Sample records for quality critical flows

  1. Natural gas flow through critical nozzles

    NASA Technical Reports Server (NTRS)

    Johnson, R. C.

    1969-01-01

    Empirical method for calculating both the mass flow rate and upstream volume flow rate through critical flow nozzles is determined. Method requires knowledge of the composition of natural gas, and of the upstream pressure and temperature.

  2. Critical capillary channel flow

    NASA Astrophysics Data System (ADS)

    Grah, Aleksander; Klatte, Jörg; Dreyer, Michael E.

    The main subject are numerical studies on capillary channel flow, based on results of the sounding rocket experiments TEXUS 41/42. The flow through a capillary channel is established by a gear pump at the outlet. The channel, consists of two parallel glass plates with a width of 25 mm, a gap of 10 mm and a length of 12 mm. The meniscus of a compensation tube maintains a constant system pressure. Steady and dynamic pressure effects in the system force the surfaces to bend inwards. A maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the channel geometry, the flow regime and the liquid properties. The aim of the experiments is the determination of the free surface shape and to find the maximum flow rate. In order to study the unsteady liquid loop behaviour, a dimensionless transient model was developed. It is based on the unsteady Bernoulli equation, the unsteady continuity equation and geometrical conditions for the surface curvature and the flow cross-section. The pressure is related to the curvature of the free liquid surface by the dimensionless Gauss-Laplace equation with two principal radii. The experimental and evaluated contour data shows good agreement for a sequence of transient flow rate perturbations. The surface oscillation frequencies and amplitudes can be predicted with quite high accuracy. The dynamic of the pump is defined by the increase of the flow rate in a time period. To study the unsteady system behavior in the "worst case", we use a perturbations related to the natural frequency of the oscillating liquid. In the case of steady flow at maximum flow rate, when the "choking" effect occurs, the surfaces collapse and cause gas ingestion into the channel. This effect is related to the Speed Index. At the critical flow rate the Speed Index reaches the value Sca = 1, in analogy to the Mach Number. Unsteady choking does not necessarily cause surface collapse. We show

  3. Critical heat flux in subcooled flow boiling

    NASA Astrophysics Data System (ADS)

    Hall, David Douglas

    The critical heat flux (CHF) phenomenon was investigated for water flow in tubes with particular emphasis on the development of methods for predicting CHF in the subcooled flow boiling regime. The Purdue University Boiling and Two-Phase Flow Laboratory (PU-BTPFL) CHF database for water flow in a uniformly heated tube was compiled from the world literature dating back to 1949 and represents the largest CHF database ever assembled with 32,544 data points from over 100 sources. The superiority of this database was proven via a detailed examination of previous databases. The PU-BTPFL CHF database is an invaluable tool for the development of CHF correlations and mechanistic models that are superior to existing ones developed with smaller, less comprehensive CHF databases. In response to the many inaccurate and inordinately complex correlations, two nondimensional, subcooled CHF correlations were formulated, containing only five adjustable constants and whose unique functional forms were determined without using a statistical analysis but rather using the parametric trends observed in less than 10% of the subcooled CHF data. The correlation based on inlet conditions (diameter, heated length, mass velocity, pressure, inlet quality) was by far the most accurate of all known subcooled CHF correlations, having mean absolute and root-mean-square (RMS) errors of 10.3% and 14.3%, respectively. The outlet (local) conditions correlation was the most accurate correlation based on local CHF conditions (diameter, mass velocity, pressure, outlet quality) and may be used with a nonuniform axial heat flux. Both correlations proved more accurate than a recent CHF look-up table commonly employed in nuclear reactor thermal hydraulic computer codes. An interfacial lift-off, subcooled CHF model was developed from a consideration of the instability of the vapor-liquid interface and the fraction of heat required for liquid-vapor conversion as opposed to that for bulk liquid heating. Severe

  4. Flow topology of rare back flow events and critical points in turbulent channels and toroidal pipes

    NASA Astrophysics Data System (ADS)

    Chin, C.; Vinuesa, R.; Örlü, R.; Cardesa, J. I.; Noorani, A.; Schlatter, P.; Chong, M. S.

    2018-04-01

    A study of the back flow events and critical points in the flow through a toroidal pipe at friction Reynolds number Re τ ≈ 650 is performed and compared with the results in a turbulent channel flow at Re τ ≈ 934. The statistics and topological properties of the back flow events are analysed and discussed. Conditionally-averaged flow fields in the vicinity of the back flow event are obtained, and the results for the torus show a similar streamwise wall-shear stress topology which varies considerably for the spanwise wall-shear stress when compared to the channel flow. The comparison between the toroidal pipe and channel flows also shows fewer back flow events and critical points in the torus. This cannot be solely attributed to differences in Reynolds number, but is a clear effect of the secondary flow present in the toroidal pipe. A possible mechanism is the effect of the secondary flow present in the torus, which convects momentum from the inner to the outer bend through the core of the pipe, and back from the outer to the inner bend through the pipe walls. In the region around the critical points, the skin-friction streamlines and vorticity lines exhibit similar flow characteristics with a node and saddle pair for both flows. These results indicate that back flow events and critical points are genuine features of wall-bounded turbulence, and are not artifacts of specific boundary or inflow conditions in simulations and/or measurement uncertainties in experiments.

  5. Change regularity of water quality parameters in leakage flow conditions and their relationship with iron release.

    PubMed

    Liu, Jingqing; Shentu, Huabin; Chen, Huanyu; Ye, Ping; Xu, Bing; Zhang, Yifu; Bastani, Hamid; Peng, Hongxi; Chen, Lei; Zhang, Tuqiao

    2017-11-01

    The long-term stagnation in metal water supply pipes, usually caused by intermittent consumption patterns, will cause significant iron release and water quality deterioration, especially at the terminus of pipelines. Another common phenomenon at the terminus of pipelines is leakage, which is considered helpful by allowing seepage of low-quality drinking water resulting from long-term stagnation. In this study, the effect of laminar flow on alleviating water quality deterioration under different leakage conditions was investigated, and the potential thresholds of the flow rate, which can affect the iron release process, were discussed. Based on a galvanized pipe and ductile cast iron pipe pilot platform, which was established at the terminus of pipelines, this research was carried out by setting a series of leakage rate gradients to analyze the influence of different leakage flow rates on iron release, as well as the relationship with chemical and biological parameters. The results showed that the water quality parameters were obviously influenced by the change in flow velocity. Water quality was gradually improved with an increase in flow velocity, but its change regularity reflected a diversity under different flow rates (p < 0.05). The iron release was remarkably correlated to the redox potential, dissolved oxygen, pH, iron-oxidized bacteria and sulfate-reducing bacteria. The cumulative total iron release (r = 0.587, p < 0.05) and total iron release rate (r = 0.71, p < 0.022) were significantly influenced by the changes in flow velocity. In short, they tended first to increase and then to decrease with an increasing flow velocity with the threshold as approximately 40% of the critical laminar flow velocity (1.16 × 10 -3  m/s). For the pipes at the terminus of the drinking water distribution system, when the bulk water was at the critical laminar flow velocity, the concentration of total iron, the quantity and rate of total iron release remain

  6. Siphon flows in isolated magnetic flux tubes. IV - Critical flows with standing tube shocks

    NASA Technical Reports Server (NTRS)

    Thomas, John H.; Montesinos, Benjamin

    1991-01-01

    Critical siphon flows in arched, isolated magnetic flux tubes are studied within the thin flux tube approximation, with a view toward applications to intense magnetic flux concentrations in the solar photosphere. The results of calculations of the strength and position of the standing tube shock in the supercritical downstream branch of a critical siphon flow are presented, as are calculations of the flow variables all along the flux tube and the equilibrium path of the flux tube in the surrounding atmosphere. It is suggested that arched magnetic flux tubes, with magnetic field strength increased by a siphon flow, may be associated with some of the intense, discrete magnetic elements observed in the solar photosphere.

  7. Dryout-type critical heat flux in vertical upward annular flow: effects of entrainment rate, initial entrained fraction and diameter

    NASA Astrophysics Data System (ADS)

    Wu, Zan; Wadekar, Vishwas; Wang, Chenglong; Sunden, Bengt

    2018-01-01

    This study aims to reveal the effects of liquid entrainment, initial entrained fraction and tube diameter on liquid film dryout in vertical upward annular flow for flow boiling. Entrainment and deposition rates of droplets were included in mass conservation equations to estimate the local liquid film mass flux in annular flow, and the critical vapor quality at dryout conditions. Different entrainment rate correlations were evaluated using flow boiling data of water and organic liquids including n-pentane, iso-octane and R134a. Effect of the initial entrained fraction (IEF) at the churn-to-annular flow transition was also investigated. A transitional Boiling number was proposed to separate the IEF-sensitive region at high Boiling numbers and the IEF-insensitive region at low Boiling numbers. Besides, the diameter effect on dryout vapor quality was studied. The dryout vapor quality increases with decreasing tube diameter. It needs to be pointed out that the dryout characteristics of submillimeter channels might be different because of different mechanisms of dryout, i.e., drying of liquid film underneath long vapor slugs and flow boiling instabilities.

  8. Choked flow of fluid nitrogen with emphasis on the thermodynamic critical region

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.; Ehlers, R. C.

    1972-01-01

    Experimental measurements of critical flow rate and pressure ratio for nitrogen flowing through a nozzle are presented. Data for selected stagnation isotherms from 87.5 to 234 K with pressures to 9.3 MN/m2 are compared to an equilibrium model with real fluid properties and also a nonequilibrium model. Critical flow pressure ratio along an isotherm tends to peak while the flow rate indicates an inflection. The point is closely associated with the transposed critical temperature and represents a change in the fluid structure.

  9. Flow and criticality in the open cycle gas core.

    NASA Technical Reports Server (NTRS)

    Kunze, J. F.; Lofthouse, J. H.

    1971-01-01

    A series of flowing gas experiments using air, argon, and freon has been conducted in Idaho. The purpose is to study methods of obtaining flow patterns which would create maximum possible system reactivity consistent with an acceptably low uranium to coolant-gas loss ratio. These have been conducted on both ?two-dimensional' and truly three-dimensional spherical configurations of diameters 18 to 42 inches. The larger diameter is that proposed for a minimum cost flowing gas critical experiment, and the size extremes make extrapolations to the large 6 and 8 foot diameter configurations more reliable. Results show that large enough inner gas (fuel) volume fractions can be achieved to attain criticality.

  10. Experimental investigation on flow patterns of RP-3 kerosene under sub-critical and supercritical pressures

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Zhou, Jin; Pan, Yu; Wang, Hui

    2014-02-01

    Active cooling with endothermic hydrocarbon fuel is proved to be one of the most promising approaches to solve the thermal problem for hypersonic aircraft such as scramjet. The flow patterns of two-phase flow inside the cooling channels have a great influence on the heat transfer characteristics. In this study, phase transition processes of RP-3 kerosene flowing inside a square quartz-glass tube were experimentally investigated. Three distinct phase transition phenomena (liquid-gas two phase flow under sub-critical pressures, critical opalescence under critical pressure, and corrugation under supercritical pressures) were identified. The conventional flow patterns of liquid-gas two phase flow, namely bubble flow, slug flow, churn flow and annular flow are observed under sub-critical pressures. Dense bubble flow and dispersed flow are recognized when pressure is increased towards the critical pressure whilst slug flow, churn flow and annular flow disappear. Under critical pressure, the opalescence phenomenon is observed. Under supercritical pressures, no conventional phase transition characteristics, such as bubbles are observed. But some kind of corrugation appears when RP-3 transfers from liquid to supercritical. The refraction index variation caused by sharp density gradient near the critical temperature is thought to be responsible for this corrugation.

  11. Critical phenomenon of granular flow on a conveyor belt.

    PubMed

    De-Song, Bao; Xun-Sheng, Zhang; Guang-Lei, Xu; Zheng-Quan, Pan; Xiao-Wei, Tang; Kun-Quan, Lu

    2003-06-01

    The relationship between the granular wafer movement on a two-dimensional conveyor belt and the size of the exit together with the velocity of the conveyor belt has been studied in the experiment. The result shows that there is a critical speed v(c) for the granular flow when the exit width d is fixed (where d=R/D, D being the diameter of a granular wafers). When vflow rate Q=rho(v)R. The turning point of the Q-v curve occurs at the speed v(c). The critical speed v(c) is dependent on the exit width d. When v>v(c), the flow rate Q is described as Q=Crho(v)(beta)(d-k)(3/2). These are the effects of the interaction among the granular wafers and the change of the states of the granular flow due to the changing of the speed or the exit width d.

  12. Entropy Flow Through Near-Critical Quantum Junctions

    NASA Astrophysics Data System (ADS)

    Friedan, Daniel

    2017-05-01

    This is the continuation of Friedan (J Stat Phys, 2017. doi: 10.1007/s10955-017-1752-8). Elementary formulas are derived for the flow of entropy through a circuit junction in a near-critical quantum circuit close to equilibrium, based on the structure of the energy-momentum tensor at the junction. The entropic admittance of a near-critical junction in a bulk-critical circuit is expressed in terms of commutators of the chiral entropy currents. The entropic admittance at low frequency, divided by the frequency, gives the change of the junction entropy with temperature—the entropic "capacitance". As an example, and as a check on the formalism, the entropic admittance is calculated explicitly for junctions in bulk-critical quantum Ising circuits (free fermions, massless in the bulk), in terms of the reflection matrix of the junction. The half-bit of information capacity per end of critical Ising wire is re-derived by integrating the entropic "capacitance" with respect to temperature, from T=0 to T=∞.

  13. Thermal relaxation and critical instability of near-critical fluid microchannel flow.

    PubMed

    Chen, Lin; Zhang, Xin-Rong; Okajima, Junnosuke; Maruyama, Shigenao

    2013-04-01

    We present two-dimensional numerical investigations of the temperature and velocity evolution of a pure near-critical fluid confined in microchannels. The fluid is subjected to two sides heating after it reached isothermal steady state. We focus on the abnormal behaviors of the near-critical fluid in response to the sudden imposed heat flux. New thermal-mechanical effects dominated by fluid instability originating from the boundary and local equilibrium process are reported. Near the microchannel boundaries, the instability grows very quickly and an unexpected vortex formation mode is identified when near-critical thermal-mechanical effect is interacting with the microchannel shear flow. The mechanism of the new kind of Kelvin-Helmholtz instability induced by boundary expansion and density stratification processes is also discussed in detail. This mechanism may bring about innovations in the field of microengineering.

  14. Thermal relaxation and critical instability of near-critical fluid microchannel flow

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Zhang, Xin-Rong; Okajima, Junnosuke; Maruyama, Shigenao

    2013-04-01

    We present two-dimensional numerical investigations of the temperature and velocity evolution of a pure near-critical fluid confined in microchannels. The fluid is subjected to two sides heating after it reached isothermal steady state. We focus on the abnormal behaviors of the near-critical fluid in response to the sudden imposed heat flux. New thermal-mechanical effects dominated by fluid instability originating from the boundary and local equilibrium process are reported. Near the microchannel boundaries, the instability grows very quickly and an unexpected vortex formation mode is identified when near-critical thermal-mechanical effect is interacting with the microchannel shear flow. The mechanism of the new kind of Kelvin-Helmholtz instability induced by boundary expansion and density stratification processes is also discussed in detail. This mechanism may bring about innovations in the field of microengineering.

  15. Effect of thermodynamic disequilibrium on critical liquid-vapor flow conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilicki, Z.; Kestin, J.

    1989-01-01

    In this lecture we characterize the effect of absence of unconstrained thermodynamic equilibrium and onset of a metastable state on the adiabatic flow of a mixture of liquid and its vapor through a convergent-divergent nozzle. We study steady-state flows and emphasize the relations that are present when the flow is choked. In such cases, there exists a cross-section in which the flow is critical and in which the adiabatic wave of small amplitude is stationary. More precisely, the relaxation process which results from the lack of equilibrium causes the system to be dispersive. In such circumstances, the critical velocity ismore » equal to the frozen speed of sound, a/sub f/ corresponding to /omega/ /yields/ /infinity/. The relaxation process displaces the critical cross-section quite far downstream from the throat and places it in the divergent portion of the channel. We present the topological portrait of solutions in a suitably defined state-velocity space and discuss the potential appearance of normal and dispersed shock waves. In extreme cases, the singular point (usually a saddle) which enables the flow to become supercritical is displaced so far that it is located outside the exit. Then, the flow velocity is everywhere subcritical (w < a/sub f/) even though it may exceed the equilibrium speed of sound (w /approx gt/ a/sub e/) beyond a certain cross-section, and in spite of the presence of a throat. 10 refs., 4 figs.« less

  16. An environmental scan of quality indicators in critical care.

    PubMed

    Valiani, Sabira; Rigal, Romain; Stelfox, Henry T; Muscedere, John; Martin, Claudio M; Dodek, Peter; Lamontagne, François; Fowler, Robert; Gheshmy, Afshan; Cook, Deborah J; Forster, Alan J; Hébert, Paul C

    2017-06-21

    We performed a directed environmental scan to identify and categorize quality indicators unique to critical care that are reported by key stakeholder organizations. We convened a panel of experts ( n = 9) to identify key organizations that are focused on quality improvement or critical care, and reviewed their online publications and website content for quality indicators. We identified quality indicators specific to the care of critically ill adult patients and then categorized them according to the Donabedian and the Institute of Medicine frameworks. We also noted the organizations' rationale for selecting these indicators and their reported evidence base. From 28 targeted organizations, we identified 222 quality indicators, 127 of which were unique. Of the 127 indicators, 63 (32.5%) were safety indicators and 61 (31.4%) were effectiveness indicators. The rationale for selecting quality indicators was supported by consensus for 58 (26.1%) of the 222 indicators and by published research evidence for 45 (20.3%); for 119 indicators (53.6%), the rationale was not reported or the reader was referred to other organizations' reports. Of the 127 unique quality indicators, 27 (21.2%) were accompanied by a formal grading of evidence, whereas for 52 (40.9%), no reference to evidence was provided. There are many quality indicators related to critical care that are available in the public domain. However, owing to a paucity of rationale for selection, supporting evidence and results of implementation, it is not clear which indicators should be adopted for use. Copyright 2017, Joule Inc. or its licensors.

  17. An environmental scan of quality indicators in critical care

    PubMed Central

    Valiani, Sabira; Rigal, Romain; Stelfox, Henry T.; Muscedere, John; Martin, Claudio M.; Dodek, Peter; Lamontagne, François; Fowler, Robert; Gheshmy, Afshan; Cook, Deborah J.; Forster, Alan J.; Hébert, Paul C.

    2017-01-01

    Background: We performed a directed environmental scan to identify and categorize quality indicators unique to critical care that are reported by key stakeholder organizations. Methods: We convened a panel of experts (n = 9) to identify key organizations that are focused on quality improvement or critical care, and reviewed their online publications and website content for quality indicators. We identified quality indicators specific to the care of critically ill adult patients and then categorized them according to the Donabedian and the Institute of Medicine frameworks. We also noted the organizations' rationale for selecting these indicators and their reported evidence base. Results: From 28 targeted organizations, we identified 222 quality indicators, 127 of which were unique. Of the 127 indicators, 63 (32.5%) were safety indicators and 61 (31.4%) were effectiveness indicators. The rationale for selecting quality indicators was supported by consensus for 58 (26.1%) of the 222 indicators and by published research evidence for 45 (20.3%); for 119 indicators (53.6%), the rationale was not reported or the reader was referred to other organizations' reports. Of the 127 unique quality indicators, 27 (21.2%) were accompanied by a formal grading of evidence, whereas for 52 (40.9%), no reference to evidence was provided. Interpretation: There are many quality indicators related to critical care that are available in the public domain. However, owing to a paucity of rationale for selection, supporting evidence and results of implementation, it is not clear which indicators should be adopted for use. PMID:28637683

  18. Reappraisal of criticality for two-layer flows and its role in the generation of internal solitary waves

    NASA Astrophysics Data System (ADS)

    Bridges, Thomas J.; Donaldson, Neil M.

    2007-07-01

    A geometric view of criticality for two-layer flows is presented. Uniform flows are classified by diagrams in the momentum-massflux space for fixed Bernoulli energy, and cuspoidal curves on these diagrams correspond to critical uniform flows. Restriction of these surfaces to critical flow leads to new subsurfaces in energy-massflux space. While the connection between criticality and the generation of solitary waves is well known, we find that the nonlinear properties of these bifurcating solitary waves are also determined by the properties of the criticality surfaces. To be specific, the case of two layers with a rigid lid is considered, and application of the theory to other multilayer flows is sketched.

  19. The application of intraoperative transit time flow measurement to accurately assess anastomotic quality in sequential vein grafting

    PubMed Central

    Yu, Yang; Zhang, Fan; Gao, Ming-Xin; Li, Hai-Tao; Li, Jing-Xing; Song, Wei; Huang, Xin-Sheng; Gu, Cheng-Xiong

    2013-01-01

    OBJECTIVES Intraoperative transit time flow measurement (TTFM) is widely used to assess anastomotic quality in coronary artery bypass grafting (CABG). However, in sequential vein grafting, the flow characteristics collected by the conventional TTFM method are usually associated with total graft flow and might not accurately indicate the quality of every distal anastomosis in a sequential graft. The purpose of our study was to examine a new TTFM method that could assess the quality of each distal anastomosis in a sequential graft more reliably than the conventional TTFM approach. METHODS Two TTFM methods were tested in 84 patients who underwent sequential saphenous off-pump CABG in Beijing An Zhen Hospital between April and August 2012. In the conventional TTFM method, normal blood flow in the sequential graft was maintained during the measurement, and the flow probe was placed a few centimetres above the anastomosis to be evaluated. In the new method, blood flow in the sequential graft was temporarily reduced during the measurement by placing an atraumatic bulldog clamp at the graft a few centimetres distal to the anastomosis to be evaluated, while the position of the flow probe remained the same as in the conventional method. This new TTFM method was named the flow reduction TTFM. Graft flow parameters measured by both methods were compared. RESULTS Compared with the conventional TTFM, the flow reduction TTFM resulted in significantly lower mean graft blood flow (P < 0.05); in contrast, yielded significantly higher pulsatility index (P < 0.05). Diastolic filling was not significantly different between the two methods and was >50% in both cases. Interestingly, the flow reduction TTFM identified two defective middle distal anastomoses that the conventional TTFM failed to detect. Graft flows near the defective distal anastomoses were improved substantially after revision. CONCLUSIONS In this study, we found that temporary reduction of graft flow during TTFM seemed to

  20. Flow regimes and mechanistic modeling of critical heat flux under subcooled flow boiling conditions

    NASA Astrophysics Data System (ADS)

    Le Corre, Jean-Marie

    Thermal performance of heat flux controlled boiling heat exchangers are usually limited by the Critical Heat Flux (CHF) above which the heat transfer degrades quickly, possibly leading to heater overheating and destruction. In an effort to better understand the phenomena, a literature review of CHF experimental visualizations under subcooled flow boiling conditions was performed and systematically analyzed. Three major types of CHF flow regimes were identified (bubbly, vapor clot and slug flow regime) and a CHF flow regime map was developed, based on a dimensional analysis of the phenomena and available data. It was found that for similar geometric characteristics and pressure, a Weber number (We)/thermodynamic quality (x) map can be used to predict the CHF flow regime. Based on the experimental observations and the review of the available CHF mechanistic models under subcooled flow boiling conditions, hypothetical CHF mechanisms were selected for each CHF flow regime, all based on a concept of wall dry spot overheating, rewetting prevention and subsequent dry spot spreading. It is postulated that a high local wall superheat occurs locally in a dry area of the heated wall, due to a cyclical event inherent to the considered CHF two-phase flow regime, preventing rewetting (Leidenfrost effect). The selected modeling concept has the potential to span the CHF conditions from highly subcooled bubbly flow to early stage of annular flow. A numerical model using a two-dimensional transient thermal analysis of the heater undergoing nucleation was developed to mechanistically predict CHF in the case of a bubbly flow regime. In this type of CHF two-phase flow regime, the high local wall superheat occurs underneath a nucleating bubble at the time of bubble departure. The model simulates the spatial and temporal heater temperature variations during nucleation at the wall, accounting for the stochastic nature of the boiling phenomena. The model has also the potential to evaluate

  1. Critical and supercritical flows in two unstable, mountain rivers, Toutle river system, Washington

    USGS Publications Warehouse

    Simon, Andrew; Hardison, J. H.

    1994-01-01

    Critical and supercritical flows are generally considered to be rare occurrences in natural river channels. This paper presents data and results pertaining to the existence of measured critical and supercritical flows at gaging stations on the North Fork Toutle River (NFT) and Toutle River main stem (TR). The data set includes 930 discharge measurements made by the staff of the U.S. Geological Survey, Cascades Volcano Observatory, between 1980 and 1989.

  2. Velocity and temperature profiles in near-critical nitrogen flowing past a horizontal flat plate

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1977-01-01

    Boundary layer velocity and temperature profiles were measured for nitrogen near its thermodynamic critical point flowing past a horizontal flat plate. The results were compared measurements made for vertically upward flow. The boundary layer temperatures ranged from below to above the thermodynamic critical temperature. For wall temperatures below the thermodynamic critical temperature there was little variation between the velocity and temperature profiles in three orientations. In all three orientations the point of crossing into the critical temperature region is marked by a significant flattening of the velocity and temperature profiles and also a decrease in heat transfer coefficient.

  3. Sap flow sensors: construction, quality control and comparison.

    PubMed

    Davis, Tyler W; Kuo, Chen-Min; Liang, Xu; Yu, Pao-Shan

    2012-01-01

    This work provides a design for two types of sensors, based on the thermal dissipation and heat ratio methods of sap flow calculation, for moderate to large scale deployments for the purpose of monitoring tree transpiration. These designs include a procedure for making these sensors, a quality control method for the final products, and a complete list of components with vendors and pricing information. Both sensor designs were field tested alongside a commercial sap flow sensor to assess their performance and show the importance for quality controlling the sensor outputs. Results show that for roughly 2% of the cost of commercial sensors, self-made sap flow sensors can provide acceptable estimates of the sap flow measurements compared to the commercial sensors.

  4. Apparatus and method for acoustic monitoring of steam quality and flow

    DOEpatents

    Sinha, Dipen N.; Pantea, Cristian

    2016-09-13

    An apparatus and method for noninvasively monitoring steam quality and flow and in pipes or conduits bearing flowing steam, are described. By measuring the acoustic vibrations generated in steam-carrying conduits by the flowing steam either by direct contact with the pipe or remotely thereto, converting the measured acoustic vibrations into a frequency spectrum characteristic of the natural resonance vibrations of the pipe, and monitoring the amplitude and/or the frequency of one or more chosen resonance frequencies, changes in the steam quality in the pipe are determined. The steam flow rate and the steam quality are inversely related, and changes in the steam flow rate are calculated from changes in the steam quality once suitable calibration curves are obtained.

  5. The influence of different diffusion pattern to the sub- and super-critical fluid flow in brown coal

    NASA Astrophysics Data System (ADS)

    Peng, Peihuo

    2018-03-01

    Sub- and super-critical CO2 flowing in nanoscale pores are recently becoming of great interest due to that it is closely related to many engineering applications, such as geological burial and sequestration of carbon dioxide, Enhanced Coal Bed Methane recovery ( ECBM), super-critical CO2 fracturing and so on. Gas flow in nanopores cannot be described simply by the Darcy equation. Different diffusion pattern such as Fick diffusion, Knudsen diffusion, transitional diffusion and slip flow at the solid matrix separate the seepage behaviour from Darcy-type flow. According to the principle of different diffusion pattern, the flow of sub- and super-critical CO2 in brown coal was simulated by numerical method, and the results were compared with the experimental results to explore the contribution of different diffusion pattern and swelling effect in sub- and super-critical CO2 flow in nanoscale pores.

  6. HIGH-SHEAR GRANULATION PROCESS: INFLUENCE OF PROCESSING PARAMETERS ON CRITICAL QUALITY ATTRIBUTES OF ACETAMINOPHEN GRANULES AND TABLETS USING DESIGN OF EXPERIMENT APPROACH.

    PubMed

    Fayed, Mohamed H; Abdel-Rahman, Sayed I; Alanazi, Fars K; Ahmed, Mahrous O; Tawfeek, Hesham M; Al-Shedfat, Ramadan I

    2017-01-01

    Application of quality by design (QbD) in high shear granulation process is critical and need to recognize the correlation between the granulation process parameters and the properties of intermediate (granules) and corresponding final product (tablets). The present work examined the influence of water amount (X,) and wet massing time (X2) as independent process variables on the critical quality attributes of granules and corresponding tablets using design of experiment (DoE) technique. A two factor, three level (32) full factorial design was performed; each of these variables was investigated at three levels to characterize their strength and interaction. The dried granules have been analyzed for their size distribution, density and flow pattern. Additionally, the produced tablets have been investigated for weight uniformity, crushing strength, friability and percent capping, disintegration time and drug dissolution. Statistically significant impact (p < 0.05) of water amount was identified for granule growth, percent fines and distribution width and flow behavior. Granule density and compressibility were found to be significantly influenced (p < 0.05) by the two operating conditions. Also, water amount has significant effect (p < 0.05) on tablet weight unifornity, friability and percent capping. Moreover, tablet disintegration time and drug dissolution appears to be significantly influenced (p < 0.05) by the two process variables. On the other hand, the relationship of process parameters with critical quality attributes of granule and final product tablet was identified and correlated. Ultimately, a judicious selection of process parameters in high shear granulation process will allow providing product of desirable quality.

  7. Parametric analyses of planned flowing uranium hexafluoride critical experiments

    NASA Technical Reports Server (NTRS)

    Rodgers, R. J.; Latham, T. S.

    1976-01-01

    Analytical investigations were conducted to determine preliminary design and operating characteristics of flowing uranium hexafluoride (UF6) gaseous nuclear reactor experiments in which a hybrid core configuration comprised of UF6 gas and a region of solid fuel will be employed. The investigations are part of a planned program to perform a series of experiments of increasing performance, culminating in an approximately 5 MW fissioning uranium plasma experiment. A preliminary design is described for an argon buffer gas confined, UF6 flow loop system for future use in flowing critical experiments. Initial calculations to estimate the operating characteristics of the gaseous fissioning UF6 in a confined flow test at a pressure of 4 atm, indicate temperature increases of approximately 100 and 1000 K in the UF6 may be obtained for total test power levels of 100 kW and 1 MW for test times of 320 and 32 sec, respectively.

  8. A critical care network pressure ulcer prevention quality improvement project.

    PubMed

    McBride, Joanna; Richardson, Annette

    2015-03-30

    Pressure ulcer prevention is an important safety issue, often underrated and an extremely painful event harming patients. Critically ill patients are one of the highest risk groups in hospital. The impact of pressure ulcers are wide ranging, and they can result in increased critical care and the hospital length of stay, significant interference with functional recovery and rehabilitation and increase cost. This quality improvement project had four aims: (1) to establish a critical care network pressure ulcer prevention group; (2) to establish baseline pressure ulcer prevention practices; (3) to measure, compare and monitor pressure ulcers prevalence; (4) to develop network pressure ulcer prevention standards. The approach used to improve quality included strong critical care nursing leadership to develop a cross-organisational pressure ulcer prevention group and a benchmarking exercise of current practices across a well-established critical care Network in the North of England. The National Safety Thermometer tool was used to measure pressure ulcer prevalence in 23 critical care units, and best available evidence, local consensus and another Critical Care Networks' bundle of interventions were used to develop a local pressure ulcer prevention standards document. The aims of the quality improvement project were achieved. This project was driven by successful leadership and had an agreed common goal. The National Safety Thermometer tool was an innovative approach to measure and compare pressure ulcer prevalence rates at a regional level. A limitation was the exclusion of moisture lesions. The project showed excellent engagement and collaborate working in the quest to prevent pressure ulcers from many critical care nurses with the North of England Critical Care Network. A concise set of Network standards was developed for use in conjunction with local guidelines to enhance pressure ulcer prevention. © 2015 British Association of Critical Care Nurses.

  9. A Structured-Grid Quality Measure for Simulated Hypersonic Flows

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    2004-01-01

    A structured-grid quality measure is proposed, combining three traditional measurements: intersection angles, stretching, and curvature. Quality assesses whether the grid generated provides the best possible tradeoffs in grid stretching and skewness that enable accurate flow predictions, whereas the grid density is assumed to be a constraint imposed by the available computational resources and the desired resolution of the flow field. The usefulness of this quality measure is assessed by comparing heat transfer predictions from grid convergence studies for grids of varying quality in the range of [0.6-0.8] on an 8'half-angle sphere-cone, at laminar, perfect gas, Mach 10 wind tunnel conditions.

  10. Flux-flow critical-state susceptibility of superconductors

    NASA Astrophysics Data System (ADS)

    Chen, D.-X.; Pardo, E.; Sanchez, A.

    2005-06-01

    The field-amplitude Hm and circular frequency ω dependent ac susceptibility, χ =χ'-jχ″, of a hard superconducting cylinder with flux-flow type current-voltage characteristic is calculated. A remarkable feature of the resultant χ(Hm,ω ) is that both the maximum χ″, χm″, and dlgHm(χm″)/dlgω increase with increasing ω. This behavior is observed in actual Bi-2223/Ag tapes and YBa2Cu3O7-δ-coated conductors. Our result provides a useful tool to study the intergranular critical state in high-temperature superconductors.

  11. Improving critical care discharge summaries: a collaborative quality improvement project using PDSA

    PubMed Central

    Goulding, Lucy; Parke, Hannah; Maharaj, Ritesh; Loveridge, Robert; McLoone, Anne; Hadfield, Sophie; Helme, Eloise; Hopkins, Philip; Sandall, Jane

    2015-01-01

    Around 110,000 people spend time in critical care units in England and Wales each year. The transition of care from the intensive care unit to the general ward exposes patients to potential harms from changes in healthcare providers and environment. Nurses working on general wards report anxiety and uncertainty when receiving patients from critical care. An innovative form of enhanced capability critical care outreach called ‘iMobile’ is being provided at King's College Hospital (KCH). Part of the remit of iMobile is to review patients who have been transferred from critical care to general wards. The iMobile team wished to improve the quality of critical care discharge summaries. A collaborative evidence-based quality improvement project was therefore undertaken by the iMobile team at KCH in conjunction with researchers from King's Improvement Science (KIS). Plan, Do, Study, Act (PDSA) methodology was used. Three PDSA cycles were undertaken. Methods adopted comprised: a scoping literature review to identify relevant guidelines and research evidence to inform all aspects of the quality improvement project; a process mapping exercise; informal focus groups / interviews with staff; patient story-telling work with people who had experienced critical care and subsequent discharge to a general ward; and regular audits of the quality of both medical and nursing critical care discharge summaries. The following behaviour change interventions were adopted, taking into account evidence of effectiveness from published systematic reviews and considering the local context: regular audit and feedback of the quality of discharge summaries, feedback of patient experience, and championing and education delivered by local opinion leaders. The audit results were mixed across the trajectory of the project, demonstrating the difficulty of sustaining positive change. This was particularly important as critical care bed occupancy and through-put fluctuates which then impacts on work

  12. An Optical Flow-Based Full Reference Video Quality Assessment Algorithm.

    PubMed

    K, Manasa; Channappayya, Sumohana S

    2016-06-01

    We present a simple yet effective optical flow-based full-reference video quality assessment (FR-VQA) algorithm for assessing the perceptual quality of natural videos. Our algorithm is based on the premise that local optical flow statistics are affected by distortions and the deviation from pristine flow statistics is proportional to the amount of distortion. We characterize the local flow statistics using the mean, the standard deviation, the coefficient of variation (CV), and the minimum eigenvalue ( λ min ) of the local flow patches. Temporal distortion is estimated as the change in the CV of the distorted flow with respect to the reference flow, and the correlation between λ min of the reference and of the distorted patches. We rely on the robust multi-scale structural similarity index for spatial quality estimation. The computed temporal and spatial distortions, thus, are then pooled using a perceptually motivated heuristic to generate a spatio-temporal quality score. The proposed method is shown to be competitive with the state-of-the-art when evaluated on the LIVE SD database, the EPFL Polimi SD database, and the LIVE Mobile HD database. The distortions considered in these databases include those due to compression, packet-loss, wireless channel errors, and rate-adaptation. Our algorithm is flexible enough to allow for any robust FR spatial distortion metric for spatial distortion estimation. In addition, the proposed method is not only parameter-free but also independent of the choice of the optical flow algorithm. Finally, we show that the replacement of the optical flow vectors in our proposed method with the much coarser block motion vectors also results in an acceptable FR-VQA algorithm. Our algorithm is called the flow similarity index.

  13. Leading-edge flow criticality as a governing factor in leading-edge vortex initiation in unsteady airfoil flows

    NASA Astrophysics Data System (ADS)

    Ramesh, Kiran; Granlund, Kenneth; Ol, Michael V.; Gopalarathnam, Ashok; Edwards, Jack R.

    2018-04-01

    A leading-edge suction parameter (LESP) that is derived from potential flow theory as a measure of suction at the airfoil leading edge is used to study initiation of leading-edge vortex (LEV) formation in this article. The LESP hypothesis is presented, which states that LEV formation in unsteady flows for specified airfoil shape and Reynolds number occurs at a critical constant value of LESP, regardless of motion kinematics. This hypothesis is tested and validated against a large set of data from CFD and experimental studies of flows with LEV formation. The hypothesis is seen to hold except in cases with slow-rate kinematics which evince significant trailing-edge separation (which refers here to separation leading to reversed flow on the aft portion of the upper surface), thereby establishing the envelope of validity. The implication is that the critical LESP value for an airfoil-Reynolds number combination may be calibrated using CFD or experiment for just one motion and then employed to predict LEV initiation for any other (fast-rate) motion. It is also shown that the LESP concept may be used in an inverse mode to generate motion kinematics that would either prevent LEV formation or trigger the same as per aerodynamic requirements.

  14. Flow quality studies of the NASA Lewis Research Center Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Pickett, Mark T.; Sheldon, David W.

    1994-01-01

    A series of studies have been conducted to determine the flow quality in the NASA Lewis Icing Research Tunnel. The primary purpose of these studies was to document airflow characteristics, including flow angularity, in the test section and tunnel loop. A vertically mounted rake was used to survey total and static pressure and two components of flow angle at three axial stations within the test section (test section inlet, test plane, and test section exit; 15 survey stations total). This information will be used to develop methods of improving the aerodynamic and icing characteristics within the test section. The data from surveys made in the tunnel loop were used to determine areas where overall tunnel flow quality and efficiency can be improved. A separate report documents similar flow quality surveys conducted in the diffuser section of the Icing Research Tunnel. The flow quality studies were conducted at several locations around the tunnel loop. Pressure, velocity, and flow angularity measurements were made by using both fixed and translating probes. Although surveys were made throughout the tunnel loop, emphasis was placed on the test section and tunnel areas directly upstream of the test section (settling chamber, bellmouth, and cooler). Flow visualization, by video recording smoke and tuft patterns, was also used during these studies. A great deal of flow visualization work was conducted in the area of the drive fan. Information gathered there will be used to improve the flow quality upstream and downstream of the fan.

  15. The Relationship Between Professional Quality of Life and Caring Ability in Critical Care Nurses.

    PubMed

    Mohammadi, Marzieh; Peyrovi, Hamid; Mahmoodi, Mahmood

    Critical care nursing has some features that may affect the ability of critical care nurses to provide care. Professionals as critical care nurses who deal with peoples' health and life often experience some levels of stress that affects their quality of life. This study examined the relationship between professional quality of life and caring ability of critical care nurses. In this descriptive correlational study, 253 critical care nurses working in the medical and surgical intensive care units of Tehran University of Medical Sciences were recruited by convenience sampling method. The data collection tools included demographic data form, Caring Ability Inventory, and questionnaire for professional quality of life version 5. There was a statistically significant positive relationship between the professional quality of life and the caring ability (P < .0001). A significant inverse relationship was found between burn-out subscale of compassion fatigue as one aspect of professional life quality with all 3 aspects of caring ability (knowledge, courage, and patience). Secondary traumatic stress, as another subscale of compassion fatigue (as one aspect of professional quality of life), had no statistically significant correlation with caring ability aspects of knowledge and patience. However, there was a significant inverse correlation between the secondary traumatic stress and courage aspect of caring ability (P < .0001). There was a statistically significant positive relationship between compassion satisfaction aspect of professional life quality with knowledge and patience aspects of caring ability, but there was not any relationship between the compassion satisfaction aspect of professional life quality and the courage aspect of caring ability. Improvement of critical care nurses' professional quality of life may increase their caring ability, thereby leading to better and more effective nursing care. Increased awareness by critical care nurse managers of the

  16. [Critical incidents and quality of life among rescue workers].

    PubMed

    Prati, G; Pietrantoni, L

    2009-01-01

    Fire-fighters, paramedics and civil protection volunteers routinely confront potentially traumatic events in the course of their jobs. The frequency of exposure to critical incidents and the relationship between critical incident exposure and quality of life (Professional Quality of Life Scale, PROQOL, Stamm, 2005) A sample of 586 Italian emergency workers. The data indicated that the most frequent critical incidents were incidents involving multiple casualties (65% three or more times), prolonged extrication of trapped victim with life-threatening injuries (64% three or more times), verbal or physical threat by public while on duty (41% three or more times), and victims known to fire-emergency worker (40% three or more times). Infrequent events included serious line of duty injury to self (76% never) and colleagues and line of duty risk of injury or death to self (53% never) and colleagues (47% never). Emergency health workers were more exposed to critical incidents in comparison to fire-fighters. Result from non-parametric correlation analyses indicated that the more infrequent events showed the strong association with compassion fatigue and burnout while failed mission after extensive effort was the event most strongly associated with most associated with compassion satisfaction.

  17. 3D critical layers in fully-developed turbulent flows

    NASA Astrophysics Data System (ADS)

    Saxton-Fox, Theresa; McKeon, Beverley

    2016-11-01

    Recent work has shown that 3D critical layers drive self-sustaining behavior of exact coherent solutions of the Navier-Stokes equations (Wang et al. 2007; Hall and Sherwin 2010; Park and Graham 2015). This study investigates the role of 3D critical layers in fully-developed turbulent flows. 3D critical layer effects are identified in instantaneous snapshots of turbulent boundary layers in both experimental and DNS data (Wu et al. 2014). Additionally, a 3D critical layer effect is demonstrated to appear using only a few resolvent response modes from the resolvent analysis of McKeon and Sharma 2010, with phase relationships appropriately chosen. Connections are sought to the thin shear layers observed in turbulent boundary layers (Klewicki and Hirschi 2004; Eisma et al. 2015) and to amplitude modulation observations (Mathis et al. 2009; Duvvuri and McKeon 2014). This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060. The support of the Center for Turbulence Research (CTR) summer program at Stanford is gratefully acknowledged.

  18. Teaching Evaluation: A Critical Measure for Improving the Quality of Education

    ERIC Educational Resources Information Center

    Ji, Zhou

    2009-01-01

    In the coming period, the main task for China's higher education system is to improve the quality of education, and the key to improving the quality of education is to improve the quality of teaching. Teaching evaluations are a critical measure for improving the quality of teaching. The work of evaluating teaching at institutions of higher…

  19. Packet Scheduling Mechanism to Improve Quality of Short Flows and Low-Rate Flows

    NASA Astrophysics Data System (ADS)

    Yokota, Kenji; Asaka, Takuya; Takahashi, Tatsuro

    In recent years elephant flows are increasing by expansion of peer-to-peer (P2P) applications on the Internet. As a result, bandwidth is occupied by specific users triggering unfair resource allocation. The main packet-scheduling mechanism currently employed is first-in first-out (FIFO) where the available bandwidth of short flows is limited by elephant flows. Least attained service (LAS), which decides transfer priority of packets by the total amount of transferred data in all flows, was proposed to solve this problem. However, routers with LAS limit flows with large amount of transferred data even if they are low-rate. Therefore, it is necessary to improve the quality of low-rate flows with long holding times such as voice over Internet protocol (VoIP) applications. This paper proposes rate-based priority control (RBPC), which calculates the flow rate and control the priority by using it. Our proposed method can transfer short flows and low-rate flows in advance. Moreover, its fair performance is shown through simulations.

  20. Combined buoyancy and flow direction effects on saturated boiling critical heat flux in liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Papell, S. S.

    1972-01-01

    Buoyancy effects on the critical heat flux and general data trends for a liquid nitrogen internal flow system were determined by comparison of upflow and downflow data under identical test conditions. The test section had a 1.28 cm diameter flow passage and a 30.5 cm heated length which was subjected to uniform heat fluxes through resistance heating. Test conditions covered a range of pressures from 3.4 to 10.2 atm, inlet velocities from 0.23 to 3.51 m/sec, with the liquid nitrogen temperature at saturated inlet conditions. Data comparisons showed that the critical heat flux for downflow could be up to 36 percent lower than for upflow. A nonmonotonic relationship between the critical heat flux and velocity was determined for upflow but not for downflow. A limiting inlet velocity of 4.12 m/sec was determined to be the minimum velocity required to completely suppress the influence of buoyancy on the critical heat flux for this saturated inlet flow system. A correlation of this limiting fluid velocity is presented that was developed from previously published subcooled liquid nitrogen data and the saturated data of this investigation.

  1. An integrative review of health-related quality of life in patients with critical limb ischaemia.

    PubMed

    Monaro, Susan; West, Sandra; Gullick, Janice

    2017-10-01

    To examine the domains and the domain-specific characteristics within a peripheral arterial disease health-related quality of life framework for their usefulness in defining critical limb ischaemia health-related quality of life. Critical Limb Ischaemia presents a highly individualised set of personal and health circumstances. Treatment options include conservative management, revascularisation or amputation. However, the links between treatment decisions and quality of life require further investigation. The framework for this integrative review was the peripheral arterial disease-specific health-related quality of life domains identified by Treat-Jacobson et al. The literature expanded and refined Treat-Jacobson's framework by modifying the characteristics to better describe health-related quality of life in critical limb ischaemia. Given that critical limb ischaemia is a highly individualised situation with powerful health-related quality of life implications, further research focusing on patient and family-centred decision-making relating to therapeutic options and advanced care planning is required. A critical limb ischaemia-specific, health-related quality of life tool is required to capture both the unique characteristics of this disorder, and the outcomes for active or conservative care among this complex group of patients. © 2016 John Wiley & Sons Ltd.

  2. Rural relevant quality measures for critical access hospitals.

    PubMed

    Casey, Michelle M; Moscovice, Ira; Klingner, Jill; Prasad, Shailendra

    2013-01-01

    To identify current and future relevant quality measures for Critical Access Hospitals (CAHs). Three criteria (patient volume, internal usefulness for quality improvement, and external usefulness for public reporting and payment reform) were used to analyze quality measures for their relevance for CAHs. A 6-member panel with expertise in rural hospital quality measurement and improvement provided input regarding the final measure selection. The relevant quality measures for CAHs include measures that are ready for reporting now and measures that need specifications to be finalized and/or a data reporting mechanism to be established. They include inpatient measures for specific medical conditions, global measures that address appropriate care across multiple medical conditions, and Emergency Department measures. All CAHs should publicly report on relevant quality measures. Acceptance of a single consolidated set of quality measures with common specifications for CAHs by all entities involved in regulation, accreditation, and payment; a phased process to implement the relevant measures; and the provision of technical assistance would help CAHs meet the challenge of reporting. © 2012 National Rural Health Association.

  3. Environmental flows and water quality objectives for the River Murray.

    PubMed

    Gippel, C; Jacobs, T; McLeod, T

    2002-01-01

    Over the past decade, there intense consideration of managing flows in the River Murray to provide environmental benefits. In 1990 the Murray-Darling Basin Ministerial Council adopted a water quality policy: To maintain and, where necessary, improve existing water quality in the rivers of the Murray-Darling Basin for all beneficial uses - agricultural, environmental, urban, industrial and recreational, and in 1994 a flow policy: To maintain and where necessary improve existing flow regimes in the waterways of the Murray-Darling Basin to protect and enhance the riverine environment. The Audit of Water Use followed in 1995, culminating in the decision of the Ministerial Council to implement an interim cap on new diversions for consumptive use (the "Cap") in a bid to halt declining river health. In March 1999 the Environmental Flows and Water Quality Objectives for the River Murray Project (the Project) was set up, primarily to establish be developed that aims to achieve a sustainable river environment and water quality, in accordance with community needs, and including an adaptive approach to management and operation of the River. It will lead to objectives for water quality and environmental flows that are feasible, appropriate, have the support of the scientific, management and stakeholder communities, and carry acceptable levels of risk. This paper describes four key aspects of the process being undertaken to determine the objectives, and design the flow options that will meet those objectives: establishment of an appropriate technical, advisory and administrative framework; establishing clear evidence for regulation impacts; undergoing assessment of environmental flow needs; and filling knowledge gaps. A review of the impacts of flow regulation on the health of the River Murray revealed evidence for decline, but the case for flow regulation as the main cause is circumstantial or uncertain. This is to be expected, because the decline of the River Murray results

  4. Discharge coefficient correlations for circular-arc venturi flowmeters at critical /sonic/ flow

    NASA Technical Reports Server (NTRS)

    Arnberg, B. T.; Britton, C. L.; Seidl, W. F.

    1973-01-01

    Experimental data are analyzed to support theoretical predictions for discharge coefficients in circular-arc venturi flow meters operating in the critical sonic flow regime at throat Reynolds numbers above 150 thousand. The data tend to verify the predicted 0.25% decrease in the discharge coefficient during transition from a laminar to turbulent boundary layer. Four different test gases and three flow measurement facilities were used in the experiments with 17 venturis with throat sizes from 0.15 to 1.37 in. and Beta ratios ranging from 0.014 to 0.25. Recommendations are given as to how the effectiveness of future studies in the field could be improved.

  5. In-pipe water quality monitoring in water supply systems under steady and unsteady state flow conditions: a quantitative assessment.

    PubMed

    Aisopou, Angeliki; Stoianov, Ivan; Graham, Nigel J D

    2012-01-01

    Monitoring the quality of drinking water from the treatment plant to the consumers tap is critical to ensure compliance with national standards and/or WHO guideline levels. There are a number of processes and factors affecting the water quality during transmission and distribution which are little understood. A significant obstacle for gaining a detailed knowledge of various physical and chemical processes and the effect of the hydraulic conditions on the water quality deterioration within water supply systems is the lack of reliable and low-cost (both capital and O & M) water quality sensors for continuous monitoring. This paper has two objectives. The first one is to present a detailed evaluation of the performance of a novel in-pipe multi-parameter sensor probe for reagent- and membrane-free continuous water quality monitoring in water supply systems. The second objective is to describe the results from experimental research which was conducted to acquire continuous water quality and high-frequency hydraulic data for the quantitative assessment of the water quality changes occurring under steady and unsteady-state flow conditions. The laboratory and field evaluation of the multi-parameter sensor probe showed that the sensors have a rapid dynamic response, average repeatability and unreliable accuracy. The uncertainties in the sensor data present significant challenges for the analysis and interpretation of the acquired data and their use for water quality modelling, decision support and control in operational systems. Notwithstanding these uncertainties, the unique data sets acquired from transmission and distribution systems demonstrated the deleterious effect of unsteady state flow conditions on various water quality parameters. These studies demonstrate: (i) the significant impact of the unsteady-state hydraulic conditions on the disinfectant residual, turbidity and colour caused by the re-suspension of sediments, scouring of biofilms and tubercles from the

  6. The steady-state flow quality in a model of a non-return wind tunnel

    NASA Technical Reports Server (NTRS)

    Mort, K. W.; Eckert, W. T.; Kelly, M. W.

    1972-01-01

    The structural cost of non-return wind tunnels is significantly less than that of the more conventional closed-circuit wind tunnels. However, because of the effects of external winds, the flow quality of non-return wind tunnels is an area of concern at the low test speeds required for V/STOL testing. The flow quality required at these low speeds is discussed and alternatives to the traditional manner of specifying the flow quality requirements in terms of dynamic pressure and angularity are suggested. The development of a non-return wind tunnel configuration which has good flow quality at low as well as at high test speeds is described.

  7. Critical behavior in the inverse to forward energy transition in two-dimensional magnetohydrodynamic flow.

    PubMed

    Seshasayanan, Kannabiran; Alexakis, Alexandros

    2016-01-01

    We investigate the critical transition from an inverse cascade of energy to a forward energy cascade in a two-dimensional magnetohydrodynamic flow as the ratio of magnetic to mechanical forcing amplitude is varied. It is found that the critical transition is the result of two competing processes. The first process is due to hydrodynamic interactions and cascades the energy to the large scales. The second process couples small-scale magnetic fields to large-scale flows, transferring the energy back to the small scales via a nonlocal mechanism. At marginality the two cascades are both present and cancel each other. The phase space diagram of the transition is sketched.

  8. QUALITY CONTROL FOR RESEARCH STUDIES: A CRITICAL PART OF THE QUALITY SYSTEM AT THE U. S. EPA

    EPA Science Inventory

    QUALITY CONTROL FOR RESEARCH STUDIES: A CRITICAL PART OF THE QUALITY SYSTEM AT THE U.S. EPA Mette C.J. Schladweiler, Scientist, and Thomas J. Hughes, QA and Records Manager, Experimental Toxicology Division (ETD), National Health and Environmental Effects Research Laboratory (NHE...

  9. Disordered cellular automaton traffic flow model: phase separated state, density waves and self organized criticality

    NASA Astrophysics Data System (ADS)

    Fourrate, K.; Loulidi, M.

    2006-01-01

    We suggest a disordered traffic flow model that captures many features of traffic flow. It is an extension of the Nagel-Schreckenberg (NaSch) stochastic cellular automata for single line vehicular traffic model. It incorporates random acceleration and deceleration terms that may be greater than one unit. Our model leads under its intrinsic dynamics, for high values of braking probability pr, to a constant flow at intermediate densities without introducing any spatial inhomogeneities. For a system of fast drivers pr→0, the model exhibits a density wave behavior that was observed in car following models with optimal velocity. The gap of the disordered model we present exhibits, for high values of pr and random deceleration, at a critical density, a power law distribution which is a hall mark of a self organized criticality phenomena.

  10. Using a Content Management System for Integrated Water Quantity, Quality and Instream Flows Modeling

    NASA Astrophysics Data System (ADS)

    Burgholzer, R.; Brogan, C. O.; Scott, D.; Keys, T.

    2017-12-01

    With increased population and water demand, in-stream flows can become depleted by consumptive uses and dilution of permitted discharges may be compromised. Reduced flows downstream of water withdrawals may increase the violation rate of bacterial concentrations from direct deposition by livestock and wildlife. Water storage reservoirs are constructed and operated to insure more stable supplies for consumptive demands and dilution flows, however their use comes at the cost of increased evaporative losses, potential for thermal pollution, interrupted fish migration, and reduced flooding events that are critical to maintain habitat and water quality. Due to this complex interrelationship between water quantity, quality and instream habitat comprehensive multi-disciplinary models must be developed to insure long-term sustainability of water resources and to avoid conflicts between drinking water, food and energy production, and aquatic biota. The Commonwealth of Virginia funded the expansion of the Chesapeake Bay Program Phase 5 model to cover the entire state, and has been using this model to evaluate water supply permit and planning since 2009. This integrated modeling system combines a content management system (Drupal and PHP) for model input data and leverages the modularity of HSPF with the custom segmentation and parameterization routines programmed by modelers working with the Chesapeake Bay Program. The model has been applied to over 30 Virginia Water Permits, instream flows and aquatic habitat models and a Virginias 30 year water supply demand projections. Future versions will leverage the Bay Model auto-calibration routines for adding small-scale water supply and TMDL models, utilize climate change scenarios, and integrate Virginia's reservoir management modules into the Chesapeake Bay watershed model, feeding projected demand and operational changes back up to EPA models to improve the realism of future Bay-wide simulations.

  11. A porous flow model for the geometrical form of volcanoes - Critical comments

    NASA Technical Reports Server (NTRS)

    Wadge, G.; Francis, P.

    1982-01-01

    A critical evaluation is presented of the assumptions on which the mathematical model for the geometrical form of a volcano arising from the flow of magma in a porous medium of Lacey et al. (1981) is based. The lack of evidence for an equipotential surface or its equivalent in volcanoes prior to eruption is pointed out, and the preference of volcanic eruptions for low ground is attributed to the local stress field produced by topographic loading rather than a rising magma table. Other difficulties with the model involve the neglect of the surface flow of lava under gravity away from the vent, and the use of the Dupuit approximation for unconfined flow and the assumption of essentially horizontal magma flow. Comparisons of model predictions with the shapes of actual volcanoes reveal the model not to fit lava shield volcanoes, for which the cone represents the solidification of small lava flows, and to provide a poor fit to composite central volcanoes.

  12. Flow Quality Studies of the NASA Glenn Research Center Icing Research Tunnel Circuit (1995 Tests)

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Kee-Bowling, Bonnie A.; Gonsalez, Jose C.

    2000-01-01

    The purpose of conducting the flow-field surveys described in this report was to more fully document the flow quality in several areas of the tunnel circuit in the NASA Glenn Research Center Icing Research Tunnel. The results from these surveys provide insight into areas of the tunnel that were known to exhibit poor flow quality characteristics and provide data that will be useful to the design of flow quality improvements and a new heat exchanger for the facility. An instrumented traversing mechanism was used to survey the flow field at several large cross sections of the tunnel loop over the entire speed range of the facility. Flow-field data were collected at five stations in the tunnel loop, including downstream of the fan drive motor housing, upstream and downstream of the heat exchanger, and upstream and downstream of the spraybars located in the settling chamber upstream of the test section. The data collected during these surveys greatly expanded the data base describing the flow quality in each of these areas. The new data matched closely the flow quality trends recorded from earlier tests. Data collected downstream of the heat exchanger and in the settling chamber showed how the configuration of the folded heat exchanger affected the pressure, velocity, and flow angle distributions in these areas. Smoke flow visualization was also used to qualitatively study the flow field in an area downstream of the drive fan and in the settling chamber/contraction section.

  13. Flow Quality Measurements in an Aerodynamic Model of NASA Lewis' Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Canacci, Victor A.; Gonsalez, Jose C.

    1999-01-01

    As part of an ongoing effort to improve the aerodynamic flow characteristics of the Icing Research Tunnel (IRT), a modular scale model of the facility was fabricated. This 1/10th-scale model was used to gain further understanding of the flow characteristics in the IRT. The model was outfitted with instrumentation and data acquisition systems to determine pressures, velocities, and flow angles in the settling chamber and test section. Parametric flow quality studies involving the insertion and removal of a model of the IRT's distinctive heat exchanger (cooler) and/or of a honeycomb in the settling chamber were performed. These experiments illustrate the resulting improvement or degradation in flow quality.

  14. Tables of critical-flow functions and thermodynamic properties for methane and computational procedures for both methane and natural gas

    NASA Technical Reports Server (NTRS)

    Johnson, R. C.

    1972-01-01

    Procedures for calculating the mass flow rate of methane and natural gas through nozzles are given, along with the FORTRAN 4 subroutines used to make these calculations. Three sets of independent variables are permitted in these routines. In addition to the plenum pressure and temperature, the third independent variable is either nozzle exit pressure, Mach number, or temperature. A critical-flow factor that becomes a convenient means for determining the mass flow rate of methane through critical-flow nozzles is tabulated. Other tables are included for nozzle throat velocity and critical pressure, density, and temperature ratios, along with some thermodynamic properties of methane, including compressibility factor, enthalpy, entropy, specific heat, specific-heat ratio, and speed of sound. These tabulations cover a temperature range from 120 to 600 K and pressures to 3 million N/sq m.

  15. Quality by design approach for understanding the critical quality attributes of cyclosporine ophthalmic emulsion.

    PubMed

    Rahman, Ziyaur; Xu, Xiaoming; Katragadda, Usha; Krishnaiah, Yellela S R; Yu, Lawrence; Khan, Mansoor A

    2014-03-03

    Restasis is an ophthalmic cyclosporine emulsion used for the treatment of dry eye syndrome. There are no generic products for this product, probably because of the limitations on establishing in vivo bioequivalence methods and lack of alternative in vitro bioequivalence testing methods. The present investigation was carried out to understand and identify the appropriate in vitro methods that can discriminate the effect of formulation and process variables on critical quality attributes (CQA) of cyclosporine microemulsion formulations having the same qualitative (Q1) and quantitative (Q2) composition as that of Restasis. Quality by design (QbD) approach was used to understand the effect of formulation and process variables on critical quality attributes (CQA) of cyclosporine microemulsion. The formulation variables chosen were mixing order method, phase volume ratio, and pH adjustment method, while the process variables were temperature of primary and raw emulsion formation, microfluidizer pressure, and number of pressure cycles. The responses selected were particle size, turbidity, zeta potential, viscosity, osmolality, surface tension, contact angle, pH, and drug diffusion. The selected independent variables showed statistically significant (p < 0.05) effect on droplet size, zeta potential, viscosity, turbidity, and osmolality. However, the surface tension, contact angle, pH, and drug diffusion were not significantly affected by independent variables. In summary, in vitro methods can detect formulation and manufacturing changes and would thus be important for quality control or sameness of cyclosporine ophthalmic products.

  16. The hydrodynamic design and critical techniques for 1m×1m water tunnel

    NASA Astrophysics Data System (ADS)

    Jiang, Yubiao; Gao, Chao; Geng, Zihai; Chen, Cheng

    2018-04-01

    China aerodynamics research and development Center has built 1m×1m water tunnel featured by good flow field quality and comprehensive experimental abilities for the researches on flow visualization and measurement. In detail, it has several advantages, such as low turbulence intensity, spatially homogeneous velocity field, stable flow velocity and convenience for use. The experimental section has low turbulence intensity and good quality of flow field over a wide range of flow velocity from 0.1m/s to 1m/s, implying that the hydrodynamic design method and critical techniques for the tunnel are worthy of popularization.

  17. Long-term sequelae of critical illness: memories and health-related quality of life.

    PubMed

    Hough, Catherine Lee; Curtis, J Randall

    2005-04-01

    Impaired health-related quality of life after critical illness has been demonstrated in a number of studies. It is not clear exactly how or why critical illness and intensive care lead to impaired health status, but understanding this association is an important step to improving long-term outcomes of the critically ill. There is growing evidence that neuro-psychological symptoms play a significant role in this impairment and that management of patients in the intensive care unit (ICU) may influence these symptoms. This commentary examines a recent study and places this study in the context of previous studies suggesting that both amnesia and persisting nightmares of the ICU experience are associated with impaired quality of life. Further research is needed if we are effectively to understand, prevent and treat the negative sequelae of critical illness.

  18. Evaluation of future base-flow water-quality conditions in the Hillsborough River, Florida

    USGS Publications Warehouse

    Fernandez, Mario; Goetz, C.L.; Miller, J.E.

    1984-01-01

    A one-dimensional, steady-state, water-quality model was developed for a 30.0 mile reach of the Hillsborough River to evaluate water-quality conditions to be expected from future development. The model was calibrated and verified using data collected under critical base-flow conditions in April and December 1978. Dissolved organic nitrogen, nitrate nitrogen, and total and fecal coliforms were modeled for most of the study reach. Model results were used to evaluate the impacts of two typical housing developments on water-quality conditions in Tampa Reservoir. One development is located in the Cypress Creek basin and the other near the upper end of the study reach. Model results show development in the Hillsborough River basin may cause increased total and fecal coliform conditions. Simulated total coliforms at the Tampa water treatment plant for 1-, 3-, and 5-square-mile developments located in the Cypress Creek basin were 3,000, 5,400, and 8,300 colonies per 100 milliliters. Similar developments, however, located near the upper end of the study reach were 2,000, 3,600, and 5,100 colonies per 100 milliliters. Simulated fecal coliforms were 360, 700, and 100 and 180, 350, and 510 colonies per 100 milliliters, respectively. Other constituents modeled showed only minor increases in concentrations. (USGS)

  19. Water Quality Planning in Rivers: Assimilative Capacity and Dilution Flow.

    PubMed

    Hashemi Monfared, Seyed Arman; Dehghani Darmian, Mohsen; Snyder, Shane A; Azizyan, Gholamreza; Pirzadeh, Bahareh; Azhdary Moghaddam, Mehdi

    2017-11-01

    Population growth, urbanization and industrial expansion are consequentially linked to increasing pollution around the world. The sources of pollution are so vast and also include point and nonpoint sources, with intrinsic challenge for control and abatement. This paper focuses on pollutant concentrations and also the distance that the pollution is in contact with the river water as objective functions to determine two main necessary characteristics for water quality management in the river. These two necessary characteristics are named assimilative capacity and dilution flow. The mean area of unacceptable concentration [Formula: see text] and affected distance (X) are considered as two objective functions to determine the dilution flow by a non-dominated sorting genetic algorithm II (NSGA-II) optimization algorithm. The results demonstrate that the variation of river flow discharge in different seasons can modify the assimilation capacity up to 97%. Moreover, when using dilution flow as a water quality management tool, results reveal that the content of [Formula: see text] and X change up to 97% and 93%, respectively.

  20. Enstrophy-based proper orthogonal decomposition of flow past rotating cylinder at super-critical rotating rate

    NASA Astrophysics Data System (ADS)

    Sengupta, Tapan K.; Gullapalli, Atchyut

    2016-11-01

    Spinning cylinder rotating about its axis experiences a transverse force/lift, an account of this basic aerodynamic phenomenon is known as the Robins-Magnus effect in text books. Prandtl studied this flow by an inviscid irrotational model and postulated an upper limit of the lift experienced by the cylinder for a critical rotation rate. This non-dimensional rate is the ratio of oncoming free stream speed and the surface speed due to rotation. Prandtl predicted a maximum lift coefficient as CLmax = 4π for the critical rotation rate of two. In recent times, evidences show the violation of this upper limit, as in the experiments of Tokumaru and Dimotakis ["The lift of a cylinder executing rotary motions in a uniform flow," J. Fluid Mech. 255, 1-10 (1993)] and in the computed solution in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)]. In the latter reference, this was explained as the temporal instability affecting the flow at higher Reynolds number and rotation rates (>2). Here, we analyze the flow past a rotating cylinder at a super-critical rotation rate (=2.5) by the enstrophy-based proper orthogonal decomposition (POD) of direct simulation results. POD identifies the most energetic modes and helps flow field reconstruction by reduced number of modes. One of the motivations for the present study is to explain the shedding of puffs of vortices at low Reynolds number (Re = 60), for the high rotation rate, due to an instability originating in the vicinity of the cylinder, using the computed Navier-Stokes equation (NSE) from t = 0 to t = 300 following an impulsive start. This instability is also explained through the disturbance mechanical energy equation, which has been established earlier in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)].

  1. The Use of Logistics n the Quality Parameters Control System of Material Flow

    ERIC Educational Resources Information Center

    Karpova, Natalia P.; Toymentseva, Irina A.; Shvetsova, Elena V.; Chichkina, Vera D.; Chubarkova, Elena V.

    2016-01-01

    The relevance of the research problem is conditioned on the need to justify the use of the logistics methodologies in the quality parameters control process of material flows. The goal of the article is to develop theoretical principles and practical recommendations for logistical system control in material flows quality parameters. A leading…

  2. Modeling groundwater flow and quality

    USGS Publications Warehouse

    Konikow, Leonard F.; Glynn, Pierre D.; Selinus, Olle

    2013-01-01

    In most areas, rocks in the subsurface are saturated with water at relatively shallow depths. The top of the saturated zone—the water table—typically occurs anywhere from just below land surface to hundreds of feet below the land surface. Groundwater generally fills all pore spaces below the water table and is part of a continuous dynamic flow system, in which the fluid is moving at velocities ranging from feet per millennia to feet per day (Fig. 33.1). While the water is in close contact with the surfaces of various minerals in the rock material, geochemical interactions between the water and the rock can affect the chemical quality of the water, including pH, dissolved solids composition, and trace-elements content. Thus, flowing groundwater is a major mechanism for the transport of chemicals from buried rocks to the accessible environment, as well as a major pathway from rocks to human exposure and consumption. Because the mineral composition of rocks is highly variable, as is the solubility of various minerals, the human-health effects of groundwater consumption will be highly variable.

  3. Flow-Boiling Critical Heat Flux Experiments Performed in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad M.; Mudawar, Issam

    2005-01-01

    Poor understanding of flow boiling in microgravity has recently emerged as a key obstacle to the development of many types of power generation and advanced life support systems intended for space exploration. The critical heat flux (CHF) is perhaps the most important thermal design parameter for boiling systems involving both heatflux-controlled devices and intense heat removal. Exceeding the CHF limit can lead to permanent damage, including physical burnout of the heat-dissipating device. The importance of the CHF limit creates an urgent need to develop predictive design tools to ensure both the safe and reliable operation of a two-phase thermal management system under the reduced-gravity (like that on the Moon and Mars) and microgravity environments of space. At present, very limited information is available on flow-boiling heat transfer and the CHF under these conditions.

  4. Using the critical incident survey to assess hospital service quality.

    PubMed

    Longo, B; Connor, G; Barnhart, T

    1993-01-01

    This survey was designed to determine "standards of excellence" in hospital services as defined by (a) former patients, (b) physicians, (c) hospital employees, and (d) corporate insurance subscribers. One hundred forty-seven (147) patients, 188 employees, and 20 corporate subscribers were interviewed by telephone, and 52 physicians were interviewed in their offices. The interview consisted of a single question: "Can you think of a time when, as a patient/employee/employer/physician, you had a particularly satisfying or dissatisfying experience with a local hospital?" Reported incidents were reviewed, and 239 "critical incidents" were identified. These incidents were classified into 12 descriptive categories relating to the underlying factors in the incident reports. Six focus groups were later held with participants segregated by the population pool they represented. These groups were asked to develop definitions of "excellence" in hospital service quality and standards for service which would "exceed expectations." The focus groups created 122 standards of excellence, which were classified into 43 categories. Overall, the largest percentages of corporate, physician, and employee critical incidents were classified as "Administrative Policy" issues. Patients most often reported "Nurturing" incidents as critical to their perceptions of hospital service quality.

  5. Critical Exponents, Scaling Law, Universality and Renormalization Group Flow in Strong Coupling QED

    NASA Astrophysics Data System (ADS)

    Kondo, Kei-Ichi

    The critical behavior of strongly coupled QED with a chiral-invariant four-fermion interaction (gauged Nambu-Jona-Lasinio model) is investigated through the unquenched Schwinger-Dyson equation including the fermion loop effect at the one-loop level. It is shown that the critical exponents satisfy the (hyper)scaling relations as in the quenched case. However, the respective critical exponent takes the classical mean-field value, and consequently unquenched QED belongs to the same universality class as the zero-charge model. On the other hand, it is pointed out that quenched QED violates not only universality but also weak universality, due to continuously varying critical exponents. Furthermore, the renormalization group flow of constant renormalized charge is given. All the results are consistent with triviality of QED and the gauged Nambu-Jona-Lasinio model in the unquenched case.

  6. Evaluation of flow quality in two large NASA wind tunnels at transonic speeds

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.; Stainback, P. C.; Owen, F. K.

    1980-01-01

    Wind tunnel testing of low drag airfoils and basic transition studies at transonic speeds are designed to provide high quality aerodynamic data at high Reynolds numbers. This requires that the flow quality in facilities used for such research be excellent. To obtain a better understanding of the characteristics of facility disturbances and identification of their sources for possible facility modification, detailed flow quality measurements were made in two prospective NASA wind tunnels. Experimental results are presented of an extensive and systematic flow quality study of the settling chamber, test section, and diffuser in the Langley 8 foot transonic pressure tunnel and the Ames 12 foot pressure wind tunnel. Results indicate that the free stream velocity and pressure fluctuation levels in both facilities are low at subsonic speeds and are so high as to make it difficult to conduct meaningful boundary layer control and transition studies at transonic speeds.

  7. Estimation of environmental flow incorporating water quality and hypothetical climate change scenarios.

    PubMed

    Walling, Bendangtola; Chaudhary, Shushobhit; Dhanya, C T; Kumar, Arun

    2017-05-01

    Environmental flows (Eflow, hereafter) are the flows to be maintained in the river for its healthy functioning and the sustenance and protection of aquatic ecosystems. Estimation of Eflow in any river stretch demands consideration of various factors such as flow regime, ecosystem, and health of river. However, most of the Eflow estimation studies have neglected the water quality factor. This study urges the need to consider water quality criterion in the estimation of Eflow and proposes a framework for estimating Eflow incorporating water quality variations under present and hypothetical future scenarios of climate change and pollution load. The proposed framework is applied on the polluted stretch of Yamuna River passing through Delhi, India. Required Eflow at various locations along the stretch are determined by considering possible variations in future water quantity and quality. Eflow values satisfying minimum quality requirements for different river water usage classes (classes A, B, C, and D as specified by the Central Pollution Control Board, India) are found to be between 700 and 800 m 3 /s. The estimated Eflow values may aid policymakers to derive upstream storage-release policies or effluent restrictions. Generalized nature of this framework will help its implementation on any river systems.

