Assessment of gene order computing methods for Alzheimer's disease
2013-01-01
Background Computational genomics of Alzheimer disease (AD), the most common form of senile dementia, is a nascent field in AD research. The field includes AD gene clustering by computing gene order which generates higher quality gene clustering patterns than most other clustering methods. However, there are few available gene order computing methods such as Genetic Algorithm (GA) and Ant Colony Optimization (ACO). Further, their performance in gene order computation using AD microarray data is not known. We thus set forth to evaluate the performances of current gene order computing methods with different distance formulas, and to identify additional features associated with gene order computation. Methods Using different distance formulas- Pearson distance and Euclidean distance, the squared Euclidean distance, and other conditions, gene orders were calculated by ACO and GA (including standard GA and improved GA) methods, respectively. The qualities of the gene orders were compared, and new features from the calculated gene orders were identified. Results Compared to the GA methods tested in this study, ACO fits the AD microarray data the best when calculating gene order. In addition, the following features were revealed: different distance formulas generated a different quality of gene order, and the commonly used Pearson distance was not the best distance formula when used with both GA and ACO methods for AD microarray data. Conclusion Compared with Pearson distance and Euclidean distance, the squared Euclidean distance generated the best quality gene order computed by GA and ACO methods. PMID:23369541
Effect of Number of Zones on Subjective Vision in Concentric Bifocal Optics.
Legras, Richard; Rio, David
2015-11-01
To evaluate the influence of the number of concentric zones of a center-near bifocal optics on the subjective quality of vision. Twenty-two subjects scored with a five-item continuous grading scale the quality of vision of calculated images (i.e., three high-contrast 20/50 letters) viewed through their best sphero-cylindrical correction and a 3-mm pupil to limit the impact of their aberrations. Through-focus images were calculated from -4 to +2 diopters (D), each 0.25 D, in the presence of center-near bifocal optics (Add 2.5 D) varying by their number of concentric zones (from 2 to 20). To compare the results obtained with these profiles, we calculated the area under the (through-focus) curve (AUC) higher than 2 out of 5 (i.e., limit between a poor and a fair image quality, considered as the limit of acceptability). This value was normalized by the naked eye condition and divided into distance, intermediate, and near AUC. The results showed large interindividual variations. Distance AUC remained quite similar whatever the profile, near AUC decreased with the number of concentric zones, and intermediate AUC rose with the number of concentric zones. With 10 and 20 concentric zones, diffraction phenomenon induced constructive interferences at intermediate proximities and destructive interferences at distance and near proximities. To balance distance, intermediate, and near quality of vision, a number of zones between 8 and 10 should be chosen. If the subject does not need intermediate quality of vision, then a profile with two to five zones should be favored.
Correction of spin diffusion during iterative automated NOE assignment
NASA Astrophysics Data System (ADS)
Linge, Jens P.; Habeck, Michael; Rieping, Wolfgang; Nilges, Michael
2004-04-01
Indirect magnetization transfer increases the observed nuclear Overhauser enhancement (NOE) between two protons in many cases, leading to an underestimation of target distances. Wider distance bounds are necessary to account for this error. However, this leads to a loss of information and may reduce the quality of the structures generated from the inter-proton distances. Although several methods for spin diffusion correction have been published, they are often not employed to derive distance restraints. This prompted us to write a user-friendly and CPU-efficient method to correct for spin diffusion that is fully integrated in our program ambiguous restraints for iterative assignment (ARIA). ARIA thus allows automated iterative NOE assignment and structure calculation with spin diffusion corrected distances. The method relies on numerical integration of the coupled differential equations which govern relaxation by matrix squaring and sparse matrix techniques. We derive a correction factor for the distance restraints from calculated NOE volumes and inter-proton distances. To evaluate the impact of our spin diffusion correction, we tested the new calibration process extensively with data from the Pleckstrin homology (PH) domain of Mus musculus β-spectrin. By comparing structures refined with and without spin diffusion correction, we show that spin diffusion corrected distance restraints give rise to structures of higher quality (notably fewer NOE violations and a more regular Ramachandran map). Furthermore, spin diffusion correction permits the use of tighter error bounds which improves the distinction between signal and noise in an automated NOE assignment scheme.
White, Shane A; Reniers, Brigitte; de Jong, Evelyn E C; Rusch, Thomas; Verhaegen, Frank
2016-01-07
Electronic brachytherapy sources use low energy photons to treat the tumor bed during or after breast-conserving surgery. The relative biological effectiveness of two electronic brachytherapy sources was explored to determine if spectral differences due to source design influenced radiation quality and if radiation quality decreased with distance in the breast. The RBE was calculated through the number of DNA double strand breaks (RBEDSB) using the Monte Carlo damage simulator (MCDS) in combination with other Monte Carlo electron/photon spectrum calculations. 50kVp photons from the Intrabeam (Carl Zeiss Surgical) and Axxent (Xoft) through 40-mm spherical applicators were simulated to account for applicator and tissue attenuation in a variety of breast tissue compositions. 40kVp Axxent photons were also simulated. Secondary electrons (known to be responsible for most DNA damage) spectra at different distance were inputted into MCDS to calculate the RBEDSB. All RBEDSB used a cobalt-60 reference. RBEDSB data was combined with corresponding average photon spectrum energy for the Axxent and applied to model-based average photon energy distributions to produce an RBEDSB map of an accelerated partial breast irradiation (APBI) patient. Both Axxent and Intrabeam 50kVp spectra were shown to have a comparable RBEDSB of between 1.4 and 1.6 at all distances in spite of progressive beam hardening. The Axxent 40kVp also demonstrated a similar RBEDSB at distances. Most RBEDSB variability was dependent on the tissue type as was seen in rib (RBEDSB ≈ 1.4), gland (≈1.55), adipose (≈1.59), skin (≈1.52) and lung (≈1.50). RBEDSB variability between both sources was within 2%. A correlation was shown between RBEDSB and average photon energy and used to produce an RBEDSB map of a dose distribution in an APBI patient dataset. Radiation quality is very similar between electronic brachytherapy sources studied. No significant reductions in RBEDSB were observed with increasing distance from the source.
Infrared welding process on composite: Effect of interdiffusion at the welding interface
NASA Astrophysics Data System (ADS)
Asseko, André Chateau Akué; Lafranche, Éric; Cosson, Benoît; Schmidt, Fabrice; Le Maoult, Yannick
2016-10-01
In this study, the effects of the welding temperature field developed during the infrared assembly process on the joining properties of glass fibre reinforced polycarbonate/ unreinforced polycarbonate with carbon black were investigated. The temperature field and the contact time govern together the quality of the adhesion at the welding interface. The effect of the semi-transparent glass fibre reinforced polycarbonate composite / unreinforced polycarbonate composite with carbon black interface was quantified in term of quadratic distance of diffusion or diffusion depth through the welding interface. The microstructural characterizations were investigated in order to inspect the welding zones quality and to observe their failure modes. The diffusion theory has then been applied to calculate the variation of the quadratic distance of diffusion versus time at different locations. The complete self-diffusion is supposed occurring only at temperature above the polycarbonate glass transition temperature (140°C) and with a quadratic distance of diffusion superior to the mean square end-to-end distance.
NASA Astrophysics Data System (ADS)
Atiq, Maria; Atiq, Atia; Iqbal, Khalid; Shamsi, Quratul ain; Andleeb, Farah; Buzdar, Saeed Ahmad
2017-12-01
Objective: The Gamma Index is prerequisite to estimate point-by-point difference between measured and calculated dose distribution in terms of both Distance to Agreement (DTA) and Dose Difference (DD). This study aims to inquire what percentage of pixels passing a certain criteria assure a good quality plan and suggest gamma index as efficient mechanism for dose verification of Simultaneous Integrated Boost Intensity Modulated Radiotherapy plans. Method: In this study, dose was calculated for 14 head and neck patients and IMRT Quality Assurance was performed with portal dosimetry using the Eclipse treatment planning system. Eclipse software has a Gamma analysis function to compare measured and calculated dose distribution. Plans of this study were deemed acceptable when passing rate was 95% using tolerance for Distance to agreement (DTA) as 3mm and Dose Difference (DD) as 5%. Result and Conclusion: Thirteen cases pass tolerance criteria of 95% set by our institution. Confidence Limit for DD is 9.3% and for gamma criteria our local CL came out to be 2.0% (i.e., 98.0% passing). Lack of correlation was found between DD and γ passing rate with R2 of 0.0509. Our findings underline the importance of gamma analysis method to predict the quality of dose calculation. Passing rate of 95% is achieved in 93% of cases which is adequate level of accuracy for analyzed plans thus assuring the robustness of SIB IMRT treatment technique. This study can be extended to investigate gamma criteria of 5%/3mm for different tumor localities and to explore confidence limit on target volumes of small extent and simple geometry.
NASA Astrophysics Data System (ADS)
Gronz, Oliver; Seeger, Manuel; Klaes, Björn; Casper, Markus C.; Ries, Johannes B.
2015-04-01
Accurate and dense 3D models of soil surfaces can be used in various ways: They can be used as initial shapes for erosion models. They can be used as benchmark shapes for erosion model outputs. They can be used to derive metrics, such as random roughness... One easy and low-cost method to produce these models is structure from motion (SfM). Using this method, two questions arise: Does the soil moisture, which changes the colour, albedo and reflectivity of the soil, influence the model quality? How can the model quality be evaluated? To answer these questions, a suitable data set has been produced: soil has been placed on a tray and areas with different roughness structures have been formed. For different moisture states - dry, medium, saturated - and two different lighting conditions - direct and indirect - sets of high-resolution images at the same camera positions have been taken. From the six image sets, 3D point clouds have been produced using VisualSfM. The visual inspection of the 3D models showed that all models have different areas, where holes of different sizes occur. But it is obviously a subjective task to determine the model's quality by visual inspection. One typical approach to evaluate model quality objectively is to estimate the point density on a regular, two-dimensional grid: the number of 3D points in each grid cell projected on a plane is calculated. This works well for surfaces that do not show vertical structures. Along vertical structures, many points will be projected on the same grid cell and thus the point density rather depends on the shape of the surface but less on the quality of the model. Another approach has been applied by using the points resulting from Poisson Surface Reconstructions. One of this algorithm's properties is the filling of holes: new points are interpolated inside the holes. Using the original 3D point cloud and the interpolated Poisson point set, two analyses have been performed: For all Poisson points, the distance to the closest original point cloud member has been calculated. For the resulting set of distances, histograms have been produced that show the distribution of point distances. As the Poisson points also make up a connected mesh, the size and distribution of single holes can also be estimated by labeling Poisson points that belong to the same hole: each hole gets a specific number. Afterwards, the area of the mesh formed by each set of Poisson hole points can be calculated. The result is a set of distinctive holes and their sizes. The two approaches showed that the hole-ness of the point cloud depends on the soil moisture respectively the reflectivity: the distance distribution of the model of the saturated soil shows the smallest number of large distances. The histogram of the medium state shows more large distances and the dry model shows the largest distances. Models resulting from indirect lighting are better than the models resulting from direct light for all moisture states.
Yan, Bryan P; Lau, James Y; Yu, Check-Man; Au, Kim; Chan, Ka-Wai; Yu, Doris S; Ma, Ronald C; Lam, Yat-Yin; Hiatt, William R
2011-06-01
The Walking Impairment Questionnaire (WIQ) is a frequently used questionnaire to evaluate patients with intermittent claudication on four subscales: pain severity, walking distance, walking speed and the ability to climb stairs. The aim of this study is to translate and validate the WIQ in Chinese. After translation and cultural adaptation of the WIQ, 134 patients with intermittent claudication completed the Chinese WIQ and European Quality of Life 5 Dimension (EQ-5D). Walking distances were determined by the 6-minute walk test (6MWT). Correlations between the WIQ, quality of life questionnaire and walking distances were calculated to determine validity. Reliability and internal consistency were determined using the intra-class correlation coefficient (ICC) and Cronbach's alpha (α), respectively. Significant correlations were found between the WIQ score, initial claudication distance (ICD), absolute claudication distance (ACD) and all domains of the EQ-5D (all p ≤ 0.01). Test-retest reliability (ICC = 0.74) and the overall internal consistency determined (α = 0.90) showed good agreement. A lower WIQ score corresponded to shorter walking distances. In conclusion, this study showed that the Chinese version of the WIQ is a valid, reliable and clinically relevant instrument for assessing walking impairment in patients with intermittent claudication.
Enhancing multi-view autostereoscopic displays by viewing distance control (VDC)
NASA Astrophysics Data System (ADS)
Jurk, Silvio; Duckstein, Bernd; Renault, Sylvain; Kuhlmey, Mathias; de la Barré, René; Ebner, Thomas
2014-03-01
Conventional multi-view displays spatially interlace various views of a 3D scene and form appropriate viewing channels. However, they only support sufficient stereo quality within a limited range around the nominal viewing distance (NVD). If this distance is maintained, two slightly divergent views are projected to the person's eyes, both covering the entire screen. With increasing deviations from the NVD the stereo image quality decreases. As a major drawback in usability, the manufacturer so far assigns this distance. We propose a software-based solution that corrects false view assignments depending on the distance of the viewer. Our novel approach enables continuous view adaptation based on the calculation of intermediate views and a column-bycolumn rendering method. The algorithm controls each individual subpixel and generates a new interleaving pattern from selected views. In addition, we use color-coded test content to verify its efficacy. This novel technology helps shifting the physically determined NVD to a user-defined distance thereby supporting stereopsis. The recent viewing positions can fall in front or behind the NVD of the original setup. Our algorithm can be applied to all multi-view autostereoscopic displays — independent of the ascent or the periodicity of the optical element. In general, the viewing distance can be corrected with a factor of more than 2.5. By creating a continuous viewing area the visualized 3D content is suitable even for persons with largely divergent intraocular distance — adults and children alike — without any deficiency in spatial perception.
Image quality comparison of two multifocal IOLs: influence of the pupil.
García-Domene, Mari Carmen; Felipe, Adelina; Peris-Martínez, Cristina; Navea, Amparo; Artigas, Jose M; Pons, Álvaro M
2015-04-01
To evaluate the effect of pupil size on image quality of a sectorial multifocal intraocular lens (IOL), the Lentis Mplus (Oculentis GmbH, Berlin, Germany), and the Acri.LISA IOL (Carl Zeiss Meditec, Jena, Germany). The authors measured the MTFs of the Lentis Mplus LS-312 IOL and the Acri.LISA 366D IOL with three different sizes of pupil diameters: 3, 4, and 5 mm. The MTF was calculated from the cross-line spread function recorded with the OPAL Vector System (Image Science Ltd., Oxford, UK) by using fast Fourier-transform techniques. In distance focus, the image quality provided by the Lentis Mplus IOL was better than that of the Acri. LISA IOL with all pupil diameters. In near focus, the MTF of the Acri.LISA IOL was better with a 3-mm pupil, but poor with larger pupils. The aberration effect was equal in both IOLs in distance focus, but in near focus and with a 3-mm pupil, the Acri.LISA IOL was less affected by the aberration than the Lentis Mplus IOL. The Lentis Mplus IOL provides better distance image quality than the Acri.LISA IOL, whereas the near image quality of the Acri.LISA IOL is better with small-pupil diameter. The sectorial design makes this IOL more suitable for patients with a pupil diameter greater than 3 mm. Copyright 2015, SLACK Incorporated.
Tripathi, S; Patel, H M; Srivastava, P K; Bafna, A M
2013-10-01
The present study calculates the water quality index (WQI) of some selected sites from South Gujarat (India) and assesses the impact of industries, agriculture and human activities. Chemical parameters were monitored for the calculation of WQI of some selected bore well samples. The results revealed that the WQI of the some bore well samples exceeded acceptable levels due to the dumping of wastes from municipal, industrial and domestic sources and agricultural runoff as well. Inverse Distance Weighting (IDW) was implemented for interpolation of each water quality parameter (pH, EC, alkalinity, total hardness, chloride, nitrate and sulphate) for the entire sampled area. The bore water is unsuitable for drinking and if the present state of affairs continues for long, it may soon become an ecologically dead bore.
A CT-based software tool for evaluating compensator quality in passively scattered proton therapy
NASA Astrophysics Data System (ADS)
Li, Heng; Zhang, Lifei; Dong, Lei; Sahoo, Narayan; Gillin, Michael T.; Zhu, X. Ronald
2010-11-01
We have developed a quantitative computed tomography (CT)-based quality assurance (QA) tool for evaluating the accuracy of manufactured compensators used in passively scattered proton therapy. The thickness of a manufactured compensator was measured from its CT images and compared with the planned thickness defined by the treatment planning system. The difference between the measured and planned thicknesses was calculated with use of the Euclidean distance transformation and the kd-tree search method. Compensator accuracy was evaluated by examining several parameters including mean distance, maximum distance, global thickness error and central axis shifts. Two rectangular phantoms were used to validate the performance of the QA tool. Nine patients and 20 compensators were included in this study. We found that mean distances, global thickness errors and central axis shifts were all within 1 mm for all compensators studied, with maximum distances ranging from 1.1 to 3.8 mm. Although all compensators passed manual verification at selected points, about 5% of the pixels still had maximum distances of >2 mm, most of which correlated with large depth gradients. The correlation between the mean depth gradient of the compensator and the percentage of pixels with mean distance <1 mm is -0.93 with p < 0.001, which suggests that the mean depth gradient is a good indicator of compensator complexity. These results demonstrate that the CT-based compensator QA tool can be used to quantitatively evaluate manufactured compensators.
Development of evaluation technique of GMAW welding quality based on statistical analysis
NASA Astrophysics Data System (ADS)
Feng, Shengqiang; Terasaki, Hidenri; Komizo, Yuichi; Hu, Shengsun; Chen, Donggao; Ma, Zhihua
2014-11-01
Nondestructive techniques for appraising gas metal arc welding(GMAW) faults plays a very important role in on-line quality controllability and prediction of the GMAW process. On-line welding quality controllability and prediction have several disadvantages such as high cost, low efficiency, complication and greatly being affected by the environment. An enhanced, efficient evaluation technique for evaluating welding faults based on Mahalanobis distance(MD) and normal distribution is presented. In addition, a new piece of equipment, designated the weld quality tester(WQT), is developed based on the proposed evaluation technique. MD is superior to other multidimensional distances such as Euclidean distance because the covariance matrix used for calculating MD takes into account correlations in the data and scaling. The values of MD obtained from welding current and arc voltage are assumed to follow a normal distribution. The normal distribution has two parameters: the mean µ and standard deviation σ of the data. In the proposed evaluation technique used by the WQT, values of MD located in the range from zero to µ+3 σ are regarded as "good". Two experiments which involve changing the flow of shielding gas and smearing paint on the surface of the substrate are conducted in order to verify the sensitivity of the proposed evaluation technique and the feasibility of using WQT. The experimental results demonstrate the usefulness of the WQT for evaluating welding quality. The proposed technique can be applied to implement the on-line welding quality controllability and prediction, which is of great importance to design some novel equipment for weld quality detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, H.-L.; Rollow, J.
2000-05-01
The 1995 American Travel Survey (ATS) collected information from approximately 80,000 U.S. households about their long distance travel (one-way trips of 100 miles or more) during the year of 1995. It is the most comprehensive survey of where, why, and how U.S. residents travel since 1977. ATS is a joint effort by the U.S. Department of Transportation (DOT) Bureau of Transportation Statistics (BTS) and the U.S. Department of Commerce Bureau of Census (Census); BTS provided the funding and supervision of the project, and Census selected the samples, conducted interviews, and processed the data. This report documents the technical support formore » the ATS provided by the Center for Transportation Analysis (CTA) in Oak Ridge National Laboratory (ORNL), which included the estimation of trip distances as well as data quality editing and checking of variables required for the distance calculations.« less
Combining geostatistics with Moran's I analysis for mapping soil heavy metals in Beijing, China.
Huo, Xiao-Ni; Li, Hong; Sun, Dan-Feng; Zhou, Lian-Di; Li, Bao-Guo
2012-03-01
Production of high quality interpolation maps of heavy metals is important for risk assessment of environmental pollution. In this paper, the spatial correlation characteristics information obtained from Moran's I analysis was used to supplement the traditional geostatistics. According to Moran's I analysis, four characteristics distances were obtained and used as the active lag distance to calculate the semivariance. Validation of the optimality of semivariance demonstrated that using the two distances where the Moran's I and the standardized Moran's I, Z(I) reached a maximum as the active lag distance can improve the fitting accuracy of semivariance. Then, spatial interpolation was produced based on the two distances and their nested model. The comparative analysis of estimation accuracy and the measured and predicted pollution status showed that the method combining geostatistics with Moran's I analysis was better than traditional geostatistics. Thus, Moran's I analysis is a useful complement for geostatistics to improve the spatial interpolation accuracy of heavy metals.
Combining Geostatistics with Moran’s I Analysis for Mapping Soil Heavy Metals in Beijing, China
Huo, Xiao-Ni; Li, Hong; Sun, Dan-Feng; Zhou, Lian-Di; Li, Bao-Guo
2012-01-01
Production of high quality interpolation maps of heavy metals is important for risk assessment of environmental pollution. In this paper, the spatial correlation characteristics information obtained from Moran’s I analysis was used to supplement the traditional geostatistics. According to Moran’s I analysis, four characteristics distances were obtained and used as the active lag distance to calculate the semivariance. Validation of the optimality of semivariance demonstrated that using the two distances where the Moran’s I and the standardized Moran’s I, Z(I) reached a maximum as the active lag distance can improve the fitting accuracy of semivariance. Then, spatial interpolation was produced based on the two distances and their nested model. The comparative analysis of estimation accuracy and the measured and predicted pollution status showed that the method combining geostatistics with Moran’s I analysis was better than traditional geostatistics. Thus, Moran’s I analysis is a useful complement for geostatistics to improve the spatial interpolation accuracy of heavy metals. PMID:22690179
Aerial photography flight quality assessment with GPS/INS and DEM data
NASA Astrophysics Data System (ADS)
Zhao, Haitao; Zhang, Bing; Shang, Jiali; Liu, Jiangui; Li, Dong; Chen, Yanyan; Zuo, Zhengli; Chen, Zhengchao
2018-01-01
The flight altitude, ground coverage, photo overlap, and other acquisition specifications of an aerial photography flight mission directly affect the quality and accuracy of the subsequent mapping tasks. To ensure smooth post-flight data processing and fulfill the pre-defined mapping accuracy, flight quality assessments should be carried out in time. This paper presents a novel and rigorous approach for flight quality evaluation of frame cameras with GPS/INS data and DEM, using geometric calculation rather than image analysis as in the conventional methods. This new approach is based mainly on the collinearity equations, in which the accuracy of a set of flight quality indicators is derived through a rigorous error propagation model and validated with scenario data. Theoretical analysis and practical flight test of an aerial photography mission using an UltraCamXp camera showed that the calculated photo overlap is accurate enough for flight quality assessment of 5 cm ground sample distance image, using the SRTMGL3 DEM and the POSAV510 GPS/INS data. An even better overlap accuracy could be achieved for coarser-resolution aerial photography. With this new approach, the flight quality evaluation can be conducted on site right after landing, providing accurate and timely information for decision making.
