion problem. However, our main result shows unexpectedly that these algorithms favor the virus spreading more than the case where the shortest path based algorithm is used. In this work, we studied the virus spreading in a complex network using the efficient path and the global dynamic routing algorithms as compared to shortest path strategy. Some previous studies have tried to modify the routing rules to limit the virus spreading, but at the expense of reducing the traffic transport efficiency. This work proposed a solution to overcome this drawback by using a selective vaccination procedure instead of a random vaccination used often in the literature. We found that the selective vaccination succeeded in eradicating the virus better than a pure random intervention for the performant routing algorithm strategies.

  19. Trade routes and plague transmission in pre-industrial Europe.

    PubMed

    Yue, Ricci P H; Lee, Harry F; Wu, Connor Y H

    2017-10-11

    Numerous historical works have mentioned that trade routes were to blame for the spread of plague in European history, yet this relationship has never been tested by quantitative evidence. Here, we resolve the hypothetical role of trade routes through statistical analysis on the geo-referenced major trade routes in the early modern period and the 6,656 geo-referenced plague outbreak records in AD1347-1760. Ordinary Least Square (OLS) estimation results show that major trade routes played a dominant role in spreading plague in pre-industrial Europe. Furthermore, the negative correlation between plague outbreaks and their distance from major trade ports indicates the absence of a permanent plague focus in the inland areas of Europe. Major trade routes decided the major plague outbreak hotspots, while navigable rivers determined the geographic pattern of sporadic plague cases. A case study in Germany indicates that plague penetrated further into Europe through the local trade route network. Based on our findings, we propose the mechanism of plague transmission in historical Europe, which is imperative in demonstrating how pandemics were spread in recent human history.

  20. MODFLOW-Based Coupled Surface Water Routing and Groundwater-Flow Simulation.

    PubMed

    Hughes, J D; Langevin, C D; White, J T

    2015-01-01

    In this paper, we present a flexible approach for simulating one- and two-dimensional routing of surface water using a numerical surface water routing (SWR) code implicitly coupled to the groundwater-flow process in MODFLOW. Surface water routing in SWR can be simulated using a diffusive-wave approximation of the Saint-Venant equations and/or a simplified level-pool approach. SWR can account for surface water flow controlled by backwater conditions caused by small water-surface gradients or surface water control structures. A number of typical surface water control structures, such as culverts, weirs, and gates, can be represented, and it is possible to implement operational rules to manage surface water stages and streamflow. The nonlinear system of surface water flow equations formulated in SWR is solved by using Newton methods and direct or iterative solvers. SWR was tested by simulating the (1) Lal axisymmetric overland flow, (2) V-catchment, and (3) modified Pinder-Sauer problems. Simulated results for these problems compare well with other published results and indicate that SWR provides accurate results for surface water-only and coupled surface water/groundwater problems. Results for an application of SWR and MODFLOW to the Snapper Creek area of Miami-Dade County, Florida, USA are also presented and demonstrate the value of coupled surface water and groundwater simulation in managed, low-relief coastal settings. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  1. Analysis of Multi-Flight Common Routes for Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Sheth, Kapil; Clymer, Alexis; Morando, Alex; Shih, Fu-Tai

    2016-01-01

    This paper presents an approach for creating common weather avoidance reroutes for multiple flights and the associated benefits analysis, which is an extension of the single flight advisories generated using the Dynamic Weather Routes (DWR) concept. These multiple flight advisories are implemented in the National Airspace System (NAS) Constraint Evaluation and Notification Tool (NASCENT), a nation-wide simulation environment to generate time- and fuel-saving alternate routes for flights during severe weather events. These single flight advisories are clustered together in the same Center by considering parameters such as a common return capture fix. The clustering helps propose routes called, Multi-Flight Common Routes (MFCR), that avoid weather and other airspace constraints, and save time and fuel. It is expected that these routes would also provide lower workload for traffic managers and controllers since a common route is found for several flights, and presumably the route clearances would be easier and faster. This study was based on 30-days in 2014 and 2015 each, which had most delays attributed to convective weather. The results indicate that many opportunities exist where individual flight routes can be clustered to fly along a common route to save a significant amount of time and fuel, and potentially reducing the amount of coordination needed.

  2. Assessing the environmental characteristics of cycling routes to school: a study on the reliability and validity of a Google Street View-based audit.

    PubMed

    Vanwolleghem, Griet; Van Dyck, Delfien; Ducheyne, Fabian; De Bourdeaudhuij, Ilse; Cardon, Greet

    2014-06-10

    Google Street View provides a valuable and efficient alternative to observe the physical environment compared to on-site fieldwork. However, studies on the use, reliability and validity of Google Street View in a cycling-to-school context are lacking. We aimed to study the intra-, inter-rater reliability and criterion validity of EGA-Cycling (Environmental Google Street View Based Audit - Cycling to school), a newly developed audit using Google Street View to assess the physical environment along cycling routes to school. Parents (n = 52) of 11-to-12-year old Flemish children, who mostly cycled to school, completed a questionnaire and identified their child's cycling route to school on a street map. Fifty cycling routes of 11-to-12-year olds were identified and physical environmental characteristics along the identified routes were rated with EGA-Cycling (5 subscales; 37 items), based on Google Street View. To assess reliability, two researchers performed the audit. Criterion validity of the audit was examined by comparing the ratings based on Google Street View with ratings through on-site assessments. Intra-rater reliability was high (kappa range 0.47-1.00). Large variations in the inter-rater reliability (kappa range -0.03-1.00) and criterion validity scores (kappa range -0.06-1.00) were reported, with acceptable inter-rater reliability values for 43% of all items and acceptable criterion validity for 54% of all items. EGA-Cycling can be used to assess physical environmental characteristics along cycling routes to school. However, to assess the micro-environment specifically related to cycling, on-site assessments have to be added.

  3. Network-wide Impacts of Eco-routes and Route Choice Behavior/Evaluation of AERIS Applications

    DOT National Transportation Integrated Search

    2016-07-01

    The study investigates the eco-routes and route choice behaviors under connected vehicle environment. In particular, the study demonstrates the various conceptual development for an ecorouting system which includes an individual route choice behavior...

  4. RoCoMAR: robots' controllable mobility aided routing and relay architecture for mobile sensor networks.

    PubMed

    Le, Duc Van; Oh, Hoon; Yoon, Seokhoon

    2013-07-05

    In a practical deployment, mobile sensor network (MSN) suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots' Controllable Mobility Aided Routing) that uses robotic nodes' controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay.

  5. RoCoMAR: Robots' Controllable Mobility Aided Routing and Relay Architecture for Mobile Sensor Networks

    PubMed Central

    Van Le, Duc; Oh, Hoon; Yoon, Seokhoon

    2013-01-01

    In a practical deployment, mobile sensor network (MSN) suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots' Controllable Mobility Aided Routing) that uses robotic nodes' controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay. PMID:23881134

  6. A Tree Based Self-routing Scheme for Mobility Support in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Kim, Young-Duk; Yang, Yeon-Mo; Kang, Won-Seok; Kim, Jin-Wook; An, Jinung

    Recently, WSNs (Wireless Sensor Networks) with mobile robot is a growing technology that offer efficient communication services for anytime and anywhere applications. However, the tiny sensor node has very limited network resources due to its low battery power, low data rate, node mobility, and channel interference constraint between neighbors. Thus, in this paper, we proposed a tree based self-routing protocol for autonomous mobile robots based on beacon mode and implemented in real test-bed environments. The proposed scheme offers beacon based real-time scheduling for reliable association process between parent and child nodes. In addition, it supports smooth handover procedure by reducing flooding overhead of control packets. Throughout the performance evaluation by using a real test-bed system and simulation, we illustrate that our proposed scheme demonstrates promising performance for wireless sensor networks with mobile robots.

  7. The effect of model uncertainty on some optimal routing problems

    NASA Technical Reports Server (NTRS)

    Mohanty, Bibhu; Cassandras, Christos G.

    1991-01-01

    The effect of model uncertainties on optimal routing in a system of parallel queues is examined. The uncertainty arises in modeling the service time distribution for the customers (jobs, packets) to be served. For a Poisson arrival process and Bernoulli routing, the optimal mean system delay generally depends on the variance of this distribution. However, as the input traffic load approaches the system capacity the optimal routing assignment and corresponding mean system delay are shown to converge to a variance-invariant point. The implications of these results are examined in the context of gradient-based routing algorithms. An example of a model-independent algorithm using online gradient estimation is also included.

  8. Development of Fe/Nb-based solar photocatalysts for water treatment: impact of different synthesis routes on materials properties.

    PubMed

    Ribeiro, Marília C M; Amorim, Camila C; Moreira, Regina F P M; Oliveira, Luiz C A; Henriques, Andréia B; Leão, Mônica M D

    2018-04-27

    Semiconductors based on Fe/Nb oxides can present both solar sensitivity and high catalytic activity. However, there is still a lack regarding the comparison between different routes to produce Fe/Nb-based solar photocatalysts and the evaluation of the impact of the synthesis operating conditions on the material properties. In this work, Fe/Nb 2 O 5 ratio, type of precipitating agent, presence/absence of washing stage, and temperature of calcination were verified to be the most relevant parameters in the synthesis by the co-precipitation method. These factors led to remarkable differences in the properties and performance of the photocatalysts produced by each distinct synthesis route. Composition, iron species present in the materials, crystallinity characteristics, and pH of the catalysts were affected, leading to different photocatalytic activities under UV-Vis light. Due to their characteristics, the synthesized materials are potential photocatalysts for application in solar processes. Graphical abstract ᅟ.

  9. Energy-Efficient Routing and Spectrum Assignment Algorithm with Physical-Layer Impairments Constraint in Flexible Optical Networks

    NASA Astrophysics Data System (ADS)

    Zhao, Jijun; Zhang, Nawa; Ren, Danping; Hu, Jinhua

    2017-12-01

    The recently proposed flexible optical network can provide more efficient accommodation of multiple data rates than the current wavelength-routed optical networks. Meanwhile, the energy efficiency has also been a hot topic because of the serious energy consumption problem. In this paper, the energy efficiency problem of flexible optical networks with physical-layer impairments constraint is studied. We propose a combined impairment-aware and energy-efficient routing and spectrum assignment (RSA) algorithm based on the link availability, in which the impact of power consumption minimization on signal quality is considered. By applying the proposed algorithm, the connection requests are established on a subset of network topology, reducing the number of transitions from sleep to active state. The simulation results demonstrate that our proposed algorithm can improve the energy efficiency and spectrum resources utilization with the acceptable blocking probability and average delay.

  10. Proposed definition of the term en route in en route aircraft noise

    NASA Technical Reports Server (NTRS)

    Garbell, Maurice A.

    1990-01-01

    The problem of en route aircraft noise was examined in a formal, dedicated, setting. Whereas the general meaning of the term en route might be intuitively understood, it is suggested that a precise formal definition of the term en route would be opportune from the outset, especially since the scientific and technical investigation of the problem of noise immissions on the ground from aircraft in flight away from the airspace of an airport may conceivably lead to administrative, regulatory, and legal consequences that would mandatorily require a precise definition of the term en route. Five flight segments, with their differing airframe configurations, engine thrusts, and airspeed management, should form the basis for the differential consideration of the noise immissions perceived on the ground underneath or near the defined segments of the flightpath in en route flight, from the end of the initial climb from an airport after takeoff until the final approach to an airport.

  11. ROUTE-SPECIFIC DOSIMETRY

    EPA Science Inventory

    The capacity to perform route-to-route extrapolation of toxicity data is becoming increasingly crucial to the Agency, with a number of strategies suggested and demonstrated. One strategy involves using a combination of existing data and modeling approaches. This strategy propos...

  12. An empirical evaluation of lightweight random walk based routing protocol in duty cycle aware wireless sensor networks.

    PubMed

    Mian, Adnan Noor; Fatima, Mehwish; Khan, Raees; Prakash, Ravi

    2014-01-01

    Energy efficiency is an important design paradigm in Wireless Sensor Networks (WSNs) and its consumption in dynamic environment is even more critical. Duty cycling of sensor nodes is used to address the energy consumption problem. However, along with advantages, duty cycle aware networks introduce some complexities like synchronization and latency. Due to their inherent characteristics, many traditional routing protocols show low performance in densely deployed WSNs with duty cycle awareness, when sensor nodes are supposed to have high mobility. In this paper we first present a three messages exchange Lightweight Random Walk Routing (LRWR) protocol and then evaluate its performance in WSNs for routing low data rate packets. Through NS-2 based simulations, we examine the LRWR protocol by comparing it with DYMO, a widely used WSN protocol, in both static and dynamic environments with varying duty cycles, assuming the standard IEEE 802.15.4 in lower layers. Results for the three metrics, that is, reliability, end-to-end delay, and energy consumption, show that LRWR protocol outperforms DYMO in scalability, mobility, and robustness, showing this protocol as a suitable choice in low duty cycle and dense WSNs.

  13. A self-adaptive memeplexes robust search scheme for solving stochastic demands vehicle routing problem

    NASA Astrophysics Data System (ADS)

    Chen, Xianshun; Feng, Liang; Ong, Yew Soon

    2012-07-01

    In this article, we proposed a self-adaptive memeplex robust search (SAMRS) for finding robust and reliable solutions that are less sensitive to stochastic behaviours of customer demands and have low probability of route failures, respectively, in vehicle routing problem with stochastic demands (VRPSD). In particular, the contribution of this article is three-fold. First, the proposed SAMRS employs the robust solution search scheme (RS 3) as an approximation of the computationally intensive Monte Carlo simulation, thus reducing the computation cost of fitness evaluation in VRPSD, while directing the search towards robust and reliable solutions. Furthermore, a self-adaptive individual learning based on the conceptual modelling of memeplex is introduced in the SAMRS. Finally, SAMRS incorporates a gene-meme co-evolution model with genetic and memetic representation to effectively manage the search for solutions in VRPSD. Extensive experimental results are then presented for benchmark problems to demonstrate that the proposed SAMRS serves as an efficable means of generating high-quality robust and reliable solutions in VRPSD.

  14. Distribution Route Planning of Clean Coal Based on Nearest Insertion Method

    NASA Astrophysics Data System (ADS)

    Wang, Yunrui

    2018-01-01

    Clean coal technology has made some achievements for several ten years, but the research in its distribution field is very small, the distribution efficiency would directly affect the comprehensive development of clean coal technology, it is the key to improve the efficiency of distribution by planning distribution route rationally. The object of this paper was a clean coal distribution system which be built in a county. Through the surveying of the customer demand and distribution route, distribution vehicle in previous years, it was found that the vehicle deployment was only distributed by experiences, and the number of vehicles which used each day changed, this resulted a waste of transport process and an increase in energy consumption. Thus, the mathematical model was established here in order to aim at shortest path as objective function, and the distribution route was re-planned by using nearest-insertion method which been improved. The results showed that the transportation distance saved 37 km and the number of vehicles used had also been decreased from the past average of 5 to fixed 4 every day, as well the real loading of vehicles increased by 16.25% while the current distribution volume staying same. It realized the efficient distribution of clean coal, achieved the purpose of saving energy and reducing consumption.

  15. The extended TRIP supporting VoIP routing reservation with distributed QoS

    NASA Astrophysics Data System (ADS)

    Wang, Furong; Wu, Ye

    2004-04-01

    In this paper, an existing protocol, i.e. TRIP (Telephony Routing over IP) is developed to provide distributed QoS when making resource reservations for VoIP services such as H.323, SIP. Enhanced LSs (location servers) are deployed in ITADs (IP Telephony Administrative Domains) to take in charge of intra-domain routing policy because of small propagation price. It is an easy way to find an IP telephone route for intra-domain VoIP media association and simultaneously possess intra-domain load balancing features. For those routing reservations bridging domains, inter-domain routing policy is responsible for finding the shortest inter-domain route with enough resources. I propose the routing preference policy based on QoS price when the session traffic is shaped by a token bucket, related QoS messages, and message cooperation.

  16. Landmark and route knowledge in children's spatial representation of a virtual environment.

    PubMed

    Nys, Marion; Gyselinck, Valérie; Orriols, Eric; Hickmann, Maya

    2014-01-01

    This study investigates the development of landmark and route knowledge in complex wayfinding situations. It focuses on how children (aged 6, 8, and 10 years) and young adults (n = 79) indicate, recognize, and bind landmarks and directions in both verbal and visuo-spatial tasks after learning a virtual route. Performance in these tasks is also related to general verbal and visuo-spatial abilities as assessed by independent standardized tests (attention, working memory, perception of direction, production and comprehension of spatial terms, sentences and stories). The results first show that the quantity and quality of landmarks and directions produced and recognized by participants in both verbal and visuo-spatial tasks increased with age. In addition, an increase with age was observed in participants' selection of decisional landmarks (i.e., landmarks associated with a change of direction), as well as in their capacity to bind landmarks and directions. Our results support the view that children first acquire landmark knowledge, then route knowledge, as shown by their late developing ability to bind knowledge of directions and landmarks. Overall, the quality of verbal and visuo-spatial information in participants' spatial representations was found to vary mostly with their visuo-spatial abilities (attention and perception of directions) and not with their verbal abilities. Interestingly, however, when asked to recognize landmarks encountered during the route, participants show an increasing bias with age toward choosing a related landmark of the same category, regardless of its visual characteristics, i.e., they incorrectly choose the picture of another fountain. The discussion highlights the need for further studies to determine more precisely the role of verbal and visuo-spatial knowledge and the nature of how children learn to represent and memorize routes.

  17. Benefits Analysis of Multi-Center Dynamic Weather Routes

    NASA Technical Reports Server (NTRS)

    Sheth, Kapil; McNally, David; Morando, Alexander; Clymer, Alexis; Lock, Jennifer; Petersen, Julien

    2014-01-01

    Dynamic weather routes are flight plan corrections that can provide airborne flights more than user-specified minutes of flying-time savings, compared to their current flight plan. These routes are computed from the aircraft's current location to a flight plan fix downstream (within a predefined limit region), while avoiding forecasted convective weather regions. The Dynamic Weather Routes automation has been continuously running with live air traffic data for a field evaluation at the American Airlines Integrated Operations Center in Fort Worth, TX since July 31, 2012, where flights within the Fort Worth Air Route Traffic Control Center are evaluated for time savings. This paper extends the methodology to all Centers in United States and presents benefits analysis of Dynamic Weather Routes automation, if it was implemented in multiple airspace Centers individually and concurrently. The current computation of dynamic weather routes requires a limit rectangle so that a downstream capture fix can be selected, preventing very large route changes spanning several Centers. In this paper, first, a method of computing a limit polygon (as opposed to a rectangle used for Fort Worth Center) is described for each of the 20 Centers in the National Airspace System. The Future ATM Concepts Evaluation Tool, a nationwide simulation and analysis tool, is used for this purpose. After a comparison of results with the Center-based Dynamic Weather Routes automation in Fort Worth Center, results are presented for 11 Centers in the contiguous United States. These Centers are generally most impacted by convective weather. A breakdown of individual Center and airline savings is presented and the results indicate an overall average savings of about 10 minutes of flying time are obtained per flight.

  18. Near real-time traffic routing

    NASA Technical Reports Server (NTRS)

    Yang, Chaowei (Inventor); Xie, Jibo (Inventor); Zhou, Bin (Inventor); Cao, Ying (Inventor)

    2012-01-01

    A near real-time physical transportation network routing system comprising: a traffic simulation computing grid and a dynamic traffic routing service computing grid. The traffic simulator produces traffic network travel time predictions for a physical transportation network using a traffic simulation model and common input data. The physical transportation network is divided into a multiple sections. Each section has a primary zone and a buffer zone. The traffic simulation computing grid includes multiple of traffic simulation computing nodes. The common input data includes static network characteristics, an origin-destination data table, dynamic traffic information data and historical traffic data. The dynamic traffic routing service computing grid includes multiple dynamic traffic routing computing nodes and generates traffic route(s) using the traffic network travel time predictions.

  19. Road screening and distribution route multi-objective robust optimization for hazardous materials based on neural network and genetic algorithm.

    PubMed

    Ma, Changxi; Hao, Wei; Pan, Fuquan; Xiang, Wang

    2018-01-01

    Route optimization of hazardous materials transportation is one of the basic steps in ensuring the safety of hazardous materials transportation. The optimization scheme may be a security risk if road screening is not completed before the distribution route is optimized. For road screening issues of hazardous materials transportation, a road screening algorithm of hazardous materials transportation is built based on genetic algorithm and Levenberg-Marquardt neural network (GA-LM-NN) by analyzing 15 attributes data of each road network section. A multi-objective robust optimization model with adjustable robustness is constructed for the hazardous materials transportation problem of single distribution center to minimize transportation risk and time. A multi-objective genetic algorithm is designed to solve the problem according to the characteristics of the model. The algorithm uses an improved strategy to complete the selection operation, applies partial matching cross shift and single ortho swap methods to complete the crossover and mutation operation, and employs an exclusive method to construct Pareto optimal solutions. Studies show that the sets of hazardous materials transportation road can be found quickly through the proposed road screening algorithm based on GA-LM-NN, whereas the distribution route Pareto solutions with different levels of robustness can be found rapidly through the proposed multi-objective robust optimization model and algorithm.

  20. Predicting the Operational Acceptability of Route Advisories

    NASA Technical Reports Server (NTRS)

    Evans, Antony; Lee, Paul

    2017-01-01

    NASA envisions a future Air Traffic Management system that allows safe, efficient growth in global operations, enabled by increasing levels of automation and autonomy. In a safety-critical system, the introduction of increasing automation and autonomy has to be done in stages, making human-system integrated concepts critical in the foreseeable future. One example where this is relevant is for tools that generate more efficient flight routings or reroute advisories. If these routes are not operationally acceptable, they will be rejected by human operators, and the associated benefits will not be realized. Operational acceptance is therefore required to enable the increased efficiency and reduced workload benefits associated with these tools. In this paper, the authors develop a predictor of operational acceptability for reroute advisories. Such a capability has applications in tools that identify more efficient routings around weather and congestion and that better meet airline preferences. The capability is based on applying data mining techniques to flight plan amendment data reported by the Federal Aviation Administration and data on requested reroutes collected from a field trial of the NASA developed Dynamic Weather Routes tool, which advised efficient route changes to American Airlines dispatchers in 2014. 10-Fold cross validation was used for feature, model and parameter selection, while nested cross validation was used to validate the model. The model performed well in predicting controller acceptance or rejection of a route change as indicated by chosen performance metrics. Features identified as relevant to controller acceptance included the historical usage of the advised route, the location of the maneuver start point relative to the boundaries of the airspace sector containing the maneuver start (the maneuver start sector), the reroute deviation from the original flight plan, and the demand level in the maneuver start sector. A random forest with forty

  1. a New Model for Fuzzy Personalized Route Planning Using Fuzzy Linguistic Preference Relation

    NASA Astrophysics Data System (ADS)

    Nadi, S.; Houshyaripour, A. H.

    2017-09-01

    This paper proposes a new model for personalized route planning under uncertain condition. Personalized routing, involves different sources of uncertainty. These uncertainties can be raised from user's ambiguity about their preferences, imprecise criteria values and modelling process. The proposed model uses Fuzzy Linguistic Preference Relation Analytical Hierarchical Process (FLPRAHP) to analyse user's preferences under uncertainty. Routing is a multi-criteria task especially in transportation networks, where the users wish to optimize their routes based on different criteria. However, due to the lake of knowledge about the preferences of different users and uncertainties available in the criteria values, we propose a new personalized fuzzy routing method based on the fuzzy ranking using center of gravity. The model employed FLPRAHP method to aggregate uncertain criteria values regarding uncertain user's preferences while improve consistency with least possible comparisons. An illustrative example presents the effectiveness and capability of the proposed model to calculate best personalize route under fuzziness and uncertainty.

  2. VISIR-I: small vessels, least-time nautical routes using wave forecasts

    NASA Astrophysics Data System (ADS)

    Mannarini, G.; Pinardi, N.; Coppini, G.; Oddo, P.; Iafrati, A.

    2015-09-01

    A new numerical model for the on-demand computation of optimal ship routes based on sea-state forecasts has been developed. The model, named VISIR (discoVerIng Safe and effIcient Routes) is designed to support decision-makers when planning a marine voyage. The first version of the system, VISIR-I, considers medium and small motor vessels with lengths of up to a few tens of meters and a displacement hull. The model is made up of three components: the route optimization algorithm, the mechanical model of the ship, and the environmental fields. The optimization algorithm is based on a graph-search method with time-dependent edge weights. The algorithm is also able to compute a voluntary ship speed reduction. The ship model accounts for calm water and added wave resistance by making use of just the principal particulars of the vessel as input parameters. The system also checks the optimal route for parametric roll, pure loss of stability, and surfriding/broaching-to hazard conditions. Significant wave height, wave spectrum peak period, and wave direction forecast fields are employed as an input. Examples of VISIR-I routes in the Mediterranean Sea are provided. The optimal route may be longer in terms of miles sailed and yet it is faster and safer than the geodetic route between the same departure and arrival locations. Route diversions result from the safety constraints and the fact that the algorithm takes into account the full temporal evolution and spatial variability of the environmental fields.

  3. Strategic planning for aircraft noise route impact analysis: A three dimensional approach

    NASA Technical Reports Server (NTRS)

    Bragdon, C. R.; Rowan, M. J.; Ahuja, K. K.