  8. Tree leaf control on low flow water quality in a small Virginia stream

    USGS Publications Warehouse

    Slack, K.V.; Feltz, H.R.

    1968-01-01

    Impaired water quality in a small stream was related to autumn leaf fall from riparian vegetation. Dissolved oxygen and pH decreased, and water color, specific conductance, iron, manganese, and bicarbonate values increased as the rate of leaf fall increased. Similar quality changes occurred in laboratory cultures of tree leaves in filtered stream water, but the five leaf species studied produced widely differing results. Stream quality improved rapidly following channel flushing by storm flow. Organic loading by tree litter can exert significant control on water composition, especially during low flow.

  9. In-airway molecular flow sensing: A new technology for continuous, noninvasive monitoring of oxygen consumption in critical care

    PubMed Central

    Ciaffoni, Luca; O’Neill, David P.; Couper, John H.; Ritchie, Grant A. D.; Hancock, Gus; Robbins, Peter A.

    2016-01-01

    There are no satisfactory methods for monitoring oxygen consumption in critical care. To address this, we adapted laser absorption spectroscopy to provide measurements of O2, CO2, and water vapor within the airway every 10 ms. The analyzer is integrated within a novel respiratory flow meter that is an order of magnitude more precise than other flow meters. Such precision, coupled with the accurate alignment of gas concentrations with respiratory flow, makes possible the determination of O2 consumption by direct integration over time of the product of O2 concentration and flow. The precision is illustrated by integrating the balance gas (N2 plus Ar) flow and showing that this exchange was near zero. Measured O2 consumption changed by <5% between air and O2 breathing. Clinical capability was illustrated by recording O2 consumption during an aortic aneurysm repair. This device now makes easy, accurate, and noninvasive measurement of O2 consumption for intubated patients in critical care possible. PMID:27532048

  10. In-airway molecular flow sensing: A new technology for continuous, noninvasive monitoring of oxygen consumption in critical care.

    PubMed

    Ciaffoni, Luca; O'Neill, David P; Couper, John H; Ritchie, Grant A D; Hancock, Gus; Robbins, Peter A

    2016-08-01

    There are no satisfactory methods for monitoring oxygen consumption in critical care. To address this, we adapted laser absorption spectroscopy to provide measurements of O2, CO2, and water vapor within the airway every 10 ms. The analyzer is integrated within a novel respiratory flow meter that is an order of magnitude more precise than other flow meters. Such precision, coupled with the accurate alignment of gas concentrations with respiratory flow, makes possible the determination of O2 consumption by direct integration over time of the product of O2 concentration and flow. The precision is illustrated by integrating the balance gas (N2 plus Ar) flow and showing that this exchange was near zero. Measured O2 consumption changed by <5% between air and O2 breathing. Clinical capability was illustrated by recording O2 consumption during an aortic aneurysm repair. This device now makes easy, accurate, and noninvasive measurement of O2 consumption for intubated patients in critical care possible.

  11. Drawdown II: Water quality and ecological responses to a managed hydrologic drawdown during autumn

    USDA-ARS?s Scientific Manuscript database

    A water drawdown of Roundaway Lake, a tributary of the Big Sunflower River, was initiated in mid-autumn to alleviate critical low river flow. While water releases have been demonstrated to alleviate critical low flows, effects of these releases on water quality in contributing tributaries is necessa...

  12. A design space exploration for control of Critical Quality Attributes of mAb.

    PubMed

    Bhatia, Hemlata; Read, Erik; Agarabi, Cyrus; Brorson, Kurt; Lute, Scott; Yoon, Seongkyu

    2016-10-15

    A unique "design space (DSp) exploration strategy," defined as a function of four key scenarios, was successfully integrated and validated to enhance the DSp building exercise, by increasing the accuracy of analyses and interpretation of processed data. The four key scenarios, defining the strategy, were based on cumulative analyses of individual models developed for the Critical Quality Attributes (23 Glycan Profiles) considered for the study. The analyses of the CQA estimates and model performances were interpreted as (1) Inside Specification/Significant Model (2) Inside Specification/Non-significant Model (3) Outside Specification/Significant Model (4) Outside Specification/Non-significant Model. Each scenario was defined and illustrated through individual models of CQA aligning the description. The R(2), Q(2), Model Validity and Model Reproducibility estimates of G2, G2FaGbGN, G0 and G2FaG2, respectively, signified the four scenarios stated above. Through further optimizations, including the estimation of Edge of Failure and Set Point Analysis, wider and accurate DSps were created for each scenario, establishing critical functional relationship between Critical Process Parameters (CPPs) and Critical Quality Attributes (CQAs). A DSp provides the optimal region for systematic evaluation, mechanistic understanding and refining of a QbD approach. DSp exploration strategy will aid the critical process of consistently and reproducibly achieving predefined quality of a product throughout its lifecycle. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Flow Quality Surveys in the Settling Chamber of the NASA Glenn Icing Research Tunnel (2011 Tests)

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; VanZante, Judith Foss; Broeren, Andy P.; Kubiak, Mark J.

    2012-01-01

    In 2011, the heat exchanger and refrigeration plant for NASA Glenn Research Center's Icing Research Tunnel (IRT) were upgraded. Flow quality surveys were performed in the settling chamber of the IRT in order to understand the effect that the new heat exchanger had on the flow quality upstream of the spray bars. Measurements were made of the total pressure, static pressure, total temperature, airspeed, and flow angle (pitch and yaw). These measurements were directly compared to measurements taken in 2000, after the previous heat exchanger was installed. In general, the flow quality appears to have improved with the new heat exchanger.

  14. Flow Quality Surveys in the Settling Chamber of the NASA Glenn Icing Research Tunnel (2011 Tests)

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; VanZante, Judith Foss; Broeren, Andy P.; Kubiak, Mark J.

    2014-01-01

    In 2011, the heat exchanger and refrigeration plant for NASA Glenn Research Centers Icing Research Tunnel (IRT) were upgraded. Flow quality surveys were performed in the settling chamber of the IRT in order to understand the effect that the new heat exchanger had on the flow quality upstream of the spray bars. Measurements were made of the total pressure, static pressure, total temperature, airspeed, and flow angle (pitch and yaw). These measurements were directly compared to measurements taken in 2000, after the previous heat exchanger was installed. In general, the flow quality appears to have improved with the new heat exchanger.

  15. Critical Velocities in Open Capillary Flow

    NASA Technical Reports Server (NTRS)

    Dreyer, Michael; Langbein, Dieter; Rath, Hans J.

    1996-01-01

    This paper describes the proposed research program on open capillary flow and the preliminary work performed theoretically and in drop tower experiments. The work focuses on the fundamental physical understanding of the flow through capillary bound geometries, where the circumference of the cross section of the flow path contains free surfaces. Examples for such a flow configuration are capillary vanes in surface tension tanks, flow along edges and corners and flow through liquid bridges. The geometries may be classified by their cross section areas, wetted circumferences and the radii of curvature of the free surfaces. In the streaming float zone the flow path is bound by a free surface only. The ribbon vane is a model for vane types used in surface tension tanks, where a structure in proximity to the tank wall forms a capillary gap. A groove is used in heat pipes for the transportation of the condensed working fluid to the heat source and a wedge may occur in a spaceborne experiment where fluid has to be transported by the means of surface tension. The research objectives are the determination of the maximum volume flux, the observation of the free surfaces and the liquid flow inside the flow path as well as the evaluation of the limiting capillary wave speed. The restriction of the maximum volume flux is due to convective forces (flow velocity exceeding the capillary wave speed) and/or viscous forces, i.e. the viscous head loss along the flow path must be compensated by the capillary pressure due to the curved free surface. Exceeding the maximum volume flux leads to the choking of the flow path, thus the free surface collapses and.gas ingestion occurs at the outlet. The means are ground-based experimental work with plateau tanks and in a drop tower, a sounding rocket flight, and theoretical analysis with integral balances as well as full three dimensional CFD solutions for flow with free surfaces.

  16. The role of optical flow in automated quality assessment of full-motion video

    NASA Astrophysics Data System (ADS)

    Harguess, Josh; Shafer, Scott; Marez, Diego

    2017-09-01

    In real-world video data, such as full-motion-video (FMV) taken from unmanned vehicles, surveillance systems, and other sources, various corruptions to the raw data is inevitable. This can be due to the image acquisition process, noise, distortion, and compression artifacts, among other sources of error. However, we desire methods to analyze the quality of the video to determine whether the underlying content of the corrupted video can be analyzed by humans or machines and to what extent. Previous approaches have shown that motion estimation, or optical flow, can be an important cue in automating this video quality assessment. However, there are many different optical flow algorithms in the literature, each with their own advantages and disadvantages. We examine the effect of the choice of optical flow algorithm (including baseline and state-of-the-art), on motionbased automated video quality assessment algorithms.

  17. Quality of reporting of surveys in critical care journals: a methodologic review.

    PubMed

    Duffett, Mark; Burns, Karen E; Adhikari, Neill K; Arnold, Donald M; Lauzier, François; Kho, Michelle E; Meade, Maureen O; Hayani, Omar; Koo, Karen; Choong, Karen; Lamontagne, François; Zhou, Qi; Cook, Deborah J

    2012-02-01

    Adequate reporting is needed to judge methodologic quality and assess the risk of bias of surveys. The objective of this study is to describe the methodology and quality of reporting of surveys published in five critical care journals. All issues (1996-2009) of the American Journal of Respiratory and Critical Care Medicine, Critical Care, Critical Care Medicine, Intensive Care Medicine, and Pediatric Critical Care Medicine. Two reviewers hand-searched all issues in duplicate. We included publications of self-administered questionnaires of health professionals and excluded surveys that were part of a multi-method study or measured the effect of an intervention. Data were abstracted in duplicate. We included 151 surveys. The frequency of survey publication increased at an average rate of 0.38 surveys per 1000 citations per year from 1996-2009 (p for trend = 0.001). The median number of respondents and reported response rates were 217 (interquartile range 90 to 402) and 63.3% (interquartile range 45.0% to 81.0%), respectively. Surveys originated predominantly from North America (United States [40.4%] and Canada [18.5%]). Surveys most frequently examined stated practice (78.8%), attitudes or opinions (60.3%), and less frequently knowledge (9.9%). The frequency of reporting on the survey design and methods were: 1) instrument development: domains (59.1%), item generation (33.1%), item reduction (12.6%); 2) instrument testing: pretesting or pilot testing (36.2%) and assessments of clarity (25.2%) or clinical sensibility (15.7%); and 3) clinimetric properties: qualitative or quantitative description of at least one of face, content, construct validity, intra- or inter-rater reliability, or consistency (28.5%). The reporting of five key elements of survey design and conduct did not significantly change over time. Surveys, primarily conducted in North America and focused on self-reported practice, are increasingly published in highly cited critical care journals. More

  18. Use of a High-Flow Oxygen Delivery System in a Critically Ill Patient with Dementia

    DTIC Science & Technology

    2008-12-01

    February 1, 2007. http://www.fda.gov/ cdrh /safety/ 020107_vapotherm.html. Accessed October 7, 2008. HIGH-FLOW OXYGEN IN A CRITICALLY ILL PATIENT WITH DEMENTIA RESPIRATORY CARE • DECEMBER 2008 VOL 53 NO 12 1743

  19. [Application of quality by design in granulation process for ginkgo leaf tablet (Ⅱ): identification of critical quality attributes].

    PubMed

    Xu, Bing; Cui, Xiang-Long; Yang, Chan; Wang, Xin; Shi, Xin-Yuan; Qiao, Yan-Jiang

    2017-03-01

    Quality by design (QbD) highlights the concept of "begin with the end", which means to thoroughly understand the target product quality first, and then guide pharmaceutical process development and quality control throughout the whole manufacturing process. In this paper, the Ginkgo biloba granules intermediates were taken as the research object, and the requirements of the tensile strength of tablets were treated as the goals to establish the methods for identification of granules' critical quality attributes (CQAs) and establishment of CQAs' limits. Firstly, the orthogonal partial least square (OPLS) model was adopted to build the relationship between the micromeritic properties of 29 batches of granules and the tensile strength of ginkgo leaf tablets, and thereby the potential critical quality attributes (pCQAs) were screened by variable importance in the projection (VIP) indexes. Then, a series of OPLS models were rebuilt by reducing pCQAs variables one by one in view of the rule of VIP values from low to high in sequence. The model performance results demonstrated that calibration and predictive performance of the model had no decreasing trend after variables reduction. In consideration of the results from variables selection as well as the collinearity test and testability of the pCQAs, the median particle size (D₅₀) and the bulk density (Da) were identified as critical quality attributes (CQAs). The design space of CQAs was developed based on a multiple linear regression model established between the CQAs (D₅₀ and Da) and the tensile strength. The control constraints of the CQAs were determined as 170 μm< D₅₀<500 μm and 0.30 g•cm⁻³

  20. Search engine ranking, quality, and content of webpages that are critical vs noncritical of HPV vaccine

    PubMed Central

    Fu, Linda Y.; Zook, Kathleen; Spoehr-Labutta, Zachary; Hu, Pamela; Joseph, Jill G.

    2015-01-01

    Purpose Online information can influence attitudes toward vaccination. The aim of the present study is to provide a systematic evaluation of the search engine ranking, quality, and content of webpages that are critical versus noncritical of HPV vaccination. Methods We identified HPV vaccine-related webpages with the Google search engine by entering 20 terms. We then assessed each webpage for critical versus noncritical bias as well as for the following quality indicators: authorship disclosure, source disclosure, attribution of at least one reference, currency, exclusion of testimonial accounts, and readability level less than 9th grade. We also determined webpage comprehensiveness in terms of mention of 14 HPV vaccine relevant topics. Results Twenty searches yielded 116 unique webpages. HPV vaccine-critical webpages comprised roughly a third of the top, top 5 and top 10-ranking webpages. The prevalence of HPV vaccine-critical webpages was higher for queries that included term modifiers in addition to root terms. Compared with noncritical webpages, webpages critical of HPV vaccine overall had a lower quality score than those with a noncritical bias (p<.01) and covered fewer important HPV-related topics (p<.001). Critical webpages required viewers to have higher reading skills, were less likely to include an author byline, and were more likely to include testimonial accounts. They also were more likely to raise unsubstantiated concerns about vaccination. Conclusion Webpages critical of HPV vaccine may be frequently returned and highly ranked by search engine queries despite being of lower quality and less comprehensive than noncritical webpages. PMID:26559742

  1. Influence of flow constraints on the properties of the critical endpoint of symmetric nuclear matter

    NASA Astrophysics Data System (ADS)

    Ivanytskyi, A. I.; Bugaev, K. A.; Sagun, V. V.; Bravina, L. V.; Zabrodin, E. E.

    2018-06-01

    We propose a novel family of equations of state for symmetric nuclear matter based on the induced surface tension concept for the hard-core repulsion. It is shown that having only four adjustable parameters the suggested equations of state can, simultaneously, reproduce not only the main properties of the nuclear matter ground state, but the proton flow constraint up its maximal particle number densities. Varying the model parameters we carefully examine the range of values of incompressibility constant of normal nuclear matter and its critical temperature, which are consistent with the proton flow constraint. This analysis allows us to show that the physically most justified value of nuclear matter critical temperature is 15.5-18 MeV, the incompressibility constant is 270-315 MeV and the hard-core radius of nucleons is less than 0.4 fm.

  2. Flow quality studies of the NASA Lewis Research Center Icing Research Tunnel diffuser

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Pickett, Mark T.; Sheldon, David W.

    1994-01-01

    The purpose was to document the airflow characteristics in the diffuser of the NASA Lewis Research Center Icing Research Tunnel and to determine the effects of vortex generators on the flow quality in the diffuser. The results were used to determine how to improve the flow in this portion of the tunnel so that it can be more effectively used as an icing test section and such that overall tunnel efficiency can be improved. The demand for tunnel test time and the desire to test models that are too large for the test section were two of the drivers behind this diffuser study. For all vortex generator configurations tested, the flow quality was improved.

  3. Catchment-wide impacts on water quality: the use of 'snapshot' sampling during stable flow

    NASA Astrophysics Data System (ADS)

    Grayson, R. B.; Gippel, C. J.; Finlayson, B. L.; Hart, B. T.

    1997-12-01

    Water quality is usually monitored on a regular basis at only a small number of locations in a catchment, generally focused at the catchment outlet. This integrates the effect of all the point and non-point source processes occurring throughout the catchment. However, effective catchment management requires data which identify major sources and processes. As part of a wider study aimed at providing technical information for the development of integrated catchment management plans for a 5000 km 2 catchment in south eastern Australia, a 'snapshot' of water quality was undertaken during stable summer flow conditions. These low flow conditions exist for long periods so water quality at these flow levels is an important constraint on the health of in-stream biological communities. Over a 4 day period, a study of the low flow water quality characteristics throughout the Latrobe River catchment was undertaken. Sixty-four sites were chosen to enable a longitudinal profile of water quality to be established. All tributary junctions and sites along major tributaries, as well as all major industrial inputs were included. Samples were analysed for a range of parameters including total suspended solids concentration, pH, dissolved oxygen, electrical conductivity, turbidity, flow rate and water temperature. Filtered and unfiltered samples were taken from 27 sites along the main stream and tributary confluences for analysis of total N, NH 4, oxidised N, total P and dissolved reactive P concentrations. The data are used to illustrate the utility of this sampling methodology for establishing specific sources and estimating non-point source loads of phosphorous, total suspended solids and total dissolved solids. The methodology enabled several new insights into system behaviour including quantification of unknown point discharges, identification of key in-stream sources of suspended material and the extent to which biological activity (phytoplankton growth) affects water quality

  4. Assessing dam development, land use conversion, and climate change pressures on tributary river flows and water quality of the Mekong's Tonle Sap basin.

    NASA Astrophysics Data System (ADS)

    Cochrane, T. A.; Arias, M. E.; Oeurng, C.; Arnaiz, M.; Piman, T.

    2016-12-01

    The Tonle Sap Lake is Southeast Asia's most productive freshwater fishery, but the productivity of this valuable ecosystem is under threat from extensive development in the lower Mekong. With dams potentially blocking all major tributaries along the lower Mekong River, the role of local Tonle Sap basin tributaries for maintaining environmental flows, sediment loads, and fish recruitment is becoming increasingly critical. Development within the Tonle Sap basin, however, is not stagnant. Developers are proposing extensive dam development in key Tonle Sap tributaries (see Figure). Some dams will provide hydroelectricity and others will provide opportunities for large-scale irrigation resulting in agro-industrial expansion. There is thus an immediate need to assess the current situation and understand future effects of dam development and land use conversion under climate change on local riverine ecosystems. A combination of remote sensing, field visits, and hydro-meteorological data analyses enabled an assessment of water infrastructure and agricultural development in the basin. The application of SWAT for modelling flows and water quality combined with HEC-RESSIM for reservoir operations enabled for a holistic modelling approach. Initial results show that dams and land use change dominate flow and water quality responses, when compared to climate change. Large ongoing dam and irrigation development in the Pursat and Battambang subbasins will critically alter the natural river flows to the Tonle Sap Lake. Some of the observed dams did not have provisions for sediment flushing, clearing of flooded areas, fish passages, or other environmental protection measures. Poor planning and operation of this infrastructure could have dire consequences on the fragile riverine ecosystem of Tonle Sap tributaries, resulting in fish migration barriers, losses in aquatic habitats, and ecological degradation. The seemingly chaotic development in the Tonle Sap basin induces a great level

  5. Quality by Design approach for studying the impact of formulation and process variables on product quality of oral disintegrating films.

    PubMed

    Mazumder, Sonal; Pavurala, Naresh; Manda, Prashanth; Xu, Xiaoming; Cruz, Celia N; Krishnaiah, Yellela S R

    2017-07-15

    The present investigation was carried out to understand the impact of formulation and process variables on the quality of oral disintegrating films (ODF) using Quality by Design (QbD) approach. Lamotrigine (LMT) was used as a model drug. Formulation variable was plasticizer to film former ratio and process variables were drying temperature, air flow rate in the drying chamber, drying time and wet coat thickness of the film. A Definitive Screening Design of Experiments (DoE) was used to identify and classify the critical formulation and process variables impacting critical quality attributes (CQA). A total of 14 laboratory-scale DoE formulations were prepared and evaluated for mechanical properties (%elongation at break, yield stress, Young's modulus, folding endurance) and other CQA (dry thickness, disintegration time, dissolution rate, moisture content, moisture uptake, drug assay and drug content uniformity). The main factors affecting mechanical properties were plasticizer to film former ratio and drying temperature. Dissolution rate was found to be sensitive to air flow rate during drying and plasticizer to film former ratio. Data were analyzed for elucidating interactions between different variables, rank ordering the critical materials attributes (CMA) and critical process parameters (CPP), and for providing a predictive model for the process. Results suggested that plasticizer to film former ratio and process controls on drying are critical to manufacture LMT ODF with the desired CQA. Published by Elsevier B.V.

  6. Improvement of Flow Quality in NAL Chofu Mach 10 Nozzle

    NASA Technical Reports Server (NTRS)

    Lacey, John; Inoue, Yasutoshi; Higashida, Akio; Inoue, Manabu; Ishizaka, Kouichi; Korte, John J.

    2002-01-01

    As a result of CFD analysis and remachining of the nozzle, the flow quality of the Mach 10 Hypersonic Wind Tunnel at NAL Chofu, Japan was improved. The subsequent test results validated the CFD analytical predictions by NASA and MHL.

  7. Explore the impacts of river flow and quality on biodiversity for water resources management by AI techniques

    NASA Astrophysics Data System (ADS)

    Chang, Fi-John; Tsai Tsai, Wen-Ping; Chang, Li-Chiu

    2016-04-01

    Water resources development is very challenging in Taiwan due to her diverse geographic environment and climatic conditions. To pursue sustainable water resources development, rationality and integrity is essential for water resources planning. River water quality and flow regimes are closely related to each other and affect river ecosystems simultaneously. This study aims to explore the complex impacts of water quality and flow regimes on fish community in order to comprehend the situations of the eco-hydrological system in the Danshui River of northern Taiwan. To make an effective and comprehensive strategy for sustainable water resources management, this study first models fish diversity through implementing a hybrid artificial neural network (ANN) based on long-term observational heterogeneity data of water quality, stream flow and fish species in the river. Then we use stream flow to estimate the loss of dissolved oxygen based on back-propagation neural networks (BPNNs). Finally, the non-dominated sorting genetic algorithm II (NSGA-II) is established for river flow management over the Shihmen Reservoir which is the main reservoir in this study area. In addition to satisfying the water demands of human beings and ecosystems, we also consider water quality for river flow management. The ecosystem requirement takes the form of maximizing fish diversity, which can be estimated by the hybrid ANN. The human requirement is to provide a higher satisfaction degree of water supply while the water quality requirement is to reduce the loss of dissolved oxygen in the river among flow stations. The results demonstrate that the proposed methodology can offer diversified alternative strategies for reservoir operation and improve reservoir operation strategies for producing downstream flows that could better meet both human and ecosystem needs as well as maintain river water quality. Keywords: Artificial intelligence (AI), Artificial neural networks (ANNs), Non

  8. Flow Quality Surveys in the Settling Chamber of the NASA Glenn Icing Research Tunnel (2011 Tests)

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; Van Zante, Judith Foss; Broeren, Andy P.; Kubiak, Mark J.

    2012-01-01

    In 2011, the heat exchanger and refrigeration plant for NASA Glenn Research Center's Icing Research Tunnel (IRT) were upgraded. Flow quality surveys were performed in the settling chamber of the IRT in order to understand the effect that the new heat exchanger had on the flow quality upstream of the spray bars. Measurements were made of the total pressure, static pressure, total temperature, airspeed, and ow angle (pitch and yaw). These measurements were directly compared to measurements taken in 2000, after the previous heat exchanger was installed. In general, the flow quality appears to have improved with the new heat exchanger.

  9. Flow Quality Measurements in the NASA Ames Upgraded 11-by 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Amaya, Max A.; Murthy, Sreedhara V.; George, M. W. (Technical Monitor)

    2000-01-01

    Among the many upgrades designed and implemented in the NASA Ames 11-by 11-Foot Transonic Wind Tunnel over the past few years, several directly affect flow quality in the test section: a turbulence reduction system with a honeycomb and two screens, a flow smoothing system in the back leg diffusers, an improved drive motor control system, and a full replacement set of composite blades for the compressor. Prior to the shut-down of the tunnel for construction activities, an 8-foot span rake populated with flow instrumentation was traversed in the test section to fully document the flow quality and establish a baseline against which the upgrades could be characterized. A similar set of measurements was performed during the recent integrated system test trials, but the scope was somewhat limited in accordance with the primary objective of such tests, namely to return the tunnel to a fully operational status. These measurements clearly revealed substantial improvements in flow angularity and significant reductions in turbulence level for both full-span and semi-span testing configurations, thus making the flow quality of the tunnel one of the best among existing transonic facilities.

  10. Spatial variability analysis of combining the water quality and groundwater flow model to plan groundwater and surface water management in the Pingtung plain

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Fang; Chen, Jui-Sheng; Jang, Cheng-Shin

    2014-05-01

    As a result of rapid economic growth in the Pingtung Plain, the use of groundwater resources has changed dramatically. The groundwater is quite rich in the Pingtung plain and the most important water sources. During the several decades, a substantial amount of groundwater has been pumped for the drinking, irrigation and aquaculture water supplies. However, because the sustainable use concept of groundwater resources is lack, excessive pumping of groundwater causes the occurrence of serious land subsidence and sea water intrusion. Thus, the management and conservation of groundwater resources in the Pingtung plain are considerably critical. This study aims to assess the conjunct use effect of groundwater and surface water in the Pingtung plain on recharge by reducing the amount of groundwater extraction. The groundwater quality variability and groundwater flow models are combined to spatially analyze potential zones of groundwater used for multi-purpose in the Pingtung Plain. First, multivariate indicator kriging (MVIK) is used to analyze spatial variability of groundwater quality based on drinking, aquaculture and irrigation water quality standards, and probabilistically delineate suitable zones in the study area. Then, the groundwater flow model, Processing MODFLOW (PMWIN), is adopted to simulate groundwater flow. The groundwater flow model must be conducted by the calibration and verification processes, and the regional groundwater recovery is discussed when specified water rights are replaced by surface water in the Pingtung plain. Finally, the most suitable zones of reducing groundwater use are determined for multi-purpose according to combining groundwater quality and quantity. The study results can establish a sound and low-impact management plan of groundwater resources utilization for the multi-purpose groundwater use, and prevent decreasing ground water tables, and the occurrence of land subsidence and sea water intrusion in the Pingtung plain.

  11. Influence of raw material properties upon critical quality attributes of continuously produced granules and tablets.

    PubMed

    Fonteyne, Margot; Wickström, Henrika; Peeters, Elisabeth; Vercruysse, Jurgen; Ehlers, Henrik; Peters, Björn-Hendrik; Remon, Jean Paul; Vervaet, Chris; Ketolainen, Jarkko; Sandler, Niklas; Rantanen, Jukka; Naelapää, Kaisa; De Beer, Thomas

    2014-07-01

    Continuous manufacturing gains more and more interest within the pharmaceutical industry. The International Conference of Harmonisation (ICH) states in its Q8 'Pharmaceutical Development' guideline that the manufacturer of pharmaceuticals should have an enhanced knowledge of the product performance over a range of raw material attributes, manufacturing process options and process parameters. This fits further into the Process Analytical Technology (PAT) and Quality by Design (QbD) framework. The present study evaluates the effect of variation in critical raw material properties on the critical quality attributes of granules and tablets, produced by a continuous from-powder-to-tablet wet granulation line. The granulation process parameters were kept constant to examine the differences in the end product quality caused by the variability of the raw materials properties only. Theophylline-Lactose-PVP (30-67.5-2.5%) was used as model formulation. Seven different grades of theophylline were granulated. Afterward, the obtained granules were tableted. Both the characteristics of granules and tablets were determined. The results show that differences in raw material properties both affect their processability and several critical quality attributes of the resulting granules and tablets. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Water quality in simulated eutrophic shallow lakes in the presence of periphyton under different flow conditions.

    PubMed

    Chen, Shu; Yang, Guolu; Lu, Jing; Wang, Lei

    2018-02-01

    Although the effects of periphyton on water quality and its relationship with flow conditions have been studied by researchers, our understanding about their combined action in eutrophic shallow lakes is poor. In this research, four aquatic model ecosystems with different water circulation rates and hydraulic conditions were constructed to investigate the effect of periphyton and flow condition on water quality. The concentrations of NH 4 + , TP, and chlorophyll-a and flow conditions were determined. The results show that, as a result of the rising nutrient level at the early stage and the decline in the lower limit, the presence of periphyton can make the ecosystem adaptable to a wider range of nutrients concentration. In terms of the flow condition, the circulation rate and hydraulic condition are influential factors for aquatic ecosystem. Higher circulation rate in the ecosystem, on one hand, facilitates the metabolism by accelerating nutrient cycling which is beneficial to water quality; on the other hand, high circulation rate leads to the nutrient lower limit rising which is harmful to water quality improvement. At low velocities, slight differences in hydraulic conditions, vertical velocity gradient and turbulence intensity gradient could affect the quantity of phytoplankton. Our study suggests that, considering environmental effect of periphyton, flow conditions and their combined action is essential for water quality improvement and ecological restoration in eutrophic shallow lakes.

  13. Explore the Impacts of River Flow and Water Quality on Fish Communities

    NASA Astrophysics Data System (ADS)

    Tsai, W. P.; Chang, F. J.; Lin, C. Y.; Hu, J. H.; Yu, C. J.; Chu, T. J.

    2015-12-01

    Owing to the limitation of geographical environment in Taiwan, the uneven temporal and spatial distribution of rainfall would cause significant impacts on river ecosystems. To pursue sustainable water resources development, integrity and rationality is important to water management planning. The water quality and the flow regimes of rivers are closely related to each other and affect river ecosystems simultaneously. Therefore, this study collects long-term observational heterogeneity data, which includes water quality parameters, stream flow and fish species in the Danshui River of norther Taiwan, and aims to explore the complex impacts of water quality and flow regime on fish communities in order to comprehend the situations of the eco-hydrological system in this river basin. First, this study improves the understanding of the relationship between water quality parameters, flow regime and fish species by using artificial neural networks (ANNs). The Self-organizing feature map (SOM) is an unsupervised learning process used to cluster, analyze and visualize a large number of data. The results of SOM show that nine clusters (3x3) forms the optimum map size based on the local minimum values of both quantization error (QE) and topographic error (TE). Second, the fish diversity indexes are estimated by using the Adapted network-based fuzzy inference system (ANFIS) based on key input factors determined by the Gamma Test (GT), which is a useful tool for reducing model dimension and the structure complexity of ANNs. The result reveals that the constructed models can effectively estimate fish diversity indexes and produce good estimation performance based on the 9 clusters identified by the SOM, in which RMSE is 0.18 and CE is 0.84 for the training data set while RMSE is 0.20 and CE is 0.80 for the testing data set.

  14. Microstructure based simulations for prediction of flow curves and selection of process parameters for inter-critical annealing in DP steel

    NASA Astrophysics Data System (ADS)

    Deepu, M. J.; Farivar, H.; Prahl, U.; Phanikumar, G.

    2017-04-01

    Dual phase steels are versatile advanced high strength steels that are being used for sheet metal applications in automotive industry. It also has the potential for application in bulk components like gear. The inter-critical annealing in dual phase steels is one of the crucial steps that determine the mechanical properties of the material. Selection of the process parameters for inter-critical annealing, in particular, the inter-critical annealing temperature and time is important as it plays a major role in determining the volume fractions of ferrite and martensite, which in turn determines the mechanical properties. Selection of these process parameters to obtain a particular required mechanical property requires large number of experimental trials. Simulation of microstructure evolution and virtual compression/tensile testing can help in reducing the number of such experimental trials. In the present work, phase field modeling implemented in the commercial software Micress® is used to predict the microstructure evolution during inter-critical annealing. Virtual compression tests are performed on the simulated microstructure using finite element method implemented in the commercial software, to obtain the effective flow curve of the macroscopic material. The flow curves obtained by simulation are experimentally validated with physical simulation in Gleeble® and compared with that obtained using linear rule of mixture. The methodology could be used in determining the inter-critical annealing process parameters required for achieving a particular flow curve.

  15. Critical to quality in telemedicine service management: application of DFSS (Design for Six Sigma) and SERVQUAL).

    PubMed

    Yun, Eun Kyoung; Chun, Kee Moon

    2008-01-01

    Telemedicine generally refers to the use of communications and information technologies for the delivery of health care. owever, telemedicine is not merely a simple combination of health care and technology. The researchers propose a systematic approach for assessing needs of telemedicine customers, called critical-to-quality (CTQ) in Six Sigma, with a purpose of continuous quality improvement. The combination approach using DFSS (Design for Six Sigma) and SERVQUAL (Service Quality Framework) was applied to define the critical quality attributes of telemedicine service management and to match them with the current telemedicine process. With a step-by-step procedure, telemedicine service process was reviewed and all the important CTQ candidates identified via a case study. The findings suggest that nurses need further understanding and research methods that will improve and manage the quality of health care service in various medical fields.

  16. Four Pillars for Improving the Quality of Safety-Critical Software-Reliant Systems

    DTIC Science & Technology

    2013-04-01

    Studies of safety-critical software-reliant systems developed using the current practices of build-then-test show that requirements and architecture ... design defects make up approximately 70% of all defects, many system level related to operational quality attributes, and 80% of these defects are

  17. Identification of critical zones in the flow through prosthetic heart valves

    NASA Astrophysics Data System (ADS)

    Lopez, A.; Ledesma, R.; Zenit, R.; Pulos, G.

    2008-11-01

    The hemodynamic properties of prosthetic heart valves can cause blood damage and platelet activation due to the non- physiological flow patterns. Blood recirculation and elevated shear stresses are believed to be responsible for these complications. The objective of this study is to identify and quantify the conditions for which recirculation and high stress zones appear. We have performed a comparative study between a mechanical monoleaflet and biological valve. In order to generate the flow conditions to test the prosthesis, we have built a hydraulic circuit which reproduces the human systemic circulation, on the basis of the Windkessel model. This model is based on an electrical analogy which consists of an arterial resistance and compliance. Using PIV 3D- Stereo measurements, taken downstream from the prosthetic heart valves, we have reconstructed the full phase-averaged tridimensional velocity field. Preliminary results show that critical zones are more prominent in mechanical prosthesis, indicating that valves made with bio-materials are less likely to produce blood trauma. This is in accordance with what is generally found in the literature.

  18. Water quality modelling of an impacted semi-arid catchment using flow data from the WEAP model

    NASA Astrophysics Data System (ADS)

    Slaughter, Andrew R.; Mantel, Sukhmani K.

    2018-04-01

    The continuous decline in water quality in many regions is forcing a shift from quantity-based water resources management to a greater emphasis on water quality management. Water quality models can act as invaluable tools as they facilitate a conceptual understanding of processes affecting water quality and can be used to investigate the water quality consequences of management scenarios. In South Africa, the Water Quality Systems Assessment Model (WQSAM) was developed as a management-focussed water quality model that is relatively simple to be able to utilise the small amount of available observed data. Importantly, WQSAM explicitly links to systems (yield) models routinely used in water resources management in South Africa by using their flow output to drive water quality simulations. Although WQSAM has been shown to be able to represent the variability of water quality in South African rivers, its focus on management from a South African perspective limits its use to within southern African regions for which specific systems model setups exist. Facilitating the use of WQSAM within catchments outside of southern Africa and within catchments for which these systems model setups to not exist would require WQSAM to be able to link to a simple-to-use and internationally-applied systems model. One such systems model is the Water Evaluation and Planning (WEAP) model, which incorporates a rainfall-runoff component (natural hydrology), and reservoir storage, return flows and abstractions (systems modelling), but within which water quality modelling facilities are rudimentary. The aims of the current study were therefore to: (1) adapt the WQSAM model to be able to use as input the flow outputs of the WEAP model and; (2) provide an initial assessment of how successful this linkage was by application of the WEAP and WQSAM models to the Buffalo River for historical conditions; a small, semi-arid and impacted catchment in the Eastern Cape of South Africa. The simulations of

  19. Effects of historic forest disturbance on water quality and flow in the Interior Western U.S

    Treesearch

    M. Matyjasik; G. Moisen; C. Combe; T. Hathcock; S. Mitts; M. Hernandez; T. Frescino; T. Schroeder

    2014-01-01

    Water quality and flow is affected my many complex factors in the Interior Western U.S. While many studies focus on individual water parameters response to a limited number of changing conditions, little work looks at long term effects of diverse forest disturbances on a broader array of water quality and flow metrics. The U.S. Forest Service Forest Inventory and...

  20. Effects of ground-water chemistry and flow on quality of drainflow in the western San Joaquin Valley, California

    USGS Publications Warehouse

    Fio, John L.; Leighton, David A.

    1994-01-01

    Chemical and geohydrologic data were used to assess the effects of regional ground-water flow on the quality of on-farm drainflows in a part of the western San Joaquin Valley, California. Shallow ground water beneath farm fields has been enriched in stable isotopes and salts by partial evaporation from the shallow water table and is being displaced by irrigation, drainage, and regional ground-water flow. Ground-water flow is primarily downward in the study area but can flow upward in some down- slope areas. Transitional areas exist between the downward and upward flow zones, where ground water can move substantial horizontal distances (0.3 to 3.6 kilometers) and can require 10 to 90 years to reach the downslope drainage systems. Simulation of ground-water flow to drainage systems indicates that regional ground water contributes to about 11 percent of annual drainflow. Selenium concentrations in ground water and drainwater are affected by geologic source materials, partial evaporation from a shallow water table, drainage-system, and regional ground-water flow. Temporal variability in drainflow quality is affected in part by the distribution of chemical constituents in ground water and the flow paths to the drainage systems. The mass flux of selenium in drainflows, or load, generally is proportional to flow, and reductions in drainflow quantity should reduce selenium loads over the short-term. Uncertain changes in the distribution of ground-water quality make future changes in drainflow quality difficult to quantify.

  1. Variation of organic matter quantity and quality in streams at Critical Zone Observatory watersheds

    USGS Publications Warehouse

    Miller, Matthew P.; Boyer, Elizabeth W.; McKnight, Diane M.; Brown, Michael G.; Gabor, Rachel S.; Hunsaker, Carolyn T.; Iavorivska , Lidiia; Inamdar, Shreeram; Kaplan, Louis A.; Johnson, Dale W.; Lin, Henry; McDowell, William H.; Perdrial, Julia N.

    2016-01-01

    The quantity and chemical composition of dissolved organic matter (DOM) in surface waters influence ecosystem processes and anthropogenic use of freshwater. However, despite the importance of understanding spatial and temporal patterns in DOM, measures of DOM quality are not routinely included as part of large-scale ecosystem monitoring programs and variations in analytical procedures can introduce artifacts. In this study, we used consistent sampling and analytical methods to meet the objective of defining variability in DOM quantity and quality and other measures of water quality in streamflow issuing from small forested watersheds located within five Critical Zone Observatory sites representing contrasting environmental conditions. Results show distinct separations among sites as a function of water quality constituents. Relationships among rates of atmospheric deposition, water quality conditions, and stream DOM quantity and quality are consistent with the notion that areas with relatively high rates of atmospheric nitrogen and sulfur deposition and high concentrations of divalent cations result in selective transport of DOM derived from microbial sources, including in-stream microbial phototrophs. We suggest that the critical zone as a whole strongly influences the origin, composition, and fate of DOM in streams. This study highlights the value of consistent DOM characterization methods included as part of long-term monitoring programs for improving our understanding of interactions among ecosystem processes as controls on DOM biogeochemistry.

  2. Haemato-oncology patients' perceptions of health-related quality of life after critical illness: A qualitative phenomenological study.

    PubMed

    O'Gara, Geraldine; Tuddenham, Simon; Pattison, Natalie

    2018-02-01

    Haemato-oncology patients often require critical care support due to side-effects of treatment. Discharge can mark the start of an uncertain journey due to the impact of critical illness on health-related quality of life. Qualitatively establishing needs is a priority as current evidence is limited. To qualitatively explore perceptions of haemato-oncology patients' health-related quality of life after critical illness and explore how healthcare professionals can provide long-term support. Nine in-depth interviews were conducted three to eighteen months post-discharge from critical care. Phenomenology was used to gain deeper understanding of the patients' lived experience. A 19-bedded Intensive Care Unit in a specialist cancer centre. Five major themes emerged: Intensive care as a means to an end; Rollercoaster of illness; Reliance on hospital; Having a realistic/sanguine approach; Living in the moment. Haemato-oncology patients who experience critical illness may view it as a small part of a larger treatment pathway, thus health-related quality of life is impacted by this rather than the acute episode. Discharge from the intensive care unit can be seen as a positive end-point, allowing personal growth in areas such as relationships and living life to the full. The contribution of health-care professionals and support of significant others is regarded as critical to the recovery experience. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Simulation of flow and water quality of the Arroyo Colorado, Texas, 1989-99

    USGS Publications Warehouse

    Raines, Timothy H.; Miranda, Roger M.

    2002-01-01

    A model parameter set for use with the Hydrological Simulation Program—FORTRAN watershed model was developed to simulate flow and water quality for selected properties and constituents for the Arroyo Colorado from the city of Mission to the Laguna Madre, Texas. The model simulates flow, selected water-quality properties, and constituent concentrations. The model can be used to estimate a total maximum daily load for selected properties and constituents in the Arroyo Colorado. The model was calibrated and tested for flow with data measured during 1989–99 at three streamflow-gaging stations. The errors for total flow volume ranged from -0.1 to 29.0 percent, and the errors for total storm volume ranged from -15.6 to 8.4 percent. The model was calibrated and tested for water quality for seven properties and constituents with 1989–99 data. The model was calibrated sequentially for suspended sediment, water temperature, biochemical oxygen demand, dissolved oxygen, nitrate nitrogen, ammonia nitrogen, and orthophosphate. The simulated concentrations of the selected properties and constituents generally matched the measured concentrations available for the calibration and testing periods. The model was used to simulate total point- and nonpoint-source loads for selected properties and constituents for 1989–99 for urban, natural, and agricultural land-use types. About one-third to one-half of the biochemical oxygen demand and nutrient loads are from urban point and nonpoint sources, although only 13 percent of the total land use in the basin is urban.

  4. Quality Improvement in Critical Care: Selection and Development of Quality Indicators

    PubMed Central

    Martin, Claudio M.; Project, The Quality Improvement in Critical Care

    2016-01-01

    Background. Caring for critically ill patients is complex and resource intensive. An approach to monitor and compare the function of different intensive care units (ICUs) is needed to optimize outcomes for patients and the health system as a whole. Objective. To develop and implement quality indicators for comparing ICU characteristics and performance within and between ICUs and regions over time. Methods. Canadian jurisdictions with established ICU clinical databases were invited to participate in an iterative series of face-to-face meetings, teleconferences, and web conferences. Eighteen adult intensive care units across 14 hospitals and 5 provinces participated in the process. Results. Six domains of ICU function were identified: safe, timely, efficient, effective, patient/family satisfaction, and staff work life. Detailed operational definitions were developed for 22 quality indicators. The feasibility was demonstrated with the collection of 3.5 years of data. Statistical process control charts and graphs of composite measures were used for data display and comparisons. Medical and nursing leaders as well as administrators found the system to be an improvement over prior methods. Conclusions. Our process resulted in the selection and development of 22 indicators representing 6 domains of ICU function. We have demonstrated the feasibility of such a reporting system. This type of reporting system will demonstrate variation between units and jurisdictions to help identify and prioritize improvement efforts. PMID:27493476

  5. Derivation of debris flow critical rainfall thresholds from land stability modeling

    NASA Astrophysics Data System (ADS)

    Papa, M. N.; Medina, V.; Bateman, A.; Ciervo, F.

    2012-04-01

    The aim of the work is to develop a system capable of providing debris flow warnings in areas where historical events data are not available as well as in the case of changing environments and climate. For these reasons, critical rainfall threshold curves are derived from mathematical and numerical simulations rather than the classical derivation from empirical rainfall data. The operational use of distributed model, based on the stability analysis for each grid cell of the basin, is not feasible in the case of warnings due to the long running time required for this kind of model as well as the lack of detailed information on the spatial distribution of the properties of the material in many practical cases. Moreover, with the aim of giving debris flow warnings, it is not necessary to know the distribution of instable elements along the basin but only if a debris flow may affect the vulnerable areas in the valley. The capability of a debris flow of reaching the downstream areas depends on many factors linked with the topography, the solid concentration, the rheological properties of the debris mixture and the flow discharge as well as the occurrence of liquefaction of the sliding mass. In relation to a specific basin, many of these factors may be considered as not time dependent. The most rainfall dependent factors are flow discharge and correlated total debris volume. In the present study, the total volume that is instable, and therefore available for the flow, is considered as the governing factor from which it is possible to assess whether a debris flow will affect the downstream areas or not. The possible triggering debris flow is simulated, in a generic element of the basin, by an infinite slope stability analysis. The groundwater pressure is calculated by the superposition of the effect of an "antecedent" rainfall and an "event" rainfall. The groundwater pressure response to antecedent rainfall is used as the initial condition for the time

  6. Search Engine Ranking, Quality, and Content of Web Pages That Are Critical Versus Noncritical of Human Papillomavirus Vaccine.

    PubMed

    Fu, Linda Y; Zook, Kathleen; Spoehr-Labutta, Zachary; Hu, Pamela; Joseph, Jill G

    2016-01-01

    Online information can influence attitudes toward vaccination. The aim of the present study was to provide a systematic evaluation of the search engine ranking, quality, and content of Web pages that are critical versus noncritical of human papillomavirus (HPV) vaccination. We identified HPV vaccine-related Web pages with the Google search engine by entering 20 terms. We then assessed each Web page for critical versus noncritical bias and for the following quality indicators: authorship disclosure, source disclosure, attribution of at least one reference, currency, exclusion of testimonial accounts, and readability level less than ninth grade. We also determined Web page comprehensiveness in terms of mention of 14 HPV vaccine-relevant topics. Twenty searches yielded 116 unique Web pages. HPV vaccine-critical Web pages comprised roughly a third of the top, top 5- and top 10-ranking Web pages. The prevalence of HPV vaccine-critical Web pages was higher for queries that included term modifiers in addition to root terms. Compared with noncritical Web pages, Web pages critical of HPV vaccine overall had a lower quality score than those with a noncritical bias (p < .01) and covered fewer important HPV-related topics (p < .001). Critical Web pages required viewers to have higher reading skills, were less likely to include an author byline, and were more likely to include testimonial accounts. They also were more likely to raise unsubstantiated concerns about vaccination. Web pages critical of HPV vaccine may be frequently returned and highly ranked by search engine queries despite being of lower quality and less comprehensive than noncritical Web pages. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  7. Investigation of Body Force Effects on Flow Boiling Critical Heat Flux

    NASA Technical Reports Server (NTRS)

    Zhang, Hui; Mudawar, Issam; Hasan, Mohammad M.

    2002-01-01

    The bubble coalescence and interfacial instabilities that are important to modeling critical heat flux (CHF) in reduced-gravity systems can be sensitive to even minute body forces. Understanding these complex phenomena is vital to the design and safe implementation of two-phase thermal management loops proposed for space and planetary-based thermal systems. While reduced gravity conditions cannot be accurately simulated in 1g ground-based experiments, such experiments can help isolate the effects of the various forces (body force, surface tension force and inertia) which influence flow boiling CHF. In this project, the effects of the component of body force perpendicular to a heated wall were examined by conducting 1g flow boiling experiments at different orientations. FC-72 liquid was boiled along one wall of a transparent rectangular flow channel that permitted photographic study of the vapor-liquid interface at conditions approaching CHF. High-speed video imaging was employed to capture dominant CHF mechanisms. Six different CHF regimes were identified: Wavy Vapor Layer, Pool Boiling, Stratification, Vapor Counterflow, Vapor Stagnation, and Separated Concurrent Vapor Flow. CHF showed great sensitivity to orientation for flow velocities below 0.2 m/s, where very small CHF values where measured, especially with downflow and downward-facing heated wall orientations. High flow velocities dampened the effects of orientation considerably. Figure I shows representative images for the different CHF regimes. The Wavy Vapor Layer regime was dominant for all high velocities and most orientations, while all other regimes were encountered at low velocities, in the downflow and/or downward-facing heated wall orientations. The Interfacial Lift-off model was modified to predict the effects of orientation on CHF for the dominant Wavy Vapor Layer regime. The photographic study captured a fairly continuous wavy vapor layer travelling along the heated wall while permitting liquid

  8. A Critical Review of the Literature on the Relationship between School Quality and Health Inequalities

    ERIC Educational Resources Information Center

    Garcy, Anthony M.; Berliner, David C.

    2018-01-01

    Robust evidence suggesting a strong association between greater educational attainment, better health and lower mortality, has led to speculation that the quality of schooling can also have effects on health. This review critically summarises findings from 15 studies in a growing area of research concerning the effects of school quality on health.…

  9. A one-dimensional model to describe flow localization in viscoplastic slender bars subjected to super critical impact velocities

    NASA Astrophysics Data System (ADS)

    Vaz-Romero, A.; Rodríguez-Martínez, J. A.

    2018-01-01

    In this paper we investigate flow localization in viscoplastic slender bars subjected to dynamic tension. We explore loading rates above the critical impact velocity: the wave initiated in the impacted end by the applied velocity is the trigger for the localization of plastic deformation. The problem has been addressed using two kinds of numerical simulations: (1) one-dimensional finite difference calculations and (2) axisymmetric finite element computations. The latter calculations have been used to validate the capacity of the finite difference model to describe plastic flow localization at high impact velocities. The finite difference model, which highlights due to its simplicity, allows to obtain insights into the role played by the strain rate and temperature sensitivities of the material in the process of dynamic flow localization. Specifically, we have shown that viscosity can stabilize the material behavior to the point of preventing the appearance of the critical impact velocity. This is a key outcome of our investigation, which, to the best of the authors' knowledge, has not been previously reported in the literature.

  10. Identification of critical paralog groups with indispensable roles in the regulation of signaling flow

    PubMed Central

    Modos, Dezso; Brooks, Johanne; Fazekas, David; Ari, Eszter; Vellai, Tibor; Csermely, Peter; Korcsmaros, Tamas; Lenti, Katalin

    2016-01-01

    Extensive cross-talk between signaling pathways is required to integrate the myriad of extracellular signal combinations at the cellular level. Gene duplication events may lead to the emergence of novel functions, leaving groups of similar genes - termed paralogs - in the genome. To distinguish critical paralog groups (CPGs) from other paralogs in human signaling networks, we developed a signaling network-based method using cross-talk annotation and tissue-specific signaling flow analysis. 75 CPGs were found with higher degree, betweenness centrality, closeness, and ‘bowtieness’ when compared to other paralogs or other proteins in the signaling network. CPGs had higher diversity in all these measures, with more varied biological functions and more specific post-transcriptional regulation than non-critical paralog groups (non-CPG). Using TGF-beta, Notch and MAPK pathways as examples, SMAD2/3, NOTCH1/2/3 and MEK3/6-p38 CPGs were found to regulate the signaling flow of their respective pathways. Additionally, CPGs showed a higher mutation rate in both inherited diseases and cancer, and were enriched in drug targets. In conclusion, the results revealed two distinct types of paralog groups in the signaling network: CPGs and non-CPGs. Thus highlighting the importance of CPGs as compared to non-CPGs in drug discovery and disease pathogenesis. PMID:27922122

  11. WATER QUALITY CHANGES IN HYPORHEIC FLOW PATHS BETWEEN A LARGE GRAVEL BED RIVER AND OFF-CHANNEL ALCOVES IN OREGON, USA

    EPA Science Inventory

    Changes in water quality that occur as water flows along hyporheic flow paths may have important effects on surface water quality and aquatic habitat, yet very few studies have examined these hyporheic processes along large gravel bed rivers. To determine water quality changes as...

  12. Self-organized criticality in a two-dimensional cellular automaton model of a magnetic flux tube with background flow

    NASA Astrophysics Data System (ADS)

    Dănilă, B.; Harko, T.; Mocanu, G.

    2015-11-01

    We investigate the transition to self-organized criticality in a two-dimensional model of a flux tube with a background flow. The magnetic induction equation, represented by a partial differential equation with a stochastic source term, is discretized and implemented on a two-dimensional cellular automaton. The energy released by the automaton during one relaxation event is the magnetic energy. As a result of the simulations, we obtain the time evolution of the energy release, of the system control parameter, of the event lifetime distribution and of the event size distribution, respectively, and we establish that a self-organized critical state is indeed reached by the system. Moreover, energetic initial impulses in the magnetohydrodynamic flow can lead to one-dimensional signatures in the magnetic two-dimensional system, once the self-organized critical regime is established. The applications of the model for the study of gamma-ray bursts (GRBs) is briefly considered, and it is shown that some astrophysical parameters of the bursts, like the light curves, the maximum released energy and the number of peaks in the light curve can be reproduced and explained, at least on a qualitative level, by working in a framework in which the systems settles in a self-organized critical state via magnetic reconnection processes in the magnetized GRB fireball.

  13. Botulinum toxin A and B raise blood flow and increase survival of critically ischemic skin flaps.

    PubMed

    Schweizer, Dennis F; Schweizer, Riccardo; Zhang, Shengye; Kamat, Pranitha; Contaldo, Claudio; Rieben, Robert; Eberli, Daniel; Giovanoli, Pietro; Erni, Dominique; Plock, Jan A

    2013-10-01

    Botulinum toxin (BTX) A and B are commonly used for aesthetic indications and in neuromuscular disorders. New concepts seek to prove efficacy of BTX for critical tissue perfusion. Our aim was to evaluate BTX A and B in a mouse model of critical flap ischemia for preoperative and intraoperative application. BTX A and B were applied on the vascular pedicle of an axial pattern flap in mice preoperatively or intraoperatively. Blood flow, tissue oxygenation, tissue metabolism, flap necrosis rate, apoptosis assay, and RhoA and eNOS expression were endpoints. Blood-flow measurements 1 d after the flap operation revealed a significant reduction to 53% in the control group, while flow was maintained or increased in all BTX groups (103%-129%). Over 5 d all BTX groups showed significant increase in blood flow to 166-187% (P < 0.01). Microdialysis revealed an increase of glucose and reduced lactate/pyruvate ratio and glycerol levels in the flap tissue of all BTX groups. This resulted in significantly improved tissue survival in all BTX groups compared with the control group (62% ± 10%; all P < 0.01): BTX A preconditioning (84% ± 5%), BTX A application intraoperatively (88% ± 4%), BTX B preconditioning (91% ± 4%), and intraoperative BTX B treatment (92% ± 5%). This was confirmed by TUNEL assay. Immunofluorescence demonstrated RhoA and eNOS expression in BTX groups. All BTX applications were similarly effective, despite pharmacologic dissimilarities and different timing. In conclusion, we were able to show on a vascular, tissue, cell, and molecular level that BTX injection to the feeding arteries supports flap survival through ameliorated blood flow and oxygen delivery. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Soil organic phosphorus flows to water via critical and non-critical hydrological source areas

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Surridge, Ben; Haygarth, Phil

    2015-04-01

    Soil organic phosphorus flows to water via critical and non-critical hydrological source areas Ying Wang, Ben W.J. Surridge, Philip M. Haygarth Lancaster Environment Centre, Lancaster University, LA1 4YQ, UK Critical source areas (CSAs) are zones in the landscape where easily connected hydrology coincides with a phosphorus (P) sources in the soil. The P export risks in CSAs are hypothesised to be higher compared with non-critical source areas (Non-CSAs) and specifically that the magnitudes of P forms in CSA areas were higher than Non-CSAs. Past research on CSAs has often neglected forms of organic P, such as DNA and phospholipids which are among the most potentially biodegradable organic P compounds. The objectives of this study were i) to quantify the magnitude of organic P compounds in agricultural soils and specifically determine whether these magnitudes differed significantly between CSAs and Non-CSAs; ii) determine the variation of P magnitude between and within individual fields; iii) identify the P delivery concentrations in soil solution after raining events in CSAs. The study focussed on soils collected from the Morland sub-catchment of the River Eden catchment in Cumbria, northern England. CSA and Non-CSA pairs were identified using the SCIMAP modelling and field assessment providing five CSA - Non-CSA pairs in total. The results showed that there are significant differences in the total P (TP) concentrations, the proportions of DNA-P, WETP (water extractable total P), WERP (water extractable reactive P) and WEUP (water extractable unreactive P) between CSA and Non-CSA. We also found that the concentrations of all the P forms showed distribution variation between fields or even within the same field. Liable organic P such as DNA-P and PLD-P was presented considerable proportions of total P in soil, especially DNA-P which had a good correlation with TP. DNA-P in the ten areas accounted for a considerable proportion of soil TP (4.9 to 16.6%). Given the

  15. Estimation of debris flow critical rainfall thresholds by a physically-based model

    NASA Astrophysics Data System (ADS)

    Papa, M. N.; Medina, V.; Ciervo, F.; Bateman, A.

    2012-11-01

    Real time assessment of debris flow hazard is fundamental for setting up warning systems that can mitigate its risk. A convenient method to assess the possible occurrence of a debris flow is the comparison of measured and forecasted rainfall with rainfall threshold curves (RTC). Empirical derivation of the RTC from the analysis of rainfall characteristics of past events is not possible when the database of observed debris flows is poor or when the environment changes with time. For landslides triggered debris flows, the above limitations may be overcome through the methodology here presented, based on the derivation of RTC from a physically based model. The critical RTC are derived from mathematical and numerical simulations based on the infinite-slope stability model in which land instability is governed by the increase in groundwater pressure due to rainfall. The effect of rainfall infiltration on landside occurrence is modelled trough a reduced form of the Richards equation. The simulations are performed in a virtual basin, representative of the studied basin, taking into account the uncertainties linked with the definition of the characteristics of the soil. A large number of calculations are performed combining different values of the rainfall characteristics (intensity and duration of event rainfall and intensity of antecedent rainfall). For each combination of rainfall characteristics, the percentage of the basin that is unstable is computed. The obtained database is opportunely elaborated to derive RTC curves. The methodology is implemented and tested on a small basin of the Amalfi Coast (South Italy).

  16. WATER QUALITY CHANGES IN HYPORHEIC FLOW AT THE AQUATIC-TERRESTRIAL INTERFACE OF A LARGER RIVER

    EPA Science Inventory

    Exchange between river water and groundwater in hyporheic flow at the aquatic-terrestrial interface can importantly affect water quality and aquatic habitat in the main channel of large rivers and at off-channel sites that include flowing and stagnant side channels. With tracer ...

  17. Mesenteric blood flow, glucose absorption and blood pressure responses to small intestinal glucose in critically ill patients older than 65 years.

    PubMed

    Sim, Jennifer A; Horowitz, M; Summers, M J; Trahair, L G; Goud, R S; Zaknic, A V; Hausken, T; Fraser, J D; Chapman, M J; Jones, K L; Deane, A M

    2013-02-01

    To compare nutrient-stimulated changes in superior mesenteric artery (SMA) blood flow, glucose absorption and glycaemia in individuals older than 65 years with, and without, critical illness. Following a 1-h 'observation' period (t (0)-t (60)), 0.9 % saline and glucose (1 kcal/ml) were infused directly into the small intestine at 2 ml/min between t (60)-t (120), and t (120)-t (180), respectively. SMA blood flow was measured using Doppler ultrasonography at t (60) (fasting), t (90) and t (150) and is presented as raw values and nutrient-stimulated increment from baseline (Δ). Glucose absorption was evaluated using serum 3-O-methylglucose (3-OMG) concentrations during, and for 1 h after, the glucose infusion (i.e. t (120)-t (180) and t (120)-t (240)). Mean arterial pressure was recorded between t (60)-t (240). Data are presented as median (25th, 75th percentile). Eleven mechanically ventilated critically ill patients [age 75 (69, 79) years] and nine healthy volunteers [70 (68, 77) years] were studied. The magnitude of the nutrient-stimulated increase in SMA flow was markedly less in the critically ill when compared with healthy subjects [Δt (150): patients 115 (-138, 367) versus health 836 (618, 1,054) ml/min; P = 0.001]. In patients, glucose absorption was reduced during, and for 1 h after, the glucose infusion when compared with health [AUC(120-180): 4.571 (2.591, 6.551) versus 11.307 (8.447, 14.167) mmol/l min; P < 0.001 and AUC(120-240): 26.5 (17.7, 35.3) versus 40.6 (31.7, 49.4) mmol/l min; P = 0.031]. A close relationship between the nutrient-stimulated increment in SMA flow and glucose absorption was evident (3-OMG AUC(120-180) and ∆SMA flow at t (150): r (2) = 0.29; P < 0.05). In critically ill patients aged >65 years, stimulation of SMA flow by small intestinal glucose infusion may be attenuated, which could account for the reduction in glucose absorption.

  18. Critical review of controlled release packaging to improve food safety and quality.

    PubMed

    Chen, Xi; Chen, Mo; Xu, Chenyi; Yam, Kit L

    2018-03-19

    Controlled release packaging (CRP) is an innovative technology that uses the package to release active compounds in a controlled manner to improve safety and quality for a wide range of food products during storage. This paper provides a critical review of the uniqueness, design considerations, and research gaps of CRP, with a focus on the kinetics and mechanism of active compounds releasing from the package. Literature data and practical examples are presented to illustrate how CRP controls what active compounds to release, when and how to release, how much and how fast to release, in order to improve food safety and quality.

  19. Using quality assessment tools to critically appraise ageing research: a guide for clinicians.

    PubMed

    Harrison, Jennifer Kirsty; Reid, James; Quinn, Terry J; Shenkin, Susan Deborah

    2017-05-01

    Evidence based medicine tells us that we should not accept published research at face value. Even research from established teams published in the highest impact journals can have methodological flaws, biases and limited generalisability. The critical appraisal of research studies can seem daunting, but tools are available to make the process easier for the non-specialist. Understanding the language and process of quality assessment is essential when considering or conducting research, and is also valuable for all clinicians who use published research to inform their clinical practice.We present a review written specifically for the practising geriatrician. This considers how quality is defined in relation to the methodological conduct and reporting of research. Having established why quality assessment is important, we present and critique tools which are available to standardise quality assessment. We consider five study designs: RCTs, non-randomised studies, observational studies, systematic reviews and diagnostic test accuracy studies. Quality assessment for each of these study designs is illustrated with an example of published cognitive research. The practical applications of the tools are highlighted, with guidance on their strengths and limitations. We signpost educational resources and offer specific advice for use of these tools.We hope that all geriatricians become comfortable with critical appraisal of published research and that use of the tools described in this review - along with awareness of their strengths and limitations - become a part of teaching, journal clubs and practice. © The Author 2016. Published by Oxford University Press on behalf of the British Geriatrics Society.

  20. Intensive insulin treatment improves forearm blood flow in critically ill patients: a randomized parallel design clinical trial.

    PubMed

    Žuran, Ivan; Poredos, Pavel; Skale, Rafael; Voga, Gorazd; Gabrscek, Lucija; Pareznik, Roman

    2009-01-01

    Intensive insulin treatment of critically ill patients was seen as a promising method of treatment, though recent studies showed that reducing the blood glucose level below 6 mmol/l had a detrimental outcome. The mechanisms of the effects of insulin in the critically ill are not completely understood. The purpose of the study was to test the hypothesis that intensive insulin treatment may influence forearm blood flow independently of global hemodynamic indicators. The study encompassed 29 patients of both sexes who were admitted to the intensive care unit due to sepsis and required artificial ventilation as the result of acute respiratory failure. 14 patients were randomly selected for intensive insulin treatment (Group 1; blood glucose concentration 4.4-6.1 mmol/l), and 15 were selected for conventional insulin treatment (Group 2; blood glucose level 7.0 mmol/l-11.0 mmol/l). At the start of the study (t0, beginning up to 48 hours after admittance and the commencement of artificial ventilation), at 2 hours (t1), 24 hours (t2), and 72 hours (t3) flow in the forearm was measured for 60 minutes using the strain-gauge plethysmography method. Student's t-test of independent samples was used for comparisons between the two groups, and Mann-Whitney's U-test where appropriate. Linear regression analysis and the Pearson correlation coefficient were used to determine the levels of correlation. The difference in 60-minute forearm flow at the start of the study (t0) was not statistically significant between groups, while at t2 and t3 significantly higher values were recorded in Group 1 (t2; Group 1: 420.6 +/- 188.8 ml/100 ml tissue; Group 2: 266.1 +/- 122.2 ml/100 ml tissue (95% CI 30.9-278.0, P = 0.02); t3; Group 1: 369.9 +/- 150.3 ml/100 ml tissue; Group 2: 272.6 +/- 85.7 ml/100 ml tissue (95% CI 5.4-190.0, P = 0.04). At t1 a trend towards significantly higher values in Group 1 was noted (P = 0.05). The level of forearm flow was related to the amount of insulin infusion (r

  1. Intensive insulin treatment improves forearm blood flow in critically ill patients: a randomized parallel design clinical trial

    PubMed Central

    2009-01-01

    Introduction Intensive insulin treatment of critically ill patients was seen as a promising method of treatment, though recent studies showed that reducing the blood glucose level below 6 mmol/l had a detrimental outcome. The mechanisms of the effects of insulin in the critically ill are not completely understood. The purpose of the study was to test the hypothesis that intensive insulin treatment may influence forearm blood flow independently of global hemodynamic indicators. Methods The study encompassed 29 patients of both sexes who were admitted to the intensive care unit due to sepsis and required artificial ventilation as the result of acute respiratory failure. 14 patients were randomly selected for intensive insulin treatment (Group 1; blood glucose concentration 4.4-6.1 mmol/l), and 15 were selected for conventional insulin treatment (Group 2; blood glucose level 7.0 mmol/l-11.0 mmol/l). At the start of the study (t0, beginning up to 48 hours after admittance and the commencement of artificial ventilation), at 2 hours (t1), 24 hours (t2), and 72 hours (t3) flow in the forearm was measured for 60 minutes using the strain-gauge plethysmography method. Student's t-test of independent samples was used for comparisons between the two groups, and Mann-Whitney's U-test where appropriate. Linear regression analysis and the Pearson correlation coefficient were used to determine the levels of correlation. Results The difference in 60-minute forearm flow at the start of the study (t0) was not statistically significant between groups, while at t2 and t3 significantly higher values were recorded in Group 1 (t2; Group 1: 420.6 ± 188.8 ml/100 ml tissue; Group 2: 266.1 ± 122.2 ml/100 ml tissue (95% CI 30.9-278.0, P = 0.02); t3; Group 1: 369.9 ± 150.3 ml/100 ml tissue; Group 2: 272.6 ± 85.7 ml/100 ml tissue (95% CI 5.4-190.0, P = 0.04). At t1 a trend towards significantly higher values in Group 1 was noted (P = 0.05). The level of forearm flow was related to the amount

  2. Flow Quality for Turbine Engine Loads Simulator (TELS) Facility

    DTIC Science & Technology

    1980-06-01

    2.2 GAS INGESTION A mathematical simulation of the turbojet engine and jet deflector was formulated to estimate the severity of the recirculating...3. Swain. R. L. and Mitchell, J. G. "’Smlulatlon of Turbine Engine Operational Loads." Journal of Aircraft Vol. 15, No. 6, June 1978• 4. Ryan, J...3 AEDC-TR-79-83 ~...~ i ,i g - Flow Quality for Turbine Engine Loads Simulator (TELS) Facility R..I. Schulz ARO, Inc. June 1980

  3. Short-Term Health-Related Quality of Life of Critically Ill Children Following Daily Sedation Interruption.

    PubMed

    Vet, Nienke J; de Wildt, Saskia N; Verlaat, Carin W M; Mooij, Miriam G; Tibboel, Dick; de Hoog, Matthijs; Buysse, Corinne M P

    2016-11-01

    Our earlier pediatric daily sedation interruption trial showed that daily sedation interruption in addition to protocolized sedation in critically ill children does not reduce duration of mechanical ventilation, length of stay, or amounts of sedative drugs administered when compared with protocolized sedation only, but undersedation was more frequent in the daily sedation interruption + protocolized sedation group. We now report the preplanned analysis comparing short-term health-related quality of life and posttraumatic stress symptoms between the two groups. Preplanned prospective part of a randomized controlled trial. Two tertiary medical-surgical PICUs in the Netherlands. Critically ill children requiring mechanical ventilation. None. Eight weeks after a child's discharge from the PICU, health-related quality of life was assessed with the validated Child Health Questionnaire and, only for children above 4 years old, posttraumatic stress was assessed with the Dutch Children's Responses to Trauma Inventory. Additionally, health-related quality of life of all study patients was compared with Dutch normative data. Of the 113 patients from two participating centers in the original study, 96 patients were eligible for follow-up and 64 patients were included (response rate, 67%). No difference was found with respect to health-related quality of life between the two study groups. None of the eight children more than 4 years old showed posttraumatic stress symptoms. Daily sedation interruption in addition to protocolized sedation for critically ill children did not seem to have an effect on short-term health-related quality of life. Also in view of the earlier found absence of effect on clinical outcome, we cannot recommend the use of daily sedation interruption + protocolized sedation.

  4. Hydrological connectivity in the karst critical zone: an integrated approach

    NASA Astrophysics Data System (ADS)

    Chen, X.; Zhang, Z.; Soulsby, C.; Cheng, Q.; Binley, A. M.; Tao, M.

    2017-12-01

    Spatial heterogeneity in the subsurface is high, evidenced by specific landform features (sinkholes, caves etc.) and resulting in high variability of hydrological processes in space and time. This includes complex exchange of various flow sources (e.g. hillslope springs and depression aquifers) and fast conduit flow and slow fracture flow. In this paper we integrate various "state-of-the-art" methods to understand the structure and function of this understudied critical zone environment. Geophysical, hydrometric and hydrogeochemical tools are used to characterize the hydrological connectivity of the cockpit karst critical zone in a small catchment of Chenqi, Guizhou province, China. Geophysical surveys, using electrical resistivity tomography (ERT), identified the complex conduit networks that link flows between hillslopes and depressions. Statistical time series analysis of water tables and discharge responses at hillslope springs and in depression wells and underground channels showed different threshold responses of hillslope and depression flows. This reflected the differing relative contribution of fast and slow flow paths during rainfall events of varying magnitude in the hillslope epikarst and depression aquifer in dry and wet periods. This showed that the hillslope epikarst receives a high proportion of rainfall recharge and is thus a main water resource in the catchment during the drought period. In contrast, the depression aquifer receives fast, concentrated hillslope flows during large rainfall events during the wet period, resulting in the filling of depression conduits and frequent flooding. Hydrological tracer studies using water temperatures and stable water isotopes (δD and δ18O) corroborated this and provided quantitative information of the mixing proportions of various flow sources and insights into water travel times. This revealed how higher contributions of event "new" water (from hillslope springs and depression conduits displaces "old" pre

  5. Global existence and incompressible limit in critical spaces for compressible flow of liquid crystals

    NASA Astrophysics Data System (ADS)

    Bie, Qunyi; Cui, Haibo; Wang, Qiru; Yao, Zheng-An

    2017-10-01

    The Cauchy problem for the compressible flow of nematic liquid crystals in the framework of critical spaces is considered. We first establish the existence and uniqueness of global solutions provided that the initial data are close to some equilibrium states. This result improves the work by Hu and Wu (SIAM J Math Anal 45(5):2678-2699, 2013) through relaxing the regularity requirement of the initial data in terms of the director field. Based on the global existence, we then consider the incompressible limit problem for ill prepared initial data. We prove that as the Mach number tends to zero, the global solution to the compressible flow of liquid crystals converges to the solution to the corresponding incompressible model in some function spaces. Moreover, the accurate converge rates are obtained.