Georg, Dietmar; Stock, Markus; Kroupa, Bernhard; Olofsson, Jörgen; Nyholm, Tufve; Ahnesjö, Anders; Karlsson, Mikael
2007-08-21
Experimental methods are commonly used for patient-specific intensity-modulated radiotherapy (IMRT) verification. The purpose of this study was to investigate the accuracy and performance of independent dose calculation software (denoted as 'MUV' (monitor unit verification)) for patient-specific quality assurance (QA). 52 patients receiving step-and-shoot IMRT were considered. IMRT plans were recalculated by the treatment planning systems (TPS) in a dedicated QA phantom, in which an experimental 1D and 2D verification (0.3 cm(3) ionization chamber; films) was performed. Additionally, an independent dose calculation was performed. The fluence-based algorithm of MUV accounts for collimator transmission, rounded leaf ends, tongue-and-groove effect, backscatter to the monitor chamber and scatter from the flattening filter. The dose calculation utilizes a pencil beam model based on a beam quality index. DICOM RT files from patient plans, exported from the TPS, were directly used as patient-specific input data in MUV. For composite IMRT plans, average deviations in the high dose region between ionization chamber measurements and point dose calculations performed with the TPS and MUV were 1.6 +/- 1.2% and 0.5 +/- 1.1% (1 S.D.). The dose deviations between MUV and TPS slightly depended on the distance from the isocentre position. For individual intensity-modulated beams (total 367), an average deviation of 1.1 +/- 2.9% was determined between calculations performed with the TPS and with MUV, with maximum deviations up to 14%. However, absolute dose deviations were mostly less than 3 cGy. Based on the current results, we aim to apply a confidence limit of 3% (with respect to the prescribed dose) or 6 cGy for routine IMRT verification. For off-axis points at distances larger than 5 cm and for low dose regions, we consider 5% dose deviation or 10 cGy acceptable. The time needed for an independent calculation compares very favourably with the net time for an experimental approach. The physical effects modelled in the dose calculation software MUV allow accurate dose calculations in individual verification points. Independent calculations may be used to replace experimental dose verification once the IMRT programme is mature.
Faria-Ribeiro, Miguel; Amorim-de-Sousa, Ana; González-Méijome, José M
2018-05-01
To investigate the separated and combined influences of inner zone (IZ) diameter and effective add power of dual-focus contact lenses (CL) in the image quality at distance and near viewing, in a functional accommodating model eye. Computational wave-optics methods were used to define zonal bifocal pupil functions, representing the optic zones of nine dual-focus centre-distance CLs. The dual-focus pupil functions were defined having IZ diameters of 2.10 mm, 3.36 mm and 4.00 mm, with add powers of 1.5 D, 2.0 D and 2.5 D (dioptres), for each design, that resulted in a ratio of 64%/36% between the distance and treatment zone areas, bounded by a 6 mm entrance pupil. A through-focus routine was implemented in MATLAB to simulate the changes in image quality, calculated from the Visual Strehl ratio, as the eye with the dual-focus accommodates, from 0 to -3.00 D target vergences. Accommodative responses were defined as the changes in the defocus coefficient, combined with a change in fourth and sixth order spherical aberration, which produced a peak in image quality at each target vergence. Distance viewing image quality was marginally affected by IZ diameter but not by add power. Near image quality obtained when focussing the image formed by the near optics was only higher by a small amount compared to the other two IZ diameters. The mean ± standard deviation values obtained with the three adds were 0.28 ± 0.02, 0.23 ± 0.02 and 0.22 ± 0.02, for the small, medium and larger IZ diameters, respectively. On the other hand, near image quality predicted by focussing the image formed by the distance optics was considerably lower relatively to the other two IZ diameters. The mean ± standard deviation values obtained with the three adds were 0.15 ± 0.01, 0.38 ± 0.00 and 0.54 ± 0.01, for the small, medium and larger IZ diameters, respectively. During near viewing through dual-focus CLs, image quality depends on the diameter of the most inner zone of the CL, while add power only affects the range of clear focus when focussing the image formed by the CL near optics. When only image quality gain is taken into consideration, medium and large IZ diameters designs are most likely to promote normal accommodative responses driven by the CL distance optics, while a smaller IZ diameter design is most likely to promote a reduced accommodative response driven by the dual-focus CL near optics. © 2018 The Authors Ophthalmic & Physiological Optics © 2018 The College of Optometrists.
College Students' Perceptions of Quality in Distance Education: The Importance of Communication
ERIC Educational Resources Information Center
Ortiz-Rodriguez, Madeline; Telg, Ricky W.; Irani, Tracy; Roberts, T. Grady; Rhoades, Emily
2005-01-01
Quality in distance education has been studied mostly from a top-down approach, from administration and faculty to students. This study was an attempt to understand quality through the eyes of the distance learner. This study identified undergraduate and graduate students' perceptions about quality in distance education, examining factors…
Navy Nuclear Aircraft Carrier (CVN) Homeporting at Mayport: Background and Issues for Congress
2011-04-15
about 32 nautical miles is the straight-line distance between the two locations, as calculated by the “How Fair Is It?” online distance calculator...distance between the two locations, as calculated by the “How Fair Is It?” online distance calculator, available at http://www.indo.com/cgi-bin/dist...Section 2207 of the FY2009 defense authorization bill as passed by the House (H.R. 5658; H.Rept. 110-652 of May 16, 2008) stated: SEC. 2207
Navy Nuclear Aircraft Carrier (CVN) Homeporting at Mayport: Background and Issues for Congress
2010-12-09
Release No. 233-09 of April 10, 2009, entitled “Quadrennial Defense Review To Determine Aircraft Carrier Homeporting In Mayport,” available online at...is the straight-line distance between the two locations, as calculated by the “How Fair Is It?” online distance calculator available at http...straight-line distance between the two locations, as calculated by the “How Fair Is It?” online distance calculator available at http://www.indo.com/cgi
The central electrode correction factor for high-Z electrodes in small ionization chambers.
Muir, B R; Rogers, D W O
2011-02-01
Recent Monte Carlo calculations of beam quality conversion factors for ion chambers that use high-Z electrodes [B. R. Muir and D. W. O. Rogers, Med. Phys. 37, 5939-5950 (2010)] have shown large deviations of kQ values from values calculated using the same techniques as the TG-51 and TRS-398 protocols. This report investigates the central electrode correction factor, Pcel, for these chambers. Ionization chambers are modeled and Pcel is calculated using the EGSnrc user code egs_chamber for three cases: in photon and electron beams under reference conditions; as a function of distance from an iridium-192 point source in a water phantom; and as a function of depth in a water phantom on which a 200 kVp x-ray source or 6 MV beam is incident. In photon beams, differences of up to 3% between Pcel calculations for a chamber with a high-Z electrode and those used by TG-51 for a 1 mm diameter aluminum electrode are observed. The central electrode correction factor for a given value of the beam quality specifier is different depending on the amount of filtration of the photon beam. However, in an unfiltered 6 MV beam, Pcel, varies by only 0.3% for a chamber with a high-Z electrode as the depth is varied from 1 to 20 cm in water. The difference between Pcel calculations for chambers with high-Z electrodes and TG-51 values for a chamber with an aluminum electrode is up to 0.45% in electron beams. The central electrode correction, which is roughly proportional to the chambers absorbed dose sensitivity, is found to be large and variable as a function of distance for chambers with high-Z and aluminum electrodes in low-energy photon fields. In this work, ionization chambers that employ high-Z electrodes have been shown to be problematic in various situations. For beam quality conversion factors, the ratio of Pcel in a beam quality Q to that in a Co-60 beam is required; for some chambers, kQ is significantly different from current dosimetry protocol values because of central electrode effects. It would be best for manufacturers to avoid producing ion chambers that use high-Z electrodes.
Faithful qubit transmission in a quantum communication network with heterogeneous channels
NASA Astrophysics Data System (ADS)
Chen, Na; Zhang, Lin Xi; Pei, Chang Xing
2018-04-01
Quantum communication networks enable long-distance qubit transmission and distributed quantum computation. In this paper, a quantum communication network with heterogeneous quantum channels is constructed. A faithful qubit transmission scheme is presented. Detailed calculations and performance analyses show that even in a low-quality quantum channel with serious decoherence, only modest number of locally prepared target qubits are required to achieve near-deterministic qubit transmission.
NASA Astrophysics Data System (ADS)
Palmer, A. L.; Nisbet, A.; Bradley, D. A.
2013-06-01
There is a need to modernise clinical brachytherapy dosimetry measurement beyond traditional point dose verification to enable appropriate quality control within 3D treatment environments. This is to keep pace with the 3D clinical and planning approaches which often include significant patient-specific optimisation away from 'standard loading patterns'. A multi-dimension measurement system is required to provide assurance of the complex 3D dose distributions, to verify equipment performance, and to enable quality audits. However, true 3D dose measurements around brachytherapy applicators are often impractical due to their complex shapes and the requirement for close measurement distances. A solution utilising an array of radiochromic film (Gafchromic EBT3) positioned within a water filled phantom is presented. A calibration function for the film has been determined over 0 to 90Gy dose range using three colour channel analysis (FilmQAPro software). Film measurements of the radial dose from a single HDR source agree with TPS and Monte Carlo calculations within 5 % up to 50 mm from the source. Film array measurements of the dose distribution around a cervix applicator agree with TPS calculations generally within 4 mm distance to agreement. The feasibility of film array measurements for semi-3D dosimetry in clinical HDR applications is demonstrated.
NASA Astrophysics Data System (ADS)
Zeng, Zhenxiang; Zheng, Huadong; Yu, Yingjie; Asundi, Anand K.
2017-06-01
A method for calculating off-axis phase-only holograms of three-dimensional (3D) object using accelerated point-based Fresnel diffraction algorithm (PB-FDA) is proposed. The complex amplitude of the object points on the z-axis in hologram plane is calculated using Fresnel diffraction formula, called principal complex amplitudes (PCAs). The complex amplitudes of those off-axis object points of the same depth can be obtained by 2D shifting of PCAs. In order to improve the calculating speed of the PB-FDA, the convolution operation based on fast Fourier transform (FFT) is used to calculate the holograms rather than using the point-by-point spatial 2D shifting of the PCAs. The shortest recording distance of the PB-FDA is analyzed in order to remove the influence of multiple-order images in reconstructed images. The optimal recording distance of the PB-FDA is also analyzed to improve the quality of reconstructed images. Numerical reconstructions and optical reconstructions with a phase-only spatial light modulator (SLM) show that holographic 3D display is feasible with the proposed algorithm. The proposed PB-FDA can also avoid the influence of the zero-order image introduced by SLM in optical reconstructed images.
Somatotype and Body Composition of Normal and Dysphonic Adult Speakers.
Franco, Débora; Fragoso, Isabel; Andrea, Mário; Teles, Júlia; Martins, Fernando
2017-01-01
Voice quality provides information about the anatomical characteristics of the speaker. The patterns of somatotype and body composition can provide essential knowledge to characterize the individuality of voice quality. The aim of this study was to verify if there were significant differences in somatotype and body composition between normal and dysphonic speakers. Cross-sectional study. Anthropometric measurements were taken of a sample of 72 adult participants (40 normal speakers and 32 dysphonic speakers) according to International Society for the Advancement of Kinanthropometry standards, which allowed the calculation of endomorphism, mesomorphism, ectomorphism components, body density, body mass index, fat mass, percentage fat, and fat-free mass. Perception and acoustic evaluations as well as nasoendoscopy were used to assign speakers into normal or dysphonic groups. There were no significant differences between normal and dysphonic speakers in the mean somatotype attitudinal distance and somatotype dispersion distance (in spite of marginally significant differences [P < 0.10] in somatotype attitudinal distance and somatotype dispersion distance between groups) and in the mean vector of the somatotype components. Furthermore, no significant differences were found between groups concerning the mean of percentage fat, fat mass, fat-free mass, body density, and body mass index after controlling by sex. The findings suggested no significant differences in the somatotype and body composition variables, between normal and dysphonic speakers. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Khaidir Noor, Muhammad
2018-03-01
Reserve estimation is one of important work in evaluating a mining project. It is estimation of the quality and quantity of the presence of minerals have economic value. Reserve calculation method plays an important role in determining the efficiency in commercial exploration of a deposit. This study was intended to calculate ore reserves contained in the study area especially Pit Block 3A. Nickel ore reserve was estimated by using detailed exploration data, processing by using Surpac 6.2 by Inverse Distance Weight: Squared Power estimation method. Ore estimation result obtained from 30 drilling data was 76453.5 ton of Saprolite with density of 1.5 ton/m3 and COG (Cut Off Grade) Ni ≥ 1.6 %, while overburden data was 112,570.8 tons with waste rock density of 1.2 ton/m3 . Striping Ratio (SR) was 1.47 : 1 smaller than Stripping Ratio ( SR ) were set of 1.60 : 1.
Quality Assurance in Distance Learning Libraries
ERIC Educational Resources Information Center
Tripathi, Manorama; Jeevan, V. K. J.
2009-01-01
Purpose: The paper aims to study how the present distance learning libraries can improve upon their existing services and introduce new ones to enhance quality of services to distance learners. Design/methodology/approach: The paper includes a review of literature on quality assurance in open and distance education in general and student support…
NASA Astrophysics Data System (ADS)
Selivanova, Karina G.; Avrunin, Oleg G.; Zlepko, Sergii M.; Romanyuk, Sergii O.; Zabolotna, Natalia I.; Kotyra, Andrzej; Komada, Paweł; Smailova, Saule
2016-09-01
Research and systematization of motor disorders, taking into account the clinical and neurophysiologic phenomena, are important and actual problem of neurology. The article describes a technique for decomposing surface electromyography (EMG), using Principal Component Analysis. The decomposition is achieved by a set of algorithms that uses a specially developed for analyze EMG. The accuracy was verified by calculation of Mahalanobis distance and Probability error.
Probabilistic Seismic Hazard Analysis for Georgia
NASA Astrophysics Data System (ADS)
Tsereteli, N. S.; Varazanashvili, O.; Sharia, T.; Arabidze, V.; Tibaldi, A.; Bonali, F. L. L.; Russo, E.; Pasquaré Mariotto, F.
2017-12-01
Nowadays, seismic hazard studies are developed in terms of the calculation of Peak Ground Acceleration (PGA), Spectral Acceleration (SA), Peak Ground Velocity (PGV) and other recorded parameters. In the frame of EMME project PSH were calculated for Georgia using GMPE based on selection criteria. In the frame of Project N 216758 (supported by Shota Rustaveli National Science Foundation (SRNF)) PSH maps were estimated using hybrid- empirical ground motion prediction equation developed for Georgia. Due to the paucity of seismically recorded information, in this work we focused our research on a more robust dataset related to macroseismic data,and attempted to calculate the probabilistic seismic hazard directly in terms of macroseismicintensity. For this reason, we started calculating new intensity prediction equations (IPEs)for Georgia taking into account different sets, belonging to the same new database, as well as distances from the seismic source.With respect to the seismic source, in order to improve the quality of the results, we have also hypothesized the size of faults from empirical relations, and calculated new IPEs also by considering Joyner-Boore and rupture distances in addition to epicentral and hypocentral distances. Finally, site conditions have been included as variables for IPEs calculation Regarding the database, we used a brand new revised set of macroseismic data and instrumental records for the significant earthquakes that struck Georgia between 1900 and 2002.Particularly, a large amount of research and documents related to macroseismic effects of individual earthquakes, stored in the archives of the Institute of Geophysics, were used as sources for the new macroseismic data. The latter are reported in the Medvedev-Sponheuer-Karnikmacroseismic scale (MSK64). For each earthquake the magnitude, the focal depth and the epicenter location are also reported. An online version of the database, with therelated metadata,has been produced for the 69 revised earthquakes and is available online (http://www.enguriproject.unimib.it/; .
High Astrometric Precision in the Calculation of the Coordinates of Orbiters in the GEO Ring
NASA Astrophysics Data System (ADS)
Lacruz, E.; Abad, C.; Downes, J. J.; Hernández-Pérez, F.; Casanova, D.; Tresaco, E.
2018-04-01
We present an astrometric method for the calculation of the positions of orbiters in the GEO ring with a high precision, through a rigorous astrometric treatment of observations with a 1-m class telescope, which are part of the CIDA survey of the GEO ring. We compute the distortion pattern to correct for the systematic errors introduced by the optics and electronics of the telescope, resulting in absolute mean errors of 0.16″ and 0.12″ in right ascension and declination, respectively. These correspond to ≍25 m at the mean distance of the GEO ring, and are thus good quality results.
The Landscape of Quality Assurance in Distance Education
ERIC Educational Resources Information Center
Scull, W. Reed; Kendrick, David; Shearer, Rick; Offerman, Dana
2011-01-01
Distance education permeates the field of professional and continuing education to such an extent that quality assurance (QA) is a topic no distance educator or administrator should avoid. Quality assurance is an issue not just for continuing education but also for higher education generally. Given the disruptive impact of distance education and…
NASA Astrophysics Data System (ADS)
Docobo, J. A.; Tamazian, V. S.; Campo, P. P.
2018-05-01
In the vast majority of cases when available astrometric measurements of a visual binary cover a very short orbital arc, it is practically impossible to calculate a good quality orbit. It is especially important for systems with pre-main-sequence components where standard mass-spectrum calibrations cannot be applied nor can a dynamical parallax be calculated. We have shown that the analytical method of Docobo allows us to put certain constraints on the most likely orbital solutions, using an available realistic estimate of the global mass of the system. As an example, we studied the interesting PMS binary, FW Tau AB, located in the Taurus-Auriga as well as investigated a range of its possible orbital solutions combined with an assumed distance between 120 and 160 pc. To maintain the total mass of FW Tau AB in a realistic range between 0.2 and 0.6M_{⊙}, minimal orbital periods should begin at 105, 150, 335, and 2300 yr for distances of 120, 130, 140, and 150 pc, respectively (no plausible orbits were found assuming a distance of 160 pc). An original criterion to establish the upper limit of the orbital period is applied. When the position angle in some astrometric measurements was flipped by 180°, orbits with periods close to 45 yr are also plausible. Three example orbits with periods of 44.6, 180, and 310 yr are presented.
Examination of the dental cone-beam CT equipped with flat-panel-detector (FPD)
NASA Astrophysics Data System (ADS)
Ito, Rieko; Fujita, Naotoshi; Kodera, Yoshie
2011-03-01
In dentistry, computed tomography (CT) is essential for diagnosis. Recently, cone-beam CT has come into use. We used an "Alphard 3030" cone-beam CT equipped with an FPD system. This system can obtain fluoroscopic and CT images. Moreover, the Alphard has 4 exposure modes for CT, and each mode has a different field of view (FOV) and voxel size. We examined the image quality of kinetic and CT images obtained using the cone-beam CT system. To evaluate kinetic image quality, we calculated the Wiener spectrum (WS) and modulation transfer function (MTF). We then analyzed the lag images and exposed a phantom. To evaluate CT image quality, we calculated WS and MTF at various places in the FOV and examined the influence of extension of the cone beam X-ray on voxel size. Furthermore, we compared the WS and MTF values of cone-beam CT to those of another CT system. Evaluation of the kinetic images showed that cone-beam CT is sufficient for clinical diagnosis and provides better image quality than the other system tested. However, during exposure of a CT image, the distance from the center influences image quality (especially MTF). Further, differences in voxel size affect image quality. It is therefore necessary to carefully position the region of interest and select an appropriate mode.
Efficient distance calculation using the spherically-extended polytope (s-tope) model
NASA Technical Reports Server (NTRS)
Hamlin, Gregory J.; Kelley, Robert B.; Tornero, Josep
1991-01-01
An object representation scheme which allows for Euclidean distance calculation is presented. The object model extends the polytope model by representing objects as the convex hull of a finite set of spheres. An algorithm for calculating distances between objects is developed which is linear in the total number of spheres specifying the two objects.
The Molecular Structure of cis-FONO
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Dateo, Christopher E.; Rice, Julia E.; Langhoff, Stephen R. (Technical Monitor)
1994-01-01
The molecular structure of cis-FONO has been determined with the CCSD(T) correlation method using an spdf quality basis set. In agreement with previous coupled-cluster calculations but in disagreement with density functional theory, cis-FONO is found to exhibit normal bond distances. The quadratic and cubic force fields of cis-FONO have also been determined in order to evaluate the effect of vibrational averaging on the molecular geometry. Vibrational averaging is found to increase bond distances, as expected, but it does not affect the qualitative nature of the bonding. The CCSD(T)/spdf harmonic frequencies of cis-FONO support our previous assertion that a band observed at 1200 /cm is a combination band (upsilon(sub 3) + upsilon(sub 4)), and not a fundamental.