    1993-01-01

    The strategic routing of aircraft through navigable and controlled airspace to minimize adverse noise impact over sensitive areas is critical in the proper management and planning of the U.S. based airport system. A major objective of this phase of research is to identify, inventory, characterize, and analyze the various environmental, land planning, and regulatory data bases, along with potential three dimensional software and hardware systems that can be potentially applied for an impact assessment of any existing or planned air route. There are eight data bases that have to be assembled and developed in order to develop three dimensional aircraft route impact methodology. These data bases which cover geographical information systems, sound metrics, land use, airspace operational control measures, federal regulations and advisories, census data, and environmental attributes have been examined and aggregated. A three dimensional format is necessary for planning, analyzing space and possible noise impact, and formulating potential resolutions. The need to develop this three dimensional approach is essential due to the finite capacity of airspace for managing and planning a route system, including airport facilities. It appears that these data bases can be integrated effectively into a strategic aircraft noise routing system which should be developed as soon as possible, as part of a proactive plan applied to our FAA controlled navigable airspace for the United States.

  4. [Anatomophysiological bases of drug administration. Dosage forms and routes of administration].

    PubMed

    Carillo Norte, Juan Antonio; Gañán Presmanes, Yolanda

    2010-12-01

    The administration of the right dose to the right patient is of paramount importance to obtain an optimal drug response within the scope of clinical pharmacology and tailored medicine. The marketing of safer and more efficient drug entities, along with the development of new drug administration devices provide a major boost for the diagnosis and treatment of diseases, beyond our imagination. However dose adjustment is not enough to produced the desired effect, and drug therapy should include an appropriate route of drug administration. Currently, there are many different and sophisticated methods to incorporate drugs into the patients that nurses should be familiar with. When there is no contraindication, oral route of drug administration is of choice and most frequently used as a physiological pathway of drug intake.

  5. Learning a Nonmediated Route for Response Selection in Task Switching

    PubMed Central

    Schneider, Darryl W.; Logan, Gordon D.

    2015-01-01

    Two modes of response selection—a mediated route involving categorization and a nonmediated route involving instance-based memory retrieval—have been proposed to explain response congruency effects in task-switching situations. In the present study, we sought a better understanding of the development and characteristics of the nonmediated route. In two experiments involving training and transfer phases, we investigated practice effects at the level of individual target presentations, transfer effects associated with changing category–response mappings, target-specific effects from comparisons of old and new targets during transfer, and the percentage of early responses associated with task-nonspecific response selection (the target preceded the task cue on every trial). The training results suggested that the nonmediated route is quickly learned in the context of target–cue order and becomes increasingly involved in response selection with practice. The transfer results suggested that the target–response instances underlying the nonmediated route involve abstract response labels coding response congruency that can be rapidly remapped to alternative responses but not rewritten when category–response mappings change after practice. Implications for understanding the nonmediated route and its relationship with the mediated route are discussed. PMID:25663003

  6. Class network routing

    DOEpatents

    Bhanot, Gyan [Princeton, NJ; Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Takken, Todd E [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2009-09-08

    Class network routing is implemented in a network such as a computer network comprising a plurality of parallel compute processors at nodes thereof. Class network routing allows a compute processor to broadcast a message to a range (one or more) of other compute processors in the computer network, such as processors in a column or a row. Normally this type of operation requires a separate message to be sent to each processor. With class network routing pursuant to the invention, a single message is sufficient, which generally reduces the total number of messages in the network as well as the latency to do a broadcast. Class network routing is also applied to dense matrix inversion algorithms on distributed memory parallel supercomputers with hardware class function (multicast) capability. This is achieved by exploiting the fact that the communication patterns of dense matrix inversion can be served by hardware class functions, which results in faster execution times.

  7. A distributed geo-routing algorithm for wireless sensor networks.

    PubMed

    Joshi, Gyanendra Prasad; Kim, Sung Won

    2009-01-01

    Geographic wireless sensor networks use position information for greedy routing. Greedy routing works well in dense networks, whereas in sparse networks it may fail and require a recovery algorithm. Recovery algorithms help the packet to get out of the communication void. However, these algorithms are generally costly for resource constrained position-based wireless sensor networks (WSNs). In this paper, we propose a void avoidance algorithm (VAA), a novel idea based on upgrading virtual distance. VAA allows wireless sensor nodes to remove all stuck nodes by transforming the routing graph and forwarding packets using only greedy routing. In VAA, the stuck node upgrades distance unless it finds a next hop node that is closer to the destination than it is. VAA guarantees packet delivery if there is a topologically valid path. Further, it is completely distributed, immediately responds to node failure or topology changes and does not require planarization of the network. NS-2 is used to evaluate the performance and correctness of VAA and we compare its performance to other protocols. Simulations show our proposed algorithm consumes less energy, has an efficient path and substantially less control overheads.

  8. A constrained multinomial Probit route choice model in the metro network: Formulation, estimation and application

    PubMed Central

    Zhang, Yongsheng; Wei, Heng; Zheng, Kangning

    2017-01-01

    Considering that metro network expansion brings us with more alternative routes, it is attractive to integrate the impacts of routes set and the interdependency among alternative routes on route choice probability into route choice modeling. Therefore, the formulation, estimation and application of a constrained multinomial probit (CMNP) route choice model in the metro network are carried out in this paper. The utility function is formulated as three components: the compensatory component is a function of influencing factors; the non-compensatory component measures the impacts of routes set on utility; following a multivariate normal distribution, the covariance of error component is structured into three parts, representing the correlation among routes, the transfer variance of route, and the unobserved variance respectively. Considering multidimensional integrals of the multivariate normal probability density function, the CMNP model is rewritten as Hierarchical Bayes formula and M-H sampling algorithm based Monte Carlo Markov Chain approach is constructed to estimate all parameters. Based on Guangzhou Metro data, reliable estimation results are gained. Furthermore, the proposed CMNP model also shows a good forecasting performance for the route choice probabilities calculation and a good application performance for transfer flow volume prediction. PMID:28591188

  9. Dynamic Weather Routes Architecture Overview

    NASA Technical Reports Server (NTRS)

    Eslami, Hassan; Eshow, Michelle

    2014-01-01

    Dynamic Weather Routes Architecture Overview, presents the high level software architecture of DWR, based on the CTAS software framework and the Direct-To automation tool. The document also covers external and internal data flows, required dataset, changes to the Direct-To software for DWR, collection of software statistics, and the code structure.

  10. Does Non-Compliance with Route/Destination Assignment Compromise Evacuation Efficiency?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Fang; Han, Lee; Chin, Shih-Miao

    2007-01-01

    This paper documents studies of two real-world network evacuation cases, each with a different, but proven, simulation software package. The purpose of these studies was to examine whether the rate of evacuees' compliance with predetermined route/destination assignments would have an impact on the efficiency of evacuation operations. Results from both cases suggest that a rate of less than 100% compliance does not compromise evacuation efficiency. In fact, although this is counter-intuitive, evacuation efficiency would actually improve as a result of "sensible" non-compliance on the part of the evacuees. A closer observation of the results revealed that the somewhat unexpected improvementmore » results from a reduction in congestion along designated evacuation routes as evacuees spread out to less prominent parallel streets and other non-congested outbound routes. This suggests that by being limited by the zone-to-zone and one-to-one assignment framework, conventional evacuation plans may have fallen short of providing the most efficient guidance to evacuees. To address this issue, some systematic means, perhaps simulation-based, should be performed to assess the zone partitions, route designations, and destination assignments in existing evacuation plans. Thus, evacuation planning with route/destination assignments based on origin zones may be flawed and may deserve reconsideration. After all, once en route, where an evacuee is coming from is of far less consequence than where he or she is going.« less

  11. Routing channels in VLSI layout

    NASA Astrophysics Data System (ADS)

    Cai, Hong

    A number of algorithms for the automatic routing of interconnections in Very Large Scale Integration (VLSI) building-block layouts are presented. Algorithms for the topological definition of channels, the global routing and the geometrical definition of channels are presented. In contrast to traditional approaches the definition and ordering of the channels is done after the global routing. This approach has the advantage that global routing information can be taken into account to select the optimal channel structure. A polynomial algorithm for the channel definition and ordering problem is presented. The existence of a conflict-free channel structure is guaranteed by enforcing a sliceable placement. Algorithms for finding the shortest connection path are described. A separate algorithm is developed for the power net routing, because the two power nets must be planarly routed with variable wire width. An integrated placement and routing system for generating building-block layout is briefly described. Some experimental results and design experiences in using the system are also presented. Very good results are obtained.

  12. Key Management Scheme Based on Route Planning of Mobile Sink in Wireless Sensor Networks.

    PubMed

    Zhang, Ying; Liang, Jixing; Zheng, Bingxin; Jiang, Shengming; Chen, Wei

    2016-01-29

    In many wireless sensor network application scenarios the key management scheme with a Mobile Sink (MS) should be fully investigated. This paper proposes a key management scheme based on dynamic clustering and optimal-routing choice of MS. The concept of Traveling Salesman Problem with Neighbor areas (TSPN) in dynamic clustering for data exchange is proposed, and the selection probability is used in MS route planning. The proposed scheme extends static key management to dynamic key management by considering the dynamic clustering and mobility of MSs, which can effectively balance the total energy consumption during the activities. Considering the different resources available to the member nodes and sink node, the session key between cluster head and MS is established by modified an ECC encryption with Diffie-Hellman key exchange (ECDH) algorithm and the session key between member node and cluster head is built with a binary symmetric polynomial. By analyzing the security of data storage, data transfer and the mechanism of dynamic key management, the proposed scheme has more advantages to help improve the resilience of the key management system of the network on the premise of satisfying higher connectivity and storage efficiency.

  13. Protocol Independent Adaptive Route Update for VANET

    PubMed Central

    Rasheed, Asim; Qayyum, Amir

    2014-01-01

    High relative node velocity and high active node density have presented challenges to existing routing approaches within highly scaled ad hoc wireless networks, such as Vehicular Ad hoc Networks (VANET). Efficient routing requires finding optimum route with minimum delay, updating it on availability of a better one, and repairing it on link breakages. Current routing protocols are generally focused on finding and maintaining an efficient route, with very less emphasis on route update. Adaptive route update usually becomes impractical for dense networks due to large routing overheads. This paper presents an adaptive route update approach which can provide solution for any baseline routing protocol. The proposed adaptation eliminates the classification of reactive and proactive by categorizing them as logical conditions to find and update the route. PMID:24723807

  14. Route disruption analysis : final report.

    DOT National Transportation Integrated Search

    2007-01-01

    The objective of this project is to analyze the major highway routes in and through Kentucky to determine the potential liabilities associated with disruption of these routes. The analysis assesses the availability of convenient by-pass routes and th...

  15. Cost-Effective Encryption-Based Autonomous Routing Protocol for Efficient and Secure Wireless Sensor Networks.

    PubMed

    Saleem, Kashif; Derhab, Abdelouahid; Orgun, Mehmet A; Al-Muhtadi, Jalal; Rodrigues, Joel J P C; Khalil, Mohammed Sayim; Ali Ahmed, Adel

    2016-03-31

    The deployment of intelligent remote surveillance systems depends on wireless sensor networks (WSNs) composed of various miniature resource-constrained wireless sensor nodes. The development of routing protocols for WSNs is a major challenge because of their severe resource constraints, ad hoc topology and dynamic nature. Among those proposed routing protocols, the biology-inspired self-organized secure autonomous routing protocol (BIOSARP) involves an artificial immune system (AIS) that requires a certain amount of time to build up knowledge of neighboring nodes. The AIS algorithm uses this knowledge to distinguish between self and non-self neighboring nodes. The knowledge-building phase is a critical period in the WSN lifespan and requires active security measures. This paper proposes an enhanced BIOSARP (E-BIOSARP) that incorporates a random key encryption mechanism in a cost-effective manner to provide active security measures in WSNs. A detailed description of E-BIOSARP is presented, followed by an extensive security and performance analysis to demonstrate its efficiency. A scenario with E-BIOSARP is implemented in network simulator 2 (ns-2) and is populated with malicious nodes for analysis. Furthermore, E-BIOSARP is compared with state-of-the-art secure routing protocols in terms of processing time, delivery ratio, energy consumption, and packet overhead. The findings show that the proposed mechanism can efficiently protect WSNs from selective forwarding, brute-force or exhaustive key search, spoofing, eavesdropping, replaying or altering of routing information, cloning, acknowledgment spoofing, HELLO flood attacks, and Sybil attacks.

  16. Cost-Effective Encryption-Based Autonomous Routing Protocol for Efficient and Secure Wireless Sensor Networks

    PubMed Central

    Saleem, Kashif; Derhab, Abdelouahid; Orgun, Mehmet A.; Al-Muhtadi, Jalal; Rodrigues, Joel J. P. C.; Khalil, Mohammed Sayim; Ali Ahmed, Adel

    2016-01-01

    The deployment of intelligent remote surveillance systems depends on wireless sensor networks (WSNs) composed of various miniature resource-constrained wireless sensor nodes. The development of routing protocols for WSNs is a major challenge because of their severe resource constraints, ad hoc topology and dynamic nature. Among those proposed routing protocols, the biology-inspired self-organized secure autonomous routing protocol (BIOSARP) involves an artificial immune system (AIS) that requires a certain amount of time to build up knowledge of neighboring nodes. The AIS algorithm uses this knowledge to distinguish between self and non-self neighboring nodes. The knowledge-building phase is a critical period in the WSN lifespan and requires active security measures. This paper proposes an enhanced BIOSARP (E-BIOSARP) that incorporates a random key encryption mechanism in a cost-effective manner to provide active security measures in WSNs. A detailed description of E-BIOSARP is presented, followed by an extensive security and performance analysis to demonstrate its efficiency. A scenario with E-BIOSARP is implemented in network simulator 2 (ns-2) and is populated with malicious nodes for analysis. Furthermore, E-BIOSARP is compared with state-of-the-art secure routing protocols in terms of processing time, delivery ratio, energy consumption, and packet overhead. The findings show that the proposed mechanism can efficiently protect WSNs from selective forwarding, brute-force or exhaustive key search, spoofing, eavesdropping, replaying or altering of routing information, cloning, acknowledgment spoofing, HELLO flood attacks, and Sybil attacks. PMID:27043572

  17. Identifying and prioritizing ungulate migration routes for landscape-level conservation

    USGS Publications Warehouse

    Sawyer, H.; Kauffman, M.J.; Nielson, R.M.; Horne, J.S.

    2009-01-01

    As habitat loss and fragmentation increase across ungulate ranges, identifying and prioritizing migration routes for conservation has taken on new urgency. Here we present a general framework using the Brownian bridge movement model (BBMM) that: (1) provides a probabilistic estimate of the migration routes of a sampled population, (2) distinguishes between route segments that function as stopover sites vs. those used primarily as movement corridors, and (3) prioritizes routes for conservation based upon the proportion of the sampled population that uses them. We applied this approach to a migratory mule deer (Odocoileus hemionus) population in a pristine area of southwest Wyoming, USA, where 2000 gas wells and 1609 km of pipelines and roads have been proposed for development. Our analysis clearly delineated where migration routes occurred relative to proposed development and provided guidance for on-the-ground conservation efforts. Mule deer migration routes were characterized by a series of stopover sites where deer spent most of their time, connected by movement corridors through which deer moved quickly. Our findings suggest management strategies that differentiate between stopover sites and movement corridors may be warranted. Because some migration routes were used by more mule deer than others, proportional level of use may provide a reasonable metric by which routes can be prioritized for conservation. The methods we outline should be applicable to a wide range of species that inhabit regions where migration routes are threatened or poorly understood. ?? 2009 by the Ecological Society of America.

  18. Identifying and prioritizing ungulate migration routes for landscape-level conservation

    USGS Publications Warehouse

    Sawyer, Hall; Kauffman, Matthew J.; Nielson, Ryan M.; Horne, Jon S.

    2009-01-01

    As habitat loss and fragmentation increase across ungulate ranges, identifying and prioritizing migration routes for conservation has taken on new urgency. Here we present a general framework using the Brownian bridge movement model (BBMM) that: (1) provides a probabilistic estimate of the migration routes of a sampled population, (2) distinguishes between route segments that function as stopover sites vs. those used primarily as movement corridors, and (3) prioritizes routes for conservation based upon the proportion of the sampled population that uses them. We applied this approach to a migratory mule deer (Odocoileus hemionus) population in a pristine area of southwest Wyoming, USA, where 2000 gas wells and 1609 km of pipelines and roads have been proposed for development. Our analysis clearly delineated where migration routes occurred relative to proposed development and provided guidance for on-the-ground conservation efforts. Mule deer migration routes were characterized by a series of stopover sites where deer spent most of their time, connected by movement corridors through which deer moved quickly. Our findings suggest management strategies that differentiate between stopover sites and movement corridors may be warranted. Because some migration routes were used by more mule deer than others, proportional level of use may provide a reasonable metric by which routes can be prioritized for conservation. The methods we outline should be applicable to a wide range of species that inhabit regions where migration routes are threatened or poorly understood.

  19. What Is the Best Route? Route-Finding Strategies of Middle School Students Using GIS

    ERIC Educational Resources Information Center

    Wigglesivorth, John C.

    2003-01-01

    This paper summarizes a research project conducted to investigate the strategies developed by middle school students to solve a route-finding problem using Arc View GIS software. Three different types of route-finding strategies were identified. Some students were visual route-finders and used a highly visual strategy; others were logical route…

  20. VISIR-I: small vessels - least-time nautical routes using wave forecasts

    NASA Astrophysics Data System (ADS)

    Mannarini, Gianandrea; Pinardi, Nadia; Coppini, Giovanni; Oddo, Paolo; Iafrati, Alessandro

    2016-05-01

    A new numerical model for the on-demand computation of optimal ship routes based on sea-state forecasts has been developed. The model, named VISIR (discoVerIng Safe and effIcient Routes) is designed to support decision-makers when planning a marine voyage. The first version of the system, VISIR-I, considers medium and small motor vessels with lengths of up to a few tens of metres and a displacement hull. The model is comprised of three components: a route optimization algorithm, a mechanical model of the ship, and a processor of the environmental fields. The optimization algorithm is based on a graph-search method with time-dependent edge weights. The algorithm is also able to compute a voluntary ship speed reduction. The ship model accounts for calm water and added wave resistance by making use of just the principal particulars of the vessel as input parameters. It also checks the optimal route for parametric roll, pure loss of stability, and surfriding/broaching-to hazard conditions. The processor of the environmental fields employs significant wave height, wave spectrum peak period, and wave direction forecast fields as input. The topological issues of coastal navigation (islands, peninsulas, narrow passages) are addressed. Examples of VISIR-I routes in the Mediterranean Sea are provided. The optimal route may be longer in terms of miles sailed and yet it is faster and safer than the geodetic route between the same departure and arrival locations. Time savings up to 2.7 % and route lengthening up to 3.2 % are found for the case studies analysed. However, there is no upper bound for the magnitude of the changes of such route metrics, which especially in case of extreme sea states can be much greater. Route diversions result from the safety constraints and the fact that the algorithm takes into account the full temporal evolution and spatial variability of the environmental fields.

  1. ZERO: probabilistic routing for deploy and forget Wireless Sensor Networks.

    PubMed

    Vilajosana, Xavier; Llosa, Jordi; Pacho, Jose Carlos; Vilajosana, Ignasi; Juan, Angel A; Vicario, Jose Lopez; Morell, Antoni

    2010-01-01

    As Wireless Sensor Networks are being adopted by industry and agriculture for large-scale and unattended deployments, the need for reliable and energy-conservative protocols become critical. Physical and Link layer efforts for energy conservation are not mostly considered by routing protocols that put their efforts on maintaining reliability and throughput. Gradient-based routing protocols route data through most reliable links aiming to ensure 99% packet delivery. However, they suffer from the so-called "hot spot" problem. Most reliable routes waste their energy fast, thus partitioning the network and reducing the area monitored. To cope with this "hot spot" problem we propose ZERO a combined approach at Network and Link layers to increase network lifespan while conserving reliability levels by means of probabilistic load balancing techniques.

  2. Transport spatial model for the definition of green routes for city logistics centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pamučar, Dragan, E-mail: dpamucar@gmail.com; Gigović, Ljubomir, E-mail: gigoviclj@gmail.com; Ćirović, Goran, E-mail: cirovic@sezampro.rs

    This paper presents a transport spatial decision support model (TSDSM) for carrying out the optimization of green routes for city logistics centers. The TSDSM model is based on the integration of the multi-criteria method of Weighted Linear Combination (WLC) and the modified Dijkstra algorithm within a geographic information system (GIS). The GIS is used for processing spatial data. The proposed model makes it possible to plan routes for green vehicles and maximize the positive effects on the environment, which can be seen in the reduction of harmful gas emissions and an increase in the air quality in highly populated areas.more » The scheduling of delivery vehicles is given as a problem of optimization in terms of the parameters of: the environment, health, use of space and logistics operating costs. Each of these input parameters was thoroughly examined and broken down in the GIS into criteria which further describe them. The model presented here takes into account the fact that logistics operators have a limited number of environmentally friendly (green) vehicles available. The TSDSM was tested on a network of roads with 127 links for the delivery of goods from the city logistics center to the user. The model supports any number of available environmentally friendly or environmentally unfriendly vehicles consistent with the size of the network and the transportation requirements. - Highlights: • Model for routing light delivery vehicles in urban areas. • Optimization of green routes for city logistics centers. • The proposed model maximizes the positive effects on the environment. • The model was tested on a real network.« less

  3. Energy neutral protocol based on hierarchical routing techniques for energy harvesting wireless sensor network

    NASA Astrophysics Data System (ADS)

    Muhammad, Umar B.; Ezugwu, Absalom E.; Ofem, Paulinus O.; Rajamäki, Jyri; Aderemi, Adewumi O.

    2017-06-01

    Recently, researchers in the field of wireless sensor networks have resorted to energy harvesting techniques that allows energy to be harvested from the ambient environment to power sensor nodes. Using such Energy harvesting techniques together with proper routing protocols, an Energy Neutral state can be achieved so that sensor nodes can run perpetually. In this paper, we propose an Energy Neutral LEACH routing protocol which is an extension to the traditional LEACH protocol. The goal of the proposed protocol is to use Gateway node in each cluster so as to reduce the data transmission ranges of cluster head nodes. Simulation results show that the proposed routing protocol achieves a higher throughput and ensure the energy neutral status of the entire network.

  4. Joint Power Charging and Routing in Wireless Rechargeable Sensor Networks

    PubMed Central

    Jia, Jie; Chen, Jian; Deng, Yansha; Wang, Xingwei; Aghvami, Abdol-Hamid

    2017-01-01

    The development of wireless power transfer (WPT) technology has inspired the transition from traditional battery-based wireless sensor networks (WSNs) towards wireless rechargeable sensor networks (WRSNs). While extensive efforts have been made to improve charging efficiency, little has been done for routing optimization. In this work, we present a joint optimization model to maximize both charging efficiency and routing structure. By analyzing the structure of the optimization model, we first decompose the problem and propose a heuristic algorithm to find the optimal charging efficiency for the predefined routing tree. Furthermore, by coding the many-to-one communication topology as an individual, we further propose to apply a genetic algorithm (GA) for the joint optimization of both routing and charging. The genetic operations, including tree-based recombination and mutation, are proposed to obtain a fast convergence. Our simulation results show that the heuristic algorithm reduces the number of resident locations and the total moving distance. We also show that our proposed algorithm achieves a higher charging efficiency compared with existing algorithms. PMID:28991200

  5. Joint Power Charging and Routing in Wireless Rechargeable Sensor Networks.

    PubMed

    Jia, Jie; Chen, Jian; Deng, Yansha; Wang, Xingwei; Aghvami, Abdol-Hamid

    2017-10-09

    The development of wireless power transfer (WPT) technology has inspired the transition from traditional battery-based wireless sensor networks (WSNs) towards wireless rechargeable sensor networks (WRSNs). While extensive efforts have been made to improve charging efficiency, little has been done for routing optimization. In this work, we present a joint optimization model to maximize both charging efficiency and routing structure. By analyzing the structure of the optimization model, we first decompose the problem and propose a heuristic algorithm to find the optimal charging efficiency for the predefined routing tree. Furthermore, by coding the many-to-one communication topology as an individual, we further propose to apply a genetic algorithm (GA) for the joint optimization of both routing and charging. The genetic operations, including tree-based recombination and mutation, are proposed to obtain a fast convergence. Our simulation results show that the heuristic algorithm reduces the number of resident locations and the total moving distance. We also show that our proposed algorithm achieves a higher charging efficiency compared with existing algorithms.

  6. Producing Gestures Facilitates Route Learning

    PubMed Central

    So, Wing Chee; Ching, Terence Han-Wei; Lim, Phoebe Elizabeth; Cheng, Xiaoqin; Ip, Kit Yee

    2014-01-01

    The present study investigates whether producing gestures would facilitate route learning in a navigation task and whether its facilitation effect is comparable to that of hand movements that leave physical visible traces. In two experiments, we focused on gestures produced without accompanying speech, i.e., co-thought gestures (e.g., an index finger traces the spatial sequence of a route in the air). Adult participants were asked to study routes shown in four diagrams, one at a time. Participants reproduced the routes (verbally in Experiment 1 and non-verbally in Experiment 2) without rehearsal or after rehearsal by mentally simulating the route, by drawing it, or by gesturing (either in the air or on paper). Participants who moved their hands (either in the form of gestures or drawing) recalled better than those who mentally simulated the routes and those who did not rehearse, suggesting that hand movements produced during rehearsal facilitate route learning. Interestingly, participants who gestured the routes in the air or on paper recalled better than those who drew them on paper in both experiments, suggesting that the facilitation effect of co-thought gesture holds for both verbal and nonverbal recall modalities. It is possibly because, co-thought gesture, as a kind of representational action, consolidates spatial sequence better than drawing and thus exerting more powerful influence on spatial representation. PMID:25426624

  7. An Energy-Efficient and High-Quality Video Transmission Architecture in Wireless Video-Based Sensor Networks.

    PubMed

    Aghdasi, Hadi S; Abbaspour, Maghsoud; Moghadam, Mohsen Ebrahimi; Samei, Yasaman

    2008-08-04

    Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS) and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN). With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture). This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.