  6. Fluid Flow Technology that Measures Up

    NASA Technical Reports Server (NTRS)

    2004-01-01

    From 1994 to 1996, NASA s Marshall Space Flight Center conducted a Center Director's Discretionary Fund research effort to apply artificial intelligence technologies to the health management of plant equipment and space propulsion systems. Through this effort, NASA established a business relationship with Quality Monitoring and Control (QMC), of Kingwood, Texas, to provide hardware modeling and artificial intelligence tools. Very detailed and accurate Space Shuttle Main Engine (SSME) analysis and algorithms were jointly created, which identified several missing, critical instrumentation needs for adequately evaluating the engine health status. One of the missing instruments was a liquid oxygen (LOX) flow measurement. This instrument was missing since the original SSME included a LOX turbine flow meter that failed during a ground test, resulting in considerable damage for NASA. New balanced flow meter technology addresses this need with robust, safe, and accurate flow metering hardware.

  7. Methods and systems for fabricating high quality superconducting tapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majkic, Goran; Selvamanickam, Venkat

    An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.

  8. Irrigated mountain meadow fertilizer application timing effects on overland flow water quality.

    PubMed

    White, Shawn K; Brummer, Joe E; Leininger, Wayne C; Frasier, Gary W; Waskom, Reagan M; Bauder, Troy A

    2003-01-01

    Nonpoint-source pollution from agricultural activities is currently the leading cause of degradation of waterways in the United States. Applying best management practices to flood-irrigated mountain meadows may improve agricultural runoff and return flow water quality. Prior research has focused on fertilizer use for increased hay yields, while few studies have investigated the environmental implications of this practice. We examined the effects of fertilizer application timing on overland flow water quality from an irrigated mountain meadow near Gunnison, Colorado. Application of 40 kg phosphorus (P) and 19 kg nitrogen (N) ha(-1) using monoammonium phosphate (11-52-0, N-P-K) fertilizer to plots in the fall significantly reduced concentrations of reactive P and ammonium N in irrigation overland flow compared with early or late spring fertilization. Reactive P loading was 9 to almost 16 times greater when fertilizer was applied in the early or late spring, respectively, compared with in the fall. Ammonium N followed a similar trend with early spring loading more than 18 times greater and late spring loading more than 34 times greater than loads from fall-fertilized plots. Losses of 45% of the applied P and more than 17% of the N were measured in runoff when fertilizer was applied in the late spring. These results, coupled with those from previous studies, suggest that mountain meadow hay producers should apply fertilizer in the fall, especially P-based fertilizers, to improve hay yields, avoid economic losses from loss of applied fertilizers, and reduce the potential for impacts to water quality.

  9. A quality by design approach using artificial intelligence techniques to control the critical quality attributes of ramipril tablets manufactured by wet granulation.

    PubMed

    Aksu, Buket; Paradkar, Anant; de Matas, Marcel; Özer, Özgen; Güneri, Tamer; York, Peter

    2013-02-01

    Quality by design (QbD) is an essential part of the modern approach to pharmaceutical quality. This study was conducted in the framework of a QbD project involving ramipril tablets. Preliminary work included identification of the critical quality attributes (CQAs) and critical process parameters (CPPs) based on the quality target product profiles (QTPPs) using the historical data and risk assessment method failure mode and effect analysis (FMEA). Compendial and in-house specifications were selected as QTPPs for ramipril tablets. CPPs that affected the product and process were used to establish an experimental design. The results thus obtained can be used to facilitate definition of the design space using tools such as design of experiments (DoE), the response surface method (RSM) and artificial neural networks (ANNs). The project was aimed at discovering hidden knowledge associated with the manufacture of ramipril tablets using a range of artificial intelligence-based software, with the intention of establishing a multi-dimensional design space that ensures consistent product quality. At the end of the study, a design space was developed based on the study data and specifications, and a new formulation was optimized. On the basis of this formulation, a new laboratory batch formulation was prepared and tested. It was confirmed that the explored formulation was within the design space.

  10. Improving operative flow during pediatric airway evaluation: a quality-improvement initiative.

    PubMed

    Prager, Jeremy D; Ruiz, Amanda G; Mooney, Kristin; Gao, Dexiang; Szolnoki, Judit; Shah, Rahul K

    2015-03-01

    Microlaryngoscopy and bronchoscopy procedures (MLBs) are short-duration, high-acuity procedures that carry risk. Poor case flow and communication exacerbate such potential risk. Efficient operative flow is critical for patient safety and resource expenditure. To identify areas for improvement and evaluate the effectiveness of a multidisciplinary quality-improvement (QI) initiative. A QI project using the "Plan-Do-Study-Act" (PDSA) cycle was implemented to assess MLBs performed on pediatric patients in a tertiary academic children's hospital. Forty MLBs were audited using a QI evaluation tool containing 144 fields. Each MLB was evaluated for flow, communication, and timing. Opportunities for improvement were identified. Subsequently, QI interventions were implemented in an iterative cycle, and 66 MLBs were audited after the intervention. Specific QI interventions addressed issues of personnel frequently exiting the operating room (OR) and poor preoperative preparation, identified during QI audit as areas for improvement. Interventions included (1) conducting "huddles" between surgeon and OR staff to discuss needed equipment; (2) implementing improvements to surgeon case ordering and preference cards review; (3) posting an OR door sign to limit traffic during airway procedures; and (4) discouraging personnel breaks during airway procedures. Operating room exiting behavior of OR personnel, preoperative preparation, and case timing were assessed and compared before and after the QI intervention. Personnel exiting the OR during the MLB was identified as a preintervention issue, with the surgical technologist, circulator, or surgeon exiting the room in 55% of cases (n = 22). The surgical technologist and circulator left the room to retrieve equipment in 40% of cases (n = 16), which indicated the need for increased preoperative preparation to improve case timing and operative flow. The QI interventions implemented to address these concerns included education

  11. Research on the Evolution of the Quantity and Quality of Inbound Tourism Flow in Henan Province

    NASA Astrophysics Data System (ADS)

    Zhao, Jun-yuan

    2017-08-01

    Taking 2000-2003’s data of foreign exchange income and the number of inbound tourism from as the sample, we studied the inbound tourism flow and the change of the Liquiity and the synergy degree in these cities. The flow of inbound tourism and the Liquiity in Henan province presented the characteristics of opposite change. In flow, it presents the steady uptrend, there were 3 general forms: gradually reducing, gradually rising and cross rolling type. In Liquiity, its types of high-quality and low-quality flows are basic equivalence, presents the staggered change state. Inbound tourism flow and the evolution of the Liquiity in Henan province can be divided into 3 stages, 2003 and 2008 is a node of its division. The evolution of the inbound tourism flow and Liquiity collaborative structure show that the complex conditions, especially the evolution of the synchronous 2-high type cities and synchronous middle type cities show a trend of decline. The number of later one appears to a change trend of increasing first and then, steady. The number of deviation cities is volatility. The reverse deviation cities are the most, which present a trend of decreasing at first, then coming steady.

  12. Critical Review of Elementary Flows in LCA data

    EPA Science Inventory

    Purpose Elementary flows are essential components of data used for life cycle assessment. A standard list is not used across all sources, as data providers now manage these flows independently. Elementary flows must be consistent across a life cycle inventory for accurate invent...

  13. Linking fish tolerance to water quality criteria for the assessment of environmental flows: A practical method for streamflow regulation and pollution control.

    PubMed

    Zhao, Changsen; Yang, Shengtian; Liu, Junguo; Liu, Changming; Hao, Fanghua; Wang, Zhonggen; Zhang, Huitong; Song, Jinxi; Mitrovic, Simon M; Lim, Richard P

    2018-05-15

    The survival of aquatic biota in stream ecosystems depends on both water quantity and quality, and is particularly susceptible to degraded water quality in regulated rivers. Maintenance of environmental flows (e-flows) for aquatic biota with optimum water quantity and quality is essential for sustainable ecosystem services, especially in developing regions with insufficient stream monitoring of hydrology, water quality and aquatic biota. Few e-flow methods are available that closely link aquatic biota tolerances to pollutant concentrations in a simple and practical manner. In this paper a new method was proposed to assess e-flows that aimed to satisfy the requirements of aquatic biota for both the quantity and quality of the streamflow by linking fish tolerances to water quality criteria, or the allowable concentration of pollutants. For better operation of water projects and control of pollutants discharged into streams, this paper presented two coefficients for streamflow adjustment and pollutant control. Assessment of e-flows in the Wei River, the largest tributary of the Yellow River, shows that streamflow in dry seasons failed to meet e-flow requirements. Pollutant influx exerted a large pressure on the aquatic ecosystem, with pollutant concentrations much higher than that of the fish tolerance thresholds. We found that both flow velocity and water temperature exerted great influences on the pollutant degradation rate. Flow velocity had a much greater influence on pollutant degradation than did the standard deviation of flow velocity. This study provides new methods to closely link the tolerance of aquatic biota to water quality criteria for e-flow assessment. The recommended coefficients for streamflow adjustment and pollutant control, to dynamically regulate streamflow and control pollutant discharge, are helpful for river management and ecosystems rehabilitation. The relatively low data requirement also makes the method easy to use efficiently in developing

  14. Understanding critical factors for the quality and shelf-life of MAP fresh meat: a review.

    PubMed

    Singh, Preeti; Wani, Ali Abas; Saengerlaub, Sven; Langowski, Horst-Christian

    2011-02-01

    Due to increased demands for greater stringency in relation to hygiene and safety issues associated with fresh food products, coupled with ever-increasing demands by retailers for cost-effective extensions to product shelf-lives and the requirement to meet consumer expectations in relation to convenience and quality, the food packaging industry has rapidly developed to meet and satisfy expectations. One of the areas of research that has shown promise, and had success, is modified atmosphere packaging (MAP). The success of MAP-fresh meat depends on many factors including good initial product quality, good hygiene from the source plants, correct packaging material selection, the appropriate gas mix for the product, reliable packaging equipment, and maintenance of controlled temperatures and humidity levels. Advances in plastic materials and equipment have propelled advances in MAP, but other technological and logistical considerations are needed for successful MAP systems for raw chilled meat. Although several parameters critical for the quality of MA packed meat have been studied and each found to be crucial, understanding of the interactions between the parameters is needed. This review was undertaken to present the most comprehensive and current overview of the widely available, scattered information about the various integrated critical factors responsible for the quality and shelf life of MA packed meat with an interest to stimulate further research to optimize different quality parameters.

  15. Low-flow water-quality characterization of the Gore Creek watershed, upper Colorado River basin, Colorado, August 1996

    USGS Publications Warehouse

    Wynn, Kirby H.; Spahr, Norman E.

    1998-01-01

    The Upper Colorado River Basin (UCOL) is one of 59 National Water-Quality Assessment (NAWQA) study units designed to assess the status and trends of the Nation?s water quality (Leahy and others, 1990). The UCOL study unit began operation in 1994, and surface-water-quality data collection at a network of 14 sites began in October 1995 (Apodaca and others, 1996; Spahr and others, 1996). Gore Creek, which flows through Vail, Colorado, originates in pristine alpine headwaters and is designated a gold-medal trout fishery. The creek drains an area of about 102 square miles and is a tributary to the Eagle River. Gore Creek at the mouth near Minturn (site 13 in fig. 1) is one of the 14 sites in the UCOL network. This site was selected to evaluate water quality resulting from urban development and recreational land use. The Gore Creek watershed has undergone rapid land-use changes since the 1960?s as the Vail area shifted from traditional mountain ranchlands to a four-season resort community. Residential, recreational, commercial, and transportation development continues near Gore Creek and its tributaries to support the increasing permanent and tourist population of the area. Interstate 70 runs through the watershed from Vail Pass near site 14, along the eastern side of Black Gore Creek, and along the northern side of the main stem of Gore Creek to the mouth of the watershed (fig. 1). A major local concern is how increasing urbanization/recreation affects the water quality, gold-medal trout fishery, and aesthetic values of Gore Creek. An evaluation of the spatial characteristics of water quality in the watershed upstream from site 13 at the mouth of Gore Creek (fig. 1) can provide local water and land managers with information necessary to establish water policy and make land-use planning decisions to maintain or improve water quality. Historical data collected at the mouth of Gore Creek provide information about water quality resulting from land use, but a synoptic

  16. What's a stream without water? Disproportionality in headwater regions impacting water quality.

    PubMed

    Armstrong, Andrea; Stedman, Richard C; Bishop, Joseph A; Sullivan, Patrick J

    2012-11-01

    Headwater streams are critical components of the stream network, yet landowner perceptions, attitudes, and property management behaviors surrounding these intermittent and ephemeral streams are not well understood. Our research uses the concept of watershed disproportionality, where coupled social-biophysical conditions bear a disproportionate responsibility for harmful water quality outcomes, to analyze the potential influence of riparian landowner perceptions and attitudes on water quality in headwater regions. We combine social science survey data, aerial imagery, and an analysis of spatial point processes to assess the relationship between riparian landowner perceptions and attitudes in relation to stream flow regularity. Stream flow regularity directly and positively shapes landowners' water quality concerns, and also positively influences landowners' attitudes of stream importance-a key determinant of water quality concern as identified in a path analysis. Similarly, riparian landowners who do not notice or perceive a stream on their property are likely located in headwater regions. Our findings indicate that landowners of headwater streams, which are critical areas for watershed-scale water quality, are less likely to manage for water quality than landowners with perennial streams in an obvious, natural channel. We discuss the relationships between streamflow and how landowners develop understandings of their stream, and relate this to the broader water quality implications of headwater stream mismanagement.

  17. Baccalaureate Nursing Students' Abilities in Critically Identifying and Evaluating the Quality of Online Health Information.

    PubMed

    Theron, Maggie; Redmond, Anne; Borycki, Elizabeth M

    2017-01-01

    Both the Internet and social media have become important tools that patients and health professionals, including health professional students, use to obtain information and support their decision-making surrounding health care. Students in the health sciences require increased competence to select, appraise, and use online sources to adequately educate and support patients and advocate for patient needs and best practices. The purpose of this study was to ascertain if second year nursing students have the ability to critically identify and evaluate the quality of online health information through comparisons between student and expert assessments of selected online health information postings using an adapted Trust in Online Health Information scale. Interviews with experts provided understanding of how experts applied the selected criteria and what experts recommend for implementing nursing informatics literacy in curriculums. The difference between student and expert assessments of the quality of the online information is on average close to 40%. Themes from the interviews highlighted several possible factors that may influence informatics competency levels in students, specifically regarding the critical appraisal of the quality of online health information.

  18. Quality by Design approach to spray drying processing of crystalline nanosuspensions.

    PubMed

    Kumar, Sumit; Gokhale, Rajeev; Burgess, Diane J

    2014-04-10

    Quality by Design (QbD) principles were explored to understand spray drying process for the conversion of liquid nanosuspensions into solid nano-crystalline dry powders using indomethacin as a model drug. The effects of critical process variables: inlet temperature, flow and aspiration rates on critical quality attributes (CQAs): particle size, moisture content, percent yield and crystallinity were investigated employing a full factorial design. A central cubic design was employed to generate the response surface for particle size and percent yield. Multiple linear regression analysis and ANOVA were employed to identify and estimate the effect of critical parameters, establish their relationship with CQAs, create design space and model the spray drying process. Inlet temperature was identified as the only significant factor (p value <0.05) to affect dry powder particle size. Higher inlet temperatures caused drug surface melting and hence aggregation of the dried nano-crystalline powders. Aspiration and flow rates were identified as significant factors affecting yield (p value <0.05). Higher yields were obtained at higher aspiration and lower flow rates. All formulations had less than 3% (w/w) moisture content. Formulations dried at higher inlet temperatures had lower moisture compared to those dried at lower inlet temperatures. Published by Elsevier B.V.

  19. The impact of traffic-flow patterns on air quality in urban street canyons.

    PubMed

    Thaker, Prashant; Gokhale, Sharad

    2016-01-01

    We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17-42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Use of a macroinvertebrate based biotic index to estimate critical metal concentrations for good ecological water quality.

    PubMed

    Van Ael, Evy; De Cooman, Ward; Blust, Ronny; Bervoets, Lieven

    2015-01-01

    Large datasets from total and dissolved metal concentrations in Flemish (Belgium) fresh water systems and the associated macroinvertebrate-based biotic index MMIF (Multimetric Macroinvertebrate Index Flanders) were used to estimate critical metal concentrations for good ecological water quality, as imposed by the European Water Framework Directive (2000). The contribution of different stressors (metals and water characteristics) to the MMIF were studied by constructing generalized linear mixed effect models. Comparison between estimated critical concentrations and the European and Flemish EQS, shows that the EQS for As, Cd, Cu and Zn seem to be sufficient to reach a good ecological quality status as expressed by the invertebrate-based biotic index. In contrast, the EQS for Cr, Hg and Pb are higher than the estimated critical concentrations, which suggests that when environmental concentrations are at the same level as the EQS a good quality status might not be reached. The construction of mixed models that included metal concentrations in their structure did not lead to a significant outcome. However, mixed models showed the primary importance of water characteristics (oxygen level, temperature, ammonium concentration and conductivity) for the MMIF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The Concepts of Quality, Quality Assurance and Quality Enhancement

    ERIC Educational Resources Information Center

    Elassy, Noha

    2015-01-01

    Purpose: This paper aims to critically review and discuss different definitions of the concepts of quality, quality assurance (QA) and quality enhancement (QE) in higher education (HE) with presenting critical perspectives of the literature. Design/methodology/approach: The paper looks at literature concerns with the meaning of quality, QA and QE,…

  2. Real-time assessment of critical quality attributes of a continuous granulation process.

    PubMed

    Fonteyne, Margot; Vercruysse, Jurgen; Díaz, Damián Córdoba; Gildemyn, Delphine; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas

    2013-02-01

    There exists the intention to shift pharmaceutical manufacturing of solid dosage forms from traditional batch production towards continuous production. The currently applied conventional quality control systems, based on sampling and time-consuming off-line analyses in analytical laboratories, would annul the advantages of continuous processing. It is clear that real-time quality assessment and control is indispensable for continuous production. This manuscript evaluates strengths and weaknesses of several complementary Process Analytical Technology (PAT) tools implemented in a continuous wet granulation process, which is part of a fully continuous from powder-to-tablet production line. The use of Raman and NIR-spectroscopy and a particle size distribution analyzer is evaluated for the real-time monitoring of critical parameters during the continuous wet agglomeration of an anhydrous theophylline- lactose blend. The solid state characteristics and particle size of the granules were analyzed in real-time and the critical process parameters influencing these granule characteristics were identified. The temperature of the granulator barrel, the amount of granulation liquid added and, to a lesser extent, the powder feed rate were the parameters influencing the solid state of the active pharmaceutical ingredient (API). A higher barrel temperature and a higher powder feed rate, resulted in larger granules.

  3. Critical features of a curriculum in health care quality and resource management.

    PubMed

    Norman, D K; Randall, R S; Hornsby, B J

    1990-09-01

    In response to mounting demands for quality and accountability in health care, a science of health care quality and resource management (QRM) has evolved, but too slowly and without the academic base needed to prepare practitioners to assume new roles and fulfill requirements to regulate their practice. To develop such a base, The University of Houston and The University of Texas Health Science Center sponsored a needs assessment survey to identify areas of knowledge and skills to be included in a master's degree curriculum in QRM. The study used a three-cycle Focus Delphi technique to secure experts' refinement of the survey instrument and consensus among participants, who included practitioner-members of the National Association of Quality Assurance Professionals (NAQAP), of health care administration educational program directors, and hospital administrators. Starting with a listing based on a competency outline obtained from NAQAP, the study identified critical learning needs and elaborated a framework with 12 broad categories and 108 specific knowledge and skill areas.

  4. Flow list and test results

    EPA Pesticide Factsheets

    These data accompany the manuscript 'Critical Review of Elementary Flows in LCA Data'. Each file presents a subgroup of the elementary flows (data used for analysis) and all the analysis results. Files are separated by flow types. The 'Element or Compound' types contained over 115,000 flows and was broken into three files (a, b,and c). A guide to the file contents and explanation of flow types are provided in the 'CriticalReviewofElementaryFlows_Data_Guide' file.This dataset is associated with the following publication:Edelen, A., W. Ingwersen, C. Rodriguez, R. Alvarenga, A.R. de Almeida, and G. Wernet. Critical Review of Elementary Flows in LCA data. INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT. Ecomed Verlagsgesellschaft AG, Landsberg, GERMANY,

  5. Experiment on smooth, circular cylinders in cross-flow in the critical Reynolds number regime

    NASA Astrophysics Data System (ADS)

    Miau, J. J.; Tsai, H. W.; Lin, Y. J.; Tu, J. K.; Fang, C. H.; Chen, M. C.

    2011-10-01

    Experiments were conducted for 2D circular cylinders at Reynolds numbers in the range of 1.73 × 105-5.86 × 105. In the experiment, two circular cylinder models made of acrylic and stainless steel, respectively, were employed, which have similar dimensions but different surface roughness. Particular attention was paid to the unsteady flow behaviors inferred by the signals obtained from the pressure taps on the cylinder models and by a hot-wire probe in the near-wake region. At Reynolds numbers pertaining to the initial transition from the subcritical to the critical regimes, pronounced pressure fluctuations were measured on the surfaces of both cylinder models, which were attributed to the excursion of unsteady flow separation over a large circumferential region. At the Reynolds numbers almost reaching the one-bubble state, it was noted that the development of separation bubble might switch from one side to the other with time. Wavelet analysis of the pressure signals measured simultaneously at θ = ±90° further revealed that when no separation bubble was developed, the instantaneous vortex-shedding frequencies could be clearly resolved, about 0.2, in terms of the Strouhal number. The results of oil-film flow visualization on the stainless steel cylinder of the one-bubble and two-bubble states showed that the flow reattachment region downstream of a separation bubble appeared not uniform along the span of the model. Thus, the three dimensionality was quite evident.

  6. Impacts of climate change and socio-economic scenarios on flow and water quality of the Ganges, Brahmaputra and Meghna (GBM) river systems: low flow and flood statistics.

    PubMed

    Whitehead, P G; Barbour, E; Futter, M N; Sarkar, S; Rodda, H; Caesar, J; Butterfield, D; Jin, L; Sinha, R; Nicholls, R; Salehin, M

    2015-06-01

    The potential impacts of climate change and socio-economic change on flow and water quality in rivers worldwide is a key area of interest. The Ganges-Brahmaputra-Meghna (GBM) is one of the largest river basins in the world serving a population of over 650 million, and is of vital concern to India and Bangladesh as it provides fresh water for people, agriculture, industry, conservation and for the delta system downstream. This paper seeks to assess future changes in flow and water quality utilising a modelling approach as a means of assessment in a very complex system. The INCA-N model has been applied to the Ganges, Brahmaputra and Meghna river systems to simulate flow and water quality along the rivers under a range of future climate conditions. Three model realisations of the Met Office Hadley Centre global and regional climate models were selected from 17 perturbed model runs to evaluate a range of potential futures in climate. In addition, the models have also been evaluated using socio-economic scenarios, comprising (1) a business as usual future, (2) a more sustainable future, and (3) a less sustainable future. Model results for the 2050s and the 2090s indicate a significant increase in monsoon flows under the future climates, with enhanced flood potential. Low flows are predicted to fall with extended drought periods, which could have impacts on water and sediment supply, irrigated agriculture and saline intrusion. In contrast, the socio-economic changes had relatively little impact on flows, except under the low flow regimes where increased irrigation could further reduce water availability. However, should large scale water transfers upstream of Bangladesh be constructed, these have the potential to reduce flows and divert water away from the delta region depending on the volume and timing of the transfers. This could have significant implications for the delta in terms of saline intrusion, water supply, agriculture and maintaining crucial ecosystems such

  7. Pollutant Transport and Fate: Relations Between Flow-paths and Downstream Impacts of Human Activities

    NASA Astrophysics Data System (ADS)

    Thorslund, J.; Jarsjo, J.; Destouni, G.

    2017-12-01

    The quality of freshwater resources is increasingly impacted by human activities. Humans also extensively change the structure of landscapes, which may alter natural hydrological processes. To manage and maintain freshwater of good water quality, it is critical to understand how pollutants are released into, transported and transformed within the hydrological system. Some key scientific questions include: What are net downstream impacts of pollutants across different hydroclimatic and human disturbance conditions, and on different scales? What are the functions within and between components of the landscape, such as wetlands, on mitigating pollutant load delivery to downstream recipients? We explore these questions by synthesizing results from several relevant case study examples of intensely human-impacted hydrological systems. These case study sites have been specifically evaluated in terms of net impact of human activities on pollutant input to the aquatic system, as well as flow-path distributions trough wetlands as a potential ecosystem service of pollutant mitigation. Results shows that although individual wetlands have high retention capacity, efficient net retention effects were not always achieved at a larger landscape scale. Evidence suggests that the function of wetlands as mitigation solutions to pollutant loads is largely controlled by large-scale parallel and circular flow-paths, through which multiple wetlands are interconnected in the landscape. To achieve net mitigation effects at large scale, a large fraction of the polluted large-scale flows must be transported through multiple connected wetlands. Although such large-scale flow interactions are critical for assessing water pollution spreading and fate through the landscape, our synthesis shows a frequent lack of knowledge at such scales. We suggest ways forward for addressing the mismatch between the large scales at which key pollutant pressures and water quality changes take place and the

  8. Groundwater-flow parameter estimation and quality modeling of the Equus Beds aquifer in Kansas, U.S.A.

    USGS Publications Warehouse

    Sophocleous, M.A.

    1984-01-01

    The salinity problems created in the Burrton area as a result of poor oil-field brine disposal practices of the past continue to be a major concern to the area depending on the Equus Beds aquifer for water, including the City of Wichita, Kansas. In this paper, an attempt is made to predict where and how fast the brine plume will move in this area, and what the average chloride concentrations in different parts of the aquifer are. In order to make such predictions, it was necessary to get a calibrated model of the groundwater-flow velocity field. Multiple regression analysis is used for parameter estimation of the steady-state groundwater-flow equation applied in the most critical area of the Equus Beds aquifer. Results of such an analysis produced a correlation coefficient of 0.992 between calculated and observed values of hydraulic head. A chloride transport modeling effort is then carried out despite some serious data deficiencies, the significance of which are evaluated through sensitivity analysis. Thus, starting with the quasi steady-state conditions of the early 1940's, it was possible to match the present chloride distribution satisfactorily. Chloride concentration predictions made for the year 2000 indicate that the quality of the Wichita well-field waters will not generally deteriorate from their present condition by that time. ?? 1984.

  9. Academic research groups: evaluation of their quality and quality of their evaluation

    NASA Astrophysics Data System (ADS)

    Berche, Bertrand; Holovatch, Yuri; Kenna, Ralph; Mryglod, Olesya

    2016-02-01

    In recent years, evaluation of the quality of academic research has become an increasingly important and influential business. It determines, often to a large extent, the amount of research funding flowing into universities and similar institutes from governmental agencies and it impacts upon academic careers. Policy makers are becoming increasingly reliant upon, and influenced by, the outcomes of such evaluations. In response, university managers are increasingly attracted to simple metrics as guides to the dynamics of the positions of their various institutions in league tables. However, these league tables are invariably drawn up by inexpert bodies such as newspapers and magazines, using arbitrary measures and criteria. Terms such as “critical mass” and “h-index” are bandied about without understanding of what they actually mean. Rather than accepting the rise and fall of universities, departments and individuals on a turbulent sea of arbitrary measures, we suggest it is incumbent upon the scientific community itself to clarify their nature. Here we report on recent attempts to do that by properly defining critical mass and showing how group size influences research quality. We also examine currently predominant metrics and show that these fail as reliable indicators of group research quality.

  10. Simulating climate change and socio-economic change impacts on flows and water quality in the Mahanadi River system, India.

    PubMed

    Jin, Li; Whitehead, Paul G; Rodda, Harvey; Macadam, Ian; Sarkar, Sananda

    2018-10-01

    Delta systems formed by the deposition of sediments at the mouths of large catchments are vulnerable to sea level rise and other climate change impacts. Deltas often have some of the highest population densities in the world and the Mahanadi Delta in India is one of these, with a population of 39 million. The Mahanadi River is a major river in East Central India and flows through Chattisgarh and Orissa states before discharging into the Bay of Bengal. This study uses an Integrated Catchment Model (INCA) to simulate flow dynamics and water quality (nitrogen and phosphorus) and to analyze the impacts of climate change and socio-economic drivers in the Mahanadi River system. Future flows affected by large population growth, effluent discharge increases and changes in irrigation water demand from changing land uses are assessed under shared socio-economic pathways (SSPs). Model results indicate a significant increase in monsoon flows under the future climates at 2050s (2041-2060) and 2090s (2079-2098) which greatly enhances flood potential. The water availability under low flow conditions will be worsened because of increased water demand from population growth and increased irrigation in the future. Decreased concentrations of nitrogen and phosphorus are expected due to increased flow hence dilution. Socio-economic scenarios have a significant impact on water quality but less impact on the river flow. For example, higher population growth, increased sewage treatment discharges, land use change and enhanced atmospheric deposition would result in the deterioration of water quality, while the upgrade of the sewage treatment works lead to improved water quality. In summary, socio-economic scenarios would change future water quality of the Mahanadi River and alter nutrient fluxes transported into the delta region. This study has serious implications for people's livelihoods in the deltaic area and could impact coastal and Bay of Bengal water ecology. Copyright © 2018

  11. [Research progress in post-fire debris flow].

    PubMed

    Di, Xue-ying; Tao, Yu-zhu

    2013-08-01

    The occurrence of the secondary disasters of forest fire has significant impacts on the environment quality and human health and safety. Post-fire debris flow is one of the most hazardous secondary disasters of forest fire. To understand the occurrence conditions of post-fire debris flow and to master its occurrence situation are the critical elements in post-fire hazard assessment. From the viewpoints of vegetation, precipitation threshold and debris flow material sources, this paper elaborated the impacts of forest fire on the debris flow, analyzed the geologic and geomorphic conditions, precipitation and slope condition that caused the post-fire debris flow as well as the primary mechanisms of debris-flow initiation caused by shallow landslide or surface runoff, and reviewed the research progress in the prediction and forecast of post-fire debris flow and the related control measures. In the future research, four aspects to be focused on were proposed, i. e., the quantification of the relationships between the fire behaviors and environmental factors and the post-fire debris flow, the quantitative research on the post-fire debris flow initiation and movement processes, the mechanistic model of post-fire debris flow, and the rapid and efficient control countermeasures of post-fire debris flow.

  12. Critical care nursing: Embedded complex systems.

    PubMed

    Trinier, Ruth; Liske, Lori; Nenadovic, Vera

    2016-01-01

    Variability in parameters such as heart rate, respiratory rate and blood pressure defines healthy physiology and the ability of the person to adequately respond to stressors. Critically ill patients have lost this variability and require highly specialized nursing care to support life and monitor changes in condition. The critical care environment is a dynamic system through which information flows. The critical care unit is typically designed as a tree structure with generally one attending physician and multiple nurses and allied health care professionals. Information flow through the system allows for identification of deteriorating patient status and timely interventionfor rescue from further deleterious effects. Nurses provide the majority of direct patient care in the critical care setting in 2:1, 1:1 or 1:2 nurse-to-patient ratios. The bedside nurse-critically ill patient relationship represents the primary, real-time feedback loop of information exchange, monitoring and treatment. Variables that enhance information flow through this loop and support timely nursing intervention can improve patient outcomes, while barriers can lead to errors and adverse events. Examining patient information flow in the critical care environment from a dynamic systems perspective provides insights into how nurses deliver effective patient care and prevent adverse events.

  13. Evidence for preferential flux flow at the grain boundaries of superconducting RF-quality niobium

    NASA Astrophysics Data System (ADS)

    Sung, Z.-H.; Lee, P. J.; Gurevich, A.; Larbalestier, D. C.

    2018-04-01

    The question of whether grain boundaries (GBs) in niobium can be responsible for lowered operating field (B RF) or quality factor (Q 0) in superconducting radio frequency (SRF) cavities is still controversial. Here, we show by direct DC transport across planar GBs isolated from a slice of very large-grain SRF-quality Nb that vortices can preferentially flow along the grain boundary when the external magnetic field lies in the GB plane. However, increasing the misalignment between the GB plane and the external magnetic field vector markedly reduces preferential flux flow along the GB. Importantly, we find that preferential GB flux flow is more prominent for a buffered chemical polished than for an electropolished bi-crystal. The voltage-current characteristics of GBs are similar to those seen in low angle grain boundaries of high temperature superconductors where there is clear evidence of suppression of the superconducting order parameter at the GB. While local weakening of superconductivity at GBs in cuprates and pnictides is intrinsic, deterioration of current transparency of GBs in Nb appears to be extrinsic, since the polishing method clearly affect the local GB degradation. The dependence of preferential GB flux flow on important cavity preparation and experimental variables, particularly the final chemical treatment and the angle between the magnetic field and the GB plane, suggests two more reasons why real cavity performance can be so variable.

  14. One-dimensional and two-dimensional hydrodynamic modelling derived flow properties: Impacts on aquatic habitat quality predictions

    Treesearch

    Rohan Benjankar; Daniele Tonina; James McKean

    2014-01-01

    Studies of the effects of hydrodynamic model dimensionality on simulated flow properties and derived quantities such as aquatic habitat quality are limited. It is important to close this knowledge gap especially now that entire river networks can be mapped at the microhabitat scale due to the advent of point-cloud techniques. This study compares flow properties, such...

  15. Global flows of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and platinum.

    PubMed

    Nansai, Keisuke; Nakajima, Kenichi; Kagawa, Shigemi; Kondo, Yasushi; Suh, Sangwon; Shigetomi, Yosuke; Oshita, Yuko

    2014-01-01

    This study, encompassing 231 countries and regions, quantifies the global transfer of three critical metals (neodymium, cobalt, and platinum) considered vital for low-carbon technologies by means of material flow analysis (MFA), using trade data (BACI) and the metal contents of trade commodities, resolving the optimization problem to ensure the material balance of the metals within each country and region. The study shows that in 2005 international trade led to global flows of 18.6 kt of neodymium, 154 kt of cobalt, and 402 t of platinum and identifies the main commodities and top 50 bilateral trade links embodying these metals. To explore the issue of consumption efficiency, the flows were characterized according to the technological level of each country or region and divided into three types: green ("efficient use"), yellow ("moderately efficient use"), and red ("inefficient use"). On this basis, the shares of green, yellow, and red flows in the aggregate global flow of Nd were found to be 1.2%, 98%, and 1.2%, respectively. For Co, the respective figures are 53%, 28%, and 19%, and for Pt 15%, 84%, and 0.87%. Furthermore, a simple indicator focusing on the composition of the three colored flows for each commodity was developed to identify trade commodities that should be prioritized for urgent technical improvement to reduce wasteful use of the metals. Based on the indicator, we discuss logical, strategic identification of the responsibilities and roles of the countries involved in the global flows.

  16. Impedance Flow Cytometry as a Tool to Analyze Microspore and Pollen Quality.

    PubMed

    Heidmann, Iris; Di Berardino, Marco

    2017-01-01

    Analyzing pollen quality in an efficient and reliable manner is of great importance to the industries involved in seed and fruit production, plant breeding, and plant research. Pollen quality parameters, viability and germination capacity, are analyzed by various staining methods or by in vitro germination assays, respectively. These methods are time-consuming, species-dependent, and require a lab environment. Furthermore, the obtained viability data are often poorly related to in vivo pollen germination and seed set. Here, we describe a quick, label-free method to analyze pollen using microfluidic chips inserted into an impedance flow cytometer (IFC). Using this approach, pollen quality parameters are determined by a single measurement in a species-independent manner. The advantage of this protocol is that pollen viability and germination can be analyzed quickly by a reliable and standardized method.

  17. Emergence of criticality in the transportation passenger flow: scaling and renormalization in the Seoul bus system.

    PubMed

    Goh, Segun; Lee, Keumsook; Choi, Moo Young; Fortin, Jean-Yves

    2014-01-01

    Social systems have recently attracted much attention, with attempts to understand social behavior with the aid of statistical mechanics applied to complex systems. Collective properties of such systems emerge from couplings between components, for example, individual persons, transportation nodes such as airports or subway stations, and administrative districts. Among various collective properties, criticality is known as a characteristic property of a complex system, which helps the systems to respond flexibly to external perturbations. This work considers the criticality of the urban transportation system entailed in the massive smart card data on the Seoul transportation network. Analyzing the passenger flow on the Seoul bus system during one week, we find explicit power-law correlations in the system, that is, power-law behavior of the strength correlation function of bus stops and verify scale invariance of the strength fluctuations. Such criticality is probed by means of the scaling and renormalization analysis of the modified gravity model applied to the system. Here a group of nearby (bare) bus stops are transformed into a (renormalized) "block stop" and the scaling relations of the network density turn out to be closely related to the fractal dimensions of the system, revealing the underlying structure. Specifically, the resulting renormalized values of the gravity exponent and of the Hill coefficient give a good description of the Seoul bus system: The former measures the characteristic dimensionality of the network whereas the latter reflects the coupling between distinct transportation modes. It is thus demonstrated that such ideas of physics as scaling and renormalization can be applied successfully to social phenomena exemplified by the passenger flow.

  18. Emergence of Criticality in the Transportation Passenger Flow: Scaling and Renormalization in the Seoul Bus System

    PubMed Central

    Goh, Segun; Lee, Keumsook; Choi, MooYoung; Fortin, Jean-Yves

    2014-01-01

    Social systems have recently attracted much attention, with attempts to understand social behavior with the aid of statistical mechanics applied to complex systems. Collective properties of such systems emerge from couplings between components, for example, individual persons, transportation nodes such as airports or subway stations, and administrative districts. Among various collective properties, criticality is known as a characteristic property of a complex system, which helps the systems to respond flexibly to external perturbations. This work considers the criticality of the urban transportation system entailed in the massive smart card data on the Seoul transportation network. Analyzing the passenger flow on the Seoul bus system during one week, we find explicit power-law correlations in the system, that is, power-law behavior of the strength correlation function of bus stops and verify scale invariance of the strength fluctuations. Such criticality is probed by means of the scaling and renormalization analysis of the modified gravity model applied to the system. Here a group of nearby (bare) bus stops are transformed into a (renormalized) “block stop” and the scaling relations of the network density turn out to be closely related to the fractal dimensions of the system, revealing the underlying structure. Specifically, the resulting renormalized values of the gravity exponent and of the Hill coefficient give a good description of the Seoul bus system: The former measures the characteristic dimensionality of the network whereas the latter reflects the coupling between distinct transportation modes. It is thus demonstrated that such ideas of physics as scaling and renormalization can be applied successfully to social phenomena exemplified by the passenger flow. PMID:24599221

  19. Characterization of water quality and suspended sediment during cold-season flows, warm-season flows, and stormflows in the Fountain and Monument Creek watersheds, Colorado, 2007–2015

    USGS Publications Warehouse

    Miller, Lisa D.; Stogner, Sr., Robert W.

    2017-09-01

    From 2007 through 2015, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, conducted a study in the Fountain and Monument Creek watersheds, Colorado, to characterize surface-water quality and suspended-sediment conditions for three different streamflow regimes with an emphasis on characterizing water quality during storm runoff. Data collected during this study were used to evaluate the effects of stormflows and wastewater-treatment effluent discharge on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality samples were collected at 2 sites on Upper Fountain Creek, 2 sites on Monument Creek, 3 sites on Lower Fountain Creek, and 13 tributary sites during 3 flow regimes: cold-season flow (November–April), warm-season flow (May–October), and stormflow from 2007 through 2015. During 2015, additional samples were collected and analyzed for Escherichia coli (E. coli) during dry weather conditions at 41 sites, located in E. coli impaired stream reaches, to help identify source areas and scope of the impairment.Concentrations of E. coli, total arsenic, and dissolved copper, selenium, and zinc in surface-water samples were compared to Colorado in-stream standards. Stormflow concentrations of E. coli frequently exceeded the recreational use standard of 126 colonies per 100 milliliters at main-stem and tributary sites by more than an order of magnitude. Even though median E. coli concentrations in warm-season flow samples were lower than median concentrations in storm-flow samples, the water quality standard for E. coli was still exceeded at most main-stem sites and many tributary sites during warm-season flows. Six samples (three warm-season flow and three stormflow samples) collected from Upper Fountain Creek, upstream from the confluence of Monument Creek, and two stormflow samples collected from Lower Fountain Creek, downstream from the confluence with Monument Creek, exceeded the acute water-quality

  20. Correlations between critical current density, j(sub c), critical temperature, T(sub c),and structural quality of Y1B2Cu3O(7-x) thin superconducting films

    NASA Technical Reports Server (NTRS)

    Chrzanowski, J.; Xing, W. B.; Atlan, D.; Irwin, J. C.; Heinrich, B.; Cragg, R. A.; Zhou, H.; Angus, V.; Habib, F.; Fife, A. A.

    1995-01-01

    Correlations between critical current density (j(sub c)) critical temperature (T(sub c)) and the density of edge dislocations and nonuniform strain have been observed in YBCO thin films deposited by pulsed laser ablation on (001) LaAlO3 single crystals. Distinct maxima in j(sub c) as a function of the linewidths of the (00 l) Bragg reflections and as a function of the mosaic spread have been found in the epitaxial films. These maxima in j(sub c) indicate that the magnetic flux lines, in films of structural quality approachingthat of single crystals, are insufficiently pinned which results in a decreased critical current density. T(sub c) increased monotonically with improving crystalline quality and approached a value characteristic of a pure single crystal. A strong correlation between j(sub c) and the density of edge dislocations ND was found. At the maximum of the critical current density the density of edge dislocations was estimated to be N(sub D) approximately 1-2 x 10(exp 9)/sq cm.

  1. The new grasper-integrated single use flexible cystoscope for double J stent removal: evaluation of image quality, flow and flexibility.

    PubMed

    Talso, M; Emiliani, E; Baghdadi, M; Orosa, A; Servian, P; Barreiro, A; Proietti, S; Traxer, O

    2017-08-01

    A new single use digital flexible cystoscope (FC) Isiris α from Coloplast ® with an incorporated grasper has been developed to perform double J stent removal. There is a lack of data regarding the comparison of image quality, flexibility and flow between classic cystoscopes and the new Isiris α. Five different FC were used to compare the image quality, the field of view, the loss of flow and the deflection loss. Two standardized grids, three stones of different composition and a ruler's image were filmed in four standardized different scenarios. These videos were shown to thirty subjects that had to evaluate them. Water outflow was measured in ml/sec in all devices with and without the grasper inside, instruments tip deflection was measured using a software. In the subjective analysis of the image quality Isiris α was the second FC best scored. At 3 cm of distance, the field view of Isiris α was the narrowest. Comparing the water flow in the different FCs, we observed a water flow decrease in all cystoscopes when the grasper was loaded in the working channel. Isiris α deflection and flow increase when the grasper is activated. In terms of quality of vision and water flow, the FC Isiris α is comparable to the other digital FC tested. Field of view is narrower. The results displayed a valid alternative to the standard procedure for DJ removal.

  2. Megacity pumping and preferential flow threaten groundwater quality

    PubMed Central

    Khan, Mahfuzur R.; Koneshloo, Mohammad; Knappett, Peter S. K.; Ahmed, Kazi M.; Bostick, Benjamin C.; Mailloux, Brian J.; Mozumder, Rajib H.; Zahid, Anwar; Harvey, Charles F.; van Geen, Alexander; Michael, Holly A.

    2016-01-01

    Many of the world's megacities depend on groundwater from geologically complex aquifers that are over-exploited and threatened by contamination. Here, using the example of Dhaka, Bangladesh, we illustrate how interactions between aquifer heterogeneity and groundwater exploitation jeopardize groundwater resources regionally. Groundwater pumping in Dhaka has caused large-scale drawdown that extends into outlying areas where arsenic-contaminated shallow groundwater is pervasive and has potential to migrate downward. We evaluate the vulnerability of deep, low-arsenic groundwater with groundwater models that incorporate geostatistical simulations of aquifer heterogeneity. Simulations show that preferential flow through stratigraphy typical of fluvio-deltaic aquifers could contaminate deep (>150 m) groundwater within a decade, nearly a century faster than predicted through homogeneous models calibrated to the same data. The most critical fast flowpaths cannot be predicted by simplified models or identified by standard measurements. Such complex vulnerability beyond city limits could become a limiting factor for megacity groundwater supplies in aquifers worldwide. PMID:27673729

  3. Catchment organisation, free energy dynamics and network control on critical zone water flows

    NASA Astrophysics Data System (ADS)

    Zehe, E.; Ehret, U.; Kleidon, A.; Jackisch, C.; Scherer, U.; Blume, T.

    2012-04-01

    as that these flow structures organize and dominate flows of water, dissolved matter and sediments during rainfall driven conditions at various scales: - Surface connected vertical flow structures of anecic worm burrows or soil cracks organize and dominated vertical flows at the plot scale - this is usually referred to as preferential flow; - Rill networks at the soil surface organise and dominate hillslope scale overland flow response and sediment yields; - Subsurface pipe networks at the bedrock interface organize and dominate hillslope scale lateral subsurface water and tracer flows; - The river net organizes and dominates flows of water, dissolved matter and sediments to the catchment outlet and finally across continental gradients to the sea. Fundamental progress with respect to the parameterization of hydrological models, subscale flow networks and to understand the adaptation of hydro-geo ecosystems to change could be achieved by discovering principles that govern the organization of catchments flow networks in particular at least during steady state conditions. This insight has inspired various scientists to suggest principles for organization of ecosystems, landscapes and flow networks; as Bejans constructural law, Minimum Energy Expenditure , Maximum Entropy Production. In line with these studies we suggest that a thermodynamic/energetic treatment of the catchment is might be a key for understanding the underlying principles that govern organisation of flow and transport. Our approach is to employ a) physically based hydrological model that address at least all the relevant hydrological processes in the critical zone in a coupled way, behavioural representations of the observed organisation of flow structures and textural elements, that are consistent with observations in two well investigated research catchments and have been tested against distributed observations of soil moisture and catchment scale discharge; to simulate the full concert of hydrological

  4. Predictions of Critical Heat Flux in Annular Pipes with TRACEv4.160 code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasiulevicius, Audrius; Macian-Juan, Rafael

    2006-07-01

    This paper presents the assessment of TRACE (version v4.160) against the Critical Heat Flux (CHF) experiments in annular tubes performed at the Royal Institute of Technology (KTH) in Stockholm, Sweden. The experimental database includes data for coolant mass fluxes between 250 and 2500 kg/m{sup 2}s and inlet subcooling of 10 and 40 K at a pressure of 70 bar. The work presented in this paper supplements the calculations of single round tube experiments carried out earlier and provides a broader scope of validated geometries. In addition to the Biasi and CISE-GE CHF correlations available in the code, a number ofmore » experimental points at low flow conditions are available for the annular geometry experiments, which also permitted the assessment of the Biasi/Zuber CHF correlation used in TRACE v4.160 for low flow conditions. Experiments with different axial power distribution were simulated and the effects of the axial power profile and the coolant inlet subcooling on the TRACE predictions were investigated. The results of this work show that the Biasi/Zuber correlation provides good estimation of the CHF at 70 bar, and, for the same conditions, the simulation of the annular experiments resulted in the calculation of lower CHF values compared to single-tube experiments. The analysis of the performance of the standard TRACE CHF correlations shows that the CISE-GE correlation yields critical qualities (quality at CHF) closer to the experimental values at 70 bar than the Biasi correlation for annular flow conditions. Regarding the power profile, the results of the TRACE calculations seem to be very sensitive to its shape, since, depending on the profile, different accuracies in the predictions were noted while other system conditions remained constant. The inlet coolant subcooling was also an important factor in the accuracy of TRACE CHF predictions. Thus, an increase in the inlet subcooling led to a clear improvement in the estimation of the critical quality with

  5. Flow quality studies of the NASA Lewis Research Center 8- by 6-foot supersonic/9- by 15-foot Low Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Arrington, E. A.; Pickett, Mark T.

    1992-01-01

    A series of studies were conducted to determine the existing flow quality in the NASA Lewis 8 by 6 Foot Supersonic/9 by 15 Foot Low Speed Wind Tunnel. The information gathered from these studies was used to determine the types and designs of flow manipulators which can be installed to improve overall tunnel flow quality and efficiency. Such manipulators include honeycomb flow straighteners, turbulence reduction screens, corner turning vanes, and acoustic treatments. The types of measurements, instrumentation, and results obtained from experiments conducted at several locations throughout the tunnel loop are described.

  6. Flow quality studies of the NASA Lewis Research Center 8- by 6-foot supersonic/9- by 15-foot low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Pickett, Mark T.

    1992-01-01

    A series of studies were conducted to determine the existing flow quality in the NASA Lewis 8 by 6 Foot Supersonic/9 by 15 Foot Low speed Wind Tunnel. The information gathered from these studies was used to determine the types and designs of flow manipulators which can be installed to improve overall tunnel flow quality and efficiency. Such manipulators include honeycomb flow straighteners, turbulence reduction screens, corner turning vanes, and acoustic treatments. The types of measurements, instrumentation, and results obtained from experiments conducted at several locations throughout the tunnel loop are described.

  7. Review: The distribution, flow, and quality of Grand Canyon Springs, Arizona (USA)

    NASA Astrophysics Data System (ADS)

    Tobin, Benjamin W.; Springer, Abraham E.; Kreamer, David K.; Schenk, Edward

    2018-05-01

    An understanding of the hydrogeology of Grand Canyon National Park (GRCA) in northern Arizona, USA, is critical for future resource protection. The 750 springs in GRCA provide both perennial and seasonal flow to numerous desert streams, drinking water to wildlife and visitors in an otherwise arid environment, and habitat for rare, endemic and threatened species. Spring behavior and flow patterns represent local and regional patterns in aquifer recharge, reflect the geologic structure and stratigraphy, and are indicators of the overall biotic health of the canyon. These springs, however, are subject to pressures from water supply development, changes in recharge from forest fires and other land management activities, and potential contamination. Roaring Springs is the sole water supply for residents and visitors (>6 million/year), and all springs support valuable riparian habitats with very high species diversity. Most springs flow from the karstic Redwall-Muav aquifer and show seasonal patterns in flow and water chemistry indicative of variable aquifer porosities, including conduit flow. They have Ca/Mg-HCO3 dominated chemistry and trace elements consistent with nearby deep wells drilled into the Redwall-Muav aquifer. Tracer techniques and water-age dating indicate a wide range of residence times for many springs, supporting the concept of multiple porosities. A perched aquifer produces small springs which issue from the contacts between sandstone and shale units, with variable groundwater residence times. Stable isotope data suggest both an elevational and seasonal difference in recharge between North and South Rim springs. This review highlights the complex nature of the groundwater system.

  8. Preferential flow in municipal solid waste and implications for long-term leachate quality: valuation of laboratory-scale experiments.

    PubMed

    Rosqvist, N H; Dollar, L H; Fourie, A B

    2005-08-01

    In this paper, we study and quantify pollutant concentrations after long-term leaching at relatively low flow rates and residual concentrations after heavy flushing of a 0.14 m3 municipal solid waste sample. Moreover, water flow and solute transport through preferential flow paths are studied by model interpretation of experimental break-through curves (BTCs), generated by tracer tests. In the study it was found that high concentrations of chloride remain after several pore volumes of water have percolated through the waste sample. The residual concentration was found to be considerably higher than can be predicted by degradation models. For model interpretations of the experimental BTCs, two probabilistic model approaches were applied, the transfer function model and the Lagrangian transport formulation. The experimental BTCs indicated the presence of preferential flow through the waste mass and the model interpretation of the BTCs suggested that between 19 and 41% of the total water content participated in the transport of solute through preferential flow paths. In the study, the occurrence of preferential flow was found to be dependent on the flow rate in the sense that a high flow rate enhances the preferential flow. However, to fully quantify the possible dependence between flow rate and preferential flow, experiments on a broader range of experimental conditions are suggested. The chloride washout curve obtained over the 4-year study period shows that as a consequence of the water flow in favoured flow paths, bypassing other parts of the solid waste body, the leachate quality may reflect only the flow paths and their surroundings. The results in this study thus show that in order to improve long-term prediction of the leachate quality and quantity the magnitude of the preferential water flow through a landfill must be taken into account.

  9. Nurse Project Consultant: Critical Care Nurses Move Beyond the Bedside to Affect Quality and Safety.

    PubMed

    Mackinson, Lynn G; Corey, Juliann; Kelly, Veronica; O'Reilly, Kristin P; Stevens, Jennifer P; Desanto-Madeya, Susan; Williams, Donna; O'Donoghue, Sharon C; Foley, Jane

    2018-06-01

    A nurse project consultant role empowered 3 critical care nurses to expand their scope of practice beyond the bedside and engage within complex health care delivery systems to reduce harms in the intensive care unit. As members of an interdisciplinary team, the nurse project consultants contributed their clinical expertise and systems knowledge to develop innovations that optimize care provided in the intensive care unit. This article discusses the formal development of and institutional support for the nurse project consultant role. The nurse project consultants' responsibilities within a group of quality improvement initiatives are described and their challenges and lessons learned discussed. The nurse project consultant role is a new model of engaging critical care nurses as leaders in health care redesign. ©2018 American Association of Critical-Care Nurses.

  10. Assessing the quality of digital elevation models obtained from mini unmanned aerial vehicles for overland flow modelling in urban areas

    NASA Astrophysics Data System (ADS)

    Leitão, João P.; Moy de Vitry, Matthew; Scheidegger, Andreas; Rieckermann, Jörg

    2016-04-01

    Precise and detailed digital elevation models (DEMs) are essential to accurately predict overland flow in urban areas. Unfortunately, traditional sources of DEM, such as airplane light detection and ranging (lidar) DEMs and point and contour maps, remain a bottleneck for detailed and reliable overland flow models, because the resulting DEMs are too coarse to provide DEMs of sufficient detail to inform urban overland flows. Interestingly, technological developments of unmanned aerial vehicles (UAVs) suggest that they have matured enough to be a competitive alternative to satellites or airplanes. However, this has not been tested so far. In this study we therefore evaluated whether DEMs generated from UAV imagery are suitable for urban drainage overland flow modelling. Specifically, 14 UAV flights were conducted to assess the influence of four different flight parameters on the quality of generated DEMs: (i) flight altitude, (ii) image overlapping, (iii) camera pitch, and (iv) weather conditions. In addition, we compared the best-quality UAV DEM to a conventional lidar-based DEM. To evaluate both the quality of the UAV DEMs and the comparison to lidar-based DEMs, we performed regression analysis on several qualitative and quantitative metrics, such as elevation accuracy, quality of object representation (e.g. buildings, walls and trees) in the DEM, which were specifically tailored to assess overland flow modelling performance, using the flight parameters as explanatory variables. Our results suggested that, first, as expected, flight altitude influenced the DEM quality most, where lower flights produce better DEMs; in a similar fashion, overcast weather conditions are preferable, but weather conditions and other factors influence DEM quality much less. Second, we found that for urban overland flow modelling, the UAV DEMs performed competitively in comparison to a traditional lidar-based DEM. An important advantage of using UAVs to generate DEMs in urban areas is

  11. A Correlational Analysis: Electronic Health Records (EHR) and Quality of Care in Critical Access Hospitals

    ERIC Educational Resources Information Center

    Khan, Arshia A.

    2012-01-01

    Driven by the compulsion to improve the evident paucity in quality of care, especially in critical access hospitals in the United States, policy makers, healthcare providers, and administrators have taken the advise of researchers suggesting the integration of technology in healthcare. The Electronic Health Record (EHR) System composed of multiple…

  12. Differences in aquatic habitat quality as an impact of one- and two-dimensional hydrodynamic model simulated flow variables

    NASA Astrophysics Data System (ADS)

    Benjankar, R. M.; Sohrabi, M.; Tonina, D.; McKean, J. A.

    2013-12-01

    Aquatic habitat models utilize flow variables which may be predicted with one-dimensional (1D) or two-dimensional (2D) hydrodynamic models to simulate aquatic habitat quality. Studies focusing on the effects of hydrodynamic model dimensionality on predicted aquatic habitat quality are limited. Here we present the analysis of the impact of flow variables predicted with 1D and 2D hydrodynamic models on simulated spatial distribution of habitat quality and Weighted Usable Area (WUA) for fall-spawning Chinook salmon. Our study focuses on three river systems located in central Idaho (USA), which are a straight and pool-riffle reach (South Fork Boise River), small pool-riffle sinuous streams in a large meadow (Bear Valley Creek) and a steep-confined plane-bed stream with occasional deep forced pools (Deadwood River). We consider low and high flows in simple and complex morphologic reaches. Results show that 1D and 2D modeling approaches have effects on both the spatial distribution of the habitat and WUA for both discharge scenarios, but we did not find noticeable differences between complex and simple reaches. In general, the differences in WUA were small, but depended on stream type. Nevertheless, spatially distributed habitat quality difference is considerable in all streams. The steep-confined plane bed stream had larger differences between aquatic habitat quality defined with 1D and 2D flow models compared to results for streams with well defined macro-topographies, such as pool-riffle bed forms. KEY WORDS: one- and two-dimensional hydrodynamic models, habitat modeling, weighted usable area (WUA), hydraulic habitat suitability, high and low discharges, simple and complex reaches

  13. Review of critical flow rate, propagation of pressure pulse, and sonic velocity in two-phase media

    NASA Technical Reports Server (NTRS)

    Hsu, Y.

    1972-01-01

    For single-phase media, the critical discharge velocity, the sonic velocity, and the pressure pulse propagation velocity can be expressed in the same form by assuming isentropic, equilibria processes. In two-phase mixtures, the same concept is not valid due to the existence of interfacial transports of momentum, heat, and mass. Thus, the three velocities should be treated differently and separately for each particular condition, taking into account the various transport processes involved under that condition. Various attempts are reviewed to predict the critical discharge rate or the propagation velocities by considering slip ratio (momentum change), evaporation (mass and heat transport), flow pattern, etc. Experimental data were compared with predictions based on various theorems. The importance is stressed of the time required to achieve equilibrium as compared with the time available during the process, for example, of passing a pressure pulse.

  14. Quality assessment program for EuroFlow protocols: summary results of four-year (2010-2013) quality assurance rounds.

    PubMed

    Kalina, Tomas; Flores-Montero, Juan; Lecrevisse, Quentin; Pedreira, Carlos E; van der Velden, Vincent H J; Novakova, Michaela; Mejstrikova, Ester; Hrusak, Ondrej; Böttcher, Sebastian; Karsch, Dennis; Sędek, Łukasz; Trinquand, Amelie; Boeckx, Nancy; Caetano, Joana; Asnafi, Vahid; Lucio, Paulo; Lima, Margarida; Helena Santos, Ana; Bonaccorso, Paola; van der Sluijs-Gelling, Alita J; Langerak, Anton W; Martin-Ayuso, Marta; Szczepański, Tomasz; van Dongen, Jacques J M; Orfao, Alberto

    2015-02-01

    Flow cytometric immunophenotyping has become essential for accurate diagnosis, classification, and disease monitoring in hemato-oncology. The EuroFlow Consortium has established a fully standardized "all-in-one" pipeline consisting of standardized instrument settings, reagent panels, and sample preparation protocols and software for data analysis and disease classification. For its reproducible implementation, parallel development of a quality assurance (QA) program was required. Here, we report on the results of four consecutive annual rounds of the novel external QA EuroFlow program. The novel QA scheme aimed at monitoring the whole flow cytometric analysis process (cytometer setting, sample preparation, acquisition and analysis) by reading the median fluorescence intensities (MedFI) of defined lymphocytes' subsets. Each QA participant applied the predefined reagents' panel on blood cells of local healthy donors. A uniform gating strategy was applied to define lymphocyte subsets and to read MedFI values per marker. The MedFI values were compared with reference data and deviations from reference values were quantified using performance score metrics. In four annual QA rounds, we analyzed 123 blood samples from local healthy donors on 14 different instruments in 11 laboratories from nine European countries. The immunophenotype of defined cellular subsets appeared sufficiently standardized to permit unified (software) data analysis. The coefficient of variation of MedFI for 7 of 11 markers performed repeatedly below 30%, average MedFI in each QA round ranged from 86 to 125% from overall median. Calculation of performance scores was instrumental to pinpoint standardization failures and their causes. Overall, the new EuroFlow QA system for the first time allowed to quantify the technical variation that is introduced in the measurement of fluorescence intensities in a multicentric setting over an extended period of time. EuroFlow QA is a proficiency test specific for

  15. Development of an Axisymmetric Afterbody Test Case for Turbulent Flow Separation Validation

    NASA Technical Reports Server (NTRS)

    Disotell, Kevin J.; Rumsey, Christopher L.

    2017-01-01

    As identified in the CFD Vision 2030 Study commissioned by NASA, validation of advanced RANS models and scale-resolving methods for computing turbulent flows must be supported by improvements in high-quality experiments designed specifically for CFD implementation. A new test platform referred to as the Axisymmetric Afterbody allows for a range of flow behaviors to be studied on interchangeable afterbodies while facilitating access to higher Reynolds number facilities. A priori RANS computations are reported for a risk-reduction configuration to demonstrate critical variation among turbulence model results for a given afterbody, ranging from barely-attached to mild separated flow. The effects of body nose geometry and tunnel-wall boundary condition on the computed afterbody flow are explored to inform the design of an experimental test program.

  16. Stocks, Flows, and Distribution of Critical Metals in Embedded Electronics in Passenger Vehicles.

    PubMed

    Restrepo, Eliette; Løvik, Amund N; Wäger, Patrick; Widmer, Rolf; Lonka, Radek; Müller, Daniel B

    2017-02-07

    One of the major applications of critical metals (CMs) is in electrical and electronic equipment (EEE), which is increasingly embedded in other products, notably passenger vehicles. However, recycling strategies for future CM quantities in end-of-life vehicles (ELVs) are poorly understood, mainly due to a limited understating of the complexity of automotive embedded EEE. We introduce a harmonization of the network structure of automotive electronics that enables a comprehensive quantification of CMs in all embedded EEE in a vehicle. This network is combined with a material flow analysis along the vehicle lifecycle in Switzerland to quantify the stocks and flows of Ag, Au, Pd, Ru, Dy, La, Nd, and Co in automotive embedded EEE. In vehicles in use, we calculated 5 -2 +3 t precious metals in controllers embedded in all vehicle types and 220 -60 +90 t rare earth elements (REE); found mainly in five electric motors: alternator, starter, radiator-fan and electronic power steering motor embedded in conventional passenger vehicles and drive motor/generator embedded in hybrid and electric vehicles. Dismantling these devices before ELV shredding, as well as postshredder treatment of automobile shredder residue may increase the recovery of CMs from ELVs. Environmental and economic implications of such recycling strategies must be considered.

  17. 77 FR 13496 - Effective Date for the Water Quality Standards for the State of Florida's Lakes and Flowing Waters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Effective Date for the Water Quality Standards for the State of Florida's Lakes and Flowing Waters AGENCY... Protection Agency (EPA) is finalizing an extension of the March 6, 2012 effective date of the ``Water Quality... INFORMATION: I. General Information Does this action apply to me? Citizens concerned with water quality in...

  18. Analysis of ETMS Data Quality for Traffic Flow Management Decisions

    NASA Technical Reports Server (NTRS)

    Chatterji, Gano B.; Sridhar, Banavar; Kim, Douglas

    2003-01-01

    The data needed for air traffic flow management decision support tools is provided by the Enhanced Traffic Management System (ETMS). This includes both the tools that are in current use and the ones being developed for future deployment. Since the quality of decision support provided by all these tools will be influenced by the quality of the input ETMS data, an assessment of ETMS data quality is needed. Motivated by this desire, ETMS data quality is examined in this paper in terms of the unavailability of flight plans, deviation from the filed flight plans, departure delays, altitude errors and track data drops. Although many of these data quality issues are not new, little is known about their extent. A goal of this paper is to document the magnitude of data quality issues supported by numerical analysis of ETMS data. Guided by this goal, ETMS data for a 24-hour period were processed to determine the number of aircraft with missing flight plan messages at any given instant of time. Results are presented for aircraft above 18,000 feet altitude and also at all altitudes. Since deviation from filed flight plan is also a major cause of trajectory-modeling errors, statistics of deviations are presented. Errors in proposed departure times and ETMS-generated vertical profiles are also shown. A method for conditioning the vertical profiles for improving demand prediction accuracy is described. Graphs of actual sector counts obtained using these vertical profiles are compared with those obtained using the Host data for sectors in the Fort Worth Center to demonstrate the benefit of preprocessing. Finally, results are presented to quantify the extent of data drops. A method for propagating track positions during ETMS data drops is also described.

  19. Spray scrubbing of particulate-laden SO(2) using a critical flow atomizer.

    PubMed

    Bandyopadhyay, Amitava; Biswas, Manindra Nath

    2008-08-01

    The performance of a spray tower using an energy efficient two-phase critical flow atomizer on the scrubbing of particulate-laden SO(2) using water and dilute NaOH is reported in this article. Experimentation revealed that SO(2) removal was enhanced due to presence of particles (fly-ash) and almost 100% removal efficiency was achieved in water scrubbing. The removal efficiency is elucidated in reference to atomizing air pressure, droplet diameter and droplet velocity besides other pertinent variables of the system studied. The presence of fly-ash particles improved the removal efficiency to about 20% within the range of variables studied. Empirical and semi-empirical correlations were developed for predicting the removal efficiency in water and dilute NaOH respectively. Predicted data fitted excellently well with experimental values. The performance of the spray tower is compared with the performances of existing systems and very encouraging results are obtained.

  20. The importance of base flow in sustaining surface water flow in the Upper Colorado River Basin

    USGS Publications Warehouse

    Miller, Matthew P.; Buto, Susan G.; Susong, David D.; Rumsey, Christine

    2016-01-01

    The Colorado River has been identified as the most overallocated river in the world. Considering predicted future imbalances between water supply and demand and the growing recognition that base flow (a proxy for groundwater discharge to streams) is critical for sustaining flow in streams and rivers, there is a need to develop methods to better quantify present-day base flow across large regions. We adapted and applied the spatially referenced regression on watershed attributes (SPARROW) water quality model to assess the spatial distribution of base flow, the fraction of streamflow supported by base flow, and estimates of and potential processes contributing to the amount of base flow that is lost during in-stream transport in the Upper Colorado River Basin (UCRB). On average, 56% of the streamflow in the UCRB originated as base flow, and precipitation was identified as the dominant driver of spatial variability in base flow at the scale of the UCRB, with the majority of base flow discharge to streams occurring in upper elevation watersheds. The model estimates an average of 1.8 × 1010 m3/yr of base flow in the UCRB; greater than 80% of which is lost during in-stream transport to the Lower Colorado River Basin via processes including evapotranspiration and water diversion for irrigation. Our results indicate that surface waters in the Colorado River Basin are dependent on base flow, and that management approaches that consider groundwater and surface water as a joint resource will be needed to effectively manage current and future water resources in the Basin.

  1. The importance of base flow in sustaining surface water flow in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Miller, Matthew P.; Buto, Susan G.; Susong, David D.; Rumsey, Christine A.

    2016-05-01

    The Colorado River has been identified as the most overallocated river in the world. Considering predicted future imbalances between water supply and demand and the growing recognition that base flow (a proxy for groundwater discharge to streams) is critical for sustaining flow in streams and rivers, there is a need to develop methods to better quantify present-day base flow across large regions. We adapted and applied the spatially referenced regression on watershed attributes (SPARROW) water quality model to assess the spatial distribution of base flow, the fraction of streamflow supported by base flow, and estimates of and potential processes contributing to the amount of base flow that is lost during in-stream transport in the Upper Colorado River Basin (UCRB). On average, 56% of the streamflow in the UCRB originated as base flow, and precipitation was identified as the dominant driver of spatial variability in base flow at the scale of the UCRB, with the majority of base flow discharge to streams occurring in upper elevation watersheds. The model estimates an average of 1.8 × 1010 m3/yr of base flow in the UCRB; greater than 80% of which is lost during in-stream transport to the Lower Colorado River Basin via processes including evapotranspiration and water diversion for irrigation. Our results indicate that surface waters in the Colorado River Basin are dependent on base flow, and that management approaches that consider groundwater and surface water as a joint resource will be needed to effectively manage current and future water resources in the Basin.

  2. Assessing Receiving Water Quality Impacts due to Flow Path Alteration in Residential Catchments, using the Stormwater and Wastewater Management Model

    NASA Astrophysics Data System (ADS)

    Wolosoff, S. E.; Duncan, J.; Endreny, T.

    2001-05-01

    The Croton water supply system, responsible for supplying approximately 10% of New York City's water, provides an opportunity for exploration into the impacts of significant terrestrial flow path alteration upon receiving water quality. Natural flow paths are altered during residential development in order to allow for construction at a given location, reductions in water table elevation in low lying areas and to provide drainage of increased overland flow volumes. Runoff conducted through an artificial drainage system, is prevented from being attenuated by the natural environment, thus the pollutant removal capacity inherent in most natural catchments is often limited to areas where flow paths are not altered by development. By contrasting the impacts of flow path alterations in two small catchments in the Croton system, with different densities of residential development, we can begin to identify appropriate limits to the re-routing of runoff in catchments draining into surface water supplies. The Stormwater and Wastewater Management Model (SWMM) will be used as a tool to predict the runoff quantity and quality generated from two small residential catchments and to simulate the potential benefits of changes to the existing drainage system design, which may improve water quality due to longer residence times.

  3. MEASURING BASE-FLOW CHEMISTRY AS AN INDICATOR OF REGIONAL GROUND-WATER QUALITY IN THE MID-ATLANTIC COASTAL PLAIN

    EPA Science Inventory

    Water quality in headwater (first-order) streams of the Mid-Atlantic Coastal Plain during base flow in the winter and spring is related to land use, hydrogeology, and other natural and human influences. A random survey of water quality in 174 headwater streams in the Mid-Atlantic...

  4. Towards operational hydrology for a thorough spatio-temporal exploration of the Critical Zone

    NASA Astrophysics Data System (ADS)

    Chatton, Eliot; Labasque, Thierry; Guillou, Aurélie; Aquilina, Luc; Bour, Olivier; Le Borgne, Tanguy; Longuevergne, Laurent

    2017-04-01

    Over the last century, the Critical Zone faced remarkable climate and land use changes increasing the pressures on the Hydrosphere and giving rise to numerous environmental consequences in terms of water quantity and quality. From now on, the Critical Zone must face the challenge to supply 9 billion people with quality food and safe drinking water in a context of global warming. For the Hydrosphere, this challenge could be addressed with a better understanding of the dynamics and resilience of aquatic environments (rivers, lakes, groundwaters, oceans). In view of the spatial and temporal variety and variability of flow dynamics and biogeochemical reactions occurring in the Hydrosphere a new investigation method is needed. This study approaches the concept of "operational hydrology" aiming to enhance either the spatio-temporal distribution and the quality of environmental data for a thorough exploration of the Hydrosphere. To illustrate our approach, we present natural and anthropogenic dissolved gas data (He, Ne, Ar, Kr, Xe, N2, O2, CO2, CH4, N2O, H2, BTEX, and some VOCs) measured in situ with a CF-MIMS (Chatton et al, 2016) installed in a mobile laboratory arranged in an all-terrain truck (CRITEX-Lab). This ongoing work focuses on groundwater and the field investigation of residence time distributions, recharge processes (origins), water flow paths and mixing, biogeochemical reactivity and contamination (sources). The rationale behind "operational hydrology" could be applied to the field measurement at high-frequency of many other environmental parameters (temperature, cations, anions, isotopes, micro-organisms) not only for the investigation of groundwaters but also rivers, lakes and oceans. Eliot Chatton, Thierry Labasque, Jérôme de La Bernardie, Nicolas Guihéneuf, Olivier Bour and Luc Aquilina; Field Continuous Measurement of Dissolved Gases with a CF-MIMS: Applications to the Physics and Biogeochemistry of Groundwater Flow; Environmental Science

  5. Modeling water quality, temperature, and flow in Link River, south-central Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.

    2016-09-09

    The 2.1-km (1.3-mi) Link River connects Upper Klamath Lake to the Klamath River in south-central Oregon. A CE-QUAL-W2 flow and water-quality model of Link River was developed to provide a connection between an existing model of the upper Klamath River and any existing or future models of Upper Klamath Lake. Water-quality sampling at six locations in Link River was done during 2013–15 to support model development and to provide a better understanding of instream biogeochemical processes. The short reach and high velocities in Link River resulted in fast travel times and limited water-quality transformations, except for dissolved oxygen. Reaeration through the reach, especially at the falls in Link River, was particularly important in moderating dissolved oxygen concentrations that at times entered the reach at Link River Dam with marked supersaturation or subsaturation. This reaeration resulted in concentrations closer to saturation downstream at the mouth of Link River.