Evaluating Quality of Students' Support Services in Open Distance Learning
ERIC Educational Resources Information Center
Nsamba, Asteria; Makoe, Mpine
2017-01-01
Evaluating the quality of students' support services in distance education institutions is vital because by nature Open Distance Learning (ODL) is a high-involvement service industry, with multiple student support service encounters. Most quality evaluation models tend to view quality from the institutional perspective. As a result, little is…
Cui, Feng; Jernigan, Robert; Wu, Zhijun
2008-04-01
Nuclear Overhauser effects (NOE) distance constraints and torsion angle constraints are major conformational constraints for nuclear magnetic resonance (NMR) structure refinement. In particular, the number of NOE constraints has been considered as an important determinant for the quality of NMR structures. Of course, the availability of torsion angle constraints is also critical for the formation of correct local conformations. In our recent work, we have shown how a set of knowledge-based short-range distance constraints can also be utilized for NMR structure refinement, as a complementary set of conformational constraints to the NOE and torsion angle constraints. In this paper, we show the results from a series of structure refinement experiments by using different types of conformational constraints--NOE, torsion angle, or knowledge-based constraints--or their combinations, and make a quantitative assessment on how the experimentally acquired constraints contribute to the quality of structural models and whether or not they can be combined with or substituted by the knowledge-based constraints. We have carried out the experiments on a small set of NMR structures. Our preliminary calculations have revealed that the torsion angle constraints contribute substantially to the quality of the structures, but require to be combined with the NOE constraints to be fully effective. The knowledge-based constraints can be functionally as crucial as the torsion angle constraints, although they are statistical constraints after all and are not meant to be able to replace the latter.
Sharkey, Joseph R; Horel, Scott; Han, Daikwon; Huber, John C
2009-02-16
To determine the extent to which neighborhood needs (socioeconomic deprivation and vehicle availability) are associated with two criteria of food environment access: 1) distance to the nearest food store and fast food restaurant and 2) coverage (number) of food stores and fast food restaurants within a specified network distance of neighborhood areas of colonias, using ground-truthed methods. Data included locational points for 315 food stores and 204 fast food restaurants, and neighborhood characteristics from the 2000 U.S. Census for the 197 census block group (CBG) study area. Neighborhood deprivation and vehicle availability were calculated for each CBG. Minimum distance was determined by calculating network distance from the population-weighted center of each CBG to the nearest supercenter, supermarket, grocery, convenience store, dollar store, mass merchandiser, and fast food restaurant. Coverage was determined by calculating the number of each type of food store and fast food restaurant within a network distance of 1, 3, and 5 miles of each population-weighted CBG center. Neighborhood need and access were examined using Spearman ranked correlations, spatial autocorrelation, and multivariate regression models that adjusted for population density. Overall, neighborhoods had best access to convenience stores, fast food restaurants, and dollar stores. After adjusting for population density, residents in neighborhoods with increased deprivation had to travel a significantly greater distance to the nearest supercenter or supermarket, grocery store, mass merchandiser, dollar store, and pharmacy for food items. The results were quite different for association of need with the number of stores within 1 mile. Deprivation was only associated with fast food restaurants; greater deprivation was associated with fewer fast food restaurants within 1 mile. CBG with greater lack of vehicle availability had slightly better access to more supercenters or supermarkets, grocery stores, or fast food restaurants. Increasing deprivation was associated with decreasing numbers of grocery stores, mass merchandisers, dollar stores, and fast food restaurants within 3 miles. It is important to understand not only the distance that people must travel to the nearest store to make a purchase, but also how many shopping opportunities they have in order to compare price, quality, and selection. Future research should examine how spatial access to the food environment influences the utilization of food stores and fast food restaurants, and the strategies used by low-income families to obtain food for the household.
Relationship Between Air Quality and Outdoor Exercise Behavior in China: a Novel Mobile-Based Study.
Hu, Liang; Zhu, Li; Xu, Yaping; Lyu, Jiaying; Imm, Kellie; Yang, Lin
2017-08-01
Based on data collected from an exercise app, the study aims to provide empirical evidence on the relationship between air quality and patterns of outdoor exercise in China. Objective outdoor exercise data spanning 160 days were collected from 153 users of an exercise app, Tulipsport in China. Each exercise mode (running, biking, and walking, respectively) was organized into five air quality categories based on Air Quality Index (AQI): excellent, good, mild pollution, moderate pollution, and serious pollution. Key parameters of each app user were calculated and analyzed: the total number of exercise bouts, the average duration, and the average distance of each exercise mode in each air quality category. Multivariate analyses of variance indicate that the users were less likely to participate in outdoor running, biking, and walking (F = 24.16, p < .01, Wilk's Λ = 0.64) as levels of air pollution increased. However, there is no difference in terms of average distance and duration of exercise across different air pollution categories. People's participation in outdoor exercise is impeded by air pollution severity, but they stick to their exercise routines once exercise is initiated. Although people should protect themselves from health damages caused by exercising under pollution, the decreases in physical activity associated with air pollution may also pose an indirect risk to public health. The interactive relationship between air quality, exercise, and health warrants more empirical and interdisciplinary explorations.
Navy Nuclear Aircraft Carrier (CVN) Homeporting at Mayport: Background and Issues for Congress
2010-05-26
online at http://www.defenselink.mil/releases/release.aspx?releaseid= 12600. 4 Department of Defense, Quadrennial Defense Review Report, February 2010...calculated by the “How Fair Is It?” online distance calculator available at http://www.indo.com/cgi-bin/dist. 10 Although the Navy states that the CVN based...itself. 14 This is the straight-line distance between the two locations, as calculated by the “How Fair Is It?” online distance calculator available
Optical design of microlens array for CMOS image sensors
NASA Astrophysics Data System (ADS)
Zhang, Rongzhu; Lai, Liping
2016-10-01
The optical crosstalk between the pixel units can influence the image quality of CMOS image sensor. In the meantime, the duty ratio of CMOS is low because of its pixel structure. These two factors cause the low detection sensitivity of CMOS. In order to reduce the optical crosstalk and improve the fill factor of CMOS image sensor, a microlens array has been designed and integrated with CMOS. The initial parameters of the microlens array have been calculated according to the structure of a CMOS. Then the parameters have been optimized by using ZEMAX and the microlens arrays with different substrate thicknesses have been compared. The results show that in order to obtain the best imaging quality, when the effect of optical crosstalk for CMOS is the minimum, the best distance between microlens array and CMOS is about 19.3 μm. When incident light successively passes through microlens array and the distance, obtaining the minimum facula is around 0.347 um in the active area. In addition, when the incident angle of the light is 0o 22o, the microlens array has obvious inhibitory effect on the optical crosstalk. And the anti-crosstalk distance between microlens array and CMOS is 0 μm 162 μm.
Spatial Patterns in Water Quality Changes during Dredging in Tropical Environments
Fisher, Rebecca; Stark, Clair; Ridd, Peter; Jones, Ross
2015-01-01
Dredging poses a potential risk to tropical ecosystems, especially in turbidity-sensitive environments such as coral reefs, filter feeding communities and seagrasses. There is little detailed observational time-series data on the spatial effects of dredging on turbidity and light and defining likely footprints is a fundamental task for impact prediction, the EIA process, and for designing monitoring projects when dredging is underway. It is also important for public perception of risks associated with dredging. Using an extensive collection of in situ water quality data (73 sites) from three recent large scale capital dredging programs in Australia, and which included extensive pre-dredging baseline data, we describe relationships with distance from dredging for a range of water quality metrics. Using a criterion to define a zone of potential impact of where the water quality value exceeds the 80th percentile of the baseline value for turbidity-based metrics or the 20th percentile for the light based metrics, effects were observed predominantly up to three km from dredging, but in one instance up to nearly 20 km. This upper (~20 km) limit was unusual and caused by a local oceanographic feature of consistent unidirectional flow during the project. Water quality loggers were located along the principal axis of this flow (from 200 m to 30 km) and provided the opportunity to develop a matrix of exposure based on running means calculated across multiple time periods (from hours to one month) and distance from the dredging, and summarized across a broad range of percentile values. This information can be used to more formally develop water quality thresholds for benthic organisms, such as corals, filter-feeders (e.g. sponges) and seagrasses in future laboratory- and field-based studies using environmentally realistic and relevant exposure scenarios, that may be used to further refine distance based analyses of impact, potentially further reducing the size of the dredging footprint. PMID:26630575
Spatial Patterns in Water Quality Changes during Dredging in Tropical Environments.
Fisher, Rebecca; Stark, Clair; Ridd, Peter; Jones, Ross
2015-01-01
Dredging poses a potential risk to tropical ecosystems, especially in turbidity-sensitive environments such as coral reefs, filter feeding communities and seagrasses. There is little detailed observational time-series data on the spatial effects of dredging on turbidity and light and defining likely footprints is a fundamental task for impact prediction, the EIA process, and for designing monitoring projects when dredging is underway. It is also important for public perception of risks associated with dredging. Using an extensive collection of in situ water quality data (73 sites) from three recent large scale capital dredging programs in Australia, and which included extensive pre-dredging baseline data, we describe relationships with distance from dredging for a range of water quality metrics. Using a criterion to define a zone of potential impact of where the water quality value exceeds the 80th percentile of the baseline value for turbidity-based metrics or the 20th percentile for the light based metrics, effects were observed predominantly up to three km from dredging, but in one instance up to nearly 20 km. This upper (~20 km) limit was unusual and caused by a local oceanographic feature of consistent unidirectional flow during the project. Water quality loggers were located along the principal axis of this flow (from 200 m to 30 km) and provided the opportunity to develop a matrix of exposure based on running means calculated across multiple time periods (from hours to one month) and distance from the dredging, and summarized across a broad range of percentile values. This information can be used to more formally develop water quality thresholds for benthic organisms, such as corals, filter-feeders (e.g. sponges) and seagrasses in future laboratory- and field-based studies using environmentally realistic and relevant exposure scenarios, that may be used to further refine distance based analyses of impact, potentially further reducing the size of the dredging footprint.
Influence on Visual Quality of Intraoperative Orientation of Asymmetric Intraocular Lenses.
Bonaque-González, Sergio; Ríos, Susana; Amigó, Alfredo; López-Gil, Norberto
2015-10-01
To evaluate visual quality when changing the intraocular orientation of the Lentis Mplus LS-312MF nonrotational symmetric +3.00 diopters aspheric multifocal intraocular lens ([IOL] Oculentis GmbH, Berlin, Germany) in normal eyes. An artificial eye was used to measure the in vitro wavefront of the IOL. The corneal topography of 20 healthy patients was obtained. For each eye, a computational analysis simulated the implantation of the IOL. The modulation transfer function (MTF) and an image quality parameter (visually modulated transfer function [VSMTF] metric) were calculated for a 5.0-mm pupil and for three conditions: distance, intermediate, and near vision. The procedure was repeated for each eye after a rotation of the IOL with respect to the cornea from 0° to 360° in 1° steps. Statistical analysis showed significant differences in mean VSMTF values between orientations for distance vision. Optimal orientation of the IOL (different for each eye) showed a mean improvement of 58% ± 19% (range: 20% to 121%) in VSMTF values with respect to the worst possible orientation. For these orientations, intermediate and near vision quality were statistically indistinguishable. The MTFs were different between orientations, showing a mean difference of approximately 5 cycles per degree in the maximum spatial frequencies that can be transferred between the best and the worst orientations for distance vision. The results suggest that implantation of this nonrotational symmetric IOL should improve visual outcomes if it is oriented to coincide with a customized meridian. A simple, practical method is proposed to find an approximation to the angle that an Mplus IOL should be inserted. Copyright 2015, SLACK Incorporated.
Wang, R; Li, X A
2001-02-01
The dose parameters for the beta-particle emitting 90Sr/90Y source for intravascular brachytherapy (IVBT) have been calculated by different investigators. At a distant distance from the source, noticeable differences are seen in these parameters calculated using different Monte Carlo codes. The purpose of this work is to quantify as well as to understand these differences. We have compared a series of calculations using an EGS4, an EGSnrc, and the MCNP Monte Carlo codes. Data calculated and compared include the depth dose curve for a broad parallel beam of electrons, and radial dose distributions for point electron sources (monoenergetic or polyenergetic) and for a real 90Sr/90Y source. For the 90Sr/90Y source, the doses at the reference position (2 mm radial distance) calculated by the three code agree within 2%. However, the differences between the dose calculated by the three codes can be over 20% in the radial distance range interested in IVBT. The difference increases with radial distance from source, and reaches 30% at the tail of dose curve. These differences may be partially attributed to the different multiple scattering theories and Monte Carlo models for electron transport adopted in these three codes. Doses calculated by the EGSnrc code are more accurate than those by the EGS4. The two calculations agree within 5% for radial distance <6 mm.
Why GPS makes distances bigger than they are
Ranacher, Peter; Brunauer, Richard; Trutschnig, Wolfgang; Van der Spek, Stefan; Reich, Siegfried
2016-01-01
ABSTRACT Global navigation satellite systems such as the Global Positioning System (GPS) is one of the most important sensors for movement analysis. GPS is widely used to record the trajectories of vehicles, animals and human beings. However, all GPS movement data are affected by both measurement and interpolation errors. In this article we show that measurement error causes a systematic bias in distances recorded with a GPS; the distance between two points recorded with a GPS is – on average – bigger than the true distance between these points. This systematic ‘overestimation of distance’ becomes relevant if the influence of interpolation error can be neglected, which in practice is the case for movement sampled at high frequencies. We provide a mathematical explanation of this phenomenon and illustrate that it functionally depends on the autocorrelation of GPS measurement error (C). We argue that C can be interpreted as a quality measure for movement data recorded with a GPS. If there is a strong autocorrelation between any two consecutive position estimates, they have very similar error. This error cancels out when average speed, distance or direction is calculated along the trajectory. Based on our theoretical findings we introduce a novel approach to determine C in real-world GPS movement data sampled at high frequencies. We apply our approach to pedestrian trajectories and car trajectories. We found that the measurement error in the data was strongly spatially and temporally autocorrelated and give a quality estimate of the data. Most importantly, our findings are not limited to GPS alone. The systematic bias and its implications are bound to occur in any movement data collected with absolute positioning if interpolation error can be neglected. PMID:27019610
Accurate ab initio quartic force fields for the ions HCO(+) and HOC(+)
NASA Technical Reports Server (NTRS)
Martin, J. M. L.; Taylor, Peter R.; Lee, Timothy J.
1993-01-01
The quartic force fields of HCO(+) and HOC(+) have been computed using augmented coupled cluster methods and basis sets of spdf and spdfg quality. Calculations on HCN, CO, and N2 have been performed to assist in calibrating the computed results. Going from an spdf to an spdfg basis shortens triple bonds by about 0.004 A, and increases the corresponding harmonic frequency by 10-20/cm, leaving bond distances about 0.003 A too long and triple bond stretching frequencies about 5/cm too low. Accurate estimates for the bond distances, fundamental frequencies, and thermochemical quantities are given. HOC(+) lies 37.8 +/- 0.5 kcal/mol (0 K) above HCO(+); the classical barrier height for proton exchange is 76.7 +/- 1.0 kcal/mol.
SU-G-BRB-05: Automation of the Photon Dosimetric Quality Assurance Program of a Linear Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebron, S; Lu, B; Yan, G
Purpose: To develop an automated method to calculate a linear accelerator (LINAC) photon radiation field size, flatness, symmetry, output and beam quality in a single delivery for flattened (FF) and flattening-filter-free (FFF) beams using an ionization chamber array. Methods: The proposed method consists of three control points that deliver 30×30, 10×10 and 5×5cm{sup 2} fields (FF or FFF) in a step-and-shoot sequence where the number of monitor units is weighted for each field size. The IC Profiler (Sun Nuclear Inc.) with 5mm detector spacing was used for this study. The corrected counts (CCs) were calculated and the locations of themore » maxima and minima values of the first-order gradient determined data of each sub field. Then, all CCs for each field size are summed in order to obtain the final profiles. For each profile, the radiation field size, symmetry, flatness, output factor and beam quality were calculated. For field size calculation, a parameterized gradient method was used. For method validation, profiles were collected in the detector array both, individually and as part of the step-and-shoot plan, with 9.9cm buildup for FF and FFF beams at 90cm source-to-surface distance. The same data were collected with the device (plus buildup) placed on a movable platform to achieve a 1mm resolution. Results: The differences between the dosimetric quantities calculated from both deliveries, individually and step-and-shoot, were within 0.31±0.20% and 0.04±0.02mm. The differences between the calculated field sizes with 5mm and 1mm resolution were ±0.1mm. Conclusion: The proposed single delivery method proved to be simple and efficient in automating the photon dosimetric monthly and annual quality assurance.« less
Quality Assurance, Open and Distance Learning, and Australian Universities
ERIC Educational Resources Information Center
Reid, Ian C.
2005-01-01
Open and distance education has integrated quality assurance processes since its inception. Recently, the increased use of distance teaching systems, technologies, and pedagogies by universities without a distance education heritage has enabled them to provide flexible learning opportunities. They have done this in addition to, or instead of,…
Sequence quality analysis tool for HIV type 1 protease and reverse transcriptase.
Delong, Allison K; Wu, Mingham; Bennett, Diane; Parkin, Neil; Wu, Zhijin; Hogan, Joseph W; Kantor, Rami
2012-08-01
Access to antiretroviral therapy is increasing globally and drug resistance evolution is anticipated. Currently, protease (PR) and reverse transcriptase (RT) sequence generation is increasing, including the use of in-house sequencing assays, and quality assessment prior to sequence analysis is essential. We created a computational HIV PR/RT Sequence Quality Analysis Tool (SQUAT) that runs in the R statistical environment. Sequence quality thresholds are calculated from a large dataset (46,802 PR and 44,432 RT sequences) from the published literature ( http://hivdb.Stanford.edu ). Nucleic acid sequences are read into SQUAT, identified, aligned, and translated. Nucleic acid sequences are flagged if with >five 1-2-base insertions; >one 3-base insertion; >one deletion; >six PR or >18 RT ambiguous bases; >three consecutive PR or >four RT nucleic acid mutations; >zero stop codons; >three PR or >six RT ambiguous amino acids; >three consecutive PR or >four RT amino acid mutations; >zero unique amino acids; or <0.5% or >15% genetic distance from another submitted sequence. Thresholds are user modifiable. SQUAT output includes a summary report with detailed comments for troubleshooting of flagged sequences, histograms of pairwise genetic distances, neighbor joining phylogenetic trees, and aligned nucleic and amino acid sequences. SQUAT is a stand-alone, free, web-independent tool to ensure use of high-quality HIV PR/RT sequences in interpretation and reporting of drug resistance, while increasing awareness and expertise and facilitating troubleshooting of potentially problematic sequences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Gang; Gordon, Iouli E.; Rothman, Laurence S.
Extensive rovibrational line lists were computed for nine isotopologues of the CO molecule, namely, {sup 12}C{sup 16}O, {sup 12}C{sup 17}O, {sup 12}C{sup 18}O, {sup 13}C{sup 16}O, {sup 13}C{sup 17}O, {sup 13}C{sup 18}O, {sup 14}C{sup 16}O, {sup 14}C{sup 17}O, and {sup 14}C{sup 18}O in the ground electronic state with v ≤ 41, Δv ≤ 11, and J ≤ 150. The line intensity and position calculations were carried out using a newly determined piece-wise dipole moment function (DMF) in conjunction with the wavefunctions calculated from an experimentally determined potential energy function from Coxon and Hajigeorgiou. A direct-fit method that simultaneously fits allmore » the reliable experimental rovibrational matrix elements has been used to construct the dipole moment function near equilibrium internuclear distance. In order to extend the amount and quality of input experimental parameters, new Cavity Ring Down Spectroscopy experiments were carried out to enable measurements of the lines in the 4-0 band with low uncertainty as well as the first measurements of lines in the 6-0 band. A new high-level ab initio DMF, derived from a finite field approach has been calculated to cover internuclear distances far from equilibrium. Accurate partition sums have been derived for temperatures up to 9000 K. In addition to air- and self-induced broadening and shift parameters, those induced by CO{sub 2} and H{sub 2} are now provided for planetary applications. A complete set of broadening and shift parameters was calculated based on sophisticated extrapolation of high-quality measured data. The line lists, which follow HITRAN formalism, are provided as supplementary material.« less
Measuring the Accuracy of Simple Evolving Connectionist System with Varying Distance Formulas
NASA Astrophysics Data System (ADS)
Al-Khowarizmi; Sitompul, O. S.; Suherman; Nababan, E. B.
2017-12-01
Simple Evolving Connectionist System (SECoS) is a minimal implementation of Evolving Connectionist Systems (ECoS) in artificial neural networks. The three-layer network architecture of the SECoS could be built based on the given input. In this study, the activation value for the SECoS learning process, which is commonly calculated using normalized Hamming distance, is also calculated using normalized Manhattan distance and normalized Euclidean distance in order to compare the smallest error value and best learning rate obtained. The accuracy of measurement resulted by the three distance formulas are calculated using mean absolute percentage error. In the training phase with several parameters, such as sensitivity threshold, error threshold, first learning rate, and second learning rate, it was found that normalized Euclidean distance is more accurate than both normalized Hamming distance and normalized Manhattan distance. In the case of beta fibrinogen gene -455 G/A polymorphism patients used as training data, the highest mean absolute percentage error value is obtained with normalized Manhattan distance compared to normalized Euclidean distance and normalized Hamming distance. However, the differences are very small that it can be concluded that the three distance formulas used in SECoS do not have a significant effect on the accuracy of the training results.
NASA Astrophysics Data System (ADS)
Dolan, K. A.
2015-12-01
Disturbance plays a critical role in shaping the structure and function of forested ecosystems as well as the ecosystem services they provide, including but not limited to: carbon storage, biodiversity habitat, water quality and flow, and land atmosphere exchanges of energy and water. In addition, recent studies suggest that disturbance rates may increase in the future under altered climate and land use scenarios. Thus understanding how vulnerable forested ecosystems are to potential changes in disturbance rates is of high importance. This study calculated the theoretical threshold rate of disturbance for which forest ecosystems could no longer be sustained (λ*) across the Coterminous U.S. using an advanced process based ecosystem model (ED). Published rates of disturbance (λ) in 50 study sites were obtained from the North American Forest Disturbance (NAFD) program. Disturbance distance (λ* - λ) was calculated for each site by differencing the model based threshold under current climate conditions and average observed rates of disturbance over the last quarter century. Preliminary results confirm all sample forest sites have current average rates of disturbance below λ*, but there were interesting patterns in the recorded disturbance distances. In general western sites had much smaller disturbance distances, suggesting higher vulnerability to change, while eastern sites showed larger buffers. Ongoing work is being conducted to assess the vulnerability of these sites in the context of potential future changes by propagating scenarios of future climate and land-use change through the analysis.