  8. Standardization of databases for AMDB taxi routing functions

    NASA Astrophysics Data System (ADS)

    Pschierer, C.; Sindlinger, A.; Schiefele, J.

    2010-04-01

    Input, management, and display of taxi routes on airport moving map displays (AMM) have been covered in various studies in the past. The demonstrated applications are typically based on Aerodrome Mapping Databases (AMDB). Taxi routing functions require specific enhancements, typically in the form of a graph network with nodes and edges modeling all connectivities within an airport, which are not supported by the current AMDB standards. Therefore, the data schemas and data content have been defined specifically for the purpose and test scenarios of these studies. A standardization of the data format for taxi routing information is a prerequisite for turning taxi routing functions into production. The joint RTCA/EUROCAE special committee SC-217, responsible for updating and enhancing the AMDB standards DO-272 [1] and DO-291 [2], is currently in the process of studying different alternatives and defining reasonable formats. Requirements for taxi routing data are primarily driven by depiction concepts for assigned and cleared taxi routes, but also by database size and the economic feasibility. Studied concepts are similar to the ones described in the GDF (geographic data files) specification [3], which is used in most car navigation systems today. They include - A highly aggregated graph network of complex features - A modestly aggregated graph network of simple features - A non-explicit topology of plain AMDB taxi guidance line elements This paper introduces the different concepts and their advantages and disadvantages.

  9. An overview of smart grid routing algorithms

    NASA Astrophysics Data System (ADS)

    Wang, Junsheng; OU, Qinghai; Shen, Haijuan

    2017-08-01

    This paper summarizes the typical routing algorithm in smart grid by analyzing the communication business and communication requirements of intelligent grid. Mainly from the two kinds of routing algorithm is analyzed, namely clustering routing algorithm and routing algorithm, analyzed the advantages and disadvantages of two kinds of typical routing algorithm in routing algorithm and applicability.

  10. DTN routing in body sensor networks with dynamic postural partitioning.

    PubMed

    Quwaider, Muhannad; Biswas, Subir

    2010-11-01

    This paper presents novel store-and-forward packet routing algorithms for Wireless Body Area Networks ( WBAN ) with frequent postural partitioning. A prototype WBAN has been constructed for experimentally characterizing on-body topology disconnections in the presence of ultra short range radio links, unpredictable RF attenuation, and human postural mobility. On-body DTN routing protocols are then developed using a stochastic link cost formulation, capturing multi-scale topological localities in human postural movements. Performance of the proposed protocols are evaluated experimentally and via simulation, and are compared with a number of existing single-copy DTN routing protocols and an on-body packet flooding mechanism that serves as a performance benchmark with delay lower-bound. It is shown that via multi-scale modeling of the spatio-temporal locality of on-body link disconnection patterns, the proposed algorithms can provide better routing performance compared to a number of existing probabilistic, opportunistic, and utility-based DTN routing protocols in the literature.

  11. Eavesdropping-aware routing and spectrum allocation based on multi-flow virtual concatenation for confidential information service in elastic optical networks

    NASA Astrophysics Data System (ADS)

    Bai, Wei; Yang, Hui; Yu, Ao; Xiao, Hongyun; He, Linkuan; Feng, Lei; Zhang, Jie

    2018-01-01

    The leakage of confidential information is one of important issues in the network security area. Elastic Optical Networks (EON) as a promising technology in the optical transport network is under threat from eavesdropping attacks. It is a great demand to support confidential information service (CIS) and design efficient security strategy against the eavesdropping attacks. In this paper, we propose a solution to cope with the eavesdropping attacks in routing and spectrum allocation. Firstly, we introduce probability theory to describe eavesdropping issue and achieve awareness of eavesdropping attacks. Then we propose an eavesdropping-aware routing and spectrum allocation (ES-RSA) algorithm to guarantee information security. For further improving security and network performance, we employ multi-flow virtual concatenation (MFVC) and propose an eavesdropping-aware MFVC-based secure routing and spectrum allocation (MES-RSA) algorithm. The presented simulation results show that the proposed two RSA algorithms can both achieve greater security against the eavesdropping attacks and MES-RSA can also improve the network performance efficiently.

  12. Effective bandwidth guaranteed routing schemes for MPLS traffic engineering

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Jain, Nidhi

    2001-07-01

    In this work, we present online algorithms for dynamic routing bandwidth guaranteed label switched paths (LSPs) where LSP set-up requests (in terms of a pair of ingress and egress routers as well as its bandwidth requirement) arrive one by one and there is no a priori knowledge regarding future LSP set-up requests. In addition, we consider rerouting of LSPs in this work. Rerouting of LSPs has not been well studied in previous work on LSP routing. The need of LSP rerouting arises in a number of ways: occurrence of faults (link and/or node failures), re-optimization of existing LSPs' routes to accommodate traffic fluctuation, requests with higher priorities, and so on. We formulate the bandwidth guaranteed LSP routing with rerouting capability as a multi-commodity flow problem. The solution to this problem is used as the benchmark for comparing other computationally less costly algorithms studied in this paper. Furthermore, to more efficiently utilize the network resources, we propose online routing algorithms which route bandwidth demands over multiple paths at the ingress router to satisfy the customer requests while providing better service survivability. Traffic splitting and distribution over the multiple paths are carefully handled using table-based hashing schemes while the order of packets within a flow is preserved. Preliminary simulations are conducted to show the performance of different design choices and the effectiveness of the rerouting and multi-path routing algorithms in terms of LSP set-up request rejection probability and bandwidth blocking probability.

  13. Reconfigurable Robust Routing for Mobile Outreach Network

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang

    2010-01-01

    The Reconfigurable Robust Routing for Mobile Outreach Network (R3MOO N) provides advanced communications networking technologies suitable for the lunar surface environment and applications. The R3MOON techn ology is based on a detailed concept of operations tailored for luna r surface networks, and includes intelligent routing algorithms and wireless mesh network implementation on AGNC's Coremicro Robots. The product's features include an integrated communication solution inco rporating energy efficiency and disruption-tolerance in a mobile ad h oc network, and a real-time control module to provide researchers an d engineers a convenient tool for reconfiguration, investigation, an d management.

  14. Mobility based multicast routing in wireless mesh networks

    NASA Astrophysics Data System (ADS)

    Jain, Sanjeev; Tripathi, Vijay S.; Tiwari, Sudarshan

    2013-01-01

    There exist two fundamental approaches to multicast routing namely minimum cost trees and shortest path trees. The (MCT's) minimum cost tree is one which connects receiver and sources by providing a minimum number of transmissions (MNTs) the MNTs approach is generally used for energy constraint sensor and mobile ad hoc networks. In this paper we have considered node mobility and try to find out simulation based comparison of the (SPT's) shortest path tree, (MST's) minimum steiner trees and minimum number of transmission trees in wireless mesh networks by using the performance metrics like as an end to end delay, average jitter, throughput and packet delivery ratio, average unicast packet delivery ratio, etc. We have also evaluated multicast performance in the small and large wireless mesh networks. In case of multicast performance in the small networks we have found that when the traffic load is moderate or high the SPTs outperform the MSTs and MNTs in all cases. The SPTs have lowest end to end delay and average jitter in almost all cases. In case of multicast performance in the large network we have seen that the MSTs provide minimum total edge cost and minimum number of transmissions. We have also found that the one drawback of SPTs, when the group size is large and rate of multicast sending is high SPTs causes more packet losses to other flows as MCTs.

  15. Green Routing Fuel Saving Opportunity Assessment: A Case Study on California Large-Scale Real-World Travel Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Lei; Holden, Jacob; Gonder, Jeffrey D

    New technologies, such as connected and automated vehicles, have attracted more and more researchers for improving the energy efficiency and environmental impact of current transportation systems. The green routing strategy instructs a vehicle to select the most fuel-efficient route before the vehicle departs. It benefits the current transportation system with fuel saving opportunity through identifying the greenest route. This paper introduces an evaluation framework for estimating benefits of green routing based on large-scale, real-world travel data. The framework has the capability to quantify fuel savings by estimating the fuel consumption of actual routes and comparing to routes procured by navigationmore » systems. A route-based fuel consumption estimation model, considering road traffic conditions, functional class, and road grade is proposed and used in the framework. An experiment using a large-scale data set from the California Household Travel Survey global positioning system trajectory data base indicates that 31% of actual routes have fuel savings potential with a cumulative estimated fuel savings of 12%.« less

  16. On Designing Thermal-Aware Localized QoS Routing Protocol for in-vivo Sensor Nodes in Wireless Body Area Networks.

    PubMed

    Monowar, Muhammad Mostafa; Bajaber, Fuad

    2015-06-15

    In this paper, we address the thermal rise and Quality-of-Service (QoS) provisioning issue for an intra-body Wireless Body Area Network (WBAN) having in-vivo sensor nodes. We propose a thermal-aware QoS routing protocol, called TLQoS, that facilitates the system in achieving desired QoS in terms of delay and reliability for diverse traffic types, as well as avoids the formation of highly heated nodes known as hotspot(s), and keeps the temperature rise along the network to an acceptable level. TLQoS exploits modular architecture wherein different modules perform integrated operations in providing multiple QoS service with lower temperature rise. To address the challenges of highly dynamic wireless environment inside the human body. TLQoS implements potential-based localized routing that requires only local neighborhood information. TLQoS avoids routing loop formation as well as reduces the number of hop traversal exploiting hybrid potential, and tuning a configurable parameter. We perform extensive simulations of TLQoS, and the results show that TLQoS has significant performance improvements over state-of-the-art approaches.

  17. On Designing Thermal-Aware Localized QoS Routing Protocol for in-vivo Sensor Nodes in Wireless Body Area Networks

    PubMed Central

    Monowar, Muhammad Mostafa; Bajaber, Fuad

    2015-01-01

    In this paper, we address the thermal rise and Quality-of-Service (QoS) provisioning issue for an intra-body Wireless Body Area Network (WBAN) having in-vivo sensor nodes. We propose a thermal-aware QoS routing protocol, called TLQoS, that facilitates the system in achieving desired QoS in terms of delay and reliability for diverse traffic types, as well as avoids the formation of highly heated nodes known as hotspot(s), and keeps the temperature rise along the network to an acceptable level. TLQoS exploits modular architecture wherein different modules perform integrated operations in providing multiple QoS service with lower temperature rise. To address the challenges of highly dynamic wireless environment inside the human body. TLQoS implements potential-based localized routing that requires only local neighborhood information. TLQoS avoids routing loop formation as well as reduces the number of hop traversal exploiting hybrid potential, and tuning a configurable parameter. We perform extensive simulations of TLQoS, and the results show that TLQoS has significant performance improvements over state-of-the-art approaches. PMID:26083228

  18. Single-Layer Wire Routing.

    DTIC Science & Technology

    1987-08-01

    techniques for routing and testing the rout- ability of designs. The design model is ill- suited for the developement of routing algorithms, but the...circular ordering of ca- bles at a feature endpoint. The arrows de - pict the circular ordering of cables at feature ’ 3 cables endpoints p and q. There can...Figure le -1, whose only proper realizations have size fQ(n 2 ). From a practical standpoint, however, the sketch algorithms do not seem as good. Most

  19. Multi-criteria, personalized route planning using quantifier-guided ordered weighted averaging operators

    NASA Astrophysics Data System (ADS)

    Nadi, S.; Delavar, M. R.

    2011-06-01

    This paper presents a generic model for using different decision strategies in multi-criteria, personalized route planning. Some researchers have considered user preferences in navigation systems. However, these prior studies typically employed a high tradeoff decision strategy, which used a weighted linear aggregation rule, and neglected other decision strategies. The proposed model integrates a pairwise comparison method and quantifier-guided ordered weighted averaging (OWA) aggregation operators to form a personalized route planning method that incorporates different decision strategies. The model can be used to calculate the impedance of each link regarding user preferences in terms of the route criteria, criteria importance and the selected decision strategy. Regarding the decision strategy, the calculated impedance lies between aggregations that use a logical "and" (which requires all the criteria to be satisfied) and a logical "or" (which requires at least one criterion to be satisfied). The calculated impedance also includes taking the average of the criteria scores. The model results in multiple alternative routes, which apply different decision strategies and provide users with the flexibility to select one of them en-route based on the real world situation. The model also defines the robust personalized route under different decision strategies. The influence of different decision strategies on the results are investigated in an illustrative example. This model is implemented in a web-based geographical information system (GIS) for Isfahan in Iran and verified in a tourist routing scenario. The results demonstrated, in real world situations, the validity of the route planning carried out in the model.

  20. Privacy Preserved and Secured Reliable Routing Protocol for Wireless Mesh Networks.

    PubMed

    Meganathan, Navamani Thandava; Palanichamy, Yogesh

    2015-01-01

    Privacy preservation and security provision against internal attacks in wireless mesh networks (WMNs) are more demanding than in wired networks due to the open nature and mobility of certain nodes in the network. Several schemes have been proposed to preserve privacy and provide security in WMNs. To provide complete privacy protection in WMNs, the properties of unobservability, unlinkability, and anonymity are to be ensured during route discovery. These properties can be achieved by implementing group signature and ID-based encryption schemes during route discovery. Due to the characteristics of WMNs, it is more vulnerable to many network layer attacks. Hence, a strong protection is needed to avoid these attacks and this can be achieved by introducing a new Cross-Layer and Subject Logic based Dynamic Reputation (CLSL-DR) mechanism during route discovery. In this paper, we propose a new Privacy preserved and Secured Reliable Routing (PSRR) protocol for WMNs. This protocol incorporates group signature, ID-based encryption schemes, and CLSL-DR mechanism to ensure strong privacy, security, and reliability in WMNs. Simulation results prove this by showing better performance in terms of most of the chosen parameters than the existing protocols.

  1. Over the Pole: A Fuel Efficiency Analysis of Employing Joint Base Elmendorf-Richardson for Polar Route Utilization

    DTIC Science & Technology

    2014-06-13

    helping me with research, as well as Lt Col Adam Reiman for the use of his modeling software. Both were critical components to help complete this... Reiman , 2013) ............................................ 17 Figure 7: Route Analyzer Secondary Airfields ( Reiman , 2013...Transit Center (Nichol, 2013). AFIT Route Analyzer Model The AFIT Route Analyzer was created by AFIT PhD student Lt Col Adam Reiman . The model was

  2. Non-injection routes for allergen immunotherapy: focus on sublingual immunotherapy.

    PubMed

    Passalacqua, Giovanni; Guerra, Laura; Pasquali, Mercedes; Canonica, Giorgio Walter

    2006-01-01

    Allergen specific immunotherapy, together with drugs and allergen avoidance, is a cornerstone in the management of respiratory allergy. The non-injection or local routes were developed with the main goal of improving the safety and minimizing the risk of those side effects, which can accompany the injection route. The pure oral route and the bronchial route showed, in the clinical trials, only a marginal efficacy with not negligible side effects. Therefore, these routes are no longer recommended for clinical use. The nasal route proved effective and safe, but its efficacy is strictly limited to the nose. Moreover, the practical problems with administration have made the use of nasal immunotherapy progressively declining. The efficacy of the sublingual route is confirmed by numerous controlled trials, and a meta analysis (in allergic rhinitis). The safety profile, as derived from clinical trials and post marketing surveillance studies, is satisfactory, with mild gastrointestinal complaints being the more frequent side effect reported. Recent studies have also demonstrated that SLIT has a long-lasting effect and a preventive effect on the onset of new skin sensitizations, and interesting data on adherence and mechanisms of action have become recently available. Based on these experimental data, SLIT is now officially accepted as a viable alternative to the subcutaneous route in adults and children. Several points still need to be elucidated, including: mechanisms of action, optimal dosages, and indications in pediatric patients.

  3. Performance evaluation of reactive and proactive routing protocol in IEEE 802.11 ad hoc network

    NASA Astrophysics Data System (ADS)

    Hamma, Salima; Cizeron, Eddy; Issaka, Hafiz; Guédon, Jean-Pierre

    2006-10-01

    Wireless technology based on the IEEE 802.11 standard is widely deployed. This technology is used to support multiple types of communication services (data, voice, image) with different QoS requirements. MANET (Mobile Adhoc NETwork) does not require a fixed infrastructure. Mobile nodes communicate through multihop paths. The wireless communication medium has variable and unpredictable characteristics. Furthermore, node mobility creates a continuously changing communication topology in which paths break and new one form dynamically. The routing table of each router in an adhoc network must be kept up-to-date. MANET uses Distance Vector or Link State algorithms which insure that the route to every host is always known. However, this approach must take into account the adhoc networks specific characteristics: dynamic topologies, limited bandwidth, energy constraints, limited physical security, ... Two main routing protocols categories are studied in this paper: proactive protocols (e.g. Optimised Link State Routing - OLSR) and reactive protocols (e.g. Ad hoc On Demand Distance Vector - AODV, Dynamic Source Routing - DSR). The proactive protocols are based on periodic exchanges that update the routing tables to all possible destinations, even if no traffic goes through. The reactive protocols are based on on-demand route discoveries that update routing tables only for the destination that has traffic going through. The present paper focuses on study and performance evaluation of these categories using NS2 simulations. We have considered qualitative and quantitative criteria. The first one concerns distributed operation, loop-freedom, security, sleep period operation. The second are used to assess performance of different routing protocols presented in this paper. We can list end-to-end data delay, jitter, packet delivery ratio, routing load, activity distribution. Comparative study will be presented with number of networking context consideration and the results show

  4. Genetic Algorithm and Tabu Search for Vehicle Routing Problems with Stochastic Demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, Zuhaimy, E-mail: zuhaimyi@yahoo.com, E-mail: irhamahn@yahoo.com; Irhamah, E-mail: zuhaimyi@yahoo.com, E-mail: irhamahn@yahoo.com

    2010-11-11

    This paper presents a problem of designing solid waste collection routes, involving scheduling of vehicles where each vehicle begins at the depot, visits customers and ends at the depot. It is modeled as a Vehicle Routing Problem with Stochastic Demands (VRPSD). A data set from a real world problem (a case) is used in this research. We developed Genetic Algorithm (GA) and Tabu Search (TS) procedure and these has produced the best possible result. The problem data are inspired by real case of VRPSD in waste collection. Results from the experiment show the advantages of the proposed algorithm that aremore » its robustness and better solution qualities.« less

  5. Optimization of OSPF Routing in IP Networks

    NASA Astrophysics Data System (ADS)

    Bley, Andreas; Fortz, Bernard; Gourdin, Eric; Holmberg, Kaj; Klopfenstein, Olivier; Pióro, Michał; Tomaszewski, Artur; Ümit, Hakan

    The Internet is a huge world-wide packet switching network comprised of more than 13,000 distinct subnetworks, referred to as Autonomous Systems (ASs) autonomous system AS . They all rely on the Internet Protocol (IP) internet protocol IP for transport of packets across the network. And most of them use shortest path routing protocols shortest path routing!protocols , such as OSPF or IS-IS, to control the routing of IP packets routing!of IP packets within an AS. The idea of the routing is extremely simple — every packet is forwarded on IP links along the shortest route between its source and destination nodes of the AS. The AS network administrator can manage the routing of packets in the AS by supplying the so-called administrative weights of IP links, which specify the link lengths that are used by the routing protocols for their shortest path computations. The main advantage of the shortest path routing policy is its simplicity, allowing for little administrative overhead. From the network engineering perspective, however, shortest path routing can pose problems in achieving satisfactory traffic handling efficiency. As all routing paths depend on the same routing metric routing!metric , it is not possible to configure the routing paths for the communication demands between different pairs of nodes explicitly or individually; the routing can be controlled only indirectly and only as a whole by modifying the routing metric. Thus, one of the main tasks when planning such networks is to find administrative link weights that induce a globally efficient traffic routing

  6. A fuzzy-logic based decision-making approach for identification of groundwater quality based on groundwater quality indices.

    PubMed

    Vadiati, M; Asghari-Moghaddam, A; Nakhaei, M; Adamowski, J; Akbarzadeh, A H

    2016-12-15

    Due to inherent uncertainties in measurement and analysis, groundwater quality assessment is a difficult task. Artificial intelligence techniques, specifically fuzzy inference systems, have proven useful in evaluating groundwater quality in uncertain and complex hydrogeological systems. In the present study, a Mamdani fuzzy-logic-based decision-making approach was developed to assess groundwater quality based on relevant indices. In an effort to develop a set of new hybrid fuzzy indices for groundwater quality assessment, a Mamdani fuzzy inference model was developed with widely-accepted groundwater quality indices: the Groundwater Quality Index (GQI), the Water Quality Index (WQI), and the Ground Water Quality Index (GWQI). In an effort to present generalized hybrid fuzzy indices a significant effort was made to employ well-known groundwater quality index acceptability ranges as fuzzy model output ranges rather than employing expert knowledge in the fuzzification of output parameters. The proposed approach was evaluated for its ability to assess the drinking water quality of 49 samples collected seasonally from groundwater resources in Iran's Sarab Plain during 2013-2014. Input membership functions were defined as "desirable", "acceptable" and "unacceptable" based on expert knowledge and the standard and permissible limits prescribed by the World Health Organization. Output data were categorized into multiple categories based on the GQI (5 categories), WQI (5 categories), and GWQI (3 categories). Given the potential of fuzzy models to minimize uncertainties, hybrid fuzzy-based indices produce significantly more accurate assessments of groundwater quality than traditional indices. The developed models' accuracy was assessed and a comparison of the performance indices demonstrated the Fuzzy Groundwater Quality Index model to be more accurate than both the Fuzzy Water Quality Index and Fuzzy Ground Water Quality Index models. This suggests that the new hybrid fuzzy

  7. A new method for solving routing and wavelength assignment problems under inaccurate routing information in optical networks with conversion capability

    NASA Astrophysics Data System (ADS)

    Luo, Yanting; Zhang, Yongjun; Gu, Wanyi

    2009-11-01

    In large dynamic networks it is extremely difficult to maintain accurate routing information on all network nodes. The existing studies have illustrated the impact of imprecise state information on the performance of dynamic routing and wavelength assignment (RWA) algorithms. An algorithm called Bypass Based Optical Routing (BBOR) proposed by Xavier Masip-Bruin et al can reduce the effects of having inaccurate routing information in networks operating under the wavelength-continuity constraint. Then they extended the BBOR mechanism (for convenience it's called EBBOR mechanism below) to be applied to the networks with sparse and limited wavelength conversion. But it only considers the characteristic of wavelength conversion in the step of computing the bypass-paths so that its performance may decline with increasing the degree of wavelength translation (this concept will be explained in the section of introduction again). We will demonstrate the issue through theoretical analysis and introduce a novel algorithm which modifies both the lightpath selection and the bypass-paths computation in comparison to EBBOR algorithm. Simulations show that the Modified EBBOR (MEBBOR) algorithm improves the blocking performance significantly in optical networks with Conversion Capability.

  8. A review on the modelling of collection and distribution of blood donation based on vehicle routing problem

    NASA Astrophysics Data System (ADS)

    Azezan, Nur Arif; Ramli, Mohammad Fadzli; Masran, Hafiz

    2017-11-01

    In this paper, we discussed a literature on blood collection-distribution that based on vehicle routing problem. This problem emergence when the process from collection to stock up must be completed in timely manner. We also modified the mathematical model so that it will suited to general collection of blood. A discussion on its algorithm and solution methods are also pointed out briefly in this paper.

  9. Mathematical simulation for compensation capacities area of pipeline routes in ship systems

    NASA Astrophysics Data System (ADS)

    Ngo, G. V.; Sakhno, K. N.

    2018-05-01

    In this paper, the authors considered the problem of manufacturability’s enhancement of ship systems pipeline at the designing stage. The analysis of arrangements and possibilities for compensation of deviations for pipeline routes has been carried out. The task was set to produce the “fit pipe” together with the rest of the pipes in the route. It was proposed to compensate for deviations by movement of the pipeline route during pipe installation and to calculate maximum values of these displacements in the analyzed path. Theoretical bases of deviation compensation for pipeline routes using rotations of parallel section pairs of pipes are assembled. Mathematical and graphical simulations of compensation area capacities of pipeline routes with various configurations are completed. Prerequisites have been created for creating an automated program that will allow one to determine values of the compensatory capacities area for pipeline routes and to assign quantities of necessary allowances.

  10. Intelligent routing protocol for ad hoc wireless network

    NASA Astrophysics Data System (ADS)

    Peng, Chaorong; Chen, Chang Wen

    2006-05-01

    A novel routing scheme for mobile ad hoc networks (MANETs), which combines hybrid and multi-inter-routing path properties with a distributed topology discovery route mechanism using control agents is proposed in this paper. In recent years, a variety of hybrid routing protocols for Mobile Ad hoc wireless networks (MANETs) have been developed. Which is proactively maintains routing information for a local neighborhood, while reactively acquiring routes to destinations beyond the global. The hybrid protocol reduces routing discovery latency and the end-to-end delay by providing high connectivity without requiring much of the scarce network capacity. On the other side the hybrid routing protocols in MANETs likes Zone Routing Protocol still need route "re-discover" time when a route between zones link break. Sine the topology update information needs to be broadcast routing request on local zone. Due to this delay, the routing protocol may not be applicable for real-time data and multimedia communication. We utilize the advantages of a clustering organization and multi-routing path in routing protocol to achieve several goals at the same time. Firstly, IRP efficiently saves network bandwidth and reduces route reconstruction time when a routing path fails. The IRP protocol does not require global periodic routing advertisements, local control agents will automatically monitor and repair broke links. Secondly, it efficiently reduces congestion and traffic "bottlenecks" for ClusterHeads in clustering network. Thirdly, it reduces significant overheads associated with maintaining clusters. Fourthly, it improves clusters stability due to dynamic topology changing frequently. In this paper, we present the Intelligent Routing Protocol. First, we discuss the problem of routing in ad hoc networks and the motivation of IRP. We describe the hierarchical architecture of IRP. We describe the routing process and illustrate it with an example. Further, we describe the control manage

  11. Comparison Between Three Different Types of Routing Algorithms of Network on Chip

    NASA Astrophysics Data System (ADS)

    Soni, Neetu; Deshmukh, Khemraj

    Network on Chip (NoC) is an on-chip communication technology in which a large number of processing elements and storage blocks are integrated on a single chip. Due to scalability, adaptive nature, well resource utilization NoCs have become popular in and has efficiently replaced SoCs. NoCs performance depends mainly on the type of routing algorithm chosen. In this paper three different types of routing algorithms are being compared firstly one is deterministic routing (XY routing algorithm), secondly three partially adaptive routing (West-first, North-last and Negative-first) and two adaptive routing (DyAD, OE) are being compared with respect to Packet Injection Rate (PIR) of load for random traffic pattern for 4 × 4 mesh topology. All these comparison and simulation is done in NOXIM 2.3.1 simulator which is a cycle accurate systemC based simulator. The distribution of packets is Poisson type with Buffer depth (number of buffers) of input channel FIFO is 8. Packet size is taken as 8 bytes. The simulation time is taken 50,000 cycles. We found that XY routing is better when the PIR is low. The partially adaptive routing is good when the PIR is moderate. DyAD routing is suited when the load i.e. PIR is high.