  6. Emergency Medicine and Critical Care Blogs and Podcasts: Establishing an International Consensus on Quality.

    PubMed

    Thoma, Brent; Chan, Teresa M; Paterson, Quinten S; Milne, W Kenneth; Sanders, Jason L; Lin, Michelle

    2015-10-01

    This study identified the most important quality indicators for online educational resources such as blogs and podcasts. A modified Delphi process that included 2 iterative surveys was used to build expert consensus on a previously defined list of 151 quality indicators divided into 3 themes: credibility, content, and design. Aggregate social media indicators were used to identify an expert population of editors from a defined list of emergency medicine and critical care blogs and podcasts. Survey 1 consisted of the quality indicators and a 7-point Likert scale. The mean score for each quality indicator was included in survey 2, which asked participants whether to "include" or "not include" each quality indicator. The cut point for consensus was defined at greater than 70% "include." Eighty-three percent (20/24) of bloggers and 90.9% (20/22) of podcasters completed survey 1 and 90% (18/20) of bloggers and podcasters completed survey 2. The 70% inclusion criteria were met by 44 and 80 quality indicators for bloggers and podcasters, respectively. Post hoc, a 90% cutoff was used to identify a list of 14 and 26 quality indicators for bloggers and podcasters, respectively. The relative importance of quality indicators for emergency medicine blogs and podcasts was determined. This will be helpful for resource producers trying to improve their blogs or podcasts and for learners, educators, and academic leaders assessing their quality. These results will inform broader validation studies and attempts to develop user-friendly assessment instruments for these resources. Copyright © 2015 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  7. Subcooled flow boiling critical heat flux (CHF) and its application to fusion energy components. Part II. A review of microconvective, experimental, and correlational aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, R.D.

    Microconvective, instability, experimental, and correlational aspects of subcooled flow boiling critical heat flux (CHF) are summarized. The present understanding of CHF in subcooled flow boiling is reviewed and research directions that will permit the accommodation of higher heat fluxes are outlined. This survey (Parts I and II), which contains a representative coverage of the literature over the last 30 years, is concerned only with CHF in the subcooled flow boiling regime, and unless otherwise noted, all references to CHF are confined to that regime.

  8. Insights into the base of the critical zone from geophysical logging and groundwater flow testing at U.S. Critical Zone Observatories (CZO) and critical zone study sites (CZs)

    NASA Astrophysics Data System (ADS)

    Carr, B.; Zhang, Y.; Ren, S.; Flinchum, B. A.; Parsekian, A.; Holbrook, S.; Riebe, C. S.; Moravec, B. G.; Chorover, J.; Pelletier, J. D.; Richter, D. D., Jr.

    2017-12-01

    Four prominent hypotheses exist and predict conceptual models defining the base of the critical zone. These hypotheses lack insights and constraints from borehole data since few deep (> 20 m) boreholes (and even fewer connected wellfields) are present in the U.S. Critical Zone Observatories (CZO) and similar critical zone study sites (CZs). The influence and interaction of fracture presence, fracture density, fracture orientation, groundwater presence and groundwater flow have only begun to be analyzed relative to any definition of the base of the critical zone. In this presentation, we examine each hypothesis by jointly evaluating borehole geophysical logs and groundwater testing datasets collected by the Wyoming Center for Environmental Hydrology and Geophysics (WyCEHG) since 2014 at these deep CZO or CZ boreholes. Deep boreholes allow a unique opportunity to observe the factors influencing groundwater transmissivity/storage capacity within the three main subsurface CZ layers: Unconsolidated (soil/saprolite), Fractured/weathered Bedrock, and Protolith bedrock (i.e. less fractured bedrock). The boreholes used in this study consist of: 1) nine wells of the Blair-Wallis (WY) WyCEHG CZ, 2) two wells in Catalina-Jemez CZO (Valle Caldera NM) and 3) one borehole at the Calhoun (SC) CZO. At this time, these are the only sites that contain boreholes with depths ranging from at least 20 m up to 70m that have been geophysically logged with full-waveform seismic, acoustic and optical televiewer, electric, electromagnetic, flowmeter (impeller and heat pulse), fluid temperature, fluid conductivity and nuclear magnetic resonance. Further, the Blair-Wallis CZ site contains five hydraulically connected wells that allow us to estimate formation transmissivity and storage coefficients at increasing scales by conducting: slug tests, FLUTe™ borehole profiling, and cross-hole pumping tests. These well tests provide direct hydraulic data of the bedrock (both fractured and protolith

  9. A Geophysical Flow Experiment in a Compressible Critical Fluid

    NASA Technical Reports Server (NTRS)

    Hegseth, John; Garcia, Laudelino

    1996-01-01

    The first objective of this experiment is to build an experimental system in which, in analogy to a geophysical system, a compressible fluid in a spherical annulus becomes radially stratified in density through an A.C. electric field. When this density gradient is demonstrated, the system will be augmented so that the fluid can be driven by heating and rotation and tested in preparation for a microgravity experiment. This apparatus consists of a spherical capacitor filled with critical fluid in a temperature controlled environment. To make the fluid critical, the apparatus will be operated near the critical pressure, critical density, and critical temperature of the fluid. This will result in a highly compressible fluid because of the properties of the fluid near its critical point. A high voltage A.C. source applied across the capacitor will create a spherically symmetric central force because of the dielectric properties of the fluid in an electric field gradient. This central force will induce a spherically symmetric density gradient that is analogous to a geophysical fluid system. To generate such a density gradient the system must be small (approx. 1 inch diameter). This small cell will also be capable of driving the critical fluid by heating and rotation. Since a spherically symmetric density gradient can only be made in microgravity, another small cell, of the same geometry, will be built that uses incompressible fluid. The driving of the fluid by rotation and heating in these small cells will be developed. The resulting instabilities from the driving in these two systems will then be studied. The second objective is to study the pattern forming instabilities (bifurcations) resulting from the well controlled experimental conditions in the critical fluid cell. This experiment will come close to producing conditions that are geophysically similar and will be studied as the driving parameters are changed.

  10. Quality & Education: Critical Linkages.

    ERIC Educational Resources Information Center

    McCormick, Betty L., Ed.

    This book contains a collection of essays about schools that have successfully implemented Total Quality Management (TQM) through partnerships with the business community, parents, higher education, school board members, and others. Following the preface, foreword, and introduction, the book is divided into five sections: school leaders in Total…

  11. Flow, Transport, and Reaction in Porous Media: Percolation Scaling, Critical-Path Analysis, and Effective Medium Approximation

    NASA Astrophysics Data System (ADS)

    Hunt, Allen G.; Sahimi, Muhammad

    2017-12-01

    We describe the most important developments in the application of three theoretical tools to modeling of the morphology of porous media and flow and transport processes in them. One tool is percolation theory. Although it was over 40 years ago that the possibility of using percolation theory to describe flow and transport processes in porous media was first raised, new models and concepts, as well as new variants of the original percolation model are still being developed for various applications to flow phenomena in porous media. The other two approaches, closely related to percolation theory, are the critical-path analysis, which is applicable when porous media are highly heterogeneous, and the effective medium approximation—poor man's percolation—that provide a simple and, under certain conditions, quantitatively correct description of transport in porous media in which percolation-type disorder is relevant. Applications to topics in geosciences include predictions of the hydraulic conductivity and air permeability, solute and gas diffusion that are particularly important in ecohydrological applications and land-surface interactions, and multiphase flow in porous media, as well as non-Gaussian solute transport, and flow morphologies associated with imbibition into unsaturated fractures. We describe new applications of percolation theory of solute transport to chemical weathering and soil formation, geomorphology, and elemental cycling through the terrestrial Earth surface. Wherever quantitatively accurate predictions of such quantities are relevant, so are the techniques presented here. Whenever possible, the theoretical predictions are compared with the relevant experimental data. In practically all the cases, the agreement between the theoretical predictions and the data is excellent. Also discussed are possible future directions in the application of such concepts to many other phenomena in geosciences.

  12. Statistical modeling methods to analyze the impacts of multiunit process variability on critical quality attributes of Chinese herbal medicine tablets

    PubMed Central

    Sun, Fei; Xu, Bing; Zhang, Yi; Dai, Shengyun; Yang, Chan; Cui, Xianglong; Shi, Xinyuan; Qiao, Yanjiang

    2016-01-01

    The quality of Chinese herbal medicine tablets suffers from batch-to-batch variability due to a lack of manufacturing process understanding. In this paper, the Panax notoginseng saponins (PNS) immediate release tablet was taken as the research subject. By defining the dissolution of five active pharmaceutical ingredients and the tablet tensile strength as critical quality attributes (CQAs), influences of both the manipulated process parameters introduced by an orthogonal experiment design and the intermediate granules’ properties on the CQAs were fully investigated by different chemometric methods, such as the partial least squares, the orthogonal projection to latent structures, and the multiblock partial least squares (MBPLS). By analyzing the loadings plots and variable importance in the projection indexes, the granule particle sizes and the minimal punch tip separation distance in tableting were identified as critical process parameters. Additionally, the MBPLS model suggested that the lubrication time in the final blending was also important in predicting tablet quality attributes. From the calculated block importance in the projection indexes, the tableting unit was confirmed to be the critical process unit of the manufacturing line. The results demonstrated that the combinatorial use of different multivariate modeling methods could help in understanding the complex process relationships as a whole. The output of this study can then be used to define a control strategy to improve the quality of the PNS immediate release tablet. PMID:27932865

  13. Statistical modeling methods to analyze the impacts of multiunit process variability on critical quality attributes of Chinese herbal medicine tablets.

    PubMed

    Sun, Fei; Xu, Bing; Zhang, Yi; Dai, Shengyun; Yang, Chan; Cui, Xianglong; Shi, Xinyuan; Qiao, Yanjiang

    2016-01-01

    The quality of Chinese herbal medicine tablets suffers from batch-to-batch variability due to a lack of manufacturing process understanding. In this paper, the Panax notoginseng saponins (PNS) immediate release tablet was taken as the research subject. By defining the dissolution of five active pharmaceutical ingredients and the tablet tensile strength as critical quality attributes (CQAs), influences of both the manipulated process parameters introduced by an orthogonal experiment design and the intermediate granules' properties on the CQAs were fully investigated by different chemometric methods, such as the partial least squares, the orthogonal projection to latent structures, and the multiblock partial least squares (MBPLS). By analyzing the loadings plots and variable importance in the projection indexes, the granule particle sizes and the minimal punch tip separation distance in tableting were identified as critical process parameters. Additionally, the MBPLS model suggested that the lubrication time in the final blending was also important in predicting tablet quality attributes. From the calculated block importance in the projection indexes, the tableting unit was confirmed to be the critical process unit of the manufacturing line. The results demonstrated that the combinatorial use of different multivariate modeling methods could help in understanding the complex process relationships as a whole. The output of this study can then be used to define a control strategy to improve the quality of the PNS immediate release tablet.

  14. Developing Flanagan's critical incident technique to elicit indicators of high and low quality nursing care from patients and their nurses.

    PubMed

    Norman, I J; Redfern, S J; Tomalin, D A; Oliver, S

    1992-05-01

    This paper discusses a development of Flanagan's critical incident technique (CIT) to elicit indicators of high and low quality nursing from patients and their nurses on medical, surgical and elderly care wards. Stages in undertaking the CIT are identified and presuppositions held by most researchers about the nature of the technique are identified. The paper describes how the authors moved to a different set of presuppositions during the course of the study. Preliminary analysis of interview transcripts revealed that critical incidents need not always be demarcated scenes with a clear beginning and end, but may arise from respondents summarizing their overall experience within their description of one incident. Characteristically respondents were unable to give a detailed account of such incidents but validity may be established by the fact that respondents appear to recount what actually happened as they saw it, and what they said was clearly important to them. The researchers found that the most appropriate basic unit of analysis was not the incident itself but 'happenings' revealed by incidents that are 'critical' by virtue of being important to respondents with respect to the quality of nursing care. The importance of CIT researchers achieving an understanding of the 'meaning' of critical happenings to respondents is emphasized. Analysis of the interview transcripts is facilitated by the use of INGRES, a relational database computer program which should enable a 'personal theory' of quality nursing for each respondent, both patients and nurses, to be described. The study suggests that the CIT is a flexible technique which may be adapted to meet the demands of nursing research. If carefully applied, the CIT seems capable of capitalizing on respondents' own stories and avoids the loss of information which occurs when complex narratives are reduced to simple descriptive categories. Patients and nurses have unique perspectives on nursing and their views are of

  15. Field calibration of orifice meters for natural gas flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ting, V.C.; Shen, J.J.S.

    1989-03-01

    This paper presents the orifice calibration results for nominal 15.24, 10.16, and 5.08-cm (6,4,2-in.) orifice meters conducted at the Chevron's Sand Hills natural gas flow measurement facility in Crane, Texas. Over 200 test runs were collected in a field environment to study the accuracy of the orifice meters. Data were obtained at beta ratios ranging from 0.12 to 0.74 at the nominal conditions of 4576 kPa and 27{sup 0}C (650 psig and 80{sup 0}F) with a 0.57 specific gravity processed, pipeline quality natural gas. A bank of critical flow nozzles was used as the flow rate proving device to calibratemore » the orifice meters. Orifice discharge coefficients were computed with ANSI/API 2530-1985 (AGA3) and ISO 5167/ASME MFC-3M-1984 equations for every set of data points. With the orifice bore Reynolds numbers ranging from 1 to 9 million, the Sand Hills calibration data bridge the gap between the Ohio State water data at low Reynolds numbers and Chevron's high Reynolds number test data taken at a large test facility in Venice, Louisiana. The test results also successfully demonstrate that orifice meters can be accurately proved with critical flow nozzles under realistic field conditions.« less

  16. Capillary channel flow experiments aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Conrath, M.; Canfield, P. J.; Bronowicki, P. M.; Dreyer, M. E.; Weislogel, M. M.; Grah, A.

    2013-12-01

    In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena over unearthly large length scales. In current experiments aboard the International Space Station, partially open channels are being investigated to determine critical flow rate-limiting conditions above which the free surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal fluids circulation, and water processing for life support. Present and near future experiments focus on transient phenomena and conduit asymmetries allowing capillary forces to replace the role of gravity to perform passive phase separations. Terrestrial applications are noted where enhanced transport via direct liquid-gas contact is desired.

  17. Ground-water flow and quality beneath sewage-sludge lagoons, and a comparison with the ground-water quality beneath a sludge-amended landfill, Marion County, Indiana

    USGS Publications Warehouse

    Bobay, K.E.

    1988-01-01

    The groundwater beneath eight sewage sludge lagoons, was studied to characterize the flow regime and to determine whether leachate had infiltrated into the glacio-fluvial sediments. Groundwater quality beneath the lagoons was compared with the groundwater quality beneath a landfill where sludge had been applied. The lagoons and landfills overlie outwash sand and gravel deposits separated by discontinuous clay layers. Shallow groundwater flows away from the lagoons and discharges into the White River. Deep groundwater discharges to the White River and flows southwest beneath Eagle Creek. After an accumulation of at least 2 inches of precipitation during 1 week, groundwater flow is temporarily reversed in the shallow aquifer, and all deep flow is along a relatively steep hydraulic gradient to the southwest. The groundwater is predominantly a calcium bicarbonate type, although ammonium accounts for more than 30% of the total cations in water from three wells. Concentrations of sodium, chloride, sulfate, iron, arsenic, boron, chemical oxygen demand, total dissolved solids, and methylene-blue-active substances indicate the presence of leachate in the groundwater. Concentrations of cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc were less than detection limits. The concentrations of 16 of 19 constituents or properties of groundwater beneath the lagoons are statistically different than groundwater beneath the landfill at the 0.05 level of significance. Only pH and concentrations of dissolved oxygen and bromide are higher in groundwater beneath the landfill than beneath the lagoons. 

  18. Particle and flow field holography: A critical survey

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.

    1987-01-01

    A brief background is provided for the fields of particle and flow visualization holography. A summary of methods currently in use is given, followed by a discussion of more recent and unique applications. The problem of data reduction is discussed. A state of the art summary is then provided with a prognosis of the future of the field. Particle and flow visualization holography are characterized as powerful tools currently in wide use and with significant untapped potential.

  19. Investigating the Relationship between Critical Thinking Skills and the Quality of Iranian Intermediate TEFL Students' Writing

    ERIC Educational Resources Information Center

    Nikou, Farahnaz Rimani; Bonyadi, Alireza; Amirikar, Negin

    2015-01-01

    The current study intended to find out the relationship between critical thinking skills and the quality of Iranian TEFL (Teaching English as a Foreign Language) students' writing. One-hundred forty students who were homogeneous in their language proficiency were selected non-randomly. The researcher asked students to take part in a proficiency…

  20. Model-based screening for critical wet-weather discharges related to micropollutants from urban areas.

    PubMed

    Mutzner, Lena; Staufer, Philipp; Ort, Christoph

    2016-11-01

    Wet-weather discharges contribute to anthropogenic micropollutant loads entering the aquatic environment. Thousands of wet-weather discharges exist in Swiss sewer systems, and we do not have the capacity to monitor them all. We consequently propose a model-based approach designed to identify critical discharge points in order to support effective monitoring. We applied a dynamic substance flow model to four substances representing different entry routes: indoor (Triclosan, Mecoprop, Copper) as well as rainfall-mobilized (Glyphosate, Mecoprop, Copper) inputs. The accumulation on different urban land-use surfaces in dry weather and subsequent substance-specific wash-off is taken into account. For evaluation, we use a conservative screening approach to detect critical discharge points. This approach considers only local dilution generated onsite from natural, unpolluted areas, i.e. excluding upstream dilution. Despite our conservative assumptions, we find that the environmental quality standards for Glyphosate and Mecoprop are not exceeded during any 10-min time interval over a representative one-year simulation period for all 2500 Swiss municipalities. In contrast, the environmental quality standard is exceeded during at least 20% of the discharge time at 83% of all modelled discharge points for Copper and at 71% for Triclosan. For Copper, this corresponds to a total median duration of approximately 19 days per year. For Triclosan, discharged only via combined sewer overflows, this means a median duration of approximately 10 days per year. In general, stormwater outlets contribute more to the calculated effect than combined sewer overflows for rainfall-mobilized substances. We further evaluate the Urban Index (A urban,impervious /A natural ) as a proxy for critical discharge points: catchments where Triclosan and Copper exceed the corresponding environmental quality standard often have an Urban Index >0.03. A dynamic substance flow analysis allows us to identify the

  1. Measuring tele-ICU impact: does it optimize quality outcomes for the critically ill patient?

    PubMed

    Goran, Susan F

    2012-04-01

    To determine the relationship between tele-ICU (intensive care unit) implementations and improvement in quality measures and patient outcomes. Tele-ICUs were designed to leverage scarce critical-care experts and promised to improve patient quality. Abstracts and peer-reviewed articles were reviewed to identify the associations between tele-ICU programmes and clinical outcomes, cost savings, and customer satisfaction. Few peer-reviewed studies are available and many variables in each study limit the ability to associate study conclusions to the overall tele-ICU programme. Further research is required to explore the impact of the tele-ICU on patient/family satisfaction. Research findings are highly dependent upon the level of ICU acceptance. The tele-ICU, in collaboration with the ICU team, can be a valuable tool for the enhancement of quality goals although the ability to demonstrate cost savings is extremely complex. Studies clearly indicate that tele-ICU nursing vigilance can enhance patient safety by preventing potential patient harm. Nursing managers and leaders play a vital part in optimizing the quality role of the tele-ICU through supportive modelling and the maximization of ICU integration. © 2012 Blackwell Publishing Ltd.

  2. The methodological quality of animal research in critical care: the public face of science.

    PubMed

    Bara, Meredith; Joffe, Ari R

    2014-01-01

    Animal research (AR) findings often do not translate to humans; one potential reason is the poor methodological quality of AR. We aimed to determine this quality of AR reported in critical care journals. All AR published from January to June 2012 in three high-impact critical care journals were reviewed. A case report form and instruction manual with clear definitions were created, based on published recommendations, including the ARRIVE guidelines. Data were analyzed with descriptive statistics. Seventy-seven AR publications were reviewed. Our primary outcome (animal strain, sex, and weight or age described) was reported in 52 (68%; 95% confidence interval, 56% to 77%). Of the 77 publications, 47 (61%) reported randomization; of these, 3 (6%) reported allocation concealment, and 1 (2%) the randomization procedure. Of the 77 publications, 31 (40%) reported some type of blinding; of these, disease induction (2, 7%), intervention (7, 23%), and/or subjective outcomes (17, 55%) were blinded. A sample size calculation was reported in 4/77 (5%). Animal numbers were missing in the Methods section in 16 (21%) publications; when stated, the median was 32 (range 6 to 320; interquartile range, 21 to 70). Extra animals used were mentioned in the Results section in 31 (40%) publications; this number was unclear in 23 (74%), and >100 for 12 (16%). When reporting most outcomes, numbers with denominators were given in 35 (45%), with no unaccounted numbers in 24 (31%), and no animals excluded from analysis in 20 (26%). Most (49, 64%) studies reported >40, and another 19 (25%) reported 21 to 40 statistical comparisons. Internal validity limitations were discussed in 7 (9%), and external validity (to humans) discussed in 71 (92%), most with no (30, 42%) or only a vague (9, 13%) limitation to this external validity mentioned. The reported methodological quality of AR was poor. Unless the quality of AR significantly improves, the practice may be in serious jeopardy of losing public

  3. The methodological quality of animal research in critical care: the public face of science

    PubMed Central

    2014-01-01

    Background Animal research (AR) findings often do not translate to humans; one potential reason is the poor methodological quality of AR. We aimed to determine this quality of AR reported in critical care journals. Methods All AR published from January to June 2012 in three high-impact critical care journals were reviewed. A case report form and instruction manual with clear definitions were created, based on published recommendations, including the ARRIVE guidelines. Data were analyzed with descriptive statistics. Results Seventy-seven AR publications were reviewed. Our primary outcome (animal strain, sex, and weight or age described) was reported in 52 (68%; 95% confidence interval, 56% to 77%). Of the 77 publications, 47 (61%) reported randomization; of these, 3 (6%) reported allocation concealment, and 1 (2%) the randomization procedure. Of the 77 publications, 31 (40%) reported some type of blinding; of these, disease induction (2, 7%), intervention (7, 23%), and/or subjective outcomes (17, 55%) were blinded. A sample size calculation was reported in 4/77 (5%). Animal numbers were missing in the Methods section in 16 (21%) publications; when stated, the median was 32 (range 6 to 320; interquartile range, 21 to 70). Extra animals used were mentioned in the Results section in 31 (40%) publications; this number was unclear in 23 (74%), and >100 for 12 (16%). When reporting most outcomes, numbers with denominators were given in 35 (45%), with no unaccounted numbers in 24 (31%), and no animals excluded from analysis in 20 (26%). Most (49, 64%) studies reported >40, and another 19 (25%) reported 21 to 40 statistical comparisons. Internal validity limitations were discussed in 7 (9%), and external validity (to humans) discussed in 71 (92%), most with no (30, 42%) or only a vague (9, 13%) limitation to this external validity mentioned. Conclusions The reported methodological quality of AR was poor. Unless the quality of AR significantly improves, the practice may be

  4. Ground-water flow and water quality in northeastern Union County, Ohio

    USGS Publications Warehouse

    Wilson, K.S.

    1987-01-01

    A study was done by the U.S. Geological Survey, in cooperation with the Village of Richwood, Ohio, to determine directions of ground-water flow, ground-water-level fluctuations, and water quality in the northeastern part of Union County. The topography of the study area generally is featureless, and the land surfaces slopes gently eastward from 985 to 925 feet above sea level. Glacial deposits up to 48 feet thick cover the carbonate-bedrock aquifer. Three municipal wells and an adjoining abandoned landfill are located in an area previously excavated for clay deposits. An agricultural supply company is adjacent to the well field. Ground water flows from west to east with local variation to the northeast and southeast because of the influence of Fulton Creek. Richwood Lake occupies an abandoned sand-and-gravel quarry. Water-level fluctuations indicate that the and gravel deposits beneath the lake may be hydraulically connected to the bedrock aquifer. Water-quality data collected from 14 wells and Richwood Lake indicate that a hard to very hard calcium bicarbonate type water is characteristic of the study area. Dissolved solids ranged from 200 to 720 mg/L (Milligrams per liter) throughout the study area. Potassium ranged from 1.3 to 15 mg/L, with a median concentration of 2.0 mg/L. Concentration of 10 and 15 mg/L at one municipal well were five to eight times greater than the median concentration. Total organic carbon, ammonia, and organic nitrogen were present at every site. Concentrations of ammonia above 1 mg/L as nitrogen were found in water from two municipal wells and one domestic well. Total organic carbon was detected at a municipal well, a landfill well, and a domestic well at concentrations above 5 mg/L. Ground-water quality is similar throughout the study area except in the vicinity of the municipal well field, where water from one well had elevated concentrations of ammonia, dissolved manganese, dissolved chloride, dissolved, sodium, and total organic

  5. A plot tree structure to represent surface flow connectivity in rural catchments: definition and application for mining critical source areas and temporal conditions

    NASA Astrophysics Data System (ADS)

    Gascuel-Odoux, Chantal; Cordier, Marie-Odile; Grimaldi, Catherine; Salmon-Monviola, Jordy; Masson, Veronique; Squividant, Herve; Trepos, Ronan

    2013-04-01

    Agricultural landscapes are structured by a mosaic of farmers'fields whose boundaries and land use change over time, and by linear elements such as hedgerows, ditches and roads, which are more or less connected to each other. Such man-made features are now well known to have an effect on catchment hydrology, erosion and water quality. In such agricultural landscapes, it is crucial to have an adequate functional representation of the flow pathways and define relevant indicators of surface flow connectivity over the catchment towards the stream, as a necessary step for improving landscape design and water protection. A new conceptual object oriented approach has been proposed by building the drainage network on the identification of the inlets and outlets for surface water flow on each farmers' field and surrounding landscape elements (Aurousseau et al., 2009 ; Gascuel-Odoux et al., 2011), then on delineating a set of elementary plot outlet trees labelled by attributes which feed the stream. This drainage network is therefore represented as a global plot outlet tree which conceptualizes the connectivity of the surface flow patterns over the catchment. This approach has been applied to different catchment areas, integrated in modelling (Gascuel-Odoux et al., 2009) and decision support tools. It provides a functional display of data for decision support which can highlight the plots of potential risk regarding the surface runoff, areas which are often shortly extended over catchments (suspended sediment application). Integrated in modelling and mining tools, it allows to catch typologies of the most spatial pattern involved in water quality degradation (herbicides transport model) (Trepos et al., 2012) and test their permanency in time regarding the variations of climate conditions and agricultural practices (Salmon-Monviola et al., 2011). This set of works joins skills in hydrology, agronomy and computer sciences. Aurousseau P., Gascuel-Odoux C., Squividant H

  6. Correlations between critical current density, j{sub c}, critical temperature, T{sub c}, and structural quality of Y{sub 1}B{sub 2}Cu{sub 3}O{sub 7-x} thin superconducting films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrzanowski, J.; Xing, W.B.; Atlan, D.

    1994-12-31

    Correlations between critical current density (j{sub c}) critical temperature (T{sub c}) and the density of edge dislocations and nonuniform strain have been observed in YBCO thin films deposited by pulsed laser ablation on (001) LaAlO{sub 3} single crystals. Distinct maxima in j{sub c} as a function of the linewidths of the (00{ell}) Bragg reflections and as a function of the mosaic spread have been found in the epitaxial films. These maxima in j{sub c} indicate that the magnetic flux lines, in films of structural quality approaching that of single crystals, are insufficiently pinned which results in a decreased critical currentmore » density. T{sub c} increased monotonically with improving crystalline quality and approached a value characteristic of a pure single crystal. A strong correlation between j{sub c} and the density of edge dislocations N{sub D} was found. At the maximum of the critical current density the density of edge dislocations was estimated to be N{sub D}{approximately}1-2 x 10{sup 9}/cm{sup 2}.« less

  7. Evidence for preferential flux flow at the grain boundaries of superconducting RF-quality niobium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Z. -H.; Lee, P. J.; Gurevich, A.

    Here, the question of whether grain boundaries (GBs) in niobium can be responsible for lowered operating field (B RF) or quality factor (Q 0) in superconducting radio-frequency (SRF) cavities is still controversial. Here, we show by direct DC transport across planar grain boundaries isolated from a slice of very large-grain SRF-quality Nb that vortices can preferentially flow along the grain boundary when the external magnetic field lies in the GB plane. However, increasing the misalignment between the GB plane and the external magnetic field vector markedly reduces preferential flux flow along GB. Importantly, we find that preferential GB flux flowmore » is more prominent for a buffered chemical polished than for an electropolished bi-crystal. The voltage-current characteristics of GBs are similar to those seen in low angle grain boundaries of high temperature superconductors where there is clear evidence of suppression of the superconducting order parameter at the GB. While local weakening of superconductivity at GBs in cuprates and pnictides is intrinsic, deterioration of current transparency of GBs in Nb appears to be extrinsic, since the polishing method clearly affect the local GB degradation. The dependence of preferential GB flux flow on important cavity preparation and experimental variables, particularly, the final chemical treatment and the angle between the magnetic field and the GB plane, suggests two more reasons why real cavity performance can be so variable.« less

  8. Evidence for preferential flux flow at the grain boundaries of superconducting RF-quality niobium

    DOE PAGES

    Sung, Z. -H.; Lee, P. J.; Gurevich, A.; ...

    2018-02-19

    Here, the question of whether grain boundaries (GBs) in niobium can be responsible for lowered operating field (B RF) or quality factor (Q 0) in superconducting radio-frequency (SRF) cavities is still controversial. Here, we show by direct DC transport across planar grain boundaries isolated from a slice of very large-grain SRF-quality Nb that vortices can preferentially flow along the grain boundary when the external magnetic field lies in the GB plane. However, increasing the misalignment between the GB plane and the external magnetic field vector markedly reduces preferential flux flow along GB. Importantly, we find that preferential GB flux flowmore » is more prominent for a buffered chemical polished than for an electropolished bi-crystal. The voltage-current characteristics of GBs are similar to those seen in low angle grain boundaries of high temperature superconductors where there is clear evidence of suppression of the superconducting order parameter at the GB. While local weakening of superconductivity at GBs in cuprates and pnictides is intrinsic, deterioration of current transparency of GBs in Nb appears to be extrinsic, since the polishing method clearly affect the local GB degradation. The dependence of preferential GB flux flow on important cavity preparation and experimental variables, particularly, the final chemical treatment and the angle between the magnetic field and the GB plane, suggests two more reasons why real cavity performance can be so variable.« less

  9. Instability of Water Quality of a Shallow, Polymictic, Flow-Through Lake.

    PubMed

    Ferencz, Beata; Dawidek, Jarosław; Toporowska, Magdalena

    2018-01-01

    This paper describes catchment processes that favor the trophic instability of a shallow polymictic lake, in which a shift from eutrophy to hypertrophy occurs rapidly. In the lake, in 2007, the winter discharge maximum and an intensive precipitation (monthly sums exceeded 60 mm) in a vegetation season were observed. In 2007, the cyanobacterial blooms disappeared and the water trophy decreased. Total phosphorus (TP) was the main factor determining the high trophic status of the lake. The TP retention resulted from a quick flow of two inflows: QI1 (r = 0.64) and QI2 (0.56), and the base flow of tributary 1 (0.62). A significant negative correlation between TP and precipitation ( r  = - 0.54) was observed. Both the surface and the groundwater inflow of I4 showed a positive correlation with the retention of PO 4 ( r  = 0.67 and r  = 0.60, respectively), whereas the outlet discharge determined RNO 3 ( r  = 0.57). The trophy of Lake Syczyńskie was determined by the relationship between nutrient input and export, expressed as the ionic retention, Carlson's trophic state index (TSI), and phytoplankton abundance. The results showed that many factors influence the stability of water quality in small, polymictic lakes. However, in the studied lake, intense precipitation and winter discharge maxima (particularly base flow) prevented summer cyanobacterial blooms.

  10. Slope stability in the critical zone: The relative influence of long vs. short-time scale soil and vegetation properties on debris-flow initiation during a catastrophic rainfall.

    NASA Astrophysics Data System (ADS)

    Rengers, F. K.; McGuire, L.; Coe, J. A.; Kean, J. W.; Baum, R. L.; Staley, D. M.; Godt, J.

    2016-12-01

    Within the critical zone there is a feedback between the state of soil and vegetation development, boundary conditions (e.g. topography, climate, hillslope aspect), and biogeochemical and geophysical process fluxes. Here we explore how one process—debris flows initiated by shallow landslides—is influenced by the critical zone development state and the imposed boundary conditions. In this study, we examine a rainstorm in September 2013 in the Colorado Front Range wherein 78% of 1138 debris flows were triggered on south-facing slopes. One hypothesis is that debris-flow initiation sites are controlled by long-term soil formation and bedrock weathering, which are aspect-dependent in the Front Range. A competing hypothesis is that debris flow initiation locations are controlled by present-day vegetation patterns within the critical zone. We tested these hypotheses with a regional investigation of the Green-Red Vegetation Index (GRVI), a metric used to identify the degree of vegetation cover. Although the majority of debris flows were observed on south-facing hillslopes, the GRVI analysis revealed that most debris-flow initiation locations had low tree density and high rainfall, regardless of hillslope aspect. We next numerically simulated soil pore pressure and slope stability using the September 2013 rainfall data at one site. Results suggest that spatial variations in soil depth and the relative extent of bedrock weathering on north- versus south-facing slopes are insufficient to explain the observed spatial variations in debris flow initiation. However, decreased debris flow initiation on north-facing slopes likely resulted from increased root reinforcement provided by trees on north-facing slopes. While the current vegetation regimes in the Colorado Front Range, and throughout much of the semi-arid southwestern U.S., are superimposed on a landscape where soil development and bedrock weathering (both of which affect slope stability) are responding to longer

  11. Attitudes of Pulmonary and Critical Care Training Program Directors toward Quality Improvement Education.

    PubMed

    Kahn, Jeremy M; Feemster, Laura C; Fruci, Carolyn M; Hyzy, Robert C; Savant, Adrienne P; Siner, Jonathan M; Weiss, Curtis H; Patel, Bela

    2015-04-01

    Quality improvement (QI) is a required component of fellowship training in pulmonary, critical care, and sleep medicine. However, little is known about how training programs approach QI education. We sought to understand the perceptions of pulmonary, critical care, and sleep medicine training program directors toward QI education. We developed and fielded an internet survey of pulmonary, critical care, and sleep medicine training program directors during 2013. Survey domains included program characteristics, the extent of trainee and faculty involvement in QI, attitudes toward QI education, and barriers to successful QI education in their programs. A total of 75 program directors completed the survey (response rate = 45.2%). Respondents represented both adult (n = 43, 57.3%) and pediatric (n = 32, 42.7%) programs. Although the majority of directors (n = 60, 80.0%) reported substantial fellow involvement in QI, only 19 (26.0%) reported having a formal QI education curriculum. QI education was primarily based around faculty mentoring (n = 46, 61.3%) and lectures (n = 38, 50.7%). Most directors agreed it is an important part of fellowship training (n = 63, 84.0%). However, fewer reported fellows were well integrated into ongoing QI activities (n = 45, 60.0%) or graduating fellows were capable of carrying out independent QI (n = 28, 50.7%). Key barriers to effective QI education included lack of qualified faculty, lack of interest among fellows, and lack of time. Training program directors in pulmonary, critical care, and sleep medicine value QI education but face substantial challenges to integrating it into fellowship training.

  12. A study of gas flow pattern, undercutting and torch modification in variable polarity plasma arc welding

    NASA Technical Reports Server (NTRS)

    Mcclure, John C.; Hou, Haihui Ron

    1994-01-01

    A study on the plasma and shield gas flow patterns in variable polarity plasma arc (VPPA) welding was undertaken by shadowgraph techniques. Visualization of gas flow under different welding conditions was obtained. Undercutting is often present with aluminum welds. The effects of torch alignment, shield gas flow rate and gas contamination on undercutting were investigated and suggestions made to minimize the defect. A modified shield cup for the welding torch was fabricated which consumes much less shield gas while maintaining the weld quality. The current torch was modified with a trailer flow for Al-Li welding, in which hot cracking is a critical problem. The modification shows improved weldablility on these alloys.

  13. Food safety and nutritional quality for the prevention of non communicable diseases: the Nutrient, hazard Analysis and Critical Control Point process (NACCP).

    PubMed

    Di Renzo, Laura; Colica, Carmen; Carraro, Alberto; Cenci Goga, Beniamino; Marsella, Luigi Tonino; Botta, Roberto; Colombo, Maria Laura; Gratteri, Santo; Chang, Ting Fa Margherita; Droli, Maurizio; Sarlo, Francesca; De Lorenzo, Antonino

    2015-04-23

    The important role of food and nutrition in public health is being increasingly recognized as crucial for its potential impact on health-related quality of life and the economy, both at the societal and individual levels. The prevalence of non-communicable diseases calls for a reformulation of our view of food. The Hazard Analysis and Critical Control Point (HACCP) system, first implemented in the EU with the Directive 43/93/CEE, later replaced by Regulation CE 178/2002 and Regulation CE 852/2004, is the internationally agreed approach for food safety control. Our aim is to develop a new procedure for the assessment of the Nutrient, hazard Analysis and Critical Control Point (NACCP) process, for total quality management (TMQ), and optimize nutritional levels. NACCP was based on four general principles: i) guarantee of health maintenance; ii) evaluate and assure the nutritional quality of food and TMQ; iii) give correct information to the consumers; iv) ensure an ethical profit. There are three stages for the application of the NACCP process: 1) application of NACCP for quality principles; 2) application of NACCP for health principals; 3) implementation of the NACCP process. The actions are: 1) identification of nutritional markers, which must remain intact throughout the food supply chain; 2) identification of critical control points which must monitored in order to minimize the likelihood of a reduction in quality; 3) establishment of critical limits to maintain adequate levels of nutrient; 4) establishment, and implementation of effective monitoring procedures of critical control points; 5) establishment of corrective actions; 6) identification of metabolic biomarkers; 7) evaluation of the effects of food intake, through the application of specific clinical trials; 8) establishment of procedures for consumer information; 9) implementation of the Health claim Regulation EU 1924/2006; 10) starting a training program. We calculate the risk assessment as follows

  14. CONSORT item reporting quality in the top ten ranked journals of critical care medicine in 2011: a retrospective analysis.

    PubMed

    Stevanovic, Ana; Schmitz, Sabine; Rossaint, Rolf; Schürholz, Tobias; Coburn, Mark

    2015-01-01

    Reporting randomised controlled trials is a key element in order to disseminate research findings. The CONSORT statement was introduced to improve the reporting quality. We assessed the adherence to the CONSORT statement of randomised controlled trials published 2011 in the top ten ranked journals of critical care medicine (ISI Web of Knowledge 2011, Thomson Reuters, London UK). Design. We performed a retrospective cross sectional data analysis. Setting. This study was executed at the University Hospital of RWTH, Aachen. Participants. We selected the following top ten listed journals according to ISI Web of Knowledge (Thomson Reuters, London, UK) critical care medicine ranking in the year 2011: American Journal of Respiratory and Critical Care Medicine, Critical Care Medicine, Intensive Care Medicine, CHEST, Critical Care, Journal of Neurotrauma, Resuscitation, Pediatric Critical Care Medicine, Shock and Minerva Anestesiologica. Main outcome measures. We screened the online table of contents of each included journal, to identify the randomised controlled trials. The adherence to the items of the CONSORT Checklist in each trial was evaluated. Additionally we correlated the citation frequency of the articles and the impact factor of the respective journal with the amount of reported items per trial. We analysed 119 randomised controlled trials and found, 15 years after the implementation of the CONSORT statement, that a median of 61,1% of the checklist-items were reported. Only 55.5% of the articles were identified as randomised trials in their titles. The citation frequency of the trials correlated significantly (rs = 0,433; p<0,001 and r = 0,331; p<0,001) to the CONSORT statement adherence. The impact factor showed also a significant correlation to the CONSORT adherence (r = 0,386; p<0,001). The reporting quality of randomised controlled trials in the field of critical care medicine remains poor and needs considerable improvement.

  15. Assessment of TRAC-PF1/MOD1 version 14. 3 using separate effects critical flow and blowdown experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spindler, B.; Pellissier, M.

    1990-01-01

    Independent assessment of the TRAC code was conducted at the Centre d'Etudes Nucleaires de Grenoble of the Commissariate a l'Energie Atomique (France) in the frame of the ICAP. This report presents the results of the assessment of TRAC-PF1/MOD1 version 14.3 using critical flow steady state tests (MOBY-DICK, SUPER-MOBY-DICK), and blowdown tests (CANON, SUPER-CANON, VERTICAL-CANON, MARVIKEN, OMEGA-TUBE, OMEGA-BUNDLE). This document, Volume 1, presents the text and tables from this assessment.

  16. Stakeholder Engagement to Identify Priorities for Improving the Quality and Value of Critical Care.

    PubMed

    Stelfox, Henry T; Niven, Daniel J; Clement, Fiona M; Bagshaw, Sean M; Cook, Deborah J; McKenzie, Emily; Potestio, Melissa L; Doig, Christopher J; O'Neill, Barbara; Zygun, David

    2015-01-01

    Large amounts of scientific evidence are generated, but not implemented into patient care (the 'knowledge-to-care' gap). We identified and prioritized knowledge-to-care gaps in critical care as opportunities to improve the quality and value of healthcare. We used a multi-method community-based participatory research approach to engage a Network of all adult (n = 14) and pediatric (n = 2) medical-surgical intensive care units (ICUs) in a fully integrated geographically defined healthcare system serving 4 million residents. Participants included Network oversight committee members (n = 38) and frontline providers (n = 1,790). Network committee members used a modified RAND/University of California Appropriateness Methodology, to serially propose, rate (validated 9 point scale) and revise potential knowledge-to-care gaps as priorities for improvement. The priorities were sent to frontline providers for evaluation. Results were relayed back to all frontline providers for feedback. Initially, 68 knowledge-to-care gaps were proposed, rated and revised by the committee (n = 32 participants) over 3 rounds of review and resulted in 13 proposed priorities for improvement. Then, 1,103 providers (62% response rate) evaluated the priorities, and rated 9 as 'necessary' (median score 7-9). Several factors were associated with rating priorities as necessary in multivariable logistic regression, related to the provider (experience, teaching status of ICU) and topic (strength of supporting evidence, potential to benefit the patient, potential to improve patient/family experience, potential to decrease costs). A community-based participatory research approach engaged a diverse group of stakeholders to identify 9 priorities for improving the quality and value of critical care. The approach was time and cost efficient and could serve as a model to prioritize areas for research quality improvement across other settings.

  17. A quality by design approach to investigate the effect of mannitol and dicalcium phosphate qualities on roll compaction.

    PubMed

    Souihi, Nabil; Dumarey, Melanie; Wikström, Håkan; Tajarobi, Pirjo; Fransson, Magnus; Svensson, Olof; Josefson, Mats; Trygg, Johan

    2013-04-15

    Roll compaction is a continuous process for solid dosage form manufacturing increasingly popular within pharmaceutical industry. Although roll compaction has become an established technique for dry granulation, the influence of material properties is still not fully understood. In this study, a quality by design (QbD) approach was utilized, not only to understand the influence of different qualities of mannitol and dicalcium phosphate (DCP), but also to predict critical quality attributes of the drug product based solely on the material properties of that filler. By describing each filler quality in terms of several representative physical properties, orthogonal projections to latent structures (OPLS) was used to understand and predict how those properties affected drug product intermediates as well as critical quality attributes of the final drug product. These models were then validated by predicting product attributes for filler qualities not used in the model construction. The results of this study confirmed that the tensile strength reduction, known to affect plastic materials when roll compacted, is not prominent when using brittle materials. Some qualities of these fillers actually demonstrated improved compactability following roll compaction. While direct compression qualities are frequently used for roll compacted drug products because of their excellent flowability and good compaction properties, this study revealed that granules from these qualities were more poor flowing than the corresponding powder blends, which was not seen for granules from traditional qualities. The QbD approach used in this study could be extended beyond fillers. Thus any new compound/ingredient would first be characterized and then suitable formulation characteristics could be determined in silico, without running any additional experiments. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. [Rapid assessment of critical quality attributes of Chinese materia medica (II): strategy of NIR assignment].

    PubMed

    Pei, Yan-Ling; Wu, Zhi-Sheng; Shi, Xin-Yuan; Zhou, Lu-Wei; Qiao, Yan-Jiang

    2014-09-01

    The present paper firstly reviewed the research progress and main methods of NIR spectral assignment coupled with our research results. Principal component analysis was focused on characteristic signal extraction to reflect spectral differences. Partial least squares method was concerned with variable selection to discover characteristic absorption band. Two-dimensional correlation spectroscopy was mainly adopted for spectral assignment. Autocorrelation peaks were obtained from spectral changes, which were disturbed by external factors, such as concentration, temperature and pressure. Density functional theory was used to calculate energy from substance structure to establish the relationship between molecular energy and spectra change. Based on the above reviewed method, taking a NIR spectral assignment of chlorogenic acid as example, a reliable spectral assignment for critical quality attributes of Chinese materia medica (CMM) was established using deuterium technology and spectral variable selection. The result demonstrated the assignment consistency according to spectral features of different concentrations of chlorogenic acid and variable selection region of online NIR model in extract process. Although spectral assignment was initial using an active pharmaceutical ingredient, it is meaningful to look forward to the futurity of the complex components in CMM. Therefore, it provided methodology for NIR spectral assignment of critical quality attributes in CMM.

  19. Ground-water flow and water quality in the sand aquifer of Long Beach Peninsula, Washington

    USGS Publications Warehouse

    Thomas, B.E.

    1995-01-01

    This report describes a study that was undertaken to improve the understanding of ground-water flow and water quality in the coastal sand aquifer of the Long Beach Peninsula of southwestern Washington. Data collected for the study include monthly water levels at 103 wells and 28 surface-water sites during 1992, and water-quality samples from about 40 wells and 13 surface-water sites in February and July 1992. Ground water generally flows at right angles to a ground-water divide along the spine of the low-lying peninsula. Historical water-level data indicate that there was no long-term decline in the water table from 1974 to 1992. The water quality of shallow ground water was generally good with a few local problems. Natural concentrations of dissolved iron were higher than 0.3 milligrams per liter in about one-third of the samples. The dissolved-solids concentrations were generally low, with a range of 56 to 218 milligrams per liter. No appreciable amount of seawater has intruded into the sand aquifer, chloride concentrations were low, with a maximum of 52 milligrams per liter. Agricultural activities do not appear to have significantly affected the quality of ground water. Concentrations of nutrients were low in the cranberry-growing areas, and selected pesticides were not found above the analytical detection limits. Septic systems probably caused an increase in the concentration of nitrate from medians of less than 0.05 milligrams per liter in areas of low population density to 0.74 milligrams per liter in areas of high density.

  20. A comparison of critical heat flux in tubes and bilaterally heated annuli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerffer, S.; Groeneveld, D.C.; Cheng, S.C.

    1995-09-01

    This paper examines the critical heat flux (CHF) behaviour for annular flow in bilaterally heated annuli and compares it to that in tubes and unilaterally heated annuli. It was found that the differences in CHF between bilaterally and unilaterally heated annuli or tubes strongly depend on pressure and quality. the CHF in bilaterally heated annuli can be predicted by tube CHF prediction methods for the simultaneous CHF occurrence at both surfaces, and the following flow conditions: pressure 7-10 MPa, mass flux 0.5-4.0 Mg/m{sup 2}s and critical quality 0.23-0.9. The effect on CHF of the outer-to-inner surface heat flux ratio, wasmore » also examined. The prediction of CHF for bilaterally heated annuli was based on the droplet-diffusion model proposed by Kirillov and Smogalev. While their model refers only to CHF occurrence at the inner surface, we extended it to cases where CHF occurs at the outer surface, and simultaneously at both surfaces, thus covering all cases of CHF occurrence in bilaterally heated annuli. From the annuli CHF data of Becker and Letzter, we derived empirical functions required by the model. the proposed equations provide good accuracy for the CHF data used in this study. Moreover, the equations can predict conditions at which CHF occurs simultaneously at both surfaces. Also, this method can be used for cases with only one heated surface.« less

  1. Critical safety features of the vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Whitehead, A. H.; Rabbow, T. J.; Trampert, M.; Pokorny, P.

    2017-05-01

    In this work the behaviour of the vanadium redox flow battery is examined under a variety of short-circuit conditions (e.g. with and without the pumps stopping as a result of the short). In contrast to other battery types, only a small proportion of the electroactive material, in a flow battery, is held between the electrodes at any given time. Therefore, together with the relatively low energy density of the vanadium electrolyte, the immediate release of energy, which occurs as a result of electrical shorting, is somewhat limited. The high heat capacity of the aqueous electrolyte is also beneficial in limiting the temperature rise. It will be seen that the flow battery is therefore considerably safer than other battery types, in this respect.

  2. Versatile, High Quality and Scalable Continuous Flow Production of Metal-Organic Frameworks

    PubMed Central

    Rubio-Martinez, Marta; Batten, Michael P.; Polyzos, Anastasios; Carey, Keri-Constanti; Mardel, James I.; Lim, Kok-Seng; Hill, Matthew R.

    2014-01-01

    Further deployment of Metal-Organic Frameworks in applied settings requires their ready preparation at scale. Expansion of typical batch processes can lead to unsuccessful or low quality synthesis for some systems. Here we report how continuous flow chemistry can be adapted as a versatile route to a range of MOFs, by emulating conditions of lab-scale batch synthesis. This delivers ready synthesis of three different MOFs, with surface areas that closely match theoretical maxima, with production rates of 60 g/h at extremely high space-time yields. PMID:24962145

  3. IR-thermography-based investigation of critical heat flux in subcooled flow boiling of water at atmospheric and high pressure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucci, Matteo; Seong, Jee H.; Buongiorno, Jdacopo

    Here we report on MIT’s THM work in Q4 2016 and Q1 2017. The goal of this project is to design, construct and execute tests of flow boiling critical heat flux (CHF) at high-pressure using high-resolution and high-speed video and infrared (IR) thermometry, to generate unique data to inform the development of and validate mechanistic boiling heat transfer and CHF models. In FY2016, a new test section was designed and fabricated. Data was collected at atmospheric conditions at 10, 25 and 50 K subcoolings, and three mass fluxes, i.e. 500, 750 and 1000 kg/m2/s. Starting in Q4 2016 and continuingmore » forward, new post-processing techniques have been developed to analyze the data collected. These new algorithms analyze the time-dependent temperature and heat flux distributions to calculate nucleation site density, nucleation frequency, growth and wait time, dry area fraction, and the complete heat flux partitioning. In Q1 2017 a new flow boiling loop was designed and constructed to support flow boiling tests up 10 bar pressure and 180 °C. Initial shakedown and testing has been completed. The flow loop and test section are now ready to begin high-pressure flow boiling testing.« less

  4. Flow quality of NAL two-dimensional transonic wind tunnel. Part 1: Mach number distributions, flow angularities and preliminary study of side wall boundary layer suction

    NASA Technical Reports Server (NTRS)

    Sakakibara, Seizo; Takashima, Kazuaki; Miwa, Hitoshi; Oguni, Yasuo; Sato, Mamoru; Kanda, Hiroshi

    1988-01-01

    Experimental data on the flow quality of the National Aerospace Laboratory two-dimensional transonic wind tunnel are presented. Mach number distributions on the test section axis show good uniformity which is characterized by the two sigma (standard deviation) values of 0.0003 to 0.001 for a range of Mach numbers from 0.4 to 1.0. Flow angularities, which were measured by using a wing model with a symmetrical cross section, remained within 0.04 deg for Mach numbers from 0.2 to 0.8. Side wall boundary layer suction was applied through a pair of porous plates. The variation of aerodynamic properties of the model due to the suction mass flow rate change is presented with a brief discussion. Two dimensionality of the flow over the wing span is expected to be improved by applying the appropriate suction rate, which depends on the Mach number, Reynolds number, and lift coefficient.

  5. Water-quality assessment of part of the Upper Mississippi River basin, Minnesota and Wisconsin - Ground-water quality along a flow system in the Twin Cities metropolitan area, Minnesota, 1997-98

    USGS Publications Warehouse

    Andrews, William J.; Stark, James R.; Fong, Alison L.; Fallon, James D.

    2005-01-01

    Although land use had substantial effects on ground-water quality, the distribution of contaminants in the aquifer also is affected by complex combinations of factors and processes that include sources of natural and anthropogenic contaminants, three-dimensional advective flow, physical and hydrologic settings, age and evolution of ground water, and transformation of chemical compounds along the flow system. Compounds such as nitrate and dissolved oxygen were greatest in water samples from the upgradient end of the flow system and near the water table. Specific conductance and dissolved solids increased along the flow system and with depth due to increase in residence time in the flow system and dissolution of aquifer materials.

  6. Assessment of TRAC-PF1/MOD1 Version 14. 3 using separate effects critical flow and blowdown experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spindler, B.; Pellissier, M.

    1990-01-01

    Independent assessment of the TRAC code was conducted at the Centre d'Etudes Nucleaires de Grenoble of the Commissariate a l'Energie Atomique (France) in the frame of the ICAP. This report presents the results of the assessment of TRAC-PF1/MOD1 version 14.3 using critical flow steady state tests (MOBY-DICK, SUPER-MOBY-DICK), and blowdown tests (CANON, SUPER-CANON, VERTICAL-CANON, MARVIKEN, OMEGA-TUBE, OMEGA-BUNDLE). This document, Volume 2, presents the experimental data and figures from the assessment.

  7. Assessing Quality of Critical Thought in Online Discussion

    ERIC Educational Resources Information Center

    Weltzer-Ward, Lisa; Baltes, Beate; Lynn, Laura Knight

    2009-01-01

    Purpose: The purpose of this paper is to describe a theoretically based coding framework for an integrated analysis and assessment of critical thinking in online discussion. Design/methodology/approach: The critical thinking assessment framework (TAF) is developed through review of theory and previous research, verified by comparing results to…

  8. Improved crystalline quality of AlN epitaxial layer on sapphire by introducing TMGa pulse flow into the nucleation stage

    NASA Astrophysics Data System (ADS)

    Wu, Hualong; Wang, Hailong; Chen, Yingda; Zhang, Lingxia; Chen, Zimin; Wu, Zhisheng; Wang, Gang; Jiang, Hao

    2018-05-01

    The crystalline quality of AlN epitaxial layers on sapphire substrates was improved by introducing trimethylgallium (TMGa) pulse flow into the growth of AlN nucleation layers. It was found that the density of both screw- and edge-type threading dislocations could be significantly reduced by introducing the TMGa pulse flow. With increasing TMGa pulse flow times, the lateral correlation length (i.e. the grain size) increases and the strain in the AlN epilayers changes from tensile state to compressive state. Unstrained AlN with the least dislocations and a smooth surface was obtained by introducing 2-times TMGa pulse flow. The crystalline improvement is attributed to enhanced lateral growth and improved crystalline orientation by the TMGa pulse flow.

  9. Impact of High-flow Nasal Cannula Therapy in Quality Improvement and Clinical Outcomes in a Non-invasive Ventilation Device-free Pediatric Intensive Care Unit.

    PubMed

    Can, Fulva Kamit; Anil, Ayse Berna; Anil, Murat; Zengin, Neslihan; Bal, Alkan; Bicilioglu, Yuksel; Gokalp, Gamze; Durak, Fatih; Ince, Gulberat

    2017-10-15

    To analyze the change in quality indicators due to the use of high-flow nasal cannula therapy as a non-invasive ventilation method in children with respiratory distress/failure in a non-invasive ventilation device-free pediatric intensive care unit. Retrospective chart review of children with respiratory distress/failure admitted 1 year before (period before high-flow nasal cannula therapy) and 1 year after (period after high-flow nasal cannula therapy) the introduction of high-flow nasal cannula therapy. We compared quality indicators as rate of mechanical ventilation, total duration of mechanical ventilation, rate of re-intubation, pediatric intensive care unit length of stay, and mortality rate between these periods. Between November 2012 and November 2014, 272 patients: 141 before and 131 after high-flow nasal cannula therapy were reviewed (median age was 20.5 mo). Of the patients in the severe respiratory distress/failure subgroup, the rate of intubation was significantly lower in period after than in period before high-flow nasal cannula therapy group (58.1% vs. 76.1%; P <0.05). The median pediatric intensive care unit length of stay was significantly shorter in patients who did not require mechanical ventilation in the period after than in the period before high-flow nasal cannula therapy group (3d vs. 4d; P<0,05). Implementation of high-flow nasal cannula therapy in pediatric intensive care unit significantly improves the quality of therapy and its outcomes.

  10. Application of the Analogy Between Water Flow with a Free Surface and Two-dimensional Compressible Gas Flow

    NASA Technical Reports Server (NTRS)

    Orlin, W James; Lindner, Norman J; Bitterly, Jack G

    1947-01-01

    The theory of hydraulic analogy, that is, the analogy between water flow with a free surface and two-dimensional compressible gas flow and the limitations and conditions of the analogy are discussed. A test run was made using the hydraulic analogy as applied to the flow about circular cylinders at various diameters at subsonic velocities extending to the super critical range. The apparatus and techniques used in this application are described and criticized. Reasonably satisfactory agreement of pressure distributions and flow fields existed between water and airflow about corresponding bodies. This agreement indicated the possibility of extending experimental compressibility research by new methods.

  11. Energy flow analysis during the tennis serve: comparison between injured and noninjured tennis players.

    PubMed

    Martin, Caroline; Bideau, Benoit; Bideau, Nicolas; Nicolas, Guillaume; Delamarche, Paul; Kulpa, Richard

    2014-11-01

    Energy flow has been hypothesized to be one of the most critical biomechanical concepts related to tennis performance and overuse injuries. However, the relationships among energy flow during the tennis serve, ball velocity, and overuse injuries have not been assessed. To investigate the relationships among the quality and magnitude of energy flow, the ball velocity, and the peaks of upper limb joint kinetics and to compare the energy flow during the serve between injured and noninjured tennis players. Case-control study; Level of evidence, 3. The serves of expert tennis players were recorded with an optoelectronic motion capture system. The forces and torques of the upper limb joints were calculated from the motion captures by use of inverse dynamics. The amount of mechanical energy generated, absorbed, and transferred was determined by use of a joint power analysis. Then the players were followed during 2 seasons to identify upper limb overuse injuries with a questionnaire. Finally, players were classified into 2 groups according to the questionnaire results: injured or noninjured. Ball velocity increased and upper limb joint kinetics decreased with the quality of energy flow from the trunk to the hand + racket segment. Injured players showed a lower quality of energy flow through the upper limb kinetic chain, a lower ball velocity, and higher rates of energy absorbed by the shoulder and elbow compared with noninjured players. The findings of this study imply that improper energy flow during the tennis serve can decrease ball velocity, increase upper limb joint kinetics, and thus increase overuse injuries of the upper limb joints. © 2014 The Author(s).

  12. Critical assessment of Reynolds stress turbulence models using homogeneous flows

    NASA Technical Reports Server (NTRS)

    Shabbir, Aamir; Shih, Tsan-Hsing

    1992-01-01

    In modeling the rapid part of the pressure correlation term in the Reynolds stress transport equations, extensive use has been made of its exact properties which were first suggested by Rotta. These, for example, have been employed in obtaining the widely used Launder, Reece and Rodi (LRR) model. Some recent proposals have dropped one of these properties to obtain new models. We demonstrate, by computing some simple homogeneous flows, that doing so does not lead to any significant improvements over the LRR model and it is not the right direction in improving the performance of existing models. The reason for this, in our opinion, is that violation of one of the exact properties can not bring in any new physics into the model. We compute thirteen homogeneous flows using LRR (with a recalibrated rapid term constant), IP and SSG models. The flows computed include the flow through axisymmetric contraction; axisymmetric expansion; distortion by plane strain; and homogeneous shear flows with and without rotation. Results show that for most general representation for a model linear in the anisotropic tensor, performs either better or as good as the other two models of the same level.

  13. Quality of Care and Patient Outcomes in Critical Access Hospitals

    PubMed Central

    Joynt, Karen E.; Harris, Yael; Orav, E. John; Jha, Ashish K.

    2012-01-01

    Context Critical Access Hospitals (CAHs) play a crucial role in the nation’s rural safety net. Current policy efforts have focused primarily on helping these small, isolated hospitals remain financially viable to ensure access for Americans living in rural areas. However, we know little about the quality of care they provide, or the outcomes their patients achieve. Objective To examine the quality of care and patient outcomes at CAHs, and to understand why patterns of care might differ for CAHs versus non-CAHs. Design Retrospective analysis of national data from Medicare and other sources. Setting U.S. hospitals. Patients Medicare fee-for-service beneficiaries with acute myocardial infarction (AMI), congestive heart failure (CHF), and pneumonia, discharged in 2008–2009. Main Outcome Measures Clinical capabilities, performance on processes of care, and 30-day mortality rates. Results Compared to other hospitals, CAHs were less likely to have intensive care units (30.0% versus 74.4%, p<0.001), cardiac catheterization capabilities (0.5% versus 47.7%, p<0.001), and at least basic electronic health records (4.6% versus 9.9%, p<0.001). CAHs had lower performance on process measures than non-CAHs for all three conditions examined (Hospital Quality Alliance summary score for AMI 91.0% versus 97.8%, for CHF, 80.6% versus 93.5%, and for pneumonia 89.3% versus 93.7%, p<0.001 for each). Patients admitted to a CAH had higher 30-day mortality rates for each condition than those admitted to non-CAHs (for AMI, 23.5% versus 16.2%, Odds Ratio (OR) 1.70 (95% confidence interval 1.61, 1.80), p<0.001; for CHF, 13.4% versus 10.9%, OR 1.28 (1.23, 1.32), p<0.001; and for pneumonia 14.1% versus 12.1%, OR 1.20 (1.16, 1.24) p<0.001). Conclusions Care in CAHs, compared with non-CAHs, is associated with worse processes of care and higher mortality rates. PMID:21730240

  14. Flowing holographic anyonic superfluid

    NASA Astrophysics Data System (ADS)

    Jokela, Niko; Lifschytz, Gilad; Lippert, Matthew

    2014-10-01

    We investigate the flow of a strongly coupled anyonic superfluid based on the holographic D3-D7' probe brane model. By analyzing the spectrum of fluctuations, we find the critical superfluid velocity, as a function of the temperature, at which the flow stops being dissipationless when flowing past a barrier. We find that at a larger velocity the flow becomes unstable even in the absence of a barrier.

  15. Improvement of Subsonic Basic Research Tunnel Flow Quality as Applied to Wall Mounted Testing

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.

    1995-01-01

    A survey to determine the characteristics of a boundary layer that forms on the wall of the Subsonic Basic Research Tunnel has been performed. Early results showed significant differences in the velocity profiles as measured spanwise across the wall. An investigation of the flow in the upstream contraction revealed the presence of a separation bubble at the beginning of the contraction which caused much of the observed unsteadiness. Vortex generators were successfully applied to the contraction inlet to alleviate the separation. A final survey of the wall boundary layer revealed variations in the displacement and momentum thicknesses to be less than +/- 5% for all but the most upper portion of the wall. The flow quality was deemed adequate to continue the planned follow-on tests to help develop the semi-span test technique.

  16. Critical Viewing and Participatory Democracy.

    ERIC Educational Resources Information Center

    Cohen, Jodi R.

    1994-01-01

    Illustrates ways that the work of some communication scholars with resistant, oppositional, and critical audiences does not, however, endorse active public life. Attempts to realign the language of critical viewing with the goals of participatory democracy by suggesting qualities of critical viewing that are conducive to achieving and maintaining…

  17. Tempo-spatial dynamics of water quality and its response to river flow in estuary of Taihu Lake based on GOCI imagery.

    PubMed

    Du, Chenggong; Li, Yunmei; Wang, Qiao; Liu, Ge; Zheng, Zhubin; Mu, Meng; Li, Yuan

    2017-12-01

    Knowledge of tempo-spatial dynamics of water quality and its response to river flow is important for the management of lake water quality because river discharge associated with rainstorms can be an important source of pollutants to the estuary. Total phosphorus (TP), chlorophyll a (Chl-a), and total suspended matter (TSM) are important indexes of water quality and important factors influencing eutrophication and algal blooms. In this study, remote sensing was used to monitor these indexes to investigate the effects of river discharge on the estuary of Taihu Lake by the largest inflow river which is Chendong River using a total of 136 Geostationary Ocean Color Images (GOCI). In situ datasets collected during the four cruise experiments on Taihu Lake between 2011 and 2015 were used to develop the TP, Chl-a, and TSM inversion models based on simple empirical algorithms: 154 points for TP (mg/L), 114 for Chl-a (μg/L), and 181 for TSM (mg/L). The spatial and temporal changes of the concentration of the three parameters in the Chendong River estuary were analyzed by combining the GOCI data, the flow of the Chendong River, and meteorological data throughout the year in 2014. The several key findings are as follows: (1) In summer and autumn, TP, Chl-a, and TSM contents were significantly higher than in winter and spring. TP and Chl-a have a few similar distribution characteristics. And organic suspended matter in summer was the main reason for the increase of the TSM concentration. (2) The severe surface erosion in the rivers cannot be ignored; the high erodibility is an important factor in the increase of TP and TSM concentrations in the estuary. The concentration of the water quality parameter showed exponential decay with distance from the shore. The concentration decreased slowly after 12 km and then remained essentially constant. (3) TP content in the Chendong River estuary decreased under steady flow inputs and dramatically increased when the flow became large

  18. Habitat suitability criteria for assessment of instream flow needs of fish

    USGS Publications Warehouse

    Crance, Johnie H.

    1989-01-01

    In the western portion of the United States, competition for stream water gas often been fierce. Water resource management agencies in the southeastern United States, where water has been relatively abundant, are not being faced with similar competing demands for water, and with increasing pressures to develop and defend recommendations for protecting fish and invertebrates in streams. Streamflow depletion at any time can result in severe long-term effects on fish populations(Peters, 1982). The allocation of stream water to any numerous instream or offstream uses is tied to the issues of water quantity, quality, and timing, which center on two critical questions: (1)when and how much water of an acceptable quality should be left in a stream, and (2) what happens if flow regimes are changed? Answers to these questions will probably be complex, but reliable answers are needed to protect instream and offstream values. If instream flow interests expect to compete with offstream uses for limited water supplies, they must be able to determine reliable and defensible methods for determining instream flow needs and demonstrate the environmental consequences of altered flow regimes. My objectives in this paper are: (a) to present an overview of the need, development, and use of stream habitat suitability criteria, and the use of these criteria for the assessment of instream flow needs; (b) to give a status report on the plan of the National Ecology Research Center (NERC) for expansion of instream flow research in the Southeast; and (c) to discuss the relevancy of the research to river corridor management.

  19. River water quality management considering agricultural return flows: application of a nonlinear two-stage stochastic fuzzy programming.

    PubMed

    Tavakoli, Ali; Nikoo, Mohammad Reza; Kerachian, Reza; Soltani, Maryam

    2015-04-01

    In this paper, a new fuzzy methodology is developed to optimize water and waste load allocation (WWLA) in rivers under uncertainty. An interactive two-stage stochastic fuzzy programming (ITSFP) method is utilized to handle parameter uncertainties, which are expressed as fuzzy boundary intervals. An iterative linear programming (ILP) is also used for solving the nonlinear optimization model. To accurately consider the impacts of the water and waste load allocation strategies on the river water quality, a calibrated QUAL2Kw model is linked with the WWLA optimization model. The soil, water, atmosphere, and plant (SWAP) simulation model is utilized to determine the quantity and quality of each agricultural return flow. To control pollution loads of agricultural networks, it is assumed that a part of each agricultural return flow can be diverted to an evaporation pond and also another part of it can be stored in a detention pond. In detention ponds, contaminated water is exposed to solar radiation for disinfecting pathogens. Results of applying the proposed methodology to the Dez River system in the southwestern region of Iran illustrate its effectiveness and applicability for water and waste load allocation in rivers. In the planning phase, this methodology can be used for estimating the capacities of return flow diversion system and evaporation and detention ponds.

  20. Chronically critically ill patients: health-related quality of life and resource use after a disease management intervention.

    PubMed

    Douglas, Sara L; Daly, Barbara J; Kelley, Carol Genet; O'Toole, Elizabeth; Montenegro, Hugo

    2007-09-01

    Chronically critically ill patients often have high costs of care and poor outcomes and thus might benefit from a disease management program. To evaluate how adding a disease management program to the usual care system affects outcomes after discharge from the hospital (mortality, health-related quality of life, resource use) in chronically critically ill patients. In a prospective experimental design, 335 intensive care patients who received more than 3 days of mechanical ventilation at a university medical center were recruited. For 8 weeks after discharge, advanced practice nurses provided an intervention that focused on case management and interdisciplinary communication to patients in the experimental group. A total of 74.0% of the patients survived and completed the study. Significant predictors of death were age (P = .001), duration of mechanical ventilation (P = .001), and history of diabetes (P = .04). The disease management program did not have a significant impact on health-related quality of life; however, a greater percentage of patients in the experimental group than in the control group had "improved" physical health-related quality of life at the end of the intervention period (P = .02). The only significant effect of the intervention was a reduction in the number of days of hospital readmission and thus a reduction in charges associated with readmission. The intervention was not associated with significant changes in any outcomes other than duration of readmission, but the supportive care coordination program could be provided without increasing overall charges.

  1. Quality comparison of continuous steam sterilization segmented-flow aseptic processing versus conventional canning of whole and sliced mushrooms.

    PubMed

    Anderson, N M; Walker, P N

    2011-08-01

    This study was carried out to investigate segmented-flow aseptic processing of particle foods. A pilot-scale continuous steam sterilization unit capable of producing shelf stable aseptically processed whole and sliced mushrooms was developed. The system utilized pressurized steam as the heating medium to achieve high temperature-short time processing conditions with high and uniform heat transfer that will enable static temperature penetration studies for process development. Segmented-flow technology produced a narrower residence time distribution than pipe-flow aseptic processing; thus, whole and sliced mushrooms were processed only as long as needed to achieve the target F₀  = 7.0 min and were not overcooked. Continuous steam sterilization segmented-flow aseptic processing produced shelf stable aseptically processed mushrooms of superior quality to conventionally canned mushrooms. When compared to conventionally canned mushrooms, aseptically processed yield (weight basis) increased 6.1% (SD = 2.9%) and 6.6% (SD = 2.2%), whiteness (L) improved 3.1% (SD = 1.9%) and 4.7% (SD = 0.7%), color difference (ΔE) improved 6.0% (SD = 1.3%) and 8.5% (SD = 1.5%), and texture improved 3.9% (SD = 1.7%) and 4.6% (SD = 4.2%), for whole and sliced mushrooms, respectively. Segmented-flow aseptic processing eliminated a separate blanching step, eliminated the unnecessary packaging of water and promoted the use of bag-in-box and other versatile aseptic packaging methods. Segmented-flow aseptic processing is capable of producing shelf stable aseptically processed particle foods of superior quality to a conventionally canned product. This unique continuous steam sterilization process eliminates the need for a separate blanching step, reduces or eliminates the need for a liquid carrier, and promotes the use of bag-in-box and other versatile aseptic packaging methods. © 2011 Institute of Food Technologists®

  2. Secondary instability in boundary-layer flows

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.; Bozatli, A. N.

    1979-01-01

    The stability of a secondary Tollmien-Schlichting wave, whose wavenumber and frequency are nearly one half those of a fundamental Tollmien-Schlichting instability wave is analyzed using the method of multiple scales. Under these conditions, the fundamental wave acts as a parametric exciter for the secondary wave. The results show that the amplitude of the fundamental wave must exceed a critical value to trigger this parametric instability. This value is proportional to a detuning parameter which is the real part of k - 2K, where k and K are the wavenumbers of the fundamental and its subharmonic, respectively. For Blasius flow, the critical amplitude is approximately 29% of the mean flow, and hence many other secondary instabilities take place before this parametric instability becomes significant. For other flows where the detuning parameter is small, such as free-shear layer flows, the critical amplitude can be small, thus the parametric instability might play a greater role.