Navy Nuclear Aircraft Carrier (CVN) Homeporting at Mayport: Background and Issues for Congress
2010-04-01
Aircraft Carrier Homeporting In Mayport,” available online at http://www.defenselink.mil/releases/release.aspx?releaseid= 12600. 4 Department of Defense...miles is the straight-line distance between the two locations, as calculated by the “How Fair Is It?” online distance calculator available at http...Fair Is It?” online distance calculator available at http://www.indo.com/cgi-bin/dist. 13 Department of the Navy, Report on Strategic Plan for
Geographic disparities in patient travel for dialysis in the United States.
Stephens, J Mark; Brotherton, Samuel; Dunning, Stephan C; Emerson, Larry C; Gilbertson, David T; Harrison, David J; Kochevar, John J; McClellan, Ann C; McClellan, William M; Wan, Shaowei; Gitlin, Matthew
2013-01-01
To estimate travel distance and time for US hemodialysis patients and to compare travel of rural versus urban patients. Dialysis patient residences were estimated from ZIP code-level patient counts as of February 2011 allocated within the ZIP code proportional to census tract-level population, obtained from the 2010 U.S. Census. Dialysis facility addresses were obtained from Medicare public-use files. Patients were assigned to an "original" and "replacement" facility, assuming patients used the facility closest to home and would select the next closest facility as a replacement, if a replacement facility was required. Driving distances and times were calculated between patient residences and facility locations using GIS software. The mean one-way driving distance to the original facility was 7.9 miles; for rural patients average distances were 2.5 times farther than for urban patients (15.9 vs. 6.2 miles). Mean driving distance to a replacement facility was 10.6 miles, with rural patients traveling on average 4 times farther than urban patients to a replacement facility (28.8 vs. 6.8 miles). Rural patients travel much longer distances for dialysis than urban patients. Accessing alternative facilities, if required, would greatly increase rural patient travel, while having little impact on urban patients. Increased travel could have clinical implications as longer travel is associated with increased mortality and decreased quality of life. © 2013 National Rural Health Association.
Water quality assessment with hierarchical cluster analysis based on Mahalanobis distance.
Du, Xiangjun; Shao, Fengjing; Wu, Shunyao; Zhang, Hanlin; Xu, Si
2017-07-01
Water quality assessment is crucial for assessment of marine eutrophication, prediction of harmful algal blooms, and environment protection. Previous studies have developed many numeric modeling methods and data driven approaches for water quality assessment. The cluster analysis, an approach widely used for grouping data, has also been employed. However, there are complex correlations between water quality variables, which play important roles in water quality assessment but have always been overlooked. In this paper, we analyze correlations between water quality variables and propose an alternative method for water quality assessment with hierarchical cluster analysis based on Mahalanobis distance. Further, we cluster water quality data collected form coastal water of Bohai Sea and North Yellow Sea of China, and apply clustering results to evaluate its water quality. To evaluate the validity, we also cluster the water quality data with cluster analysis based on Euclidean distance, which are widely adopted by previous studies. The results show that our method is more suitable for water quality assessment with many correlated water quality variables. To our knowledge, it is the first attempt to apply Mahalanobis distance for coastal water quality assessment.
NASA Astrophysics Data System (ADS)
Volkov, V. F.
2017-03-01
The author gives results of parametric calculations of shock-boom levels in the case of flow with a free-stream Mach number of 2.03 past configurations of a supersonic aircraft. The calculations are aimed at investigating the influence of the relative position of basic elements and their geometric shape on the aerodynamic quality of the configuration and on the parameters of shock boom at great distances from the perturbation source. The geometric models of the configurations were formed by combining and joining component elements: the body, the front wing, and the rear tapered wing with root dogtooth extension. From an analysis of all the considered models of tandem configurations with account of the resolvability of shock waves in a perturbed profile compared to the monoplane configuration, the optimum configuration has been singled out that ensures a reduction of 24% in the intensity level of shock boom with an increase of 0.24% in its aerodynamic quality.
Accreditation and Assuring Quality in Distance Learning. CHEA Monograph Series, 2002.
ERIC Educational Resources Information Center
Council for Higher Education Accreditation, Washington, DC.
This report describes the scope and impact of distance learning on higher education and identifies the primary challenges that distance learning poses for accreditation. The responses of the accrediting community designed to assure quality in distance learning are outlined. Data from a variety of sources show that 5,655 institutions are accredited…
Apparatus for in-situ calibration of instruments that measure fluid depth
Campbell, Melvin D.
1994-01-01
The present invention provides a method and apparatus for in-situ calibration of distance measuring equipment. The method comprises obtaining a first distance measurement in a first location, then obtaining at least one other distance measurement in at least one other location of a precisely known distance from the first location, and calculating a calibration constant. The method is applied specifically to calculating a calibration constant for obtaining fluid level and embodied in an apparatus using a pressure transducer and a spacer of precisely known length. The calibration constant is used to calculate the depth of a fluid from subsequent single pressure measurements at any submerged position.
Extraction of Coastlines with Fuzzy Approach Using SENTINEL-1 SAR Image
NASA Astrophysics Data System (ADS)
Demir, N.; Kaynarca, M.; Oy, S.
2016-06-01
Coastlines are important features for water resources, sea products, energy resources etc. Coastlines are changed dynamically, thus automated methods are necessary for analysing and detecting the changes along the coastlines. In this study, Sentinel-1 C band SAR image has been used to extract the coastline with fuzzy logic approach. The used SAR image has VH polarisation and 10x10m. spatial resolution, covers 57 sqkm area from the south-east of Puerto-Rico. Additionally, radiometric calibration is applied to reduce atmospheric and orbit error, and speckle filter is used to reduce the noise. Then the image is terrain-corrected using SRTM digital surface model. Classification of SAR image is a challenging task since SAR and optical sensors have very different properties. Even between different bands of the SAR sensors, the images look very different. So, the classification of SAR image is difficult with the traditional unsupervised methods. In this study, a fuzzy approach has been applied to distinguish the coastal pixels than the land surface pixels. The standard deviation and the mean, median values are calculated to use as parameters in fuzzy approach. The Mean-standard-deviation (MS) Large membership function is used because the large amounts of land and ocean pixels dominate the SAR image with large mean and standard deviation values. The pixel values are multiplied with 1000 to easify the calculations. The mean is calculated as 23 and the standard deviation is calculated as 12 for the whole image. The multiplier parameters are selected as a: 0.58, b: 0.05 to maximize the land surface membership. The result is evaluated using airborne LIDAR data, only for the areas where LIDAR dataset is available and secondly manually digitized coastline. The laser points which are below 0,5 m are classified as the ocean points. The 3D alpha-shapes algorithm is used to detect the coastline points from LIDAR data. Minimum distances are calculated between the LIDAR points of coastline with the extracted coastline. The statistics of the distances are calculated as following; the mean is 5.82m, standard deviation is 5.83m and the median value is 4.08 m. Secondly, the extracted coastline is also evaluated with manually created lines on SAR image. Both lines are converted to dense points with 1 m interval. Then the closest distances are calculated between the points from extracted coastline and manually created coastline. The mean is 5.23m, standard deviation is 4.52m. and the median value is 4.13m for the calculated distances. The evaluation values are within the accuracy of used SAR data for both quality assessment approaches.
Gundersen, Kjell G; Potvin, Rick
2017-01-01
To compare two different diffractive trifocal intraocular lens (IOL) designs, evaluating longer-term refractive outcomes, visual acuity (VA) at various distances, low contrast VA and quality of vision. Patients with binocularly implanted trifocal IOLs of two different designs (FineVision [FV] and Panoptix [PX]) were evaluated 6 months to 2 years after surgery. Best distance-corrected and uncorrected VA were tested at distance (4 m), intermediate (80 and 60 cm) and near (40 cm). A binocular defocus curve was collected with the subject's best distance correction in place. The preferred reading distance was determined along with the VA at that distance. Low contrast VA at distance was also measured. Quality of vision was measured with the National Eye Institute Visual Function Questionnaire near subset and the Quality of Vision questionnaire. Thirty subjects in each group were successfully recruited. The binocular defocus curves differed only at vergences of -1.0 D (FV better, P =0.02), -1.5 and -2.00 D (PX better, P <0.01 for both). Best distance-corrected and uncorrected binocular vision were significantly better for the PX lens at 60 cm ( P <0.01) with no significant differences at other distances. The preferred reading distance was between 42 and 43 cm for both lenses, with the VA at the preferred reading distance slightly better with the PX lens ( P =0.04). There were no statistically significant differences by lens for low contrast VA ( P =0.1) or for quality of vision measures ( P >0.3). Both trifocal lenses provided excellent distance, intermediate and near vision, but several measures indicated that the PX lens provided better intermediate vision at 60 cm. This may be important to users of tablets and other handheld devices. Quality of vision appeared similar between the two lens designs.
Navy Nuclear Aircraft Carrier (CVN) Homeporting at Mayport: Background and Issues for Congress
2010-06-10
Mayport,” available online at http://www.defenselink.mil/releases/release.aspx?releaseid= 12600. 4 Department of Defense, Quadrennial Defense Review...locations, as calculated by the “How Fair Is It?” online distance calculator available at http://www.indo.com/cgi-bin/dist. 10 Although the Navy states...portion of Norfolk itself. 14 This is the straight-line distance between the two locations, as calculated by the “How Fair Is It?” online distance
Navy Nuclear Aircraft Carrier (CVN) Homeporting at Mayport: Background and Issues for Congress
2010-09-29
Review To Determine Aircraft Carrier Homeporting In Mayport,” available online at http://www.defenselink.mil/releases/release.aspx?releaseid= 12600...Ocean. The figure of about 32 nautical miles is the straight-line distance between the two locations, as calculated by the “How Fair Is It?” online ...distance between the two locations, as calculated by the “How Fair Is It?” online distance calculator available at http://www.indo.com/cgi-bin/dist
Navy Nuclear Aircraft Carrier (CVN) Homeporting at Mayport: Background and Issues for Congress
2010-04-23
Release No. 233-09 of April 10, 2009, entitled “Quadrennial Defense Review To Determine Aircraft Carrier Homeporting In Mayport,” available online at...The figure of about 32 nautical miles is the straight-line distance between the two locations, as calculated by the “How Fair Is It?” online ...distance between the two locations, as calculated by the “How Fair Is It?” online distance calculator available at http://www.indo.com/cgi-bin/dist
Vogt, Susanne; Mielck, Andreas; Berger, Ursula; Grill, Eva; Peters, Annette; Döring, Angela; Holle, Rolf; Strobl, Ralf; Zimmermann, Anja-Kerstin; Linkohr, Birgit; Wolf, Kathrin; Kneißl, Klaus; Maier, Werner
2015-12-01
The composition of the residential environment may have an independent influence on health, especially in older adults. In this cross-sectional study, we examined the associations between proximity to two features of the residential environment (green space and senior service centers) and three aspects of healthy aging (self-rated physical constitution, disability, and health-related quality of life). We included 1711 inhabitants from the city of Augsburg, Germany, aged 65 years or older, who participated in the KORA-Age study conducted in 2008/2009. We calculated the Euclidian distances between each participant's residential address and the nearest green space or senior service center, using a geographic information system. Multilevel logistic regression models were fitted to analyze the associations, controlling for demographic and socioeconomic factors. Contrary to expectations, we did not find clear associations between the distances to the nearest green space or senior service center and any of the examined aspects of healthy aging. The importance of living close to green space may largely depend on the study location. The city of Augsburg is relatively small (about 267,000 inhabitants) and has a high proportion of greenness. Thus, proximity to green space may not be as important as in a densely populated metropolitan area. Moreover, an objectively defined measure of access such as Euclidian distance may not reflect the actual use. Future studies should try to assess the importance of resources of the residential environment not only objectively, but also from the resident's perspective.
Beef quality parameters estimation using ultrasound and color images
2015-01-01
Background Beef quality measurement is a complex task with high economic impact. There is high interest in obtaining an automatic quality parameters estimation in live cattle or post mortem. In this paper we set out to obtain beef quality estimates from the analysis of ultrasound (in vivo) and color images (post mortem), with the measurement of various parameters related to tenderness and amount of meat: rib eye area, percentage of intramuscular fat and backfat thickness or subcutaneous fat. Proposal An algorithm based on curve evolution is implemented to calculate the rib eye area. The backfat thickness is estimated from the profile of distances between two curves that limit the steak and the rib eye, previously detected. A model base in Support Vector Regression (SVR) is trained to estimate the intramuscular fat percentage. A series of features extracted on a region of interest, previously detected in both ultrasound and color images, were proposed. In all cases, a complete evaluation was performed with different databases including: color and ultrasound images acquired by a beef industry expert, intramuscular fat estimation obtained by an expert using a commercial software, and chemical analysis. Conclusions The proposed algorithms show good results to calculate the rib eye area and the backfat thickness measure and profile. They are also promising in predicting the percentage of intramuscular fat. PMID:25734452
[A New Distance Metric between Different Stellar Spectra: the Residual Distribution Distance].
Liu, Jie; Pan, Jing-chang; Luo, A-li; Wei, Peng; Liu, Meng
2015-12-01
Distance metric is an important issue for the spectroscopic survey data processing, which defines a calculation method of the distance between two different spectra. Based on this, the classification, clustering, parameter measurement and outlier data mining of spectral data can be carried out. Therefore, the distance measurement method has some effect on the performance of the classification, clustering, parameter measurement and outlier data mining. With the development of large-scale stellar spectral sky surveys, how to define more efficient distance metric on stellar spectra has become a very important issue in the spectral data processing. Based on this problem and fully considering of the characteristics and data features of the stellar spectra, a new distance measurement method of stellar spectra named Residual Distribution Distance is proposed. While using this method to measure the distance, the two spectra are firstly scaled and then the standard deviation of the residual is used the distance. Different from the traditional distance metric calculation methods of stellar spectra, when used to calculate the distance between stellar spectra, this method normalize the two spectra to the same scale, and then calculate the residual corresponding to the same wavelength, and the standard error of the residual spectrum is used as the distance measure. The distance measurement method can be used for stellar classification, clustering and stellar atmospheric physical parameters measurement and so on. This paper takes stellar subcategory classification as an example to test the distance measure method. The results show that the distance defined by the proposed method is more effective to describe the gap between different types of spectra in the classification than other methods, which can be well applied in other related applications. At the same time, this paper also studies the effect of the signal to noise ratio (SNR) on the performance of the proposed method. The result show that the distance is affected by the SNR. The smaller the signal-to-noise ratio is, the greater impact is on the distance; While SNR is larger than 10, the signal-to-noise ratio has little effect on the performance for the classification.
ERIC Educational Resources Information Center
Kirkpatrick, Denise
2005-01-01
Assuring the quality of education provision is a fundamental aspect of gaining and maintaining credibility for programmes, institutions and national systems of higher education worldwide. Despite a long and generally successful track record, open and distance learning (ODL) is still required to prove that the quality of student learning is at…
Gauge-invariance and infrared divergences in the luminosity distance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biern, Sang Gyu; Yoo, Jaiyul, E-mail: sgbiern@physik.uzh.ch, E-mail: jyoo@physik.uzh.ch
2017-04-01
Measurements of the luminosity distance have played a key role in discovering the late-time cosmic acceleration. However, when accounting for inhomogeneities in the Universe, its interpretation has been plagued with infrared divergences in its theoretical predictions, which are in some cases used to explain the cosmic acceleration without dark energy. The infrared divergences in most calculations are artificially removed by imposing an infrared cut-off scale. We show that a gauge-invariant calculation of the luminosity distance is devoid of such divergences and consistent with the equivalence principle, eliminating the need to impose a cut-off scale. We present proper numerical calculations ofmore » the luminosity distance using the gauge-invariant expression and demonstrate that the numerical results with an ad hoc cut-off scale in previous calculations have negligible systematic errors as long as the cut-off scale is larger than the horizon scale. We discuss the origin of infrared divergences and their cancellation in the luminosity distance.« less
ERIC Educational Resources Information Center
McFarlane, Donovan A.
2011-01-01
This paper examines the leadership roles of distance learning administrators (DLAs) in light of the demand and need for value and quality in educational distance learning programs and schools. The author explores the development of distance learning using available and emerging technologies in relation to increased demand for education, training,…
Sharkey, Joseph R; Horel, Scott; Han, Daikwon; Huber, John C
2009-01-01
Objective To determine the extent to which neighborhood needs (socioeconomic deprivation and vehicle availability) are associated with two criteria of food environment access: 1) distance to the nearest food store and fast food restaurant and 2) coverage (number) of food stores and fast food restaurants within a specified network distance of neighborhood areas of colonias, using ground-truthed methods. Methods Data included locational points for 315 food stores and 204 fast food restaurants, and neighborhood characteristics from the 2000 U.S. Census for the 197 census block group (CBG) study area. Neighborhood deprivation and vehicle availability were calculated for each CBG. Minimum distance was determined by calculating network distance from the population-weighted center of each CBG to the nearest supercenter, supermarket, grocery, convenience store, dollar store, mass merchandiser, and fast food restaurant. Coverage was determined by calculating the number of each type of food store and fast food restaurant within a network distance of 1, 3, and 5 miles of each population-weighted CBG center. Neighborhood need and access were examined using Spearman ranked correlations, spatial autocorrelation, and multivariate regression models that adjusted for population density. Results Overall, neighborhoods had best access to convenience stores, fast food restaurants, and dollar stores. After adjusting for population density, residents in neighborhoods with increased deprivation had to travel a significantly greater distance to the nearest supercenter or supermarket, grocery store, mass merchandiser, dollar store, and pharmacy for food items. The results were quite different for association of need with the number of stores within 1 mile. Deprivation was only associated with fast food restaurants; greater deprivation was associated with fewer fast food restaurants within 1 mile. CBG with greater lack of vehicle availability had slightly better access to more supercenters or supermarkets, grocery stores, or fast food restaurants. Increasing deprivation was associated with decreasing numbers of grocery stores, mass merchandisers, dollar stores, and fast food restaurants within 3 miles. Conclusion It is important to understand not only the distance that people must travel to the nearest store to make a purchase, but also how many shopping opportunities they have in order to compare price, quality, and selection. Future research should examine how spatial access to the food environment influences the utilization of food stores and fast food restaurants, and the strategies used by low-income families to obtain food for the household. PMID:19220879
NASA Astrophysics Data System (ADS)
Del Pezzo, Edoardo; Bianco, Francesca
2013-04-01
The civil defense of Italy and the European community have planned to reformulate the volcanic risk in several volcanic areas of Italy, among which Mt. Vesuvius and Campi Flegrei, by taking into account the possible occurrence of damaging pre- or syn-eruptive seismic events. Necessary to achieve this goal is the detailed knowledge of the local attenuation-distance relations. In the present note, we make a survey of the estimates of seismic quality factor (the inverse is proportional to the attenuation coefficient with distance) reported in literature for the area of Campi Flegrei where many, but sometimes contradictory results have been published on this topic. We try to review these results in order to give indications for their correct use when calculating the attenuation laws for this area.
Smartphone viewing distance and sleep: an experimental study utilizing motion capture technology
Yoshimura, Michitaka; Kitazawa, Momoko; Maeda, Yasuhiro; Mimura, Masaru; Tsubota, Kazuo; Kishimoto, Taishiro
2017-01-01
There are studies reporting the negative impact of smartphone utilization on sleep. It is considered that reduction of melatonin secretion under the blue light exposure from smart-phone displays is one of the causes. The viewing distance may cause sleep disturbance, because the viewing distance determines the screen illuminance and/or asthenopia. However, to date, there has been no study closely investigating the impact of viewing distance on sleep; therefore, we sought to determine the relationship between smartphone viewing distance and subjective sleep status. Twenty-three nursing students (mean age ± standard deviation of 19.7±3.1 years) participated in the study. Subjective sleep status was assessed using the Pittsburgh Sleep Quality Index, morningness–eveningness questionnaire, and the Epworth sleepiness scale. We used the distance between the head and the hand while holding a smartphone to measure the viewing distance while using smartphones in sitting and lying positions. The distance was calculated using the three-dimensional coordinates obtained by a noncontact motion-sensing device. The viewing distance of smartphones in the sitting position ranged from 13.3 to 32.9 cm among participants. In the lying position, it ranged from 9.9 to 21.3cm. The viewing distance was longer in the sitting position than in the lying position (mean ± standard deviation: 20.3±4.7 vs 16.4±2.7, respectively, P<0.01). We found that the short viewing distance in the lying position had a positive correlation to a poorer sleep state (R2=0.27, P<0.05), lower sleep efficiency (R2=0.35, P<0.05), and longer sleep latency (R2=0.38, P<0.05). Moreover, smartphone viewing distances in lying position correlated negatively with subjective sleep status. Therefore, when recommending ideal smartphone use in lying position, one should take into account the viewing distances. PMID:28331379
Smartphone viewing distance and sleep: an experimental study utilizing motion capture technology.
Yoshimura, Michitaka; Kitazawa, Momoko; Maeda, Yasuhiro; Mimura, Masaru; Tsubota, Kazuo; Kishimoto, Taishiro
2017-01-01
There are studies reporting the negative impact of smartphone utilization on sleep. It is considered that reduction of melatonin secretion under the blue light exposure from smart-phone displays is one of the causes. The viewing distance may cause sleep disturbance, because the viewing distance determines the screen illuminance and/or asthenopia. However, to date, there has been no study closely investigating the impact of viewing distance on sleep; therefore, we sought to determine the relationship between smartphone viewing distance and subjective sleep status. Twenty-three nursing students (mean age ± standard deviation of 19.7±3.1 years) participated in the study. Subjective sleep status was assessed using the Pittsburgh Sleep Quality Index, morningness-eveningness questionnaire, and the Epworth sleepiness scale. We used the distance between the head and the hand while holding a smartphone to measure the viewing distance while using smartphones in sitting and lying positions. The distance was calculated using the three-dimensional coordinates obtained by a noncontact motion-sensing device. The viewing distance of smartphones in the sitting position ranged from 13.3 to 32.9 cm among participants. In the lying position, it ranged from 9.9 to 21.3cm. The viewing distance was longer in the sitting position than in the lying position (mean ± standard deviation: 20.3±4.7 vs 16.4±2.7, respectively, P <0.01). We found that the short viewing distance in the lying position had a positive correlation to a poorer sleep state ( R 2 =0.27, P <0.05), lower sleep efficiency ( R 2 =0.35, P <0.05), and longer sleep latency ( R 2 =0.38, P <0.05). Moreover, smartphone viewing distances in lying position correlated negatively with subjective sleep status. Therefore, when recommending ideal smartphone use in lying position, one should take into account the viewing distances.