  12. A global reaction route mapping-based kinetic Monte Carlo algorithm.

    PubMed

    Mitchell, Izaac; Irle, Stephan; Page, Alister J

    2016-07-14

    We propose a new on-the-fly kinetic Monte Carlo (KMC) method that is based on exhaustive potential energy surface searching carried out with the global reaction route mapping (GRRM) algorithm. Starting from any given equilibrium state, this GRRM-KMC algorithm performs a one-step GRRM search to identify all surrounding transition states. Intrinsic reaction coordinate pathways are then calculated to identify potential subsequent equilibrium states. Harmonic transition state theory is used to calculate rate constants for all potential pathways, before a standard KMC accept/reject selection is performed. The selected pathway is then used to propagate the system forward in time, which is calculated on the basis of 1st order kinetics. The GRRM-KMC algorithm is validated here in two challenging contexts: intramolecular proton transfer in malonaldehyde and surface carbon diffusion on an iron nanoparticle. We demonstrate that in both cases the GRRM-KMC method is capable of reproducing the 1st order kinetics observed during independent quantum chemical molecular dynamics simulations using the density-functional tight-binding potential.

  13. A global reaction route mapping-based kinetic Monte Carlo algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Izaac; Page, Alister J., E-mail: sirle@chem.nagoya-u.ac.jp, E-mail: alister.page@newcastle.edu.au; Irle, Stephan, E-mail: sirle@chem.nagoya-u.ac.jp, E-mail: alister.page@newcastle.edu.au

    2016-07-14

    We propose a new on-the-fly kinetic Monte Carlo (KMC) method that is based on exhaustive potential energy surface searching carried out with the global reaction route mapping (GRRM) algorithm. Starting from any given equilibrium state, this GRRM-KMC algorithm performs a one-step GRRM search to identify all surrounding transition states. Intrinsic reaction coordinate pathways are then calculated to identify potential subsequent equilibrium states. Harmonic transition state theory is used to calculate rate constants for all potential pathways, before a standard KMC accept/reject selection is performed. The selected pathway is then used to propagate the system forward in time, which is calculatedmore » on the basis of 1st order kinetics. The GRRM-KMC algorithm is validated here in two challenging contexts: intramolecular proton transfer in malonaldehyde and surface carbon diffusion on an iron nanoparticle. We demonstrate that in both cases the GRRM-KMC method is capable of reproducing the 1st order kinetics observed during independent quantum chemical molecular dynamics simulations using the density-functional tight-binding potential.« less

  14. A global reaction route mapping-based kinetic Monte Carlo algorithm

    NASA Astrophysics Data System (ADS)

    Mitchell, Izaac; Irle, Stephan; Page, Alister J.

    2016-07-01

    We propose a new on-the-fly kinetic Monte Carlo (KMC) method that is based on exhaustive potential energy surface searching carried out with the global reaction route mapping (GRRM) algorithm. Starting from any given equilibrium state, this GRRM-KMC algorithm performs a one-step GRRM search to identify all surrounding transition states. Intrinsic reaction coordinate pathways are then calculated to identify potential subsequent equilibrium states. Harmonic transition state theory is used to calculate rate constants for all potential pathways, before a standard KMC accept/reject selection is performed. The selected pathway is then used to propagate the system forward in time, which is calculated on the basis of 1st order kinetics. The GRRM-KMC algorithm is validated here in two challenging contexts: intramolecular proton transfer in malonaldehyde and surface carbon diffusion on an iron nanoparticle. We demonstrate that in both cases the GRRM-KMC method is capable of reproducing the 1st order kinetics observed during independent quantum chemical molecular dynamics simulations using the density-functional tight-binding potential.

  15. Dynamic information routing in complex networks

    PubMed Central

    Kirst, Christoph; Timme, Marc; Battaglia, Demian

    2016-01-01

    Flexible information routing fundamentally underlies the function of many biological and artificial networks. Yet, how such systems may specifically communicate and dynamically route information is not well understood. Here we identify a generic mechanism to route information on top of collective dynamical reference states in complex networks. Switching between collective dynamics induces flexible reorganization of information sharing and routing patterns, as quantified by delayed mutual information and transfer entropy measures between activities of a network's units. We demonstrate the power of this mechanism specifically for oscillatory dynamics and analyse how individual unit properties, the network topology and external inputs co-act to systematically organize information routing. For multi-scale, modular architectures, we resolve routing patterns at all levels. Interestingly, local interventions within one sub-network may remotely determine nonlocal network-wide communication. These results help understanding and designing information routing patterns across systems where collective dynamics co-occurs with a communication function. PMID:27067257

  16. A new stratification of mourning dove call-count routes

    USGS Publications Warehouse

    Blankenship, L.H.; Humphrey, A.B.; MacDonald, D.

    1971-01-01

    The mourning dove (Zenaidura macroura) call-count survey is a nationwide audio-census of breeding mourning doves. Recent analyses of the call-count routes have utilized a stratification based upon physiographic regions of the United States. An analysis of 5 years of call-count data, based upon stratification using potential natural vegetation, has demonstrated that this uew stratification results in strata with greater homogeneity than the physiographic strata, provides lower error variance, and hence generates greatet precision in the analysis without an increase in call-count routes. Error variance was reduced approximately 30 percent for the contiguous United States. This indicates that future analysis based upon the new stratification will result in an increased ability to detect significant year-to-year changes.

  17. Quality-based purchasing in health care.

    PubMed

    Waters, Hugh R; Morlock, Laura L; Hatt, Laurel

    2004-01-01

    Quality-based purchasing is a growing trend that seeks to improve healthcare quality through the purchaser-provider relationship. This article provides a unifying conceptual framework, presents examples of the purchaser-provider relationship in countries at different income levels, and identifies important supporting mechanisms for quality-based purchasing. As countries become wealthier, a higher proportion of healthcare spending is channeled through pooled arrangements, allowing for greater involvement of purchasers in promoting the quality of service provision. Global and line item budgets are the most common type of provider payment system in low and middle-income countries. In these countries, improving public hospital performance through contracting and incentives is a key issue. In middle and high-income countries, there are several documented examples of governments contracting to private or non-governmental health care providers, resulting in higher perceived quality of care and lower delivery costs. Encouraging quality through employer purchasing arrangements has been promoted in several countries, particularly the United States. Community-based financing schemes are an increasingly common form of health financing in parts of sub-Saharan Africa and Asia, but these schemes still cover less than 10% of national populations in countries in which they are active. To date, there is little evidence of their impact on healthcare quality. The availability of information--concerning healthcare service provision and outcomes--determines the options for establishing and monitoring contract provisions and promoting quality. Regardless of the context, quality-based purchasing depends critically on informa-tion--reporting, monitoring, and providing useful information to healthcare consumers. In many low and middle-income countries, the lack of availability of information is the principal constraint on measuring performance, a critical component of quality-based

  18. Seeded Growth Route to Noble Calcium Carbonate Nanocrystal.

    PubMed

    Islam, Aminul; Teo, Siow Hwa; Rahman, M Aminur; Taufiq-Yap, Yun Hin

    2015-01-01

    A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3) are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33-41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed.

  19. Seeded Growth Route to Noble Calcium Carbonate Nanocrystal

    PubMed Central

    Islam, Aminul; Teo, Siow Hwa; Rahman, M. Aminur; Taufiq-Yap, Yun Hin

    2015-01-01

    A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3) are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33–41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed. PMID:26700479

  20. 14 CFR 121.95 - Route width.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... routes in the case of certificate holders conducting flag operations) have a width equal to the... width of other approved routes, he considers the following: (1) Terrain clearance. (2) Minimum en route...

  1. 14 CFR 121.95 - Route width.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... routes in the case of certificate holders conducting flag operations) have a width equal to the... width of other approved routes, he considers the following: (1) Terrain clearance. (2) Minimum en route...

  2. 14 CFR 121.95 - Route width.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... routes in the case of certificate holders conducting flag operations) have a width equal to the... width of other approved routes, he considers the following: (1) Terrain clearance. (2) Minimum en route...

  3. 14 CFR 121.95 - Route width.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... routes in the case of certificate holders conducting flag operations) have a width equal to the... width of other approved routes, he considers the following: (1) Terrain clearance. (2) Minimum en route...

  4. 14 CFR 121.95 - Route width.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... routes in the case of certificate holders conducting flag operations) have a width equal to the... width of other approved routes, he considers the following: (1) Terrain clearance. (2) Minimum en route...

  5. Collective network routing

    DOEpatents

    Hoenicke, Dirk

    2014-12-02

    Disclosed are a unified method and apparatus to classify, route, and process injected data packets into a network so as to belong to a plurality of logical networks, each implementing a specific flow of data on top of a common physical network. The method allows to locally identify collectives of packets for local processing, such as the computation of the sum, difference, maximum, minimum, or other logical operations among the identified packet collective. Packets are injected together with a class-attribute and an opcode attribute. Network routers, employing the described method, use the packet attributes to look-up the class-specific route information from a local route table, which contains the local incoming and outgoing directions as part of the specifically implemented global data flow of the particular virtual network.

  6. Economically attractive route for the preparation of high quality magnetic nanoparticles by the thermal decomposition of iron(III) acetylacetonate.

    PubMed

    Effenberger, Fernando B; Couto, Ricardo A; Kiyohara, Pedro K; Machado, Giovanna; Masunaga, Sueli H; Jardim, Renato F; Rossi, Liane M

    2017-03-17

    The thermal decomposition (TD) methods are among the most successful in obtaining magnetic nanoparticles with a high degree of control of size and narrow particle size distribution. Here we investigated the TD of iron(III) acetylacetonate in the presence of oleic acid, oleylamine, and a series of alcohols in order to disclose their role and also investigate economically attractive alternatives for the synthesis of iron oxide nanoparticles without compromising their size and shape control. We have found that some affordable and reasonably less priced alcohols, such as 1,2-octanediol and cyclohexanol, may replace the commonly used and expensive 1,2-hexadecanediol, providing an economically attractive route for the synthesis of high quality magnetic nanoparticles. The relative cost for the preparation of Fe 3 O 4 NPs is reduced to only 21% and 9% of the original cost when using 1,2-octanediol and cyclohexanol, respectively.

  7. Security in MANETs using reputation-adjusted routing

    NASA Astrophysics Data System (ADS)

    Ondi, Attila; Hoffman, Katherine; Perez, Carlos; Ford, Richard; Carvalho, Marco; Allen, William

    2009-04-01

    Mobile Ad-Hoc Networks enable communication in various dynamic environments, including military combat operations. Their open and shared communication medium enables new forms of attack that are not applicable for traditional wired networks. Traditional security mechanisms and defense techniques are not prepared to cope with the new attacks and the lack of central authorities make identity verifications difficult. This work extends our previous work in the Biologically Inspired Tactical Security Infrastructure to provide a reputation-based weighing mechanism for linkstate routing protocols to protect the network from attackers that are corrupting legitimate network traffic. Our results indicate that the approach is successful in routing network traffic around compromised computers.

  8. Development of decision support systems for real-time freeway traffic routing : volume II.

    DOT National Transportation Integrated Search

    1998-01-01

    Real-time traffic flow routing is a promising approach to alleviating congestion. Existing approaches to developing real-time routing strategies, however, have limitations. This study explored the potential for using case-based reasoning (CBR), an em...

  9. Green Routing Fuel Saving Opportunity Assessment: A Case Study on California Large-Scale Real-World Travel Data: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Lei; Holden, Jacob; Gonder, Jeff

    New technologies, such as connected and automated vehicles, have attracted more and more researchers for improving the energy efficiency and environmental impact of current transportation systems. The green routing strategy instructs a vehicle to select the most fuel-efficient route before the vehicle departs. It benefits the current transportation system with fuel saving opportunity through identifying the greenest route. This paper introduces an evaluation framework for estimating benefits of green routing based on large-scale, real-world travel data. The framework has the capability to quantify fuel savings by estimating the fuel consumption of actual routes and comparing to routes procured by navigationmore » systems. A route-based fuel consumption estimation model, considering road traffic conditions, functional class, and road grade is proposed and used in the framework. An experiment using a large-scale data set from the California Household Travel Survey global positioning system trajectory data base indicates that 31% of actual routes have fuel savings potential with a cumulative estimated fuel savings of 12%.« less

  10. Novel route of synthesis for cellulose fiber-based hybrid polyurethane

    NASA Astrophysics Data System (ADS)

    Ikhwan, F. H.; Ilmiati, S.; Kurnia Adi, H.; Arumsari, R.; Chalid, M.

    2017-07-01

    Polyurethanes, obtained by the reaction of a diisocyanate compound with bifunctional or multifunctional reagent such as diols or polyols, have been studied intensively and well developed. The wide range modifier such as chemical structures and molecular weight to build polyurethanes led to designs of materials that may easily meet the functional product demand and to the extraordinary spreading of these materials in market. Properties of the obtained polymer are related to the chemical structure of polyurethane backbone. A number polyurethanes prepared from biomass-based monomers have been reported. Cellulose fiber, as a biomass material is containing abundant hydroxyl, promising material as chain extender for building hybrid polyurethanes. In previous researches, cellulose fiber was used as filler in synthesis of polyurethane composites. This paper reported a novel route of hybrid polyurethane synthesis, which a cellulose fiber was used as chain extender. The experiment performed by reacting 4,4’-Methylenebis (cyclohexyl isocyanate) (HMDI) and polyethylene glycol with variation of molecular weight to obtained pre-polyurethane, continued by adding micro fiber cellulose (MFC) with variation of type and composition in the mixture. The experiment was evaluated by NMR, FTIR, SEM and STA measurement. NMR and FTIR confirmed the reaction of the hybrid polyurethane. STA showed hybrid polyurethane has good thermal stability. SEM showed good distribution and dispersion of sorghum-based MFC.

  11. Design and Analysis of Secure Routing Protocol for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Wang, Jiong; Zhang, Hua

    2017-09-01

    In recent years, with the development of science and technology and the progress of the times, China's wireless network technology has become increasingly prosperous and it plays an important role in social production and life. In this context, in order to further to enhance the stability of wireless network data transmission and security enhancements, the staff need to focus on routing security and carry out related work. Based on this, this paper analyzes the design of wireless sensor based on secure routing protocol.

  12. Parental Perceptions of Child Care Quality in Centre-Based and Home-Based Settings: Associations with External Quality Ratings

    ERIC Educational Resources Information Center

    Lehrer, Joanne S.; Lemay, Lise; Bigras, Nathalie

    2015-01-01

    The current study examined how parental perceptions of child care quality were related to external quality ratings and considered how parental perceptions of quality varied according to child care context (home-based or centre-based settings). Parents of 179 4-year-old children who attended child care centres (n = 141) and home-based settings…

  13. Multi-terminal pipe routing by Steiner minimal tree and particle swarm optimisation

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Wang, Chengen

    2012-08-01

    Computer-aided design of pipe routing is of fundamental importance for complex equipments' developments. In this article, non-rectilinear branch pipe routing with multiple terminals that can be formulated as a Euclidean Steiner Minimal Tree with Obstacles (ESMTO) problem is studied in the context of an aeroengine-integrated design engineering. Unlike the traditional methods that connect pipe terminals sequentially, this article presents a new branch pipe routing algorithm based on the Steiner tree theory. The article begins with a new algorithm for solving the ESMTO problem by using particle swarm optimisation (PSO), and then extends the method to the surface cases by using geodesics to meet the requirements of routing non-rectilinear pipes on the surfaces of aeroengines. Subsequently, the adaptive region strategy and the basic visibility graph method are adopted to increase the computation efficiency. Numeral computations show that the proposed routing algorithm can find satisfactory routing layouts while running in polynomial time.

  14. Route guidance strategies revisited: Comparison and evaluation in an asymmetric two-route traffic network

    NASA Astrophysics Data System (ADS)

    He, Zhengbing; Chen, Bokui; Jia, Ning; Guan, Wei; Lin, Benchuan; Wang, Binghong

    2014-12-01

    To alleviate traffic congestion, a variety of route guidance strategies have been proposed for intelligent transportation systems. A number of strategies are introduced and investigated on a symmetric two-route traffic network over the past decade. To evaluate the strategies in a more general scenario, this paper conducts eight prevalent strategies on an asymmetric two-route traffic network with different slowdown behaviors on alternative routes. The results show that only mean velocity feedback strategy (MVFS) is able to equalize travel time, i.e. approximate user optimality (UO); while the others fail due to incapability of establishing relations between the feedback parameters and travel time. The paper helps better understand these strategies, and suggests MVFS if the authority intends to achieve user optimality.

  15. An IPv6 routing lookup algorithm using weight-balanced tree based on prefix value for virtual router

    NASA Astrophysics Data System (ADS)

    Chen, Lingjiang; Zhou, Shuguang; Zhang, Qiaoduo; Li, Fenghua

    2016-10-01

    Virtual router enables the coexistence of different networks on the same physical facility and has lately attracted a great deal of attention from researchers. As the number of IPv6 addresses is rapidly increasing in virtual routers, designing an efficient IPv6 routing lookup algorithm is of great importance. In this paper, we present an IPv6 lookup algorithm called weight-balanced tree (WBT). WBT merges Forwarding Information Bases (FIBs) of virtual routers into one spanning tree, and compresses the space cost. WBT's average time complexity and the worst case time complexity of lookup and update process are both O(logN) and space complexity is O(cN) where N is the size of routing table and c is a constant. Experiments show that WBT helps reduce more than 80% Static Random Access Memory (SRAM) cost in comparison to those separation schemes. WBT also achieves the least average search depth comparing with other homogeneous algorithms.

  16. Reliability evaluation of a multistate network subject to time constraint under routing policy

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Kuei

    2013-08-01

    A multistate network is a stochastic network composed of multistate arcs in which each arc has several possible capacities and may fail due to failure, maintenance, etc. The quality of a multistate network depends on how to meet the customer's requirements and how to provide the service in time. The system reliability, the probability that a given amount of data can be transmitted through a pair of minimal paths (MPs) simultaneously under the time constraint, is a proper index to evaluate the quality of a multistate network. An efficient solution procedure is first proposed to calculate it. In order to further enhance the system reliability, the network administrator decides the routing policy in advance to indicate the first and the second priority pairs of MPs. The second priority pair of MPs takes charge of the transmission duty if the first fails. The system reliability under the routing policy can be subsequently evaluated.

  17. A new approach to estimate vaccine efficacy based on immunogenicity data applied to influenza vaccines administered by the intradermal or intramuscular routes.

    PubMed

    Coudeville, Laurent; Andre, Philippe; Bailleux, Fabrice; Weber, Françoise; Plotkin, Stanley

    2010-10-01

    Despite their pivotal role in the assessment of influenza vaccines, limited attempts have been made to use haemagglutination inhibition (HI) titers for predicting vaccine efficacy against laboratory-confirmed influenza. We present here the second step of a two-step approach allowing performing such predictions and use it to compare a new trivalent inactivated influenza vaccine administered by the intradermal (ID) route (INTANZA® /IDFlu®) with the vaccine administered by the classical intramuscular (IM) route. The first step corresponding to the estimation of the level of protection against laboratory-confirmed influenza that can be linked to each HI titer, referred to as the HI protection curve, was achieved by using a meta-analytical approach based on published information. Vaccine efficacy and differences in vaccine efficacy are predicted in a second step using this HI protection curve alongside the results of two randomized clinical trials providing comparative information on the immunogenicity of trivalent inactivated influenza vaccines administered ID or IM in 3503 & 1645 elderly participants, respectively. Pooling all available immunogenicity data, the predicted vaccine efficacy was 63.3% [CI: 58.1; 68.7] for ID route and 54.4% [CI: 49.4; 59.2] for IM route. The corresponding relative increase in efficacy that is of 16.5% [CI: 12.7; 20.1]. Predicted vaccine efficacies decreased with age for both vaccines, but the decrease was less marked by ID route: the relative increase in efficacy for subjects aged 70 years and above is of 18.0% [CI:12;24]. The analysis performed confirmed that the superior immune response provided by the vaccine using the ID route should translate into a higher vaccine efficacy against laboratory-confirmed influenza.

  18. Impacts of transportation routes on landscape diversity: a comparison of different route types and their combined effects.

    PubMed

    Su, Shiliang; Xiao, Rui; Li, Delong; Hu, Yi'na

    2014-03-01

    A comparison of different transportation route types and their combined effects on landscape diversity was conducted within Tiaoxi watershed (China) between 1994 and 2005. Buffer analysis and Mann-Kendall's test were used to quantify the relationships between distance from transportation routes (railway, highway, national, and provincial road) and a family of landscape diversity parameters (Simpson's diversity index, Simpson's evenness index, Shannon's diversity index, and Shannon's evenness index). One-way ANOVA was further applied to compare influences from different route types and their combined effects. Five other landscape metrics (patch density, edge density, area-weighted mean shape index, connectance index, and Euclidean nearest neighbor distance) were also calculated to analyze the associations between landscape diversity and landscape pattern characteristics. Results showed that transportation routes exerted significant impacts on landscape diversity. Impact from railway was comparable to that from highway and national road but was more significant than that from provincial road. The spatial influential range of railway and national road was wider than that of highway and provincial road. Combined effects of routes were nonlinear, and impacts from different route types were more complex than those from the same type. The four landscape diversity metrics were comparably effective at the buffer zone scale. In addition, landscape diversity can be alternatively used to indicate fragmentation, connectivity, and isolation at route buffer scale. This study demonstrates an applicable approach to quantitatively characterize the impacts from transportation routes on landscape patterns and has potential to facilitate route network planning.

  19. A Geographical Heuristic Routing Protocol for VANETs.

    PubMed

    Urquiza-Aguiar, Luis; Tripp-Barba, Carolina; Aguilar Igartua, Mónica

    2016-09-23

    Vehicular ad hoc networks (VANETs) leverage the communication system of Intelligent Transportation Systems (ITS). Recently, Delay-Tolerant Network (DTN) routing protocols have increased their popularity among the research community for being used in non-safety VANET applications and services like traffic reporting. Vehicular DTN protocols use geographical and local information to make forwarding decisions. However, current proposals only consider the selection of the best candidate based on a local-search. In this paper, we propose a generic Geographical Heuristic Routing (GHR) protocol that can be applied to any DTN geographical routing protocol that makes forwarding decisions hop by hop. GHR includes in its operation adaptations simulated annealing and Tabu-search meta-heuristics, which have largely been used to improve local-search results in discrete optimization. We include a complete performance evaluation of GHR in a multi-hop VANET simulation scenario for a reporting service. Our study analyzes all of the meaningful configurations of GHR and offers a statistical analysis of our findings by means of MANOVA tests. Our results indicate that the use of a Tabu list contributes to improving the packet delivery ratio by around 5% to 10%. Moreover, if Tabu is used, then the simulated annealing routing strategy gets a better performance than the selection of the best node used with carry and forwarding (default operation).

  20. A Geographical Heuristic Routing Protocol for VANETs

    PubMed Central

    Urquiza-Aguiar, Luis; Tripp-Barba, Carolina; Aguilar Igartua, Mónica

    2016-01-01

    Vehicular ad hoc networks (VANETs) leverage the communication system of Intelligent Transportation Systems (ITS). Recently, Delay-Tolerant Network (DTN) routing protocols have increased their popularity among the research community for being used in non-safety VANET applications and services like traffic reporting. Vehicular DTN protocols use geographical and local information to make forwarding decisions. However, current proposals only consider the selection of the best candidate based on a local-search. In this paper, we propose a generic Geographical Heuristic Routing (GHR) protocol that can be applied to any DTN geographical routing protocol that makes forwarding decisions hop by hop. GHR includes in its operation adaptations simulated annealing and Tabu-search meta-heuristics, which have largely been used to improve local-search results in discrete optimization. We include a complete performance evaluation of GHR in a multi-hop VANET simulation scenario for a reporting service. Our study analyzes all of the meaningful configurations of GHR and offers a statistical analysis of our findings by means of MANOVA tests. Our results indicate that the use of a Tabu list contributes to improving the packet delivery ratio by around 5% to 10%. Moreover, if Tabu is used, then the simulated annealing routing strategy gets a better performance than the selection of the best node used with carry and forwarding (default operation). PMID:27669254

  1. Computationally-Efficient Minimum-Time Aircraft Routes in the Presence of Winds

    NASA Technical Reports Server (NTRS)

    Jardin, Matthew R.