  3. Aging and free surface flow of a thixotropic fluid

    NASA Astrophysics Data System (ADS)

    Huynh, H. T.; Roussel, N.; Coussot, P.

    2005-03-01

    Free surface flows of thixotropic fluids such as paints, self-compacting concrete, or natural mudflows are of noticeable practical interest. Here we study the basic characteristics of the uniform flow of a layer of thixotropic fluid under gravity. A theoretical approach relying on a simple thixotropy constitutive equation shows that after some time at rest over a small slope angle the fluid layer should start to flow rather abruptly beyond a new, larger, critical slope angle. The theory also predicts that the critical time at which the layer velocity should significantly increase is proportional to the duration of the preliminary rest and tends to infinity when the new slope approaches the critical slope. Experiments carried out with different suspensions show that the qualitative trends of the flows are in very good agreement with the theoretical predictions, except that the critical time for flow start appears to be proportional to a power 0.6 of the time of rest whereas the theory predicts a linear dependence. We show that this indicates a restructuration process at rest differing from the restructuration process under flow.

  4. Hydrogeology and water quality of the Pepacton Reservoir Watershed in southeastern New York. Part 4. Quantity and quality of ground-water and tributary contributions to stream base flow in selected main-valley reaches

    USGS Publications Warehouse

    Heisig, Paul M.

    2004-01-01

    Estimates of the quantity and quality of ground-water discharge from valley-fill deposits were calculated for nine valley reaches within the Pepacton watershed in southeastern New York in July and August of 2001. Streamflow and water quality at the upstream and downstream end of each reach and at intervening tributaries were measured under base-flow conditions and used in mass-balance equations to determine quantity and quality of ground-water discharge. These measurements and estimates define the relative magnitudes of upland (tributary inflow) and valley-fill (ground-water discharge) contributions to the main-valley streams and provide a basis for understanding the effects of hydrogeologic setting on these contributions. Estimates of the water-quality of ground-water discharge also provide an indication of the effects of road salt, manure, and human wastewater from villages on the water quality of streams that feed the Pepacton Reservoir. The most common contaminant in ground-water discharge was chloride from road salt; concentrations were less than 15 mg/L.Investigation of ground-water quality within a large watershed by measurement of stream base-flow quantity and quality followed by mass-balance calculations has benefits and drawbacks in comparison to direct ground-water sampling from wells. First, sampling streams is far less expensive than siting, installing, and sampling a watershed-wide network of wells. Second, base-flow samples represent composite samples of ground-water discharge from the most active part of the ground-water flow system across a drainage area, whereas a well network would only be representative of discrete points within local ground-water flow systems. Drawbacks to this method include limited reach selection because of unfavorable or unrepresentative hydrologic conditions, potential errors associated with a large number of streamflow and water-quality measurements, and limited ability to estimate concentrations of nonconservative

  5. Subsonic Flows through S-Ducts with Flow Control

    NASA Astrophysics Data System (ADS)

    Chen, Yi

    An inlet duct of an aircraft connects the air intake mounted on the fuselage to the engine within the aircraft body. The ideal outflow quality of the duct is steady, uniform and of high total pressure. Recently compact S-shaped inlet ducts are drawing more attention in the design of UAVs with short propulsion system. Compact ducts usually involve strong streamwise adverse pressure gradient and transverse secondary flow, leading to large-scale harmful vortical structures in the outflow. To improve the outflow quality modern flow control techniques have to be applied. Before designing successful flow control methods a solid understanding of the baseline flow field with the duct is crucial. In this work the fundamental mechanism of how the three dimensional flow topology evolves when the relevant parameters such as the duct geometry and boundary layer thickness are varied, is studied carefully. Two distinct secondary-flow patterns are identified. For the first time the sensitivity of the flow topology to the inflow boundary layer thickness in long ducts is clearly addressed. The interaction between the transverse motion induced by the transverse pressure gradient and the streamwise separation is revealed as the crucial reason for the various flow patterns existing in short ducts. A non-symmetric flow pattern is identified for the first time in both experiments and simulations in short ducts in which the intensity of the streamwise separation and the transverse invasion are in the same order of magnitude. A theory of energy accumulation and solution bifurcation is used to give a reasonable explanation for this non-symmetry. After gaining the knowledge of where and how the harmful vortical structures are generated several flow control techniques are tested to achieve a better outflow quality. The analysis of the flow control cases also provides a deeper insight into the behavior of the three-dimensional flow within the ducts. The conventional separation control method

  6. [Telemedicine: Improving the quality of care for critical patients from the pre-hospital phase to the intensive care unit].

    PubMed

    Murias, G; Sales, B; García-Esquirol, O; Blanch, L

    2010-01-01

    The Health System is in crisis and critical care (from transport systems to the ICU) cannot escape from that. Lack of integration between ambulances and reference Hospitals, a deep shortage of critical care specialists and assigned economical resources that increase less than critical care demand are the cornerstones of the problem. Moreover, the analysis of the situation anticipated that the problem will be worse in the future. "Closed" ICUs in which critical care specialists direct patient care outperform "open" ones in which primary admitting physicians direct patient care in consultation with critical care specialists. However, the current paradigm in which a critical care specialist is close to the patient is in the edge of the trouble so, only a new paradigm could help to increase the number of patients under intensivist care. Current information technology and networking capabilities should be fully exploited to improve both the extent and quality of intensivist coverage. Far to be a replacement of the existing model Telemedicine might be a complimentary tool. In fact, to centralize medical data into servers has many additional advantages that could even improve the way in which critical care physicians take care of their patients under the traditional system. Copyright 2009 Elsevier España, S.L. y SEMICYUC. All rights reserved.

  7. Monitoring And Modeling Environmental Water Quality To Support Environmental Water Purchase Decision-making

    NASA Astrophysics Data System (ADS)

    Null, S. E.; Elmore, L.; Mouzon, N. R.; Wood, J. R.

    2016-12-01

    More than 25 million cubic meters (20,000 acre feet) of water has been purchased from willing agricultural sellers for environmental flows in Nevada's Walker River to improve riverine habitat and connectivity with downstream Walker Lake. Reduced instream flows limit native fish populations, like Lahontan cutthroat trout, through warm daily stream temperatures and low dissolved oxygen concentrations. Environmental water purchases maintain instream flows, although effects on water quality are more varied. We use multi-year water quality monitoring and physically-based hydrodynamic and water quality modeling to estimate streamflow, water temperature, and dissolved oxygen concentrations with alternative environmental water purchases. We simulate water temperature and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that environmental water purchases most enhance trout habitat as a function of water quality. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach acts as a water quality barrier for fish passage. Model results indicate that low streamflows generally coincide with critically warm stream temperatures, water quality refugia exist on a tributary of the Walker River, and environmental water purchases may improve stream temperature and dissolved oxygen conditions for some reaches and seasons, especially in dry years and prolonged droughts. This research supports environmental water purchase decision-making and allows water purchase decisions to be prioritized with other river restoration alternatives.

  8. [Critical reflexion on quality improvement and networking].

    PubMed

    Adler, R

    2012-06-06

    Qualitiy-control and networking are two issues of debate in modern medicine. The origin of these terms is not to be found in medicine, but rather in industry. However their naive transfer to the field of medicine causes damage. It is relatively easy to test industrial products for their quality. Dealing with meaningful medical problems is far too complex. Simple data such as blood pressure, HbA1c, etc. may be assessed. The only means of quality-control of complex medical situations and actions are ward rounds by attending physicians, case presentations at staff meetings, etc. Issues of clinical quality-control are discussed on the basis of the history of an aged couple. Furthermore a personal clinical experience illustrates how doctors create a useful network with other physicians and how they eliminate "useless" colleagues from their network. Economists should have no influence or impact whatsoever on the quality-control and networking of physicians.

  9. Free flux flow in two single crystals of V3Si with slightly different pinning strengths

    NASA Astrophysics Data System (ADS)

    Gafarov, O.; Gapud, A. A.; Moraes, S.; Thompson, J. R.; Christen, D. K.; Reyes, A. P.

    2010-10-01

    Results of recent measurements on two very clean, single-crystal samples of the A15 superconductor V3Si are presented. Magnetization and transport data already confirmed the ``clean'' quality of both samples, as manifested by: (i) high residual resistivity ratio, (ii) very low critical current densities, and (iii) a ``peak'' effect in the field dependence of critical current. The (H,T) phase line for this peak effect is shifted in the slightly ``dirtier'' sample, which consequently also has higher critical current density Jc(H). High-current Lorentz forces are applied on mixed-state vortices in order to induce the highly ordered free flux flow (FFF) phase, using the same methods as in previous work. A traditional model by Bardeen and Stephen (BS) predicts a simple field dependence of flux flow resistivity ρf(H), presuming a field-independent flux core size. A model by Kogan and Zelezhina (KZ) takes core size into account, and predict a clear deviation from BS. In this study, ρf(H) is confirmed to be consistent with predictions of KZ, as will be discussed.

  10. Water Availability--The Connection Between Water Use and Quality

    USGS Publications Warehouse

    Hirsch, Robert M.; Hamilton, Pixie A.; Miller, Timothy L.; Myers, Donna N.

    2008-01-01

    Water availability has become a high priority in the United States, in large part because competition for water is becoming more intense across the Nation. Population growth in many areas competes with demands for water to support irrigation and power production. Cities, farms, and power plants compete for water needed by aquatic ecosystems to support their minimum flow requirements. At the same time, naturally occurring and human-related contaminants from chemical use, land use, and wastewater and industrial discharge are introduced into our waters and diminish its quality. The fact that degraded quality limits the availability and suitability of water for critical uses is a well-known reality in many communities. What may be less understood, but equally true, is that our everyday use of water can significantly affect water quality, and thus its availability. Landscape features (such as geology, soils, and vegetation) along with water-use practices (such as ground-water withdrawals and irrigation) govern water availability because, together, they affect the movement of chemical compounds over the land and in the subsurface. Understanding the interactions of human activities with natural sources and the landscape is critical to effectively managing water and sustaining water availability in the future.

  11. Mixed Criticality Scheduling for Industrial Wireless Sensor Networks

    PubMed Central

    Jin, Xi; Xia, Changqing; Xu, Huiting; Wang, Jintao; Zeng, Peng

    2016-01-01

    Wireless sensor networks (WSNs) have been widely used in industrial systems. Their real-time performance and reliability are fundamental to industrial production. Many works have studied the two aspects, but only focus on single criticality WSNs. Mixed criticality requirements exist in many advanced applications in which different data flows have different levels of importance (or criticality). In this paper, first, we propose a scheduling algorithm, which guarantees the real-time performance and reliability requirements of data flows with different levels of criticality. The algorithm supports centralized optimization and adaptive adjustment. It is able to improve both the scheduling performance and flexibility. Then, we provide the schedulability test through rigorous theoretical analysis. We conduct extensive simulations, and the results demonstrate that the proposed scheduling algorithm and analysis significantly outperform existing ones. PMID:27589741

  12. Quality indicators of continuous renal replacement therapy (CRRT) care in critically ill patients: a systematic review.

    PubMed

    Rewa, Oleksa G; Villeneuve, Pierre-Marc; Lachance, Philippe; Eurich, Dean T; Stelfox, Henry T; Gibney, R T Noel; Hartling, Lisa; Featherstone, Robin; Bagshaw, Sean M

    2017-06-01

    Renal replacement therapy is increasingly utilized in the intensive care unit (ICU), of which continuous renal replacement therapy (CRRT) is most common. Despite CRRT being a relatively invasive and resource intensive technology, there remains wide practice variation in its application. This systematic review appraised the evidence for quality indicators (QIs) of CRRT care in critically ill patients. A comprehensive search strategy was developed and performed in five citation databases (Medline, Embase, CINAHL, Cochrane Library, and PubMed) and select grey literature sources. Two reviewers independently screened, selected, and extracted data using standardized forms. Each retrieved citation was appraised for quality using the Newcastle-Ottawa Scale (NOS) and Cochrane risk of bias tool. Data were summarized narratively. Our search yielded 8374 citations, of which 133 fulfilled eligibility. This included 97 cohort studies, 24 randomized controlled trials, 10 case-control studies, and 2 retrospective medical audits. The quality of retrieved studies was generally good. In total, 18 QIs were identified that were mentioned in 238 instances. Identified QIs were classified as related to structure (n = 4, 22.2 %), care processes (n = 9, 50.0 %), and outcomes (n = 5, 27.8 %). The most commonly mentioned QIs focused on filter lifespan (n = 98), small solute clearance (n = 46), bleeding (n = 30), delivered dose (n = 19), and treatment interruption (n = 5). Across studies, the definitions used for QIs evaluating similar constructs varied considerably. When identified, QIs were most commonly described as important (n = 144, 48.3 %), scientifically acceptable (n = 32, 10.7 %), and useable and/or feasible (n = 17, 5.7 %) by their primary study authors. We identified numerous potential QIs of CRRT care, characterized by heterogeneous definitions, varying quality of derivation, and limited evaluation. Further study is needed to prioritize a concise

  13. Drop-on-Demand System for Manufacturing of Melt-based Solid Oral Dosage: Effect of Critical Process Parameters on Product Quality.

    PubMed

    Içten, Elçin; Giridhar, Arun; Nagy, Zoltan K; Reklaitis, Gintaras V

    2016-04-01

    The features of a drop-on-demand-based system developed for the manufacture of melt-based pharmaceuticals have been previously reported. In this paper, a supervisory control system, which is designed to ensure reproducible production of high quality of melt-based solid oral dosages, is presented. This control system enables the production of individual dosage forms with the desired critical quality attributes: amount of active ingredient and drug morphology by monitoring and controlling critical process parameters, such as drop size and product and process temperatures. The effects of these process parameters on the final product quality are investigated, and the properties of the produced dosage forms characterized using various techniques, such as Raman spectroscopy, optical microscopy, and dissolution testing. A crystallization temperature control strategy, including controlled temperature cycles, is presented to tailor the crystallization behavior of drug deposits and to achieve consistent drug morphology. This control strategy can be used to achieve the desired bioavailability of the drug by mitigating variations in the dissolution profiles. The supervisor control strategy enables the application of the drop-on-demand system to the production of individualized dosage required for personalized drug regimens.

  14. Nutrient and Sediment Reductions from Algal Flow-Way Technologies: Recommendations to the Chesapeake Bay Program's Water Quality Goal Implementation Team from the Algal Flow-Way Technologies BMP Expert Panel

    USDA-ARS?s Scientific Manuscript database

    The Chesapeake Stormwater Network hosted a workshop on July, 2012 to discuss the potential nutrient reductions from emerging stormwater technologies including algal flow-way technologies (AFTs). Workshop participants recommended the Chesapeake Bay Program’s Water Quality Goal Implementation Team(WQ...

  15. NDTAC Practice Guide: Quality Education Services Are Critical for Youth Involved with the Juvenile Justice and Child Welfare Systems

    ERIC Educational Resources Information Center

    Gonsoulin, Simon; Clark, Heather Griller; Rankin, Victoria E.

    2015-01-01

    This National Evaluation and Technical Assistance Center for the Education of Children and Youth Who are Neglected, Delinquent, or At-Risk (NDTAC) practice guide examines the principle that quality education services are critical for youth involved with the juvenile justice and child welfare systems. This principle asserts that, to address the…

  16. Ontario's Quality Assurance Framework: A Critical Response

    ERIC Educational Resources Information Center

    Heap, James

    2013-01-01

    Ontario's Quality Assurance Framework (QAF) is reviewed and found not to meet all five criteria proposed for a strong quality assurance system focused on student learning. The QAF requires a statement of student learning outcomes and a method and means of assessing those outcomes, but it does not require that data on achievement of intended…

  17. Surface representations of two- and three-dimensional fluid flow topology

    NASA Technical Reports Server (NTRS)

    Helman, James L.; Hesselink, Lambertus

    1990-01-01

    We discuss our work using critical point analysis to generate representations of the vector field topology of numerical flow data sets. Critical points are located and characterized in a two-dimensional domain, which may be either a two-dimensional flow field or the tangential velocity field near a three-dimensional body. Tangent curves are then integrated out along the principal directions of certain classes of critical points. The points and curves are linked to form a skeleton representing the two-dimensional vector field topology. When generated from the tangential velocity field near a body in a three-dimensional flow, the skeleton includes the critical points and curves which provide a basis for analyzing the three-dimensional structure of the flow separation. The points along the separation curves in the skeleton are used to start tangent curve integrations to generate surfaces representing the topology of the associated flow separations.

  18. Siphon flows in isolated magnetic flux tubes. II - Adiabatic flows

    NASA Technical Reports Server (NTRS)

    Montesinos, Benjamin; Thomas, John H.

    1989-01-01

    This paper extends the study of steady siphon flows in isolated magnetic flux tubes surrounded by field-free gas to the case of adiabatic flows. The basic equations governing steady adiabatic siphon flows in a thin, isolated magnetic flux tube are summarized, and qualitative features of adiabatic flows in elevated, arched flux tubes are discussed. The equations are then cast in nondimensional form and the results of numerical computations of adiabatic siphon flows in arched flux tubes are presented along with comparisons between isothermal and adiabatic flows. The effects of making the interior of the flux tube hotter or colder than the surrounding atmosphere at the upstream footpoint of the arch is considered. In this case, is it found that the adiabatic flows are qualitatively similar to the isothermal flows, with adiabatic cooling producing quantitative differences. Critical flows can produce a bulge point in the rising part of the arch and a concentration of magnetic flux above the bulge point.

  19. Application of ICH Q9 Quality Risk Management Tools for Advanced Development of Hot Melt Coated Multiparticulate Systems.

    PubMed

    Stocker, Elena; Becker, Karin; Hate, Siddhi; Hohl, Roland; Schiemenz, Wolfgang; Sacher, Stephan; Zimmer, Andreas; Salar-Behzadi, Sharareh

    2017-01-01

    This study aimed to apply quality risk management based on the The International Conference on Harmonisation guideline Q9 for the early development stage of hot melt coated multiparticulate systems for oral administration. N-acetylcysteine crystals were coated with a formulation composing tripalmitin and polysorbate 65. The critical quality attributes (CQAs) were initially prioritized using failure mode and effects analysis. The CQAs of the coated material were defined as particle size, taste-masking efficiency, and immediate release profile. The hot melt coated process was characterized via a flowchart, based on the identified potential critical process parameters (CPPs) and their impact on the CQAs. These CPPs were prioritized using a process failure mode, effects, and criticality analysis and their critical impact on the CQAs was experimentally confirmed using a statistical design of experiments. Spray rate, atomization air pressure, and air flow rate were identified as CPPs. Coating amount and content of polysorbate 65 in the coating formulation were identified as critical material attributes. A hazard and critical control points analysis was applied to define control strategies at the critical process points. A fault tree analysis evaluated causes for potential process failures. We successfully demonstrated that a standardized quality risk management approach optimizes the product development sustainability and supports the regulatory aspects. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. A critical evaluation of various turbulence models as applied to internal fluid flows

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.

    1985-01-01

    Models employed in the computation of turbulent flows are described and their application to internal flows is evaluated by examining the predictions of various turbulence models in selected flow configurations. The main conclusions are: (1) the k-epsilon model is used in a majority of all the two-dimensional flow calculations reported in the literature; (2) modified forms of the k-epsilon model improve the performance for flows with streamline curvature and heat transfer; (3) for flows with swirl, the k-epsilon model performs rather poorly; the algebraic stress model performs better in this case; and (4) for flows with regions of secondary flow (noncircular duct flows), the algebraic stress model performs fairly well for fully developed flow, for developing flow, the algebraic stress model performance is not good; a Reynolds stress model should be used. False diffusion and inlet boundary conditions are discussed. Countergradient transport and its implications in turbulence modeling is mentioned. Two examples of recirculating flow predictions obtained using PHOENICS code are discussed. The vortex method, large eddy simulation (modeling of subgrid scale Reynolds stresses), and direct simulation, are considered. Some recommendations for improving the model performance are made. The need for detailed experimental data in flows with strong curvature is emphasized.

  1. Critical points of Brazil nuts: a beginning for food safety, quality control and Amazon sustainability.

    PubMed

    Lima, Andriele M; Gonçalves, Evonnildo C; Andrade, Soraya S; Barbosa, Maria S R; Barroso, Karla F P; de Sousa, Mayara B; Borges, Larissa; Vieira, Jozé L F; Teixeira, Francisco M

    2013-03-15

    One difficulty of self-sustainability is the quality assurance of native products. This research was designed to study the risks and critical control points in the collection, handling and marketing of Brazil nuts from native forests and urban fairs in the Brazilian Amazon by characterisation of morphological aspects of fungi and posterior identification by molecular biology and determination of aflatoxins by high-performance liquid chromatography. Several corrective actions to improve product quality were found to be necessary in both sites. Growth of fungi was observed in 95% of fragments of Brazil nuts from both sites during the between-harvest period. Aflatoxin levels indicated that, although fungal growth was observed in both sites, only Brazil nuts from the native forest showed a high risk to human health (total aflatoxin level of 471.69 µg kg(-1)). This study has shown the main issues related to the process design of Brazil nuts, supporting the necessity for research on new strategies to improve the quality of nuts. Also, the habit of eating Brazil nuts stored throughout the year may represent a risk to farmers. © 2012 Society of Chemical Industry.

  2. Concentration-Discharge Relations in the Critical Zone: Implications for Resolving Critical Zone Structure, Function, and Evolution

    NASA Astrophysics Data System (ADS)

    Chorover, Jon; Derry, Louis A.; McDowell, William H.

    2017-11-01

    Critical zone science seeks to develop mechanistic theories that describe critical zone structure, function, and long-term evolution. One postulate is that hydrogeochemical controls on critical zone evolution can be inferred from solute discharges measured down-gradient of reactive flow paths. These flow paths have variable lengths, interfacial compositions, and residence times, and their mixing is reflected in concentration-discharge (C-Q) relations. Motivation for this special section originates from a U.S. Critical Zone Observatories workshop that was held at the University of New Hampshire, 20-22 July 2015. The workshop focused on resolving mechanistic CZ controls over surface water chemical dynamics across the full range of lithogenic (e.g., nonhydrolyzing and hydrolyzing cations and oxyanions) and bioactive solutes (e.g., organic and inorganic forms of C, N, P, and S), including dissolved and colloidal species that may cooccur for a given element. Papers submitted to this special section on "concentration-discharge relations in the critical zone" include those from authors who attended the workshop, as well as others who responded to the open solicitation. Submissions were invited that utilized information pertaining to internal, integrated catchment function (relations between hydrology, biogeochemistry, and landscape structure) to help illuminate controls on observed C-Q relations.

  3. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Shear thirning will cause a normally viscous fluid -- such as pie filling or whipped cream -- to deform and flow more readily under high shear conditions. In shear thinning, a pocket of fluid will deform and move one edge forward, as depicted here.

  4. Critical review of the trailing edge condition in steady and unsteady flow. Blade flutter in compressors and fans: Numerical simulation of the aerodynamic loading

    NASA Technical Reports Server (NTRS)

    Radwan, S. F.; Rockwell, D. O.; Johnson, S. H.

    1982-01-01

    Existing interpretations of the trailing edge condition, addressing both theoretical and experimental works in steady, as well as unsteady flows are critically reviewed. The work of Kutta and Joukowski on the trailing edge condition in steady flow is reviewed. It is shown that for most practical airfoils and blades (as in the case of most turbomachine blades), this condition is violated due to rounded trailing edges and high frequency effects, the flow dynamics in the trailing edge region being dominated by viscous forces; therefore, any meaningful modelling must include viscous effects. The question of to what extent the trailing edge condition affects acoustic radiation from the edge is raised; it is found that violation of the trailing edge condition leads to significant sound diffraction at the tailing edge, which is related to the problem of noise generation. Finally, various trailing edge conditions in unsteady flow are discussed, with emphasis on high reduced frequencies.

  5. Assessment of the quality of sewage effluents from dry weather flow channel, Calcutta.

    PubMed

    Adhikari, S; Gupta, S K

    2002-10-01

    The quality of sewage effluent of Dry weather Flow channel, Calcutta in respect of salinity, sodicity, chloride, sulphate and bicarbonate toxicity and heavy metal hazards was assessed in order to utilize it for irrigation. Although raw sewage in the winter season was toxic in respect of chlorides, sulphates, bicarbonate, BOD, COD; its dilution in the monsoon decreased the toxicity hazards considerably, making it worth using for irrigation. The sewage effluents were rich in N and K, but poor in P status with marginal concentrations of micronutrients (Fe, Cu, Zn & Mn). Heavy metal contents of the soil treated with effluents were also studied.

  6. Assessment of the quality of sewage effluents from dry weather flow channel, Calcutta.

    PubMed

    Adhikari, S; Gupta, S K

    2002-07-01

    The quality of sewage effluent of Dry Weather Flow Channel, Calcutta in respect of salinity, sodicity, chlorides, sulphate and bicarbonate toxicity and heavy metal hazards was assessed in order to utilize it for irrigation. Although raw sewage in the winter season was toxic in respect of chlorides, sulphates, bicarbonate, BOD, COD; its dilution in the monsoon decreased the toxicity hazards considerably, making it worth using for irrigation. The sewage effluents were rich in N and K, but poor in P status with marginal concentrations of micronutrients (Fe, Cu, Zn & Mn). Heavy metal contents of the soil treated with effluents were also studied.

  7. A Scale-up Approach for Film Coating Process Based on Surface Roughness as the Critical Quality Attribute.

    PubMed

    Yoshino, Hiroyuki; Hara, Yuko; Dohi, Masafumi; Yamashita, Kazunari; Hakomori, Tadashi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-04-01

    Scale-up approaches for film coating process have been established for each type of film coating equipment from thermodynamic and mechanical analyses for several decades. The objective of the present study was to establish a versatile scale-up approach for film coating process applicable to commercial production that is based on critical quality attribute (CQA) using the Quality by Design (QbD) approach and is independent of the equipment used. Experiments on a pilot scale using the Design of Experiment (DoE) approach were performed to find a suitable CQA from surface roughness, contact angle, color difference, and coating film properties by terahertz spectroscopy. Surface roughness was determined to be a suitable CQA from a quantitative appearance evaluation. When surface roughness was fixed as the CQA, the water content of the film-coated tablets was determined to be the critical material attribute (CMA), a parameter that does not depend on scale or equipment. Finally, to verify the scale-up approach determined from the pilot scale, experiments on a commercial scale were performed. The good correlation between the surface roughness (CQA) and the water content (CMA) identified at the pilot scale was also retained at the commercial scale, indicating that our proposed method should be useful as a scale-up approach for film coating process.

  8. Revealing flow behaviors of metallic glass based on activation of flow units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, T. P.; Wang, W. H.; Bai, H. Y., E-mail: hybai@iphy.ac.cn

    2016-05-28

    Atomic level flow plays a critical role in the mechanical behavior of metallic glass (MG) while the connection between the flow and the heterogeneous microstructure of the glass remains unclear. We describe the heterogeneity of MGs as the elastic matrix with “inclusions” of nano-scale liquid-like flow units, and the plastic flow behavior of MGs is considered to be accommodated by the flow units. We show that the model can explain the various deformation behaviors, the transformation from inhomogeneous deformation to homogeneous flow upon strain rate or temperature, and the deformation map in MGs, which might provide insights into the flowmore » mechanisms in glasses and inspiration for improving the plasticity of MGs.« less

  9. Next generation diagnostic molecular pathology: critical appraisal of quality assurance in Europe.

    PubMed

    Dubbink, Hendrikus J; Deans, Zandra C; Tops, Bastiaan B J; van Kemenade, Folkert J; Koljenović, S; van Krieken, Han J M; Blokx, Willeke A M; Dinjens, Winand N M; Groenen, Patricia J T A

    2014-06-01

    Tumor evaluation in pathology is more and more based on a combination of traditional histopathology and molecular analysis. Due to the rapid development of new cancer treatments that specifically target aberrant proteins present in tumor cells, treatment decisions are increasingly based on the molecular features of the tumor. Not only the number of patients eligible for targeted precision medicine, but also the number of molecular targets per patient and tumor type is rising. Diagnostic molecular pathology, the discipline that determines the molecular aberrations present in tumors for diagnostic, prognostic or predictive purposes, is faced with true challenges. The laboratories have to meet the need of comprehensive molecular testing using only limited amount of tumor tissue, mostly fixed in formalin and embedded in paraffin (FFPE), in short turnaround time. Choices must be made for analytical methods that provide accurate, reliable and cost-effective results. Validation of the test procedures and results is essential. In addition, participation and good performance in internal (IQA) and external quality assurance (EQA) schemes is mandatory. In this review, we critically evaluate the validation procedure for comprehensive molecular tests as well as the organization of quality assurance and assessment of competence of diagnostic molecular pathology laboratories within Europe. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. Managing critical materials with a technology-specific stocks and flows model.

    PubMed

    Busch, Jonathan; Steinberger, Julia K; Dawson, David A; Purnell, Phil; Roelich, Katy

    2014-01-21

    The transition to low carbon infrastructure systems required to meet climate change mitigation targets will involve an unprecedented roll-out of technologies reliant upon materials not previously widespread in infrastructure. Many of these materials (including lithium and rare earth metals) are at risk of supply disruption. To ensure the future sustainability and resilience of infrastructure, circular economy policies must be crafted to manage these critical materials effectively. These policies can only be effective if supported by an understanding of the material demands of infrastructure transition and what reuse and recycling options are possible given the future availability of end-of-life stocks. This Article presents a novel, enhanced stocks and flows model for the dynamic assessment of material demands resulting from infrastructure transitions. By including a hierarchical, nested description of infrastructure technologies, their components, and the materials they contain, this model can be used to quantify the effectiveness of recovery at both a technology remanufacturing and reuse level and a material recycling level. The model's potential is demonstrated on a case study on the roll-out of electric vehicles in the UK forecast by UK Department of Energy and Climate Change scenarios. The results suggest policy action should be taken to ensure Li-ion battery recycling infrastructure is in place by 2025 and NdFeB motor magnets should be designed for reuse. This could result in a reduction in primary demand for lithium of 40% and neodymium of 70%.

  11. Managing Critical Materials with a Technology-Specific Stocks and Flows Model

    PubMed Central

    2013-01-01

    The transition to low carbon infrastructure systems required to meet climate change mitigation targets will involve an unprecedented roll-out of technologies reliant upon materials not previously widespread in infrastructure. Many of these materials (including lithium and rare earth metals) are at risk of supply disruption. To ensure the future sustainability and resilience of infrastructure, circular economy policies must be crafted to manage these critical materials effectively. These policies can only be effective if supported by an understanding of the material demands of infrastructure transition and what reuse and recycling options are possible given the future availability of end-of-life stocks. This Article presents a novel, enhanced stocks and flows model for the dynamic assessment of material demands resulting from infrastructure transitions. By including a hierarchical, nested description of infrastructure technologies, their components, and the materials they contain, this model can be used to quantify the effectiveness of recovery at both a technology remanufacturing and reuse level and a material recycling level. The model’s potential is demonstrated on a case study on the roll-out of electric vehicles in the UK forecast by UK Department of Energy and Climate Change scenarios. The results suggest policy action should be taken to ensure Li-ion battery recycling infrastructure is in place by 2025 and NdFeB motor magnets should be designed for reuse. This could result in a reduction in primary demand for lithium of 40% and neodymium of 70%. PMID:24328245

  12. Free flux flow in two single crystals of V3Si with differing pinning strengths

    NASA Astrophysics Data System (ADS)

    Gafarov, O.; Gapud, A. A.; Moraes, S.; Thompson, J. R.; Christen, D. K.; Reyes, A. P.

    2011-10-01

    Results of measurements on two very clean, single-crystal samples of the A15 superconductor V3Si are presented. Magnetization and transport data have confirmed the ``clean'' quality of both samples, as manifested by: (i) high residual electrical resistivity ratio, (ii) very low critical current densities Jc, and (iii) a ``peak'' effect in the field dependence of critical current. The (H,T) phase line for this peak effect is shifted down for the slightly ``dirtier'' sample, which consequently also has higher critical current density Jc(H). Large Lorentz forces are applied on mixed-state vortices via large currents, in order to induce the highly ordered free flux flow (FFF) phase, using experimental methods developed previously. The traditional model by Bardeen and Stephen (BS) predicts a simple field dependence of flux flow resistivity ρf(H) ˜ H/Hc2, presuming a field-independent flux core size. A model by Kogan and Zelezhina (KZ) takes into account the effects of magnetic field on core size, and predict a clear deviation from the linear BS dependence. In this study, ρf(H) is confirmed to be consistent with predictions of KZ.

  13. Flow cytometry quality requirements for monitoring of minimal disease in plasma cell myeloma.

    PubMed

    Oldaker, Teri A; Wallace, Paul K; Barnett, David

    2016-01-01

    Current therapeutic approaches for plasma cell myeloma (PCM) attain an overall survival of more than 6 years for the majority of newly diagnosed patients. However, PFS and OS are the only accepted FDA clinical endpoints for demonstrating drug efficacy before they can be become frontline therapeutic options. There is, however, recognition that the increasing gap between drug development and approval for mainstream therapeutic use needs to be shortened. As such regulatory bodies such as the FDA are now considering whether biomarker response evaluation, as in measurement of minimal residual disease (MRD) as assessed by flow cytometry (FC), can provide an early, robust prediction of survival and therefore improve the drug approval process. Recently, FC MRD using a standardized eight-color antibody methodology has been shown to have a minimum sensitivity of 0.01% and an upper sensitivity of 0.001%. To ensure that all laboratories using this approach achieve the same levels of sensitivity it is crucially important to have standardized quality management procedures in place. This manuscript accompanies those published in this special issue and describes the minimum that is required for validating and quality monitoring of this highly specific test to ensure any laboratory, irrespective of location, will achieve the expected quality standards required. © 2015 International Clinical Cytometry Society.

  14. Hydrogeology and Water Quality of the Pepacton Reservoir Watershed in Southeastern New York. Part 3. Responses of Stream Base-Flow Chemistry to Hydrogeologic Factors and Nonpoint-Sources of Contamination

    USGS Publications Warehouse

    Heisig, Paul M.; Phillips, Patrick J.

    2004-01-01

    The implications of this study are that seasonal and more frequent base-flow surveys of water chemistry from small stream basins can help refine the understanding of local hydrogeologic systems and define the effects of nonpointsource contamination on base-flow water quality. The concentration of most nonpoint sources in valley-bottom or lower-hillside areas helped indicate the relative contributions of water from hillside and valley-bottom areas at different times of year. The positive correlations between the intensity of nonpoint-source activities and nonpoint-source constituents in base flow underscores the link between land use (nonpoint sources), ground-water quality, and surface-water quality.

  15. Integrated Modelling on Flow and Water Quality Under the Impacts of Climate Change and Agricultural Activities

    NASA Astrophysics Data System (ADS)

    SHI, J.

    2014-12-01

    Climate change is expected to have a significant impact on flooding in the UK, inducing more intense and prolonged storms. Frequent flooding due to climate change already exacerbates catchment water quality. Land use is another contributing factor to poor water quality. For example, the move to intensive farming could cause an increase in faecal coliforms entering the water courses. In an effort to understand better the effects on water quality from land use and climate change, the hydrological and estuarine processes are being modelled using SWAT (Soil and Water Assessment Tool), linked to a 2-D hydrodynamic model DIVAST(Depth Integrated Velocity and Solute Transport). The coupled model is able to quantify how much of each pollutant from the catchment reaches the harbour and the impact on water quality within the harbour. The work is focused on the transportation and decay of faecal coliforms from agricultural runoff into the rivers Frome and Piddle in the UK. The impact from the agricultural land use and activities on the catchment river hydrology and water quality are evaluated. The coupled model calibration and validation showed the good model performance on flow and faecal coliform in the watershed and estuary.

  16. Sustaining flows of critical resources: One example (Abstract)

    Treesearch

    Jim Renthal

    2000-01-01

    Growth of communities throughout the west accelerates into the 21st century, resources that were once unseen and unused, except, perhaps, by ranchers, are in increasing demand. This trend is particularly apparent on the Public Land. The Bureau of Land Management (BLM) is responsible for sustaining the availability, the flow, of many natural resources from substantive...

  17. Flow Boiling Critical Heat Flux in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Mudawar, Issam; Zhang, Hui; Hasan, Mohammad M.

    2004-01-01

    This study provides systematic method for reducing power consumption in reduced gravity systems by adopting minimum velocity required to provide adequate CHF and preclude detrimental effects of reduced gravity . This study proves it is possible to use existing 1 ge flow boiling and CHF correlations and models to design reduced gravity systems provided minimum velocity criteria are met

  18. Direct evidence of stationary zonal flows and critical gradient behavior for Er during formation of the edge pedestal in JET

    NASA Astrophysics Data System (ADS)

    Hillesheim, Jon

    2015-11-01

    High spatial resolution measurements with Doppler backscattering in JET have provided new insights into the development of the edge radial electric field during pedestal formation. The characteristics of Er have been studied as a function of density at 2.5 MA plasma current and 3 T toroidal magnetic field. We observe fine-scale spatial structure in the edge Er well prior to the LH transition, consistent with stationary zonal flows. Zonal flows are a fundamental mechanism for the saturation of turbulence and this is the first direct evidence of stationary zonal flows in a tokamak. The radial wavelength of the zonal flows systematically decreases with density. The zonal flows are clearest in Ohmic conditions, weaker in L-mode, and absent in H-mode. Measurements also show that after neutral beam heating is applied, the edge Er builds up at a constant gradient into the core during L-mode, at radii where Er is mainly due to toroidal velocity. The local stability of velocity shear driven turbulence, such as the parallel velocity gradient mode, will be assessed with gyrokinetic simulations. This critical Er shear persists across the LH transition into H-mode. Surprisingly, a reduction in the apparent magnitude of the Er well depth is observed directly following the LH transition at high densities. Establishing the physics basis for the LH transition is important for projecting scalings to ITER and these observations challenge existing models based on increased Er shear or strong zonal flows as the trigger for the transition. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

  19. Quality: from imperatives to innovations.

    PubMed

    Dunbar, S

    1987-05-01

    I have outlined the quality issues facing critical care nurses today and have also presented some challenges for the future. Critical care nurses must now enter a new era characterized by unification, collaboration and involvement, increased professional autonomy, and caring to meet the customer's expectations for quality in fact and quality in perception. Through innovation, critical care nurses can control the pace of change and influence quality in critical care. Recall the kaleidoscope and remember that its intent is to make the whole seem more than the sum of its parts. The image on the horizon is a dynamic and powerful nursing profession as a whole, with critical care nurses assuming an essential and more important role. In fact, the image on the horizon looks bright to me.

  20. Nurses critical to quality, safety, and now financial performance.

    PubMed

    Kohlbrenner, Janis; Whitelaw, George; Cannaday, Denise

    2011-03-01

    Preventable hospital errors are the accepted impetus to the establishment of quality measures and served as a catalyst for the ongoing evolution of healthcare reform. Nurses are crucial members of the hospital quality team, and their actions are integral to the hospital's quality performance. The authors explore some of the practical challenges created by quality performance standards, specifically around venous thromboembolism, and the contribution nurses can make, to patient safety, quality of care, and the institutions financial performance.

  1. Quality of nursing care perceived by patients and their nurses: an application of the critical incident technique. Part 1.

    PubMed

    Redfern, S; Norman, I

    1999-07-01

    The aims of the study were to identify indicators of quality of nursing care from the perceptions of patients and nurses, and to determine the congruence between patients' and nurses' perceptions. The paper is presented in two parts. Part 1 includes the background and methods to the study and the findings from the comparison of patients' and nurses' perceptions. Part 2 describes the perceptions of patients and nurses, and the conclusions drawn from the study as a whole. Patients and nurses in hospital wards were interviewed using the critical incident technique. We grouped 4546 indicators of high and low quality nursing care generated from the interview transcripts into 316 subcategories, 68 categories and 31 themes. Congruence between patients' and nurses' perceptions of quality was high and significant, although there was some difference of emphasis.

  2. A critical appraisal of the reporting quality of published randomized controlled trials in the fall injuries.

    PubMed

    Asghari Jafarabadi, Mohammad; Sadeghi-Bazrgani, Homayoun; Dianat, Iman

    2018-06-01

    To evaluate the quality of reporting in published randomized controlled trials (RTCs) in the field of fall injuries. The 188 RTCs published between 2001 and 2011, indexed in EMBASE and Medline databases were extracted through searching by appropriate keywords and EMTree classification terms. The evaluation trustworthiness was assured through parallel evaluations of two experts in epidemiology and biostatistics. About 40%-75% of papers had problems in reporting random allocation method, allocation concealment, random allocation implementation, blinding and similarity among groups, intention to treat and balancing benefits and harms. Moreover, at least 10% of papers inappropriately/not reported the design, protocol violations, sample size justification, subgroup/adjusted analyses, presenting flow diagram, drop outs, recruitment time, baseline data, suitable effect size on outcome, ancillary analyses, limitations and generalizability. Considering the shortcomings found and due to the importance of the RCTs for fall injury prevention programmes, their reporting quality should be improved.

  3. A Critical Survey of Optimization Models for Tactical and Strategic Aspects of Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Bertsimas, Dimitris; Odoni, Amedeo

    1997-01-01

    This document presents a critical review of the principal existing optimization models that have been applied to Air Traffic Flow Management (TFM). Emphasis will be placed on two problems, the Generalized Tactical Flow Management Problem (GTFMP) and the Ground Holding Problem (GHP), as well as on some of their variations. To perform this task, we have carried out an extensive literature review that has covered more than 40 references, most of them very recent. Based on the review of this emerging field our objectives were to: (i) identify the best available models; (ii) describe typical contexts for applications of the models; (iii) provide illustrative model formulations; and (iv) identify the methodologies that can be used to solve the models. We shall begin our presentation below by providing a brief context for the models that we are reviewing. In Section 3 we shall offer a taxonomy and identify four classes of models for review. In Sections 4, 5, and 6 we shall then review, respectively, models for the Single-Airport Ground Holding Problem, the Generalized Tactical FM P and the Multi-Airport Ground Holding Problem (for the definition of these problems see Section 3 below). In each section, we identify the best available models and discuss briefly their computational performance and applications, if any, to date. Section 7 summarizes our conclusions about the state of the art.

  4. 77 FR 29271 - Effective Date for the Water Quality Standards for the State of Florida's Lakes and Flowing Waters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-17

    .... Entities discharging nitrogen or phosphorus to lakes and flowing waters of Florida could be indirectly.../phosphorus pollution in Florida's waters may be affected through implementation of Florida's water quality... phosphorus, nitrate+nitrite, and chlorophyll a for the different types of Florida's inland waters to assure...

  5. Standard operating procedure changed pre-hospital critical care anaesthesiologists’ behaviour: a quality control study

    PubMed Central

    2013-01-01

    Introduction The ability of standard operating procedures to improve pre-hospital critical care by changing pre-hospital physician behaviour is uncertain. We report data from a prospective quality control study of the effect on pre-hospital critical care anaesthesiologists’ behaviour of implementing a standard operating procedure for pre-hospital controlled ventilation. Materials and methods Anaesthesiologists from eight pre-hospital critical care teams in the Central Denmark Region prospectively registered pre-hospital advanced airway-management data according to the Utstein-style template. We collected pre-intervention data from February 1st 2011 to January 31st 2012, implemented the standard operating procedure on February 1st 2012 and collected post intervention data from February 1st 2012 until October 31st 2012. We included transported patients of all ages in need of controlled ventilation treated with pre-hospital endotracheal intubation or the insertion of a supraglottic airways device. The objective was to evaluate whether the development and implementation of a standard operating procedure for controlled ventilation during transport could change pre-hospital critical care anaesthesiologists’ behaviour and thereby increase the use of automated ventilators in these patients. Results The implementation of a standard operating procedure increased the overall prevalence of automated ventilator use in transported patients in need of controlled ventilation from 0.40 (0.34-0.47) to 0.74 (0.69-0.80) with a prevalence ratio of 1.85 (1.57-2.19) (p = 0.00). The prevalence of automated ventilator use in transported traumatic brain injury patients in need of controlled ventilation increased from 0.44 (0.26-0.62) to 0.85 (0.62-0.97) with a prevalence ratio of 1.94 (1.26-3.0) (p = 0.0039). The prevalence of automated ventilator use in patients transported after return of spontaneous circulation following pre-hospital cardiac arrest increased from 0.39 (0

  6. Flow rate limitation in open wedge channel under microgravity

    NASA Astrophysics Data System (ADS)

    Wei, YueXing; Chen, XiaoQian; Huang, YiYong

    2013-08-01

    A study of flow rate limitation in an open wedge channel is reported in this paper. Under microgravity condition, the flow is controlled by the convection and the viscosity in the channel as well as the curvature of the liquid free surface. A maximum flow rate is achieved when the curvature cannot balance the pressure difference leading to a collapse of the free surface. A 1-dimensional theoretical model is used to predict the critical flow rate and calculate the shape of the free surface. Computational Fluid Dynamics tool is also used to simulate the phenomenon. Results show that the 1-dimensional model overestimates the critical flow rate because extra pressure loss is not included in the governing equation. Good agreement is found in 3-dimensional simulation results. Parametric study with different wedge angles and channel lengths show that the critical flow rate increases with increasing the cross section area; and decreases with increasing the channel length. The work in this paper can help understand the surface collapsing without gravity and for the design in propellant management devices in satellite tanks.

  7. Quality by design for herbal drugs: a feedforward control strategy and an approach to define the acceptable ranges of critical quality attributes.

    PubMed

    Yan, Binjun; Li, Yao; Guo, Zhengtai; Qu, Haibin

    2014-01-01

    The concept of quality by design (QbD) has been widely accepted and applied in the pharmaceutical manufacturing industry. There are still two key issues to be addressed in the implementation of QbD for herbal drugs. The first issue is the quality variation of herbal raw materials and the second issue is the difficulty in defining the acceptable ranges of critical quality attributes (CQAs). To propose a feedforward control strategy and a method for defining the acceptable ranges of CQAs for the two issues. In the case study of the ethanol precipitation process of Danshen (Radix Salvia miltiorrhiza) injection, regression models linking input material attributes and process parameters to CQAs were built first and an optimisation model for calculating the best process parameters according to the input materials was established. Then, the feasible material space was defined and the acceptable ranges of CQAs for the previous process were determined. In the case study, satisfactory regression models were built with cross-validated regression coefficients (Q(2) ) all above 91 %. The feedforward control strategy was applied successfully to compensate the quality variation of the input materials, which was able to control the CQAs in the 90-110 % ranges of the desired values. In addition, the feasible material space for the ethanol precipitation process was built successfully, which showed the acceptable ranges of the CQAs for the concentration process. The proposed methodology can help to promote the implementation of QbD for herbal drugs. Copyright © 2013 John Wiley & Sons, Ltd.

  8. AST Critical Propulsion and Noise Reduction Technologies for Future Commercial Subsonic Engines: Separate-Flow Exhaust System Noise Reduction Concept Evaluation

    NASA Technical Reports Server (NTRS)

    Janardan, B. A.; Hoff, G. E.; Barter, J. W.; Martens, S.; Gliebe, P. R.; Mengle, V.; Dalton, W. N.; Saiyed, Naseem (Technical Monitor)

    2000-01-01

    This report describes the work performed by General Electric Aircraft Engines (GEAE) and Allison Engine Company (AEC) on NASA Contract NAS3-27720 AoI 14.3. The objective of this contract was to generate quality jet noise acoustic data for separate-flow nozzle models and to design and verify new jet-noise-reduction concepts over a range of simulated engine cycles and flight conditions. Five baseline axisymmetric separate-flow nozzle models having bypass ratios of five and eight with internal and external plugs and 11 different mixing-enhancer model nozzles (including chevrons, vortex-generator doublets, and a tongue mixer) were designed and tested in model scale. Using available core and fan nozzle hardware in various combinations, 28 GEAE/AEC separate-flow nozzle/mixing-enhancer configurations were acoustically evaluated in the NASA Glenn Research Center Aeroacoustic and Propulsion Laboratory. This report describes model nozzle features, facility and data acquisition/reduction procedures, the test matrix, and measured acoustic data analyses. A number of tested core and fan mixing enhancer devices and combinations of devices gave significant jet noise reduction relative to separate-flow baseline nozzles. Inward-flip and alternating-flip core chevrons combined with a straight-chevron fan nozzle exceeded the NASA stretch goal of 3 EPNdB jet noise reduction at typical sideline certification conditions.

  9. Combining groundwater quality analysis and a numerical flow simulation for spatially establishing utilization strategies for groundwater and surface water in the Pingtung Plain

    NASA Astrophysics Data System (ADS)

    Jang, Cheng-Shin; Chen, Ching-Fang; Liang, Ching-Ping; Chen, Jui-Sheng

    2016-02-01

    Overexploitation of groundwater is a common problem in the Pingtung Plain area of Taiwan, resulting in substantial drawdown of groundwater levels as well as the occurrence of severe seawater intrusion and land subsidence. Measures need to be taken to preserve these valuable groundwater resources. This study seeks to spatially determine the most suitable locations for the use of surface water on this plain instead of extracting groundwater for drinking, irrigation, and aquaculture purposes based on information obtained by combining groundwater quality analysis and a numerical flow simulation assuming the planning of manmade lakes and reservoirs to the increase of water supply. The multivariate indicator kriging method is first used to estimate occurrence probabilities, and to rank townships as suitable or unsuitable for groundwater utilization according to water quality standards for drinking, irrigation, and aquaculture. A numerical model of groundwater flow (MODFLOW) is adopted to quantify the recovery of groundwater levels in townships after model calibration when groundwater for drinking and agricultural demands has been replaced by surface water. Finally, townships with poor groundwater quality and significant increases in groundwater levels in the Pingtung Plain are prioritized for the groundwater conservation planning based on the combined assessment of groundwater quality and quantity. The results of this study indicate that the integration of groundwater quality analysis and the numerical flow simulation is capable of establishing sound strategies for joint groundwater and surface water use. Six southeastern townships are found to be suitable locations for replacing groundwater with surface water from manmade lakes or reservoirs to meet drinking, irrigation, and aquaculture demands.

  10. Hospital level analysis to improve patient flow.

    PubMed

    Khanna, Sankalp; Boyle, Justin; Good, Norm; Bugden, Simon; Scott, Mark

    2013-01-01

    The complexity of hospital operations ensures that one-size-fits-all solutions seldom work. As hospitals turn to evidence based strategies to redesign flow, it is critical that they tailor the strategies to suit their individual service. This paper analyses the effect of hospital occupancy on inpatient and emergency department patient flow parameters at the Caboolture hospital in Queensland, Australia, and identifies critical levels, or choke points, that result in performance decline. The effect of weekdays and weekends on patient flow is also investigated. We compare these findings to a previous study that has analysed patient flow across Queensland hospitals grouped by size, and discover several differences in the interaction between rising occupancy and patient flow parameters including rates of patient flow, length of stay, and access block. We also identify significantly higher choke points for Caboolture hospital as compared to other similarly sized Queensland hospitals, which suggest that patient flow here can be redesigned to operate at higher levels of occupancy without degrading flow performance. The findings support arguments for hospitals to analyse patient flow at a service level to deliver optimum service improvement.

  11. Air flow quality analysis of modenas engine exhaust system

    NASA Astrophysics Data System (ADS)

    Shahriman A., B.; Mohamad Syafiq A., K.; Hashim, M. S. M.; Razlan, Zuradzman M.; Khairunizam W. A., N.; Hazry, D.; Afendi, Mohd; Daud, R.; Rahman, M. D. Tasyrif Abdul; Cheng, E. M.; Zaaba, S. K.

    2017-09-01

    The simulation process being conducted to determine the air flow effect between the original exhaust system and modified exhaust system. The simulations are conducted to investigate the flow distribution of exhaust gases that will affect the performance of the engine. The back flow pressure in the original exhaust system is predicted toward this simulation. The design modification to the exhaust port, exhaust pipe, and exhaust muffler has been done during this simulation to reduce the back flow effect. The new designs are introduced by enlarging the diameter of the exhaust port, enlarge the diameter of the exhaust pipe and created new design for the exhaust muffler. Based on the result obtained, there the pulsating flow form at the original exhaust port that will increase the velocity and resulting the back pressure occur. The result for new design of exhaust port, the velocity is lower at the valve guide in the exhaust port. New design muffler shows that the streamline of the exhaust flow move smoothly compare to the original muffler. It is proved by using the modification exhaust system, the back pressure are reduced and the engine performance can be improve.

  12. Does attenuated skin blood flow lower sweat rate and the critical environmental limit for heat balance during severe heat exposure?

    PubMed

    Cramer, Matthew N; Gagnon, Daniel; Crandall, Craig G; Jay, Ollie

    2017-02-01

    What is the central question of this study? Does attenuated skin blood flow diminish sweating and reduce the critical environmental limit for heat balance, which indicates maximal heat loss potential, during severe heat stress? What is the main finding and its importance? Isosmotic hypovolaemia attenuated skin blood flow by ∼20% but did not result in different sweating rates, mean skin temperatures or critical environmental limits for heat balance compared with control and volume-infusion treatments, suggesting that the lower levels of skin blood flow commonly observed in aged and diseased populations may not diminish maximal whole-body heat dissipation. Attenuated skin blood flow (SkBF) is often assumed to impair core temperature (T c ) regulation. Profound pharmacologically induced reductions in SkBF (∼85%) lead to impaired sweating, but whether the smaller attenuations in SkBF (∼20%) more often associated with ageing and certain diseases lead to decrements in sweating and maximal heat loss potential is unknown. Seven healthy men (28 ± 4 years old) completed a 30 min equilibration period at 41°C and a vapour pressure (P a ) of 2.57 kPa followed by incremental steps in P a of 0.17 kPa every 6 min to 5.95 kPa. Differences in heat loss potential were assessed by identifying the critical vapour pressure (P crit ) at which an upward inflection in T c occurred. The following three separate treatments elicited changes in plasma volume to achieve three distinct levels of SkBF: control (CON); diuretic-induced isosmotic dehydration to lower SkBF (DEH); and continuous saline infusion to maintain SkBF (SAL). The T c , mean skin temperature (T sk ), heart rate, mean laser-Doppler flux (forearm and thigh; LDF mean ), mean local sweat rate (forearm and thigh; LSR mean ) and metabolic rate were measured. In DEH, a 14.2 ± 5.7% lower plasma volume resulted in a ∼20% lower LDF mean in perfusion units (PU) (DEH, 139 ± 23 PU; CON, 176 ± 22 PU; and SAL

  13. Critical reading and critical thinking--study design and methodology: a personal approach on how to read the clinical literature.

    PubMed

    Lipman, Timothy O

    2013-04-01

    The volume of medical literature grows exponentially. Yet we are faced with the necessity to make clinical decisions based on the availability and quality of scientific information. The general strength (reliability, robustness) of any interpretation that guides us in clinical decision making is dependent on how information was obtained. All information and medical studies and, consequently, all conclusions are not created equal. It is incumbent upon us to be able to assess the quality of the information that guides us in the care of our patients. Being able to assess medical literature critically requires use of critical reading and critical thinking skills. To achieve these skills, to be able to analyze medical literature critically, takes a combination of education and practice, practice, and more practice.

  14. Stabilization of flow past a rounded cylinder

    NASA Astrophysics Data System (ADS)

    Samtaney, Ravi; Zhang, Wei

    2016-11-01

    We perform global linear stability analysis on low-Re flow past a rounded cylinder. The cylinder corners are rounded with a radius R, normalized as R+ = R / D where D is the cylinder diameter, and its effect on the flow stability characteristics is investigated. We compute the critical Reynolds number (Recr) for the onset of first instability, and quantify the perturbation growth rate for the super-critical flows. It is found that the flow can be stabilized by partially rounding the cylinder. Compared with the square and circular cylinders, the partially rounded cylinder has a higher Recr , attaining a maximum at around R+ = 0 . 30 , and the perturbation growth rate of the super-critical flows is reduced for Re <= 100 . We perform sensitivity analysis to explore the source of the stabilization. The growth rate sensitivity to base flow modification has two different spatial structures: the growth rate is sensitive to the wake backflow in a large region for square-like cylinders (R+ -> 0 . 00), while only the near-wake backflow is crucial for circular-like cylinders (R+ -> 0 . 50). The stability analysis results are also verified with those of the direct simulations and very good agreement is achieved. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1394-01. The supercomputer Shaheen at KAUST was utilized for the simulations.

  15. Potential of coconut shell activated carbon (CSAC) in removing contaminants for water quality improvement: A critical review

    NASA Astrophysics Data System (ADS)

    Akhir, Muhammad Fitri Mohd; Saad, Noor Aida; Zakaria, Nor Azazi

    2017-10-01

    Commonly, water contaminations occur due to human-induced conditions such as industrial discharge and urban activities. The widely identified contaminants are heavy metal. The toxicity of those heavy metal elements is high and very poisonous to humans' health and environment even at lower dose or concentration of exposure. Chronic poisoning can cause fatal or defect to one's body or environment. Organic contaminants such as oil and microbial are also found due to decomposition of organic matter. The excellent quality adsorption of contaminants is highly related to surface area, pore size, pore volume, and amount plus type of functional group on surface of CSAC. The higher the surface area and pore volume, the higher adsorption that CSAC have towards contaminants. In comparison to meso-pore and macro-pore, micro-pore is better for trapping and adsorbing water contaminants. The purpose of this article is to critically review the potential of CSAC in increasing adsorption to remove contaminants for water quality improvement. A critical review is implemented using search engine like Science Direct. Alkali-modification is shown to have good adsorption in anion elements and organic matter due to improvement of hydrophobic organic compound (HOC) while acid-modification is good in cation elements adsorption. Strong alkali impregnated solution makes CSAC more hydrophobic and positively charge especially after increasing the impregnation dosage. Strong acid of adsorbate affects the quality of adsorption by reducing the surface area, pore volume and it also breaks the Van der Waals forces between adsorbent and adsorbate. However, the formation of oxygen helps the activated carbon surface to become more hydrophilic and negative charge is produced. It helps the effectiveness of metal adsorption. Therefore, by controlling dosage and types of functional groups on surface of CSAC and the pH of adsorbate, it can contribute to high adsorption of organic and inorganic contaminants in

  16. Investigating lava flows at Quizapu Volcano, on the ground and in the air

    NASA Astrophysics Data System (ADS)

    Lev, E.; Ruprecht, P.; Moon, R. S.

    2017-12-01

    The emplacement of silicic and intermediate lava flows is not often witnessed directly, and thus quantitative assessment of existing flows is a critical step in the interpretation of flow dynamics and eruption conditions. Two key parameters - lava rheology and effusion rate - are both difficult to assess many years after the eruption ended. Yet both are reflected in observables such as flow morphology (including roughness, folding and inflation structures), and micro-texture (including vesicularity, crystallinity, and microlite content). Therefore, it is important to collect data sets of high spatial resolution of both samples and topography of a target flow. We present a case study from Quizapu volcano (Chile), where an 1846 effusive eruption emplaced a suite of large lava flows, spanning composition from silicis andesitic to dacite. We focus on two major flow lobes, which, despite originating from the same eruption, and traversing similar topography, exhibit different large-scale structure: The southern flow (SF) has a uniform, smooth, almost straight geometry, while the northern flow (NF) has undulating boundaries and irregular width and thickness. We collected and utilized two sets of data: 1) thousands of aerial photos collected during 12 UAV flights, and 2) 68 hand samples which covered both the main channels and the levees of both flows in a systematic grid pattern. We present outcomes from analysis of samples for 3D structure, crystallinity, and vesicularity using X-ray microtomography, for micrstructure using thin sections and SEM, and for major and trace element composition using XRF. The aerial photographs were used to construct high-resolution (few cm) digital elevation models (DEMs) of several segments of each flow. From the DEMs we extracted along- and across-flow profiles which reveal morphological differences between NF and SF, with pressure ridges at NF wider and taller than those of SF. However, both flows share a common trend line in the

  17. A Survey and Critical Review of the Literature on Indoor Air Quality, Ventilation and Health Symptoms in Schools. IEQ Strategies[TM].

    ERIC Educational Resources Information Center

    Daisey, Joan M.; Angell, William J.

    This report presents detailed results from a survey and critical review of existing published literature and reports on indoor air quality (IAQ), ventilation, and IAQ- and building-related health problems in schools, particularly California schools. The findings: (1) identify the most commonly reported building-related health symtoms involving…

  18. Video laryngoscopy in pre-hospital critical care - a quality improvement study.

    PubMed

    Rhode, Marianne Grønnebæk; Vandborg, Mads Partridge; Bladt, Vibeke; Rognås, Leif

    2016-06-13

    Pre-hospital endotracheal intubation is challenging and repeated endotracheal intubation is associated with increased morbidity and mortality. We investigated whether the introduction of the McGrath MAC video laryngoscope as the primary device for pre-hospital endotracheal intubation could improve first-pass success rate in our anaesthesiologist-staffed pre-hospital critical care services. We also investigated the incidence of failed pre-hospital endotracheal intubation, the use of airway adjuncts and back-up devices and problems encountered using the McGrath MAC video laryngoscope. Prospective quality improvement study collecting data from all adult pre-hospital endotracheal intubation performed by four anaesthesiologist-staffed pre-hospital critical care teams between December 15(th) 2013 and December 15(th) 2014. We registered data from 273 consecutive patients. When using the McGrath MAC video laryngoscope the overall pre-hospital endotracheal intubation first-pass success rate was 80.8 %. Following rapid sequence intubation (RSI) it was 88.9 %. This was not significantly different from previously reported first-pass success rates in our system (p = 0.27 and p = 0.41). During the last nine months of the study period the overall first-pass success rate was 80.1 (p = 0.47) but the post-RSI first-pass success rate improved to 94.4 % (0.048). The overall pre-hospital endotracheal intubation success rate with the McGrath MAC video laryngoscope was 98.9 % (p = 0.17). Gastric content, blood or secretion in the airway resulted in reduced vision when using the McGrath MAC video laryngoscope. In this study of video laryngoscope implementation in a Scandinavian anaesthesiologist-staffed pre-hospital critical care service, overall pre-hospital endotracheal first pass success rate did not change. The post-RSI first-pass success rate was significantly higher during the last nine months of our 12-month study compared with our results from before

  19. Red Cell Physiology and Signaling Relevant to the Critical Care Setting

    PubMed Central

    Said, Ahmed; Rogers, Stephen; Doctor, Allan

    2015-01-01

    Purpose of Review Oxygen (O2) delivery, the maintenance of which is fundamental to supporting those with critical illness, is a function of blood O2 content and flow. Here, we review red blood cell (RBC) physiology relevant to disordered O2 delivery in the critically ill. Recent Findings Flow (rather then content) is the focus of O2 delivery regulation: O2 content is relatively fixed, whereas flow fluctuates by several orders of magnitude. Thus, blood flow volume and distribution vary to maintain coupling between O2 delivery and demand. The trapping, processing and delivery of nitric oxide (NO) by RBCs has emerged as a conserved mechanism through which regional blood flow is linked to biochemical cues of perfusion sufficiency. We will review conventional RBC physiology influencing O2 delivery (O2 affinity & rheology) and introduce a new paradigm for O2 delivery homeostasis based on coordinated gas transport and vascular signaling by RBCs. Summary By coordinating vascular signaling in a fashion that links O2 and NO flux, RBCs couple vessel caliber (and thus blood flow) to O2 need in tissue. Malfunction of this signaling system is implicated in a wide array of pathophysiologies and may be explanatory for the dysoxia frequently encountered in the critical care setting. PMID:25888155

  20. Red cell physiology and signaling relevant to the critical care setting.

    PubMed

    Said, Ahmed; Rogers, Stephen; Doctor, Allan

    2015-06-01

    Oxygen (O2) delivery, the maintenance of which is fundamental to supporting those with critical illness, is a function of blood O2 content and flow. Here, we review red blood cell (RBC) physiology relevant to disordered O2 delivery in the critically ill. Flow (rather than content) is the focus of O2 delivery regulation. O2 content is relatively fixed, whereas flow fluctuates by several orders of magnitude. Thus, blood flow volume and distribution vary to maintain coupling between O2 delivery and demand. The trapping, processing and delivery of nitric oxide (NO) by RBCs has emerged as a conserved mechanism through which regional blood flow is linked to biochemical cues of perfusion sufficiency. We will review conventional RBC physiology that influences O2 delivery (O2 affinity & rheology) and introduce a new paradigm for O2 delivery homeostasis based on coordinated gas transport and vascular signaling by RBCs. By coordinating vascular signaling in a fashion that links O2 and NO flux, RBCs couple vessel caliber (and thus blood flow) to O2 need in tissue. Malfunction of this signaling system is implicated in a wide array of pathophysiologies and may be explanatory for the dysoxia frequently encountered in the critical care setting.

  1. Quality indicators for enteral and parenteral nutrition therapy: application in critically ill patients "at nutritional risk".

    PubMed

    Oliveira Filho, Ronaldo Sousa; Ribeiro, Lia Mara Kauchi; Caruso, Lucia; Lima, Patricia Azevedo; Damasceno, Náglia Raquel Teixeira; García Soriano, Francisco

    2016-09-20

    Quality Indicators for Nutritional Therapy (QINT) allow a practical assessment of nutritional therapy (NT) quality. To apply and monitor QINT for critically ill patients at nutritional risk. Cross sectional study including critically ill patients > 18 years old, at nutritional risk, on exclusive enteral (ENT) or parenteral nutritional therapy (PNT) for > 72 hours. After three consecutive years, 9 QINT were applied and monitored. Statistical analysis was performed with SPSS version 17.0. A total of 145 patients were included, 93 patients were receiving ENT, among then 65% were male and the mean age was 55.7 years (± 17.4); 52 patients were receiving PNT, 67% were male and the mean age was 58.1 years (± 17.4). All patients (ENT and PNT) were nutritionally screened at admission and their energy and protein needs were individually estimated. Only ENT was early initiated, more than 70% of the prescribed ENT volume was infused and there was a reduced withdrawal of enteral feeding tube. The frequency of diarrhea episodes and digestive fasting were not adequate in ENT patients. The proper supply of energy was contemplated only for PNT patients and there was an expressive rate of oral intake recovery in ENT patients. After three years of research, the percentage of QINT adequacy varied between 55%-77% for ENT and 60%-80% for PNT. The results were only made possible by the efforts of a multidisciplinary team and the continuous re-evaluation of the procedures in order to maintain the nutritional assistance for patients at nutritional risk.

  2. Detection of water quality trends at high, median, and low flow in a Catskill Mountain stream, New York, through a new statistical method

    USGS Publications Warehouse

    Murdoch, Peter S.; Shanley, James B.

    2006-01-01

    The effects of changes in acid deposition rates resulting from the Clean Air Act Amendments of 1990 should first appear in stream waters during rainstorms and snowmelt, when the surface of the watershed is most hydrologically connected to the stream. Early detection of improved stream water quality is possible if trends at high flow could be separately determined. Trends in concentrations of sulfate (SO42−), nitrate (NO3−), calcium plus magnesium (Ca2++Mg2+), and acid‐neutralizing capacity (ANC) in Biscuit Brook, Catskill Mountains, New York, were assessed through segmented regression analysis (SRA). The method uses annual concentration‐to‐discharge relations to predict concentrations for specific discharges, then compares those annual values to determine trends at specific discharge levels. Median‐flow trends using SRA were comparable to those predicted by the seasonal Kendall tau test and a multiple regression residual analysis. All of these methods show that stream water SO42− concentrations have decreased significantly since 1983; Ca2++Mg2+ concentrations have decreased at a steady but slower rate than SO42−; and ANC shows no trend. The new SRA method, however, reveals trends that differ at specified flow levels. ANC has increased, and NO3−concentrations have decreased at high flows, but neither has changed as significantly at low flows. The general downward trend in SO42− flattened at median flow and reversed at high flow between 1997 and 2002. The reversal of the high‐flow SO42− trend is consistent with increases in SO42− concentrations in both precipitation and soil solutions at Biscuit Brook. Separate calculation of high‐flow trends provides resource managers with an early detection system for assessing changes in water quality resulting from changes in acidic deposition.

  3. A critical assessment of viscous models of trench topography and corner flow

    NASA Technical Reports Server (NTRS)

    Zhang, J.; Hager, B. H.; Raefsky, A.

    1984-01-01

    Stresses for Newtonian viscous flow in a simple geometry (e.g., corner flow, bending flow) are obtained in order to study the effect of imposed velocity boundary conditions. Stress for a delta function velocity boundary condition decays as 1/R(2); for a step function velocity, stress goes as 1/R; for a discontinuity in curvature, the stress singularity is logarithmic. For corner flow, which has a discontinuity of velocity at a certain point, the corresponding stress has a 1/R singularity. However, for a more realistic circular-slab model, the stress singularity becomes logarithmic. Thus the stress distribution is very sensitive to the boundary conditions, and in evaluating the applicability of viscous models of trench topography it is essential to use realistic geometries. Topography and seismicity data from northern Hoshu, Japan, were used to construct a finite element model, with flow assumed tangent to the top of the grid, for both Newtonian and non-Newtonian flow (power law 3 rheology). Normal stresses at the top of the grid are compared to the observed trench topography and gravity anomalies. There is poor agreement. Purely viscous models of subducting slables with specified velocity boundary conditions do not predict normal stress patterns compatible with observed topography and gravity. Elasticity and plasticity appear to be important for the subduction process.

  4. Critical, sustainable and threshold fluxes for membrane filtration with water industry applications.

    PubMed

    Field, Robert W; Pearce, Graeme K

    2011-05-11

    Critical flux theory evolved as a description of the upper bound in the operating envelope for controlled steady state environments such as cross-flow systems. However, in the application of UF membranes in the water industry, dead-end (direct-flow) designs are used. Direct-flow is a pseudo steady state operation with different fouling characteristics to cross-flow, and thus the critical flux concept has limited applicability. After a review of recent usage of the critical flux theory, an alternative concept for providing design guidelines for direct-flow systems namely that of the threshold flux is introduced. The concept of threshold flux can also be applicable to cross-flow systems. In more general terms the threshold flux can be taken to be the flux that divides a low fouling region from a high fouling region. This may be linked both to the critical flux concept and to the concept of a sustainable flux. The sustainable flux is the one at which a modest degree of fouling occurs, providing a compromise between capital expenditure (which is reduced by using high flux) and operating costs (which are reduced by restricting the fouling rate). Whilst the threshold flux can potentially be linked to physical phenomena alone, the sustainable flux also depends upon economic factors and is thus of a different nature to the critical and threshold fluxes. This distinction will be illustrated using some MBR data. Additionally the utility of the concept of a threshold flux will be illustrated using pilot plant data obtained for UF treatment of four sources of water. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Simulation of flow and sediment mobility using a multidimensional flow model for the White Sturgeon critical-habitat reach, Kootenai River near Bonners Ferry, Idaho

    USGS Publications Warehouse

    Barton, Gary J.; McDonald, Richard R.; Nelson, Jonathan M.; Dinehart, Randal L.

    2005-01-01

    In 1994, the Kootenai River white sturgeon (Acipenser transmontanus) was listed as an Endangered Species as a direct result of two related observations. First, biologists observed that the white sturgeon population in the Kootenai River was declining. Second, they observed a decline in recruitment of juvenile sturgeon beginning in the 1950s with an almost total absence of recruitment since 1974, following the closure of Libby Dam in 1972. This second observation was attributed to changes in spawning and (or) rearing habitat resulting from alterations in the physical habitat, including flow regime, sediment-transport regime, and bed morphology of the river. The Kootenai River White Sturgeon Recovery Team was established to find and implement ways to improve spawning and rearing habitat used by white sturgeon. They identified the need to develop and apply a multidimensional flow model to certain reaches of the river to quantify physical habitat in a spatially distributed manner. The U.S. Geological Survey has addressed these needs by developing, calibrating, and validating a multidimensional flow model used to simulate streamflow and sediment mobility in the white sturgeon critical-habitat reach of the Kootenai River. This report describes the model and limitations, presents the results of a few simple simulations, and demonstrates how the model can be used to link physical characteristics of streamflow to biological or other habitat data. This study was conducted in cooperation with the Kootenai Tribe of Idaho along a 23-kilometer reach of the Kootenai River, including the white sturgeon spawning reach near Bonners Ferry, Idaho that is about 108 to 131 kilometers below Libby Dam. U.S. Geological Survey's MultiDimensional Surface-Water Modeling System was used to construct a flow model for the critical-habitat reach of the Kootenai River white sturgeon, between river kilometers 228.4 and 245.9. Given streamflow, bed roughness, and downstream water-surface elevation

  6. On the look-up tables for the critical heat flux in tubes (history and problems)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirillov, P.L.; Smogalev, I.P.