Apparatus for in-situ calibration of instruments that measure fluid depth
Campbell, M.D.
1994-01-11
The present invention provides a method and apparatus for in-situ calibration of distance measuring equipment. The method comprises obtaining a first distance measurement in a first location, then obtaining at least one other distance measurement in at least one other location of a precisely known distance from the first location, and calculating a calibration constant. The method is applied specifically to calculating a calibration constant for obtaining fluid level and embodied in an apparatus using a pressure transducer and a spacer of precisely known length. The calibration constant is used to calculate the depth of a fluid from subsequent single pressure measurements at any submerged position. 8 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, J; Gu, X; Lu, W
Purpose: A novel distance-dose weighting method for label fusion was developed to increase segmentation accuracy in dosimetrically important regions for prostate radiation therapy. Methods: Label fusion as implemented in the original SIMPLE (OS) for multi-atlas segmentation relies iteratively on the majority vote to generate an estimated ground truth and DICE similarity measure to screen candidates. The proposed distance-dose weighting puts more values on dosimetrically important regions when calculating similarity measure. Specifically, we introduced distance-to-dose error (DDE), which converts distance to dosimetric importance, in performance evaluation. The DDE calculates an estimated DE error derived from surface distance differences between the candidatemore » and estimated ground truth label by multiplying a regression coefficient. To determine the coefficient at each simulation point on the rectum, we fitted DE error with respect to simulated voxel shift. The DEs were calculated by the multi-OAR geometry-dosimetry training model previously developed in our research group. Results: For both the OS and the distance-dose weighted SIMPLE (WS) results, the evaluation metrics for twenty patients were calculated using the ground truth segmentation. The mean difference of DICE, Hausdorff distance, and mean absolute distance (MAD) between OS and WS have shown 0, 0.10, and 0.11, respectively. In partial MAD of WS which calculates MAD within a certain PTV expansion voxel distance, the lower MADs were observed at the closer distances from 1 to 8 than those of OS. The DE results showed that the segmentation from WS produced more accurate results than OS. The mean DE error of V75, V70, V65, and V60 were decreased by 1.16%, 1.17%, 1.14%, and 1.12%, respectively. Conclusion: We have demonstrated that the method can increase the segmentation accuracy in rectum regions adjacent to PTV. As a result, segmentation using WS have shown improved dosimetric accuracy than OS. The WS will provide dosimetrically important label selection strategy in multi-atlas segmentation. CPRIT grant RP150485.« less
Weir-McCall, Jonathan R; Brown, Liam; Summersgill, Jennifer; Talarczyk, Piotr; Bonnici-Mallia, Michael; Chin, Sook C; Khan, Faisel; Struthers, Allan D; Sullivan, Frank; Colhoun, Helen M; Shore, Angela C; Aizawa, Kunihiko; Groop, Leif; Nilsson, Jan; Cockcroft, John R; McEniery, Carmel M; Wilkinson, Ian B; Ben-Shlomo, Yoav; Houston, J Graeme
2018-05-01
Current distance measurement techniques for pulse wave velocity (PWV) calculation are susceptible to intercenter variability. The aim of this study was to derive and validate a formula for this distance measurement. Based on carotid femoral distance in 1183 whole-body magnetic resonance angiograms, a formula was derived for calculating distance. This was compared with distance measurements in 128 whole-body magnetic resonance angiograms from a second study. The effects of recalculation of PWV using the new formula on association with risk factors, disease discrimination, and prediction of major adverse cardiovascular events were examined within 1242 participants from the multicenter SUMMIT study (Surrogate Markers of Micro- and Macrovascular Hard End-Points for Innovative Diabetes Tools) and 825 participants from the Caerphilly Prospective Study. The distance formula yielded a mean error of 7.8 mm (limits of agreement =-41.1 to 56.7 mm; P <0.001) compared with the second whole-body magnetic resonance angiogram group. Compared with an external distance measurement, the distance formula did not change associations between PWV and age, blood pressure, or creatinine ( P <0.01) but did remove significant associations between PWV and body mass index (BMI). After accounting for differences in age, sex, and mean arterial pressure, intercenter differences in PWV persisted using the external distance measurement ( F =4.6; P =0.004), whereas there was a loss of between center difference using the distance formula ( F =1.4; P =0.24). PWV odds ratios for cardiovascular mortality remained the same using both the external distance measurement (1.14; 95% confidence interval, 1.06-1.24; P =0.001) and the distance formula (1.17; 95% confidence interval, 1.08-1.28; P <0.001). A population-derived automatic distance calculation for PWV obtained from routinely collected clinical information is accurate and removes intercenter measurement variability without impacting the diagnostic utility of carotid-femoral PWV. © 2018 The Authors.
Navy Nuclear Aircraft Carrier (CVN) Homeporting at Mayport: Background and Issues for Congress
2012-02-21
Pacific Ocean. The figure of about 32 nautical miles is the straight-line distance between the two locations, as calculated by the “How Far Is It?” online ...itself. 9 This is the straight-line distance between the two locations, as calculated by the “How Far Is It?” online distance calculator, available at...Authorization Act (S. 3001/P.L. 110- 417) Section 2207 of the FY2009 defense authorization bill as passed by the House (H.R. 5658; H.Rept. 110-652 of May
NASA Astrophysics Data System (ADS)
Fang, G. J.; Bao, H.
2017-12-01
The widely used method of calculating electric distances is sensitivity method. The sensitivity matrix is the result of linearization and based on the hypothesis that the active power and reactive power are decoupled, so it is inaccurate. In addition, it calculates the ratio of two partial derivatives as the relationship of two dependent variables, so there is no physical meaning. This paper presents a new method for calculating electrical distance, namely transmission impedance method. It forms power supply paths based on power flow tracing, then establishes generalized branches to calculate transmission impedances. In this paper, the target of power flow tracing is S instead of Q. Q itself has no direction and the grid delivers complex power so that S contains more electrical information than Q. By describing the power transmission relationship of the branch and drawing block diagrams in both forward and reverse directions, it can be found that the numerators of feedback parts of two block diagrams are all the transmission impedances. To ensure the distance is scalar, the absolute value of transmission impedance is defined as electrical distance. Dividing network according to the electric distances and comparing with the results of sensitivity method, it proves that the transmission impedance method can adapt to the dynamic change of system better and reach a reasonable subarea division scheme.
ERIC Educational Resources Information Center
Southern Regional Education Board, Atlanta, GA.
The Distance Learning Policy Laboratory of the Southern Regional Education Board (SREB) and many states and regional organizations are coming to a consensus on the principles and goals that should shape distance learning policies. In the case of quality assurance, the SREB believes there are four guiding principles that states should follow.…
Three-dimensional modeling and animation of two carpal bones: a technique.
Green, Jason K; Werner, Frederick W; Wang, Haoyu; Weiner, Marsha M; Sacks, Jonathan M; Short, Walter H
2004-05-01
The objectives of this study were to (a). create 3D reconstructions of two carpal bones from single CT data sets and animate these bones with experimental in vitro motion data collected during dynamic loading of the wrist joint, (b). develop a technique to calculate the minimum interbone distance between the two carpal bones, and (c). validate the interbone distance calculation process. This method utilized commercial software to create the animations and an in-house program to interface with three-dimensional CAD software to calculate the minimum distance between the irregular geometries of the bones. This interbone minimum distance provides quantitative information regarding the motion of the bones studied and may help to understand and quantify the effects of ligamentous injury.
Chen, Gang; Li, Jingyi; Ying, Qi; Sherman, Seth; Perkins, Neil; Rajeshwari, Sundaram; Mendola, Pauline
2014-01-01
In this study, Community Multiscale Air Quality (CMAQ) model was applied to predict ambient gaseous and particulate concentrations during 2001 to 2010 in 15 hospital referral regions (HRRs) using a 36-km horizontal resolution domain. An inverse distance weighting based method was applied to produce exposure estimates based on observation-fused regional pollutant concentration fields using the differences between observations and predictions at grid cells where air quality monitors were located. Although the raw CMAQ model is capable of producing satisfying results for O3 and PM2.5 based on EPA guidelines, using the observation data fusing technique to correct CMAQ predictions leads to significant improvement of model performance for all gaseous and particulate pollutants. Regional average concentrations were calculated using five different methods: 1) inverse distance weighting of observation data alone, 2) raw CMAQ results, 3) observation-fused CMAQ results, 4) population-averaged raw CMAQ results and 5) population-averaged fused CMAQ results. It shows that while O3 (as well as NOx) monitoring networks in the HRR regions are dense enough to provide consistent regional average exposure estimation based on monitoring data alone, PM2.5 observation sites (as well as monitors for CO, SO2, PM10 and PM2.5 components) are usually sparse and the difference between the average concentrations estimated by the inverse distance interpolated observations, raw CMAQ and fused CMAQ results can be significantly different. Population-weighted average should be used to account spatial variation in pollutant concentration and population density. Using raw CMAQ results or observations alone might lead to significant biases in health outcome analyses. PMID:24747248
Fei, Xiaolu; Li, Shanshan; Gao, Shan; Wei, Lan; Wang, Lihong
2014-09-04
Radio Frequency Identification(RFID) has been widely used in healthcare facilities, but it has been paid little attention whether RFID applications are safe enough under healthcare environment. The purpose of this study is to assess the effects of RFID tags on Magnetic Resonance (MR) imaging in a typical electromagnetic environment in hospitals, and to evaluate the safety of their applications. A Magphan phantom was used to simulate the imaging objects, while active RFID tags were placed at different distances (0, 4, 8, 10 cm) from the phantom border. The phantom was scanned by using three typical sequences including spin-echo (SE) sequence, gradient-echo (GRE) sequence and inversion-recovery (IR) sequence. The quality of the image was quantitatively evaluated by using signal-to-noise ratio (SNR), uniformity, high-contrast resolution, and geometric distortion. RFID tags were read by an RFID reader to calculate their usable rate. RFID tags can be read properly after being placed in high magnetic field for up to 30 minutes. SNR: There were no differences between the group with RFID tags and the group without RFID tags using SE and IR sequence, but it was lower when using GRE sequence.Uniformity: There was a significant difference between the group with RFID tags and the group without RFID tags using SE and GRE sequence. Geometric distortion and high-contrast resolution: There were no obvious differences found. Active RFID tags can affect MR imaging quality, especially using the GRE sequence. Increasing the distance from the RFID tags to the imaging objects can reduce that influence. When the distance was longer than 8 cm, MR imaging quality were almost unaffected. However, the Gradient Echo related sequence is not recommended when patients wear a RFID wristband.
Critical Casimir effect for colloids close to chemically patterned substrates.
Tröndle, M; Kondrat, S; Gambassi, A; Harnau, L; Dietrich, S
2010-08-21
Colloids immersed in a critical or near-critical binary liquid mixture and close to a chemically patterned substrate are subject to normal and lateral critical Casimir forces of dominating strength. For a single colloid, we calculate these attractive or repulsive forces and the corresponding critical Casimir potentials within mean-field theory. Within this approach we also discuss the quality of the Derjaguin approximation and apply it to Monte Carlo simulation data available for the system under study. We find that the range of validity of the Derjaguin approximation is rather large and that it fails only for surface structures which are very small compared to the geometric mean of the size of the colloid and its distance from the substrate. For certain chemical structures of the substrate, the critical Casimir force acting on the colloid can change sign as a function of the distance between the particle and the substrate; this provides a mechanism for stable levitation at a certain distance which can be strongly tuned by temperature, i.e., with a sensitivity of more than 200 nm/K.
Strategies for Maintaining Quality in Distance Higher Education
ERIC Educational Resources Information Center
Malik, Sufiana Khatoon
2015-01-01
The current paper was produced with the purpose of suggesting strategies for bringing quality in distance education programs at higher education level. In recent times distance education is becoming an indispensable part of education system globally. Every institution is trying to offer their educational course through general as well through…
Quality Content in Distance Education
ERIC Educational Resources Information Center
Yildiz, Ezgi Pelin; Isman, Aytekin
2016-01-01
In parallel with technological advances in today's world of education activities can be conducted without the constraints of time and space. One of the most important of these activities is distance education. The success of the distance education is possible with content quality. The proliferation of e-learning environment has brought a need for…
Web Service for Positional Quality Assessment: the Wps Tier
NASA Astrophysics Data System (ADS)
Xavier, E. M. A.; Ariza-López, F. J.; Ureña-Cámara, M. A.
2015-08-01
In the field of spatial data every day we have more and more information available, but we still have little or very little information about the quality of spatial data. We consider that the automation of the spatial data quality assessment is a true need for the geomatic sector, and that automation is possible by means of web processing services (WPS), and the application of specific assessment procedures. In this paper we propose and develop a WPS tier centered on the automation of the positional quality assessment. An experiment using the NSSDA positional accuracy method is presented. The experiment involves the uploading by the client of two datasets (reference and evaluation data). The processing is to determine homologous pairs of points (by distance) and calculate the value of positional accuracy under the NSSDA standard. The process generates a small report that is sent to the client. From our experiment, we reached some conclusions on the advantages and disadvantages of WPSs when applied to the automation of spatial data accuracy assessments.
Towards a Culture of Quality. Perspectives on Distance Education
ERIC Educational Resources Information Center
Koul, Badri N., Ed.; Kanwar, Asha, Ed.
2006-01-01
This third publication on the theme of quality in the Commonwealth of Learning Perspectives on Distance Education series widens the discussion beyond external quality assurance processes to a more generic focus on a "culture of quality." It is an extension of the earlier two publications, which came out in 1994 and 1997 and drew…
Bullock, Joshua Matthew Allen; Schwab, Jannik; Thalassinos, Konstantinos; Topf, Maya
2016-01-01
Crosslinking mass spectrometry (XL-MS) is becoming an increasingly popular technique for modeling protein monomers and complexes. The distance restraints garnered from these experiments can be used alone or as part of an integrative modeling approach, incorporating data from many sources. However, modeling practices are varied and the difference in their usefulness is not clear. Here, we develop a new scoring procedure for models based on crosslink data—Matched and Nonaccessible Crosslink score (MNXL). We compare its performance with that of other commonly-used scoring functions (Number of Violations and Sum of Violation Distances) on a benchmark of 14 protein domains, each with 300 corresponding models (at various levels of quality) and associated, previously published, experimental crosslinks (XLdb). The distances between crosslinked lysines are calculated either as Euclidean distances or Solvent Accessible Surface Distances (SASD) using a newly-developed method (Jwalk). MNXL takes into account whether a crosslink is nonaccessible, i.e. an experimentally observed crosslink has no corresponding SASD in a model due to buried lysines. This metric alone is shown to have a significant impact on modeling performance and is a concept that is not considered at present if only Euclidean distances are used. Additionally, a comparison between modeling with SASD or Euclidean distance shows that SASD is superior, even when factoring out the effect of the nonaccessible crosslinks. Our benchmarking also shows that MNXL outperforms the other tested scoring functions in terms of precision and correlation to Cα-RMSD from the crystal structure. We finally test the MNXL at different levels of crosslink recovery (i.e. the percentage of crosslinks experimentally observed out of all theoretical ones) and set a target recovery of ∼20% after which the performance plateaus. PMID:27150526
Verheyen, K.; Guntenspergen, Glenn R.; Biesbrouck, B.; Hermy, M.
2003-01-01
A framework that summarizes the direct and indirect effects of past land use on forest herb recolonization is proposed, and used to analyse the colonization patterns of forest understorey herbaceous species in a 360-ha mixed forest, grassland and arable landscape in the Dijle river valley (central Belgium).Fine-scale distribution maps were constructed for 14 species. The species were mapped in 15 946 forest plots and outside forests (along parcel margins) in 5188 plots. Forest stands varied in age between 1 and more than 224 years. Detailed land-use history data were combined with the species distribution maps to identify species-specific colonization sources and to calculate colonization distances.The six most frequent species were selected for more detailed statistical analysis.Logistic regression models indicated that species frequency in forest parcels was a function of secondary forest age, distance from the nearest colonization source and their interaction. Similar age and distance effects were found within hedgerows.In 199 forest stands, data about soils, canopy structure and the cover of competitive species were collected. The relative importance of habitat quality and spatio-temporal isolation for the colonization of the forest herb species was quantified using structural equation modelling (SEM), within the framework proposed for the effects of past land use.The results of the SEM indicate that, except for the better colonizing species, the measured habitat quality variables are of minor importance in explaining colonization patterns, compared with the combination of secondary forest age and distance from colonization sources.Our results suggest the existence of a two-stage colonization process in which diaspore availability determines the initial pattern, which is affected by environmental sorting at later stages.
Mooney, Joshua J; Hedlin, Haley; Mohabir, Paul K; Vazquez, Rodrigo; Nguyen, John; Ha, Richard; Chiu, Peter; Patel, Kapilkumar; Zamora, Martin R.; Weill, David; Nicolls, Mark R; Dhillon, Gundeep S
2016-01-01
While controlled donation after circulatory determination of death (cDCDD) donors could increase the supply of donor lungs within the United States, the yield of lungs from cDCDD donors remain low compared to donation after neurologic determination of death (DNDD) donors. To explore the reason for low lung yield from cDCDD donors, Scientific Registry of Transplant Recipient data were used to assess the impact of donor lung quality on cDCDD lung utilization by fitting a logistic regression model. The relationship between center volume and cDCDD use was assessed and distance between center and donor hospital was calculated by cDCDD status. Recipient survival was compared using a multivariable Cox regression model. Lung utilization was 2.1% for cDCDD donors and 21.4% for DNDD donors. Being a cDCDD donor decreased lung donation (adjusted OR 0.101, CI 0.085–0.120). A minority of centers have performed cDCDD transplant with higher volume centers generally performing more cDCDD transplants. There was no difference in center to donor distance or recipient survival (adjusted HR 1.03, CI 0.78–1.37) between cDCDD and DNDD transplants. cDCDD lungs are underutilized compared to DNDD lungs after adjusting for lung quality. Increasing transplant center expertise and commitment to cDCDD lung procurement is needed to improve utilization. PMID:26844673
Gaygısız, Ümmügülsüm; Lajunen, Timo; Gaygısız, Esma
There are considerable cross-national differences in public attitudes towards antibiotics use, use of prescribed antibiotics, and self-medication with antibiotics even within Europe. This study was aimed at investigating the relationships between socio-economic factors, cultural values, national personality characteristics and the antibiotic use in Europe. Data included scores from 27 European countries (14 countries for personality analysis). Correlations between socio-economic variables (Gross National Income per capita, governance quality, life expectancy, mean years of schooling, number of physicians), Hofstede's cultural value dimensions (power distance, individualism, masculinity, uncertainty avoidance, long-term orientation, indulgence), national personality characteristic (extraversion, neuroticism, social desirability) and antibiotic use were calculated and three regression models were constructed. Governance quality (r=-.51), mean years of schooling (r=-.61), power distance (r=.59), masculinity (r=.53), and neuroticism (r=.73) correlated with antibiotic use. The highest amount of variance in antibiotic use was accounted by the cultural values (65%) followed by socio-economic factors (63%) and personality factors (55%). Results show that socio-economic factors, cultural values and national personality characteristics explain cross-national differences in antibiotic use in Europe. In particular, governance quality, uncertainty avoidance, masculinity and neuroticism were important factors explaining antibiotics use. The findings underline the importance of socio-economic and cultural context in health care and in planning public health interventions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
A Wall-Distance-Free k-ω SST Turbulence Model
NASA Astrophysics Data System (ADS)
Gleize, Vincent; Burnley, Victor
2001-11-01
In the calculation of flows around aircraft and aerodynamic bodies, the Shear-Stress Transport (SST) model by Menter has been used extensively due to its good prediction of flows with adverse pressure gradients. One main drawback of this model is the need to calculate the distance from the wall. While this is not a serious drawback for steady state calculations on non-moving grids, this calculation can become very cumbersome and expensive for unsteady simulations, especially when using unstructured grids. In this case, the wall-distance needs to be determined after each iteration. To avoid this problem, a new model is proposed which provides the benefits of the SST correction and avoids the freestream dependency of the solution, while not requiring the wall-distance. The first results for a wide range of test cases show that this model produces very good agreement with experimental data for flows with adverse pressure gradients, separation zones and shock-boundary layer interactions, closely matching the results obtained with the original SST model. This model should be very useful for unsteady calculations, such as store separation, grid adaptation, and other practical flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vassiliev, O
Purpose: Radial dose distribution D(r) is the dose as a function of lateral distance from the path of a heavy charged particle. Its main application is in modelling of biological effects of heavy ions, including applications to hadron therapy. It is the main physical parameter of a broad group of radiobiological models known as the amorphous track models. Our purpose was to calculate D(r) with Monte Carlo for carbon ions of therapeutic energies, find a simple formula for D(r) and fit it to the Monte Carlo data. Methods: All calculations were performed with Geant4-DNA code, for carbon ion energies frommore » 10 to 400 MeV/u (ranges in water: ∼ 0.4 mm to 27 cm). The spatial resolution of dose distribution in the lateral direction was 1 nm. Electron tracking cut off energy was 11 eV (ionization threshold). The maximum lateral distance considered was 10 µm. Over this distance, D(r) decreases with distance by eight orders of magnitude. Results: All calculated radial dose distributions had a similar shape dominated by the well-known inverse square dependence on the distance. Deviations from the inverse square law were observed close to the beam path (r<10 nm) and at large distances (r >1 µm). At small and large distances D(r) decreased, respectively, slower and faster than the inverse square of distance. A formula for D(r) consistent with this behavior was found and fitted to the Monte Carlo data. The accuracy of the fit was better than 10% for all distances considered. Conclusion: We have generated a set of radial dose distributions for carbon ions that covers the entire range of therapeutic energies, for distances from the ion path of up to 10 µm. The latter distance is sufficient for most applications because dose beyond 10 µm is extremely low.« less
Levels of Interaction Provided by Online Distance Education Models
ERIC Educational Resources Information Center
Alhih, Mohammed; Ossiannilsson, Ebba; Berigel, Muhammet
2017-01-01
Interaction plays a significant role to foster usability and quality in online education. It is one of the quality standard to reveal the evidence of practice in online distance education models. This research study aims to evaluate levels of interaction in the practices of distance education centres. It is aimed to provide online distance…
ERIC Educational Resources Information Center
Nworie, John; Haughton, Noela; Oprandi, Stephanie
2012-01-01
This article presents the results of an investigation into the qualities and qualifications sought in distance education leaders by institutions of higher education in the United States. The researchers examined 191 distance education leadership position announcements posted by online sources between 1997 and 2010. Content analysis of these…
Quality and Growth Implications of Incremental Costing Models for Distance Education Units
ERIC Educational Resources Information Center
Crawford, C. B.; Gould, Lawrence V.; King, Dennis; Parker, Carl
2010-01-01
The purpose of this article is to explore quality and growth implications emergent from various incremental costing models applied to distance education units. Prior research relative to costing models and three competing costing models useful in the current distance education environment are discussed. Specifically, the simple costing model, unit…
Calculated dipole moment and energy in collision of a hydrogen molecule and a hydrogen atom
NASA Technical Reports Server (NTRS)
Patch, R. W.