    2004-01-01

    A computationally efficient algorithm for minimizing the flight time of an aircraft in a variable wind field has been invented. The algorithm, referred to as Neighboring Optimal Wind Routing (NOWR), is based upon neighboring-optimal-control (NOC) concepts and achieves minimum-time paths by adjusting aircraft heading according to wind conditions at an arbitrary number of wind measurement points along the flight route. The NOWR algorithm may either be used in a fast-time mode to compute minimum- time routes prior to flight, or may be used in a feedback mode to adjust aircraft heading in real-time. By traveling minimum-time routes instead of direct great-circle (direct) routes, flights across the United States can save an average of about 7 minutes, and as much as one hour of flight time during periods of strong jet-stream winds. The neighboring optimal routes computed via the NOWR technique have been shown to be within 1.5 percent of the absolute minimum-time routes for flights across the continental United States. On a typical 450-MHz Sun Ultra workstation, the NOWR algorithm produces complete minimum-time routes in less than 40 milliseconds. This corresponds to a rate of 25 optimal routes per second. The closest comparable optimization technique runs approximately 10 times slower. Airlines currently use various trial-and-error search techniques to determine which of a set of commonly traveled routes will minimize flight time. These algorithms are too computationally expensive for use in real-time systems, or in systems where many optimal routes need to be computed in a short amount of time. Instead of operating in real-time, airlines will typically plan a trajectory several hours in advance using wind forecasts. If winds change significantly from forecasts, the resulting flights will no longer be minimum-time. The need for a computationally efficient wind-optimal routing algorithm is even greater in the case of new air-traffic-control automation concepts. For air

  2. Zone routing in a torus network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dong; Heidelberger, Philip; Kumar, Sameer

    A system for routing data in a network comprising a network logic device at a sending node for determining a path between the sending node and a receiving node, wherein the network logic device sets one or more selection bits and one or more hint bits within the data packet, a control register for storing one or more masks, wherein the network logic device uses the one or more selection bits to select a mask from the control register and the network logic device applies the selected mask to the hint bits to restrict routing of the data packet tomore » one or more routing directions for the data packet within the network and selects one of the restricted routing directions from the one or more routing directions and sends the data packet along a link in the selected routing direction toward the receiving node.« less

  3. A comprehensive survey of energy-aware routing protocols in wireless body area sensor networks.

    PubMed

    Effatparvar, Mehdi; Dehghan, Mehdi; Rahmani, Amir Masoud

    2016-09-01

    Wireless body area sensor network is a special purpose wireless sensor network that, employing wireless sensor nodes in, on, or around the human body, makes it possible to measure biological parameters of a person for specific applications. One of the most fundamental concerns in wireless body sensor networks is accurate routing in order to send data promptly and properly, and therefore overcome some of the challenges. Routing protocols for such networks are affected by a large number of factors including energy, topology, temperature, posture, the radio range of sensors, and appropriate quality of service in sensor nodes. Since energy is highly important in wireless body area sensor networks, and increasing the network lifetime results in benefiting greatly from sensor capabilities, improving routing performance with reduced energy consumption presents a major challenge. This paper aims to study wireless body area sensor networks and the related routing methods. It also presents a thorough, comprehensive review of routing methods in wireless body area sensor networks from the perspective of energy. Furthermore, different routing methods affecting the parameter of energy will be classified and compared according to their advantages and disadvantages. In this paper, fundamental concepts of wireless body area sensor networks are provided, and then the advantages and disadvantages of these networks are investigated. Since one of the most fundamental issues in wireless body sensor networks is to perform routing so as to transmit data precisely and promptly, we discuss the same issue. As a result, we propose a classification of the available relevant literature with respect to the key challenge of energy in the routing process. With this end in view, all important papers published between 2000 and 2015 are classified under eight categories including 'Mobility-Aware', 'Thermal-Aware', 'Restriction of Location and Number of Relays', 'Link-aware', 'Cluster- and Tree-Based

  4. DEADS: Depth and Energy Aware Dominating Set Based Algorithm for Cooperative Routing along with Sink Mobility in Underwater WSNs.

    PubMed

    Umar, Amara; Javaid, Nadeem; Ahmad, Ashfaq; Khan, Zahoor Ali; Qasim, Umar; Alrajeh, Nabil; Hayat, Amir

    2015-06-18

    Performance enhancement of Underwater Wireless Sensor Networks (UWSNs) in terms of throughput maximization, energy conservation and Bit Error Rate (BER) minimization is a potential research area. However, limited available bandwidth, high propagation delay, highly dynamic network topology, and high error probability leads to performance degradation in these networks. In this regard, many cooperative communication protocols have been developed that either investigate the physical layer or the Medium Access Control (MAC) layer, however, the network layer is still unexplored. More specifically, cooperative routing has not yet been jointly considered with sink mobility. Therefore, this paper aims to enhance the network reliability and efficiency via dominating set based cooperative routing and sink mobility. The proposed work is validated via simulations which show relatively improved performance of our proposed work in terms the selected performance metrics.

  5. Exploring Young Children's Performance on and Acceptance of an Educational Scenario-Based Digital Game for Teaching Route-Planning Strategies: A Case Study

    ERIC Educational Resources Information Center

    Lin, Yi-Hui; Hou, Huei-Tse

    2016-01-01

    Researchers suggest that game-based learning (GBL) can be used to facilitate mathematics learning. However, empirical GBL research that targets young children is still limited. The purposes of the study is to develop a scenario-based digital game to promote children's route-planning ability, to empirically explore children's learning performance…

  6. Entanglement-Gradient Routing for Quantum Networks.

    PubMed

    Gyongyosi, Laszlo; Imre, Sandor

    2017-10-27

    We define the entanglement-gradient routing scheme for quantum repeater networks. The routing framework fuses the fundamentals of swarm intelligence and quantum Shannon theory. Swarm intelligence provides nature-inspired solutions for problem solving. Motivated by models of social insect behavior, the routing is performed using parallel threads to determine the shortest path via the entanglement gradient coefficient, which describes the feasibility of the entangled links and paths of the network. The routing metrics are derived from the characteristics of entanglement transmission and relevant measures of entanglement distribution in quantum networks. The method allows a moderate complexity decentralized routing in quantum repeater networks. The results can be applied in experimental quantum networking, future quantum Internet, and long-distance quantum communications.

  7. Masked Proportional Routing

    NASA Technical Reports Server (NTRS)

    Wolpert, David

    2004-01-01

    Masked proportional routing is an improved procedure for choosing links between adjacent nodes of a network for the purpose of transporting an entity from a source node ("A") to a destination node ("B"). The entity could be, for example, a physical object to be shipped, in which case the nodes would represent waypoints and the links would represent roads or other paths between waypoints. For another example, the entity could be a message or packet of data to be transmitted from A to B, in which case the nodes could be computer-controlled switching stations and the links could be communication channels between the stations. In yet another example, an entity could represent a workpiece while links and nodes could represent, respectively, manufacturing processes and stages in the progress of the workpiece towards a finished product. More generally, the nodes could represent states of an entity and the links could represent allowed transitions of the entity. The purpose of masked proportional routing and of related prior routing procedures is to schedule transitions of entities from their initial states ("A") to their final states ("B") in such a manner as to minimize a cost or to attain some other measure of optimality or efficiency. Masked proportional routing follows a distributed (in the sense of decentralized) approach to probabilistically or deterministically choosing the links. It was developed to satisfy a need for a routing procedure that 1. Does not always choose the same link(s), even for two instances characterized by identical estimated values of associated cost functions; 2. Enables a graceful transition from one set of links to another set of links as the circumstances of operation of the network change over time; 3. Is preferably amenable to separate optimization of different portions of the network; 4. Is preferably usable in a network in which some of the routing decisions are made by one or more other procedure(s); 5. Preferably does not cause an

  8. Contact Graph Routing Enhancements Developed in ION for DTN

    NASA Technical Reports Server (NTRS)

    Segui, John S.; Burleigh, Scott

    2013-01-01

    The Interplanetary Overlay Network (ION) software suite is an open-source, flight-ready implementation of networking protocols including the Delay/Disruption Tolerant Networking (DTN) Bundle Protocol (BP), the CCSDS (Consultative Committee for Space Data Systems) File Delivery Protocol (CFDP), and many others including the Contact Graph Routing (CGR) DTN routing system. While DTN offers the capability to tolerate disruption and long signal propagation delays in transmission, without an appropriate routing protocol, no data can be delivered. CGR was built for space exploration networks with scheduled communication opportunities (typically based on trajectories and orbits), represented as a contact graph. Since CGR uses knowledge of future connectivity, the contact graph can grow rather large, and so efficient processing is desired. These enhancements allow CGR to scale to predicted NASA space network complexities and beyond. This software improves upon CGR by adopting an earliest-arrival-time cost metric and using the Dijkstra path selection algorithm. Moving to Dijkstra path selection also enables construction of an earliest- arrival-time tree for multicast routing. The enhancements have been rolled into ION 3.0 available on sourceforge.net.

  9. Strategies for Selecting Routes through Real-World Environments: Relative Topography, Initial Route Straightness, and Cardinal Direction

    PubMed Central

    Brunyé, Tad T.; Collier, Zachary A.; Cantelon, Julie; Holmes, Amanda; Wood, Matthew D.; Linkov, Igor; Taylor, Holly A.

    2015-01-01

    Previous research has demonstrated that route planners use several reliable strategies for selecting between alternate routes. Strategies include selecting straight rather than winding routes leaving an origin, selecting generally south- rather than north-going routes, and selecting routes that avoid traversal of complex topography. The contribution of this paper is characterizing the relative influence and potential interactions of these strategies. We also examine whether individual differences would predict any strategy reliance. Results showed evidence for independent and additive influences of all three strategies, with a strong influence of topography and initial segment straightness, and relatively weak influence of cardinal direction. Additively, routes were also disproportionately selected when they traversed relatively flat regions, had relatively straight initial segments, and went generally south rather than north. Two individual differences, extraversion and sense of direction, predicted the extent of some effects. Under real-world conditions navigators indeed consider a route’s initial straightness, cardinal direction, and topography, but these cues differ in relative influence and vary in their application across individuals. PMID:25992685

  10. Accessibility, availability, and quality of online information for US radiation oncology residencies.

    PubMed

    Wakefield, Daniel V; Manole, Bogdan A; Jethanandani, Amit; May, Michael E; Marcrom, Samuel R; Farmer, Michael R; Ballo, Matthew T; VanderWalde, Noam A

    2016-01-01

    Radiation oncology (RO) residency applicants commonly use Internet resources for information on residency programs. The purpose of this study is to assess the accessibility, availability, and quality of online information for RO graduate medical education. Accessibility of online information was determined by surveying databases for RO residency programs within the Fellowship Residency Electronic Interactive Data Access System (FREIDA) of the American Medical Association, the Accreditation Council for Graduate Medical Education (ACGME), and Google search. As of June 30, 2015, websites were assessed for presence, accessibility, and overall content availability based on a 55-item list of desired features based on 13 program features important to previously surveyed applicants. Quality scoring of available content was performed based on previously published Likert scale variables deemed desirable to RO applicants. Quality score labels were given based on percentage of desired information presented. FREIDA and ACGME databases listed 89% and 98% of program websites, respectively, but only 56% and 52% of links routed to a RO department-specific website, respectively. Google search obtained websites for 98% of programs and 95% of links routed to RO department-specific websites. The majority of websites had program descriptions (98%) and information on staff. However, resident information was more limited (total number [42%], education [47%], previous residents [28%], positions available [35%], contact information [13%]). Based on quality scoring, program websites contained only 47% of desired information on average. Only 13% of programs had superior websites containing 80% or more of desired information. Compared with Google, the FREIDA and ACGME program databases provide limited access to RO residency websites. The overall information availability and quality of information within RO residency websites varies widely. Applicants and programs may benefit from improved

  11. Effect of exposure routes on the relationships of lethal toxicity to rats from oral, intravenous, intraperitoneal and intramuscular routes.

    PubMed

    Ning, Zhong H; Long, Shuang; Zhou, Yuan Y; Peng, Zi Y; Sun, Yi N; Chen, Si W; Su, Li M; Zhao, Yuan H

    2015-11-01

    The lethal toxicity values (log 1/LD(50)) of 527 aliphatic and aromatic compounds in oral, intravenous, intramuscular and intraperitoneal routes were used to investigate the relationships of log 1/LD(50) from different exposure routes. Regression analysis shows that the log 1/LD(50) values are well correlated between intravenous and intraperitoneal or intramuscular injections. However, the correlations between oral and intravenous or intraperitoneal routes are relatively poor. Comparison of the average residuals indicates that intravenous injection is the most sensitive exposure route and oral administration is the least sensitive exposure route. This is attributed to the difference in kinetic process of toxicity testing. The toxic effect of a chemical can be similar or significantly different between exposure routes, depending on the absorption rates of chemicals into blood. Inclusion of hydrophobic parameter and fractions of ionic forms can improve the correlations between intravenous and intraperitoneal or oral routes, but not between intraperitoneal and oral routes. This is due to the differences of absorption rate in different exposure environments from different routes. Several factors, such as experimental uncertainty, metabolism and toxic kinetics, can affect the correlations between intravenous and intraperitoneal or oral routes. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Modified artificial bee colony for the vehicle routing problems with time windows.

    PubMed

    Alzaqebah, Malek; Abdullah, Salwani; Jawarneh, Sana

    2016-01-01

    The natural behaviour of the honeybee has attracted the attention of researchers in recent years and several algorithms have been developed that mimic swarm behaviour to solve optimisation problems. This paper introduces an artificial bee colony (ABC) algorithm for the vehicle routing problem with time windows (VRPTW). A Modified ABC algorithm is proposed to improve the solution quality of the original ABC. The high exploration ability of the ABC slows-down its convergence speed, which may due to the mechanism used by scout bees in replacing abandoned (unimproved) solutions with new ones. In the Modified ABC a list of abandoned solutions is used by the scout bees to memorise the abandoned solutions, then the scout bees select a solution from the list based on roulette wheel selection and replace by a new solution with random routs selected from the best solution. The performance of the Modified ABC is evaluated on Solomon benchmark datasets and compared with the original ABC. The computational results demonstrate that the Modified ABC outperforms the original ABC also produce good solutions when compared with the best-known results in the literature. Computational investigations show that the proposed algorithm is a good and promising approach for the VRPTW.

  13. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Third Revision

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2012-01-01

    This paper presents an overview of the third major revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This algorithm is referred to as the Airborne Spacing for Terminal Arrival Routes version 11 (ASTAR11). This airborne self-spacing concept is trajectory-based, allowing for spacing operations prior to the aircraft being on a common path. Because this algorithm is trajectory-based, it also has the inherent ability to support required time-of-arrival (RTA) operations. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft.

  14. Scalable software-defined optical networking with high-performance routing and wavelength assignment algorithms.

    PubMed

    Lee, Chankyun; Cao, Xiaoyuan; Yoshikane, Noboru; Tsuritani, Takehiro; Rhee, June-Koo Kevin

    2015-10-19

    The feasibility of software-defined optical networking (SDON) for a practical application critically depends on scalability of centralized control performance. The paper, highly scalable routing and wavelength assignment (RWA) algorithms are investigated on an OpenFlow-based SDON testbed for proof-of-concept demonstration. Efficient RWA algorithms are proposed to achieve high performance in achieving network capacity with reduced computation cost, which is a significant attribute in a scalable centralized-control SDON. The proposed heuristic RWA algorithms differ in the orders of request processes and in the procedures of routing table updates. Combined in a shortest-path-based routing algorithm, a hottest-request-first processing policy that considers demand intensity and end-to-end distance information offers both the highest throughput of networks and acceptable computation scalability. We further investigate trade-off relationship between network throughput and computation complexity in routing table update procedure by a simulation study.

  15. Extended shortest path selection for package routing of complex networks

    NASA Astrophysics Data System (ADS)

    Ye, Fan; Zhang, Lei; Wang, Bing-Hong; Liu, Lu; Zhang, Xing-Yi

    The routing strategy plays a very important role in complex networks such as Internet system and Peer-to-Peer networks. However, most of the previous work concentrates only on the path selection, e.g. Flooding and Random Walk, or finding the shortest path (SP) and rarely considering the local load information such as SP and Distance Vector Routing. Flow-based Routing mainly considers load balance and still cannot achieve best optimization. Thus, in this paper, we propose a novel dynamic routing strategy on complex network by incorporating the local load information into SP algorithm to enhance the traffic flow routing optimization. It was found that the flow in a network is greatly affected by the waiting time of the network, so we should not consider only choosing optimized path for package transformation but also consider node congestion. As a result, the packages should be transmitted with a global optimized path with smaller congestion and relatively short distance. Analysis work and simulation experiments show that the proposed algorithm can largely enhance the network flow with the maximum throughput within an acceptable calculating time. The detailed analysis of the algorithm will also be provided for explaining the efficiency.

  16. Approximate solution of the multiple watchman routes problem with restricted visibility range.

    PubMed

    Faigl, Jan

    2010-10-01

    In this paper, a new self-organizing map (SOM) based adaptation procedure is proposed to address the multiple watchman route problem with the restricted visibility range in the polygonal domain W. A watchman route is represented by a ring of connected neuron weights that evolves in W, while obstacles are considered by approximation of the shortest path. The adaptation procedure considers a coverage of W by the ring in order to attract nodes toward uncovered parts of W. The proposed procedure is experimentally verified in a set of environments and several visibility ranges. Performance of the procedure is compared with the decoupled approach based on solutions of the art gallery problem and the consecutive traveling salesman problem. The experimental results show the suitability of the proposed procedure based on relatively simple supporting geometrical structures, enabling application of the SOM principles to watchman route problems in W.

  17. 14 CFR 221.41 - Routing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Individually stated routings—Method of publication. The routing required by paragraph (a) of this section shall... with their respective explanations of the applicable routings shall be arranged in numerical order in...

  18. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Sixth Revision

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2015-01-01

    This paper presents an overview of the sixth revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This algorithm is referred to as the Airborne Spacing for Terminal Arrival Routes version 13 (ASTAR13). This airborne self-spacing concept contains both trajectory-based and state-based mechanisms for calculating the speeds required to achieve or maintain a precise spacing interval. The trajectory-based capability allows for spacing operations prior to the aircraft being on a common path. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. This current revision to the algorithm adds the state-based capability in support of evolving industry standards relating to airborne self-spacing.

  19. Routing Protocols in Wireless Sensor Networks

    PubMed Central

    Villalba, Luis Javier García; Orozco, Ana Lucila Sandoval; Cabrera, Alicia Triviño; Abbas, Cláudia Jacy Barenco

    2009-01-01

    The applications of wireless sensor networks comprise a wide variety of scenarios. In most of them, the network is composed of a significant number of nodes deployed in an extensive area in which not all nodes are directly connected. Then, the data exchange is supported by multihop communications. Routing protocols are in charge of discovering and maintaining the routes in the network. However, the appropriateness of a particular routing protocol mainly depends on the capabilities of the nodes and on the application requirements. This paper presents a review of the main routing protocols proposed for wireless sensor networks. Additionally, the paper includes the efforts carried out by Spanish universities on developing optimization techniques in the area of routing protocols for wireless sensor networks. PMID:22291515

  20. Routing protocols in wireless sensor networks.

    PubMed

    Villalba, Luis Javier García; Orozco, Ana Lucila Sandoval; Cabrera, Alicia Triviño; Abbas, Cláudia Jacy Barenco

    2009-01-01

    The applications of wireless sensor networks comprise a wide variety of scenarios. In most of them, the network is composed of a significant number of nodes deployed in an extensive area in which not all nodes are directly connected. Then, the data exchange is supported by multihop communications. Routing protocols are in charge of discovering and maintaining the routes in the network. However, the appropriateness of a particular routing protocol mainly depends on the capabilities of the nodes and on the application requirements. This paper presents a review of the main routing protocols proposed for wireless sensor networks. Additionally, the paper includes the efforts carried out by Spanish universities on developing optimization techniques in the area of routing protocols for wireless sensor networks.

  1. Resistance formulas in hydraulics-based models for routing debris flows

    USGS Publications Warehouse

    Chen, Cheng-lung; Ling, Chi-Hai

    1997-01-01

    The one-dimensional, cross-section-averaged flow equations formulated for routing debris flows down a narrow valley are identical to those for clear-water flow, except for the differences in the values of the flow parameters, such as the momentum (or energy) correction factor, resistance coefficient, and friction slope. Though these flow parameters for debris flow in channels with cross-sections of arbitrary geometric shape can only be determined empirically, the theoretical values of such parameters for debris flow in wide channels exist. This paper aims to derive the theoretical resistance coefficient and friction slope for debris flow in wide channels using a rheological model for highly-concentrated, rapidly-sheared granular flows, such as the generalized viscoplastic fluid (GVF) model. Formulating such resistance coefficient or friction slope is equivalent to developing a generally applicable resistance formula for routing debris flows. Inclusion of a nonuniform term in the expression of the resistance formula proves useful in removing the customary assumption that the spatially varied resistance at any section is equal to what would take place with the same rate of flow passing the same section under conditions of uniformity. This in effect implies an improvement in the accuracy of unsteady debris-flow computation.

  2. Method and System for Dynamic Automated Corrections to Weather Avoidance Routes for Aircraft in En Route Airspace

    NASA Technical Reports Server (NTRS)

    McNally, B. David (Inventor); Erzberger, Heinz (Inventor); Sheth, Kapil (Inventor)

    2015-01-01

    A dynamic weather route system automatically analyzes routes for in-flight aircraft flying in convective weather regions and attempts to find more time and fuel efficient reroutes around current and predicted weather cells. The dynamic weather route system continuously analyzes all flights and provides reroute advisories that are dynamically updated in real time while the aircraft are in flight. The dynamic weather route system includes a graphical user interface that allows users to visualize, evaluate, modify if necessary, and implement proposed reroutes.

  3. Route planning with transportation network maps: an eye-tracking study.

    PubMed

    Grison, Elise; Gyselinck, Valérie; Burkhardt, Jean-Marie; Wiener, Jan Malte

    2017-09-01

    Planning routes using transportation network maps is a common task that has received little attention in the literature. Here, we present a novel eye-tracking paradigm to investigate psychological processes and mechanisms involved in such a route planning. In the experiment, participants were first presented with an origin and destination pair before we presented them with fictitious public transportation maps. Their task was to find the connecting route that required the minimum number of transfers. Based on participants' gaze behaviour, each trial was split into two phases: (1) the search for origin and destination phase, i.e., the initial phase of the trial until participants gazed at both origin and destination at least once and (2) the route planning and selection phase. Comparisons of other eye-tracking measures between these phases and the time to complete them, which depended on the complexity of the planning task, suggest that these two phases are indeed distinct and supported by different cognitive processes. For example, participants spent more time attending the centre of the map during the initial search phase, before directing their attention to connecting stations, where transitions between lines were possible. Our results provide novel insights into the psychological processes involved in route planning from maps. The findings are discussed in relation to the current theories of route planning.

  4. Drop-in biofuel production via conventional (lipid/fatty acid) and advanced (biomass) routes. Part I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karatzos, Sergios; van Dyk, J. Susan; McMillan, James D.

    Drop-in biofuels that are 'functionally identical to petroleum fuels and fully compatible with existing infrastructure' are needed for sectors such as aviation where biofuels such as bioethanol/biodiesel cannot be used. The technologies used to produce drop-in biofuels can be grouped into the four categories: oleochemical, thermochemical, biochemical, and hybrid technologies. Commercial volumes of conventional drop-in biofuels are currently produced through the oleochemical pathway, to make products such as renewable diesel and biojet fuel. However, the cost, sustainability, and availability of the lipid/fatty acid feedstocks are significant challenges that need to be addressed. In the longer-term, it is likely that commercialmore » growth in drop-in biofuels will be based on lignocellulosic feedstocks. However, these technologies have been slow to develop and have been hampered by several technoeconomic challenges. For example, the gasification/Fischer-Tropsch (FT) synthesis route suffers from high capital costs and economies of scale difficulties, while the economical production of high quality syngas remains a significant challenge. Although pyrolysis/hydrothermal liquefaction (HTL) based technologies are promising, the upgrading of pyrolysis oils to higher specification fuels has encountered several technical challenges, such as high catalyst cost and short catalyst lifespan. Biochemical routes to drop-in fuels have the advantage of producing single molecules with simple chemistry. Moreover, the high value of these molecules in other markets such as renewable chemical precursors and fragrances will limit their use for fuel. In the near-term, (1-5 years) it is likely that, 'conventional' drop-in biofuels will be produced predominantly via the oleochemical route, due to the relative simplicity and maturity of this pathway.« less

  5. Drop-in biofuel production via conventional (lipid/fatty acid) and advanced (biomass) routes. Part I

    DOE PAGES

    Karatzos, Sergios; van Dyk, J. Susan; McMillan, James D.; ...