    1995-09-01

    The complication of critical heat flux (CHF) problem for boiling in channels is caused by the large number of variable factors and the variety of two-phase flows. The existence of several hundreds of correlations for the prediction of CHF demonstrates the unsatisfactory state of this problem. The phenomenological CHF models can provide only the qualitative predictions of CHF primarily in annular-dispersed flow. The CHF look-up tables covered the results of numerous experiments received more recognition in the last 15 years. These tables are based on the statistical averaging of CHF values for each range of pressure, mass flux and quality.more » The CHF values for regions, where no experimental data is available, are obtained by extrapolation. The correction of these tables to account for the diameter effect is a complicated problem. There are ranges of conditions where the simple correlations cannot produce the reliable results. Therefore, diameter effect on CHF needs additional study. The modification of look-up table data for CHF in tubes to predict CHF in rod bundles must include a method which to take into account the nonuniformity of quality in a rod bundle cross section.« less

  7. Whole blood flow cytometry measurements of in vivo platelet activation in critically-Ill patients are influenced by variability in blood sampling techniques.

    PubMed

    Rondina, Matthew T; Grissom, Colin K; Men, Shaohua; Harris, Estelle S; Schwertz, Hansjorg; Zimmerman, Guy A; Weyrich, Andrew S

    2012-06-01

    Flow cytometry is often used to measure in vivo platelet activation in critically-ill patients. Variability in blood sampling techniques, which may confound these measurements, remains poorly characterized. Platelet activation was measured by flow cytometry performed on arterial and venous blood from 116 critically-ill patients. We determined how variability in vascular sampling site, processing times, and platelet counts influenced levels of platelet-monocyte aggregates (PMA), PAC-1 binding (for glycoprotein (GP) IIbIIIa), and P-selectin (P-SEL) expression. Levels of PMA, but not PAC-1 binding or P-SEL expression, were significantly affected by variability in vascular sampling site. Average PMA levels were approximately 60% higher in whole blood drawn from an arterial vessel compared to venous blood (16.2±1.8% vs. 10.7±1.2%, p<0.05). Levels of PMA in both arterial and venous blood increased significantly during ex vivo processing delays (1.7% increase for every 10 minute delay, p<0.05). In contrast, PAC-1 binding and P-SEL expression were unaffected by processing delays. Levels of PMA, but not PAC-1 binding or P-SEL expression, were correlated with platelet count quartiles (9.4±1.6% for the lowest quartile versus 15.4±1.6% for the highest quartile, p<0.05). In critically-ill patients, variability in vascular sampling site, processing times, and platelet counts influence levels of PMA, but not PAC-1 binding or P-SEL expression. These data demonstrate the need for rigorous adherence to blood sampling protocols, particularly when levels of PMA, which are most sensitive to variations in blood collection, are measured for detection of in vivo platelet activation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Modeling changes in rill erodibility and critical shear stress on native surface roads

    Treesearch

    Randy B. Foltz; Hakjun Rhee; William J. Elliot

    2008-01-01

    This study investigated the effect of cumulative overland flow on rill erodibility and critical shear stress on native surface roads in central Idaho. Rill erodibility decreased exponentially with increasing cumulative overland flow depth; however, critical shear stress did not change. The study demonstrated that road erodibility on the studied road changes over the...

  9. Small lasers in flow cytometry.

    PubMed

    Telford, William G

    2004-01-01

    Laser technology has made tremendous advances in recent years, particularly in the area of diode and diode-pumped solid state sources. Flow cytometry has been a direct beneficiary of these advances, as these small, low-maintenance, inexpensive lasers with reasonable power outputs are integrated into flow cytometers. In this chapter we review the contribution and potential of solid-state lasers to flow cytometry, and show several examples of these novel sources integrated into production flow cytometers. Technical details and critical parameters for successful application of these lasers for biomedical analysis are reviewed.

  10. Recent developments in organic redox flow batteries: A critical review

    NASA Astrophysics Data System (ADS)

    Leung, P.; Shah, A. A.; Sanz, L.; Flox, C.; Morante, J. R.; Xu, Q.; Mohamed, M. R.; Ponce de León, C.; Walsh, F. C.

    2017-08-01

    Redox flow batteries (RFBs) have emerged as prime candidates for energy storage on the medium and large scales, particularly at the grid scale. The demand for versatile energy storage continues to increase as more electrical energy is generated from intermittent renewable sources. A major barrier in the way of broad deployment and deep market penetration is the use of expensive metals as the active species in the electrolytes. The use of organic redox couples in aqueous or non-aqueous electrolytes is a promising approach to reducing the overall cost in long-term, since these materials can be low-cost and abundant. The performance of such redox couples can be tuned by modifying their chemical structure. In recent years, significant developments in organic redox flow batteries has taken place, with the introduction of new groups of highly soluble organic molecules, capable of providing a cell voltage and charge capacity comparable to conventional metal-based systems. This review summarises the fundamental developments and characterization of organic redox flow batteries from both the chemistry and materials perspectives. The latest advances, future challenges and opportunities for further development are discussed.

  11. Pressure driven flow of superfluid 4He through a nanopipe

    NASA Astrophysics Data System (ADS)

    Botimer, Jeffrey; Taborek, Peter

    2016-09-01

    Pressure driven flow of superfluid helium through single high-aspect-ratio glass nanopipes into a vacuum has been studied for a wide range of pressure drop (0-30 bars), reservoir temperature (0.8-2.5 K), pipe lengths (1-30 mm), and pipe radii (131 and 230 nm). As a function of pressure drop we observe two distinct flow regimes above and below a critical pressure drop Pc. For P critical velocity is approximately the Feynman critical velocity. As the pressure drop approaches Pc, there is a sudden transition to a new flow state with a critical velocity more than an order of magnitude higher. The position of the transition is explained by a simple model that accounts for the fountain pressure generated by evaporative cooling at the outlet of the nanopipe.

  12. Cimetidine and hepatic blood flow in polytrauma patients.

    PubMed

    Ivatury, R R; Khan, M B; Nallathambi, M; Davis, K; Stahl, W M

    1985-05-01

    Recent reports suggest that cimetidine acutely reduces liver blood flow in normal healthy subjects. To determine whether this finding is applicable to critically ill patients, we studied nine polytrauma patients admitted to a surgical ICU. All patients were being monitored with pulmonary artery catheters; all were stable with normal liver function. Liver blood flow was estimated by indocyanine green clearance, before and after administration of a single dose of 600 mg cimetidine. Hemodynamic variables were measured at the same times. Cimetidine did not significantly alter either hepatic blood flow or cardiovascular status in these critically ill patients.

  13. Assessing Consumer Emotional Responses in the Presence and Absence of Critical Quality Attributes: A Case Study with Chicken Eggs.

    PubMed

    Wardy, Wisdom; Sae-Eaw, Amporn; Sriwattana, Sujinda; No, Hong Kyoon; Prinyawiwatkul, Witoon

    2015-07-01

    Effects of attribute presence and absence on the emotional profile and consumer acceptability of products with varying qualities were assessed using eggs as an example. An online survey (n = 320) was used to evaluate emotional responses and acceptability to 5 types of egg quality attributes: intrinsic, aesthetic, extrinsic, expediency, and wholesome/safety, for both present and absent conditions. Attribute absence rather than presence evoked greater consumer discriminating emotions associated with eggs. Mean emotion intensity elicited by the presence of all quality attributes ranged from 1.67 (intrinsic; guilty) to 4.05 (wholesome; good) versus 2.01 (wholesome; satisfied) to 3.29 (wholesome; disgusted) when absent. Key positive emotions elicited by presence of attributes were active, calm, good, interested, happy, safe, and satisfied; while dominant negative emotions elicited by absence of attributes included disgusted and worried. Wholesome quality (constituted by egg freshness, "packing/best-before-date" and absence of visible cracks) exhibited the highest liking (7.65) and emotion intensities, while the emotional responses to both the presence and absence of intrinsic quality (constituted by nutrient-fortified egg, organic egg, and USDA-certified farm egg) were similar, reflecting their dynamic effects on emotions. Emotions and acceptability were more correlated for attribute absence than presence; and good, happy, and satisfied emotions were strongly related to egg acceptability (r ≥ 0.6). Egg product/packaging design can be oriented toward emphasizing wholesome and expedient attributes, since they enhance good, safe, and satisfied emotions, while minimizing disgust, worry, and boredom. The use of emotional responses and hedonic testing regarding attribute presence and absence would allow for improved selection of attributes critical to consumer acceptance of products. Assessing effects of attribute presence compared with absence on food-evoked emotions may

  14. Influence of isoflurane on the diastolic pressure-flow relationship and critical occlusion pressure during arterial CABG surgery: a randomized controlled trial.

    PubMed

    Hinz, José; Mansur, Ashham; Hanekop, Gerd G; Weyland, Andreas; Popov, Aron F; Schmitto, Jan D; Grüne, Frank F G; Bauer, Martin; Kazmaier, Stephan

    2016-01-01

    The effects of isoflurane on the determinants of blood flow during Coronary Artery Bypass Graft (CABG) surgery are not completely understood. This study characterized the influence of isoflurane on the diastolic Pressure-Flow (P-F) relationship and Critical Occlusion Pressure (COP) during CABG surgery. Twenty patients undergoing CABG surgery were studied. Patients were assigned to an isoflurane or control group. Hemodynamic and flow measurements during CABG surgery were performed twice (15 minutes after the discontinuation of extracorporeal circulation (T15) and again 15 minutes later (T30)). The zero flow pressure intercept (a measure of COP) was extrapolated from a linear regression analysis of the instantaneous diastolic P-F relationship. In the isoflurane group, the application of isoflurane significantly increased the slope of the diastolic P-F relationship by 215% indicating a mean reduction of Coronary Vascular Resistance (CVR) by 46%. Simultaneously, the Mean Diastolic Aortic Pressure (MDAP) decreased by 19% mainly due to a decrease in the systemic vascular resistance index by 21%. The COP, cardiac index, heart rate, Left Ventricular End-Diastolic Pressure (LVEDP) and Coronary Sinus Pressure (CSP) did not change significantly. In the control group, the parameters remained unchanged. In both groups, COP significantly exceeded the CSP and LVEDP at both time points. We conclude that short-term application of isoflurane at a sedative concentration markedly increases the slope of the instantaneous diastolic P-F relationship during CABG surgery implying a distinct decrease with CVR in patients undergoing CABG surgery.

  15. Critical rainfall conditions for the initiation of torrential flows. Results from the Rebaixader catchment (Central Pyrenees)

    NASA Astrophysics Data System (ADS)

    Abancó, Clàudia; Hürlimann, Marcel; Moya, José; Berenguer, Marc

    2016-10-01

    Torrential flows like debris flows or debris floods are fast movements formed by a mix of water and different amounts of unsorted solid material. They generally occur in steep torrents and pose high risk in mountainous areas. Rainfall is their most common triggering factor and the analysis of the critical rainfall conditions is a fundamental research task. Due to their wide use in warning systems, rainfall thresholds for the triggering of torrential flows are an important outcome of such analysis and are empirically derived using data from past events. In 2009, a monitoring system was installed in the Rebaixader catchment, Central Pyrenees (Spain). Since then, rainfall data of 25 torrential flows (;TRIG rainfalls;) were recorded, with a 5-min sampling frequency. Other 142 rainfalls that did not trigger torrential flows (;NonTRIG rainfalls;) were also collected and analyzed. The goal of this work was threefold: (i) characterize rainfall episodes in the Rebaixader catchment and compare rainfall data that triggered torrential flows and others that did not; (ii) define and test Intensity-Duration (ID) thresholds using rainfall data measured inside the catchment by with different techniques; (iii) analyze how the criterion used for defining the rainfall duration and the spatial variability of rainfall influences the value obtained for the thresholds. The statistical analysis of the rainfall characteristics showed that the parameters that discriminate better the TRIG and NonTRIG rainfalls are the rainfall intensities, the mean rainfall and the total rainfall amount. The antecedent rainfall was not significantly different between TRIG and NonTRIG rainfalls, as it can be expected when the source material is very pervious (a sandy glacial soil in the study site). Thresholds were derived from data collected at one rain gauge located inside the catchment. Two different methods were applied to calculate the duration and intensity of rainfall: (i) using total duration, Dtot

  16. Percolation transition in dynamical traffic network with evolving critical bottlenecks.

    PubMed

    Li, Daqing; Fu, Bowen; Wang, Yunpeng; Lu, Guangquan; Berezin, Yehiel; Stanley, H Eugene; Havlin, Shlomo

    2015-01-20

    A critical phenomenon is an intrinsic feature of traffic dynamics, during which transition between isolated local flows and global flows occurs. However, very little attention has been given to the question of how the local flows in the roads are organized collectively into a global city flow. Here we characterize this organization process of traffic as "traffic percolation," where the giant cluster of local flows disintegrates when the second largest cluster reaches its maximum. We find in real-time data of city road traffic that global traffic is dynamically composed of clusters of local flows, which are connected by bottleneck links. This organization evolves during a day with different bottleneck links appearing in different hours, but similar in the same hours in different days. A small improvement of critical bottleneck roads is found to benefit significantly the global traffic, providing a method to improve city traffic with low cost. Our results may provide insights on the relation between traffic dynamics and percolation, which can be useful for efficient transportation, epidemic control, and emergency evacuation.

  17. Role of a naturally varying flow regime in Everglades restoration

    USGS Publications Warehouse

    Harvey, Judson; Wetzel, Paul R.; Lodge, Thomas E.; Engel, Victor C.; Ross, Michael S.

    2017-01-01

    The Everglades is a low-gradient floodplain predominantly on organic soil that undergoes seasonally pulsing sheetflow through a network of deepwater sloughs separated by slightly higher elevation ridges. The seasonally pulsing flow permitted the coexistence of ridge and slough vegetation, including the persistence of productive, well-connected sloughs that seasonally concentrated prey and supported wading bird nesting success. Here we review factors contributing to the origin and to degradation of the ridge and slough ecosystem in an attempt to answer “How much flow is needed to restore functionality”? A key restoration objective is to increase sheetflow lost during the past century to reestablish interactions between flow, water depth, vegetation production and decomposition, and transport of flocculent organic sediment that build and maintain ridge and slough distinctions. Our review finds broad agreement that perturbations of water level depth and its fluctuations were primary in the degradation of landscape functions, with critical contributions from perturbed water quality, and flow velocity and direction. Whereas water levels are expected to be improved on average across a range of restoration scenarios that replace between 79 and 91% of predrainage flows, the diminished microtopography substantially decreases the probability of timely improvements in some areas whereas others that retain microtopographic differences are poised for restoration benefits. New advances in predicting restoration outcomes are coming from biophysical modeling of ridge–slough dynamics, system-wide measurements of landscape functionality, and large-scale flow restoration experiments, including active management techniques to kick-start slough regeneration.

  18. Downhole steam quality measurement

    DOEpatents

    Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

    1985-06-19

    The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

  19. Zombie Turbulence and More in Stratified Couette Flow

    NASA Astrophysics Data System (ADS)

    Marcus, Philip; Barranco, Joe; Pei, Suyang; Jiang, Chung-Hsiang

    2016-11-01

    Zombie turbulence occurs in rotating, shearing vertically-stratified flows such as stratified Couette flows. The turbulence is triggered by a neutrally-stable eigenmode with a critical layer receptive to finite-amplitude perturbations. Once excited, the critical layer becomes a vortex layer pair that rolls up into discrete vortices. Those vortices excite new critical layers, and the process repeats ad infinitum. When the vortex amplitudes become sufficiently large, the flow becomes turbulent. Although possessing a mid-range energy spectrum with E (k) k - 5 / 3 , the turbulence is non-Kolmogorov, highly anisotropic, and with large turbulent, but coherent, structures that retain the length scales of the spacing between the critical layers. The motivation for this study is protoplanetary disks (PPDs) where new stars form. In the PPD the Brunt-Vaisala frequency N increases as a function of distance from the midplane where it is zero. We cannot trigger the initial finite amplitude instability where N is small (close to the midplane). However, computations in PPDs and Couette flows show that zombie turbulence forms where N is large, and then a new type of turbulence, that is neither zombie nor Kolmogorov turbulence, fills in the remainder of the domain even where N = 0 .

  20. Nonlinear elastic instability in channel flows at low Reynolds numbers.

    PubMed

    Pan, L; Morozov, A; Wagner, C; Arratia, P E

    2013-04-26

    It is presently believed that flows of viscoelastic polymer solutions in geometries such as a straight pipe or channel are linearly stable. Here we present experimental evidence that such flows can be nonlinearly unstable and can exhibit a subcritical bifurcation. Velocimetry measurements are performed in a long, straight microchannel; flow disturbances are introduced at the entrance of the channel system by placing a variable number of obstacles. Above a critical flow rate and a critical size of the perturbation, a sudden onset of large velocity fluctuations indicates the presence of a nonlinear subcritical instability. Together with the previous observations of hydrodynamic instabilities in curved geometries, our results suggest that any flow of polymer solutions becomes unstable at sufficiently high flow rates.

  1. Documentation of a Conduit Flow Process (CFP) for MODFLOW-2005

    USGS Publications Warehouse

    Shoemaker, W. Barclay; Kuniansky, Eve L.; Birk, Steffen; Bauer, Sebastian; Swain, Eric D.

    2007-01-01

    This report documents the Conduit Flow Process (CFP) for the modular finite-difference ground-water flow model, MODFLOW-2005. The CFP has the ability to simulate turbulent ground-water flow conditions by: (1) coupling the traditional ground-water flow equation with formulations for a discrete network of cylindrical pipes (Mode 1), (2) inserting a high-conductivity flow layer that can switch between laminar and turbulent flow (Mode 2), or (3) simultaneously coupling a discrete pipe network while inserting a high-conductivity flow layer that can switch between laminar and turbulent flow (Mode 3). Conduit flow pipes (Mode 1) may represent dissolution or biological burrowing features in carbonate aquifers, voids in fractured rock, and (or) lava tubes in basaltic aquifers and can be fully or partially saturated under laminar or turbulent flow conditions. Preferential flow layers (Mode 2) may represent: (1) a porous media where turbulent flow is suspected to occur under the observed hydraulic gradients; (2) a single secondary porosity subsurface feature, such as a well-defined laterally extensive underground cave; or (3) a horizontal preferential flow layer consisting of many interconnected voids. In this second case, the input data are effective parameters, such as a very high hydraulic conductivity, representing multiple features. Data preparation is more complex for CFP Mode 1 (CFPM1) than for CFP Mode 2 (CFPM2). Specifically for CFPM1, conduit pipe locations, lengths, diameters, tortuosity, internal roughness, critical Reynolds numbers (NRe), and exchange conductances are required. CFPM1, however, solves the pipe network equations in a matrix that is independent of the porous media equation matrix, which may mitigate numerical instability associated with solution of dual flow components within the same matrix. CFPM2 requires less hydraulic information and knowledge about the specific location and hydraulic properties of conduits, and turbulent flow is approximated by

  2. Spatially Resolved MR-Compatible Doppler Ultrasound: Proof of Concept for Triggering of Diagnostic Quality Cardiovascular MRI for Function and Flow Quantification at 3T.

    PubMed

    Crowe, Lindsey Alexandra; Manasseh, Gibran; Chmielewski, Aneta; Hachulla, Anne-Lise; Speicher, Daniel; Greiser, Andreas; Muller, Hajo; de Perrot, Thomas; Vallee, Jean-Paul; Salomir, Rares

    2018-02-01

    We demonstrate the use of a magnetic-resonance (MR)-compatible ultrasound (US) imaging probe using spatially resolved Doppler for diagnostic quality cardiovascular MR imaging (MRI) as an initial step toward hybrid US/MR fetal imaging. A newly developed technology for a dedicated MR-compatible phased array ultrasound-imaging probe acquired pulsed color Doppler carotid images, which were converted in near-real time to a trigger signal for cardiac cine and flow quantification MRI. Ultrasound and MR data acquired simultaneously were interference free. Conventional electrocardiogram (ECG) and the proposed spatially resolved Doppler triggering were compared in 10 healthy volunteers. A synthetic "false-triggered" image was retrospectively processed using metric optimized gating (MOG). Images were scored by expert readers, and sharpness, cardiac function and aortic flow were quantified. Four-dimensional (4-D) flow (two volunteers) showed feasibility of Doppler triggering over a long acquisition time. Imaging modalities were compatible. US probe positioning was stable and comfortable. Image quality scores and quantified sharpness were statistically equal for Doppler- and ECG-triggering (p ). ECG-, Doppler-triggered, and MOG ejection fractions were equivalent (p ), with false-triggered values significantly lower (p < 0.0005). Aortic flow showed no difference between ECG- and Doppler-triggered and MOG (p > 0.05). 4-D flow quantification gave consistent results between ECG and Doppler triggering. We report interference-free pulsed color Doppler ultrasound during MR data acquisition. Cardiovascular MRI of diagnostic quality was successfully obtained with pulsed color Doppler triggering. The hardware platform could further enable advanced free-breathing cardiac imaging. Doppler ultrasound triggering is applicable where ECG is compromised due to pathology or interference at higher magnetic fields, and where direct ECG is impossible, i.e., fetal imaging.

  3. Comparison of free flux flow in two single crystals of V3Si with slightly different pinning strengths

    NASA Astrophysics Data System (ADS)

    Gafarov, Ozarfar; Gapud, Albert A.; Moraes, Sunhee; Thompson, James R.; Christen, David K.; Reyes, Arneil P.

    2011-03-01

    Results of recent measurements on two very clean, single-crystal samples of the A15 superconductor V3 Si are presented. Magnetization and transport data confirm the ``clean'' quality of both samples, as manifested by: (i) high residual resistivity ratio, (ii) low critical current densities, and (iii) a ``peak'' effect in the field dependence of critical current. The (H,T) phase line for this peak effect is shifted in the slightly ``dirtier'' sample, which also has higher critical current density Jc (H). High-current Lorentz forces are applied on mixed-state vortices in order to induce the highly ordered free flux flow (FFF) phase, using the same methods as in previous work. A traditional model by Bardeen and Stephen (BS) predicts a simple field dependence of flux flow resistivity ρf (H), presuming a field-independent flux core size. A model by Kogan and Zelezhina (KZ) takes core size into account, and predicts a deviation from BS. In this study, ρf (H) is confirmed to be consistent with predictions of KZ, as will be discussed. Funded by Research Corporation and the National Science Foundation.

  4. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    1986-01-01

    In systems where the design inlet and outlet pressures P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  5. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    1986-01-01

    In systems where the design inlet and outlet pressure P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  6. Phase transition and flow-rate behavior of merging granular flows.

    PubMed

    Hu, Mao-Bin; Liu, Qi-Yi; Jiang, Rui; Hou, Meiying; Wu, Qing-Song

    2015-02-01

    Merging of granular flows is ubiquitous in industrial, mining, and geological processes. However, its behavior remains poorly understood. This paper studies the phase transition and flow-rate behavior of two granular flows merging into one channel. When the main channel is wider than the side channel, the system shows a remarkable two-sudden-drops phenomenon in the outflow rate when gradually increasing the main inflow. When gradually decreasing the main inflow, the system shows obvious hysteresis phenomenon. We study the flow-rate-drop phenomenon by measuring the area fraction and the mean velocity at the merging point. The phase diagram of the system is also presented to understand the occurrence of the phenomenon. We find that the dilute-to-dense transition occurs when the area fraction of particles at the joint point exceeds a critical value ϕ(c)=0.65±0.03.

  7. Implementation of quality by design principles in the development of microsponges as drug delivery carriers: Identification and optimization of critical factors using multivariate statistical analyses and design of experiments studies.

    PubMed

    Simonoska Crcarevska, Maja; Dimitrovska, Aneta; Sibinovska, Nadica; Mladenovska, Kristina; Slavevska Raicki, Renata; Glavas Dodov, Marija

    2015-07-15

    Microsponges drug delivery system (MDDC) was prepared by double emulsion-solvent-diffusion technique using rotor-stator homogenization. Quality by design (QbD) concept was implemented for the development of MDDC with potential to be incorporated into semisolid dosage form (gel). Quality target product profile (QTPP) and critical quality attributes (CQA) were defined and identified, accordingly. Critical material attributes (CMA) and Critical process parameters (CPP) were identified using quality risk management (QRM) tool, failure mode, effects and criticality analysis (FMECA). CMA and CPP were identified based on results obtained from principal component analysis (PCA-X&Y) and partial least squares (PLS) statistical analysis along with literature data, product and process knowledge and understanding. FMECA identified amount of ethylcellulose, chitosan, acetone, dichloromethane, span 80, tween 80 and water ratio in primary/multiple emulsions as CMA and rotation speed and stirrer type used for organic solvent removal as CPP. The relationship between identified CPP and particle size as CQA was described in the design space using design of experiments - one-factor response surface method. Obtained results from statistically designed experiments enabled establishment of mathematical models and equations that were used for detailed characterization of influence of identified CPP upon MDDC particle size and particle size distribution and their subsequent optimization. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Linear stability analysis of laminar flow near a stagnation point in the slip flow regime

    NASA Astrophysics Data System (ADS)

    Essaghir, E.; Oubarra, A.; Lahjomri, J.

    2017-12-01

    The aim of the present contribution is to analyze the effect of slip parameter on the stability of a laminar incompressible flow near a stagnation point in the slip flow regime. The analysis is based on the traditional normal mode approach and assumes parallel flow approximation. The Orr-Sommerfeld equation that governs the infinitesimal disturbance of stream function imposed to the steady main flow, which is an exact solution of the Navier-Stokes equation satisfying slip boundary conditions, is obtained by using the powerful spectral Chebyshev collocation method. The results of the effect of slip parameter K on the hydrodynamic characteristics of the base flow, namely the velocity profile, the shear stress profile, the boundary layer, displacement and momentum thicknesses are illustrated and discussed. The numerical data for these characteristics, as well as those of the eigenvalues and the corresponding wave numbers recover the results of the special case of no-slip boundary conditions. They are found to be in good agreement with previous numerical calculations. The effects of slip parameter on the neutral curves of stability, for two-dimensional disturbances in the Reynolds-wave number plane, are then obtained for the first time in the slip flow regime for stagnation point flow. Furthermore, the evolution of the critical Reynolds number against the slip parameter is established. The results show that the critical Reynolds number for instability is significantly increased with the slip parameter and the flow turn out to be more stable when the effect of rarefaction becomes important.

  9. Long-Term Survival and Quality of Life After Transfusion-Associated Pulmonary Edema in Critically III Medical Patients

    PubMed Central

    Kojicic, Marija; Reriani, Martin K.; Fernández Pérez, Evans R.; Thakur, Lokendra; Kashyap, Rahul; Van Buskirk, Camille M.; Gajic, Ognjen

    2010-01-01

    Background: Transfusion-related acute lung injury (TRALI) and transfusion-associated circulatory overload (TACO) commonly complicate transfusion in critically ill patients. Prior outcome studies of TACO and TRALI have focused on short-term morbidity and mortality, but the long-term survival and quality of life (QOL) of these patients remain unknown. Methods: In a nested case-control study, we compared survival and QOL between critically ill medical patients who developed pulmonary edema after transfusion (TRALI or TACO) and medical critically ill transfused controls, matched by age, gender, and admission diagnostic group. QOL in survivors was assessed with a 36-item short form health survey 1 year after initial hospitalization. Results: Hospital, 1-year, and 2-year mortality among the 74 TRALI cases and 74 matched controls were 43.2% vs 24.3% (P = .020), 63.8% vs 46.4% (P = .037) and 74.3% vs 54.3% (P = .031), whereas among the 51 TACO cases and 51 matched controls these values were 7.8% vs 11.8% (P = .727), 38.0% vs 28.0% (P = .371), and 44.9% vs 38.8% (P = .512). When adjusted for age and baseline severity of illness in a Cox proportional hazard analysis, the development of TRALI remained associated with decreased survival (hazard ratio 1.86; 95% CI, 1.19-2.93; P = .006). Both TRALI (P = .006, P = .03) and TACO (P = .03, P = .049) were associated with prolonged ICU and hospital lengths of stay. Conclusions: In critically ill medical patients, development of TRALI, but not TACO, is independently associated with decreased long-term survival. PMID:19837827

  10. Physician Reimbursement for Critical Care Services Integrating Palliative Care for Patients Who Are Critically Ill

    PubMed Central

    Nelson, Judith E.; Weissman, David E.; Hays, Ross M.; Mosenthal, Anne C.; Mulkerin, Colleen; Puntillo, Kathleen A.; Ray, Daniel E.; Bassett, Rick; Boss, Renee D.; Brasel, Karen J.; Campbell, Margaret L.; Cortez, Therese B.; Curtis, J. Randall

    2012-01-01

    Patients with advanced illness often spend time in an ICU, while nearly one-third of patients with advanced cancer who receive Medicare die in hospitals, often with failed ICU care. For most, death occurs following the withdrawal or withholding of life-sustaining treatments. The integration of palliative care is essential for high-quality critical care. Although palliative care specialists are becoming increasingly available, intensivists and other physicians are also expected to provide basic palliative care, including symptom treatment and communication about goals of care. Patients who are critically ill are often unable to make decisions about their care. In these situations, physicians must meet with family members or other surrogates to determine appropriate medical treatments. These meetings require clinical expertise to ensure that patient values are explored for medical decision making about therapeutic options, including palliative care. Meetings with families take time. Issues related to the disease process, prognosis, and treatment plan are complex, and decisions about the use or limitation of intensive care therapies have life-or-death implications. Inadequate reimbursement for physician services may be a barrier to the optimal delivery of high-quality palliative care, including effective communication. Appropriate documentation of time spent integrating palliative and critical care for patients who are critically ill can be consistent with the Current Procedural Terminology codes (99291 and 99292) for critical care services. The purpose of this article is to help intensivists and other providers understand the circumstances in which integration of palliative and critical care meets the definition of critical care services for billing purposes. PMID:22396564

  11. Use of schlieren methods to study gas flow in laser technology

    NASA Astrophysics Data System (ADS)

    Mrňa, Libor; Pavelka, Jan; Horník, Petr; Hrabovský, Jozef

    2016-11-01

    Laser technologies such as welding and cutting rely on process gases. We suggest to use schlieren imaging to visualize the gas flow during these processes. During the process of laser welding, the shielding gas flows to the welded area to prevent oxidation of the weld pool by surrounding air. The gas also interacts with hot plasma spurting from the key hole induced by the laser beam incident on the molten material. This interaction is quite complicated because hot plasma mixes with the cold shielding gas while the system is moving along the weld. Three shielding gases were used in the presented experiment: Ar, He and N2. Differences in dynamics of the flow are clearly visible on schlieren images. Moreover, high speed recording reveals a structure consisting of hot gas bubbles. We were also able to determine the velocity of the bubbles from the recording. During laser cutting, the process gas flows coaxially with the laser beam from the nozzle to remove the molten material out of the kerf. The gas flow is critical for the quality of the resulting edge of the cut. Schlieren method was used to study gas flow under the nozzle and then under the material being cut. This actually creates another slot nozzle. Due to the very low speed of flow below the material the schleiren method is already at the limit of its sensitivity. Therefore, it is necessary to apply a differential technique to increase the contrast. Distinctive widening of the flow shaped by the kerf was observed.

  12. Hydraulic jumps in inhomogeneous strongly coupled toroidal dust flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piel, Alexander, E-mail: piel@physik.uni-kiel.de; Wilms, Jochen

    2016-07-15

    The inhomogeneous flow of strongly coupled dust particles in a toroidal particle trap with harmonic radial confinement is analyzed in the incompressible fluid limit. It is shown that the flow can spontaneously generate shock-like events, which are similar to the hydraulic jump in open channel flows. A definition of the Froude number for this model is given and the critical speed is recovered as the group velocity of surface waves. This hydraulic model is compared with molecular-dynamics simulations, which show that a sudden bifurcation of the flow lines and a localized temperature peak appear just at the point where themore » critical condition for the hydraulic jump is located.« less

  13. Hydrology and Water Quality of the Rio Chama River, Northern New Mexico: Establishing a Base Line to Manage Flows

    NASA Astrophysics Data System (ADS)

    Salvato, L.; Crossey, L. J.

    2013-12-01

    The Rio Chama is the largest stream tributary to the Rio Grande in northern New Mexico. The river's geographic location in a semiarid region results in high rates of evapotranspiration and highly variable streamflow. The Rio Chama is part of the San Juan-Chama Drinking Water Project, in which water from the San Juan River, southern Colorado, is diverted across the continental divide to the Rio Chama. Surface water moves through Abiquiu, El Vado and Heron Reservoirs to the Rio Grande to supply Albuquerque with potable drinking water. The results of these anthropogenic influences are a modified flow regime, less variability, greater base-flows, and smaller peak flows. We examined selected locations throughout the Rio Chama system to provide base-line water quality data for ongoing studies. This information will contribute to the development of the best plan to optimize flow releases and maximize benefits of the stakeholders and especially the riparian and stream ecosystems. We report results of two sampling trips representing extremes of the hydrograph in summer 2012 and fall 2012. We collected field parameters, processed water samples, and analyzed them for major anions and cations. The geochemistry enables us to better understand the impact of monthly releases of San Juan river water. We captured two points of the river's streamflow range, 54 cubic feet per second in October 2012 and 1,000 cubic feet per second in August 2012 and looked for variability within the results. We found that the reservoirs exhibit varying anion concentrations from samples taken at different depths. We compared stream waters and selected well samples at a stream transect. These samples allowed us to compare shallow ground water with the stream, and they indicated that the changes in ground water are attributed to sulfate reduction. The anion and cation inputs were most likely derived from gypsum, calcite, and salts, as there are many creeks discharging into the Rio Chama whose drainage

  14. The evolution of an unsteady translating nonlinear rossby-wave critical layer

    NASA Astrophysics Data System (ADS)

    Haynes, Peter H.; Cowley, Stephen J.

    When a monochromatic Rossby wave is forced on a flow which is slowly varying in time, the location of the critical line, where the phase speed of the wave is equal to that of the flow, also slowly changes. It is shown that this translation can play an important role in the vorticity balance near the critical line. The behavior of the translating critical layer is analyzed for various values of y, a parameter which measures the relative importance of nonlinear advection and translation. First, the vorticity equation in the critical layer is solved numerically in an important special case, where the velocity field in the critical layer is independent of the vorticity distribution and constant in time. The solutions reveal a number of new aspects of the behavior which are introduced by the translation, including the formation of a wake behind the critical layer, and the possibility of "trapping" of fluid particles in the critical layer if y exceeds a threshold value. Viewed in a frame of reference moving with the critical line the vorticity distribution may tend to a steady state, except in a "vorticity front" far downstream in the wake. If streamlines in the critical layer are open this steady state may be a predominantly inviscid one; if they are closed a steady state is possible only with non-zero dissipation. For both the unsteady and steady flows the translation allows the "logarithmic phase jump" across the critical layer, 4, to be non-zero and negative. Hence, even when the viscosity is vanishingly small, the critical layer can act as a strong "absorber" of Eliassen-Palm wave activity. Second, steady-state solutions are obtained numerically for a case when the velocity field in the critical layer is not independent of the vorticity distribution there. The interaction restricts the formation of closed streamlines, and an asymptotic open-streamline solution for large y can be found. The critical layer again acts an absorber of wave activity, but with decreasing e

  15. Critical flow rate of anode fuel exhaust in a PEM fuel cell system

    NASA Astrophysics Data System (ADS)

    Zhu, Wenhua H.; Payne, Robert U.; Tatarchuk, Bruce J.

    A manual purge line was added into the exterior fuel exhaust stream of a Ballard PEM stack in a Nexa™ power module. With the addition of manual exhaust purge, high levels of inert gases were intentionally added to the anode feed without changing normal operational procedures. A new method of determining the critical minimum flow rate in the anode exhaust stream was given by an anode mass balance. This type of operation makes dual use of membranes in the MEAs as both gas purifiers and as solid electrolytes. The PEM stack was successfully operated with up to ca. 7% nitrogen or carbon dioxide in the absence of a palladium-based hydrogen separator at ca. 200 W power level. Nitrogen in the anode stream was concentrated from 7.5% to 91.6%. The system maintained a fuel efficiency of 99% at a manual purge rate of 2.22 ml s -1 and no auto purge. The fuel cell stack efficiency was 64% and the stack output efficiency was 75%. The overall system efficiency was 39%. After troublesome CO and H 2S poisons were removed, a hydrocarbon reformate containing high levels of CO 2 and H 2O was further used in the Nexa™ stack. The size and complexity of the fuel processing system may be reduced at a specified power level by using this operational method.

  16. Managing vegetation in surface-flow wastewater-treatment wetlands for optimal treatment performance

    USGS Publications Warehouse

    Thullen, J.S.; Sartoris, J.J.; Nelson, S.M.

    2005-01-01

    Constructed wetlands that mimic natural marshes have been used as low-cost alternatives to conventional secondary or tertiary wastewater treatment in the U.S. for at least 30 years. However, the general level of understanding of internal treatment processes and their relation to vegetation and habitat quality has not grown in proportion to the popularity of these systems. We have studied internal processes in surface-flow constructed wastewater-treatment wetlands throughout the southwestern U.S. since 1990. At any given time, the water quality, hydraulics, water temperature, soil chemistry, available oxygen, microbial communities, macroinvertebrates, and vegetation each greatly affect the treatment capabilities of the wetland. Inside the wetland, each of these components plays a functional role and the treatment outcome depends upon how the various components interact. Vegetation plays a uniquely important role in water treatment due to the large number of functions it supports, particularly with regard to nitrogen transformations. However, it has been our experience that vegetation management is critical for achieving and sustaining optimal treatment function. Effective water treatment function and good wildlife quality within a surface-flow constructed wetland depend upon the health and sustainability of the vegetation. We suggest that an effective tool to manage and sustain healthy vegetation is the use of hummocks, which are shallow emergent plant beds within the wetland, positioned perpendicular to the water flow path and surrounded by water sufficiently deep to limit further emergent vegetation expansion. In this paper, we describe the use of a hummock configuration, in conjunction with seasonal water level fluctuations, to manage the vegetation and maintain the treatment function of wastewater-treatment wetlands on a sustainable basis.

  17. Critical values in hematology of 862 institutions in China.

    PubMed

    Ye, Y Y; Zhao, H J; Fei, Y; Wang, W; He, F L; Zhong, K; Yuan, S; Wang, Z G

    2017-10-01

    A national survey on critical values in hematology of China laboratories was conducted to determine the current practice and assess the quality indicators so as to obtain a quality improvement. Laboratories participating were asked to submit the general information, the practice of critical value reporting, and the status of timeliness of critical value reporting. A total of 862 laboratories submitted the results. The majority of participants have included white blood cell count, blood platelet count, hemoglobin, prothrombin time, and activated partial thromboplastin time in their critical value lists. Many sources are used for establishing a critical value policy, and some of the laboratories consult with clinicians. The unreported critical value rate, late critical value reporting rate, and clinically unacknowledged rate in China are relatively low, and the median of critical value reporting time is 8-9 minutes. There exists a wide variety for critical value reporting in hematology in China. Laboratories should establish a policy of critical value reporting suited for their own situations and consult with clinicians to set critical value lists. Critical values are generally reported in a timely manner in China, but some measures should be taken to further improve the timeliness of critical value reporting. © 2017 John Wiley & Sons Ltd.

  18. CFD simulations of the flow control performance applied for inlet of low drag high-bypass turbofan engine at cross flow regimes

    NASA Astrophysics Data System (ADS)

    Kursakov, I. A.; Kazhan, E. V.; Lysenkov, A. V.; Savelyev, A. A.

    2016-10-01

    Paper describes the optimization procedure for low cruise drag inlet of high-bypass ratio turbofan engine (HBRE). The critical cross-flow velocity when the flow separation on the lee side of the inlet channel occurs is determined. The effciency of different flow control devices used to improve the flow parameters at inlet section cross flow regime is analyzed. Boundary layer suction, bypass slot and vortex generators are considered. It is shown that flow control devices enlarge the stability range of inlet performance at cross flow regimes.

  19. Application of the Analogy Between Water Flow with a Free Surface and Two-Dimensional Compressible Gas Flow

    NASA Technical Reports Server (NTRS)

    Orlin, W James; Lindner, Norman J; Butterly, Jack G

    1947-01-01

    The theory of the hydraulic analogy -- that is, the analogy between water flow with a free surface and two-dimensional compressible gas flow -- and the limitations and conditions of the analogy are discussed. A test was run using the hydraulic analogy as applied to the flow about circular cylinders of various diameters at subsonic velocities extending into the supercritical range. The apparatus and techniques used in this application are described and criticized. Reasonably satisfactory agreement of pressure distributions and flow fields existed between water and air flow about corresponding bodies. This agreement indicated the possibility of extending experimental compressibility research by new methods.

  20. Side Flow Effect on Surface Generation in Nano Cutting

    NASA Astrophysics Data System (ADS)

    Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong

    2017-05-01

    The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} < 011>, {110} < 001>, and {110} < 1-10 > are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.

  1. Quality of nursing care perceived by patients and their nurses: an application of the critical incident technique. Part 2.

    PubMed

    Redfern, S; Norman, I

    1999-07-01

    The aims of the study were to identify indicators of quality of nursing care from the perceptions of patients and nurses, and to determine the congruence between patients' and nurses' perceptions. The paper is presented in two parts. Part 1 included the background and methods to the study and the findings from the comparison of patients' and nurses' perceptions. Part 2 describes the perceptions of patients and nurses, and draws conclusions drawn from the study as a whole. Patients and nurses in hospital wards were interviewed using the critical incident technique. We grouped 4546 indicators of high and low quality nursing care generated from the interview transcripts into 316 subcategories, 68 categories and 31 themes. The themes were grouped into eight clusters: therapeutic context for care, attitudes and sensitivity, teaching and leadership, motivation to nurse, monitoring and informing, high-dependency care, efficiency and thoroughness, reflection and anticipation. As shown in Part 1 of the paper, congruence between patients' and nurses' perceptions of quality was high and significant, although there was some difference of emphasis. The findings support an emerging theory of interpersonal competence and quality in nursing care.

  2. 14 CFR 29.955 - Fuel flow.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.955 Fuel flow. (a) General. The fuel system for each engine must provide the engine with at least 100 percent of the fuel required under all... flow transmitter, if installed, and the critical fuel pump (for pump-fed systems) must be installed to...

  3. 14 CFR 29.955 - Fuel flow.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.955 Fuel flow. (a) General. The fuel system for each engine must provide the engine with at least 100 percent of the fuel required under all... flow transmitter, if installed, and the critical fuel pump (for pump-fed systems) must be installed to...

  4. 14 CFR 29.955 - Fuel flow.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.955 Fuel flow. (a) General. The fuel system for each engine must provide the engine with at least 100 percent of the fuel required under all... flow transmitter, if installed, and the critical fuel pump (for pump-fed systems) must be installed to...

  5. 14 CFR 29.955 - Fuel flow.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.955 Fuel flow. (a) General. The fuel system for each engine must provide the engine with at least 100 percent of the fuel required under all... flow transmitter, if installed, and the critical fuel pump (for pump-fed systems) must be installed to...

  6. 14 CFR 29.955 - Fuel flow.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.955 Fuel flow. (a) General. The fuel system for each engine must provide the engine with at least 100 percent of the fuel required under all... flow transmitter, if installed, and the critical fuel pump (for pump-fed systems) must be installed to...

  7. Critical transport issues for improving the performance of aqueous redox flow batteries

    NASA Astrophysics Data System (ADS)

    Zhou, X. L.; Zhao, T. S.; An, L.; Zeng, Y. K.; Wei, L.

    2017-01-01

    As the fraction of electricity generated from intermittent renewable sources (such as solar and wind) grows, developing reliable energy storage technologies to store electrical energy in large scale is of increasing importance. Redox flow batteries are now enjoying a renaissance and regarded as a leading technology in providing a well-balanced solution for current daunting challenges. In this article, state-of-the-art studies of the complex multicomponent transport phenomena in aqueous redox flow batteries, with a special emphasis on all-vanadium redox flow batteries, are reviewed and summarized. Rather than elaborating on the details of previous experimental and numerical investigations, this article highlights: i) the key transport issues in each battery's component that need to be tackled so that the rate capability and cycling stability of flow batteries can be significantly improved, ii) the basic mechanisms that control the active species/ion/electron transport behaviors in each battery's component, and iii) the key experimental and numerical findings regarding the correlations between the multicomponent transport processes and battery performance.

  8. Grading the quality of evidence and the strength of recommendations in clinical dentistry: a critical review of 2 prominent approaches.

    PubMed

    Faggion, Clovis Mariano

    2010-06-01

    The objective of this article was to critically review 2 prominent approaches used to grade the quality of evidence and the strength of recommendations. Every year much information becomes available as a result of publication of scientific papers, and clinicians should be able to assess current evidence so they, along with their patients, can make the most appropriate clinical decisions. This is particularly important when there is little or no high-quality evidence available about the subject of interest. The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) and the Strength of Recommendation Taxonomy (SORT) were evaluated. Strengths and weaknesses of these 2 systems are discussed, mainly on the basis of their relevance to clinical dentistry. The conclusion was that use of a system for grading the quality of evidence and the strength of recommendations is urgently required because of the great heterogeneity of the quality and type of evidence relating to many dental procedures. Use of such a system will enable clinicians and their patients to make more informed decisions.

  9. Critical Care Delivery: The Importance of Process of Care and ICU Structure to Improved Outcomes: An Update From the American College of Critical Care Medicine Task Force on Models of Critical Care.

    PubMed

    Weled, Barry J; Adzhigirey, Lana A; Hodgman, Tudy M; Brilli, Richard J; Spevetz, Antoinette; Kline, Andrea M; Montgomery, Vicki L; Puri, Nitin; Tisherman, Samuel A; Vespa, Paul M; Pronovost, Peter J; Rainey, Thomas G; Patterson, Andrew J; Wheeler, Derek S

    2015-07-01

    In 2001, the Society of Critical Care Medicine published practice model guidelines that focused on the delivery of critical care and the roles of different ICU team members. An exhaustive review of the additional literature published since the last guideline has demonstrated that both the structure and process of care in the ICU are important for achieving optimal patient outcomes. Since the publication of the original guideline, several authorities have recognized that improvements in the processes of care, ICU structure, and the use of quality improvement science methodologies can beneficially impact patient outcomes and reduce costs. Herein, we summarize findings of the American College of Critical Care Medicine Task Force on Models of Critical Care: 1) An intensivist-led, high-performing, multidisciplinary team dedicated to the ICU is an integral part of effective care delivery; 2) Process improvement is the backbone of achieving high-quality ICU outcomes; 3) Standardized protocols including care bundles and order sets to facilitate measurable processes and outcomes should be used and further developed in the ICU setting; and 4) Institutional support for comprehensive quality improvement programs as well as tele-ICU programs should be provided.

  10. Groundwater flow, quality (2007-10), and mixing in the Wind Cave National Park area, South Dakota

    USGS Publications Warehouse

    Long, Andrew J.; Ohms, Marc J.; McKaskey, Jonathan D.R.G.

    2012-01-01

    A study of groundwater flow, quality, and mixing in relation to Wind Cave National Park in western South Dakota was conducted during 2007-11 by the U.S. Geological Survey in cooperation with the National Park Service because of water-quality concerns and to determine possible sources of groundwater contamination in the Wind Cave National Park area. A large area surrounding Wind Cave National Park was included in this study because to understand groundwater in the park, a general understanding of groundwater in the surrounding southern Black Hills is necessary. Three aquifers are of particular importance for this purpose: the Minnelusa, Madison, and Precambrian aquifers. Multivariate methods applied to hydrochemical data, consisting of principal component analysis (PCA), cluster analysis, and an end-member mixing model, were applied to characterize groundwater flow and mixing. This provided a way to assess characteristics important for groundwater quality, including the differentiation of hydrogeologic domains within the study area, sources of groundwater to these domains, and groundwater mixing within these domains. Groundwater and surface-water samples collected for this study were analyzed for common ions (calcium, magnesium, sodium, bicarbonate, chloride, silica, and sulfate), arsenic, stable isotopes of oxygen and hydrogen, specific conductance, and pH. These 12 variables were used in all multivariate methods. A total of 100 samples were collected from 60 sites from 2007 to 2010 and included stream sinks, cave drip, cave water bodies, springs, and wells. In previous approaches that combined PCA with end-member mixing, extreme-value samples identified by PCA typically were assumed to represent end members. In this study, end members were not assumed to have been sampled but rather were estimated and constrained by prior hydrologic knowledge. Also, the end-member mixing model was quantified in relation to hydrogeologic domains, which focuses model results on

  11. Acceleration of aircraft-level Traffic Flow Management

    NASA Astrophysics Data System (ADS)

    Rios, Joseph Lucio

    solved in parallel increases. A maximal decomposition provides the best results of any method tested. The convergence qualities of Dantzig-Wolfe Decomposition have been criticized in the past, so we examine what makes the Bertsimas-Stock Patterson model so amenable to use of this method. These mathematical qualities of the model are generalized to provide guidance on other problems that may benefit from massively parallel Dantzig-Wolfe Decomposition. This result, together with the development of the software, and the experimental results indicating the feasibility of real-time, nationwide Traffic Flow Management scheduling represent the major contributions of this dissertation.

  12. Calculative techniques for transonic flows about certain classes of wing body combinations

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Spreiter, J. R.

    1972-01-01

    Procedures based on the method of local linearization and transonic equivalence rule were developed for predicting properties of transonic flows about certain classes of wing-body combinations. The procedures are applicable to transonic flows with free stream Mach number in the ranges near one, below the lower critical and above the upper critical. Theoretical results are presented for surface and flow field pressure distributions for both lifting and nonlifting situations.

  13. A comparison of quality of present-day heat flow obtained from BHTs, Horner Plots of Malay Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waples, D.W.; Mahadir, R.

    1994-07-01

    Reconciling temperature data obtained from measurement of single BHT, multiple BHT at a single depth, RFTs, and DSTs, is very difficult. Quality of data varied widely, however DST data were assumed to be most reliable. Data from 87 wells was used in this study, but only 47 wells have DST data. BASINMOD program was used to calculate the present-day heat flow, using measured thermal conductivity and calibrated against the DST data. The heat flows obtained from the DST data were assumed to be correct and representative throughout the basin. Then, heat flows using (1) uncorrected RFT data, (2) multiple BHTmore » data corrected by the Horner plot method, and (3) single BHT values corrected upward by a standard 10% were calculated. All of these three heat-flow populations had identically standard deviations to that for the DST data, but with significantly lower mean values. Correction factors were calculated to give each of the three erroneous populations the same mean value as the DST population. Heat flows calculated from RFT data had to be corrected upward by a factor of 1.12 to be equivalent to DST data; Horner plot data corrected by a factor of 1.18, and single BHT data by a factor of 1.2. These results suggest that present-day subsurface temperatures using RFT, Horner plot, and BHT data are considerably lower than they should be. The authors suspect qualitatively similar results would be found in other areas. Hence, they recommend significant corrections be routinely made until local calibration factors are established.« less

  14. Channel Geometry and Flood Flows: Quantifying over-bank flow dynamics during high-flow events in North Carolina's floodplains

    NASA Astrophysics Data System (ADS)

    Lovette, J. P.; Duncan, J. M.; Vimal, S.; Band, L. E.

    2015-12-01

    Natural riparian areas play numerous roles in the maintenance and improvement of stream water quality. Both restoration of riparian areas and improvement of hydrologic connectivity to the stream are often key goals of river restoration projects. These management actions are designed to improve nutrient removal by slowing and treating overland flow delivered from uplands and by storing, treating, and slowly releasing streamwater from overbank inundation during flood events. A major question is how effective this storage of overbank flow is at treating streamwater based on the cumulative time stream discharge at a downstream location has spent in shallower, slower overbank flow. The North Carolina Floodplain Mapping Program maintains a detailed statewide Flood Risk Information System (FRIS) using HEC-RAS modeling, lidar, and detailed surveyed river cross-sections. FRIS provides extensive information regarding channel geometry on approximately 39,000 stream reaches (a slightly coarser spatial resolution than the NHD+v2 dataset) with tens of cross-sections for each reach. We use this FRIS data to calculate volume and discharge from floodplain riparian areas separately from in-channel flow during overbank events. Preliminary results suggest that a small percentage of total annual discharge interacts with the full floodplain extent along a stream reach due to the infrequency of overbank flow events. However, with the significantly different physical characteristics of the riparian area when compared to the channel itself, this overbank flow can provide unique services to water quality. Our project aims to use this information in conjunction with data from the USGS SPARROW program to target non-point source hotspots of Nitrogen and Phosphorus addition and removal. By better understanding the flow dynamics within riparian areas during high flow events, riparian restoration projects can be carried out with improved efficacy.

  15. Air quality as respiratory health indicator: a critical review.

    PubMed

    Moshammer, Hanns; Wallner, Peter

    2011-09-01

    As part of the European Public Health project IMCA II validity and practicability of "air pollution" as a respiratory health indicator were analyzed. The definitions of air quality as an indicator proposed by the WHO project ECOEHIS and by IMCA I were compared. The public availability of the necessary data was checked through access to web-based data-bases. Practicability and interpretation of the indicator were discussed with project partners and external experts. Air quality serves as a kind of benchmark for the good health-related environmental policy. In this sense, it is a relevant health indicator. Although air quality is not directly in the responsibility of health policy, its vital importance for the population's health should not be neglected. In principle, data is available to calculate this IMCA indicator for any chosen area in Europe. The indicator is relevant and informative, but calculation and interpretation need input from local expert knowledge. The European health policy is well advised to take air quality into account. To that end, an interdisciplinary approach is warranted. The proposed definition of air quality as a (respiratory) health indicator is workable, but correct interpretation depends on expert and local knowledge.

  16. Apparatus and method for combusting low quality fuel

    DOEpatents

    Brushwood, John Samuel; Pillsbury, Paul; Foote, John; Heilos, Andreas

    2003-11-04

    A gas turbine (12) capable of combusting a low quality gaseous fuel having a ratio of flammability limits less than 2, or a heat value below 100 BTU/SCF. A high quality fuel is burned simultaneously with the low quality fuel to eliminate instability in the combustion flame. A sensor (46) is used to monitor at least one parameter of the flame indicative of instability. A controller (50) having the sensor signal (48) as input is programmed to control the relative flow rates of the low quality and high quality fuels. When instability is detected, the flow rate of high quality fuel is automatically increased in relation to the flow rate of low quality fuel to restore stability.

  17. The Hitchhiker's Guide to Flow Chemistry ∥.

    PubMed

    Plutschack, Matthew B; Pieber, Bartholomäus; Gilmore, Kerry; Seeberger, Peter H

    2017-09-27

    Flow chemistry involves the use of channels or tubing to conduct a reaction in a continuous stream rather than in a flask. Flow equipment provides chemists with unique control over reaction parameters enhancing reactivity or in some cases enabling new reactions. This relatively young technology has received a remarkable amount of attention in the past decade with many reports on what can be done in flow. Until recently, however, the question, "Should we do this in flow?" has merely been an afterthought. This review introduces readers to the basic principles and fundamentals of flow chemistry and critically discusses recent flow chemistry accounts.

  18. Bathyphotometer bioluminescence potential measurements: A framework for characterizing flow agitators and predicting flow-stimulated bioluminescence intensity

    NASA Astrophysics Data System (ADS)

    Latz, Michael I.; Rohr, Jim

    2013-07-01

    Bathyphotometer measurements of bioluminescence are used as a proxy for the abundance of luminescent organisms for studying population dynamics; the interaction of luminescent organisms with physical, chemical, and biological oceanographic processes; and spatial complexity especially in coastal areas. However, the usefulness of bioluminescence measurements has been limited by the inability to compare results from different bathyphotometer designs, or even the same bathyphotometer operating at different volume flow rates. The primary objective of this study was to compare measurements of stimulated bioluminescence of four species of cultured dinoflagellates, the most common source of bioluminescence in coastal waters, using two different bathyphotometer flow agitators as a function of bathyphotometer volume flow rate and dinoflagellate concentration. For both the NOSC and BIOLITE flow agitators and each species of dinoflagellate tested, there was a critical volume flow rate, above which average bioluminescence intensity, designated as bathyphotometer bioluminescence potential (BBP), remained relatively constant and scaled directly with dinoflagellate cell concentration. At supra-critical volume flow rates, the ratio of BIOLITE to NOSC BBP was nearly constant for the same species studied, but varied between species. The spatial pattern and residence time of flash trajectories within the NOSC flow agitator indicated the presence of dominant secondary recirculating flows, where most of the bioluminescence was detected. A secondary objective (appearing in the Appendix) was to study the feasibility of using NOSC BBP to scale flow-stimulated bioluminescence intensity across similar flow fields, where the contributing composition of luminescent species remained the same. Fully developed turbulent pipe flow was chosen because it is hydrodynamically well characterized. Average bioluminescence intensity in a 2.54-cm i.d. pipe was highly correlated with wall shear stress and

  19. Quality improvement education incorporated as an integral part of critical care fellows training at the Mayo Clinic.

    PubMed

    Kashani, Kianoush B; Ramar, Kannan; Farmer, J Christopher; Lim, Kaiser G; Moreno-Franco, Pablo; Morgenthaler, Timothy I; Dankbar, Gene C; Hale, Curt W

    2014-10-01

    The Accreditation Council for Graduate Medical Education emphasizes quality improvement (QI) education in residency/fellowship training programs. The Mayo Clinic Combined Critical Care Fellowship (CCF) program conducted a pilot QI education program to incorporate QI training as a required curriculum for the 2010-2011 academic year. CCF collaborated with the Mayo Quality Academy to customize and teach the existing Mayo Quality Fellows curriculum to the CCF fellows with the help of two quality coaches over five months starting July 2010. All fellows were to achieve Bronze and Silver certification prior to graduation. Silver required passing four written exams and submitting a health care QI project. Five projects were selected on the basis of the Impact-Effort Prioritization matrix, and DMAIC (Define, Measure, Analyze, Improve, and Control) methodology was used to complete the projects. The primary outcome was to assess learners' satisfaction, knowledge, and skill transfer. All 20 fellows were Bronze certified, and 14 (70%) were Silver certified by the time of graduation. All five QI projects were completed and showed positive impacts on patient safety and care. Surveys showed improved learner satisfaction. Graduates felt the QI training improved their QI skills and employment and career advancement. The QI curriculum had appropriate content and teaching pace and did not significantly displace other important clinical core curriculum topics. The pilot was successfully implemented in the CCF program and now is in the fourth academic year as an established and integral part of the fellowship core curriculum.

  20. Mixed Convection Flow in Horizontal CVD Reactors

    NASA Astrophysics Data System (ADS)

    Chiu, Wilson K. S.; Richards, Cristy J.; Jaluria, Yogesh

    1998-11-01

    Increasing demands for high quality films and production rates are challenging current Chemical Vapor Deposition (CVD) technology. Since film quality and deposition rates are strongly dependent on gas flow and heat transfer (W.K.S. Chiu and Y. Jaluria, ASME HTD-Vol. 347, pp. 293-311, 1997.), process improvement is obtained through the study of mixed convection flow and temperature distribution in a CVD reactor. Experimental results are presented for a CVD chamber with a horizontal or inclined resistance heated susceptor. Vaporized glycol solution illuminated by a light sheet is used for flow visualization. Temperature measurements are obtained by inserting thermocouple probes into the gas stream or embedding probes into the reactor walls. Flow visualization and temperature measurements show predominantly two dimensional flow and temperature distributions along the streamwise direction under forced convection conditions. Natural convection dominates under large heating rates and low flow rates. Over the range of parameters studied, several distinct flow regimes, characterized by instability, separation, and turbulence, are evident. Different flow regimes alter the flow pattern and temperature distribution, and in consequence, significantly modify deposition rates and uniformity.

  1. Fostering Critical Thinking in Physical Education Students

    ERIC Educational Resources Information Center

    Lodewyk, Ken R.

    2009-01-01

    Critical thinking is essentially "better thinking." When students think critically they consider complex information from numerous sources and perspectives in order to make a reasonable judgment that they can justify. It has been associated with academic qualities such as decision-making, creativity, reasoning, problem-solving, debating,…

  2. Nonlinear stability of non-stationary cross-flow vortices in compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Gajjar, J. S. B.

    1995-01-01

    The nonlinear evolution of long wavelength non-stationary cross-flow vortices in a compressible boundary layer is investigated and the work extends that of Gajjar (1994) to flows involving multiple critical layers. The basic flow profile considered in this paper is that appropriate for a fully three-dimensional boundary layer with O(1) Mach number and with wall heating or cooling. The governing equations for the evolution of the cross-flow vortex are obtained and some special cases are discussed. One special case includes linear theory where exact analytic expressions for the growth rate of the vortices are obtained. Another special case is a generalization of the Bassom & Gajjar (1988) results for neutral waves to compressible flows. The viscous correction to the growth rate is derived and it is shown how the unsteady nonlinear critical layer structure merges with that for a Haberman type of viscous critical layer.

  3. Cavitation study of a pump-turbine at turbine mode with critical cavitation coefficient condition

    NASA Astrophysics Data System (ADS)

    Wang, J.; Yang, D.; Xu, J. W.; Liu, J. T.; Jiao, L.

    2016-05-01

    To study the cavitation phenomenon of a pump-turbine at turbine mode when it ran at the critical cavitation coefficient condition, a high-head model pump-turbine was disperse using hexahedron grid. Three dimensional, steady cavitating flow was numerically studied using SST k-ω model. It is confirmed that ZGB cavitation model and SST k-ω model are useful ways to study the two-phase cavitation flow in pump-turbine. Mass flow inlet and pressure outlet were specified at the casing inlet and draft tube outlet, respectively. The static pressure was set according to the cavitation coefficient. The steady cavitating flows at critical cavitation coefficient condition were analysed. The cavitation area in the runner was investigated. It was found that the pressure of the suction on the blade surface was decreasing gradually with the decrease of the cavitation coefficient. In addition, the vortex flow in the draft tube was observed at the critical cavitation coefficient. It was found that the vortex flow appeared at the center of the draft tube inlet with the decreasing of the cavitation coefficient. Compared with the experimental data, the simulation results show reasonable agreement with the experimental data.

  4. Fundamental Physics and Practical Applications of Electromagnetic Local Flow Control in High Speed Flows (Rutgers)

    DTIC Science & Technology

    2010-02-16

    field. Techniques utilizing this design use an open- loop control and no flow monitoring sensors are required. Conversely, reactive (or closed - loop ...and closed (dashed line) configuration. 38 closed configuration described above, the ambiguity in the critical limits of the transition...flow; a new vortex is then shed from the cavity leading edge, closing the feedback loop .[31] Open cavities with an L/D approximately greater than

  5. Flow resistance under conditions of intense gravel transport

    USGS Publications Warehouse

    Pitlick, John

    1992-01-01

    A study of flow resistance was undertaken in a channelized reach of the North Fork Toutle River, downstream of Mount St. Helens, Washington. Hydraulic and sediment transport data were collected in flows with velocities up to 3 m/s and shear stresses up to 7 times the critical value needed for bed load transport. Details of the flow structure as revealed in vertical velocity profiles indicate that weak bed load transport over a plane gravel bed has little effect on flow resistance. The plane gravel bed persists up to stresses ∼3 times critical, at which point, irregular bed forms appear. Bed forms greatly increase flow resistance and cause velocity profiles to become distorted. The latter arises as an effect of flows becoming depth-limited as bed form amplitude increases. At very high rates of bed load transport, an upper stage plane bed appeared. Velocity profiles measured in these flows match the law of the wall closely, with the equivalent roughness being well represented by ks = 3D84 of the bed load. The effects noted here will be important in very large floods or in rivers that are not free to widen, such as those cut into bedrock.

  6. Critical levels as applied to ozone for North American forests

    Treesearch

    Robert C. Musselman

    2006-01-01

    The United States and Canada have used concentration-based parameters for air quality standards for ozone effects on forests in North America. The European critical levels method for air quality standards uses an exposure-based parameter, a cumulative ozone concentration index with a threshold cutoff value. The critical levels method has not been used in North America...

  7. PERFORMING QUALITY FLOW MEASUREMENTS AT MINE SITES

    EPA Science Inventory

    Accurate flow measurement data is vital to research, monitoring, and remediation efforts at mining sites. This guidebook has been prepared to provide a summary of information relating to the performance of low measurements, and how this information can be applied at mining sites....

  8. Side Flow Effect on Surface Generation in Nano Cutting.

    PubMed

    Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong

    2017-12-01

    The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} < 011>, {110} < 001>, and {110} < 1-10 > are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.

  9. Forced Convection Boiling and Critical Heat Flux of Ethanol in Electrically Heated Tube Tests

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Linne, Diane L.; Rousar, Donald C.

    1998-01-01

    Electrically heated tube tests were conducted to characterize the critical heat flux (transition from nucleate to film boiling) of subcritical ethanol flowing at conditions relevant to the design of a regeneratively cooled rocket engine thrust chamber. The coolant was SDA-3C alcohol (95% ethyl alcohol, 5% isopropyl alcohol by weight), and tests were conducted over the following ranges of conditions: pressure from 144 to 703 psia, flow velocities from 9.7 to 77 ft/s, coolant subcooling from 33 to 362 F, and critical heat fluxes up to 8.7 BTU/in(exp 2)/sec. For the data taken near 200 psia, critical heat flux was correlated as a function of the product of velocity and fluid subcooling to within +/- 20%. For data taken at higher pressures, an additional pressure term is needed to correlate the critical heat flux. It was also shown that at the higher test pressures and/or flow rates, exceeding the critical heat flux did not result in wall burnout. This result may significantly increase the engine heat flux design envelope for higher pressure conditions.

  10. Effect of flow rate on environmental variables and phytoplankton dynamics: results from field enclosures

    NASA Astrophysics Data System (ADS)

    Zhang, Haiping; Chen, Ruihong; Li, Feipeng; Chen, Ling

    2015-03-01

    To investigate the effects of flow rate on phytoplankton dynamics and related environment variables, a set of enclosure experiments with different flow rates were conducted in an artificial lake. We monitored nutrients, temperature, dissolved oxygen, pH, conductivity, turbidity, chlorophyll- a and phytoplankton levels. The lower biomass in all flowing enclosures showed that flow rate significantly inhibited the growth of phytoplankton. A critical flow rate occurred near 0.06 m/s, which was the lowest relative inhibitory rate. Changes in flow conditions affected algal competition for light, resulting in a dramatic shift in phytoplankton composition, from blue-green algae in still waters to green algae in flowing conditions. These findings indicate that critical flow rate can be useful in developing methods to reduce algal bloom occurrence. However, flow rate significantly enhanced the inter-relationships among environmental variables, in particular by inducing higher water turbidity and vegetative reproduction of periphyton ( Spirogyra). These changes were accompanied by a decrease in underwater light intensity, which consequently inhibited the photosynthetic intensity of phytoplankton. These results warn that a universal critical flow rate might not exist, because the effect of flow rate on phytoplankton is interlinked with many other environmental variables.

  11. The origin of high and low flows in the river Rhine: particle tracing and water quality calculations in a distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Schellekens, Jaap; van Gils, Jos; Christophe, Christophe; Sperna-Weiland, Frederiek; Winsemius, Hessel

    2013-04-01

    The ability to quickly link a complete water quality model to any distributed hydrological model can be of great value. It provides the hydrological modeller with more information on the performance of the model by being able to add particle tracing and independent mass balance calculations to an existing distributed hydrological model. It also allows for full catchment water quality calculations forced by emissions to different hydrological compartments, taking into account the relevant processes in the different compartments of the hydrological model. A combined distributed hydrological model and hydrochemical model (Delwaq) have been combined within the modeling framework OpenStreams to model large scale hydrological processes in the Rhine basin upstream of the Dutch border at Lobith. Several models have been setup to evaluate (1) the origin of high and low flows in the Rhine basin based on subcatchment contribution and (2) the contribution of different land covers to the total flow with special reference to urban land cover. In addition (3) the relative share of fast and slow runoff components in the total river discharge has been quantified, as well as the age of these two fractions, both as a function of time. Finally (4) the transmission of a pollutant released in infiltrating water and undergoing sorption has been simulated, as a first test for implementing full water quality modelling. The results of a thirty-five year run using daily time steps for 1975 to 2010 were analysed for monthly average contribution to the total flow of each subcatchment and the different land cover types both for average flow conditions and for the top ten and bottom ten flow percentiles. Furthermore, a number of high and low flow events have been analysed in detail. They reveal the large contribution of the basin area upstream of Basel to the dry season flow, especially during the driest summers. Flood conditions in the basin have a more varied origin with the Moselle being the

  12. Determining spatially discretized surface flow and baseflow in the context of climate change and water quality management

    NASA Astrophysics Data System (ADS)

    Raimonet, M.; Oudin, L.; Rabouille, C.; Garnier, J.; Silvestre, M.; Vautard, R.; Thieu, V.

    2016-12-01

    Water quality management of fresh and marine aquatic systems requires modelling tools along the land-ocean continuum in order to evaluate the effect of climate change on nutrient transfer and on potential ecosystem dysfonctioning (e.g. eutrophication, anoxia). In addition to direct effects of climate change on water temperature, it is essential to consider indirect effects of precipitation and temperature changes on hydrology since nutrient transfers are particularly sensitive to the partition of streamflow between surface flow and baseflow. Yet, the determination of surface flow and baseflow, their spatial repartition on drainage basins, and their relative potential evolution under climate change remains challenging. In this study, we developed a generic approach to determine 10-day surface flow and baseflow using a regionalized hydrological model applied at a high spatial resolution (unitary catchments of area circa 10km²). Streamflow data at gauged basins were used to calibrate hydrological model parameters that were then applied on neighbor ungauged basins to estimate streamflow at the scale of the French territory. The proposed methodology allowed representing spatialized surface flow and baseflow that are consistent with climatic and geomorphological settings. The methodology was then used to determine the effect of climate change on the spatial repartition of surface flow and baseflow on the Seine drainage bassin. Results showed large discrepancies of both the amount and the spatial repartition of changes of surface flow and baseflow according to the several GCM and RCM used to derive projected climatic forcing. Consequently, it is expected that the impact of climate change on nutrient transfer might also be quite heterogeneous for the Seine River. This methodology could be applied in any drainage basin where at least several gauged hydrometric stations are available. The estimated surface flow and baseflow can then be used in hydro-ecological models in

  13. Herbal hepatotoxicity: a critical review

    PubMed Central

    Teschke, Rolf; Frenzel, Christian; Glass, Xaver; Schulze, Johannes; Eickhoff, Axel

    2013-01-01

    This review deals with herbal hepatotoxicity, identical to herb induced liver injury (HILI), and critically summarizes the pitfalls associated with the evaluation of assumed HILI cases. Analysis of the relevant publications reveals that several dozens of different herbs and herbal products have been implicated to cause toxic liver disease, but major quality issues limit the validity of causality attribution. In most of these reports, discussions around quality specifications regarding herbal products, case data presentations and causality assessment methods prevail. Though the production of herbal drugs is under regulatory surveillance and quality aspects are normally not a matter of concern, low quality of the less regulated herbal supplements may be a critical issue considering product batch variability, impurities, adulterants and herb misidentifications. Regarding case data presentation, essential diagnostic information is often lacking, as is the use of valid and liver specific causality assessment methods that also consider alternative diseases. At present, causality is best assessed by using the Council for International Organizations of Medical Sciences scale ( CIOMS) in its original or updated form, which should primarily be applied prospectively by the treating physician when evaluating a patient rather than retrospectively by regulatory agencies. To cope with these problems, a common quality approach by manufacturers, physicians and regulatory agencies should strive for the best quality. We propose steps for improvements with impact on future cases of liver injury by herbs, herbal drugs and herbal supplements. PMID:22831551

  14. Inertia critical layers and their impacts on nongeostrophic baroclinic instability

    NASA Astrophysics Data System (ADS)

    Shen, Bo-Wen

    We investigate the effects of critical levels (CLs) on a baroclinic flow over mountains, nongeostrophic (NG) inertia critical layer instability, and NG baroclinic instability (BI) in a three-layer atmosphere with a small Richardson number (Ri) in the middle layer. We develop a numerical wave decomposition method in Chapter 2, which is found to be useful in determining the reflection coefficient (Ref) numerically when the flow system is too complicated to obtain Ref analytically. Effects of CLs on flow over mountains are studied both analytically and numerically in Chapter 3. We define the effective inertia critical level (ICL) as the height above which inertia-gravity waves attenuate significantly. Based on numerical simulations with a broad range of Rossby number (Ro) and Ri, four wave regimes are found: (a) Regime I: inertia- gravity waves. The flow behaves like unsheared inertia- gravity waves and the effective lower ICL plays a similar role as the classical critical level (CCL) does in a nonrotating flow. (b) Regime II: combined inertia-gravity waves and baroclinic lee waves. These waves behave like those in Regime I below the lower effective ICL, and like baroclinic lee waves near the CCL. (c) Regime III: combined evanescent and baroclinic lee waves. These waves still behave like baroclinic lee waves near the CCL, but are trapped near the surface. (d) Regime IV: transient waves. NG baroclinic instability exists, as evidenced by the positive domain-averaged north-south heat flux. Wave regime IV is further investigated in Chapter 5. We identify the NG baroclinic instability in Chapter 3 as an inertia critical layer (ICLY) instability. The role of the upper inertia critical level in this instability has been studied by choosing a periodic mountain. When only the CCL and upper ICL are present in the domain, the mesoscale ICLY instability tends to occur. For a periodic mountain ridge, the ICLY instability selects the mountain's tvavelength as its wavelength of

  15. The cytometric future: it ain't necessarily flow!

    PubMed

    Shapiro, Howard M

    2011-01-01

    Initial approaches to cytometry for classifying and characterizing cells were based on microscopy; it was necessary to collect relatively high-resolution images of cells because only a few specific reagents usable for cell identification were available. Although flow cytometry, now the dominant cytometric technology, typically utilizes lenses similar to microscope lenses for light collection, improved, more quantitative reagents allow the necessary information to be acquired in the form of whole-cell measurements of the intensities of light transmission, scattering, and/or fluorescence.Much of the cost and complexity of both automated microscopes and flow cytometers arises from the necessity for them to measure one cell at a time. Recent developments in digital camera technology now offer an alternative in which one or more low-magnification, low-resolution images are made of a wide field containing many cells, using inexpensive light-emitting diodes (LEDs) for illumination. Minimalist widefield imaging cytometers can provide a smaller, less complex, and substantially less expensive alternative to flow cytometry, critical in systems intended for in resource-poor areas. Minimalism is, likewise, a good philosophy in developing instrumentation and methodology for both clinical and large-scale research use; it simplifies quality assurance and compliance with regulatory requirements, as well as reduces capital outlays, material costs, and personnel training requirements. Also, importantly, it yields "greener" technology.