1973-01-01
Calculations were carried out using three Slater-type 1s orbitals in the orthogonalized valencebond theory of McWeeny. Each orbital exponent was optimized, the H2 internuclear distance was varied from 7.416 x 10 to the -11th power to 7.673 x 10 to the -11th power m (1.401 to 1.450 bohrs). The intermolecular distance was varied from 1 to 4 bohrs (0.5292 to 2.117 x 10 to the 10th power). Linear, scalene, and isosceles configurations were used. A weighted average of the interaction energies was taken for each intermolecular distance. Although energies are tabulated, the principal purpose was to calculate the electric dipole moment and its derivative with respect to H2 internuclear distance.
Performance Analysis of Hybrid WDM-FSO System under Various Weather Conditions
NASA Astrophysics Data System (ADS)
Robinson, S.; Jasmine, S.
2016-09-01
Free Space Optical (FSO) communication is being realized as an effective solution for future accessing networks, offering light passed through air. The performance of FSO system can be primarily degraded by various atmospheric attenuations such as rain, fog, haze and snow. At present, hybridization of Dense Wavelength Division Multiplexing (DWDM) with Coarse Wavelength Division Multiplexing (CWDM) becomes necessary to scale the speed and high bandwidth of the services. In this paper, primarily the attenuation values for different weather conditions are calculated. Then the hybrid WDM-FSO system is proposed, designed and the network parameters such as Bit Error Rate (BER), Quality factor (Q factor) and receiver sensitivity are analyzed with respect to link distance for various weather conditions. For investigation, four CWDM (1,510 nm, 1,530 nm, 1,570 nm and 1,570 nm) channel and eight DWDM channels (1,537.4 nm, 1,538.2 nm, 1,539 nm, 1,539.8 nm, 1,540.6 nm, 1,541.4 nm, 1,542.2 nm and 1,543 nm) are considered whose corresponding channel spacing is 20 nm and 0.8 nm, respectively. In addition, the Erbium Doped Fiber Amplifier (EDFA) is inserted at the receiver end in order to enhance the link distance. The proposed hybrid WDM-FSO system is designed to handle the quality of transmission for 12 users, each at a data rate of 2.5 Gbps along an FSO link distance of about 960 km.
Laomettachit, Teeraphan; Termsaithong, Teerasit; Sae-Tang, Anuwat; Duangphakdee, Orawan
2015-01-07
In the nest-site selection process of honeybee swarms, an individual bee performs a waggle dance to communicate information about direction, quality, and distance of a discovered site to other bees at the swarm. Initially, different groups of bees dance to represent different potential sites, but eventually the swarm usually reaches an agreement for only one site. Here, we model the nest-site selection process in honeybee swarms of Apis mellifera and show how the swarms make adaptive decisions based on a trade-off between the quality and distance to candidate nest sites. We use bifurcation analysis and stochastic simulations to reveal that the swarm's site distance preference is moderate>near>far when the swarms choose between low quality sites. However, the distance preference becomes near>moderate>far when the swarms choose between high quality sites. Our simulations also indicate that swarms with large population size prefer nearer sites and, in addition, are more adaptive at making decisions based on available information compared to swarms with smaller population size. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evanescent field characteristics of eccentric core optical fiber for distributed sensing.
Liu, Jianxia; Yuan, Libo
2014-03-01
Fundamental core-mode cutoff and evanescent field are considered for an eccentric core optical fiber (ECOF). A method has been proposed to calculate the core-mode cutoff by solving the eigenvalue equations of an ECOF. Using conformal mapping, the asymmetric geometrical structure can be transformed into a simple, easily solved axisymmetric optical fiber with three layers. The variation of the fundamental core-mode cut-off frequency (V(c)) is also calculated with different eccentric distances, wavelengths, core radii, and coating refractive indices. The fractional power of evanescent fields for ECOF is also calculated with the eccentric distances and coating refractive indices. These calculations are necessary to design the structural parameters of an ECOF for long-distance, single-mode distributed evanescent field absorption sensors.
Measurement of splanchnic photoplethysmographic signals using a new reflectance fiber optic sensor
NASA Astrophysics Data System (ADS)
Hickey, Michelle; Samuels, Neal; Randive, Nilesh; Langford, Richard M.; Kyriacou, Panayiotis A.
2010-03-01
Splanchnic organs are particularly vulnerable to hypoperfusion. Currently, there is no technique that allows for the continuous estimation of splanchnic blood oxygen saturation (SpO2). As a preliminary to developing a suitable splanchnic SpO2 sensor, a new reflectance fiber optic photoplethysmographic (PPG) sensor and processing system are developed. An experimental procedure to examine the effect of fiber source detector separation distance on acquired PPG signals is carried out before finalizing the sensor design. PPG signals are acquired from four volunteers for separation distances of 1 to 8 mm. The separation range of 3 to 6 mm provides the best quality PPG signals with large amplitudes and the highest signal-to-noise ratios (SNRs). Preliminary calculation of SpO2 shows that distances of 3 and 4 mm provide the most realistic values. Therefore, it is suggested that the separation distance in the design of a fiber optic reflectance pulse oximeter be in the range of 3 to 4 mm. Preliminary PPG signals from various splanchnic organs and the periphery are obtained from six anaesthetized patients. The normalized amplitudes of the splanchnic PPGs are, on average, approximately the same as those obtained simultaneously from the periphery. These observations suggest that fiber optic pulse oximetry may be a valid monitoring technique for splanchnic organs.
DL-sQUAL: A Multiple-Item Scale for Measuring Service Quality of Online Distance Learning Programs
ERIC Educational Resources Information Center
Shaik, Naj; Lowe, Sue; Pinegar, Kem
2006-01-01
Education is a service with multiplicity of student interactions over time and across multiple touch points. Quality teaching needs to be supplemented by consistent quality supporting services for programs to succeed under the competitive distance learning landscape. ServQual and e-SQ scales have been proposed for measuring quality of traditional…
ERIC Educational Resources Information Center
Gaytan, Jorge
2013-01-01
The purpose of this qualitative study was to examine the Distance Learning Quality Issues published by the American Assembly of Collegiate Schools of Business International (AACSB-International) to document the various characteristics that high-quality online courses must possess. A content analysis methodology was employed to examine the seven…
Developing a confidence metric for the Landsat land surface temperature product
NASA Astrophysics Data System (ADS)
Laraby, Kelly G.; Schott, John R.; Raqueno, Nina
2016-05-01
Land Surface Temperature (LST) is an important Earth system data record that is useful to fields such as change detection, climate research, environmental monitoring, and smaller scale applications such as agriculture. Certain Earth-observing satellites can be used to derive this metric, and it would be extremely useful if such imagery could be used to develop a global product. Through the support of the National Aeronautics and Space Administration (NASA) and the United States Geological Survey (USGS), a LST product for the Landsat series of satellites has been developed. Currently, it has been validated for scenes in North America, with plans to expand to a trusted global product. For ideal atmospheric conditions (e.g. stable atmosphere with no clouds nearby), the LST product underestimates the surface temperature by an average of 0.26 K. When clouds are directly above or near the pixel of interest, however, errors can extend to several Kelvin. As the product approaches public release, our major goal is to develop a quality metric that will provide the user with a per-pixel map of estimated LST errors. There are several sources of error that are involved in the LST calculation process, but performing standard error propagation is a difficult task due to the complexity of the atmospheric propagation component. To circumvent this difficulty, we propose to utilize the relationship between cloud proximity and the error seen in the LST process to help develop a quality metric. This method involves calculating the distance to the nearest cloud from a pixel of interest in a scene, and recording the LST error at that location. Performing this calculation for hundreds of scenes allows us to observe the average LST error for different ranges of distances to the nearest cloud. This paper describes this process in full, and presents results for a large set of Landsat scenes.
Going the Distance: Delivery of High School Drug Prevention via Distance Education
ERIC Educational Resources Information Center
Wyrick, David L.; Fearnow-Kenney, Melodie; Wyrick, Cheryl Haworth; Orsini, Muhsin Michael; Strack, Robert W.; Milroy, Jeffrey J.
2010-01-01
The purpose of this project was to develop a technology that can be used in schools where there are insufficient resources to implement a quality drug prevention program. The specific technology--distance education via teleconferencing--allows a highly qualified teacher to deliver programs in such settings with increased quality. A promising high…
Perspectives on Distance Education. Quality Assurance in Higher Education: Selected Case Studies.
ERIC Educational Resources Information Center
Tait, Alan, Ed.
This publication consists of a set of case studies of quality assurance practices in distance teaching universities. The case studies are particularly relevant at a time when universities in many parts of the world, both new and established distance teaching universities, are placing great emphasis on reviewing and revising what they do in…
Optical Distance Measurement Device And Method Thereof
Bowers, Mark W.
2004-06-15
A system and method of efficiently obtaining distance measurements of a target by scanning the target. An optical beam is provided by a light source and modulated by a frequency source. The modulated optical beam is transmitted to an acousto-optical deflector capable of changing the angle of the optical beam in a predetermined manner to produce an output for scanning the target. In operation, reflected or diffused light from the target may be received by a detector and transmitted to a controller configured to calculate the distance to the target as well as the measurement uncertainty in calculating the distance to the target.
Wenkstetten-Holub, Alfa; Kandioler-Honetz, Elisabeth; Kraus, Ingrid; Müller, Rudolf; Kurz, Robert Wolfgang
2012-08-01
Aim of the study was to evaluate the effects of supervised exercise training for peripheral arterial disease (PAD) on walking speed, claudication distance and quality of life. Ninety-four patients in stage IIa/IIb according to Fontaine underwent a six-month exercise training at the Center for Outpatient Rehabilitation Vienna (ZAW). Walking speed and Absolute Claudication Distance (ACD) improved significantly (p < 0,001 and p = 0,007 respectively). Increase of the Initial Claudication Distance (ICD) did not reach statistical significance (p = 0,14). Quality of life, as assessed by the questionnaire "PLC" manifested no significant change. The exercise training achieved considerable effects on walking speed and claudication distance. Despite these improvements, patient's quality of life revealed no relevant change. This outcome could be explained by the fact that aspects of physical functioning relevant to patients with claudicatio intermittens may be underrepresented in the PLC-questionnaire core module.
Thieke, Christian; Nill, Simeon; Oelfke, Uwe; Bortfeld, Thomas
2002-05-01
In inverse planning for intensity-modulated radiotherapy, the dose calculation is a crucial element limiting both the maximum achievable plan quality and the speed of the optimization process. One way to integrate accurate dose calculation algorithms into inverse planning is to precalculate the dose contribution of each beam element to each voxel for unit fluence. These precalculated values are stored in a big dose calculation matrix. Then the dose calculation during the iterative optimization process consists merely of matrix look-up and multiplication with the actual fluence values. However, because the dose calculation matrix can become very large, this ansatz requires a lot of computer memory and is still very time consuming, making it not practical for clinical routine without further modifications. In this work we present a new method to significantly reduce the number of entries in the dose calculation matrix. The method utilizes the fact that a photon pencil beam has a rapid radial dose falloff, and has very small dose values for the most part. In this low-dose part of the pencil beam, the dose contribution to a voxel is only integrated into the dose calculation matrix with a certain probability. Normalization with the reciprocal of this probability preserves the total energy, even though many matrix elements are omitted. Three probability distributions were tested to find the most accurate one for a given memory size. The sampling method is compared with the use of a fully filled matrix and with the well-known method of just cutting off the pencil beam at a certain lateral distance. A clinical example of a head and neck case is presented. It turns out that a sampled dose calculation matrix with only 1/3 of the entries of the fully filled matrix does not sacrifice the quality of the resulting plans, whereby the cutoff method results in a suboptimal treatment plan.
Application of Oversampling to obtain the MTF of Digital Radiology Equipment.
NASA Astrophysics Data System (ADS)
Narváez, M.; Graffigna, J. P.; Gómez, M. E.; Romo, R.
2016-04-01
Within the objectives of theproject Medical Image Processing for QualityAssessment ofX Ray Imaging, the present research work is aimed at developinga phantomX ray image and itsassociated processing algorithms in order to evaluatethe image quality rendered by digital X ray equipment. These tools are used to measure various image parameters, among which spatial resolution shows afundamental property that can be characterized by the Modulation Transfer Function (MTF)of an imaging system [1]. After performing a thorough literature surveyon imaging quality control in digital X film in Argentine and international publications, it was decided to adopt for this work the Norm IEC 62220 1:2003 that recommends using an image edge as a testingmethod. In order to obtain the characterizing MTF, a protocol was designedfor unifying the conditions under which the images are acquired for later evaluation. The protocol implied acquiring a radiography image by means of a specific referential technique, i.e. referred either to voltage, current, time, distance focus plate (/film?) distance, or other referential parameter, and to interpret the image through a system of computed radiology or direct digital radiology. The contribution of the work stems from the fact that, even though the traditional way of evaluating an X film image quality has relied mostly on subjective methods, this work presents an objective evaluative toolfor the images obtained with a givenequipment, followed by a contrastive analysis with the renderings from other X filmimaging sets.Once the images were obtained, specific calculations were carried out. Though there exist some methods based on the subjective evaluation of the quality of image, this work offers an objective evaluation of the equipment under study. Finally, we present the results obtained on different equipment.
Miraglia, Roberto; Maruzzelli, Luigi; Cortis, Kelvin; Tafaro, Corrado; Gerasia, Roberta; Parisi, Carmelo; Luca, Angelo
2015-08-01
To determine whether the use of a low-dose acquisition protocol (LDP) in digital subtraction angiography during transjugular intrahepatic portosystemic shunt (TIPS) creation/revision results in significant reduction of patient radiation exposure and adequate image quality, as compared to a default reference standard-dose acquisition protocol (SDP). Two angiographic runs were performed during TIPS creation/revision: the first following catheterization of the portal venous system and the second after stent deployment/angioplasty. Constant field of view, object to image-detector distance, and source to image-receptor distance were maintained in each patient during the two angiographic runs. 17 consecutive adult patients who underwent TIPS creation (n = 11) or TIPS revision (n = 6) from December 2013 to March 2014 were considered eligible for this single centre prospective study. In each patient, the LDP and the SDP were used in a random order for the two runs, with each patient serving as his/her own control. The dose-area product (DAP) was calculated for each image and compared. Image quality was graded by two interventional radiologists other than the operator. In all runs acquired with the LDP, image quality was considered adequate for a successful procedural outcome. The DAP per image of the LDP was numerically inferior as compared to the DAP per image of the SDP in all patients. The mean reduction in DAP per image was 75.24% ± 5.7% (p < 0. 001). Radiation exposure during TIPS creation/revision was significantly reduced by selecting a LDP in our flat-panel detector-based system, while maintaining adequate image quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, O; Yuan, J; Law, M
Purpose: Signal-to-noise ratio(SNR) of MR abdominal imaging in diagnostic radiology is maximized by minimizing the coil-to-patient distance. However, for radiotherapy applications, customized vacuum-bag is needed for abdominal immobilization at the cost of the increasing distance to the posterior spine coil. This sub-optimized coil setting for RT applications may compromise image quality, such as SNR and homogeneity, thus potentially affect tissue delineation. In this study, we quantitatively evaluate the effect of the vertical position change on SNR and image quality change using an ACR MR phantom. Methods: An ACR MR phantom was placed on the flat couch top. Images were acquiredmore » using an 18-channel body array coil and spine coil on a dedicated 1.5T MR-simulator. The scan was repeated three times with the ACR phantom elevated up to 7.5cm from the couch top, with a step size of 2.5cm. All images were acquired using standard ACR test sequence protocol of 2D spin-echo T1-weighted(TR/TE=500/200ms) and T2-weighted(TR/TE1/TE2=2000/20/80) sequences. For all scans, pre-scan normalization was turned on, and the distance between the phantom and the anterior 18-channel body array coil was kept constant. SNR was calculated using the slice with a large water-only region of the phantom. Percent intensity uniformity(PIU) and low contrast object detectability(LCD) were assessed by following ACR test guidelines. Results: The decrease in image SNR(from 335.8 to 169.3) and LCD(T1: from 31 to 19 spokes, T2: 26 to 16 spokes) were observed with increasing vertical distance. After elevating the phantom by 2.5cm(approximately the thickness of standard vacuum-bag), SNR change(from 335.8 to 275.5) and LCD(T1: 31 to 26 spokes, T2: 26 to 21 spokes) change were noted. However, similar PIU was obtained for all choices of vertical distance (T1: 94.5%–95.0%, T2: 94.4%–96.8%). Conclusion: After elevating the scan object, reduction in SNR level and contrast detectability but no change in image homogeneity was observed.« less
Mucha, Matthew D; Caldwell, Wade; Schlueter, Emily L; Walters, Carly; Hassen, Amy
2017-04-01
Determine the association between hip abduction strength and lower extremity running related injury in distance runners. Systematic review. Prospective longitudinal and cross sectional studies that quantified hip abduction strength and provided diagnosis of running related injury in distance runners were included and assessed for quality. Effect size was calculated for between group differences in hip abduction strength. Of the 1841 articles returned in the initial search, 11 studies matched all inclusion criteria. Studies were grouped according to injury: iliotibial band syndrome, patellofemoral pain syndrome, medial tibial stress syndrome, tibial stress fracture, and Achilles tendinopathy, and examined for strength differences between injured and non-injured groups. Meaningful differences were found in the studies examining iliotibial band syndrome. Three of five iliotibial band syndrome articles found weakness in runners with iliotibial band syndrome; two were of strong methodological rigor and both of those found a relationship between weakness and injury. Other results did not form associative or predictive relationships between weakness and injury in distance runners. Hip abduction weakness evaluated by hand held dynamometer may be associated with iliotibial band syndrome in distance runners as suggested by several cross sectional studies but is unclear as a significant factor for the development of patellofemoral pain syndrome, medial tibial stress syndrome, tibial stress fracture or Achilles tendinopathy according to the current literature. Future studies are needed with consistent methodology and inclusion of all distance running populations to determine the significance of hip abduction strength in relationship to lower extremity injury. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bolejko, Krzysztof
2011-02-01
The standard analysis of the CMB data assumes that the distance to the last scattering surface can be calculated using the distance-redshift relation as in the Friedmann model. However, in the inhomogeneous universe, even if langδρrang = 0, the distance relation is not the same as in the unperturbed universe. This can be of serious consequences as a change of distance affects the mapping of CMB temperature fluctuations into the angular power spectrum Cl. In addition, if the change of distance is relatively uniform no new temperature fluctuations are generated. It is therefore a different effect than the lensing or ISW effects which introduce additional CMB anisotropies. This paper shows that the accuracy of the CMB analysis can be impaired by the accuracy of calculation of the distance within the cosmological models. Since this effect has not been fully explored before, to test how the inhomogeneities affect the distance-redshift relation, several methods are examined: the Dyer-Roeder relation, lensing approximation, and non-linear Swiss-Cheese model. In all cases, the distance to the last scattering surface is different than when homogeneity is assumed. The difference can be as low as 1% and as high as 80%. An usual change of the distance is around 20-30%. Since the distance to the last scattering surface is set by the position of the CMB peaks, in order to have a good fit, the distance needs to be adjusted. After correcting the distance, the cosmological parameters change. Therefore, a not properly estimated distance to the last scattering surface can be a major source of systematics. This paper shows that if inhomogeneities are taken into account when calculating the distance then models with positive spatial curvature and with ΩΛ ~ 0.8-0.9 are preferred.
Product Quality Modelling Based on Incremental Support Vector Machine
NASA Astrophysics Data System (ADS)
Wang, J.; Zhang, W.; Qin, B.; Shi, W.
2012-05-01
Incremental Support vector machine (ISVM) is a new learning method developed in recent years based on the foundations of statistical learning theory. It is suitable for the problem of sequentially arriving field data and has been widely used for product quality prediction and production process optimization. However, the traditional ISVM learning does not consider the quality of the incremental data which may contain noise and redundant data; it will affect the learning speed and accuracy to a great extent. In order to improve SVM training speed and accuracy, a modified incremental support vector machine (MISVM) is proposed in this paper. Firstly, the margin vectors are extracted according to the Karush-Kuhn-Tucker (KKT) condition; then the distance from the margin vectors to the final decision hyperplane is calculated to evaluate the importance of margin vectors, where the margin vectors are removed while their distance exceed the specified value; finally, the original SVs and remaining margin vectors are used to update the SVM. The proposed MISVM can not only eliminate the unimportant samples such as noise samples, but also can preserve the important samples. The MISVM has been experimented on two public data and one field data of zinc coating weight in strip hot-dip galvanizing, and the results shows that the proposed method can improve the prediction accuracy and the training speed effectively. Furthermore, it can provide the necessary decision supports and analysis tools for auto control of product quality, and also can extend to other process industries, such as chemical process and manufacturing process.
Copernican Mathematics: Calculating Periods and Distances of the Planets
ERIC Educational Resources Information Center
Rosenkrantz, Kurt J.