    2017-01-23

    Drop-in biofuels that are 'functionally identical to petroleum fuels and fully compatible with existing infrastructure' are needed for sectors such as aviation where biofuels such as bioethanol/biodiesel cannot be used. The technologies used to produce drop-in biofuels can be grouped into the four categories: oleochemical, thermochemical, biochemical, and hybrid technologies. Commercial volumes of conventional drop-in biofuels are currently produced through the oleochemical pathway, to make products such as renewable diesel and biojet fuel. However, the cost, sustainability, and availability of the lipid/fatty acid feedstocks are significant challenges that need to be addressed. In the longer-term, it is likely that commercialmore » growth in drop-in biofuels will be based on lignocellulosic feedstocks. However, these technologies have been slow to develop and have been hampered by several technoeconomic challenges. For example, the gasification/Fischer-Tropsch (FT) synthesis route suffers from high capital costs and economies of scale difficulties, while the economical production of high quality syngas remains a significant challenge. Although pyrolysis/hydrothermal liquefaction (HTL) based technologies are promising, the upgrading of pyrolysis oils to higher specification fuels has encountered several technical challenges, such as high catalyst cost and short catalyst lifespan. Biochemical routes to drop-in fuels have the advantage of producing single molecules with simple chemistry. Moreover, the high value of these molecules in other markets such as renewable chemical precursors and fragrances will limit their use for fuel. In the near-term, (1-5 years) it is likely that, 'conventional' drop-in biofuels will be produced predominantly via the oleochemical route, due to the relative simplicity and maturity of this pathway.« less

  6. Systems for the Intermodal Routing of Spent Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Steven K; Liu, Cheng

    The safe and secure movement of spent nuclear fuel from shutdown and active reactor facilities to intermediate or long term storage sites may, in some instances, require the use of several modes of transportation to accomplish the move. To that end, a fully operable multi-modal routing system is being developed within Oak Ridge National Laboratory s (ORNL) WebTRAGIS (Transportation Routing Analysis Geographic Information System). This study aims to provide an overview of multi-modal routing, the existing state of the TRAGIS networks, the source data needs, and the requirements for developing structural relationships between various modes to create a suitable systemmore » for modeling the transport of spent nuclear fuel via a multimodal network. Modern transportation systems are comprised of interconnected, yet separate, modal networks. Efficient transportation networks rely upon the smooth transfer of cargoes at junction points that serve as connectors between modes. A key logistical impediment to the shipment of spent nuclear fuel is the absence of identified or designated transfer locations between transport modes. Understanding the potential network impacts on intermodal transportation of spent nuclear fuel is vital for planning transportation routes from origin to destination. By identifying key locations where modes intersect, routing decisions can be made to prioritize cost savings, optimize transport times and minimize potential risks to the population and environment. In order to facilitate such a process, ORNL began the development of a base intermodal network and associated routing code. The network was developed using previous intermodal networks and information from publicly available data sources to construct a database of potential intermodal transfer locations with likely capability to handle spent nuclear fuel casks. The coding development focused on modifying the existing WebTRAGIS routing code to accommodate intermodal transfers and the

  7. The Effects of Routing and Scoring within a Computer Adaptive Multi-Stage Framework

    ERIC Educational Resources Information Center

    Dallas, Andrew

    2014-01-01

    This dissertation examined the overall effects of routing and scoring within a computer adaptive multi-stage framework (ca-MST). Testing in a ca-MST environment has become extremely popular in the testing industry. Testing companies enjoy its efficiency benefits as compared to traditionally linear testing and its quality-control features over…

  8. Multimodal Imaging and Lighting Bias Correction for Improved μPAD-based Water Quality Monitoring via Smartphones

    NASA Astrophysics Data System (ADS)

    McCracken, Katherine E.; Angus, Scott V.; Reynolds, Kelly A.; Yoon, Jeong-Yeol

    2016-06-01

    Smartphone image-based sensing of microfluidic paper analytical devices (μPADs) offers low-cost and mobile evaluation of water quality. However, consistent quantification is a challenge due to variable environmental, paper, and lighting conditions, especially across large multi-target μPADs. Compensations must be made for variations between images to achieve reproducible results without a separate lighting enclosure. We thus developed a simple method using triple-reference point normalization and a fast-Fourier transform (FFT)-based pre-processing scheme to quantify consistent reflected light intensity signals under variable lighting and channel conditions. This technique was evaluated using various light sources, lighting angles, imaging backgrounds, and imaging heights. Further testing evaluated its handle of absorbance, quenching, and relative scattering intensity measurements from assays detecting four water contaminants - Cr(VI), total chlorine, caffeine, and E. coli K12 - at similar wavelengths using the green channel of RGB images. Between assays, this algorithm reduced error from μPAD surface inconsistencies and cross-image lighting gradients. Although the algorithm could not completely remove the anomalies arising from point shadows within channels or some non-uniform background reflections, it still afforded order-of-magnitude quantification and stable assay specificity under these conditions, offering one route toward improving smartphone quantification of μPAD assays for in-field water quality monitoring.

  9. A Diels-Alder Route to Angularly Functionalized Bicyclic Structures

    PubMed Central

    Kim, Woo Han; Lee, Jun Hee; Aussedat, Baptiste; Danishefsky, Samuel J.

    2010-01-01

    A Diels-Alder based route to trans-fused angularly functionalized bicyclic structures has been developed. This transformation features the use of a tetrasubstituted dienophile in the cycloaddition step. PMID:20717474

  10. An Autonomous Self-Aware and Adaptive Fault Tolerant Routing Technique for Wireless Sensor Networks.

    PubMed

    Abba, Sani; Lee, Jeong-A

    2015-08-18

    We propose an autonomous self-aware and adaptive fault-tolerant routing technique (ASAART) for wireless sensor networks. We address the limitations of self-healing routing (SHR) and self-selective routing (SSR) techniques for routing sensor data. We also examine the integration of autonomic self-aware and adaptive fault detection and resiliency techniques for route formation and route repair to provide resilience to errors and failures. We achieved this by using a combined continuous and slotted prioritized transmission back-off delay to obtain local and global network state information, as well as multiple random functions for attaining faster routing convergence and reliable route repair despite transient and permanent node failure rates and efficient adaptation to instantaneous network topology changes. The results of simulations based on a comparison of the ASAART with the SHR and SSR protocols for five different simulated scenarios in the presence of transient and permanent node failure rates exhibit a greater resiliency to errors and failure and better routing performance in terms of the number of successfully delivered network packets, end-to-end delay, delivered MAC layer packets, packet error rate, as well as efficient energy conservation in a highly congested, faulty, and scalable sensor network.

  11. A Data-Gathering Scheme with Joint Routing and Compressive Sensing Based on Modified Diffusion Wavelets in Wireless Sensor Networks.

    PubMed

    Gu, Xiangping; Zhou, Xiaofeng; Sun, Yanjing

    2018-02-28

    Compressive sensing (CS)-based data gathering is a promising method to reduce energy consumption in wireless sensor networks (WSNs). Traditional CS-based data-gathering approaches require a large number of sensor nodes to participate in each CS measurement task, resulting in high energy consumption, and do not guarantee load balance. In this paper, we propose a sparser analysis that depends on modified diffusion wavelets, which exploit sensor readings' spatial correlation in WSNs. In particular, a novel data-gathering scheme with joint routing and CS is presented. A modified ant colony algorithm is adopted, where next hop node selection takes a node's residual energy and path length into consideration simultaneously. Moreover, in order to speed up the coverage rate and avoid the local optimal of the algorithm, an improved pheromone impact factor is put forward. More importantly, theoretical proof is given that the equivalent sensing matrix generated can satisfy the restricted isometric property (RIP). The simulation results demonstrate that the modified diffusion wavelets' sparsity affects the sensor signal and has better reconstruction performance than DFT. Furthermore, our data gathering with joint routing and CS can dramatically reduce the energy consumption of WSNs, balance the load, and prolong the network lifetime in comparison to state-of-the-art CS-based methods.

  12. Strategic parameter-driven routing models for multidestination traffic in telecommunication networks.

    PubMed

    Lee, Y; Tien, J M

    2001-01-01

    We present mathematical models that determine the optimal parameters for strategically routing multidestination traffic in an end-to-end network setting. Multidestination traffic refers to a traffic type that can be routed to any one of a multiple number of destinations. A growing number of communication services is based on multidestination routing. In this parameter-driven approach, a multidestination call is routed to one of the candidate destination nodes in accordance with predetermined decision parameters associated with each candidate node. We present three different approaches: (1) a link utilization (LU) approach, (2) a network cost (NC) approach, and (3) a combined parametric (CP) approach. The LU approach provides the solution that would result in an optimally balanced link utilization, whereas the NC approach provides the least expensive way to route traffic to destinations. The CP approach, on the other hand, provides multiple solutions that help leverage link utilization and cost. The LU approach has in fact been implemented by a long distance carrier resulting in a considerable efficiency improvement in its international direct services, as summarized.

  13. Network-based production quality control

    NASA Astrophysics Data System (ADS)

    Kwon, Yongjin; Tseng, Bill; Chiou, Richard

    2007-09-01

    This study investigates the feasibility of remote quality control using a host of advanced automation equipment with Internet accessibility. Recent emphasis on product quality and reduction of waste stems from the dynamic, globalized and customer-driven market, which brings opportunities and threats to companies, depending on the response speed and production strategies. The current trends in industry also include a wide spread of distributed manufacturing systems, where design, production, and management facilities are geographically dispersed. This situation mandates not only the accessibility to remotely located production equipment for monitoring and control, but efficient means of responding to changing environment to counter process variations and diverse customer demands. To compete under such an environment, companies are striving to achieve 100%, sensor-based, automated inspection for zero-defect manufacturing. In this study, the Internet-based quality control scheme is referred to as "E-Quality for Manufacturing" or "EQM" for short. By its definition, EQM refers to a holistic approach to design and to embed efficient quality control functions in the context of network integrated manufacturing systems. Such system let designers located far away from the production facility to monitor, control and adjust the quality inspection processes as production design evolves.

  14. RCA: A route city attraction model for air passengers

    NASA Astrophysics Data System (ADS)

    Huang, Feihu; Xiong, Xi; Peng, Jian; Guo, Bing; Tong, Bo

    2018-02-01

    Human movement pattern is a research hotspot of social computing and has practical values in various fields, such as traffic planning. Previous studies mainly focus on the travel activities of human beings on the ground rather than those in the air. In this paper, we use the reservation records of air passengers to explore air passengers' movement characteristics. After analyzing the effect of the route-trip length on the throughput, we find that most passengers eventually return to their original departure city and that the mobility of air passengers is not related to the route length. Based on these characteristics, we present a route city attraction (RCA) model, in which GDP or population is considered for the calculation of the attraction. The sub models of our RCA model show the better prediction performance of throughput than the radiation model and the gravity model.

  15. Connectivity-enhanced route selection and adaptive control for the Chevrolet Volt

    DOE PAGES

    Gonder, Jeffrey; Wood, Eric; Rajagopalan, Sai

    2016-01-01

    The National Renewable Energy Laboratory and General Motors evaluated connectivity-enabled efficiency enhancements for the Chevrolet Volt. A high-level model was developed to predict vehicle fuel and electricity consumption based on driving characteristics and vehicle state inputs. These techniques were leveraged to optimize energy efficiency via green routing and intelligent control mode scheduling, which were evaluated using prospective driving routes between tens of thousands of real-world origin/destination pairs. The overall energy savings potential of green routing and intelligent mode scheduling was estimated at 5% and 3%, respectively. Furthermore, these represent substantial opportunities considering that they only require software adjustments to implement.

  16. Understanding Route Aggregation

    DTIC Science & Technology

    2010-03-09

    routing anomalies, and is fingered to be the cause of many reported loops and blackholes . In this paper, we posit that the problem arises from a lack of...Route aggre- gation can also result in blackholes [18], which are surprisingly prevalent in the Internet [11]. We illustrate these known anomalies with...advertisement Forwarding paths A B C 10.1.30.0/24 10.1.16.0/22 10.1.16.0/2010.1.16.0/20 Figure 4: Illustration of a blackhole . forwards the packet to Y

  17. Quantifying quality in DNA self-assembly

    PubMed Central

    Wagenbauer, Klaus F.; Wachauf, Christian H.; Dietz, Hendrik

    2014-01-01

    Molecular self-assembly with DNA is an attractive route for building nanoscale devices. The development of sophisticated and precise objects with this technique requires detailed experimental feedback on the structure and composition of assembled objects. Here we report a sensitive assay for the quality of assembly. The method relies on measuring the content of unpaired DNA bases in self-assembled DNA objects using a fluorescent de-Bruijn probe for three-base ‘codons’, which enables a comparison with the designed content of unpaired DNA. We use the assay to measure the quality of assembly of several multilayer DNA origami objects and illustrate the use of the assay for the rational refinement of assembly protocols. Our data suggests that large and complex objects like multilayer DNA origami can be made with high strand integration quality up to 99%. Beyond DNA nanotechnology, we speculate that the ability to discriminate unpaired from paired nucleic acids in the same macromolecule may also be useful for analysing cellular nucleic acids. PMID:24751596

  18. Dynamic origin-to-destination routing of wirelessly connected, autonomous vehicles on a congested network

    NASA Astrophysics Data System (ADS)

    Davis, L. C.

    2017-07-01

    Up-to-date information wirelessly communicated among vehicles can be used to select the optimal route between a given origin and destination. To elucidate how to make use of such information, simulations are performed for autonomous vehicles traveling on a square lattice of roads. All the possible routes between the origin and the destination (without backtracking) are of the same length. Congestion is the only determinant of delay. At each intersection, right-of-way is given to the closest vehicle. There are no traffic lights. Trip times of a subject vehicle are recorded for various initial conditions using different routing algorithms. Surprisingly, the simplest algorithm, which is based on the total number of vehicles on a route, is as good as one based on computing travel times from the average velocity of vehicles on each road segment.

  19. Dynamic route and departure time choice model based on self-adaptive reference point and reinforcement learning

    NASA Astrophysics Data System (ADS)

    Li, Xue-yan; Li, Xue-mei; Yang, Lingrun; Li, Jing

    2018-07-01

    Most of the previous studies on dynamic traffic assignment are based on traditional analytical framework, for instance, the idea of Dynamic User Equilibrium has been widely used in depicting both the route choice and the departure time choice. However, some recent studies have demonstrated that the dynamic traffic flow assignment largely depends on travelers' rationality degree, travelers' heterogeneity and what the traffic information the travelers have. In this paper, we develop a new self-adaptive multi agent model to depict travelers' behavior in Dynamic Traffic Assignment. We use Cumulative Prospect Theory with heterogeneous reference points to illustrate travelers' bounded rationality. We use reinforcement-learning model to depict travelers' route and departure time choosing behavior under the condition of imperfect information. We design the evolution rule of travelers' expected arrival time and the algorithm of traffic flow assignment. Compared with the traditional model, the self-adaptive multi agent model we proposed in this paper can effectively help travelers avoid the rush hour. Finally, we report and analyze the effect of travelers' group behavior on the transportation system, and give some insights into the relation between travelers' group behavior and the performance of transportation system.

  20. VISCOPLASTIC FLUID MODEL FOR DEBRIS FLOW ROUTING.

    USGS Publications Warehouse

    Chen, Cheng-lung

    1986-01-01

    This paper describes how a generalized viscoplastic fluid model, which was developed based on non-Newtonian fluid mechanics, can be successfully applied to routing a debris flow down a channel. The one-dimensional dynamic equations developed for unsteady clear-water flow can be used for debris flow routing if the flow parameters, such as the momentum (or energy) correction factor and the resistance coefficient, can be accurately evaluated. The writer's generalized viscoplastic fluid model can be used to express such flow parameters in terms of the rheological parameters for debris flow in wide channels. A preliminary analysis of the theoretical solutions reveals the importance of the flow behavior index and the so-called modified Froude number for uniformly progressive flow in snout profile modeling.

  1. Optimization of the Costs and the Safety of Maritime Transport by Routing: The use of Currents Forecast in the Routing of Racing Sail Boats as a Prototype of Rout Optimization for Trading Ships

    NASA Astrophysics Data System (ADS)

    Theunynck, Denis; Peze, Thierry; Toumazou, Vincent; Zunquin, Gauthier; Cohen, Olivier; Monges, Arnaud

    2005-03-01

    It is interesting to see whether the model of routing designed for races and great Navy operations could be transferred to commercial navigation and if so, within which framework.Sail boat routing conquered its letters of nobility during great races like the « Route du Rhum » or the transatlantic race « Jacques Vabre ». It is the ultimate stage of the step begun by the Navy at the time of great operations, like D-day (Overlord )June 6, 1944, in Normandy1.Routing is, from the beginning, mainly based on statistical knowledge and weather forecast, but with the recent availability of reliable currents forecast, sail boats routers and/or skippers now have to learn how to use both winds and currents to obtain the best performance, that is to travel between two points in the shortest time possible in acceptable security conditions.Are the currents forecast only useful to racing sail boat ? Of course not, they are a great help to fisherman for whom the knowledge of currents is also the knowledge of sea temperature who indicates the probability of fish presence. They are also used in offshore work to predict the hardness of the sea during operation.A less developed field of application is the route optimization of trading ships. The idea is to optimize the use of currents to increase the relative speed of ships with no augmentation of fuel expense. This new field will require that currents forecasters learn about the specific needs of another type of clients. There is also a need of teaching because the future customers will have to learn how to use the information they will get.At this point, the introduction of the use of currents forecast in racing sail boats routing is only the first step. It is of great interest because it can rely on a high knowledge in routing.The main difference is of course that the wind direction and its force are of greater importance to a sail boat that they are for a trading ship for whom the point of interest will be the fuel consumption

  2. A Survey on an Energy-Efficient and Energy-Balanced Routing Protocol for Wireless Sensor Networks.

    PubMed

    Ogundile, Olayinka O; Alfa, Attahiru S

    2017-05-10

    Wireless sensor networks (WSNs) form an important part of industrial application. There has been growing interest in the potential use of WSNs in applications such as environment monitoring, disaster management, health care monitoring, intelligence surveillance and defence reconnaissance. In these applications, the sensor nodes (SNs) are envisaged to be deployed in sizeable numbers in an outlying area, and it is quite difficult to replace these SNs after complete deployment in many scenarios. Therefore, as SNs are predominantly battery powered devices, the energy consumption of the nodes must be properly managed in order to prolong the network lifetime and functionality to a rational time. Different energy-efficient and energy-balanced routing protocols have been proposed in literature over the years. The energy-efficient routing protocols strive to increase the network lifetime by minimizing the energy consumption in each SN. On the other hand, the energy-balanced routing protocols protract the network lifetime by uniformly balancing the energy consumption among the nodes in the network. There have been various survey papers put forward by researchers to review the performance and classify the different energy-efficient routing protocols for WSNs. However, there seems to be no clear survey emphasizing the importance, concepts, and principles of load-balanced energy routing protocols for WSNs. In this paper, we provide a clear picture of both the energy-efficient and energy-balanced routing protocols for WSNs. More importantly, this paper presents an extensive survey of the different state-of-the-art energy-efficient and energy-balanced routing protocols. A taxonomy is introduced in this paper to classify the surveyed energy-efficient and energy-balanced routing protocols based on their proposed mode of communication towards the base station (BS). In addition, we classified these routing protocols based on the solution types or algorithms, and the input decision

  3. A Survey on an Energy-Efficient and Energy-Balanced Routing Protocol for Wireless Sensor Networks

    PubMed Central

    Ogundile, Olayinka O.; Alfa, Attahiru S.

    2017-01-01

    Wireless sensor networks (WSNs) form an important part of industrial application. There has been growing interest in the potential use of WSNs in applications such as environment monitoring, disaster management, health care monitoring, intelligence surveillance and defence reconnaissance. In these applications, the sensor nodes (SNs) are envisaged to be deployed in sizeable numbers in an outlying area, and it is quite difficult to replace these SNs after complete deployment in many scenarios. Therefore, as SNs are predominantly battery powered devices, the energy consumption of the nodes must be properly managed in order to prolong the network lifetime and functionality to a rational time. Different energy-efficient and energy-balanced routing protocols have been proposed in literature over the years. The energy-efficient routing protocols strive to increase the network lifetime by minimizing the energy consumption in each SN. On the other hand, the energy-balanced routing protocols protract the network lifetime by uniformly balancing the energy consumption among the nodes in the network. There have been various survey papers put forward by researchers to review the performance and classify the different energy-efficient routing protocols for WSNs. However, there seems to be no clear survey emphasizing the importance, concepts, and principles of load-balanced energy routing protocols for WSNs. In this paper, we provide a clear picture of both the energy-efficient and energy-balanced routing protocols for WSNs. More importantly, this paper presents an extensive survey of the different state-of-the-art energy-efficient and energy-balanced routing protocols. A taxonomy is introduced in this paper to classify the surveyed energy-efficient and energy-balanced routing protocols based on their proposed mode of communication towards the base station (BS). In addition, we classified these routing protocols based on the solution types or algorithms, and the input decision

  4. Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes

    PubMed Central

    Bai, Cong; Peng, Zhong-Ren; Lu, Qing-Chang; Sun, Jian

    2015-01-01

    Accurate and real-time travel time information for buses can help passengers better plan their trips and minimize waiting times. A dynamic travel time prediction model for buses addressing the cases on road with multiple bus routes is proposed in this paper, based on support vector machines (SVMs) and Kalman filtering-based algorithm. In the proposed model, the well-trained SVM model predicts the baseline bus travel times from the historical bus trip data; the Kalman filtering-based dynamic algorithm can adjust bus travel times with the latest bus operation information and the estimated baseline travel times. The performance of the proposed dynamic model is validated with the real-world data on road with multiple bus routes in Shenzhen, China. The results show that the proposed dynamic model is feasible and applicable for bus travel time prediction and has the best prediction performance among all the five models proposed in the study in terms of prediction accuracy on road with multiple bus routes. PMID:26294903

  5. Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes.

    PubMed

    Bai, Cong; Peng, Zhong-Ren; Lu, Qing-Chang; Sun, Jian

    2015-01-01

    Accurate and real-time travel time information for buses can help passengers better plan their trips and minimize waiting times. A dynamic travel time prediction model for buses addressing the cases on road with multiple bus routes is proposed in this paper, based on support vector machines (SVMs) and Kalman filtering-based algorithm. In the proposed model, the well-trained SVM model predicts the baseline bus travel times from the historical bus trip data; the Kalman filtering-based dynamic algorithm can adjust bus travel times with the latest bus operation information and the estimated baseline travel times. The performance of the proposed dynamic model is validated with the real-world data on road with multiple bus routes in Shenzhen, China. The results show that the proposed dynamic model is feasible and applicable for bus travel time prediction and has the best prediction performance among all the five models proposed in the study in terms of prediction accuracy on road with multiple bus routes.

  6. The QKD network: model and routing scheme

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Zhang, Hongqi; Su, Jinhai

    2017-11-01

    Quantum key distribution (QKD) technology can establish unconditional secure keys between two communicating parties. Although this technology has some inherent constraints, such as the distance and point-to-point mode limits, building a QKD network with multiple point-to-point QKD devices can overcome these constraints. Considering the development level of current technology, the trust relaying QKD network is the first choice to build a practical QKD network. However, the previous research didn't address a routing method on the trust relaying QKD network in detail. This paper focuses on the routing issues, builds a model of the trust relaying QKD network for easily analysing and understanding this network, and proposes a dynamical routing scheme for this network. From the viewpoint of designing a dynamical routing scheme in classical network, the proposed scheme consists of three components: a Hello protocol helping share the network topology information, a routing algorithm to select a set of suitable paths and establish the routing table and a link state update mechanism helping keep the routing table newly. Experiments and evaluation demonstrates the validity and effectiveness of the proposed routing scheme.

  7. A Secure Routing Protocol for Wireless Sensor Networks Considering Secure Data Aggregation

    PubMed Central

    Rahayu, Triana Mugia; Lee, Sang-Gon; Lee, Hoon-Jae

    2015-01-01

    The commonly unattended and hostile deployments of WSNs and their resource-constrained sensor devices have led to an increasing demand for secure energy-efficient protocols. Routing and data aggregation receive the most attention since they are among the daily network routines. With the awareness of such demand, we found that so far there has been no work that lays out a secure routing protocol as the foundation for a secure data aggregation protocol. We argue that the secure routing role would be rendered useless if the data aggregation scheme built on it is not secure. Conversely, the secure data aggregation protocol needs a secure underlying routing protocol as its foundation in order to be effectively optimal. As an attempt for the solution, we devise an energy-aware protocol based on LEACH and ESPDA that combines secure routing protocol and secure data aggregation protocol. We then evaluate its security effectiveness and its energy-efficiency aspects, knowing that there are always trade-off between both. PMID:26131669

  8. A Secure Routing Protocol for Wireless Sensor Networks Considering Secure Data Aggregation.

    PubMed

    Rahayu, Triana Mugia; Lee, Sang-Gon; Lee, Hoon-Jae

    2015-06-26

    The commonly unattended and hostile deployments of WSNs and their resource-constrained sensor devices have led to an increasing demand for secure energy-efficient protocols. Routing and data aggregation receive the most attention since they are among the daily network routines. With the awareness of such demand, we found that so far there has been no work that lays out a secure routing protocol as the foundation for a secure data aggregation protocol. We argue that the secure routing role would be rendered useless if the data aggregation scheme built on it is not secure. Conversely, the secure data aggregation protocol needs a secure underlying routing protocol as its foundation in order to be effectively optimal. As an attempt for the solution, we devise an energy-aware protocol based on LEACH and ESPDA that combines secure routing protocol and secure data aggregation protocol. We then evaluate its security effectiveness and its energy-efficiency aspects, knowing that there are always trade-off between both.

  9. APPLICATION AND USE OF DOSE ESTIMATING EXPOSURE MODEL (DEEM) FOR ROUTE TO ROUTE DOSE COMPARISONS AFTER EXPOSURE TO TRICHLOROETHYLENE (TCE)

    EPA Science Inventory

    Route-to-route extrapolations are a crucial step in many risk assessments. Often the doses which result In toxicological end points in one route must be compared with doses resulting from typical environmental exposures by another route. In this case we used EPA's Dose Estimati...

  10. Not all anxious individuals get lost: Trait anxiety and mental rotation ability interact to explain performance in map-based route learning in men.

    PubMed

    Thoresen, John C; Francelet, Rebecca; Coltekin, Arzu; Richter, Kai-Florian; Fabrikant, Sara I; Sandi, Carmen

    2016-07-01

    Navigation through an environment is a fundamental human activity. Although group differences in navigational ability are documented (e.g., gender), little is known about traits that predict these abilities. Apart from a well-established link between mental rotational abilities and navigational learning abilities, recent studies point to an influence of trait anxiety on the formation of internal cognitive spatial representations. However, it is unknown whether trait anxiety affects the processing of information obtained through externalized representations such as maps. Here, we addressed this question by taking into account emerging evidence indicating impaired performance in executive tasks by high trait anxiety specifically in individuals with lower executive capacities. For this purpose, we tested 104 male participants, previously characterised on trait anxiety and mental rotation ability, on a newly-designed map-based route learning task, where participants matched routes presented dynamically on a city map to one presented immediately before (same/different judgments). We predicted an interaction between trait anxiety and mental rotation ability, specifically that performance in the route learning task would be negatively affected by anxiety in participants with low mental rotation ability. Importantly, and as predicted, an interaction between anxiety and mental rotation ability was observed: trait anxiety negatively affected participants with low-but not high-mental rotation ability. Our study reveals a detrimental role of trait anxiety in map-based route learning and specifies a disadvantage in the processing of map representations for high-anxious individuals with low mental rotation abilities. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Using Motion Planning to Determine the Existence of an Accessible Route in a CAD Environment

    ERIC Educational Resources Information Center

    Pan, Xiaoshan; Han, Charles S.; Law, Kincho H.