  16. Review of subcooled flow boiling critical heat flux (CHF) and its application to fusion energy system components part II: microconvective, experimental and correlational aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, R.D.

    This paper reviews the present understanding of critical heat flux (CHF) in subcooled flow boiling and outlines research directions which will permit the accommodation of higher heat fluxes. This survey, which covers the last 30 years, is concerned only with CHF in the subcooled flow boiling regime and unless otherwise noted, all references to CHF will be confined to that regime. This paper (Part II) summarizes microconvective, instability, experimental and correlational aspects of CHF. Section II covers microconvection and instabilities, section III covers representative experimental work, and section IV summarizes and compares selected CHF correlations. Section V documents previous flowmore » visualization work and section VI contains conclusions and recommendations concerning problem areas and suggested research directions essential to the HHFCDP, which involves extending steady state and transient CHF towards 30 kW/cm/sup 2/.« less

  17. Endothelial function and sleep: associations of flow-mediated dilation with perceived sleep quality and rapid eye movement (REM) sleep.

    PubMed

    Cooper, Denise C; Ziegler, Michael G; Milic, Milos S; Ancoli-Israel, Sonia; Mills, Paul J; Loredo, José S; Von Känel, Roland; Dimsdale, Joel E

    2014-02-01

    Endothelial function typically precedes clinical manifestations of cardiovascular disease and provides a potential mechanism for the associations observed between cardiovascular disease and sleep quality. This study examined how subjective and objective indicators of sleep quality relate to endothelial function, as measured by brachial artery flow-mediated dilation (FMD). In a clinical research centre, 100 non-shift working adults (mean age: 36 years) completed FMD testing and the Pittsburgh Sleep Quality Index, along with a polysomnography assessment to obtain the following measures: slow wave sleep, percentage rapid eye movement (REM) sleep, REM sleep latency, total arousal index, total sleep time, wake after sleep onset, sleep efficiency and apnea-hypopnea index. Bivariate correlations and follow-up multiple regressions examined how FMD related to subjective (i.e., Pittsburgh Sleep Quality Index scores) and objective (i.e., polysomnography-derived) indicators of sleep quality. After FMD showed bivariate correlations with Pittsburgh Sleep Quality Index scores, percentage REM sleep and REM latency, further examination with separate regression models indicated that these associations remained significant after adjustments for sex, age, race, hypertension, body mass index, apnea-hypopnea index, smoking and income (Ps < 0.05). Specifically, as FMD decreased, scores on the Pittsburgh Sleep Quality Index increased (indicating decreased subjective sleep quality) and percentage REM sleep decreased, while REM sleep latency increased (Ps < 0.05). Poorer subjective sleep quality and adverse changes in REM sleep were associated with diminished vasodilation, which could link sleep disturbances to cardiovascular disease. © 2013 European Sleep Research Society.

  18. Active flow control of subsonic flow in an adverse pressure gradient using synthetic jets and passive micro flow control devices

    NASA Astrophysics Data System (ADS)

    Denn, Michael E.

    Several recent studies have shown the advantages of active and/or passive flow control devices for boundary layer flow modification. Many current and future proposed air vehicles have very short or offset diffusers in order to save vehicle weight and create more optimal vehicle/engine integration. Such short coupled diffusers generally result in boundary layer separation and loss of pressure recovery which reduces engine performance and in some cases may cause engine stall. Deployment of flow control devices can alleviate this problem to a large extent; however, almost all active flow control devices have some energy penalty associated with their inclusion. One potential low penalty approach for enhancing the diffuser performance is to combine the passive flow control elements such as micro-ramps with active flow control devices such as synthetic jets to achieve higher control authority. The goal of this dissertation is twofold. The first objective is to assess the ability of CFD with URANS turbulence models to accurately capture the effects of the synthetic jets and micro-ramps on boundary layer flow. This is accomplished by performing numerical simulations replicating several experimental test cases conducted at Georgia Institute of Technology under the NASA funded Inlet Flow Control and Prediction Technologies Program, and comparing the simulation results with experimental data. The second objective is to run an expanded CFD matrix of numerical simulations by varying various geometric and other flow control parameters of micro-ramps and synthetic jets to determine how passive and active control devices interact with each other in increasing and/or decreasing the control authority and determine their influence on modification of boundary layer flow. The boundary layer shape factor is used as a figure of merit for determining the boundary layer flow quality/modification and its tendency towards separation. It is found by a large number of numerical experiments and

  19. Critical Layers and Protoplanetary Disk Turbulence

    NASA Astrophysics Data System (ADS)

    Umurhan, Orkan M.; Shariff, Karim; Cuzzi, Jeffrey N.

    2016-10-01

    A linear analysis of the zombie vortex instability (ZVI) is performed in a stratified shearing sheet setting for three model barotropic shear flows. The linear analysis is done by utilizing a Green’s function formulation to resolve the critical layers of the associated normal-mode problem. The instability is the result of a resonant interaction between a Rossby wave and a gravity wave that we refer to as Z-modes. The associated critical layer is the location where the Doppler-shifted frequency of a distant Rossby wave equals the local Brunt-Väisälä frequency. The minimum required Rossby number for instability, {\\mathtt{Ro}}=0.2, is confirmed for parameter values reported in the literature. It is also found that the shear layer supports the instability in the limit where stratification vanishes. The ZVI is examined in a jet model, finding that the instability can occur for {\\mathtt{Ro}}=0.05. Nonlinear vorticity forcing due to unstable Z-modes is shown to result in the creation of a jet flow at the critical layer emerging as the result of the competition between the vertical lifting of perturbation radial vorticity and the radial transport of perturbation vertical vorticity. We find that the picture of this instability leading to a form of nonlinearly driven self-replicating pattern of creation and destruction is warranted: a parent jet spawns a growing child jet at associated critical layers. A mature child jet creates a next generation of child jets at associated critical layers of the former while simultaneously contributing to its own destruction via the Rossby wave instability.

  20. Ground-Water Flow, 2004-07, and Water Quality, 1992-2007, in McBaine Bottoms, Columbia, Missouri

    USGS Publications Warehouse

    Smith, Brenda Joyce; Richards, Joseph M.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the city of Columbia, Missouri, and the Missouri Department of Conservation, collected ground-water quality data, surface-water quality data, and water-level data in McBaine Bottoms, southwest of Columbia. McBaine Bottoms, adjacent to the Missouri River, is the location of the municipal-supply well field for the city of Columbia, the city of Columbia wastewater-treatment wetlands, and the Missouri Department of Conservation Eagle Bluffs Conservation Area. This report describes the ground-water flow and water quality of McBaine Bottoms and provides information to better understand the interaction between treated effluent from the wetlands used on the Eagle Bluffs Conservation Area and the water in the alluvial aquifer that is pumped from the city of Columbia municipal-supply well field. Changes in major chemical constituent concentrations have been detected at several sampling sites between pre- and post-effluent application data. Analysis of post-effluent data indicates substantial changes in calcium, potassium, sodium, chloride, and sulfate concentrations in ground water. These changes became apparent shortly after the beginning of the operation of the wastewater-treatment wetland in 1994 and the formation of the Eagle Bluffs Conservation Area, which uses the treated effluent as a water source for the management of migratory water fowl. The changes have continued throughout the 15 years of sample collection. The concentrations of these major chemical constituents are on the mixing continuum between pre-effluent ground water as one end member and the treated wastewater effluent as the other end member. For monitoring wells that had changes in major chemical constituent concentrations, the relative percentage of treated effluent in the ground water, assuming chloride is conservative, ranged from 6 to 88 percent. Twenty-two monitoring wells throughout McBaine Bottoms have been affected by effluent based on chloride

  1. Fluid-flow-rate metrology: laboratory uncertainties and traceabilities

    NASA Astrophysics Data System (ADS)

    Mattingly, G. E.

    1991-03-01

    Increased concerns for improved fluid flowrate measurement are driving the fluid metering community-meter manufacturers and users alike-to search for better verification and documentation for their fluid measurements. These concerns affect both our domestic and international market places they permeate our technologies - aerospace chemical processes automotive bioengineering etc. They involve public health and safety and they impact our national defense. These concerns are based upon the rising value of fluid resources and products and the importance of critical material accountability. These values directly impact the accuracy needs of fluid buyers and sellers in custody transfers. These concerns impact the designers and operators of chemical process systems where control and productivity optimization depend critically upon measurement precision. Public health and safety depend upon the quality of numerous pollutant measurements - both liquid and gaseous. The performance testing of engines - both automotive and aircraft are critically based upon accurate fuel measurements - both liquid and oxidizer streams. Fluid flowrate measurements are established differently from counterparts in length and mass measurement systems because these have the benefits of " identity" standards. For rate measurement systems the metrology is based upon " derived standards" . These use facilities and transfer standards which are designed built characterized and used to constitute basic measurement capabilities and quantify performance - accuracy and precision. Because " identity standards" do not exist for flow measurements facsimiles or equivalents must

  2. Shear flow of one-component polarizable fluid in a strong electric field

    NASA Astrophysics Data System (ADS)

    Sun, J. M.; Tao, R.

    1996-04-01

    A shear flow of one-component polarizable fluid in a strong electric field has a structural transition at a critical shear stress. When the shear stress is increased from zero up to the critical shear stress, the flow (in the x direction) has a flowing-chain (FC) structure, consisting of tilted or broken chains along the field (z direction). At the critical shear stress, the FC structure gives way to a flowing-hexagonal-layered (FHL) structure, consisting of several two-dimensional layers which are parallel to the x-z plane. Within one layer, particles form strings in the flow direction. Strings are constantly sliding over particles in strings right beneath. The effective viscosity drops dramatically at the structural change. As the shear stress reduces, the FHL structure persists even under a stress-free state if the thermal fluctuation is very weak. This structure change in the charging and discharging process produces a large hysteresis.

  3. Simulating water-quality trends in public-supply wells in transient flow systems

    USGS Publications Warehouse

    Starn, J. Jeffrey; Green, Christopher T.; Hinkle, Stephen R.; Bagtzoglou, Amvrossios C.; Stolp, Bernard J.

    2014-01-01

    Models need not be complex to be useful. An existing groundwater-flow model of Salt Lake Valley, Utah, was adapted for use with convolution-based advective particle tracking to explain broad spatial trends in dissolved solids. This model supports the hypothesis that water produced from wells is increasingly younger with higher proportions of surface sources as pumping changes in the basin over time. At individual wells, however, predicting specific water-quality changes remains challenging. The influence of pumping-induced transient groundwater flow on changes in mean age and source areas is significant. Mean age and source areas were mapped across the model domain to extend the results from observation wells to the entire aquifer to see where changes in concentrations of dissolved solids are expected to occur. The timing of these changes depends on accurate estimates of groundwater velocity. Calibration to tritium concentrations was used to estimate effective porosity and improve correlation between source area changes, age changes, and measured dissolved solids trends. Uncertainty in the model is due in part to spatial and temporal variations in tracer inputs, estimated tracer transport parameters, and in pumping stresses at sampling points. For tracers such as tritium, the presence of two-limbed input curves can be problematic because a single concentration can be associated with multiple disparate travel times. These shortcomings can be ameliorated by adding hydrologic and geologic detail to the model and by adding additional calibration data. However, the Salt Lake Valley model is useful even without such small-scale detail.

  4. A critical evaluation of various methods for the analysis of flow-solid interaction in a nest of thin cylinders subjected to cross flows

    NASA Technical Reports Server (NTRS)

    Kim, Sang-Wook

    1987-01-01

    Various experimental, analytical, and numerical analysis methods for flow-solid interaction of a nest of cylinders subjected to cross flows are reviewed. A nest of cylinders subjected to cross flows can be found in numerous engineering applications including the Space Shuttle Maine Engine-Main Injector Assembly (SSME-MIA) and nuclear reactor heat exchangers. Despite its extreme importance in engineering applications, understanding of the flow-solid interaction process is quite limited and design of the tube banks are mostly dependent on experiments and/or experimental correlation equations. For future development of major numerical analysis methods for the flow-solid interaction of a nest of cylinders subjected to cross flow, various turbulence models, nonlinear structural dynamics, and existing laminar flow-solid interaction analysis methods are included.

  5. When Are Mobile Phones Useful for Water Quality Data Collection? An Analysis of Data Flows and ICT Applications among Regulated Monitoring Institutions in Sub-Saharan Africa

    PubMed Central

    Kumpel, Emily; Peletz, Rachel; Bonham, Mateyo; Fay, Annette; Cock-Esteb, Alicea; Khush, Ranjiv

    2015-01-01

    Water quality monitoring is important for identifying public health risks and ensuring water safety. However, even when water sources are tested, many institutions struggle to access data for immediate action or long-term decision-making. We analyzed water testing structures among 26 regulated water suppliers and public health surveillance agencies across six African countries and identified four water quality data management typologies. Within each typology, we then analyzed the potential for information and communication technology (ICT) tools to facilitate water quality information flows. A consistent feature of all four typologies was that testing activities occurred in laboratories or offices, not at water sources; therefore, mobile phone-based data management may be most beneficial for institutions that collect data from multiple remote laboratories. We implemented a mobile phone application to facilitate water quality data collection within the national public health agency in Senegal, Service National de l’Hygiène. Our results indicate that using the phones to transmit more than just water quality data will likely improve the effectiveness and sustainability of this type of intervention. We conclude that an assessment of program structure, particularly its data flows, provides a sound starting point for understanding the extent to which ICTs might strengthen water quality monitoring efforts. PMID:26404343

  6. When Are Mobile Phones Useful for Water Quality Data Collection? An Analysis of Data Flows and ICT Applications among Regulated Monitoring Institutions in Sub-Saharan Africa.

    PubMed

    Kumpel, Emily; Peletz, Rachel; Bonham, Mateyo; Fay, Annette; Cock-Esteb, Alicea; Khush, Ranjiv

    2015-09-02

    Water quality monitoring is important for identifying public health risks and ensuring water safety. However, even when water sources are tested, many institutions struggle to access data for immediate action or long-term decision-making. We analyzed water testing structures among 26 regulated water suppliers and public health surveillance agencies across six African countries and identified four water quality data management typologies. Within each typology, we then analyzed the potential for information and communication technology (ICT) tools to facilitate water quality information flows. A consistent feature of all four typologies was that testing activities occurred in laboratories or offices, not at water sources; therefore, mobile phone-based data management may be most beneficial for institutions that collect data from multiple remote laboratories. We implemented a mobile phone application to facilitate water quality data collection within the national public health agency in Senegal, Service National de l'Hygiène. Our results indicate that using the phones to transmit more than just water quality data will likely improve the effectiveness and sustainability of this type of intervention. We conclude that an assessment of program structure, particularly its data flows, provides a sound starting point for understanding the extent to which ICTs might strengthen water quality monitoring efforts.

  7. Optimal Flow Experience in Web-Based Instruction

    ERIC Educational Resources Information Center

    Rha, Ilju; Williams, Michael D.; Heo, Gyun

    2005-01-01

    The purpose of this study is to explore learner engagement and motivation related to "Flow" particularly in WBI settings. In the "Flow" state people are absorbed in their activities while irrelevant thoughts and perceptions are screened out. In this article, we attempted to identify some of the critical elements of learner…

  8. Calculating Shocks In Flows At Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Eberhardt, Scott; Palmer, Grant

    1988-01-01

    Boundary conditions prove critical. Conference paper describes algorithm for calculation of shocks in hypersonic flows of gases at chemical equilibrium. Although algorithm represents intermediate stage in development of reliable, accurate computer code for two-dimensional flow, research leading up to it contributes to understanding of what is needed to complete task.

  9. The Effect of Fin Pitch on Fluid Elastic Instability of Tube Arrays Subjected to Cross Flow of Water

    NASA Astrophysics Data System (ADS)

    Desai, Sandeep Rangrao; Pavitran, Sampat

    2018-02-01

    flow capacity of the pump. The tests are carried out first on plain tube arrays to establish the same as the datum case and results are compared to known results of plain tube arrays and hence the quality of the test rig is also assessed. The fluid elastic vibration tests are then carried out on finned tube arrays with coarse and fine fin pitches and effects of fins and fin pitch on instability threshold are shown. The vibration response of the tube is recorded for each gradually increasing flow rates of water till instability point is reached. The parameters at the instability are then presented in terms of dimensionless parameters to compare them with published results. It is concluded that, arrays with higher pitch ratios are unstable at comparatively higher flow velocities and instability threshold for finned tube arrays is delayed due to addition of the fins. Further, it is concluded that, instability threshold for finned tube arrays with fine fin pitch is delayed compared to coarse fin pitch and hence for increased fin density, instability threshold is delayed. The experimental results in terms of critical velocities obtained for different tube arrays subjected to water cross flow will serve as the base flow rates for air-water cross flow experiments to be conducted in the next phase.

  10. Non-equilibrium Phase Transitions: Activated Random Walks at Criticality

    NASA Astrophysics Data System (ADS)

    Cabezas, M.; Rolla, L. T.; Sidoravicius, V.

    2014-06-01

    In this paper we present rigorous results on the critical behavior of the Activated Random Walk model. We conjecture that on a general class of graphs, including , and under general initial conditions, the system at the critical point does not reach an absorbing state. We prove this for the case where the sleep rate is infinite. Moreover, for the one-dimensional asymmetric system, we identify the scaling limit of the flow through the origin at criticality. The case remains largely open, with the exception of the one-dimensional totally-asymmetric case, for which it is known that there is no fixation at criticality.

  11. Statistics of Statisticians: Critical Mass of Statistics and Operational Research Groups

    NASA Astrophysics Data System (ADS)

    Kenna, Ralph; Berche, Bertrand

    Using a recently developed model, inspired by mean field theory in statistical physics, and data from the UK's Research Assessment Exercise, we analyse the relationship between the qualities of statistics and operational research groups and the quantities of researchers in them. Similar to other academic disciplines, we provide evidence for a linear dependency of quality on quantity up to an upper critical mass, which is interpreted as the average maximum number of colleagues with whom a researcher can communicate meaningfully within a research group. The model also predicts a lower critical mass, which research groups should strive to achieve to avoid extinction. For statistics and operational research, the lower critical mass is estimated to be 9 ± 3. The upper critical mass, beyond which research quality does not significantly depend on group size, is 17 ± 6.

  12. Unsteady flow over a decelerating rotating sphere

    NASA Astrophysics Data System (ADS)

    Turkyilmazoglu, M.

    2018-03-01

    Unsteady flow analysis induced by a decelerating rotating sphere is the main concern of this paper. A revolving sphere in a still fluid is supposed to slow down at an angular velocity rate that is inversely proportional to time. The governing partial differential equations of motion are scaled in accordance with the literature, reducing to the well-documented von Kármán equations in the special circumstance near the pole. Both numerical and perturbation approaches are pursued to identify the velocity fields, shear stresses, and suction velocity far above the sphere. It is detected that an induced flow surrounding the sphere acts accordingly to adapt to the motion of the sphere up to some critical unsteadiness parameters at certain latitudes. Afterward, the decay rate of rotation ceases such that the flow at the remaining azimuths starts revolving freely. At a critical unsteadiness parameter corresponding to s = -0.681, the decelerating sphere rotates freely and requires no more torque. At a value of s exactly matching the rotating disk flow at the pole identified in the literature, the entire flow field around the sphere starts revolving faster than the disk itself. Increasing values of -s almost diminish the radial outflow. This results in jet flows in both the latitudinal and meridional directions, concentrated near the wall region. The presented mean flow results will be useful for analyzing the instability features of the flow, whether of a convective or absolute nature.

  13. Evaluation of the surface-water sampling design in the Western Lake Michigan Drainages in relation to environmental factors affecting water quality at base flow

    USGS Publications Warehouse

    Robertson, Dale M.

    1998-01-01

    The variability in water quality throughout the WMIC Study Unit during base-flow conditions could be described very well by subdividing the area into Relatively Homogeneous Units and sampling a few streams with drainage basins completely within these homogeneous units. This subdivision and sampling scheme enabled the differences in water quality to be directly related to the differences in the environmental characteristics that exist throughout the Study Unit.

  14. Adaptive critics for dynamic optimization.

    PubMed

    Kulkarni, Raghavendra V; Venayagamoorthy, Ganesh Kumar

    2010-06-01

    A novel action-dependent adaptive critic design (ACD) is developed for dynamic optimization. The proposed combination of a particle swarm optimization-based actor and a neural network critic is demonstrated through dynamic sleep scheduling of wireless sensor motes for wildlife monitoring. The objective of the sleep scheduler is to dynamically adapt the sleep duration to node's battery capacity and movement pattern of animals in its environment in order to obtain snapshots of the animal on its trajectory uniformly. Simulation results show that the sleep time of the node determined by the actor critic yields superior quality of sensory data acquisition and enhanced node longevity. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. The Case of Flow and Learning Revisited

    ERIC Educational Resources Information Center

    Ro, Young K.; Guo, Yi Maggie; Klein, Barbara D.

    2018-01-01

    Many business schools are criticized for being ineffective in helping students learn proper management skills and knowledge. Flow theory has been cited as being helpful in many learning environments in that flow experience can enhance student learning. The authors conducted a study of 315 students in an undergraduate operations management (OM)…

  16. Compassion Satisfaction and Compassion Fatigue Among Critical Care Nurses.

    PubMed

    Sacco, Tara L; Ciurzynski, Susan M; Harvey, Megan Elizabeth; Ingersoll, Gail L

    2015-08-01

    Although critical care nurses gain satisfaction from providing compassionate care to patients and patients' families, the nurses are also at risk for fatigue. The balance between satisfaction and fatigue is considered professional quality of life. To establish the prevalence of compassion satisfaction and compassion fatigue in adult, pediatric, and neonatal critical care nurses and to describe potential contributing demographic, unit, and organizational characteristics. In a cross-sectional design, nurses were surveyed by using a demographic questionnaire and the Professional Quality of Life Scale to measure levels of compassion fatigue and compassion satisfaction. Nurses (n = 221) reported significant differences in compassion satisfaction and compassion fatigue on the basis of sex, age, educational level, unit, acuity, change in nursing management, and major systems change. Understanding the elements of professional quality of life can have a positive effect on work environment. The relationship between professional quality of life and the standards for a healthy work environment requires further investigation. Once this relationship is fully understood, interventions to improve this balance can be developed and tested. ©2015 American Association of Critical-Care Nurses.

  17. Flow-pattern Guided Fabrication of High-density Barcode Antibody Microarray

    PubMed Central

    Ramirez, Lisa S.; Wang, Jun

    2016-01-01

    Antibody microarray as a well-developed technology is currently challenged by a few other established or emerging high-throughput technologies. In this report, we renovate the antibody microarray technology by using a novel approach for manufacturing and by introducing new features. The fabrication of our high-density antibody microarray is accomplished through perpendicularly oriented flow-patterning of single stranded DNAs and subsequent conversion mediated by DNA-antibody conjugates. This protocol outlines the critical steps in flow-patterning DNA, producing and purifying DNA-antibody conjugates, and assessing the quality of the fabricated microarray. The uniformity and sensitivity are comparable with conventional microarrays, while our microarray fabrication does not require the assistance of an array printer and can be performed in most research laboratories. The other major advantage is that the size of our microarray units is 10 times smaller than that of printed arrays, offering the unique capability of analyzing functional proteins from single cells when interfacing with generic microchip designs. This barcode technology can be widely employed in biomarker detection, cell signaling studies, tissue engineering, and a variety of clinical applications. PMID:26780370

  18. A Study to Determine the Best Method of Improving the Flow of Patients Through the Surgical Critical Care Units at Letterman Army Medical Center

    DTIC Science & Technology

    1989-07-01

    CLASSIFICATION AMTHdRITY " 3. DISTRIBUTION /AVAILABILITY OF REPORT N/A S &" D-i’ -’ , I 2b. DECLASSIFICATION/ DOWN, G ;tUE - -J : iN/A 14’ el UNCLASSIFIED...UNLIMITED 4. PERFORMING ORGANIZATION I"RT NUMB- ) 5. MONITORING ORGANIZATION REPORT NUMBER( S ) 1-89 6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a...iTLE (Include Security Classification) A STUDY TO DETERMINE THE BEST METHOD OF IMPROVING THE FLOW OF PATIENTS THROUGH THE S .. RGICAL CRITICAL CARE

  19. Operating Characteristics of the Multiple Critical Venturi System and Secondary Calibration Nozzles Used for Weight-Flow Measurements in the Langley 16-Foot Transonic Tunnel

    NASA Technical Reports Server (NTRS)

    Berrier, B. L.; Leavitt, L. D.; Bangert, L. S.

    1985-01-01

    An investigation has been conducted in the Langley 16 Foot Transonic Tunnel to determine the weight flow measurement characteristics of a multiple critical Venturi system and the nozzle discharge coefficient characteristics of a series of convergent calibration nozzles. The effects on model discharge coefficient of nozzle throat area, model choke plate open area, nozzle pressure ratio, jet total temperature, and number and combination of operating Venturis were investigated. Tests were conducted at static conditions (tunnel wind off) at nozzle pressure ratios from 1.3 to 7.0.

  20. Assessing the Hydraulic Criticality of Deep Ocean Overflows

    NASA Astrophysics Data System (ADS)

    Pratt, L. J.; Helfrich, K. R.

    2004-12-01

    Two methods for assessing the hydraulic criticality of a modelled or observed deep overflow are discussed. The methods should be of use in determining the position of the control section, which is needed to establish the transport relation helpful for long-term monitoring from upstream. Both approaches are based on a multiple streamtube idealization in which the observed flow at a particular section is divided up into subsections (streamtubes). There are no restrictions on the bottom topography or potential vorticity distribution. The first criteria involves evauation of a generalized Jacobian condition based on the conservation laws for each streamtube; the second involves direct calculation of the long-wave phase speeds. We also comment on the significance of the local Froude number F of the flow and argue that F must pass through unity across a section of hydraulic control. These criteria are applied to some numerically modelled flows and are used in the companion presentation (Girton, et al.) to evaluate the hydraulic criticality of the Faroe Bank Channel.

  1. Three dimensional steady subsonic Euler flows in bounded nozzles

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Xie, Chunjing

    The existence and uniqueness of three dimensional steady subsonic Euler flows in rectangular nozzles were obtained when prescribing normal component of momentum at both the entrance and exit. If, in addition, the normal component of the voriticity and the variation of Bernoulli's function at the entrance are both zero, then there exists a unique subsonic potential flow when the magnitude of the normal component of the momentum is less than a critical number. As the magnitude of the normal component of the momentum approaches the critical number, the associated flows converge to a subsonic-sonic flow. Furthermore, when the normal component of vorticity and the variation of Bernoulli function are both small, the existence and uniqueness of subsonic Euler flows with non-zero vorticity are established. The proof of these results is based on a new formulation for the Euler system, a priori estimate for nonlinear elliptic equations with nonlinear boundary conditions, detailed study for a linear div-curl system, and delicate estimate for the transport equations.

  2. The Top Ten Websites in Critical Care Medicine Education Today.

    PubMed

    Wolbrink, Traci A; Rubin, Lucy; Burns, Jeffrey P; Markovitz, Barry

    2018-01-01

    The number of websites for the critical care provider is rapidly growing, including websites that are part of the Free Open Access Med(ical ed)ucation (FOAM) movement. With this rapidly expanding number of websites, critical appraisal is needed to identify quality websites. The last major review of critical care websites was published in 2011, and thus a new review of the websites relevant to the critical care clinician is necessary. A new assessment tool for evaluating critical care medicine education websites, the Critical Care Medical Education Website Quality Evaluation Tool (CCMEWQET), was modified from existing tools. A PubMed and Startpage search from 2007 to 2017 was conducted to identify websites relevant to critical care medicine education. These websites were scored based on the CCMEWQET. Ninety-seven websites relevant for critical care medicine education were identified and scored, and the top ten websites were described in detail. Common types of resources available on these websites included blog posts, podcasts, videos, online journal clubs, and interactive components such as quizzes. Almost one quarter of websites (n = 22) classified themselves as FOAM websites. The top ten websites most often included an editorial process, high-quality and appropriately attributed graphics and multimedia, scored much higher for comprehensiveness and ease of access, and included opportunities for interactive learning. Many excellent online resources for critical care medicine education currently exist, and the number is likely to continue to increase. Opportunities for improvement in many websites include more active engagement of learners, upgrading navigation abilities, incorporating an editorial process, and providing appropriate attribution for graphics and media.

  3. Flowing gas, non-nuclear experiments on the gas core reactor

    NASA Technical Reports Server (NTRS)

    Kunze, J. F.; Suckling, D. H.; Copper, C. G.

    1972-01-01

    Flow tests were conducted on models of the gas core (cavity) reactor. Variations in cavity wall and injection configurations were aimed at establishing flow patterns that give a maximum of the nuclear criticality eigenvalue. Correlation with the nuclear effect was made using multigroup diffusion theory normalized by previous benchmark critical experiments. Air was used to simulate the hydrogen propellant in the flow tests, and smoked air, argon, or freon to simulate the central nuclear fuel gas. All tests were run in the down-firing direction so that gravitational effects simulated the acceleration effect of a rocket. Results show that acceptable flow patterns with high volume fraction for the simulated nuclear fuel gas and high flow rate ratios of propellant to fuel can be obtained. Using a point injector for the fuel, good flow patterns are obtained by directing the outer gas at high velocity along the cavity wall, using louvered or oblique-angle-honeycomb injection schemes.

  4. Characterization of recharge and flow behaviour of different water sources in Gunung Kidul and its impact on water quality based on hydrochemical and physico-chemical monitoring

    NASA Astrophysics Data System (ADS)

    Eiche, Elisabeth; Hochschild, Maren; Haryono, Eko; Neumann, Thomas

    2016-09-01

    Karst aquifers are important water resources but highly vulnerable due to their heterogeneous and complex characteristics. Various hydrological aspects (recharge, flow behaviour) have to be known in detail to develop a sustainable concept for water collection, distribution and treatment. In the karst area of Gunung Sewu (Java, Indonesia) such a concept was to be implemented within a German-Indonesian joint IWRM project. The basic hydrogeological conditions and water quality aspects were characterized on a regional scale through hydrochemical monitoring of springs, wells, subsurface and surface rivers. More detailed information about the recharge, flow and storage behaviour was obtained from high resolution monitoring of T, EC and discharge in one large underground river system. The water quality is well below any guideline values with regard to inorganic pollutants during dry season. During rainy season, dissolved Al concentrations are frequently above the Indonesian guideline value. Slow matrix flow is the most important recharge component during dry season, thus assuring the year-round water availability in the subsurface karst. During rainy season, quick infiltration of the surface water is a dominant recharge component. Rapid response of discharge, T and EC to heavy rain suggests the presence of point recharge that feeds a highly karstfied conduit system with fast conduit flow and short transit time of water. The strong variations in discharge and hydrochemistry are particularly challenging for technical water usage and treatment facilities. Piston flow is indicated to be the third important flow component and is induced by heavy rainfall.

  5. Flow induced streamer formation in particle laden complex flows

    NASA Astrophysics Data System (ADS)

    Debnath, Nandini; Hassanpourfard, Mahtab; Ghosh, Ranajay; Trivedi, Japan; Thundat, Thomas; Kumar, Aloke

    2016-11-01

    We study the combined flow of a polyacrylamide (PAM)solution with polystyrene (PS) nanoparticles, through a microfluidic device containing an array of micropillars. The flow is characterized by a very low Reynolds number (Re<<1). We find that for exceeding a critical Weissenberg number (Wi >= 20), PS nanoparticles localize near pillar walls to form thin slender string-like structures, which we call 'streamers' due to their morphology. Post-formation, these streamers show significant viscous behavior for short observational time-scales, and at longer observational time scales elastic response dominates. Our abiotic streamers could provide a framework for understanding similar structures that often form in biological systems. PhD student, Department of Mechanical Engineering.

  6. Three-Dimensional Flow Separation Induced by a Model Vocal Fold Polyp

    NASA Astrophysics Data System (ADS)

    Stewart, Kelley C.; Erath, Byron D.; Plesniak, Michael W.

    2012-11-01

    The fluid-structure energy exchange process for normal speech has been studied extensively, but it is not well understood for pathological conditions. Polyps and nodules, which are geometric abnormalities that form on the medial surface of the vocal folds, can disrupt vocal fold dynamics and thus can have devastating consequences on a patient's ability to communicate. A recent in-vitro investigation of a model polyp in a driven vocal fold apparatus demonstrated that such a geometric abnormality considerably disrupts the glottal jet behavior and that this flow field adjustment was a likely reason for the severe degradation of the vocal quality in patients. Understanding of the formation and propagation of vortical structures from a geometric protuberance, and their subsequent impact on the aerodynamic loadings that drive vocal fold dynamic, is a critical component in advancing the treatment of this pathological condition. The present investigation concerns the three-dimensional flow separation induced by a wall-mounted prolate hemispheroid with a 2:1 aspect ratio in cross flow, i.e. a model vocal fold polyp. Unsteady three-dimensional flow separation and its impact of the wall pressure loading are examined using skin friction line visualization and wall pressure measurements. Supported by the National Science Foundation, Grant No. CBET-1236351 and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  7. Acoustic relaxation of the hydro-mechanical system under critical expiration of swirl flow

    NASA Astrophysics Data System (ADS)

    Pozdeeva, I. G.; Mitrofanova, O. V.

    2018-03-01

    The mechanism of generation of acoustic oscillations associated with the formation of stable vortex structures in the moving fluid was considered for the impact swirl flow. Experimental studies were carried out to determine the relationship between large-scale vortex motion and acoustic effects in hydro-mechanical systems. It was shown that a sharp change of the amplitude-frequency characteristic of the acoustic oscillations of hydro-mechanical system corresponds to the maximal flow rate of the swirl flow. The established connection between the generation of sound waves and geometrical and regime parameters of the hydro-mechanical system formed the basis for the developed method of diagnostics of the processes of vortex formation.

  8. Real-World Problems: Engaging Young Learners in Critical Thinking

    ERIC Educational Resources Information Center

    Cole, Bronwyn; McGuire, Margit

    2012-01-01

    Critical thinking is a process that can be taught. It involves "evaluating the accuracy, credibility, and worth of information and lines of reasoning. Critical thinking is reflective, logical, evidence-based, and has a purposeful quality to it--that is, the learner thinks critically in order to achieve a particular goal." The authors have found…

  9. Smoothed Two-Dimensional Edges for Laminar Flow

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Liu, C. H.; Martin, G. L.; Domack, C. S.; Obara, C. J.; Hassan, A.; Gunzburger, M. D.; Nicolaides, R. A.

    1986-01-01

    New concept allows passive method for installing flaps, slats, iceprotection equipment, and other leading-edge devices on natural-laminar-flow (NLF) wings without causing loss of laminar flow. Two-dimensional roughness elements in laminar boundary layers strategically shaped to increase critical (allowable) height of roughness. Facilitates installation of leading-edge devices by practical manufacturing methods.

  10. Worse than imagined: Unidentified virtual water flows in China.

    PubMed

    Cai, Beiming; Wang, Chencheng; Zhang, Bing

    2017-07-01

    The impact of virtual water flows on regional water scarcity in China had been deeply discussed in previous research. However, these studies only focused on water quantity, the impact of virtual water flows on water quality has been largely neglected. In this study, we incorporate the blue water footprint related with water quantity and grey water footprint related with water quality into virtual water flow analysis based on the multiregional input-output model of 2007. The results find that the interprovincial virtual flows accounts for 23.4% of China's water footprint. The virtual grey water flows are 8.65 times greater than the virtual blue water flows; the virtual blue water and grey water flows are 91.8 and 794.6 Gm 3 /y, respectively. The use of the indicators related with water quantity to represent virtual water flows in previous studies will underestimate their impact on water resources. In addition, the virtual water flows are mainly derived from agriculture, chemical industry and petroleum processing and the coking industry, which account for 66.8%, 7.1% and 6.2% of the total virtual water flows, respectively. Virtual water flows have intensified both quantity- and quality-induced water scarcity of export regions, where low-value-added but water-intensive and high-pollution goods are produced. Our study on virtual water flows can inform effective water use policy for both water resources and water pollution in China. Our methodology about virtual water flows also can be used in global scale or other countries if data available. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Oscillatory/Chaotic Thermocapillary Flow Induced by Radiant Heating

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth J.

    1998-01-01

    There is a continuing need to understand the fluid physics occurring under low gravity conditions in processes such as crystal growth, materials processing, and the movement of bubbles or droplets. The fluid flow in such situations is often caused by a gradient in interfacial tension. If a temperature gradient is created due to a heat source, the resulting flow is called thermocapillary flow, a special case of Marangoni Convection. In this study, an experimental investigation was conducted using silicone oil in cylindrical containers with a laser heat source at the free surface. It was desired to determine the conditions under which steady, axisymmetrical thermocapillary flow becomes unstable and oscillatory three-dimensional flow states develop. The critical Marangoni number for each observed oscillatory state was measured as a function of the container aspect ratio and the dynamic Bond number, a measure of buoyant force versus ii thermocapillary force. Various oscillatory modes were observed during three- dimensional convection, and chaotic flow was reached in one test condition. The critical Marangoni numbers are compared with those measured in previous studies, and the power spectra and phase trajectories of the instantaneous surface temperature distributions are used to characterize the routes of transitions to the chaotic flow state. Results show that only superharmonic modes appear in the routes to chaos while infinite number of subharmonic modes occur in flow transitions for pure Rayleigh convection.

  12. Effects of flow diversions on water and habitat quality: Examples from California's highly manipulated Sacramento–San Joaquin Delta

    USGS Publications Warehouse

    Monsen, Nancy E.; Cloern, James E.; Burau, Jon R.

    2007-01-01

    We use selected monitoring data to illustrate how localized water diversions from seasonal barriers, gate operations, and export pumps alter water quality across the Sacramento-San Joaquin Delta (California). Dynamics of water-quality variability are complex because the Delta is a mixing zone of water from the Sacramento and San Joaquin Rivers, agricultural return water, and the San Francisco Estuary. Each source has distinct water-quality characteristics, and the contribution of each source varies in response to natural hydrologic variability and water diversions. We use simulations with a tidal hydrodynamic model to reveal how three diversion events, as case studies, influence water quality through their alteration of Delta-wide water circulation patterns and flushing time. Reduction of export pumping decreases the proportion of Sacramento- to San Joaquin-derived fresh water in the central Delta, leading to rapid increases in salinity. Delta Cross Channel gate operations control salinity in the western Delta and alter the freshwater source distribution in the central Delta. Removal of the head of Old River barrier, in autumn, increases the flushing time of the Stockton Ship Channel from days to weeks, contributing to a depletion of dissolved oxygen. Each shift in water quality has implications either for habitat quality or municipal drinking water, illustrating the importance of a systems view to anticipate the suite of changes induced by flow manipulations, and to minimize the conflicts inherent in allocations of scarce resources to meet multiple objectives.

  13. Issues of Professionalism and Teachers: Critical Observations from Research and the Literature

    ERIC Educational Resources Information Center

    Johnston, Jenny

    2015-01-01

    The concept of "professionalism" has become more evident in discourse about teacher quality in recent years. In fact, in some contexts "professionalism" is used as a euphemism for quality and reform. This critical essay applies a critical theory perspective and discusses notions of educational professionalism from the academic…

  14. Practical strategies for increasing efficiency and effectiveness in critical care education.

    PubMed

    Joyce, Maurice F; Berg, Sheri; Bittner, Edward A

    2017-02-04

    Technological advances and evolving demands in medical care have led to challenges in ensuring adequate training for providers of critical care. Reliance on the traditional experience-based training model alone is insufficient for ensuring quality and safety in patient care. This article provides a brief overview of the existing educational practice within the critical care environment. Challenges to education within common daily activities of critical care practice are reviewed. Some practical evidence-based educational approaches are then described which can be incorporated into the daily practice of critical care without disrupting workflow or compromising the quality of patient care. It is hoped that such approaches for improving the efficiency and efficacy of critical care education will be integrated into training programs.

  15. Flow patterns and transition characteristics for steam condensation in silicon microchannels

    NASA Astrophysics Data System (ADS)

    Ma, Xuehu; Fan, Xiaoguang; Lan, Zhong; Hao, Tingting

    2011-07-01

    This study investigated the two-phase flow patterns and transition characteristics for steam condensation in silicon microchannels with different cross-sectional geometries. Novel experimental techniques were developed to determine the local heat transfer rate and steam quality by testing the temperature profile of a copper cooler. Flow regime maps for different microchannels during condensation were established in terms of steam mass flux and steam quality. Meanwhile, the correlation for the flow pattern transition was obtained using different geometrical and dimensionless parameters for steam condensation in microchannels. To better understand the flow mechanisms in microchannels, the condensation flow patterns, such as annular flow, droplet flow, injection flow and intermittent flow, were captured and analyzed. The local heat transfer rate showed the nonlinear variations along the axial direction during condensation. The experimental results indicate that the flow patterns and transition characteristics strongly depend on the geometries of microchannels. With the increasing steam mass flux and steam quality, the annular/droplet flow expands and spans over a larger region in the microchannels; otherwise the intermittent flow occupies the microchannels. The dimensionless fitting data also reveal that the effect of surface tension and vapor inertia dominates gravity and viscous force at the specified flow pattern transitional position.

  16. Eventual sport performance level: What about the role of type of sport, perception of critical life events, and practice quality?

    PubMed

    Toering, Tynke

    2017-01-01

    The target article describes an interesting study, which provides some challenging findings regarding athletes' pathway to excellence. The suggested links between critical life events, need for success, personal characteristics, and eventual performance level make sense from a psychodynamic perspective. This commentary will discuss some critical points related to the application of the findings in talent identification and -development programs. These are (1) the possible effect of the selection of participants on the results (including the impact of dependence on others for team sport athletes and the opportunity for multiple medal attainment), (2) a lack of detail in the description of how the athletes approached the critical life events (the perception of an event may contribute more to development than the event itself), and (3) a lack of detail in the description of the practice process throughout development. Some interesting differences were found in the motivation for and approach to practice, but little detail was given about what the athletes exactly were doing at the time. The concept of self-regulated learning may be useful in explaining how super-elite athletes action their goals through quality practice. © 2017 Elsevier B.V. All rights reserved.

  17. Laminar Flow Breakdown due to Particle Interactions

    DTIC Science & Technology

    2012-08-01

    theoretically predicted value of 200x106 in a heated pipe flow experiment – a fact which they attributed to naturally occurring particulates contained in the...the pipe wall, y, to boundary layer thickness, δ, reproduced from Hall [10...12 Figure 5 Estimated critical particle conditions on a heated laminar flow control body at three heating

  18. Critical surface roughness for wall bounded flow of viscous fluids in an electric submersible pump

    NASA Astrophysics Data System (ADS)

    Deshmukh, Dhairyasheel; Siddique, Md Hamid; Kenyery, Frank; Samad, Abdus

    2017-11-01

    Surface roughness plays a vital role in the performance of an electric submersible pump (ESP). A 3-D numerical analysis has been carried out to find the roughness effect on ESP. The performance of pump for steady wall bounded turbulent flows is evaluated at different roughness values and compared with smooth surface considering a non-dimensional roughness factor K. The k- ω SST turbulence model with fine mesh at near wall region captures the rough wall effects accurately. Computational results are validated with experimental results of water (1 cP), at a design speed (3000 RPM). Maximum head is observed for a hydraulically smooth surface (K=0). When roughness factor is increased, the head decreases till critical roughness factor (K=0.1) due to frictional loss. Further increase in roughness factor (K>0.1) increases the head due to near wall turbulence. The performance of ESP is analyzed for turbulent kinetic energy and eddy viscosity at different roughness values. The wall disturbance over the rough surface affects the pressure distribution and velocity field. The roughness effect is predominant for high viscosity oil (43cP) as compared to water. Moreover, the study at off-design conditions showed that Reynolds number influences the overall roughness effect.

  19. Siphon flows in isolated magnetic flux tubes. V - Radiative flows with variable ionization

    NASA Technical Reports Server (NTRS)

    Montesinos, Benjamin; Thomas, John H.

    1993-01-01

    Steady siphon flows in arched isolated magnetic flux tubes in the solar atmosphere are calculated here including radiative transfer between the flux tube and its surrounding and variable ionization of the flowing gas. It is shown that the behavior of a siphon flow is strongly determined by the degree of radiative coupling between the flux tube and its surroundings in the superadiabatic layer just below the solar surface. Critical siphon flows with adiabatic tube shocks in the downstream leg are calculated, illustrating the radiative relaxation of the temperature jump downstream of the shock. For flows in arched flux tubes reaching up to the temperature minimum, where the opacity is low, the gas inside the flux tube is much cooler than the surrounding atmosphere at the top of the arch. It is suggested that gas cooled by siphon flows contribute to the cool component of the solar atmosphere at the height of the temperature minimum implied by observations of the infrared CO bands at 4.6 and 2.3 microns.

  20. Integrated Analysis of Flow, Temperature, and Specific-Conductance Logs and Depth-Dependent Water-Quality Samples from Three Deep Wells in a Fractured-Sandstone Aquifer, Ventura County, California

    USGS Publications Warehouse

    Williams, John H.; Knutson, Kevin D.

    2009-01-01

    Analysis of flow, temperature, and specific-conductance logs and depth-dependent water-quality samples collected under ambient and pumped conditions provided a preliminary delineation of flow zones and water quality in three deep abandoned water-supply wells. The integrated analysis was completed as part of the characterization of a fractured-sandstone aquifer in the mountainous setting of the Santa Susana Field Laboratory in southern Ventura County, California. In the deepest well, which was 1,768 feet deep and had the highest specific capacity (120 gallons per minute per foot), flow zones were detected at 380 feet (base of casing) and at 440, 595, and 770 feet in the open hole. Under ambient conditions, measured flow was downward from the 380- and 440-foot zones to the 595- and 770-foot zones. Under pumped conditions, most of flow was contributed by the 595-foot zone. Flow from the 380- and 440-foot zones appeared to have lower specific conductance and higher trichloroethylene concentrations than that from the 595-foot zone. In the shallowest well, which was reportedly 940 feet deep but only logged to 915 feet due to blockage, flow zones were detected behind the perforated casing and at 867 feet in the open hole. Under ambient conditions, downward and upward flows appeared to exit at a zone behind the perforated casing at 708 feet. Most of the pumped flow was contributed from zones behind the perforated casing between 565 and 708 feet. Pumped flow also was contributed by zones at 867 feet and below the logged depth. Volatile organic compounds were not detected in the ambient and pumped flows. In the third well, which was 1,272 feet deep and had the lowest specific capacity (3.6 gallons per minute per foot), flow zones were detected in the open hole above and just below the water level near 337 feet and at 615, 785, 995, and 1,070 feet. Under ambient conditions, measured flow in well was downward from the shallowmost zones to the 995-foot zone. Fracture zones at

  1. [Remarks to the quality of historical contributions in recent medical journals. Critical comments on the example of the history of traumatology].

    PubMed

    WeiBer, Christoph

    2004-01-01

    Review articles on the history of medical topics in recent medical (non-historical) journals are often of a much worse quality than observational and experimental articles. The criteria of quality of a historical review article, elaborated on the example of the contribution. "300 years of intramedullary fixation - from Aztec practice to standard treatment modality" by U. Knothe, M. L. Knothe Tate, and S. M. Perren, are: clear definition of the theme treated, extensive heuristic investigations, exact study of source material and original publications, critical sifting of secondary literature, naming of the first names and biographical data of historical persons, account of the historical background, use of historical evidences, and reviewing by a medical historian. By taking notice of these items historical misjudgements can be avoided.

  2. A model for assessing water quality risk in catchments prone to wildfire

    NASA Astrophysics Data System (ADS)

    Langhans, Christoph; Smith, Hugh; Chong, Derek; Nyman, Petter; Lane, Patrick; Sheridan, Gary

    2017-04-01

    Post-fire debris flows can have erosion rates up to three orders of magnitude higher than background rates. They are major sources of fine suspended sediment, which is critical to the safety of water supply from forested catchments. Fire can cover parts or all of these large catchments and burn severity is often heterogeneous. The probability of spatial and temporal overlap of fire disturbance and rainfall events, and the susceptibility of hillslopes to severe erosion determine the risk to water quality. Here we present a model to calculate recurrence intervals of high magnitude sediment delivery from runoff-generated debris flows to a reservoir in a large catchment (>100 km2) accounting for heterogeneous burn conditions. Debris flow initiation was modelled with indicators of surface runoff and soil surface erodibility. Debris flow volume was calculated with an empirical model, and fine sediment delivery was calculated using simple, expert-based assumptions. In a Monte-Carlo simulation, wildfire was modelled with a fire spread model using historic data on weather and ignition probabilities for a forested catchment in central Victoria, Australia. Multiple high intensity storms covering the study catchment were simulated using Intensity-Frequency-Duration relationships, and the runoff indicator calculated with a runoff model for hillslopes. A sensitivity analysis showed that fine sediment is most sensitive to variables related to the texture of the source material, debris flow volume estimation, and the proportion of fine sediment transported to the reservoir. As a measure of indirect validation, denudation rates of 4.6 - 28.5 mm ka-1 were estimated and compared well to other studies in the region. From the results it was extrapolated that in the absence of fire management intervention the critical sediment concentrations in the studied reservoir could be exceeded in intervals of 18 - 124 years.

  3. Stirring Up an Elastic Fluid: Critical Viscosity of Xenon-2 (CVX-2)

    NASA Astrophysics Data System (ADS)

    Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.

    2002-12-01

    Whipped cream stays in place even when turned upside down. Yet it readily flows through the nozzle of a spray can to reach the dessert plate. This demonstrates the phenomenon of shear thinning that is important to many industrial and physical processes. Paints, film emulsions, and other complex solutions that are highly viscous under normal conditions but become thin and flow easily under shear forces. A simple fluid, such as water, does not exhibit shear thinning under normal conditions. Very close to the liquid-vapor critical point, where the distinction between liquid and vapor disappears, the fluid becomes more complex and is predicted to display shear thinning. At the critical point, xenon atoms interact over long distances in a classical model of cooperative phenomena. Physicists rely on this system to learn how long-range order arises. The Critical Viscosity of Xenon Experiment (CVX-2) will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of fluids. Viscosity originates from the interactions of individual molecules. It is so complicated that, except for the simplest gas, it cannot be calculated accurately from theory. Tests with critical fluids can provide key data, but are limited on Earth because critical fluids are highly compressed by gravity. CVX-2 employs a tiny metal screen vibrating between two electrodes in a bath of critical xenon. The vibrations and how they dampen are used to measure viscosity. CVX flew on STS-85 (1997), where it revealed that, close to the critical point, the xenon is partly elastic: it can 'stretch' as well as flow. For STS-107, the hardware has been enhanced to determine if critical xenon is a shear-thinning fluid.

  4. Stirring Up an Elastic Fluid: Critical Viscosity of Xenon-2 (CVX-2)

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.; Motil, Susan M. (Technical Monitor)

    2002-01-01

    Whipped cream stays in place even when turned upside down. Yet it readily flows through the nozzle of a spray can to reach the dessert plate. This demonstrates the phenomenon of shear thinning that is important to many industrial and physical processes. Paints, film emulsions, and other complex solutions that are highly viscous under normal conditions but become thin and flow easily under shear forces. A simple fluid, such as water, does not exhibit shear thinning under normal conditions. Very close to the liquid-vapor critical point, where the distinction between liquid and vapor disappears, the fluid becomes more complex and is predicted to display shear thinning. At the critical point, xenon atoms interact over long distances in a classical model of cooperative phenomena. Physicists rely on this system to learn how long-range order arises. The Critical Viscosity of Xenon Experiment (CVX-2) will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of fluids. Viscosity originates from the interactions of individual molecules. It is so complicated that, except for the simplest gas, it cannot be calculated accurately from theory. Tests with critical fluids can provide key data, but are limited on Earth because critical fluids are highly compressed by gravity. CVX-2 employs a tiny metal screen vibrating between two electrodes in a bath of critical xenon. The vibrations and how they dampen are used to measure viscosity. CVX flew on STS-85 (1997), where it revealed that, close to the critical point, the xenon is partly elastic: it can 'stretch' as well as flow. For STS-107, the hardware has been enhanced to determine if critical xenon is a shear-thinning fluid.

  5. Information system support as a critical success factor for chronic disease management: Necessary but not sufficient.

    PubMed

    Green, Carolyn J; Fortin, Patricia; Maclure, Malcolm; Macgregor, Art; Robinson, Sylvia

    2006-12-01

    Improvement of chronic disease management in primary care entails monitoring indicators of quality over time and across patients and practices. Informatics tools are needed, yet implementing them remains challenging. To identify critical success factors enabling the translation of clinical and operational knowledge about effective and efficient chronic care management into primary care practice. A prospective case study of positive deviants using key informant interviews, process observation, and document review. A chronic disease management (CDM) collaborative of primary care physicians with documented improvement in adherence to clinical practice guidelines using a web-based patient registry system with CDM guideline-based flow sheet. Thirty community-based physician participants using predominantly paper records, plus a project management team including the physician lead, project manager, evaluator and support team. A critical success factor (CSF) analysis of necessary and sufficient pathways to the translation of knowledge into clinical practice. A web-based CDM 'toolkit' was found to be a direct CSF that allowed this group of physicians to improve their practice by tracking patient care processes using evidence-based clinical practice guideline-based flow sheets. Moreover, the information and communication technology 'factor' was sufficient for success only as part of a set of seven direct CSF components including: health delivery system enhancements, organizational partnerships, funding mechanisms, project management, practice models, and formal knowledge translation practices. Indirect factors that orchestrated success through the direct factor components were also identified. A central insight of this analysis is that a comprehensive quality improvement model was the CSF that drew this set of factors into a functional framework for successful knowledge translation. In complex primary care settings environment where physicians have low adoption rates of

  6. Stormwater management network effectiveness and implications for urban watershed function: A critical review

    USGS Publications Warehouse

    Jefferson, Anne J.; Bhaskar, Aditi S.; Hopkins, Kristina G.; Fanelli, Rosemary; Avellaneda, Pedro M.; McMillan, Sara K.

    2017-01-01

    Deleterious effects of urban stormwater are widely recognized. In several countries, regulations have been put into place to improve the conditions of receiving water bodies, but planning and engineering of stormwater control is typically carried out at smaller scales. Quantifying cumulative effectiveness of many stormwater control measures on a watershed scale is critical to understanding how small-scale practices translate to urban river health. We review 100 empirical and modelling studies of stormwater management effectiveness at the watershed scale in diverse physiographic settings. Effects of networks with stormwater control measures (SCMs) that promote infiltration and harvest have been more intensively studied than have detention-based SCM networks. Studies of peak flows and flow volumes are common, whereas baseflow, groundwater recharge, and evapotranspiration have received comparatively little attention. Export of nutrients and suspended sediments have been the primary water quality focus in the United States, whereas metals, particularly those associated with sediments, have received greater attention in Europe and Australia. Often, quantifying cumulative effects of stormwater management is complicated by needing to separate its signal from the signal of urbanization itself, innate watershed characteristics that lead to a range of hydrologic and water quality responses, and the varying functions of multiple types of SCMs. Biases in geographic distribution of study areas, and size and impervious surface cover of watersheds studied also limit our understanding of responses. We propose hysteretic trajectories for how watershed function responds to increasing imperviousness and stormwater management. Even where impervious area is treated with SCMs, watershed function may not be restored to its predevelopment condition because of the lack of treatment of all stormwater generated from impervious surfaces; non-additive effects of individual SCMs; and

  7. EPICO 4.0. 'Total quality' in the management of invasive candidiasis in critically ill patients by analysing the integrated process.

    PubMed

    Zaragoza, Rafael; Ferrer, Ricard; Llinares, Pedro; Maseda, Emilio; Rodríguez, Alejandro; Grau, Santiago; Quindós, Guillermo

    A high quality integrated process in the clinical setting of non-neutropenic critically ill patients at risk for invasive candidiasis is a necessary tool to improve the management of these patients. To identify the key points on invasive candidiasis in order to develop a set of recommendations with a high level of consensus required for the creation of a total quality integrated process for the management of non-neutropenic critically ill patients at risk of invasive candidiasis. After a thorough review of the literature of the previous five years, a Spanish prospective questionnaire, which measured consensus by the Delphi technique, was anonymously conducted by e-mail, including 31 national multidisciplinary experts with extensive experience in invasive fungal infections, from six national scientific societies. The experts included a specialist in intensive care medicine, anesthetists, microbiologists, pharmacologists, and specialists in infectious diseases that responded 27 questions prepared by the coordination group. The educational objectives considered six processes that included knowledge of the local epidemiology, the creation and development of multidisciplinary teams, the definitions of the process, protocols, and indicators (KPI), an educational phase, hospital implementation, and the measurement of outcomes. The level of agreement among experts in each category to be selected should exceed 70%. In a second phase, after drawing up the recommendations of the selected processes, a face to face meeting with more than 60 specialists was held. The specialists were asked to validate the pre-selected recommendations. Firstly, 20 recommendations from all the sections were pre-selected: Knowledge of local epidemiology (3 recommendations), creation and development of multidisciplinary teams (3), definition of the process, protocols and indicators (1), educational phase (3), hospital implementation (3), and measurement of outcomes (7). After the second phase, 18

  8. Critical Issues for Dentistry: PGD Program Directors Respond.

    ERIC Educational Resources Information Center

    Atchison, Kathryn A.; Cheffetz, Susan E.

    2002-01-01

    Surveyed directors of programs in postgraduate education in general dentistry (PGD) about critical issues facing their programs. Identified 12 themes: lack of postdoctoral applicants; student quality; professionalism and attitudes; number of postdoctoral positions; lack of funding; quality of facilities; special patient care; program curriculum;…

  9. Chaotic advection in a 2-D mixed convection flow

    NASA Astrophysics Data System (ADS)

    Tangborn, Andrew V.; Silevitch, Daniel M.; Howes, Tony

    1995-06-01

    Two-dimensional numerical simulations of particle advection in a channel flow with spatially periodic heating have been carried out. The velocity field is found to be periodic above a critical Rayleigh number of around 18 000 and a Reynolds number of 10. Particle motion becomes chaotic in the lower half plane almost immediately after this critical value is surpassed, as characterized by the power spectral density and Poincaré section of the flow. As the Rayleigh number is increased further, particle motion in the entire domain becomes chaotic.

  10. Primary weathering rates, water transit times, and concentration-discharge relations: A theoretical analysis for the critical zone

    NASA Astrophysics Data System (ADS)

    Ameli, Ali A.; Beven, Keith; Erlandsson, Martin; Creed, Irena F.; McDonnell, Jeffrey J.; Bishop, Kevin

    2017-01-01

    The permeability architecture of the critical zone exerts a major influence on the hydrogeochemistry of the critical zone. Water flow path dynamics drive the spatiotemporal pattern of geochemical evolution and resulting streamflow concentration-discharge (C-Q) relation, but these flow paths are complex and difficult to map quantitatively. Here we couple a new integrated flow and particle tracking transport model with a general reversible Transition State Theory style dissolution rate law to explore theoretically how C-Q relations and concentration in the critical zone respond to decline in saturated hydraulic conductivity (Ks) with soil depth. We do this for a range of flow rates and mineral reaction kinetics. Our results show that for minerals with a high ratio of equilibrium concentration (Ceq) to intrinsic weathering rate (Rmax), vertical heterogeneity in Ks enhances the gradient of weathering-derived solute concentration in the critical zone and strengthens the inverse stream C-Q relation. As CeqRmax decreases, the spatial distribution of concentration in the critical zone becomes more uniform for a wide range of flow rates, and stream C-Q relation approaches chemostatic behavior, regardless of the degree of vertical heterogeneity in Ks. These findings suggest that the transport-controlled mechanisms in the hillslope can lead to chemostatic C-Q relations in the stream while the hillslope surface reaction-controlled mechanisms are associated with an inverse stream C-Q relation. In addition, as CeqRmax decreases, the concentration in the critical zone and stream become less dependent on groundwater age (or transit time).

  11. Preload assessment and optimization in critically ill patients.

    PubMed

    Voga, Gorazd

    2010-01-01

    Preload assessment and optimization is the basic hemodynamic intervention in critically ill. Beside clinical assessment, non-invasive or invasive assessment by measurement of various pressure or volume hemodynamic variables, are helpful for estimation of preload and fluid responsiveness. The use of dynamic variables is useful in particular subgroup of critically ill patients. In patients with inadequate preload, fluid responsiveness and inadequate flow, treatment with crystalloids or colloids is mandatory. When rapid hemodynamic response is necessary colloids are preferred.

  12. Downhole steam quality measurement

    DOEpatents

    Lee, David O.; Montoya, Paul C.; Muir, James F.; Wayland, Jr., J. Robert

    1987-01-01

    An empirical method for the remote sensing of steam quality that can be easily adapted to downhole steam quality measurements by measuring the electrical properties of two-phase flow across electrode grids at low frequencies.

  13. Study on Full Supply Chain Quality and Safetytraceability Systems For Cereal And Oilproducts

    NASA Astrophysics Data System (ADS)

    Liu, Shihong; Zheng, Huoguo; Meng, Hong; Hu, Haiyan; Wu, Jiangshou; Li, Chunhua

    Global food industry and Governments in many countries are putting increasing emphasis on establishment of food traceability systems. Food traceability has become an effective way in food safety management. Aimed at the major quality problems of cereal and oil products existing in the production, processing, warehousing, distribution and other links in the supply chain, this paper firstly proposes a new traceability framework combines the information flow with critical control points and quality indicators. Then it introduces traceability database design and data access mode to realize the framework. In practice, Code design for tracing goods is a challenge thing, so this paper put forward a code system based on UCC/EAN-128 standard.Middleware and Electronic terminal design are also briefly introduced to accomplish traceability system for cereal and oil products.

  14. Effects of flow sheet implementation on physician performance in the management of asthmatic patients.

    PubMed

    Ruoff, Gary

    2002-01-01

    This project focused on increasing compliance, in a large family practice group, with quality indicators for the management of asthma. The objective was to determine if use of a flow sheet incorporating the Global Initiative for Asthma (GINA) guidelines could improve compliance with those guidelines if the flow sheet was placed in patients' medical records. After review and selection of 14 clinical quality indicators, physicians in the practice implemented a flow sheet as an intervention. These flow sheets were inserted into the records of 122 randomly selected patients with asthma. Medical records were reviewed before the flow sheets were placed in the records, and again approximately 6 months later, to determine if there was a change in compliance with the quality indicators. Improvement of documentation was demonstrated in 13 of the 14 quality indicators. The results indicate that compliance with asthma management quality indicators can improve with the use of a flow sheet.

  15. Stability of carotid artery under steady-state and pulsatile blood flow: a fluid-structure interaction study.

    PubMed

    Saeid Khalafvand, Seyed; Han, Hai-Chao

    2015-06-01

    It has been shown that arteries may buckle into tortuous shapes under lumen pressure, which in turn could alter blood flow. However, the mechanisms of artery instability under pulsatile flow have not been fully understood. The objective of this study was to simulate the buckling and post-buckling behaviors of the carotid artery under pulsatile flow using a fully coupled fluid-structure interaction (FSI) method. The artery wall was modeled as a nonlinear material with a two-fiber strain-energy function. FSI simulations were performed under steady-state flow and pulsatile flow conditions with a prescribed flow velocity profile at the inlet and different pressures at the outlet to determine the critical buckling pressure. Simulations were performed for normal (160 ml/min) and high (350 ml/min) flow rates and normal (1.5) and reduced (1.3) axial stretch ratios to determine the effects of flow rate and axial tension on stability. The results showed that an artery buckled when the lumen pressure exceeded a critical value. The critical mean buckling pressure at pulsatile flow was 17-23% smaller than at steady-state flow. For both steady-state and pulsatile flow, the high flow rate had very little effect (<5%) on the critical buckling pressure. The fluid and wall stresses were drastically altered at the location with maximum deflection. The maximum lumen shear stress occurred at the inner side of the bend and maximum tensile wall stresses occurred at the outer side. These findings improve our understanding of artery instability in vivo.

  16. Stability of Carotid Artery Under Steady-State and Pulsatile Blood Flow: A Fluid–Structure Interaction Study

    PubMed Central

    Saeid Khalafvand, Seyed; Han, Hai-Chao

    2015-01-01

    It has been shown that arteries may buckle into tortuous shapes under lumen pressure, which in turn could alter blood flow. However, the mechanisms of artery instability under pulsatile flow have not been fully understood. The objective of this study was to simulate the buckling and post-buckling behaviors of the carotid artery under pulsatile flow using a fully coupled fluid–structure interaction (FSI) method. The artery wall was modeled as a nonlinear material with a two-fiber strain-energy function. FSI simulations were performed under steady-state flow and pulsatile flow conditions with a prescribed flow velocity profile at the inlet and different pressures at the outlet to determine the critical buckling pressure. Simulations were performed for normal (160 ml/min) and high (350 ml/min) flow rates and normal (1.5) and reduced (1.3) axial stretch ratios to determine the effects of flow rate and axial tension on stability. The results showed that an artery buckled when the lumen pressure exceeded a critical value. The critical mean buckling pressure at pulsatile flow was 17–23% smaller than at steady-state flow. For both steady-state and pulsatile flow, the high flow rate had very little effect (<5%) on the critical buckling pressure. The fluid and wall stresses were drastically altered at the location with maximum deflection. The maximum lumen shear stress occurred at the inner side of the bend and maximum tensile wall stresses occurred at the outer side. These findings improve our understanding of artery instability in vivo. PMID:25761257

  17. Scaling phenomena in the Internet: Critically examining criticality

    PubMed Central

    Willinger, Walter; Govindan, Ramesh; Jamin, Sugih; Paxson, Vern; Shenker, Scott

    2002-01-01

    Recent Internet measurements have found pervasive evidence of some surprising scaling properties. The two we focus on in this paper are self-similar scaling in the burst patterns of Internet traffic and, in some contexts, scale-free structure in the network's interconnection topology. These findings have led to a number of proposed models or “explanations” of such “emergent” phenomena. Many of these explanations invoke concepts such as fractals, chaos, or self-organized criticality, mainly because these concepts are closely associated with scale invariance and power laws. We examine these criticality-based explanations of self-similar scaling behavior—of both traffic flows through the Internet and the Internet's topology—to see whether they indeed explain the observed phenomena. To do so, we bring to bear a simple validation framework that aims at testing whether a proposed model is merely evocative, in that it can reproduce the phenomenon of interest but does not necessarily capture and incorporate the true underlying cause, or indeed explanatory, in that it also captures the causal mechanisms (why and how, in addition to what). We argue that the framework can provide a basis for developing a useful, consistent, and verifiable theory of large networks such as the Internet. Applying the framework, we find that, whereas the proposed criticality-based models are able to produce the observed “emergent” phenomena, they unfortunately fail as sound explanations of why such scaling behavior arises in the Internet. PMID:11875212

  18. Long-Term Survival, Quality of Life, and Quality-Adjusted Survival in Critically Ill Patients With Cancer.

    PubMed

    Normilio-Silva, Karina; de Figueiredo, Adelaide Cristina; Pedroso-de-Lima, Antonio Carlos; Tunes-da-Silva, Gisela; Nunes da Silva, Adriana; Delgado Dias Levites, Andresa; de-Simone, Ana Tereza; Lopes Safra, Patrícia; Zancani, Roberta; Tonini, Paula Camilla; Vasconcelos de Andrade E Silva, Ulysses; Buosi Silva, Thiago; Martins Giorgi, Juliana; Eluf-Neto, José; Costa, Anderson; Abrahão Hajjar, Ludhmila; Biasi Cavalcanti, Alexandre

    2016-07-01

    To assess the long-term survival, health-related quality of life, and quality-adjusted life years of cancer patients admitted to ICUs. Prospective cohort. Two cancer specialized ICUs in Brazil. A total of 792 participants. None. The health-related quality of life before ICU admission; at 15 days; and at 3, 6, 12, and 18 months was assessed with the EQ-5D-3L. In addition, the vital status was assessed at 24 months. The mean age of the subjects was 61.6 ± 14.3 years, 42.5% were female subjects and half were admitted after elective surgery. The mean Simplified Acute Physiology Score 3 was 47.4 ± 15.6. Survival at 12 and 18 months was 42.4% and 38.1%, respectively. The mean EQ-5D-3L utility measure before admission to the ICU was 0.47 ± 0.43, at 15 days it was 0.41 ± 0.44, at 90 days 0.56 ± 0.42, at 6 months 0.60 ± 0.41, at 12 months 0.67 ± 0.35, and at 18 months 0.67 ± 0.35. The probabilities for attaining 12 and 18 months of quality-adjusted survival were 30.1% and 19.1%, respectively. There were statistically significant differences in survival time and quality-adjusted life years according to all assessed baseline characteristics (ICU admission after elective surgery, emergency surgery, or medical admission; Simplified Acute Physiology Score 3; cancer extension; cancer status; previous surgery; previous chemotherapy; previous radiotherapy; performance status; and previous health-related quality of life). Only the previous health-related quality of life and performance status were associated with the health-related quality of life during the 18-month follow-up. Long-term survival, health-related quality of life, and quality-adjusted life year expectancy of cancer patients admitted to the ICU are limited. Nevertheless, these clinical outcomes exhibit wide variability among patients and are associated with simple characteristics present at the time of ICU admission, which may help healthcare professionals estimate patients

  19. Flow quality experiment in a tandem nozzle wind tunnel at Mach 3

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Zamre, Pradip; Radespiel, Rolf

    2015-01-01

    In this study, the disturbance characterization and flow quality improvement of a newly designed Tandem Nozzle Mach 3 Wind Tunnel are presented. Firstly, a combined modal analysis is conducted to characterize the freestream disturbances with initial set-up of the settling chamber by using a Pitot probe and a hot-wire anemometry. Then, disturbance reduction in the supersonic wind tunnel is investigated by inserting various damping materials into the settling chamber, while a Pitot probe instrumented with Kulite sensor is employed to monitor the variation of the Pitot pressure fluctuation in the test section. Eventually, an optimized configuration of the settling chamber is determined by a combination of certain damping materials. Afterward, the freestream disturbances are re-characterized with the optimized set-up of the settling chamber, and the disturbance level is found to be significantly reduced. Through this study, valuable experience has been acquired for the disturbance reduction in tandem nozzle type supersonic wind tunnel for the first time, which enhances the feasibility of extending the operation range of conventional hypersonic Ludwieg tubes.