2004-01-01
The heliocentric, or Sun-centered model, one of the most important revolutions in scientific thinking, allowed Nicholas Copernicus to calculate the periods, relative distances, and approximate orbital shapes of all the known planets, thereby paving the way for Kepler's laws and Newton's formation of gravitation. Recreating Copernicus's…
ERIC Educational Resources Information Center
Belawati, Tian; Zuhairi, Amin
2007-01-01
Quality assurance for distance higher education is one of the main concerns among institutions and stakeholders today. This paper examines the experiences of Universitas Terbuka (UT), which has initiated and implemented an innovative strategy of quality assurance (QA) for continuous improvement. The credo of the UT quality assurance system is…
ERIC Educational Resources Information Center
Chapman, Betty F.; Henderson, Ronda G.
2010-01-01
Background: Business teacher educators and distance learning coordinators have the responsibility to deliver quality online courses and programs. Therefore, they must make sure that quality assurance benchmarks are present in online business education courses and programs. Purpose: The purpose of this study was to examine the extent to which…
Quality Assurance Toolkit for Distance Higher Education Institutions and Programmes
ERIC Educational Resources Information Center
Rama, Kondapalli, Ed.; Hope, Andrea, Ed.
2009-01-01
The Commonwealth of Learning is proud to partner with the Sri Lankan Ministry of Higher Education and UNESCO to produce this "Quality Assurance Toolkit for Distance Higher Education Institutions and Programmes". The Toolkit has been prepared with three features. First, it is a generic document on quality assurance, complete with a…
Lin, Fen-Fang; Wang, Ke; Yang, Ning; Yan, Shi-Guang; Zheng, Xin-Yu
2012-02-01
In this paper, some main factors such as soil type, land use pattern, lithology type, topography, road, and industry type that affect soil quality were used to precisely obtain the spatial distribution characteristics of regional soil quality, mutual information theory was adopted to select the main environmental factors, and decision tree algorithm See 5.0 was applied to predict the grade of regional soil quality. The main factors affecting regional soil quality were soil type, land use, lithology type, distance to town, distance to water area, altitude, distance to road, and distance to industrial land. The prediction accuracy of the decision tree model with the variables selected by mutual information was obviously higher than that of the model with all variables, and, for the former model, whether of decision tree or of decision rule, its prediction accuracy was all higher than 80%. Based on the continuous and categorical data, the method of mutual information theory integrated with decision tree could not only reduce the number of input parameters for decision tree algorithm, but also predict and assess regional soil quality effectively.
Blanck, Oliver; Masi, Laura; Chan, Mark K H; Adamczyk, Sebastian; Albrecht, Christian; Damme, Marie-Christin; Loutfi-Krauss, Britta; Alraun, Manfred; Fehr, Roman; Ramm, Ulla; Siebert, Frank-Andre; Stelljes, Tenzin Sonam; Poppinga, Daniela; Poppe, Björn
2016-06-01
High precision radiosurgery demands comprehensive delivery-quality-assurance techniques. The use of a liquid-filled ion-chamber-array for robotic-radiosurgery delivery-quality-assurance was investigated and validated using several test scenarios and routine patient plans. Preliminary evaluation consisted of beam profile validation and analysis of source-detector-distance and beam-incidence-angle response dependence. The delivery-quality-assurance analysis is performed in four steps: (1) Array-to-plan registration, (2) Evaluation with standard Gamma-Index criteria (local-dose-difference⩽2%, distance-to-agreement⩽2mm, pass-rate⩾90%), (3) Dose profile alignment and dose distribution shift until maximum pass-rate is found, and (4) Final evaluation with 1mm distance-to-agreement criterion. Test scenarios consisted of intended phantom misalignments, dose miscalibrations, and undelivered Monitor Units. Preliminary method validation was performed on 55 clinical plans in five institutions. The 1000SRS profile measurements showed sufficient agreement compared with a microDiamond detector for all collimator sizes. The relative response changes can be up to 2.2% per 10cm source-detector-distance change, but remains within 1% for the clinically relevant source-detector-distance range. Planned and measured dose under different beam-incidence-angles showed deviations below 1% for angles between 0° and 80°. Small-intended errors were detected by 1mm distance-to-agreement criterion while 2mm criteria failed to reveal some of these deviations. All analyzed delivery-quality-assurance clinical patient plans were within our tight tolerance criteria. We demonstrated that a high-resolution liquid-filled ion-chamber-array can be suitable for robotic radiosurgery delivery-quality-assurance and that small errors can be detected with tight distance-to-agreement criterion. Further improvement may come from beam specific correction for incidence angle and source-detector-distance response. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Telemedicine broadening access to care for complex cases.
Jue, Joshua S; Spector, Sydney A; Spector, Seth A
2017-12-01
Surgical and nonsurgical specialists are highly centralized, making access to high-quality care difficult for many Americans. We explored the feasibility, benefits, preliminary outcomes, and patient satisfaction with a new type of health visit, in which a surgical oncologist used video telecommunication to manage and treat complex cancer diseases, including patients with severe comorbidities. Patients visited local VA medical centers throughout Florida to engage in video telecommunication visits with a centralized surgical oncologist in Miami, who directed their oncology treatment. The average length of stay and rate of unplanned readmission were calculated within each organ. The total mileage saved was calculated by subtracting the distance between the patient's home address and the local VA from the distance between the patient's home address and the Miami VA. Travel costs were determined by the VA's reimbursement of $0.415/mile for health-related travel and reimbursement of $150.00 for an overnight hotel stay. A Likert scale with both positively and negatively keyed questions was used to assess patient satisfaction. In 24 mo, seven unplanned readmissions occurred among 195 operations. Patients experienced an 80.7% reduction in travel distance and saved a total of 213,007.58 miles by visiting their local VA instead of the Miami VA. Survey results indicate that 86% of patients believed that the telemedicine program made medical care more accessible. The Specialist-Directed Telemedicine Model can save patients substantial time and money by not traveling to centralized areas, while delivering greater continuity of care and patient satisfaction. Copyright © 2017 Elsevier Inc. All rights reserved.
Concordance of Commercial Data Sources for Neighborhood-Effects Studies
Schootman, Mario
2010-01-01
Growing evidence supports a relationship between neighborhood-level characteristics and important health outcomes. One source of neighborhood data includes commercial databases integrated with geographic information systems to measure availability of certain types of businesses or destinations that may have either favorable or adverse effects on health outcomes; however, the quality of these data sources is generally unknown. This study assessed the concordance of two commercial databases for ascertaining the presence, locations, and characteristics of businesses. Businesses in the St. Louis, Missouri area were selected based on their four-digit Standard Industrial Classification (SIC) codes and classified into 14 business categories. Business listings in the two commercial databases were matched by standardized business name within specified distances. Concordance and coverage measures were calculated using capture–recapture methods for all businesses and by business type, with further stratification by census-tract-level population density, percent below poverty, and racial composition. For matched listings, distance between listings and agreement in four-digit SIC code, sales volume, and employee size were calculated. Overall, the percent agreement was 32% between the databases. Concordance and coverage estimates were lowest for health-care facilities and leisure/entertainment businesses; highest for popular walking destinations, eating places, and alcohol/tobacco establishments; and varied somewhat by population density. The mean distance (SD) between matched listings was 108.2 (179.0) m with varying levels of agreement in four-digit SIC (percent agreement = 84.6%), employee size (weighted kappa = 0.63), and sales volume (weighted kappa = 0.04). Researchers should cautiously interpret findings when using these commercial databases to yield measures of the neighborhood environment. PMID:20480397
NASA Astrophysics Data System (ADS)
Okamoto, Kyosuke; Tsuno, Seiji
2015-10-01
In the earthquake early warning (EEW) system, the epicenter location and magnitude of earthquakes are estimated using the amplitude growth rate of initial P-waves. It has been empirically pointed out that the growth rate becomes smaller as epicentral distance becomes far regardless of the magnitude of earthquakes. So, the epicentral distance can be estimated from the growth rate using this empirical relationship. However, the growth rates calculated from different earthquakes at the same epicentral distance mark considerably different values from each other. Sometimes the growth rates of earthquakes having the same epicentral distance vary by 104 times. Qualitatively, it has been considered that the gap in the growth rates is due to differences in the local heterogeneities that the P-waves propagate through. In this study, we demonstrate theoretically how local heterogeneities in the subsurface disturb the relationship between the growth rate and the epicentral distance. Firstly, we calculate seismic scattered waves in a heterogeneous medium. First-ordered PP, PS, SP, and SS scatterings are considered. The correlation distance of the heterogeneities and fractional fluctuation of elastic parameters control the heterogeneous conditions for the calculation. From the synthesized waves, the growth rate of the initial P-wave is obtained. As a result, we find that a parameter (in this study, correlation distance) controlling heterogeneities plays a key role in the magnitude of the fluctuation of the growth rate. Then, we calculate the regional correlation distances in Japan that can account for the fluctuation of the growth rate of real earthquakes from 1997 to 2011 observed by K-NET and KiK-net. As a result, the spatial distribution of the correlation distance shows locality. So, it is revealed that the growth rates fluctuate according to the locality. When this local fluctuation is taken into account, the accuracy of the estimation of epicentral distances from initial P-waves can improve, which will in turn improve the accuracy of the EEW system.
Theoretical Principles of Distance Education.
ERIC Educational Resources Information Center
Keegan, Desmond, Ed.
This book contains the following papers examining the didactic, academic, analytic, philosophical, and technological underpinnings of distance education: "Introduction"; "Quality and Access in Distance Education: Theoretical Considerations" (D. Randy Garrison); "Theory of Transactional Distance" (Michael G. Moore);…
Visual Uav Trajectory Plan System Based on Network Map
NASA Astrophysics Data System (ADS)
Li, X. L.; Lin, Z. J.; Su, G. Z.; Wu, B. Y.
2012-07-01
The base map of the current software UP-30 using in trajectory plan for Unmanned Aircraft Vehicle is vector diagram. UP-30 draws navigation points manually. But in the field of operation process, the efficiency and the quality of work is influenced because of insufficient information, screen reflection, calculate inconveniently and other factors. If we do this work in indoor, the effect of external factors on the results would be eliminated, the network earth users can browse the free world high definition satellite images through downloading a client software, and can export the high resolution image by standard file format. This brings unprecedented convenient of trajectory plan. But the images must be disposed by coordinate transformation, geometric correction. In addition, according to the requirement of mapping scale ,camera parameters and overlap degree we can calculate exposure hole interval and trajectory distance between the adjacent trajectory automatically . This will improve the degree of automation of data collection. Software will judge the position of next point according to the intersection of the trajectory and the survey area and ensure the position of point according to trajectory distance. We can undertake the points artificially. So the trajectory plan is automatic and flexible. Considering safety, the date can be used in flying after simulating flight. Finally we can export all of the date using a key
ERIC Educational Resources Information Center
Kabanda, Gabriel
2014-01-01
The market dynamics in distance education has precipitated phenomenal growth opportunities in enrollments and e-learning. The purpose of the paper was to develop a strategy for sustained quality delivery mode of distance education progammes that precipitate massive enrollments and e-learning in an open and distance learning (ODL) institution using…
ERIC Educational Resources Information Center
Darojat, Ojat
2018-01-01
This paper is to examine the implementation of quality assurance (QA) programs in distance higher education. Different challenges related to the development of QA programs at a distance higher institution and how to manage and implement the programs are discussed to show how the programs have been used to ensure the survival of the institution. A…
NASA Astrophysics Data System (ADS)
Fang, Yi-Chin; Wu, Bo-Wen; Lin, Wei-Tang; Jon, Jen-Liung
2007-11-01
Resolution and color are two main directions for measuring optical digital image, but it will be a hard work to integral improve the image quality of optical system, because there are many limits such as size, materials and environment of optical system design. Therefore, it is important to let blurred images as aberrations and noises or due to the characteristics of human vision as far distance and small targets to raise the capability of image recognition with artificial intelligence such as genetic algorithm and neural network in the condition that decreasing color aberration of optical system and not to increase complex calculation in the image processes. This study could achieve the goal of integral, economically and effectively to improve recognition and classification in low quality image from optical system and environment.
ERIC Educational Resources Information Center
Moore, Michael G., Ed.; Cozine, Geoffrey T., Ed.
This book brings together a selection of articles published in "The American Journal of Distance Education" that are related to Web-based delivery of distance education. Articles include: "Performance and Perceptions of Distance Learners in Cyberspace" (Peter Navarro and Judy Shoemaker); "Distance Education for Dentists: Improving the Quality of…
Mitra, Ayan; Politte, David G; Whiting, Bruce R; Williamson, Jeffrey F; O'Sullivan, Joseph A
2017-01-01
Model-based image reconstruction (MBIR) techniques have the potential to generate high quality images from noisy measurements and a small number of projections which can reduce the x-ray dose in patients. These MBIR techniques rely on projection and backprojection to refine an image estimate. One of the widely used projectors for these modern MBIR based technique is called branchless distance driven (DD) projection and backprojection. While this method produces superior quality images, the computational cost of iterative updates keeps it from being ubiquitous in clinical applications. In this paper, we provide several new parallelization ideas for concurrent execution of the DD projectors in multi-GPU systems using CUDA programming tools. We have introduced some novel schemes for dividing the projection data and image voxels over multiple GPUs to avoid runtime overhead and inter-device synchronization issues. We have also reduced the complexity of overlap calculation of the algorithm by eliminating the common projection plane and directly projecting the detector boundaries onto image voxel boundaries. To reduce the time required for calculating the overlap between the detector edges and image voxel boundaries, we have proposed a pre-accumulation technique to accumulate image intensities in perpendicular 2D image slabs (from a 3D image) before projection and after backprojection to ensure our DD kernels run faster in parallel GPU threads. For the implementation of our iterative MBIR technique we use a parallel multi-GPU version of the alternating minimization (AM) algorithm with penalized likelihood update. The time performance using our proposed reconstruction method with Siemens Sensation 16 patient scan data shows an average of 24 times speedup using a single TITAN X GPU and 74 times speedup using 3 TITAN X GPUs in parallel for combined projection and backprojection.
Chen, Kang; Park, Junyong; Li, Feng; Patil, Sharadrao M; Keire, David A
2018-04-01
NMR spectroscopy is an emerging analytical tool for measuring complex drug product qualities, e.g., protein higher order structure (HOS) or heparin chemical composition. Most drug NMR spectra have been visually analyzed; however, NMR spectra are inherently quantitative and multivariate and thus suitable for chemometric analysis. Therefore, quantitative measurements derived from chemometric comparisons between spectra could be a key step in establishing acceptance criteria for a new generic drug or a new batch after manufacture change. To measure the capability of chemometric methods to differentiate comparator NMR spectra, we calculated inter-spectra difference metrics on 1D/2D spectra of two insulin drugs, Humulin R® and Novolin R®, from different manufacturers. Both insulin drugs have an identical drug substance but differ in formulation. Chemometric methods (i.e., principal component analysis (PCA), 3-way Tucker3 or graph invariant (GI)) were performed to calculate Mahalanobis distance (D M ) between the two brands (inter-brand) and distance ratio (D R ) among the different lots (intra-brand). The PCA on 1D inter-brand spectral comparison yielded a D M value of 213. In comparing 2D spectra, the Tucker3 analysis yielded the highest differentiability value (D M = 305) in the comparisons made followed by PCA (D M = 255) then the GI method (D M = 40). In conclusion, drug quality comparisons among different lots might benefit from PCA on 1D spectra for rapidly comparing many samples, while higher resolution but more time-consuming 2D-NMR-data-based comparisons using Tucker3 analysis or PCA provide a greater level of assurance for drug structural similarity evaluation between drug brands.
Students Perceived Value towards Quality of Distance Education in Tamil Nadu
ERIC Educational Resources Information Center
Jeyaraj, P.; Sugumar, D.; Thandavamoorthy, K.; Xavier, S. Joseph
2014-01-01
The quality of education of any distance learning programme is maintained by various ways, such as: quality of study material, internal and external evaluation, and student support methods and so on. The above aspects should be available in aspects to the Post graduate degree students. In this research Ex Post Facto research with field survey is…
Escamilla, Veronica; Calhoun, Lisa; Winston, Jennifer; Speizer, Ilene S
2018-02-01
Universal access to health care requires service availability and accessibility for those most in need of maternal and child health services. Women often bypass facilities closest to home due to poor quality. Few studies have directly linked individuals to facilities where they sought maternal and child health services and examined the role of distance and quality on this facility choice. Using endline data from a longitudinal survey from a sample of women in five cities in Kenya, we examine the role of distance and quality on facility selection for women using delivery, facility-based contraceptives, and child health services. A survey of public and private facilities offering reproductive health services was also conducted. Distances were measured between household cluster location and both the nearest facility and facility where women sought care. A quality index score representing facility infrastructure, staff, and supply characteristics was assigned to each facility. We use descriptive statistics to compare distance and quality between the nearest available facility and visited facility among women who bypassed the nearest facility. Facility distance and quality comparisons were also stratified by poverty status. Logistic regression models were used to measure associations between the quality and distance to the nearest facility and bypassing for each outcome. The majority of women bypassed the nearest facility regardless of service sought. Women bypassing for delivery traveled the furthest and had the fewest facility options near their residential cluster. Poor women bypassing for delivery traveled 4.5 km further than non-poor women. Among women who bypassed, two thirds seeking delivery and approximately 46% seeking facility-based contraception or child health services bypassed to a public hospital. Both poor and non-poor women bypassed to higher quality facilities. Our findings suggest that women in five cities in Kenya prefer public hospitals and are willing to travel further to obtain services at public hospitals, possibly related to free service availability. Over time, it will be important to examine service quality and availability in public sector facilities with reduced or eliminated user fees, and whether it lends itself to a continuum of care where women can visit one facility for multiple services reducing travel burden.
Mackin, Dennis; Li, Yupeng; Taylor, Michael B; Kerr, Matthew; Holmes, Charles; Sahoo, Narayan; Poenisch, Falk; Li, Heng; Lii, Jim; Amos, Richard; Wu, Richard; Suzuki, Kazumichi; Gillin, Michael T; Zhu, X Ronald; Zhang, Xiaodong
2013-12-01
The purpose of this study was to validate the use of HPlusQA, spot-scanning proton therapy (SSPT) dose calculation software developed at The University of Texas MD Anderson Cancer Center, as second-check dose calculation software for patient-specific quality assurance (PSQA). The authors also showed how HPlusQA can be used within the current PSQA framework. The authors compared the dose calculations of HPlusQA and the Eclipse treatment planning system with 106 planar dose measurements made as part of PSQA. To determine the relative performance and the degree of correlation between HPlusQA and Eclipse, the authors compared calculated with measured point doses. Then, to determine how well HPlusQA can predict when the comparisons between Eclipse calculations and the measured dose will exceed tolerance levels, the authors compared gamma index scores for HPlusQA versus Eclipse with those of measured doses versus Eclipse. The authors introduce the αβγ transformation as a way to more easily compare gamma scores. The authors compared measured and calculated dose planes using the relative depth, z∕R × 100%, where z is the depth of the measurement and R is the proton beam range. For relative depths than less than 80%, both Eclipse and HPlusQA calculations were within 2 cGy of dose measurements on average. When the relative depth was greater than 80%, the agreement between the calculations and measurements fell to 4 cGy. For relative depths less than 10%, the Eclipse and HPlusQA dose discrepancies showed a negative correlation, -0.21. Otherwise, the correlation between the dose discrepancies was positive and as large as 0.6. For the dose planes in this study, HPlusQA correctly predicted when Eclipse had and had not calculated the dose to within tolerance 92% and 79% of the time, respectively. In 4 of 106 cases, HPlusQA failed to predict when the comparison between measurement and Eclipse's calculation had exceeded the tolerance levels of 3% for dose and 3 mm for distance-to-agreement. The authors found HPlusQA to be reasonably effective (79% ± 10%) in determining when the comparison between measured dose planes and the dose planes calculated by the Eclipse treatment planning system had exceeded the acceptable tolerance levels. When used as described in this study, HPlusQA can reduce the need for patient specific quality assurance measurements by 64%. The authors believe that the use of HPlusQA as a dose calculation second check can increase the efficiency and effectiveness of the QA process.
Braking distance algorithm for autonomous cars using road surface recognition
NASA Astrophysics Data System (ADS)
Kavitha, C.; Ashok, B.; Nanthagopal, K.; Desai, Rohan; Rastogi, Nisha; Shetty, Siddhanth
2017-11-01
India is yet to accept semi/fully - autonomous cars and one of the reasons, was loss of control on bad roads. For a better handling on these roads we require advanced braking and that can be done by adapting electronics into the conventional type of braking. In Recent years, the automation in braking system led us to various benefits like traction control system, anti-lock braking system etc. This research work describes and experiments the method for recognizing road surface profile and calculating braking distance. An ultra-sonic surface recognition sensor, mounted underneath the car will send a high frequency wave on to the road surface, which is received by a receiver with in the sensor, it calculates the time taken for the wave to rebound and thus calculates the distance from the point where sensor is mounted. A displacement graph will be plotted based on the output of the sensor. A relationship can be derived between the displacement plot and roughness index through which the friction coefficient can be derived in Matlab for continuous calculation throughout the distance travelled. Since it is a non-contact type of profiling, it is non-destructive. The friction coefficient values received in real-time is used to calculate optimum braking distance. This system, when installed on normal cars can also be used to create a database of road surfaces, especially in cities, which can be shared with other cars. This will help in navigation as well as making the cars more efficient.
Structure of aqueous cesium metaborate solutions by X-ray scattering and DFT calculation
NASA Astrophysics Data System (ADS)
Zhang, W. Q.; Fang, C. H.; Fang, Y.; Zhu, F. Y.; Zhou, Y. Q.; Liu, H. Y.; Li, W.
2018-05-01
In the present work, precise radial distribution function (RDF) of cesium metaborate solutions with salt-water molar ratio of 1:25, 1:30 and 1:35 in large scattering vector range (3.91-214.26 nm-1) were obtained by X-ray scattering. Polyborate species were given using Newton iteration method with measured pH and literature equilibrium constants. In model calculation, structural parameters such as the coordination number, interatomic distance and Debye-Waller factor were given through model calculation. The B-O(H2O) distance was determined to be ∼0.37 nm with the hydration number of ∼7.8 for B(OH)4-. The Cs-B distance of the contact ions CsB(OH)40 was measured to be ∼0.46 nm with interaction number of ∼0.77. The interaction distances and coordination number for the first shell and the second shell of Cs-O(W) are ∼0.325 nm, ∼0.517 nm and ∼8.0, ∼11, respectively. Five low-energy configurations of [Cs(H2O)8]+ were given with DFT calculation, including the first and the second hydration shell, and the most stable eight-coordinated one is close to the model calculation. Furthermore, the effect of concentration is discussed in the X-ray scattering analysis part, showing that hydration degree changes with the concentration. For the coordination number and distance of Cs-O(H2O) and H-bonding decrease with the increasing concentration. The coordination number of Cs-O(H2O) keep stable, and the coordination distance changes from 3.25 nm to 3.30 nm. For H-bonding, which the coordination number varies from 2.20 to 2.24, and the coordination distance varies from 2.76 nm to 2.78 nm with the decreasing concentration.