    2010-01-01

    We describe an algorithm based on motion-planning techniques to determine the existence of an accessible route through a facility for a wheeled mobility device. The algorithm is based on LaValle's work on rapidly exploring random trees and is enhanced to take into consideration the particularities of the accessible route domain. Specifically, the…

  12. A survey on routing protocols for large-scale wireless sensor networks.

    PubMed

    Li, Changle; Zhang, Hanxiao; Hao, Binbin; Li, Jiandong

    2011-01-01

    With the advances in micro-electronics, wireless sensor devices have been made much smaller and more integrated, and large-scale wireless sensor networks (WSNs) based the cooperation among the significant amount of nodes have become a hot topic. "Large-scale" means mainly large area or high density of a network. Accordingly the routing protocols must scale well to the network scope extension and node density increases. A sensor node is normally energy-limited and cannot be recharged, and thus its energy consumption has a quite significant effect on the scalability of the protocol. To the best of our knowledge, currently the mainstream methods to solve the energy problem in large-scale WSNs are the hierarchical routing protocols. In a hierarchical routing protocol, all the nodes are divided into several groups with different assignment levels. The nodes within the high level are responsible for data aggregation and management work, and the low level nodes for sensing their surroundings and collecting information. The hierarchical routing protocols are proved to be more energy-efficient than flat ones in which all the nodes play the same role, especially in terms of the data aggregation and the flooding of the control packets. With focus on the hierarchical structure, in this paper we provide an insight into routing protocols designed specifically for large-scale WSNs. According to the different objectives, the protocols are generally classified based on different criteria such as control overhead reduction, energy consumption mitigation and energy balance. In order to gain a comprehensive understanding of each protocol, we highlight their innovative ideas, describe the underlying principles in detail and analyze their advantages and disadvantages. Moreover a comparison of each routing protocol is conducted to demonstrate the differences between the protocols in terms of message complexity, memory requirements, localization, data aggregation, clustering manner and

  13. A Survey on Routing Protocols for Large-Scale Wireless Sensor Networks

    PubMed Central

    Li, Changle; Zhang, Hanxiao; Hao, Binbin; Li, Jiandong

    2011-01-01

    With the advances in micro-electronics, wireless sensor devices have been made much smaller and more integrated, and large-scale wireless sensor networks (WSNs) based the cooperation among the significant amount of nodes have become a hot topic. “Large-scale” means mainly large area or high density of a network. Accordingly the routing protocols must scale well to the network scope extension and node density increases. A sensor node is normally energy-limited and cannot be recharged, and thus its energy consumption has a quite significant effect on the scalability of the protocol. To the best of our knowledge, currently the mainstream methods to solve the energy problem in large-scale WSNs are the hierarchical routing protocols. In a hierarchical routing protocol, all the nodes are divided into several groups with different assignment levels. The nodes within the high level are responsible for data aggregation and management work, and the low level nodes for sensing their surroundings and collecting information. The hierarchical routing protocols are proved to be more energy-efficient than flat ones in which all the nodes play the same role, especially in terms of the data aggregation and the flooding of the control packets. With focus on the hierarchical structure, in this paper we provide an insight into routing protocols designed specifically for large-scale WSNs. According to the different objectives, the protocols are generally classified based on different criteria such as control overhead reduction, energy consumption mitigation and energy balance. In order to gain a comprehensive understanding of each protocol, we highlight their innovative ideas, describe the underlying principles in detail and analyze their advantages and disadvantages. Moreover a comparison of each routing protocol is conducted to demonstrate the differences between the protocols in terms of message complexity, memory requirements, localization, data aggregation, clustering manner

  14. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Seventh Revision

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2015-01-01

    This paper presents an overview of the seventh revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This paper supersedes the previous documentation and presents a modification to the algorithm referred to as the Airborne Spacing for Terminal Arrival Routes version 13 (ASTAR13). This airborne self-spacing concept contains both trajectory-based and state-based mechanisms for calculating the speeds required to achieve or maintain a precise spacing interval. The trajectory-based capability allows for spacing operations prior to the aircraft being on a common path. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. This current revision to the algorithm adds the state-based capability in support of evolving industry standards relating to airborne self-spacing.

  15. Improving delivery routes using combined heuristic and optimization in a consumer goods distribution company

    NASA Astrophysics Data System (ADS)

    Wibisono, E.; Santoso, A.; Sunaryo, M. A.

    2017-11-01

    XYZ is a distributor of various consumer goods products. The company plans its delivery routes daily and in order to obtain route construction in a short amount of time, it simplifies the process by assigning drivers based on geographic regions. This approach results in inefficient use of vehicles leading to imbalance workloads. In this paper, we propose a combined method involving heuristic and optimization to obtain better solutions in acceptable computation time. The heuristic is based on a time-oriented, nearest neighbor (TONN) to form clusters if the number of locations is higher than a certain value. The optimization part uses a mathematical modeling formulation based on vehicle routing problem that considers heterogeneous vehicles, time windows, and fixed costs (HVRPTWF) and is used to solve routing problem in clusters. A case study using data from one month of the company’s operations is analyzed, and data from one day of operations are detailed in this paper. The analysis shows that the proposed method results in 24% cost savings on that month, but it can be as high as 54% in a day.

  16. Considerations of Administrative Licensure, Provider Type, and Leadership Quality: Recommendations for Research, Policy, and Practice

    ERIC Educational Resources Information Center

    Hackmann, Donald G.

    2016-01-01

    This article reviews U.S. administrative licensure regulations, focusing on type of school leader licensure, provider types, and leadership quality. Licensure obtained through university-based and alternative routes is examined. Due to limited research on alternative school administrative licensure, regulations in medicine, psychology,…

  17. Route monitoring program FY 1994

    DOT National Transportation Integrated Search

    1994-12-01

    In Fiscal Year 1994, the Transit Authority of River City (TARC) Kentucky's Research Department completed an on-board ride check of 32 routes. This data was collected and compiled to measure the effectiveness and efficiency of TARC Service on a route ...

  18. Simulation of the Impact of Packet Errors on the Kademlia Peer-to-Peer Routing

    DTIC Science & Technology

    2010-09-01

    during the routing process. Pastry [15] switches to a proximity based metric when approaching a node closely. This complicates the implementation...and Peter Druschel. Pastry : Scalable, distributed object location and routing for large-scale peer-to-peer systems. IFIP/ACM International Conference

  19. Dynamic routing and spectrum assignment based on multilayer virtual topology and ant colony optimization in elastic software-defined optical networks

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Liu, Bo; Zhang, Lijia; Zhang, Qi; Tian, Qinghua; Tian, Feng; Rao, Lan; Xin, Xiangjun

    2017-07-01

    Elastic software-defined optical networks greatly improve the flexibility of the optical switching network while it has brought challenges to the routing and spectrum assignment (RSA). A multilayer virtual topology model is proposed to solve RSA problems. Two RSA algorithms based on the virtual topology are proposed, which are the ant colony optimization (ACO) algorithm of minimum consecutiveness loss and the ACO algorithm of maximum spectrum consecutiveness. Due to the computing power of the control layer in the software-defined network, the routing algorithm avoids the frequent link-state information between routers. Based on the effect of the spectrum consecutiveness loss on the pheromone in the ACO, the path and spectrum of the minimal impact on the network are selected for the service request. The proposed algorithms have been compared with other algorithms. The results show that the proposed algorithms can reduce the blocking rate by at least 5% and perform better in spectrum efficiency. Moreover, the proposed algorithms can effectively decrease spectrum fragmentation and enhance available spectrum consecutiveness.

  20. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Eighth Revision

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Swieringa, Kurt S.

    2017-01-01

    This paper presents an overview of the eighth revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This paper supersedes the previous documentation and presents a modification to the algorithm referred to as the Airborne Spacing for Terminal Arrival Routes version 13 (ASTAR13). This airborne self-spacing concept contains both trajectory-based and state-based mechanisms for calculating the speeds required to achieve or maintain a precise spacing interval with another aircraft. The trajectory-based capability allows for spacing operations prior to the aircraft being on a common path. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. This current revision to the algorithm supports the evolving industry standards relating to airborne self-spacing.

  1. Social survey findings on en route noise annoyance issues

    NASA Technical Reports Server (NTRS)

    Fields, James M.

    1990-01-01

    Most surveys of residents' reactions to aircraft noise were conducted in the vicinity of airports. The findings in those surveys have supported planning and regulatory actions for the airport noise environment. Now, however, aircraft noise planning and regulations are being considered for a new environment, the en route environment. As policy makers search for bases for public policy in these new noise environments, it is appropriate to ask whether the same scientific evidence which supports airport noise policy can also support en route noise policy. Several aspects of that question are considered. An introduction establishes the scope of the present study and examines alternative study methodologies. Next, the selected study methodology is described and important assumptions are listed. The body of the paper then consists of the findings on en route issues. The final section presents findings on relevant research methods and considers priorities for further research.

  2. Spatial modelling for tsunami evacuation route in Parangtritis Village

    NASA Astrophysics Data System (ADS)

    Juniansah, A.; Tyas, B. I.; Tama, G. C.; Febriani, K. R.; Farda, N. M.

    2018-04-01

    Tsunami is a series of huge sea waves that commonly occurs because of the oceanic plate movement or tectonic activity under the sea. As a sudden hazard, the tsunami has damaged many people over the years. Parangtritis village is one of high tsunami hazard risk area in Indonesia which needs an effective tsunami risk reduction. This study aims are modelling a tsunami susceptibility map, existing assembly points evaluation, and suggesting effective evacuation routes. The susceptibility map was created using ALOS PALSAR DEM and surface roughness coefficient. The method of tsunami modelling employed inundation model developed by Berryman (2006). The results are used to determine new assembly points based on the Sentinel 2A imagery and to determine the most effective evacuation route by using network analyst. This model can be used to create detailed scale of evacuation route, but unrepresentative for assembly point that far from road network.

  3. Social Milieu Oriented Routing: A New Dimension to Enhance Network Security in WSNs.

    PubMed

    Liu, Lianggui; Chen, Li; Jia, Huiling

    2016-02-19

    In large-scale wireless sensor networks (WSNs), in order to enhance network security, it is crucial for a trustor node to perform social milieu oriented routing to a target a trustee node to carry out trust evaluation. This challenging social milieu oriented routing with more than one end-to-end Quality of Trust (QoT) constraint has proved to be NP-complete. Heuristic algorithms with polynomial and pseudo-polynomial-time complexities are often used to deal with this challenging problem. However, existing solutions cannot guarantee the efficiency of searching; that is, they can hardly avoid obtaining partial optimal solutions during a searching process. Quantum annealing (QA) uses delocalization and tunneling to avoid falling into local minima without sacrificing execution time. This has been proven a promising way to many optimization problems in recently published literatures. In this paper, for the first time, with the help of a novel approach, that is, configuration path-integral Monte Carlo (CPIMC) simulations, a QA-based optimal social trust path (QA_OSTP) selection algorithm is applied to the extraction of the optimal social trust path in large-scale WSNs. Extensive experiments have been conducted, and the experiment results demonstrate that QA_OSTP outperforms its heuristic opponents.

  4. Bi-Objective Modelling for Hazardous Materials Road–Rail Multimodal Routing Problem with Railway Schedule-Based Space–Time Constraints

    PubMed Central

    Sun, Yan; Lang, Maoxiang; Wang, Danzhu

    2016-01-01

    The transportation of hazardous materials is always accompanied by considerable risk that will impact public and environment security. As an efficient and reliable transportation organization, a multimodal service should participate in the transportation of hazardous materials. In this study, we focus on transporting hazardous materials through the multimodal service network and explore the hazardous materials multimodal routing problem from the operational level of network planning. To formulate this problem more practicably, minimizing the total generalized costs of transporting the hazardous materials and the social risk along the planned routes are set as the optimization objectives. Meanwhile, the following formulation characteristics will be comprehensively modelled: (1) specific customer demands; (2) multiple hazardous material flows; (3) capacitated schedule-based rail service and uncapacitated time-flexible road service; and (4) environmental risk constraint. A bi-objective mixed integer nonlinear programming model is first built to formulate the routing problem that combines the formulation characteristics above. Then linear reformations are developed to linearize and improve the initial model so that it can be effectively solved by exact solution algorithms on standard mathematical programming software. By utilizing the normalized weighted sum method, we can generate the Pareto solutions to the bi-objective optimization problem for a specific case. Finally, a large-scale empirical case study from the Beijing–Tianjin–Hebei Region in China is presented to demonstrate the feasibility of the proposed methods in dealing with the practical problem. Various scenarios are also discussed in the case study. PMID:27483294

  5. An Autonomous Self-Aware and Adaptive Fault Tolerant Routing Technique for Wireless Sensor Networks

    PubMed Central

    Abba, Sani; Lee, Jeong-A

    2015-01-01

    We propose an autonomous self-aware and adaptive fault-tolerant routing technique (ASAART) for wireless sensor networks. We address the limitations of self-healing routing (SHR) and self-selective routing (SSR) techniques for routing sensor data. We also examine the integration of autonomic self-aware and adaptive fault detection and resiliency techniques for route formation and route repair to provide resilience to errors and failures. We achieved this by using a combined continuous and slotted prioritized transmission back-off delay to obtain local and global network state information, as well as multiple random functions for attaining faster routing convergence and reliable route repair despite transient and permanent node failure rates and efficient adaptation to instantaneous network topology changes. The results of simulations based on a comparison of the ASAART with the SHR and SSR protocols for five different simulated scenarios in the presence of transient and permanent node failure rates exhibit a greater resiliency to errors and failure and better routing performance in terms of the number of successfully delivered network packets, end-to-end delay, delivered MAC layer packets, packet error rate, as well as efficient energy conservation in a highly congested, faulty, and scalable sensor network. PMID:26295236

  6. Distributed multiple path routing in complex networks

    NASA Astrophysics Data System (ADS)

    Chen, Guang; Wang, San-Xiu; Wu, Ling-Wei; Mei, Pan; Yang, Xu-Hua; Wen, Guang-Hui

    2016-12-01

    Routing in complex transmission networks is an important problem that has garnered extensive research interest in the recent years. In this paper, we propose a novel routing strategy called the distributed multiple path (DMP) routing strategy. For each of the O-D node pairs in a given network, the DMP routing strategy computes and stores multiple short-length paths that overlap less with each other in advance. And during the transmission stage, it rapidly selects an actual routing path which provides low transmission cost from the pre-computed paths for each transmission task, according to the real-time network transmission status information. Computer simulation results obtained for the lattice, ER random, and scale-free networks indicate that the strategy can significantly improve the anti-congestion ability of transmission networks, as well as provide favorable routing robustness against partial network failures.

  7. A Formal Algorithm for Routing Traces on a Printed Circuit Board

    NASA Technical Reports Server (NTRS)

    Hedgley, David R., Jr.

    1996-01-01

    This paper addresses the classical problem of printed circuit board routing: that is, the problem of automatic routing by a computer other than by brute force that causes the execution time to grow exponentially as a function of the complexity. Most of the present solutions are either inexpensive but not efficient and fast, or efficient and fast but very costly. Many solutions are proprietary, so not much is written or known about the actual algorithms upon which these solutions are based. This paper presents a formal algorithm for routing traces on a print- ed circuit board. The solution presented is very fast and efficient and for the first time speaks to the question eloquently by way of symbolic statements.

  8. Dynamic Routing for Delay-Tolerant Networking in Space Flight Operations

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott C.

    2008-01-01

    Contact Graph Routing (CGR) is a dynamic routing system that computes routes through a time-varying topology composed of scheduled, bounded communication contacts in a network built on the Delay-Tolerant Networking (DTN) architecture. It is designed to support operations in a space network based on DTN, but it also could be used in terrestrial applications where operation according to a predefined schedule is preferable to opportunistic communication, as in a low-power sensor network. This paper will describe the operation of the CGR system and explain how it can enable data delivery over scheduled transmission opportunities, fully utilizing the available transmission capacity, without knowing the current state of any bundle protocol node (other than the local node itself) and without exhausting processing resources at any bundle router.

  9. Branch-pipe-routing approach for ships using improved genetic algorithm

    NASA Astrophysics Data System (ADS)

    Sui, Haiteng; Niu, Wentie

    2016-09-01

    Branch-pipe routing plays fundamental and critical roles in ship-pipe design. The branch-pipe-routing problem is a complex combinatorial optimization problem and is thus difficult to solve when depending only on human experts. A modified genetic-algorithm-based approach is proposed in this paper to solve this problem. The simplified layout space is first divided into threedimensional (3D) grids to build its mathematical model. Branch pipes in layout space are regarded as a combination of several two-point pipes, and the pipe route between two connection points is generated using an improved maze algorithm. The coding of branch pipes is then defined, and the genetic operators are devised, especially the complete crossover strategy that greatly accelerates the convergence speed. Finally, simulation tests demonstrate the performance of proposed method.

  10. Robust Dynamic Multi-objective Vehicle Routing Optimization Method.

    PubMed

    Guo, Yi-Nan; Cheng, Jian; Luo, Sha; Gong, Dun-Wei

    2017-03-21

    For dynamic multi-objective vehicle routing problems, the waiting time of vehicle, the number of serving vehicles, the total distance of routes were normally considered as the optimization objectives. Except for above objectives, fuel consumption that leads to the environmental pollution and energy consumption was focused on in this paper. Considering the vehicles' load and the driving distance, corresponding carbon emission model was built and set as an optimization objective. Dynamic multi-objective vehicle routing problems with hard time windows and randomly appeared dynamic customers, subsequently, were modeled. In existing planning methods, when the new service demand came up, global vehicle routing optimization method was triggered to find the optimal routes for non-served customers, which was time-consuming. Therefore, robust dynamic multi-objective vehicle routing method with two-phase is proposed. Three highlights of the novel method are: (i) After finding optimal robust virtual routes for all customers by adopting multi-objective particle swarm optimization in the first phase, static vehicle routes for static customers are formed by removing all dynamic customers from robust virtual routes in next phase. (ii)The dynamically appeared customers append to be served according to their service time and the vehicles' statues. Global vehicle routing optimization is triggered only when no suitable locations can be found for dynamic customers. (iii)A metric measuring the algorithms' robustness is given. The statistical results indicated that the routes obtained by the proposed method have better stability and robustness, but may be sub-optimum. Moreover, time-consuming global vehicle routing optimization is avoided as dynamic customers appear.

  11. "We Brought It upon Ourselves": University-Based Teacher Education and the Emergence of Boot-Camp-Style Routes to Teacher Certification

    ERIC Educational Resources Information Center

    Friedrich, Daniel

    2014-01-01

    The proliferation of boot-camp-style routes to teacher certification in the last two decades is seen by many university-based teacher educators as the result of the advancement of conservative interests aimed at de-professionalizing teaching. This essay argues that this view only accounts for one piece of the answer, the other one being that some…

  12. Fatigue mitigation effects of en-route napping on commercial airline pilots flying international routes

    NASA Astrophysics Data System (ADS)

    Baldwin, Jarret Taylor

    The introduction of ultra-long range commercial aircraft and the evolution of the commercial airline industry has provided new opportunities for air carriers to fly longer range international route segments while deregulation, industry consolidation, and the constant drive to reduce costs wherever possible has pressured airline managements to seek more productivity from their pilots. At the same time, advancements in the understanding of human physiology have begun to make their way into flight and duty time regulations and airline scheduling practices. In this complex and ever changing operating environment, there remains an essential need to better understand how these developments, and other daily realities facing commercial airline pilots, are affecting their fatigue management strategies as they go about their rituals of getting to and from their homes to work and performing their flight assignments. Indeed, the need for commercial airline pilots to have access to better and more effective fatigue mitigation tools to combat fatigue and insure that they are well rested and at the top of their game when flying long-range international route segments has never been greater. This study examined to what extent the maximum fatigue states prior to napping, as self-accessed by commercial airline pilots flying international route segments, were affected by a number of other common flight assignment related factors. The study also examined to what extent the availability of scheduled en-route rest opportunities, in an onboard crew rest facility, affected the usage of en-route napping as a fatigue mitigation strategy, and to what extent the duration of such naps affected the perceived benefits of such naps as self-accessed by commercial airline pilots flying international route segments. The study utilized an online survey tool to collect data on crew position, prior flight segments flown in the same duty period, augmentation, commuting, pre-flight rest obtained in the

  13. IMHRP: Improved Multi-Hop Routing Protocol for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Huang, Jianhua; Ruan, Danwei; Hong, Yadong; Zhao, Ziming; Zheng, Hong

    2017-10-01

    Wireless sensor network (WSN) is a self-organizing system formed by a large number of low-cost sensor nodes through wireless communication. Sensor nodes collect environmental information and transmit it to the base station (BS). Sensor nodes usually have very limited battery energy. The batteries cannot be charged or replaced. Therefore, it is necessary to design an energy efficient routing protocol to maximize the network lifetime. This paper presents an improved multi-hop routing protocol (IMHRP) for homogeneous networks. In the IMHRP protocol, based on the distances to the BS, the CH nodes are divided into internal CH nodes and external CH nodes. The set-up phase of the protocol is based on the LEACH protocol and the minimum distance between CH nodes are limited to a special constant distance, so a more uniform distribution of CH nodes is achieved. In the steady-state phase, the routes of different CH nodes are created on the basis of the distances between the CH nodes. The energy efficiency of communication can be maximized. The simulation results show that the proposed algorithm can more effectively reduce the energy consumption of each round and prolong the network lifetime compared with LEACH protocol and MHT protocol.

  14. The "path" not taken: exploring structural differences in mapped- versus shortest-network-path school travel routes.

    PubMed

    Buliung, Ron N; Larsen, Kristian; Faulkner, Guy E J; Stone, Michelle R

    2013-09-01

    School route measurement often involves estimating the shortest network path. We challenged the relatively uncritical adoption of this method in school travel research and tested the route discordance hypothesis that several types of difference exist between shortest network paths and reported school routes. We constructed the mapped and shortest path through network routes for a sample of 759 children aged 9 to 13 years in grades 5 and 6 (boys = 45%, girls = 54%, unreported gender = 1%), in Toronto, Ontario, Canada. We used Wilcoxon signed-rank tests to compare reported with shortest-path route measures including distance, route directness, intersection crossings, and route overlap. Measurement difference was explored by mode and location. We found statistical evidence of route discordance for walkers and children who were driven and detected it more often for inner suburban cases. Evidence of route discordance varied by mode and school location. We found statistically significant differences for route structure and built environment variables measured along reported and geographic information systems-based shortest-path school routes. Uncertainty produced by the shortest-path approach challenges its conceptual and empirical validity in school travel research.

  15. Ontology Based Quality Evaluation for Spatial Data

    NASA Astrophysics Data System (ADS)

    Yılmaz, C.; Cömert, Ç.

    2015-08-01

    Many institutions will be providing data to the National Spatial Data Infrastructure (NSDI). Current technical background of the NSDI is based on syntactic web services. It is expected that this will be replaced by semantic web services. The quality of the data provided is important in terms of the decision-making process and the accuracy of transactions. Therefore, the data quality needs to be tested. This topic has been neglected in Turkey. Data quality control for NSDI may be done by private or public "data accreditation" institutions. A methodology is required for data quality evaluation. There are studies for data quality including ISO standards, academic studies and software to evaluate spatial data quality. ISO 19157 standard defines the data quality elements. Proprietary software such as, 1Spatial's 1Validate and ESRI's Data Reviewer offers quality evaluation based on their own classification of rules. Commonly, rule based approaches are used for geospatial data quality check. In this study, we look for the technical components to devise and implement a rule based approach with ontologies using free and open source software in semantic web context. Semantic web uses ontologies to deliver well-defined web resources and make them accessible to end-users and processes. We have created an ontology conforming to the geospatial data and defined some sample rules to show how to test data with respect to data quality elements including; attribute, topo-semantic and geometrical consistency using free and open source software. To test data against rules, sample GeoSPARQL queries are created, associated with specifications.

  16. [The value of lidocaine through different routes of administration in the treatment of tinnitus: a Meta-analysis].

    PubMed

    Li, Hui; Li, Ming; Zhang, Jianning; Li, Xiangcui; Tan, Junying; Ji, Bobo

    2016-01-01

    To evaluate the clinical value of lidocain in the treatment of tinnitus through three routes of administration (intravenous, intratympanic and acupoint injection) by analyzing literatures. Articles were collected through Hownet, Wanfang, VIP, Pubmed, SciVerse ScienceDirect, Springer and OVID, etc. The articles were strictly evaluated based on their quality. The Meta-analysis was performed to evaluate the outcomes by RevMan 5. 2 software. A total of 16 articles with 1203 patients were enrolled in the analysis. Their tinnitus history ranged from 7 hours to 20 years. Assessment methods include tinnitus loudness levels, severity scales and subjective feelings. None of articles refer to maintaining time, instead of "short-term", "short" and so on. A total of 133 cases received intravenous injection and the effective rate was 73.4% (98 cases). 50 cases and 332 cases received intratympanic and acupoint injection respectively and their effective rates were 74.0% and 87.7%, respectively. The effective rate ranged from 42.4% to 58.3% in control group. Meta-analysis results indicate that all three routes of lidocaine administrations are more effective than conventional methods (P < 0.05). Different routes of lidocaine administration have a good but short time effects on the tinnitus control. It can effectively reduce the time of tinnitus habituation as a complementary treatment. But its value still needs further evaluation.