  20. Representation and display of vector field topology in fluid flow data sets

    NASA Technical Reports Server (NTRS)

    Helman, James; Hesselink, Lambertus

    1989-01-01

    The visualization of physical processes in general and of vector fields in particular is discussed. An approach to visualizing flow topology that is based on the physics and mathematics underlying the physical phenomenon is presented. It involves determining critical points in the flow where the velocity vector vanishes. The critical points, connected by principal lines or planes, determine the topology of the flow. The complexity of the data is reduced without sacrificing the quantitative nature of the data set. By reducing the original vector field to a set of critical points and their connections, a representation of the topology of a two-dimensional vector field that is much smaller than the original data set but retains with full precision the information pertinent to the flow topology is obtained. This representation can be displayed as a set of points and tangent curves or as a graph. Analysis (including algorithms), display, interaction, and implementation aspects are discussed.

  1. Turbulent mixing of a critical fluid: The non-perturbative renormalization

    NASA Astrophysics Data System (ADS)

    Hnatič, M.; Kalagov, G.; Nalimov, M.

    2018-01-01

    Non-perturbative Renormalization Group (NPRG) technique is applied to a stochastical model of a non-conserved scalar order parameter near its critical point, subject to turbulent advection. The compressible advecting flow is modeled by a random Gaussian velocity field with zero mean and correlation function 〈υjυi 〉 ∼ (Pji⊥ + αPji∥) /k d + ζ. Depending on the relations between the parameters ζ, α and the space dimensionality d, the model reveals several types of scaling regimes. Some of them are well known (model A of equilibrium critical dynamics and linear passive scalar field advected by a random turbulent flow), but there is a new nonequilibrium regime (universality class) associated with new nontrivial fixed points of the renormalization group equations. We have obtained the phase diagram (d, ζ) of possible scaling regimes in the system. The physical point d = 3, ζ = 4 / 3 corresponding to three-dimensional fully developed Kolmogorov's turbulence, where critical fluctuations are irrelevant, is stable for α ≲ 2.26. Otherwise, in the case of "strong compressibility" α ≳ 2.26, the critical fluctuations of the order parameter become relevant for three-dimensional turbulence. Estimations of critical exponents for each scaling regime are presented.

  2. Model of Transition from Laminar to Turbulent Flow

    NASA Astrophysics Data System (ADS)

    Kanda, Hidesada

    2001-11-01

    For circular pipe flows, a model of transition from laminar to turbulent flow has already been proposed and the minimum critical Reynolds number of approximately 2040 was obtained (Kanda, 1999). In order to prove the validity of the model, another verification is required. Thus, for plane Poiseuille flow, results of previous investigations were studied, focusing on experimental data on the critical Reynolds number Rc, the entrance length, and the transition length. Consequently, concerning the natural transition, it was confirmed from the experimental data that (i) the transition occurs in the entrance region, (ii) Rc increases as the contraction ratio in the inlet section increases, and (iii) the minimum Rc is obtained when the contraction ratio is the smallest or one, and there is no-bellshaped entrance or straight parallel plates. Its value exists in the neighborhood of 1300, based on the channel height and the average velocity. Although, for Hagen-Poiseuille flow, the minimum Rc is approximately 2000, based on the pipe diameter and the average velocity, there seems to be no significant difference in the transition from laminar to turbulent flow between Hagen-Poiseuille flow and plane Poiseuille flow (Kanda, 2001). Rc is determined by the shape of the inlet. Kanda, H., 1999, Proc. of ASME Fluids Engineering Division - 1999, FED-Vol. 250, pp. 197-204. Kanda, H., 2001, Proc. of ASME Fluids Engineering Division - 2001.

  3. Embrittlement and Flow Localization in Reactor Structural Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xianglin Wu; Xiao Pan; James Stubbins

    2006-10-06

    Many reactor components and structural members are made from metal alloys due, in large part, to their strength and ability to resist brittle fracture by plastic deformation. However, brittle fracture can occur when structural material cannot undergo extensive, or even limited, plastic deformation due to irradiation exposure. Certain irradiation conditions lead to the development of a damage microstructure where plastic flow is limited to very small volumes or regions of material, as opposed to the general plastic flow in unexposed materials. This process is referred to as flow localization or plastic instability. The true stress at the onset of neckingmore » is a constant regardless of the irradiation level. It is called 'critical stress' and this critical stress has strong temperature dependence. Interrupted tensile testes of 316L SS have been performed to investigate the microstructure evolution and competing mechanism between mechanic twinning and planar slip which are believed to be the controlling mechanism for flow localization. Deformation twinning is the major contribution of strain hardening and good ductility for low temperatures, and the activation of twinning system is determined by the critical twinning stress. Phases transform and texture analyses are also discussed in this study. Finite element analysis is carried out to complement the microstructural analysis and for the prediction of materaials performance with and without stress concentration and irradiation.« less

  4. Flow Pattern Phenomena in Two-Phase Flow in Microchannels

    NASA Astrophysics Data System (ADS)

    Keska, Jerry K.; Simon, William E.

    2004-02-01

    Space transportation systems require high-performance thermal protection and fluid management techniques for systems ranging from cryogenic fluid management devices to primary structures and propulsion systems exposed to extremely high temperatures, as well as for other space systems such as cooling or environment control for advanced space suits and integrated circuits. Although considerable developmental effort is being expended to bring potentially applicable technologies to a readiness level for practical use, new and innovative methods are still needed. One such method is the concept of Advanced Micro Cooling Modules (AMCMs), which are essentially compact two-phase heat exchangers constructed of microchannels and designed to remove large amounts of heat rapidly from critical systems by incorporating phase transition. The development of AMCMs requires fundamental technological advancement in many areas, including: (1) development of measurement methods/systems for flow-pattern measurement/identification for two-phase mixtures in microchannels; (2) development of a phenomenological model for two-phase flow which includes the quantitative measure of flow patterns; and (3) database development for multiphase heat transfer/fluid dynamics flows in microchannels. This paper focuses on the results of experimental research in the phenomena of two-phase flow in microchannels. The work encompasses both an experimental and an analytical approach to incorporating flow patterns for air-water mixtures flowing in a microchannel, which are necessary tools for the optimal design of AMCMs. Specifically, the following topics are addressed: (1) design and construction of a sensitive test system for two-phase flow in microchannels, one which measures ac and dc components of in-situ physical mixture parameters including spatial concentration using concomitant methods; (2) data acquisition and analysis in the amplitude, time, and frequency domains; and (3) analysis of results

  5. Flow behaviour and transitions in surfactant-laden gas-liquid vertical flows

    NASA Astrophysics Data System (ADS)

    Zadrazil, Ivan; Chakraborty, Sourojeet; Matar, Omar; Markides, Christos

    2016-11-01

    The aim of this work is to elucidate the effect of surfactant additives on vertical gas-liquid counter-current pipe flows. Two experimental campaigns were undertaken, one with water and one with a light oil (Exxsol D80) as the liquid phase; in both cases air was used as the gaseous phase. Suitable surfactants were added to the liquid phase up to the critical micelle concentration (CMC); measurements in the absence of additives were also taken, for benchmarking. The experiments were performed in a 32-mm bore and 5-m long vertical pipe, over a range of superficial velocities (liquid: 1 to 7 m/s, gas: 1 to 44 m/s). High-speed axial- and side-view imaging was performed at different lengths along the pipe, together with pressure drop measurements. Flow regime maps were then obtained describing the observed flow behaviour and related phenomena, i.e., downwards/upwards annular flow, flooding, bridging, gas/liquid entrainment, oscillatory film flow, standing waves, climbing films, churn flow and dryout. Comparisons of the air-water and oil-water results will be presented and discussed, along with the role of the surfactants in affecting overall and detailed flow behaviour and transitions; in particular, a possible mechanism underlying the phenomenon of flooding will be presented. EPSRC UK Programme Grant EP/K003976/1.

  6. Inertial objects in complex flows

    NASA Astrophysics Data System (ADS)

    Syed, Rayhan; Ho, George; Cavas, Samuel; Bao, Jialun; Yecko, Philip

    2017-11-01

    Chaotic Advection and Finite Time Lyapunov Exponents both describe stirring and transport in complex and time-dependent flows, but FTLE analysis has been largely limited to either purely kinematic flow models or high Reynolds number flow field data. The neglect of dynamic effects in FTLE and Lagrangian Coherent Structure studies has stymied detailed information about the role of pressure, Coriolis effects and object inertia. We present results of laboratory and numerical experiments on time-dependent and multi-gyre Stokes flows. In the lab, a time-dependent effectively two-dimensional low Re flow is used to distinguish transport properties of passive tracer from those of small paramagnetic spheres. Companion results of FTLE calculations for inertial particles in a time-dependent multi-gyre flow are presented, illustrating the critical roles of density, Stokes number and Coriolis forces on their transport. Results of Direct Numerical Simulations of fully resolved inertial objects (spheroids) immersed in a three dimensional (ABC) flow show the role of shape and finite size in inertial transport at small finite Re. We acknowledge support of NSF DMS-1418956.

  7. High quality and uniformity GaN grown on 150 mm Si substrate using in-situ NH3 pulse flow cleaning process

    NASA Astrophysics Data System (ADS)

    Ji, Panfeng; Yang, Xuelin; Feng, Yuxia; Cheng, Jianpeng; Zhang, Jie; Hu, Anqi; Song, Chunyan; Wu, Shan; Shen, Jianfei; Tang, Jun; Tao, Chun; Pan, Yaobo; Wang, Xinqiang; Shen, Bo

    2017-04-01

    By using in-situ NH3 pulse flow cleaning method, we have achieved the repeated growth of high quality and uniformity GaN and AlGaN/GaN high electron mobility transistors (HEMTs) on 150 mm Si substrate. The two dimensional electron gas (2DEG) mobility is 2200 cm2/Vs with an electron density of 7.3 × 1012 cm-2. The sheet resistance is 305 ± 4 Ω/□ with ±1.3% variation. The achievement is attributed to the fact that this method can significantly remove the Al, Ga, etc. metal droplets coating on the post growth flow flange and reactor wall which are difficult to clean by normal bake process under H2 ambient.

  8. Uncertainty in simulated groundwater-quality trends in transient flow

    USGS Publications Warehouse

    Starn, J. Jeffrey; Bagtzoglou, Amvrossios; Robbins, Gary A.

    2013-01-01

    In numerical modeling of groundwater flow, the result of a given solution method is affected by the way in which transient flow conditions and geologic heterogeneity are simulated. An algorithm is demonstrated that simulates breakthrough curves at a pumping well by convolution-based particle tracking in a transient flow field for several synthetic basin-scale aquifers. In comparison to grid-based (Eulerian) methods, the particle (Lagrangian) method is better able to capture multimodal breakthrough caused by changes in pumping at the well, although the particle method may be apparently nonlinear because of the discrete nature of particle arrival times. Trial-and-error choice of number of particles and release times can perhaps overcome the apparent nonlinearity. Heterogeneous aquifer properties tend to smooth the effects of transient pumping, making it difficult to separate their effects in parameter estimation. Porosity, a new parameter added for advective transport, can be accurately estimated using both grid-based and particle-based methods, but predictions can be highly uncertain, even in the simple, nonreactive case.

  9. Flow Through Cement Fracture Under Geological Carbon Sequestration Conditions: Critical Residence Time as a Unifying Parameter for Fracture Opening or Self-Sealing Behavior

    NASA Astrophysics Data System (ADS)

    Li, L.; Brunet, J. P. L.; Karpyn, Z.; Huerta, N. J.

    2016-12-01

    During geological carbon sequestration (GCS) large quantities of CO2 are injected in underground formations. Cement fractures represent preferential leakage pathways in abandoned wells upon exposure to CO2-rich fluid. Contrasting self- healing and fracture opening behavior have been observed while a unifying framework is still missing. The modelling of this process is challenging as it involves complex chemical, mechanical and transport interactions. We developed a process-based reactive transport model that explicitly simulates flow and multi-component reactive transport in fractured cement by reproducing experimental observations of sharp flow rate reduction during exposure to carbonated water. Mechanical interactions have not been included. The simulation shows a similar reaction network as in diffusion-controlled systems without flow. That is, CO2-rich water induced portlandite dissolution, releasing calcium that further reacted with carbonate to form calcite. This created localized changes in porosity and permeability inducing large differences in the long term response of the system through a complex positive feedback loop (e.g., a decrease in local permeability induces a decrease in flow that in turn amplifies the precipitation of calcite through a reduced acidic brine flow). The calibrated model was used to generate 250 numerical experiments of CO2-flooding in cement fractures with varying initial hydraulic apertures (b) and residence times (τ) defined as the ratio of fracture volume over flow rate. A long τ leads to slow replenishment of carbonated water, calcite precipitation, and self-sealing. The opposite occurs when τ is small with short fractures and fast flow rates. Simulation results indicate that a critical residence time τc - the minimum τ required for self-sealing -divides the conditions that trigger the diverging opening and self-sealing behavior. The τc value depends on the initial aperture size (see figure). Among the 250 simulated

  10. The precarious couple effect: verbally inhibited men + critical, disinhibited women = bad chemistry.

    PubMed

    Swann, William B; Rentfrow, Peter J; Gosling, Samuel D

    2003-12-01

    When critical, verbally disinhibited women are paired with verbally inhibited men, relationship quality suffers, rendering the relationship precarious. This effect theoretically emerges when (a). verbally disinhibited women pair with relatively inhibited men (man-more-inhibited couples) and (b). the disinhibition of women in man-more-inhibited couples amplifies women's criticalness and alienates men. Three studies (Ns=437, 300, and 564) provided evidence that relationship quality suffered in man-more-inhibited couples; a 4th study (N=168) showed that the criticalness of women in man-more-inhibited couples did indeed undermine relationship quality. Implications for understanding the impact of gender expectations on relationships and for integrating behavioral and personological approaches to close relationships are discussed.

  11. Climate change and wetland loss impacts on a western river's water quality

    NASA Astrophysics Data System (ADS)

    Records, R. M.; Arabi, M.; Fassnacht, S. R.; Duffy, W. G.; Ahmadi, M.; Hegewisch, K. C.

    2014-11-01

    An understanding of potential stream water quality conditions under future climate is critical for the sustainability of ecosystems and the protection of human health. Changes in wetland water balance under projected climate could alter wetland extent or cause wetland loss (e.g., via increased evapotranspiration and lower growing season flows leading to reduced riparian wetland inundation) or altered land use patterns. This study assessed the potential climate-induced changes to in-stream sediment and nutrient loads in the snowmelt-dominated Sprague River, Oregon, western US. Additionally, potential water quality impacts of combined changes in wetland water balance and wetland area under future climatic conditions were evaluated. The study utilized the Soil and Water Assessment Tool (SWAT) forced with statistical downscaling of general circulation model (GCM) data from the Coupled Model Intercomparison Project 5 (CMIP5) using the Multivariate Adaptive Constructed Analogs (MACA) method. Our findings suggest that, in the Sprague River, (1) mid-21st century nutrient and sediment loads could increase significantly during the high-flow season under warmer, wetter climate projections or could change only nominally in a warmer and somewhat drier future; (2) although water quality conditions under some future climate scenarios and no wetland loss may be similar to the past, the combined impact of climate change and wetland losses on nutrient loads could be large; (3) increases in stream total phosphorus (TP) concentration with wetland loss under future climate scenarios would be greatest at high-magnitude, low-probability flows; and (4) loss of riparian wetlands in both headwaters and lowlands could increase outlet TP loads to a similar degree, but this could be due to distinctly different mechanisms in different parts of the watershed.

  12. Development of an automated analysis system for data from flow cytometric intracellular cytokine staining assays from clinical vaccine trials

    PubMed Central

    Shulman, Nick; Bellew, Matthew; Snelling, George; Carter, Donald; Huang, Yunda; Li, Hongli; Self, Steven G.; McElrath, M. Juliana; De Rosa, Stephen C.

    2008-01-01

    Background Intracellular cytokine staining (ICS) by multiparameter flow cytometry is one of the primary methods for determining T cell immunogenicity in HIV-1 clinical vaccine trials. Data analysis requires considerable expertise and time. The amount of data is quickly increasing as more and larger trials are performed, and thus there is a critical need for high throughput methods of data analysis. Methods A web based flow cytometric analysis system, LabKey Flow, was developed for analyses of data from standardized ICS assays. A gating template was created manually in commercially-available flow cytometric analysis software. Using this template, the system automatically compensated and analyzed all data sets. Quality control queries were designed to identify potentially incorrect sample collections. Results Comparison of the semi-automated analysis performed by LabKey Flow and the manual analysis performed using FlowJo software demonstrated excellent concordance (concordance correlation coefficient >0.990). Manual inspection of the analyses performed by LabKey Flow for 8-color ICS data files from several clinical vaccine trials indicates that template gates can appropriately be used for most data sets. Conclusions The semi-automated LabKey Flow analysis system can analyze accurately large ICS data files. Routine use of the system does not require specialized expertise. This high-throughput analysis will provide great utility for rapid evaluation of complex multiparameter flow cytometric measurements collected from large clinical trials. PMID:18615598

  13. Critical Research and the Future of Literacy Education

    ERIC Educational Resources Information Center

    Morrell, Ernest

    2009-01-01

    This commentary argues for a specific conception of research, what the author and others call "critical research." The author asserts that critical research can help educators to identify quality teaching in literacy classrooms even as it helps to refine (or even redefine) their notions of curricula, pedagogy, literacy, and achievement. Here, the…

  14. Urethral anatomy and semen flow during ejaculation

    NASA Astrophysics Data System (ADS)

    Kelly, Diane

    2016-11-01

    Ejaculation is critical for reproductive success in many animals, but little is known about its hydrodynamics. In mammals, ejaculation pushes semen along the length of the penis through the urethra. Although the urethra also carries urine during micturition, the flow dynamics of micturition and ejaculation differ: semen is more viscous than urine, and the pressure that drives its flow is derived primarily from the rhythmic contractions of muscles at the base of the penis, which produce pulsatile rather than steady flow. In contrast, Johnston et al. (2014) describe a steady flow of semen through the crocodilian urethral groove during ejaculation. Anatomical differences of tissues associated with mammalian and crocodilian urethral structures may underlie these differences in flow behavior.

  15. Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Sankovic, John; Lekan, Jack

    2006-01-01

    The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.

  16. Environmental flow assessments in estuaries related to preference of phytoplankton

    NASA Astrophysics Data System (ADS)

    Yang, Z. F.; Sun, T.; Zhao, R.

    2014-01-01

    We developed an approach to assess environmental flows in estuaries related to preference of phytoplankton considering the complex relationship between hydrological modification and biomass in ecosystems. As a first step, a relationship was established between biomass requirements for organisms of primary and higher nutritional levels based on the principle of nutritional energy flow of ecosystem. Then, diagnostic pigments were employed to represent phytoplankton community biomass, which indicated competition between two groups of phytoplankton in the biochemistry process. Considering empirical relationships between diagnostic pigments and critical environmental factors, responses of biomass to river discharges were established based on a convection-diffusion model by simulating distributions of critical environmental factors under action of river discharges and tide currents. Consequently, environmental flows could be recommended for different requirements of fish biomass. In the case study in the Yellow River estuary, May and October were identified as critical months for fish reproduction and growth during dry years. Artificial hydrological regulation strategies should carefully consider the temporal variations of natural flow regime, especially for a high-amplitude flood pulse, which may cause negative effects on phytoplankton groups and higher organism biomass.

  17. Critical and post-critical behaviour of two-degree-of-freedom flutter-based generators

    NASA Astrophysics Data System (ADS)

    Pigolotti, Luca; Mannini, Claudio; Bartoli, Gianni; Thiele, Klaus

    2017-09-01

    Energy harvesting from flow-induced vibrations is a recent research field, which considers a diverse range of systems, among which two-degree-of-freedom flutter-based solutions were individuated as good candidates to obtain high energy performance. In the present work, numerical linear analyses and wind-tunnel tests were conducted on a flat-plate sectional model. The aim is to identify some design guidelines for generators exploiting the classical-flutter instability, through the investigation of the critical condition and the response during the post-critical regime. Many sets of governing parameters of interest from the energy-harvesting point of view were considered, including high levels of heaving damping to simulate the operation of a conversion apparatus. In particular, eccentricity of the elastic centre and small downstream mass unbalance can be introduced as solutions aiming at optimal operative ranges. The collected results suggest the high potentiality of flutter-based generators, and a significant enhancement of performance can be envisaged. Moreover, they contribute to improve the knowledge of the flutter excitation mechanism and to widen the dataset of measurements in the post-critical regime.

  18. Exact coherent structures in an asymptotically reduced description of parallel shear flows

    NASA Astrophysics Data System (ADS)

    Beaume, Cédric; Knobloch, Edgar; Chini, Gregory P.; Julien, Keith

    2015-02-01

    A reduced description of shear flows motivated by the Reynolds number scaling of lower-branch exact coherent states in plane Couette flow (Wang J, Gibson J and Waleffe F 2007 Phys. Rev. Lett. 98 204501) is constructed. Exact time-independent nonlinear solutions of the reduced equations corresponding to both lower and upper branch states are found for a sinusoidal, body-forced shear flow. The lower branch solution is characterized by fluctuations that vary slowly along the critical layer while the upper branch solutions display a bimodal structure and are more strongly focused on the critical layer. The reduced equations provide a rational framework for investigations of subcritical spatiotemporal patterns in parallel shear flows.

  19. Critical de Broglie wavelength in superconductors

    NASA Astrophysics Data System (ADS)

    Talantsev, E. F.

    2018-03-01

    There are growing numbers of experimental evidences that the self-field critical currents, Jc(sf,T), are a new instructive tool to investigate fundamental properties of superconductors ranging from atomically thin films [M. Liao et al., Nat. Phys. 6 (2018), https://doi.org/10.1038/s41567-017-0031-6; E. F. Talantsev et al., 2D Mater. 4 (2017) 025072; A. Fete et al., Appl. Phys. Lett. 109 (2016) 192601] to millimeter-scale samples [E. F. Talantsev et al., Sci. Rep. 7 (2017) 10010]. The basic empirical equation which quantitatively accurately described experimental Jc(sf,T) was proposed by Talantsev and Tallon [Nat. Commun. 6 (2015) 7820] and it was the relevant critical field (i.e. thermodynamic field, Bc, for type-I and lower critical field, Bc1, for type-II superconductors) divided by the London penetration depth, λL. In this paper, we report new findings relating to this empirical equation. It is that the critical wavelength of the de Broglie wave, λdB,c, of the superconducting charge carrier which within a numerical pre-factor is equal to the largest of two characteristic lengths of Ginzburg-Landau theory, i.e. the coherence length, ξ, for type-I superconductors or the London penetration depth, λL, for type-II superconductors. We also formulate a microscopic criterion for the onset of dissipative transport current flow: ps ṡ 2ṡλL ln(1+2ṡ(λL ξ )) ≥ 1 2 ṡ ( h 2π), where ps is the charge carrier momentum, h is Planck’s constant and the inequality sign “ <” is reserved for the dissipation-free flow.

  20. Traffic flow in the operating room: an explorative and descriptive study on air quality during orthopedic trauma implant surgery.

    PubMed

    Andersson, Annette Erichsen; Bergh, Ingrid; Karlsson, Jón; Eriksson, Bengt I; Nilsson, Kerstin

    2012-10-01

    Understanding the protective potential of operating room (OR) ventilation under different conditions is crucial to optimizing the surgical environment. This study investigated the air quality, expressed as colony-forming units (CFU)/m(3), during orthopedic trauma surgery in a displacement-ventilated OR; explored how traffic flow and the number of persons present in the OR affects the air contamination rate in the vicinity of surgical wounds; and identified reasons for door openings in the OR. Data collection, consisting of active air sampling and observations, was performed during 30 orthopedic procedures. In 52 of the 91 air samples collected (57%), the CFU/m(3) values exceeded the recommended level of <10 CFU/m(3). In addition, the data showed a strongly positive correlation between the total CFU/m(3) per operation and total traffic flow per operation (r = 0.74; P = .001; n = 24), after controlling for duration of surgery. A weaker, yet still positive correlation between CFU/m(3) and the number of persons present in the OR (r = 0.22; P = .04; n = 82) was also found. Traffic flow, number of persons present, and duration of surgery explained 68% of the variance in total CFU/m(3) (P = .001). Traffic flow has a strong negative impact on the OR environment. The results of this study support interventions aimed at preventing surgical site infections by reducing traffic flow in the OR. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  1. Improving the Quality of Electronic Documentation in Critical Care Nursing

    ERIC Educational Resources Information Center

    Stevens, Brent

    2017-01-01

    Electronic nursing documentation systems can facilitate complete, accurate, timely documentation practices, but without effective policies and procedures in place, a gap in practice exists and quality of care may be impacted. This systematic review of literature examined current evidence regarding electronic nursing documentation quality. General…

  2. Methodological Issues Surrounding the Use of Baseline Health-Related Quality of Life Data to Inform Trial-Based Economic Evaluations of Interventions Within Emergency and Critical Care Settings: A Systematic Literature Review.

    PubMed

    Dritsaki, Melina; Achana, Felix; Mason, James; Petrou, Stavros

    2017-05-01

    Trial-based cost-utility analyses require health-related quality of life data that generate utility values in order to express health outcomes in terms of quality-adjusted life years (QALYs). Assessments of baseline health-related quality of life are problematic where trial participants are incapacitated or critically ill at the time of randomisation. This review aims to identify and critique methods for handling non-availability of baseline health-related quality of life data in trial-based cost-utility analyses within emergency and critical illness settings. A systematic literature review was conducted, following PRISMA guidelines, to identify trial-based cost-utility analyses of interventions within emergency and critical care settings. Databases searched included the National Institute for Health Research (NIHR) Journals Library (1991-July 2016), Cochrane Library (all years); National Health Service (NHS) Economic Evaluation Database (all years) and Ovid MEDLINE/Embase (without time restriction). Strategies employed to handle non-availability of baseline health-related quality of life data in final QALY estimations were identified and critiqued. A total of 4224 published reports were screened, 19 of which met the study inclusion criteria (mean trial size 1670): 14 (74 %) from the UK, four (21%) from other European countries and one (5%) from India. Twelve studies (63%) were based in emergency departments and seven (37%) in intensive care units. Only one study was able to elicit patient-reported health-related quality of life at baseline. To overcome the lack of baseline data when estimating QALYs, eight studies (42%) assigned a fixed utility weight corresponding to either death, an unconscious health state or a country-specific norm to patients at baseline, four (21%) ignored baseline utilities, three (16%) applied values from another study, one (5%) generated utility values via retrospective recall and one (5%) elicited utilities from experts. A preliminary

  3. Adapting Entry-Level Engineering Courses to Emphasize Critical Thinking

    ERIC Educational Resources Information Center

    Hagerty, D. Joseph; Rockaway, Thomas D.

    2012-01-01

    The University of Louisville recently developed a Quality Enhancement Plan (QEP) to improve undergraduate instruction across all disciplines as part of its ongoing accreditation requirements. Central elements of the plan are emphasis on critical thinking; integration of critical thinking throughout the curriculum; service learning for…

  4. Synchrotron x-ray imaging visualization study of capillary-induced flow and critical heat flux on surfaces with engineered micropillars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Dong In; Kwak, Ho Jae; Noh, Hyunwoo

    Over the past several decades, phenomena related to critical heat flux (CHF) on structured surfaces have received a large amount of attention from the research community. The purpose of such research has been to enhance the safety and efficiency of a variety of thermal systems. A number of theories have been put forward to explain the key CHF enhancement mechanisms on structured surfaces. However, these theories have not been confirmed experimentally due to limitations in the available visualization techniques and the complexity of the phenomena. To overcome the limitations of the previous visualization techniques and elucidate the CHF enhancement mechanismmore » on the structured surfaces, we introduce synchrotron X-ray imaging with high spatial (~2 μm) and time (~20,000 Hz) resolutions. Lastly, this technique has enabled us to confirm that capillary-induced flow is the key CHF enhancement mechanism on structured surfaces.« less

  5. Synchrotron x-ray imaging visualization study of capillary-induced flow and critical heat flux on surfaces with engineered micropillars

    DOE PAGES

    Yu, Dong In; Kwak, Ho Jae; Noh, Hyunwoo; ...

    2018-02-23

    Over the past several decades, phenomena related to critical heat flux (CHF) on structured surfaces have received a large amount of attention from the research community. The purpose of such research has been to enhance the safety and efficiency of a variety of thermal systems. A number of theories have been put forward to explain the key CHF enhancement mechanisms on structured surfaces. However, these theories have not been confirmed experimentally due to limitations in the available visualization techniques and the complexity of the phenomena. To overcome the limitations of the previous visualization techniques and elucidate the CHF enhancement mechanismmore » on the structured surfaces, we introduce synchrotron X-ray imaging with high spatial (~2 μm) and time (~20,000 Hz) resolutions. Lastly, this technique has enabled us to confirm that capillary-induced flow is the key CHF enhancement mechanism on structured surfaces.« less

  6. Critical bed shear stress and threshold of motion of maerl biogenic gravel

    NASA Astrophysics Data System (ADS)

    Joshi, Siddhi; Duffy, Garret Patrick; Brown, Colin

    2017-07-01

    A determination of the critical bed shear stress of maerl is a prerequisite for quantifying its mobility, rate of erosion and deposition in conservation management. The critical bed shear stress for incipient motion has been determined for the first time for samples from biogenic free-living maerl beds in three contrasting environments (open marine, intertidal and beach) in Galway Bay, west of Ireland. The bed shear stress was determined using two methods, Law of the Wall and Turbulent Kinetic Energy, in a rotating annular flume and in a linear flume. The velocity profile of flowing water above a bed of natural maerl grains was measured in four runs of progressively increasing flow velocity until the flow exceeded the critical shear stress of grains on the bed. The critical Shields parameter and the mobility number are estimated and compared with the equivalent curves for natural quartz sand. The critical Shields parameters for the maerl particles from all three environments fall below the Shields curve. Along with a previously reported correlation between maerl grain shape and settling velocity, these results suggest that the highly irregular shapes also allow maerl grains to be mobilised more easily than quartz grains with the same sieve diameter. The intertidal beds with the roughest particles exhibit the greatest critical shear stress because the particle thalli interlock and resist entrainment. In samples with a high percentage of maerl and low percentage of siliciclastic sand, the lower density, lower settling velocity and lower critical bed shear stress of maerl results in its preferential transport over the siliciclastic sediment. At velocities ∼10 cm s-1 higher than the threshold velocity of grain motion, rarely-documented subaqueous maerl dunes formed in the annular flume.

  7. Estimating flow-duration and low-flow frequency statistics for unregulated streams in Oregon.

    DOT National Transportation Integrated Search

    2008-08-01

    Flow statistical datasets, basin-characteristic datasets, and regression equations were developed to provide decision makers with surface-water information needed for activities such as water-quality regulation, water-rights adjudication, biological ...

  8. Development of digital flow control system for multi-channel variable-rate sprayers

    USDA-ARS?s Scientific Manuscript database

    Precision modulation of nozzle flow rates is a critical step for variable-rate spray applications in orchards and ornamental nurseries. An automatic flow rate control system activated with microprocessors and pulse width modulation (PWM) controlled solenoid valves was developed to control flow rates...

  9. Critical Readiness Review EHS Water Quality and Microbiology

    NASA Technical Reports Server (NTRS)

    Woo, Cindy

    2010-01-01

    Presentation reviews the status in reference to the Environmental, Health and Safety (EHS) of the water quality and microbiology for the International Space Station. It includes information about crew training, hardware delivery, and those items that will be returned for study.

  10. Surface-water, water-quality, and ground-water assessment of the Municipio of Carolina, Puerto Rico, 1997-99

    USGS Publications Warehouse

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Carolina, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resources data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated for one continuous-record gaging station, based on graphical curve-fitting techniques and log-Pearson Type III frequency analysis. Estimates of low-flow characteristics for seven partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics were computed for the one continuous-record gaging station and were estimated for the partial-record stations using the relation curves developed from the low-flow study. Stream low-flow statistics document the general hydrology under current land and water use. Low-flow statistics may substantially change as a result of streamflow diversions for public supply, and an increase in ground-water development, waste-water discharges, and flood-control measures; the current analysis provides baseline information to evaluate these impacts and develop water budgets. A sanitary quality survey of streams utilized 29 sampling stations to evaluate the sanitary quality of about 87 miles of stream channels. River and stream samples were collected on two occasions during base-flow conditions and were analyzed for fecal coliform and fecal streptococcus. Bacteriological analyses indicate that a significant portion of the stream reaches within the municipio of Carolina may have fecal coliform

  11. Assessment of Flow Control Devices for Transonic Cavity Flows Using DES and LES

    NASA Astrophysics Data System (ADS)

    Barakos, G. N.; Lawson, S. J.; Steijl, R.; Nayyar, P.

    Since the implementation of internal carriage of stores on military aircraft, transonic flows in cavities were put forward as a model problem for validation of CFD methods before design studies of weapon bays can be undertaken. Depending on the free-stream Mach number and the cavity dimensions, the flow inside the cavity can become very unsteady. Below a critical length-to-depth ratio (L/D), the flow has enough energy to span across the cavity opening and a shear layer develops. When the shear layer impacts the downstream cavity corner, acoustical disturbances are generated and propagated upstream, which in turn causes further instabilities at the cavity front and a feedback loop is maintained. The acoustic environment in the cavity is so harsh in these circumstances that the noise level at the cavity rear has been found to approach 170 dB and frequencies near 1 kHz are created. The effect of this unsteady environment on the structural integrity of the contents of the cavity (e.g. stores, avionics, etc.) can be serious. Above the critical L/D ratio, the shear layer no longer has enough energy to span across the cavity and dips into it. Although this does not produce as high noise levels and frequencies as shorter cavities, the differential pressure along the cavity produces large pitching moments making store release difficult. Computational fluid dynamics analysis of cavity flows, based on the Reynolds-Averaged Navier—Stokes equations was only able to capture some of the flow physics present. On the other hand, results obtained with Large-Eddy Simulation or Detached-Eddy Simulation methods fared much better and for the cases computed, quantitative and qualitative agreement with experimental data has been obtained.

  12. Modelling the breakup of solid aggregates in turbulent flows

    NASA Astrophysics Data System (ADS)

    B?Bler, Matth?Us U.; Morbidelli, Massimo; Ba?Dyga, Jerzy

    The breakup of solid aggregates suspended in a turbulent flow is considered. The aggregates are assumed to be small with respect to the Kolmogorov length scale and the flow is assumed to be homogeneous. Further, it is assumed that breakup is caused by hydrodynamic stresses acting on the aggregates, and breakup is therefore assumed to follow a first-order kinetic where KB(x) is the breakup rate function and x is the aggregate mass. To model KB(x), it is assumed that an aggregate breaks instantaneously when the surrounding flow is violent enough to create a hydrodynamic stress that exceeds a critical value required to break the aggregate. For aggregates smaller than the Kolmogorov length scale the hydrodynamic stress is determined by the viscosity and local energy dissipation rate whose fluctuations are highly intermittent. Hence, the first-order breakup kinetics are governed by the frequency with which the local energy dissipation rate exceeds a critical value (that corresponds to the critical stress). A multifractal model is adopted to describe the statistical properties of the local energy dissipation rate, and a power-law relation is used to relate the critical energy dissipation rate above which breakup occurs to the aggregate mass. The model leads to an expression for KB(x) that is zero below a limiting aggregate mass, and diverges for x . When simulating the breakup process, the former leads to an asymptotic mean aggregate size whose scaling with the mean energy dissipation rate differs by one third from the scaling expected in a non-fluctuating flow.

  13. Tropical Cyclogenesis in a Tropical Wave Critical Layer: Easterly Waves

    NASA Technical Reports Server (NTRS)

    Dunkerton, T. J.; Montgomery, M. T.; Wang, Z.

    2009-01-01

    The development of tropical depressions within tropical waves over the Atlantic and eastern Pacific is usually preceded by a "surface low along the wave" as if to suggest a hybrid wave-vortex structure in which flow streamlines not only undulate with the waves, but form a closed circulation in the lower troposphere surrounding the low. This structure, equatorward of the easterly jet axis, is identified herein as the familiar critical layer of waves in shear flow, a flow configuration which arguably provides the simplest conceptual framework for tropical cyclogenesis resulting from tropical waves, their interaction with the mean flow, and with diabatic processes associated with deep moist convection. The recirculating Kelvin cat's eye within the critical layer represents a sweet spot for tropical cyclogenesis in which a proto-vortex may form and grow within its parent wave. A common location for storm development is given by the intersection of the wave's critical latitude and trough axis at the center of the cat's eye, with analyzed vorticity centroid nearby. The wave and vortex live together for a time, and initially propagate at approximately the same speed. In most cases this coupled propagation continues for a few days after a tropical depression is identified. For easterly waves, as the name suggests, the propagation is westward. It is shown that in order to visualize optimally the associated Lagrangian motions, one should view the flow streamlines, or stream function, in a frame of reference translating horizontally with the phase propagation of the parent wave. In this co-moving frame, streamlines are approximately equivalent to particle trajectories. The closed circulation is quasi-stationary, and a dividing streamline separates air within the cat's eye from air outside.

  14. Critical differences between elective and emergency surgery: identifying domains for quality improvement in emergency general surgery.

    PubMed

    Columbus, Alexandra B; Morris, Megan A; Lilley, Elizabeth J; Harlow, Alyssa F; Haider, Adil H; Salim, Ali; Havens, Joaquim M

    2018-04-01

    The objective of our study was to characterize providers' impressions of factors contributing to disproportionate rates of morbidity and mortality in emergency general surgery to identify targets for care quality improvement. Emergency general surgery is characterized by a high-cost burden and disproportionate morbidity and mortality. Factors contributing to these observed disparities are not comprehensively understood and targets for quality improvement have not been formally developed. Using a grounded theory approach, emergency general surgery providers were recruited through purposive-criterion-based sampling to participate in semi-structured interviews and focus groups. Participants were asked to identify contributors to emergency general surgery outcomes, to define effective care for EGS patients, and to describe operating room team structure. Interviews were performed to thematic saturation. Transcripts were iteratively coded and analyzed within and across cases to identify emergent themes. Member checking was performed to establish credibility of the findings. A total of 40 participants from 5 academic hospitals participated in either individual interviews (n = 25 [9 anesthesia, 12 surgery, 4 nursing]) or focus groups (n = 2 [15 nursing]). Emergency general surgery was characterized by an exceptionally high level of variability, which can be subcategorized as patient-variability (acute physiology and comorbidities) and system-variability (operating room resources and workforce). Multidisciplinary communication is identified as a modifier to variability in emergency general surgery; however, nursing is often left out of early communication exchanges. Critical variability in emergency general surgery may impact outcomes. Patient-variability and system-variability, with focus on multidisciplinary communication, represent potential domains for quality improvement in this field. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Rational Selection, Criticality Assessment, and Tiering of Quality Attributes and Test Methods for Analytical Similarity Evaluation of Biosimilars.

    PubMed

    Vandekerckhove, Kristof; Seidl, Andreas; Gutka, Hiten; Kumar, Manish; Gratzl, Gyöngyi; Keire, David; Coffey, Todd; Kuehne, Henriette

    2018-05-10

    Leading regulatory agencies recommend biosimilar assessment to proceed in a stepwise fashion, starting with a detailed analytical comparison of the structural and functional properties of the proposed biosimilar and reference product. The degree of analytical similarity determines the degree of residual uncertainty that must be addressed through downstream in vivo studies. Substantive evidence of similarity from comprehensive analytical testing may justify a targeted clinical development plan, and thus enable a shorter path to licensing. The importance of a careful design of the analytical similarity study program therefore should not be underestimated. Designing a state-of-the-art analytical similarity study meeting current regulatory requirements in regions such as the USA and EU requires a methodical approach, consisting of specific steps that far precede the work on the actual analytical study protocol. This white paper discusses scientific and methodological considerations on the process of attribute and test method selection, criticality assessment, and subsequent assignment of analytical measures to US FDA's three tiers of analytical similarity assessment. Case examples of selection of critical quality attributes and analytical methods for similarity exercises are provided to illustrate the practical implementation of the principles discussed.

  16. Water quality and quantity and simulated surface-water and groundwater flow in the Laurel Hill Creek Basin, southwestern Pennsylvania, 1991–2007

    USGS Publications Warehouse

    Galeone, Daniel G.; Risser, Dennis W.; Eicholtz, Lee W.; Hoffman, Scott A.

    2017-07-10

    Laurel Hill Creek is considered one of the most pristine waterways in southwestern Pennsylvania and has high recreational value as a high-quality cold-water fishery; however, the upper parts of the basin have documented water-quality impairments. Groundwater and surface water are withdrawn for public water supply and the basin has been identified as a Critical Water Planning Area (CWPA) under the State Water Plan. The U.S. Geological Survey, in cooperation with the Somerset County Conservation District, collected data and developed modeling tools to support the assessment of water-quality and water-quantity issues for a basin designated as a CWPA. Streams, springs, and groundwater wells were sampled for water quality in 2007. Streamflows were measured concurrent with water-quality sampling at main-stem sites on Laurel Hill Creek and tributaries in 2007. Stream temperatures were monitored continuously at five main-stem sites from 2007 to 2010. Water usage in the basin was summarized for 2003 and 2009 and a Water-Analysis Screening Tool (WAST) developed for the Pennsylvania State Water Plan was implemented to determine whether the water use in the basin exceeded the “safe yield” or “the amount of water that can be withdrawn from a water resource over a period of time without impairing the long-term utility of a water resource.” A groundwater and surface-water flow (GSFLOW) model was developed for Laurel Hill Creek and calibrated to the measured daily streamflow from 1991 to 2007 for the streamflow-gaging station near the outlet of the basin at Ursina, Pa. The CWPA designation requires an assessment of current and future water use. The calibrated GSFLOW model can be used to assess the hydrologic effects of future changes in water use and land use in the basin.Analyses of samples collected for surface-water quality during base-flow conditions indicate that the highest nutrient concentrations in the main stem of Laurel Hill Creek were at sites in the

  17. Pulsatile Flow Across a Cylinder--An Investigation of Flow in a Total Artificial Lung

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chun

    2005-11-01

    The effect of pulsatility on flow across a single cylinder has been examined experimentally using particle image velocimetry. This work is motivated by the ongoing development of a total artificial lung (TAL), a device which would serve as a bridge to lung transplant. The prototype TAL consists of hollow microfibers through which oxygen-rich gas flows and blood flows around. Flow through the device is provided entirely by right heart and, therefore, is puslatile. The Peclet number of the flow is large and consequently the development of secondary flow affects the resulting gas exchange. The effects of frequency and average flow rate of pulsatile flow around a cylinder were investigated experimentally in a water tunnel and some of the results were compared with preliminary numerical results. Vortices developed behind the cylinder at lower Reynolds numbers in pulsatile flow than steady flow. The results indicate that there are critical values of the Reynolds number between 3 to 5 and Stokes numbers of 0.22, below which vortices were not observed. The findings suggest that higher Stokes and Reynolds numbers within the device could enhance vortex formation. However, this enhanced gas exchange could be at the expense of higher device resistance and increased likelihood of blood trauma. Intelligent TAL design will require consideration of these effects. This work is supported by NIH grant HL69420.

  18. Molecular simulation of flow-enhanced nucleation in n-eicosane melts under steady shear and uniaxial extension.

    PubMed

    Nicholson, David A; Rutledge, Gregory C

    2016-12-28

    Non-equilibrium molecular dynamics is used to study crystal nucleation of n-eicosane under planar shear and, for the first time, uniaxial extension. A method of analysis based on the mean first-passage time is applied to the simulation results in order to determine the effect of the applied flow field type and strain rate on the steady-state nucleation rate and a characteristic growth rate, as well as the effects on kinetic parameters associated with nucleation: the free energy barrier, critical nucleus size, and monomer attachment pre-factor. The onset of flow-enhanced nucleation (FEN) occurs at a smaller critical strain rate in extension as compared to shear. For strain rates larger than the critical rate, a rapid increase in the nucleation rate is accompanied by decreases in the free energy barrier and critical nucleus size, as well as an increase in chain extension. These observations accord with a mechanism in which FEN is caused by an increase in the driving force for crystallization due to flow-induced entropy reduction. At high applied strain rates, the free energy barrier, critical nucleus size, and degree of stretching saturate, while the monomer attachment pre-factor and degree of orientational order increase steadily. This trend is indicative of a significant diffusive contribution to the nucleation rate under intense flows that is correlated with the degree of global orientational order in a nucleating system. Both flow fields give similar results for all kinetic quantities with respect to the reduced strain rate, which we define as the ratio of the applied strain rate to the critical rate. The characteristic growth rate increases with increasing strain rate, and shows a correspondence with the nucleation rate that does not depend on the type of flow field applied. Additionally, a structural analysis of the crystalline clusters indicates that the flow field suppresses the compaction and crystalline ordering of clusters, leading to the formation of

  19. Quality risk management of top spray fluidized bed process for antihypertensive drug formulation with control strategy engendered by Box-behnken experimental design space.

    PubMed

    Mukharya, Amit; Patel, Paresh U; Shenoy, Dinesh; Chaudhary, Shivang

    2013-01-01

    Lacidipine (LCDP) is a very low soluble and highly biovariable calcium channel blocker used in the treatment of hypertension. To increase its apparent solubility and to reduce its biovariability, solid dispersion fluid bed processing technology was explored, as it produces highly dispersible granules with a characteristic porous structure that enhances dispersibility, wettability, blend uniformity (by dissolving and spraying a solution of actives), flow ability and compressibility of granules for tableting and reducing variability by uniform drug-binder solution distribution on carrier molecules. Main object of this quality risk management (QRM) study is to provide a sophisticated "robust and rugged" Fluidized Bed Process (FBP) for the preparation of LCDP tablets with desired quality (stability) and performance (dissolution) by quality by design (QbD) concept. THIS STUDY IS PRINCIPALLY FOCUSING ON THOROUGH MECHANISTIC UNDERSTANDING OF THE FBP BY WHICH IT IS DEVELOPED AND SCALED UP WITH A KNOWLEDGE OF THE CRITICAL RISKS INVOLVED IN MANUFACTURING PROCESS ANALYZED BY RISK ASSESSMENT TOOLS LIKE: Qualitative Initial Risk-based Matrix Analysis (IRMA) and Quantitative Failure Mode Effective Analysis (FMEA) to identify and rank parameters with potential to have an impact on In Process/Finished Product Critical Quality Attributes (IP/FP CQAs). These Critical Process Parameters (CPPs) were further refined by DoE and MVDA to develop design space with Real Time Release Testing (RTRT) that leads to implementation of a control strategy to achieve consistent finished product quality at lab scale itself to prevent possible product failure at larger manufacturing scale.

  20. Resource recovery from residual household waste: An application of exergy flow analysis and exergetic life cycle assessment.

    PubMed

    Laner, David; Rechberger, Helmut; De Soete, Wouter; De Meester, Steven; Astrup, Thomas F

    2015-12-01

    Exergy is based on the Second Law of thermodynamics and can be used to express physical and chemical potential and provides a unified measure for resource accounting. In this study, exergy analysis was applied to four residual household waste management scenarios with focus on the achieved resource recovery efficiencies. The calculated exergy efficiencies were used to compare the scenarios and to evaluate the applicability of exergy-based measures for expressing resource quality and for optimizing resource recovery. Exergy efficiencies were determined based on two approaches: (i) exergy flow analysis of the waste treatment system under investigation and (ii) exergetic life cycle assessment (LCA) using the Cumulative Exergy Extraction from the Natural Environment (CEENE) as a method for resource accounting. Scenario efficiencies of around 17-27% were found based on the exergy flow analysis (higher efficiencies were associated with high levels of material recycling), while the scenario efficiencies based on the exergetic LCA lay in a narrow range around 14%. Metal recovery was beneficial in both types of analyses, but had more influence on the overall efficiency in the exergetic LCA approach, as avoided burdens associated with primary metal production were much more important than the exergy content of the recovered metals. On the other hand, plastic recovery was highly beneficial in the exergy flow analysis, but rather insignificant in exergetic LCA. The two approaches thereby offered different quantitative results as well as conclusions regarding material recovery. With respect to resource quality, the main challenge for the exergy flow analysis is the use of exergy content and exergy losses as a proxy for resource quality and resource losses, as exergy content is not per se correlated with the functionality of a material. In addition, the definition of appropriate waste system boundaries is critical for the exergy efficiencies derived from the flow analysis, as it

  1. The role of nonlinear critical layers in boundary layer transition

    NASA Technical Reports Server (NTRS)

    Goldstein, M.E.

    1995-01-01

    Asymptotic methods are used to describe the nonlinear self-interaction between pairs of oblique instability modes that eventually develops when initially linear spatially growing instability waves evolve downstream in nominally two-dimensional laminar boundary layers. The first nonlinear reaction takes place locally within a so-called 'critical layer', with the flow outside this layer consisting of a locally parallel mean flow plus a pair of oblique instability waves - which may or may not be accompanied by an associated plane wave. The amplitudes of these waves, which are completely determined by nonlinear effects within the critical layer, satisfy either a single integro-differential equation or a pair of integro-differential equations with quadratic to quartic-type nonlinearities. The physical implications of these equations are discussed.

  2. Performance specifications of critical results management.

    PubMed

    Piva, Elisa; Sciacovelli, Laura; Pelloso, Michela; Plebani, Mario

    2017-07-01

    Formerly defined "critical values", the importance of critical results (CRs) management in patient care has grown in recent years. According to the George Lundberg definition the result becomes "critical" when, exceeding actionable thresholds, it suggests imminent danger for the patient, unless appropriate therapy is initiated promptly. As required in most important accreditation standards, such as the ISO:15,189 or the Joint Commission standards, a quality reporting system should deliver the correct result to the appropriate clinician in a time-frame that ensures patient safety. From this point of view, medical laboratories should implement a process that assures the most effective communication in a timely manner, to the referring physician or care team member. Failure in communication, particularly in this type of situation, continues to be one of the most common factors contributing to the occurrence of adverse events. In the last few decades, Information Technology (IT) in Health Care has become increasingly important. The ability to interface radiology, anatomic pathology or laboratory information systems with electronic medical records is now a real opportunity, offering much safer communication than in the past. Future achievements on performance criteria and quality indicators for the notification of CRs, should ensure a comparable examination across different institutions, adding value to clinical laboratories in controlling post-analytical processes that concern patient safety. Therefore, the novel approach to CRs should combine quality initiatives, IT solutions and a culture to strengthen professional interaction. Copyright © 2017. Published by Elsevier Inc.

  3. Hydrodynamic cavitation in Stokes flow of anisotropic fluids.

    PubMed

    Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G; Sengupta, Anupam

    2017-05-30

    Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and growth of the cavitation domain ensued in the Stokes regime, while no cavitation was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using simulations we identify a critical value of the Reynolds number for cavitation inception that scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number for anisotropic fluids can be 50% lower than that of isotropic fluids.

  4. Hydrodynamic cavitation in Stokes flow of anisotropic fluids

    NASA Astrophysics Data System (ADS)

    Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G.; Sengupta, Anupam

    2017-05-01

    Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and growth of the cavitation domain ensued in the Stokes regime, while no cavitation was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using simulations we identify a critical value of the Reynolds number for cavitation inception that scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number for anisotropic fluids can be 50% lower than that of isotropic fluids.

  5. Power formula for open-channel flow resistance

    USGS Publications Warehouse

    Chen, Cheng-lung

    1988-01-01

    This paper evaluates various power formulas for flow resistance in open channels. Unlike the logarithmic resistance equation that can be theoretically derived either from Prandtl's mixing-length hypothesis or von Karman's similarity hypothesis, the power formula has long had an appearance of empiricism. Nevertheless, the simplicity in the form of the power formula has made it popular among the many possible forms of flow resistance formulas. This paper reexamines the concept and rationale of the power formulation, thereby addressing some critical issues in the modeling of flow resistance.

  6. Critical cerebral perfusion pressure at high intracranial pressure measured by induced cerebrovascular and intracranial pressure reactivity.

    PubMed

    Bragin, Denis E; Statom, Gloria L; Yonas, Howard; Dai, Xingping; Nemoto, Edwin M

    2014-12-01

    The lower limit of cerebral blood flow autoregulation is the critical cerebral perfusion pressure at which cerebral blood flow begins to fall. It is important that cerebral perfusion pressure be maintained above this level to ensure adequate cerebral blood flow, especially in patients with high intracranial pressure. However, the critical cerebral perfusion pressure of 50 mm Hg, obtained by decreasing mean arterial pressure, differs from the value of 30 mm Hg, obtained by increasing intracranial pressure, which we previously showed was due to microvascular shunt flow maintenance of a falsely high cerebral blood flow. The present study shows that the critical cerebral perfusion pressure, measured by increasing intracranial pressure to decrease cerebral perfusion pressure, is inaccurate but accurately determined by dopamine-induced dynamic intracranial pressure reactivity and cerebrovascular reactivity. Cerebral perfusion pressure was decreased either by increasing intracranial pressure or decreasing mean arterial pressure and the critical cerebral perfusion pressure by both methods compared. Cortical Doppler flux, intracranial pressure, and mean arterial pressure were monitored throughout the study. At each cerebral perfusion pressure, we measured microvascular RBC flow velocity, blood-brain barrier integrity (transcapillary dye extravasation), and tissue oxygenation (reduced nicotinamide adenine dinucleotide) in the cerebral cortex of rats using in vivo two-photon laser scanning microscopy. University laboratory. Male Sprague-Dawley rats. At each cerebral perfusion pressure, dopamine-induced arterial pressure transients (~10 mm Hg, ~45 s duration) were used to measure induced intracranial pressure reactivity (Δ intracranial pressure/Δ mean arterial pressure) and induced cerebrovascular reactivity (Δ cerebral blood flow/Δ mean arterial pressure). At a normal cerebral perfusion pressure of 70 mm Hg, 10 mm Hg mean arterial pressure pulses had no effect on

  7. GIS-aided low flow mapping

    NASA Astrophysics Data System (ADS)

    Saghafian, B.; Mohammadi, A.

    2003-04-01

    Most studies involving water resources allocation, water quality, hydropower generation, and allowable water withdrawal and transfer require estimation of low flows. Normally, frequency analysis on at-station D-day low flow data is performed to derive various T-yr return period values. However, this analysis is restricted to the location of hydrometric stations where the flow discharge is measured. Regional analysis is therefore conducted to relate the at-station low flow quantiles to watershed characteristics. This enables the transposition of low flow quantiles to ungauged sites. Nevertheless, a procedure to map the regional regression relations for the entire stream network, within the bounds of the relations, is particularly helpful when one studies and weighs alternative sites for certain water resources project. In this study, we used a GIS-aided procedure for low flow mapping in Gilan province, part of northern region in Iran. Gilan enjoys a humid climate with an average of 1100 mm annual precipitation. Although rich in water resources, the highly populated area is quite dependent on minimum amount of water to sustain the vast rice farming and to maintain required flow discharge for quality purposes. To carry out the low flow analysis, a total of 36 hydrometric stations with sufficient and reliable discharge data were identified in the region. The average area of the watersheds was 250 sq. km. Log Pearson type 3 was found the best distribution for flow durations over 60 days, while log normal fitted well the shorter duration series. Low flows with return periods of 2, 5, 10, 25, 50, and 100 year were then computed. Cluster analysis identified two homogeneous areas. Although various watershed parameters were examined in factor analysis, the results showed watershed area, length of the main stream, and annual precipitation were the most effective low flow parameters. The regression equations were then mapped with the aid of GIS based on flow accumulation maps

  8. Emergency Department Waiting Times (EDWaT): A Patient Flow Management and Quality of Care Rating mHealth Application.

    PubMed

    Househ, Mowafa; Yunus, Faisel

    2014-01-01

    Saudi hospital emergency departments (ED) have suffered from long waiting times, which have led to a delay in emergency patient care. The increase in the population of Saudi Arabia is likely to further stretch the healthcare services due to overcrowding leading to decreased healthcare quality, long patient waits, patient dissatisfaction, ambulance diversions, decreased physician productivity, and increased frustration among medical staff. This will ultimately put patients at risk for poor health outcomes. Time is of the essence in emergencies and to get to an ED that has the shortest waiting time can mean life or death for a patient, especially in cases of stroke and myocardial infarction. In this paper, we present our work on the development of a mHealth Application - EDWaT - that will: provide patient flow information to the emergency medical services staff, help in quick routing of patients to the nearest hospital, and provide an opportunity for patients to review and rate the quality of care received at an ED, which will then be forwarded to ED services administrators. The quality ratings will help patients to choose between two EDs with the same waiting time and distance from their location. We anticipate that the use of EDWaT will help improve ED wait times and the quality of care provision in Saudi hospitals EDs.

  9. Current-flow efficiency of networks

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Yan, Xiaoyong

    2018-02-01

    Many real-world networks, from infrastructure networks to social and communication networks, can be formulated as flow networks. How to realistically measure the transport efficiency of these networks is of fundamental importance. The shortest-path-based efficiency measurement has limitations, as it assumes that flow travels only along those shortest paths. Here, we propose a new metric named current-flow efficiency, in which we calculate the average reciprocal effective resistance between all pairs of nodes in the network. This metric takes the multipath effect into consideration and is more suitable for measuring the efficiency of many real-world flow equilibrium networks. Moreover, this metric can handle a disconnected graph and can thus be used to identify critical nodes and edges from the efficiency-loss perspective. We further analyze how the topological structure affects the current-flow efficiency of networks based on some model and real-world networks. Our results enable a better understanding of flow networks and shed light on the design and improvement of such networks with higher transport efficiency.

  10. Ground-Water Flow Direction, Water Quality, Recharge Sources, and Age, Great Sand Dunes National Monument, South-Central Colorado, 2000-2001

    USGS Publications Warehouse

    Rupert, Michael G.; Plummer, Niel

    2004-01-01

    Great Sand Dunes National Monument is located in south-central Colorado along the eastern edge of the San Luis Valley. The Great Sand Dunes National Monument contains the tallest sand dunes in North America; some rise up to750 feet. Important ecological features of the Great Sand Dunes National Monument are palustrine wetlands associated with interdunal ponds and depressions along the western edge of the dune field. The existence and natural maintenance of the dune field and the interdunal ponds are dependent on maintaining ground-water levels at historic elevations. To address these concerns, the U.S. Geological Survey conducted a study, in collaboration with the National Park Service, of ground-water flow direction, water quality, recharge sources, and age at the Great Sand Dunes National Monument. A shallow unconfined aquifer and a deeper confined aquifer are the two principal aquifers at the Great Sand Dunes National Monument. Ground water in the unconfined aquifer is recharged from Medano and Sand Creeks near the Sangre de Cristo Mountain front, flows underneath the main dune field, and discharges to Big and Little Spring Creeks. The percentage of calcium in ground water in the unconfined aquifer decreases and the percentage of sodium increases because of ionic exchange with clay minerals as the ground water flows underneath the dune field. It takes more than 60 years for the ground water to flow from Medano and Sand Creeks to Big and Little Spring Creeks. During this time, ground water in the upper part of the unconfined aquifer is recharged by numerous precipitation events. Evaporation of precipitation during recharge prior to reaching the water table causes enrichment in deuterium (2H) and oxygen-18 (18O) relative to waters that are not evaporated. This recharge from precipitation events causes the apparent ages determined using chlorofluorocarbons and tritium to become younger, because relatively young precipitation water is mixing with older waters

  11. CFD-aided modelling of activated sludge systems - A critical review.

    PubMed

    Karpinska, Anna M; Bridgeman, John

    2016-01-01

    Nowadays, one of the major challenges in the wastewater sector is the successful design and reliable operation of treatment processes, which guarantee high treatment efficiencies to comply with effluent quality criteria, while keeping the investment and operating cost as low as possible. Although conceptual design and process control of activated sludge plants are key to ensuring these goals, they are still based on general empirical guidelines and operators' experience, dominated often by rule of thumb. This review paper discusses the rationale behind the use of Computational Fluid Dynamics (CFD) to model aeration, facilitating enhancement of treatment efficiency and reduction of energy input. Several single- and multiphase approaches commonly used in CFD studies of aeration tank operation, are comprehensively described, whilst the shortcomings of the modelling assumptions imposed to evaluate mixing and mass transfer in AS tanks are identified and discussed. Examples and methods of coupling of CFD data with biokinetics, accounting for the actual flow field and its impact on the oxygen mass transfer and yield of the biological processes occurring in the aeration tanks, are also critically discussed. Finally, modelling issues, which remain unaddressed, (e.g. coupling of the AS tank with secondary clarifier and the use of population balance models to simulate bubbly flow or flocculation of the activated sludge), are also identified and discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Comparison Between Predicted and Experimentally Measured Flow Fields at the Exit of the SSME HPFTP Impeller

    NASA Technical Reports Server (NTRS)

    Bache, George

    1993-01-01

    Validation of CFD codes is a critical first step in the process of developing CFD design capability. The MSFC Pump Technology Team has recognized the importance of validation and has thus funded several experimental programs designed to obtain CFD quality validation data. The first data set to become available is for the SSME High Pressure Fuel Turbopump Impeller. LDV Data was taken at the impeller inlet (to obtain a reliable inlet boundary condition) and three radial positions at the impeller discharge. Our CFD code, TASCflow, is used within the Propulsion and Commercial Pump industry as a tool for pump design. The objective of this work, therefore, is to further validate TASCflow for application in pump design. TASCflow was used to predict flow at the impeller discharge for flowrates of 80, 100 and 115 percent of design flow. Comparison to data has been made with encouraging results.

  13. Development of Flow Boiling and Condensation Experiment on the International Space Station- Normal and Low Gravity Flow Boiling Experiment Development and Test Results

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Hall, Nancy R.; Hasan, Mohammad M.; Wagner, James D.; May, Rochelle L.; Mackey, Jeffrey R.; Kolacz, John S.; Butcher, Robert L.; Frankenfield, Bruce J.; Mudawar, Issam; hide

    2013-01-01

    Flow boiling and condensation have been identified as two key mechanisms for heat transport that are vital for achieving weight and volume reduction as well as performance enhancement in future space systems. Since inertia driven flows are demanding on power usage, lower flows are desirable. However, in microgravity, lower flows are dominated by forces other than inertia (like the capillary force). It is of paramount interest to investigate limits of low flows beyond which the flow is inertial enough to be gravity independent. One of the objectives of the Flow Boiling and Condensation Flight Experiment sets to investigate these limits for flow boiling and condensation. A two-phase flow loop consisting of a Flow Boiling Module and two Condensation Modules has been developed to experimentally study flow boiling condensation heat transfer in the reduced gravity environment provided by the reduced gravity platform. This effort supports the development of a flow boiling and condensation facility for the International Space Station (ISS). The closed loop test facility is designed to deliver the test fluid, FC-72 to the inlet of any one of the test modules at specified thermodynamic and flow conditions. The zero-g-aircraft tests will provide subcooled and saturated flow boiling critical heat flux and flow condensation heat transfer data over wide range of flow velocities. Additionally, these tests will verify the performance of all gravity sensitive components, such as evaporator, condenser and accumulator associated with the two-phase flow loop. We will present in this paper the breadboard development and testing results which consist of detailed performance evaluation of the heater and condenser combination in reduced and normal gravity. We will also present the design of the reduced gravity aircraft rack and the results of the ground flow boiling heat transfer testing performed with the Flow Boiling Module that is designed to investigate flow boiling heat transfer and

  14. Flaw-induced plastic-flow dynamics in bulk metallic glasses under tension

    PubMed Central

    Chen, S. H.; Yue, T. M.; Tsui, C. P.; Chan, K. C.

    2016-01-01

    Inheriting amorphous atomic structures without crystalline lattices, bulk metallic glasses (BMGs) are known to have superior mechanical properties, such as high strength approaching the ideal value, but are susceptible to catastrophic failures. Understanding the plastic-flow dynamics of BMGs is important for achieving stable plastic flow in order to avoid catastrophic failures, especially under tension, where almost all BMGs demonstrate limited plastic flow with catastrophic failure. Previous findings have shown that the plastic flow of BMGs displays critical dynamics under compression tests, however, the plastic-flow dynamics under tension are still unknown. Here we report that power-law critical dynamics can also be achieved in the plastic flow of tensile BMGs by introducing flaws. Differing from the plastic flow under compression, the flaw-induced plastic flow under tension shows an upward trend in the amplitudes of the load drops with time, resulting in a stable plastic-flow stage with a power-law distribution of the load drop. We found that the flaw-induced plastic flow resulted from the stress gradients around the notch roots, and the stable plastic-flow stage increased with the increase of the stress concentration factor ahead of the notch root. The findings are potentially useful for predicting and avoiding the catastrophic failures in tensile BMGs by tailoring the complex stress fields in practical structural-applications. PMID:27779221

  15. Multiscale Sediment-Laden Flow Theory and Its Application in Flood Risk Management

    NASA Astrophysics Data System (ADS)

    Cao, Z. X.; Pender, G.; Hu, P.

    2011-09-01

    Sediment-laden flows over erodible bed normally feature multiple time scales. The time scales of sediment transport and bed deformation relative to the flow essentially measure how fast sediment transport adapts to capacity regime in line with local flow scenario and the bed deforms as compared to the flow, which literally dictate if a capacity based and/or decoupled model is justified. This paper synthesizes the recently developed multiscale theory for sediment-laden flows over erodible bed, with bed load and suspended load transport respectively. It is unravelled that bed load transport can adapt to capacity sufficiently rapidly even under highly unsteady flows and thus a capacity model is mostly applicable, whereas a non-capacity model is critical for suspended sediment because of the lower rate of adaptation to capacity. Physically coupled modeling is critical for cases characterized by rapid bed variation. Applications are outlined on flash floods and landslide dam break floods.

  16. Flow and volume dependence of rat airway resistance during constant flow inflation and deflation.

    PubMed

    Rubini, Alessandro; Carniel, Emanuele Luigi; Parmagnani, Andrea; Natali, Arturo Nicola

    2011-12-01

    The aim of this study was to measure the flow and volume dependence of both the ohmic and the viscoelastic pressure dissipations of the normal rat respiratory system separately during inflation and deflation. The study was conducted in the Respiratory Physiology Laboratory in our institution. Measurements were obtained for Seven albino Wistar rats of both sexes by using the flow interruption method during constant flow inflations and deflations. Measurements included anesthesia induction, tracheostomy and positioning of a tracheal cannula, positive pressure ventilation, constant flow respiratory system inflations and deflations at two different volumes and flows. The ohmic resistance exhibited volume and flow dependence, decreasing with lung volume and increasing with flow rate, during both inflation and deflation. The stress relaxation-related viscoelastic resistance also exhibited volume and flow dependence. It decreased with the flow rate at a constant lung volume during both inflation and deflation, but exhibited a different behavior with the lung volume at a constant flow rate (i.e., increased during inflations and decreased during deflations). Thus, stress relaxation in the rat lungs exhibited a hysteretic behavior. The observed flow and volume dependence of respiratory system resistance may be predicted by an equation derived from a model of the respiratory system that consists of two distinct compartments. The equation agrees well with the experimental data and indicates that the loading time is the critical parameter on which stress relaxation depends, during both lung inflation and deflation.

  17. Change in hyporheic zone residence time under different surface flow states

    NASA Astrophysics Data System (ADS)

    Liu, Suning; Chui, Ting Fong May

    2017-04-01

    Hyporheic zone (HZ), which is the ecotone immediately below or adjacent to a stream, plays an important role in a stream ecological system. One of the most common metrics in evaluating the functioning of an HZ is residence time (RT) which is the duration a water molecule or a solute remains within the HZ. Many factors, such as meandering of a stream, heterogeneity of streambed, can influence the RT of an HZ. Stream discharge is another governing but less discussed factor. Different discharge values produce different flow states (i.e.., subcritical, critical and supercritical) and alluvial stream bed forms. This study examined the changes of RT in discharges of different states and their corresponding induced bed forms. It employed a toolbox developed by Stonedahl et al. (2015) within Netlogo to simulate the RT of an HZ, considering three discharge values in each of the supercritical, critical and subcritical states. It approximated the bed forms as sinusoidal waves with amplitudes and periods selected for each flow state. The simulated results suggest that the RT is minimum when the flow is critical, and it is longer for both subcritical and supercritical flows. For subcritical flow, the RT, as well as the fraction remained within the streambed during particle tracing, increases with the increase in discharge value. However, there is no such variation among the different discharge values of supercritical flow. Therefore, for supercritical flow, one combination of discharge value and bed form might be sufficient and representative. However, for subcritical flow, the variations of discharge values and their induced bed forms should be considered. Reference: Stonedahl, S.H., Roche, K.R., Stonedahl, F., & Packman, A.I. (2015). Visualizing Hyporheic Flow Through Bedforms Using Dye Experiments and Simulation. J. Vis. Exp. (105), e53285. doi: 10.3791/53285

  18. Some flow phenomena in a constant area duct with a Borda type inlet including the critical region

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.

    1978-01-01

    Mass limiting flow characteristics for a 55 L/D tube with a Borda type inlet were assessed over large ranges of temperature and pressure, using fluid nitrogen. Under certain conditions, separation and pressure drop at the inlet was sufficiently strong to permit partial vaporization and the remaining fluid flowed through the tube as if it were a free jet. An empirical relation was determined which defines conditions under which this type of flow can occur. A flow coefficient is presented which enables estimations of flow rates over the experimental range. A flow rate stagnation pressure map for selected stagnation isotherms and pressure profiles document these flow phenomena.

  19. Pressure difference-flow rate variation in a femoral artery branch casting of man for steady flow

    NASA Technical Reports Server (NTRS)

    Cho, Y. I.; Back, L. H.; Crawford, D. W.

    1983-01-01

    In-vitro, steady flow in a casting of the profunda femoris branch of the femoral artery of man was studied by measuring pressure differences in the main lumen and also in the branch over a large Reynolds number range from 200 to 1600. Effects of viscous and inviscid flows in this femoral artery branch were demonstrated quantitatively. The critical ratio of the flow rate in the branch to the upstream main lumen in this casting was found to be 0.4, above which the inviscid flow analysis indicated a pressure rise and below which it yielded a pressure drop in the main lumen across the branch junction. Pressure rises were experimentally found to occur both in the main lumen and in the branch for certain ranges of the aforementioned ratio.

  20. Relief, nocturnal cold-air flow and air quality in Kigali, Rwanda

    NASA Astrophysics Data System (ADS)

    Henninger, Sascha

    2013-04-01

    Kigali, the capital of the Equatorial African country Rwanda, indicates a fast growing population. This fact and the coherent rising rate of motorization are a reason for a sustainable degradation of the urban air quality. Poorly maintained old mopeds, motorcycles and vehicles cause an increasing concentration of different air pollutants. Apart from the traffic emissions there is another source of air pollution: the usage of simple stoves and open fireplaces. Burning wood, kerosene or dung for domestic energy, cooking and household chores produces a lot of emission, in- and outdoors. Kigali shows a distinctive relief, situated in the Central Highlands of Rwanda. The main business and residential districts are on top of the ridges, which are enclosed by small valleys called "Marais". The lack of space forces more and more people to settle along the slopes and on the bottom of the hills. Though the existence of air pollution depends on the spatial distribution and of course on the intensity of the sources. But pollution is not necessarily bound within the area of strongest emission. Topographical and meteorological conditions could have a very strong influence on the spatial distribution of air quality. This paper presents the results performed by stationary and mobile measurements between 2008 and 2012. Air temperature, air humidity, precipitation, wind speed and direction, carbon monoxide and suspended particulate matter (PM10) were measured at fixed stations within the urban area. CO and PM10 were additionally detected by mobile measurements using a car traverse, which started in the outskirts of Kigali following paved and unpaved roads through the urban area. A mixture of different types of land use composed the measuring route where different commercial, industrial, residential and mobile sources could be expected. Although highest levels of concentration were measured in areas with paved roads in business and commercial areas with the highest traffic rates