  17. Conceptualizing Social Recovery: Recovery Routes of Methamphetamine Users

    PubMed Central

    Boeri, Miriam; Gibson, David; Boshears, Paul

    2014-01-01

    The goal of our qualitative study was to gain a phenomenological understanding of routes to recovery from problematic drug use. In-depth interviews and drug histories were collected from 50 former methamphetamine users recruited from a U.S. metropolitan suburb who identified as having had problematic use of this drug in the past. Transcripts of the audio-recorded interviews were coded for common themes regarding types of recovery strategies or tools employed on the route to recovery. The common strategies used for recovery from problematic methamphetamine use in all routes were social in nature and did not necessarily include cessation of all substances. Based on our findings, we suggest a conceptualization of social recovery that focuses on reducing the social harms caused by problematic drug use rather than focusing primarily on cessation of all drug use. Social recovery may be employed as both a treatment strategy and analytical tool. More research is needed to advance the concept of social recovery for intervention, drug policy, and criminal justice implications. PMID:25574504

  18. Optimal route discovery for soft QOS provisioning in mobile ad hoc multimedia networks

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Pan, Feng

    2007-09-01

    In this paper, we propose an optimal routing discovery algorithm for ad hoc multimedia networks whose resource keeps changing, First, we use stochastic models to measure the network resource availability, based on the information about the location and moving pattern of the nodes, as well as the link conditions between neighboring nodes. Then, for a certain multimedia packet flow to be transmitted from a source to a destination, we formulate the optimal soft-QoS provisioning problem as to find the best route that maximize the probability of satisfying its desired QoS requirements in terms of the maximum delay constraints. Based on the stochastic network resource model, we developed three approaches to solve the formulated problem: A centralized approach serving as the theoretical reference, a distributed approach that is more suitable to practical real-time deployment, and a distributed dynamic approach that utilizes the updated time information to optimize the routing for each individual packet. Examples of numerical results demonstrated that using the route discovered by our distributed algorithm in a changing network environment, multimedia applications could achieve better QoS statistically.

  19. Joint optimization of green vehicle scheduling and routing problem with time-varying speeds.

    PubMed

    Zhang, Dezhi; Wang, Xin; Li, Shuangyan; Ni, Nan; Zhang, Zhuo

    2018-01-01

    Based on an analysis of the congestion effect and changes in the speed of vehicle flow during morning and evening peaks in a large- or medium-sized city, the piecewise function is used to capture the rules of the time-varying speed of vehicles, which are very important in modelling their fuel consumption and CO2 emission. A joint optimization model of the green vehicle scheduling and routing problem with time-varying speeds is presented in this study. Extra wages during nonworking periods and soft time-window constraints are considered. A heuristic algorithm based on the adaptive large neighborhood search algorithm is also presented. Finally, a numerical simulation example is provided to illustrate the optimization model and its algorithm. Results show that, (1) the shortest route is not necessarily the route that consumes the least energy, (2) the departure time influences the vehicle fuel consumption and CO2 emissions and the optimal departure time saves on fuel consumption and reduces CO2 emissions by up to 5.4%, and (3) extra driver wages have significant effects on routing and departure time slot decisions.

  20. A novel, fuzzy-based air quality index (FAQI) for air quality assessment

    NASA Astrophysics Data System (ADS)

    Sowlat, Mohammad Hossein; Gharibi, Hamed; Yunesian, Masud; Tayefeh Mahmoudi, Maryam; Lotfi, Saeedeh

    2011-04-01

    The ever increasing level of air pollution in most areas of the world has led to development of a variety of air quality indices for estimation of health effects of air pollution, though the indices have their own limitations such as high levels of subjectivity. Present study, therefore, aimed at developing a novel, fuzzy-based air quality index (FAQI ) to handle such limitations. The index developed by present study is based on fuzzy logic that is considered as one of the most common computational methods of artificial intelligence. In addition to criteria air pollutants (i.e. CO, SO 2, PM 10, O 3, NO 2), benzene, toluene, ethylbenzene, xylene, and 1,3-butadiene were also taken into account in the index proposed, because of their considerable health effects. Different weighting factors were then assigned to each pollutant according to its priority. Trapezoidal membership functions were employed for classifications and the final index consisted of 72 inference rules. To assess the performance of the index, a case study was carried out employing air quality data at five different sampling stations in Tehran, Iran, from January 2008 to December 2009, results of which were then compared to the results obtained from USEPA air quality index (AQI). According to the results from present study, fuzzy-based air quality index is a comprehensive tool for classification of air quality and tends to produce accurate results. Therefore, it can be considered useful, reliable, and suitable for consideration by local authorities in air quality assessment and management schemes. Fuzzy-based air quality index (FAQI).

  1. The Time Window Vehicle Routing Problem Considering Closed Route

    NASA Astrophysics Data System (ADS)

    Irsa Syahputri, Nenna; Mawengkang, Herman

    2017-12-01

    The Vehicle Routing Problem (VRP) determines the optimal set of routes used by a fleet of vehicles to serve a given set of customers on a predefined graph; the objective is to minimize the total travel cost (related to the travel times or distances) and operational cost (related to the number of vehicles used). In this paper we study a variant of the predefined graph: given a weighted graph G and vertices a and b, and given a set X of closed paths in G, find the minimum total travel cost of a-b path P such that no path in X is a subpath of P. Path P is allowed to repeat vertices and edges. We use integer programming model to describe the problem. A feasible neighbourhood approach is proposed to solve the model

  2. An Evaluation of Controller and Pilot Performance, Workload and Acceptability under a NextGen Concept for Dynamic Weather Adapted Arrival Routing

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W.; Lachter, Joel; Brandt, Summer; Koteskey, Robert; Dao, Arik-Quang; Kraut, Josh; Ligda, Sarah; Battiste, Vernol

    2012-01-01

    In todays terminal operations, controller workload increases and throughput decreases when fixed standard terminal arrival routes (STARs) are impacted by storms. To circumvent this operational constraint, Prete, Krozel, Mitchell, Kim and Zou (2008) proposed to use automation to dynamically adapt arrival and departure routing based on weather predictions. The present study examined this proposal in the context of a NextGen trajectory-based operation concept, focusing on the acceptability and its effect on the controllers ability to manage traffic flows. Six controllers and twelve transport pilots participated in a human-in-the-loop simulation of arrival operations into Louisville International Airport with interval management requirements. Three types of routing structures were used: Static STARs (similar to current routing, which require the trajectories of individual aircraft to be modified to avoid the weather), Dynamic routing (automated adaptive routing around weather), and Dynamic Adjusted routing (automated adaptive routing around weather with aircraft entry time adjusted to account for differences in route length). Spacing Responsibility, whether responsibility for interval management resided with the controllers (as today), or resided with the pilot (who used a flight deck based automated spacing algorithm), was also manipulated. Dynamic routing as a whole was rated superior to static routing, especially by pilots, both in terms of workload reduction and flight path safety. A downside of using dynamic routing was that the paths flown in the dynamic conditions tended to be somewhat longer than the paths flown in the static condition.

  3. Dynamic vehicle routing with time windows in theory and practice.

    PubMed

    Yang, Zhiwei; van Osta, Jan-Paul; van Veen, Barry; van Krevelen, Rick; van Klaveren, Richard; Stam, Andries; Kok, Joost; Bäck, Thomas; Emmerich, Michael

    2017-01-01

    The vehicle routing problem is a classical combinatorial optimization problem. This work is about a variant of the vehicle routing problem with dynamically changing orders and time windows. In real-world applications often the demands change during operation time. New orders occur and others are canceled. In this case new schedules need to be generated on-the-fly. Online optimization algorithms for dynamical vehicle routing address this problem but so far they do not consider time windows. Moreover, to match the scenarios found in real-world problems adaptations of benchmarks are required. In this paper, a practical problem is modeled based on the procedure of daily routing of a delivery company. New orders by customers are introduced dynamically during the working day and need to be integrated into the schedule. A multiple ant colony algorithm combined with powerful local search procedures is proposed to solve the dynamic vehicle routing problem with time windows. The performance is tested on a new benchmark based on simulations of a working day. The problems are taken from Solomon's benchmarks but a certain percentage of the orders are only revealed to the algorithm during operation time. Different versions of the MACS algorithm are tested and a high performing variant is identified. Finally, the algorithm is tested in situ: In a field study, the algorithm schedules a fleet of cars for a surveillance company. We compare the performance of the algorithm to that of the procedure used by the company and we summarize insights gained from the implementation of the real-world study. The results show that the multiple ant colony algorithm can get a much better solution on the academic benchmark problem and also can be integrated in a real-world environment.

  4. Vehicle routing problem and capacitated vehicle routing problem frameworks in fund allocation problem

    NASA Astrophysics Data System (ADS)

    Mamat, Nur Jumaadzan Zaleha; Jaaman, Saiful Hafizah; Ahmad, Rokiah@Rozita

    2016-11-01

    Two new methods adopted from methods commonly used in the field of transportation and logistics are proposed to solve a specific issue of investment allocation problem. Vehicle routing problem and capacitated vehicle routing methods are applied to optimize the fund allocation of a portfolio of investment assets. This is done by determining the sequence of the assets. As a result, total investment risk is minimized by this sequence.

  5. A green vehicle routing problem with customer satisfaction criteria

    NASA Astrophysics Data System (ADS)

    Afshar-Bakeshloo, M.; Mehrabi, A.; Safari, H.; Maleki, M.; Jolai, F.

    2016-12-01

    This paper develops an MILP model, named Satisfactory-Green Vehicle Routing Problem. It consists of routing a heterogeneous fleet of vehicles in order to serve a set of customers within predefined time windows. In this model in addition to the traditional objective of the VRP, both the pollution and customers' satisfaction have been taken into account. Meanwhile, the introduced model prepares an effective dashboard for decision-makers that determines appropriate routes, the best mixed fleet, speed and idle time of vehicles. Additionally, some new factors evaluate the greening of each decision based on three criteria. This model applies piecewise linear functions (PLFs) to linearize a nonlinear fuzzy interval for incorporating customers' satisfaction into other linear objectives. We have presented a mixed integer linear programming formulation for the S-GVRP. This model enriches managerial insights by providing trade-offs between customers' satisfaction, total costs and emission levels. Finally, we have provided a numerical study for showing the applicability of the model.

  6. An efficient and reliable geographic routing protocol based on partial network coding for underwater sensor networks.

    PubMed

    Hao, Kun; Jin, Zhigang; Shen, Haifeng; Wang, Ying

    2015-05-28

    Efficient routing protocols for data packet delivery are crucial to underwater sensor networks (UWSNs). However, communication in UWSNs is a challenging task because of the characteristics of the acoustic channel. Network coding is a promising technique for efficient data packet delivery thanks to the broadcast nature of acoustic channels and the relatively high computation capabilities of the sensor nodes. In this work, we present GPNC, a novel geographic routing protocol for UWSNs that incorporates partial network coding to encode data packets and uses sensor nodes' location information to greedily forward data packets to sink nodes. GPNC can effectively reduce network delays and retransmissions of redundant packets causing additional network energy consumption. Simulation results show that GPNC can significantly improve network throughput and packet delivery ratio, while reducing energy consumption and network latency when compared with other routing protocols.

  7. Can health insurance improve access to quality care for the Indian poor?

    PubMed

    Michielsen, Joris; Criel, Bart; Devadasan, Narayanan; Soors, Werner; Wouters, Edwin; Meulemans, Herman

    2011-08-01

    Recently, the Indian government launched health insurance schemes for the poor both to protect them from high health spending and to improve access to high-quality health services. This article aims to review the potentials of health insurance interventions in order to improve access to quality care in India based on experiences of community health insurance schemes. PubMed, Ovid MEDLINE (R), All EBM Reviews, CSA Sociological Abstracts, CSA Social Service Abstracts, EconLit, Science Direct, the ISI Web of Knowledge, Social Science Research Network and databases of research centers were searched up to September 2010. An Internet search was executed. One thousand hundred and thirty-three papers were assessed for inclusion and exclusion criteria. Twenty-five papers were selected providing information on eight schemes. A realist review was performed using Hirschman's exit-voice theory: mechanisms to improve exit strategies (financial assets and infrastructure) and strengthen patient's long voice route (quality management) and short voice route (patient pressure). All schemes use a mix of measures to improve exit strategies and the long voice route. Most mechanisms are not effective in reality. Schemes that focus on the patients' bargaining position at the patient-provider interface seem to improve access to quality care. Top-down health insurance interventions with focus on exit strategies will not work out fully in the Indian context. Government must actively facilitate the potential of CHI schemes to emancipate the target group so that they may transform from mere passive beneficiaries into active participants in their health.

  8. Quality of web-based information on cannabis addiction.

    PubMed

    Khazaal, Yasser; Chatton, Anne; Cochand, Sophie; Zullino, Daniele

    2008-01-01

    This study evaluated the quality of Web-based information on cannabis use and addiction and investigated particular content quality indicators. Three keywords ("cannabis addiction," "cannabis dependence," and "cannabis abuse") were entered into two popular World Wide Web search engines. Websites were assessed with a standardized proforma designed to rate sites on the basis of accountability, presentation, interactivity, readability, and content quality. "Health on the Net" (HON) quality label, and DISCERN scale scores were used to verify their efficiency as quality indicators. Of the 94 Websites identified, 57 were included. Most were commercial sites. Based on outcome measures, the overall quality of the sites turned out to be poor. A global score (the sum of accountability, interactivity, content quality and esthetic criteria) appeared as a good content quality indicator. While cannabis education Websites for patients are widespread, their global quality is poor. There is a need for better evidence-based information about cannabis use and addiction on the Web.

  9. Research on logistics scheduling based on PSO

    NASA Astrophysics Data System (ADS)

    Bao, Huifang; Zhou, Linli; Liu, Lei

    2017-08-01

    With the rapid development of e-commerce based on the network, the logistics distribution support of e-commerce is becoming more and more obvious. The optimization of vehicle distribution routing can improve the economic benefit and realize the scientific of logistics [1]. Therefore, the study of logistics distribution vehicle routing optimization problem is not only of great theoretical significance, but also of considerable value of value. Particle swarm optimization algorithm is a kind of evolutionary algorithm, which is based on the random solution and the optimal solution by iteration, and the quality of the solution is evaluated through fitness. In order to obtain a more ideal logistics scheduling scheme, this paper proposes a logistics model based on particle swarm optimization algorithm.

  10. Routing to preserve energy in wireless networks

    NASA Astrophysics Data System (ADS)

    Block, Frederick J., IV

    Many applications for wireless radio networks require that some or all radios in the network rely on batteries as energy sources. In many cases, battery replacement is infeasible, expensive, or impossible. Communication protocols for such networks should be designed to preserve limited energy supplies. Because the choice of a route to a traffic sink influences how often radios must transmit and receive, poor route selection can quickly deplete the batteries of certain nodes. Previous work has shown that a network's lifetime can be extended by assigning higher routing costs to nodes with little remaining energy and nodes that must use high transmitter power to reach neighbor radios. Although using remaining energy levels in routing metrics can increase network lifetime, in practice, there may be significant error in a node's estimate of its battery level. The effect of battery level uncertainty on routing is examined. Routing metrics are presented that are designed to explicitly account for uncertainty in remaining energy. Simulation results using several statistical models for this uncertainty show that the proposed metrics perform well. In addition to knowledge of current battery levels, estimates of how quickly radios are consuming energy may be helpful in extending network lifetime. We present a family of routing metrics that incorporate a radio's rate of energy consumption. Simulation results show that the proposed family of metrics performs well under a variety of traffic models and network topologies. Route selection can also be complicated by time-varying link conditions. Radios may be subject to interference from other nearby communication systems, hostile jammers, and other, non-communication sources of noise. A route that first appears to have only a small cost may later require much greater energy expenditure when transmitting packets. Frequent route selection can help radios avoid using links with interference, but additional routing control messages

  11. Biocompatible silicon quantum dots by ultrasound-induced solution route

    NASA Astrophysics Data System (ADS)

    Lee, Soojin; Cho, Woon-Jo

    2004-10-01

    The water-soluble silicon quantum dots (QDs) of average diameter ~3 nm were prepared in organic solvent by ultrasound-induced solution route. This speedy rout produces the silicon QDs in the size range from 2 nm to 4 nm at room temperature and ambient pressure. The product yield of QDs was estimated to be higher than 60 % based on the initial NaSi weight. The surfaces of QDs were terminated with organic molecules including biocompatible ending groups (hydroxyl, amine and carboxyl) during simple preparation. Covalent attached molecules were characterized by FT-IR spectroscopy. These water-soluble passivation of QDs has just a little effect on the optical properties of original QDs.

  12. A graph-theoretic method to quantify the airline route authority

    NASA Technical Reports Server (NTRS)

    Chan, Y.

    1979-01-01

    The paper introduces a graph-theoretic method to quantify the legal statements in route certificate which specifies the airline routing restrictions. All the authorized nonstop and multistop routes, including the shortest time routes, can be obtained, and the method suggests profitable route structure alternatives to airline analysts. This method to quantify the C.A.B. route authority was programmed in a software package, Route Improvement Synthesis and Evaluation, and demonstrated in a case study with a commercial airline. The study showed the utility of this technique in suggesting route alternatives and the possibility of improvements in the U.S. route system.

  13. Perspectives on driver preferences for dynamic route guidance systems

    DOT National Transportation Integrated Search

    1997-01-01

    Insights about the design of route guidance systems based on the needs and desires of drivers who are familiar with the travel network are provided. Results from the ADVANCE Intelligent Transportation System operational test, in which more than 100 d...

  14. Optimization of location routing inventory problem with transshipment

    NASA Astrophysics Data System (ADS)

    Ghani, Nor Edayu Abd; Shariff, S. Sarifah Radiah; Zahari, Siti Meriam

    2015-05-01

    Location Routing Inventory Problem (LRIP) is a collaboration of the three components in the supply chain. It is confined by location-allocation, vehicle routing and inventory management. The aim of the study is to minimize the total system cost in the supply chain. Transshipment is introduced in order to allow the products to be shipped to a customer who experiences a shortage, either directly from the supplier or from another customer. In the study, LRIP is introduced with the transshipment (LRIPT) and customers act as the transshipment points. We select the transshipment point by using the p-center and we present the results in two divisions of cases. Based on the analysis, the results indicated that LRIPT performed well compared to LRIP.

  15. The “Path” Not Taken: Exploring Structural Differences in Mapped- Versus Shortest-Network-Path School Travel Routes

    PubMed Central

    Larsen, Kristian; Faulkner, Guy E. J.; Stone, Michelle R.

    2013-01-01

    Objectives. School route measurement often involves estimating the shortest network path. We challenged the relatively uncritical adoption of this method in school travel research and tested the route discordance hypothesis that several types of difference exist between shortest network paths and reported school routes. Methods. We constructed the mapped and shortest path through network routes for a sample of 759 children aged 9 to 13 years in grades 5 and 6 (boys = 45%, girls = 54%, unreported gender = 1%), in Toronto, Ontario, Canada. We used Wilcoxon signed-rank tests to compare reported with shortest-path route measures including distance, route directness, intersection crossings, and route overlap. Measurement difference was explored by mode and location. Results. We found statistical evidence of route discordance for walkers and children who were driven and detected it more often for inner suburban cases. Evidence of route discordance varied by mode and school location. Conclusions. We found statistically significant differences for route structure and built environment variables measured along reported and geographic information systems–based shortest-path school routes. Uncertainty produced by the shortest-path approach challenges its conceptual and empirical validity in school travel research. PMID:23865648

  16. SPAR: a security- and power-aware routing protocol for wireless ad hoc and sensor networks

    NASA Astrophysics Data System (ADS)

    Oberoi, Vikram; Chigan, Chunxiao

    2005-05-01

    Wireless Ad Hoc and Sensor Networks (WAHSNs) are vulnerable to extensive attacks as well as severe resource constraints. To fulfill the security needs, many security enhancements have been proposed. Like wise, from resource constraint perspective, many power aware schemes have been proposed to save the battery power. However, we observe that for the severely resource limited and extremely vulnerable WAHSNs, taking security or power (or any other resource) alone into consideration for protocol design is rather inadequate toward the truly "secure-and-useful" WAHSNs. For example, from resource constraint perspective, we identify one of the potential problems, the Security-Capable-Congestion (SCC) behavior, for the WAHSNs routing protocols where only the security are concerned. On the other hand, the design approach where only scarce resource is concerned, such as many power-aware WAHSNs protocols, leaves security unconsidered and is undesirable to many WAHSNs application scenarios. Motivated by these observations, we propose a co-design approach, where both the high security and effective resource consumption are targeted for WAHSNs protocol design. Specifically, we propose a novel routing protocol, Security- and Power- Aware Routing (SPAR) protocol based on this co-design approach. In SPAR, the routing decisions are made based on both security and power as routing criteria. The idea of the SPAR mechanism is routing protocol independent and therefore can be broadly integrated into any of the existing WAHSNs routing protocols. The simulation results show that SPAR outperforms the WAHSNs routing protocols where security or power alone is considered, significantly. This research finding demonstrates the proposed security- and resource- aware co-design approach is promising towards the truly "secure-and-useful" WAHSNs.

  17. Geographic information system-based healthcare waste management planning for treatment site location and optimal transportation routeing.

    PubMed

    Shanmugasundaram, Jothiganesh; Soulalay, Vongdeuane; Chettiyappan, Visvanathan

    2012-06-01

    In Lao People's Democratic Republic (Lao PDR), a growth of healthcare centres, and the environmental hazards and public health risks typically accompanying them, increased the need for healthcare waste (HCW) management planning. An effective planning of an HCW management system including components such as the treatment plant siting and an optimized routeing system for collection and transportation of waste is deemed important. National government offices at developing countries often lack the proper tools and methodologies because of the high costs usually associated with them. However, this study attempts to demonstrate the use of an inexpensive GIS modelling tool for healthcare waste management in the country. Two areas were designed for this study on HCW management, including: (a) locating centralized treatment plants and designing optimum travel routes for waste collection from nearby healthcare facilities; and (b) utilizing existing hospital incinerators and designing optimum routes for collecting waste from nearby healthcare facilities. Spatial analysis paved the way to understand the spatial distribution of healthcare wastes and to identify hotspots of higher waste generating locations. Optimal route models were designed for collecting and transporting HCW to treatment plants, which also highlights constraints in collecting and transporting waste for treatment and disposal. The proposed model can be used as a decision support tool for the efficient management of hospital wastes by government healthcare waste management authorities and hospitals.

  18. OceanRoute: Vessel Mobility Data Processing and Analyzing Model Based on MapReduce

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Liu, Yingjian; Guo, Zhongwen; Jing, Wei

    2018-06-01

    The network coverage is a big problem in ocean communication, and there is no low-cost solution in the short term. Based on the knowledge of Mobile Delay Tolerant Network (MDTN), the mobility of vessels can create the chances of end-to-end communication. The mobility pattern of vessel is one of the key metrics on ocean MDTN network. Because of the high cost, few experiments have focused on research of vessel mobility pattern for the moment. In this paper, we study the traces of more than 4000 fishing and freight vessels. Firstly, to solve the data noise and sparsity problem, we design two algorithms to filter the noise and complement the missing data based on the vessel's turning feature. Secondly, after studying the traces of vessels, we observe that the vessel's traces are confined by invisible boundary. Thirdly, through defining the distance between traces, we design MR-Similarity algorithm to find the mobility pattern of vessels. Finally, we realize our algorithm on cluster and evaluate the performance and accuracy. Our results can provide the guidelines on design of data routing protocols on ocean MDTN.

  19. Impact of Acute Changes in CPAP Flow Route in Sleep Apnea Treatment.

    PubMed

    Andrade, Rafaela G S; Madeiro, Fernanda; Piccin, Vivien S; Moriya, Henrique T; Schorr, Fabiola; Sardinha, Priscila S; Gregório, Marcelo G; Genta, Pedro R; Lorenzi-Filho, Geraldo

    2016-12-01

    CPAP is the gold standard treatment for OSA and was conceived to be applied through a nasal interface. This study was designed to determine the acute effects of changing the nasal CPAP route to oronasal and oral in upper airway patency during sleep in patients with OSA. We hypothesized that the oronasal route may compromise CPAP's effectiveness in treating OSA. Eighteen patients (mean ± SD age, 44 ± 9 years; BMI, 33.8 ± 4.7 kg/m 2 ; apnea-hypopnea index, 49.0 ± 39.1 events/hour) slept with a customized oronasal mask with nasal and oral sealed compartments connected to a multidirectional valve. Sleep was monitored by using full polysomnography and induced by low doses of midazolam. Nasal CPAP was titrated up to holding pressure. Flow route was acutely changed to the oronasal (n = 18) and oral route (n = 16) during sleep. Retroglossal area was continuously observed by using nasoendoscopy. Nasal CPAP (14.8 ± 4.1 cm H 2 O) was able to stabilize breathing in all patients. In contrast, CPAP delivered by the oronasal and oral routes promoted obstructive events in 12 (66.7%) and 14 (87.5%) patients, respectively. Compared with stable breathing during the nasal route, there was a significant and progressive reduction in the distance between the epiglottis and tongue base and the retroglossal area when CPAP was delivered by the oronasal and oral routes. CPAP delivered through the oronasal route may compromise CPAP's effectiveness in treating OSA. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  20. The Adversarial Route Analysis Tool: A Web Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casson, William H. Jr.

    2012-08-02

    The Adversarial Route Analysis Tool is a type of Google maps for adversaries. It's a web-based Geospatial application similar to Google Maps. It helps the U.S. government plan operations that predict where an adversary might be. It's easily accessible and maintainble and it's simple to use without much training.