NASA Astrophysics Data System (ADS)
Guo, Ruhai; Chen, Ning; Zhuang, Xinyu; Wang, Bing
2015-02-01
In order to research the influence on the beam quality due to thermal deformation of the secondary mirror in the high power laser system, the theoretical simulation study is performed. Firstly, three typical laser power 10kW, 50kW and 100kW with the wavelength 1.064μm are selected to analyze thermal deformation of mirror through the finite element analyze of thermodynamics instantaneous method. Then the wavefront aberration can be calculated by ray-tracing theory. Finally, focus spot radius,beam quality (BQ) of far-filed beam can be calculated and comparably analyzed by Fresnel diffraction integration. The simulation results show that with the increasing laser power, the optical aberration of beam director gets worse, the far-field optical beam quality decrease, which makes the laser focus spot broadening and the peak optical intensity of center decreasing dramatically. Comparing the clamping ring and the three-point clamping, the former is better than the latter because the former only induces the rotation symmetric deformation and the latter introduces additional astigmatism. The far-field optical beam quality can be improved partly by simply adjusting the distance between the main mirror and the secondary mirror. But the far-field power density is still the one tenth as that without the heat distortion of secondary mirror. These results can also provide the reference to the thermal aberration analyze for high power laser system and can be applied to the field of laser communication system and laser weapon etc.
Mooney, J J; Hedlin, H; Mohabir, P K; Vazquez, R; Nguyen, J; Ha, R; Chiu, P; Patel, K; Zamora, M R; Weill, D; Nicolls, M R; Dhillon, G S
2016-04-01
Although controlled donation after circulatory determination of death (cDCDD) could increase the supply of donor lungs within the United States, the yield of lungs from cDCDD donors remains low compared with donation after neurologic determination of death (DNDD). To explore the reason for low lung yield from cDCDD donors, Scientific Registry of Transplant Recipient data were used to assess the impact of donor lung quality on cDCDD lung utilization by fitting a logistic regression model. The relationship between center volume and cDCDD use was assessed, and the distance between center and donor hospital was calculated by cDCDD status. Recipient survival was compared using a multivariable Cox regression model. Lung utilization was 2.1% for cDCDD donors and 21.4% for DNDD donors. Being a cDCDD donor decreased lung donation (adjusted odds ratio 0.101, 95% confidence interval [CI] 0.085-0.120). A minority of centers have performed cDCDD transplant, with higher volume centers generally performing more cDCDD transplants. There was no difference in center-to-donor distance or recipient survival (adjusted hazard ratio 1.03, 95% CI 0.78-1.37) between cDCDD and DNDD transplants. cDCDD lungs are underutilized compared with DNDD lungs after adjusting for lung quality. Increasing transplant center expertise and commitment to cDCDD lung procurement is needed to improve utilization. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.
Alió, Jorge L; Plaza-Puche, Ana B; Javaloy, Jaime; Ayala, María José
2012-02-01
To compare the visual outcomes and intraocular optical quality observed postoperatively in patients implanted with a rotationally asymmetric multifocal intraocular lens (IOL) and an apodized diffractive multifocal IOL. Seventy-four consecutive eyes of 40 cataract patients (age range: 36 to 79 years) were divided into two groups: zonal refractive group, 39 eyes implanted with a rotationally asymmetric multifocal IOL (Lentis Mplus LS-312 IOL, Oculentis GmbH); and diffractive group, 35 eyes implanted with an apodized diffractive multifocal IOL (ReSTOR SN6AD3, Alcon Laboratories Inc). Distance and near visual acuity outcomes, contrast sensitivity, intraocular optical quality, and defocus curves were evaluated during 3-month follow-up. Calculation of the intraocular aberrations was performed by subtracting corneal aberrations from total ocular aberrations. Uncorrected near visual acuity and distance-corrected near visual acuity were better in the diffractive group than in the zonal refractive group (P=.01), whereas intermediate visual acuity (defocus +1.00 and +1.50 diopters) was better in the zonal refractive group. Photopic contrast sensitivity was significantly better in the zonal refractive group (P=.04). Wavefront aberrations (total, higher order, tilt, primary coma) were significantly higher in the zonal refractive group than in the diffractive group (P=.02). Both multifocal IOLs are able to successfully restore visual function after cataract surgery. The zonal refractive multifocal IOL provides better results in contrast sensitivity and intermediate vision, whereas the diffractive multifocal IOL provides better near vision at a closer distance. Copyright 2012, SLACK Incorporated.
[Optimize dropping process of Ginkgo biloba dropping pills by using design space approach].
Shen, Ji-Chen; Wang, Qing-Qing; Chen, An; Pan, Fang-Lai; Gong, Xing-Chu; Qu, Hai-Bin
2017-07-01
In this paper, a design space approach was applied to optimize the dropping process of Ginkgo biloba dropping pills. Firstly, potential critical process parameters and potential process critical quality attributes were determined through literature research and pre-experiments. Secondly, experiments were carried out according to Box-Behnken design. Then the critical process parameters and critical quality attributes were determined based on the experimental results. Thirdly, second-order polynomial models were used to describe the quantitative relationships between critical process parameters and critical quality attributes. Finally, a probability-based design space was calculated and verified. The verification results showed that efficient production of Ginkgo biloba dropping pills can be guaranteed by operating within the design space parameters. The recommended operation ranges for the critical dropping process parameters of Ginkgo biloba dropping pills were as follows: dropping distance of 5.5-6.7 cm, and dropping speed of 59-60 drops per minute, providing a reference for industrial production of Ginkgo biloba dropping pills. Copyright© by the Chinese Pharmaceutical Association.
An analytical model for scanning electron microscope Type I magnetic contrast with energy filtering
NASA Astrophysics Data System (ADS)
Chim, W. K.
1994-02-01
In this article, a theoretical model for type I magnetic contrast calculations in the scanning electron microscope with energy filtering is presented. This model uses an approximate form of the secondary electron (SE) energy distribution by Chung and Everhart [M. S. Chung and T. E. Everhart, J. Appl. Phys. 45, 707 (1974). Closed form analytical expressions for the contrast and quality factors, which take into consideration the work function and field-distance integral of the material being studied, are obtained. This analytical model is compared with that of a more accurate numerical model. Results showed that the contrast and quality factors for the analytical model differed by not more than 20% from the numerical model, with the actual difference depending on the range of filtered SE energies considered. This model has also been extended to the situation of a two-detector (i.e., detector A and B) configuration, in which enhanced magnetic contrast and quality factor can be obtained by operating in the ``A-B'' mode.
The use of multimodal strategies for distance education in the GRECCs.
Kresevic, Denise; Burant, Christopher; Denton, Jennifer; Heath, Barbara; Kypriotakis, George
2011-01-01
The Department of Veterans Affairs (VA) has found distance education to be particularly valuable as a means to disseminate information to large numbers of busy learners in geographically diverse settings. Specifically, Geriatric Research, Education and Clinical Centers (GRECCs) of the VA have used various forms of distance learning to provide geriatrics-focused education to diverse health care providers. Such formats allow programs to be available to audiences regardless of distance or time. Although the distance-learning format has clear benefits, there are also some barriers that have hindered its wider adoption, including technical difficulties and ease of use. Organizers of distance education programs are challenged to overcome these barriers to provide a quality learning experience for the audience. The GRECCs will likely continue to be leaders in exploring innovative distance-learning strategies to accomplish their mission of quality geriatric education.
Distance Education: A Consumer's Guide. What Distance Learners Need To Know.
ERIC Educational Resources Information Center
Western Interstate Commission for Higher Education, Boulder, CO. Western Cooperative for Educational Communications.
This pamphlet is intended to assist the consumer in making informed decisions when choosing between distance learning programs. Distance education and distance learners are defined. Included is advice on beginning a program search; choosing a school; accreditation; evaluating quality of electronically offered programs; evaluate non-accredited…
Tidal Influence on Water Quality of Kapuas Kecil River Downstream
NASA Astrophysics Data System (ADS)
Purnaini, Rizki; Sudarmadji; Purwono, Suryo
2018-02-01
The Kapuas Kecil River is strongly influenced by tidal, in the dry season the intrusion of surface water is often a problem for the WTP because it causes the change of raw water quality to be processed. The purpose of this study was to examine the effect of sea tides on water quality of the Kapuas Kecil River. The study was conducted in Kapuas River downstream along ± 30 km from the upper boundary to the estuary. Water sampling is carried out during the dry and rainy season, when the tidal conditions at 7 (seven) locations of the monitoring station. Descriptive analysis methods and regression-correlation statistics are used to determine the effect of tides on water quality in Kapuas River downstream. In general, the water quality of the Kapuas Kecil River has exceeded the criteria of first class water quality, ie water that can be used for drinking water. The status of water quality of the Kapuas Kecil River based on the pollution index calculation shows the condition of the river is "mild to medium pollutants". The result of multiple linear regression analysis got the value of coefficient of determination (adjusted R square) = 0,760, which in whole show that independent variable (tidal and distance) influence to dependent variable (value of TDS) equal to 76%.
Moradi, F; Ung, N M; Khandaker, M U; Mahdiraji, G A; Saad, M; Abdul Malik, R; Bustam, A Z; Zaili, Z; Bradley, D A
2017-07-28
The relatively new treatment modality electronic intraoperative radiotherapy (IORT) is gaining popularity, irradiation being obtained within a surgically produced cavity being delivered via a low-energy x-ray source and spherical applicators, primarily for early stage breast cancer. Due to the spatially dramatic dose-rate fall off with radial distance from the source and effects related to changes in the beam quality of the low keV photon spectra, dosimetric account of the Intrabeam system is rather complex. Skin dose monitoring in IORT is important due to the high dose prescription per treatment fraction. In this study, modeling of the x-ray source and related applicators were performed using the Monte Carlo N-Particle transport code. The dosimetric characteristics of the model were validated against measured data obtained using an ionization chamber and EBT3 film as dosimeters. By using a simulated breast phantom, absorbed doses to the skin for different combinations of applicator size (1.5-5 cm) and treatment depth (0.5-3 cm) were calculated. Simulation results showed overdosing of the skin (>30% of prescribed dose) at a treatment depth of 0.5 cm using applicator sizes larger than 1.5 cm. Skin doses were significantly increased with applicator size, insofar as delivering 12 Gy (60% of the prescribed dose) to skin for the largest sized applicator (5 cm diameter) and treatment depth of 0.5 cm. It is concluded that the recommended 0.5-1 cm distance between the skin and applicator surface does not guarantee skin safety and skin dose is generally more significant in cases with the larger applicators. • Intrabeam x-ray source and spherical applicators were simulated and skin dose was calculated. • Skin dose for constant skin to applicator distance strongly depends on applicator size. • Use of larger applicators generally results in higher skin dose. • The recommended 0.5-1 cm skin to applicator distance does not guarantee skin safety.
Estimating the Distance to the Moon--Its Relevance to Mathematics. Core-Plus Mathematics Project.
ERIC Educational Resources Information Center
Stern, David P.
This document features an activity for estimating the distance from the earth to the moon during a solar eclipse based on calculations performed by the ancient Greek astronomer Hipparchus. Historical, mathematical, and scientific details about the calculation are provided. Internet resources for teachers to obtain more information on the subject…
ERIC Educational Resources Information Center
Oduaran, A. B.
2011-01-01
This article reports on the relationship between seven factors that described dimensions of education service quality and overall service quality on one hand, and students' satisfaction with the professional teacher development programmes by distance mode in a South African University on the other. We sought to find out whether students enrolled…
An empirical formula to calculate the full energy peak efficiency of scintillation detectors.
Badawi, Mohamed S; Abd-Elzaher, Mohamed; Thabet, Abouzeid A; El-khatib, Ahmed M
2013-04-01
This work provides an empirical formula to calculate the FEPE for different detectors using the effective solid angle ratio derived from experimental measurements. The full energy peak efficiency (FEPE) curves of the (2″(*)2″) NaI(Tl) detector at different seven axial distances from the detector were depicted in a wide energy range from 59.53 to 1408keV using standard point sources. The distinction was based on the effects of the source energy and the source-to-detector distance. A good agreement was noticed between the measured and calculated efficiency values for the source-to-detector distances at 20, 25, 30, 35, 40, 45 and 50cm. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pease, J.H.
The three dimensional structures of several small peptides were determined using a combination of {sup 1}H nuclear magnetic resonance (NMR) and distance geometry calculations. These techniques were found to be particularly helpful for analyzing structural differences between related peptides since all of the peptides' {sup 1}H NMR spectra are very similar. The structures of peptides from two separate classes are presented. Peptides in the first class are related to apamin, an 18 amino acid peptide toxin from honey bee venom. The {sup 1}H NMR assignments and secondary structure determination of apamin were done previously. Quantitative NMR measurements and distance geometrymore » calculations were done to calculate apamin's three dimensional structure. Peptides in the second class are 48 amino acid toxins from the sea anemone Radianthus paumotensis. The {sup 1}H NMR assignments of toxin II were done previously. The {sup 1}H NMR assignments of toxin III and the distance geometry calculations for both peptides are presented.« less
Authenticating concealed private data while maintaining concealment
Thomas, Edward V [Albuquerque, NM; Draelos, Timothy J [Albuquerque, NM
2007-06-26
A method of and system for authenticating concealed and statistically varying multi-dimensional data comprising: acquiring an initial measurement of an item, wherein the initial measurement is subject to measurement error; applying a transformation to the initial measurement to generate reference template data; acquiring a subsequent measurement of an item, wherein the subsequent measurement is subject to measurement error; applying the transformation to the subsequent measurement; and calculating a Euclidean distance metric between the transformed measurements; wherein the calculated Euclidean distance metric is identical to a Euclidean distance metric between the measurement prior to transformation.
The Minimum Binding Energy and Size of Doubly Muonic D3 Molecule
NASA Astrophysics Data System (ADS)
Eskandari, M. R.; Faghihi, F.; Mahdavi, M.
The minimum energy and size of doubly muonic D3 molecule, which two of the electrons are replaced by the much heavier muons, are calculated by the well-known variational method. The calculations show that the system possesses two minimum positions, one at typically muonic distance and the second at the atomic distance. It is shown that at the muonic distance, the effective charge, zeff is 2.9. We assumed a symmetric planar vibrational model between two minima and an oscillation potential energy is approximated in this region.
NASA Astrophysics Data System (ADS)
Machguth, H.; Huss, M.
2014-05-01
Glacier length is an important measure of glacier geometry but global glacier inventories are mostly lacking length data. Only recently semi-automated approaches to measure glacier length have been developed and applied regionally. Here we present a first global assessment of glacier length using a fully automated method based on glacier surface slope, distance to the glacier margins and a set of trade-off functions. The method is developed for East Greenland, evaluated for the same area as well as for Alaska, and eventually applied to all ∼200 000 glaciers around the globe. The evaluation highlights accurately calculated glacier length where DEM quality is good (East Greenland) and limited precision on low quality DEMs (parts of Alaska). Measured length of very small glaciers is subject to a certain level of ambiguity. The global calculation shows that only about 1.5% of all glaciers are longer than 10 km with Bering Glacier (Alaska/Canada) being the longest glacier in the world at a length of 196 km. Based on model output we derive global and regional area-length scaling laws. Differences among regional scaling parameters appear to be related to characteristics of topography and glacier mass balance. The present study adds glacier length as a central parameter to global glacier inventories. Global and regional scaling laws might proof beneficial in conceptual glacier models.
The length of the world's glaciers - a new approach for the global calculation of center lines
NASA Astrophysics Data System (ADS)
Machguth, H.; Huss, M.
2014-09-01
Glacier length is an important measure of glacier geometry. Nevertheless, global glacier inventories are mostly lacking length data. Only recently semi-automated approaches to measure glacier length have been developed and applied regionally. Here we present a first global assessment of glacier length using an automated method that relies on glacier surface slope, distance to the glacier margins and a set of trade-off functions. The method is developed for East Greenland, evaluated for East Greenland as well as for Alaska and eventually applied to all ~ 200 000 glaciers around the globe. The evaluation highlights accurately calculated glacier length where digital elevation model (DEM) quality is high (East Greenland) and limited accuracy on low-quality DEMs (parts of Alaska). Measured length of very small glaciers is subject to a certain level of ambiguity. The global calculation shows that only about 1.5% of all glaciers are longer than 10 km, with Bering Glacier (Alaska/Canada) being the longest glacier in the world at a length of 196 km. Based on the output of our algorithm we derive global and regional area-length scaling laws. Differences among regional scaling parameters appear to be related to characteristics of topography and glacier mass balance. The present study adds glacier length as a key parameter to global glacier inventories. Global and regional scaling laws might prove beneficial in conceptual glacier models.
NASA Astrophysics Data System (ADS)
Bagherinejad, Jafar; Niknam, Azar
2018-03-01
In this paper, a leader-follower competitive facility location problem considering the reactions of the competitors is studied. A model for locating new facilities and determining levels of quality for the facilities of the leader firm is proposed. Moreover, changes in the location and quality of existing facilities in a competitive market where a competitor offers the same goods or services are taken into account. The competitor could react by opening new facilities, closing existing ones, and adjusting the quality levels of its existing facilities. The market share, captured by each facility, depends on its distance to customer and its quality that is calculated based on the probabilistic Huff's model. Each firm aims to maximize its profit subject to constraints on quality levels and budget of setting up new facilities. This problem is formulated as a bi-level mixed integer non-linear model. The model is solved using a combination of Tabu Search with an exact method. The performance of the proposed algorithm is compared with an upper bound that is achieved by applying Karush-Kuhn-Tucker conditions. Computational results show that our algorithm finds near the upper bound solutions in a reasonable time.
Trans-Pacific tele-ultrasound image transmission of fetal central nervous system structures.
Ferreira, Adilson Cunha; Araujo Júnior, Edward; Martins, Wellington P; Jordão, João Francisco; Oliani, Antônio Hélio; Meagher, Simon E; Da Silva Costa, Fabricio
2015-01-01
To assess the quality of images and video clips of fetal central nervous (CNS) structures obtained by ultrasound and transmitted via tele-ultrasound from Brazil to Australia. In this cross-sectional study, 15 normal singleton pregnant women between 20 and 26 weeks were selected. Fetal CNS structures were obtained by images and video clips. The exams were transmitted in real-time using a broadband internet and an inexpensive video streaming device. Four blinded examiners evaluated the quality of the exams using the Likert scale. We calculated the mean, standard deviation, mean difference, and p values were obtained from paired t tests. The quality of the original video clips was slightly better than that observed by the transmitted video clips; mean difference considering all observers = 0.23 points. In 47/60 comparisons (78.3%; 95% CI = 66.4-86.9%) the quality of the video clips were judged to be the same. In 182/240 still images (75.8%; 95% CI = 70.0-80.8%) the scores of transmitted image were considered the same as the original. We demonstrated that long distance tele-ultrasound transmission of fetal CNS structures using an inexpensive video streaming device provided images of subjective good quality.
Rana, Rishi; Ganguly, Rajiv; Gupta, Ashok Kumar
2017-12-26
Dumping of solid waste in a non-engineered landfill site often leads to contamination of ground water due to leachate percolation into ground water. The present paper assesses the pollution potential of leachate generated from three non-engineered landfill sites located in the Tricity region (one each in cities of Chandigarh, Mohali and Panchkula) of Northern India and its possible effects of contamination of groundwater. Analysis of physico-chemical properties of leachate from all the three landfill sites and the surrounding groundwater samples from five different downwind distances from each of the landfill sites were collected and tested to determine the leachate pollution index (LPI) and the water quality index (WQI). The Leachate Pollution Index values of 26.1, 27 and 27.8 respectively for landfill sites of Chandigarh (CHD), Mohali (MOH) and Panchkula (PKL) cities showed that the leachate generated are contaminated. The average pH values of the leachate samples over the sampling period (9.2 for CHD, 8.97 for MOH and 8.9 for PKL) show an alkaline nature indicating that all the three landfill sites could be classified as mature to old stage. The WQI calculated over the different downwind distances from the contamination sites showed that the quality of the groundwater improved with an increase in the downwind distance. Principal component analysis (PCA) carried out established major components mainly from natural and anthropogenic sources with cumulative variance of 88% for Chandigarh, 87.1% for Mohali and 87.8% for Panchkula. Hierarchical cluster analysis (HCA) identifies three distinct cluster types for the groundwater samples. These clusters corresponds to a relatively low pollution, moderate pollution and high pollution regions. It is suggested that all the three non-engineered landfill sites be converted to engineered landfill sites to prevent groundwater contamination and also new sites be considered for construction of these engineered landfill sites as the present dumpsites are nearing the end of their lifespan capacity.
NASA Astrophysics Data System (ADS)
Ahmadivand, Arash; Golmohammadi, Saeed
2014-01-01
With the purpose of guiding and splitting of optical power at C-band spectrum, we studied Y-shape splitters based on various shapes of nanoparticles as a plasmon waveguide. We applied different configurations of Gold (Au) and Silver (Ag) nanoparticles including spheres, rods and rings, to optimize the efficiency and losses of two and four-branch splitters. The best performance in light transportation specifically at telecom wavelength (λ≈1550 nm) is achieved by nanorings, due to an extra degree of freedom in their geometrical components. In addition, comparisons of several values for offset distance (doffset) of examined structures shows that Au nanoring splitters with feasible lower doffset have high quality in guiding and splitting of light through the structure. Finally, we studied four-branch Y-splitters based on Au and Ag nanorings with least possible offset distances to optimize the splitter performance. The power transmission as a key element is calculated for examined structures.
High precision UTDR measurements by sonic velocity compensation with reference transducer.
Stade, Sam; Kallioinen, Mari; Mänttäri, Mika; Tuuva, Tuure
2014-07-02
An ultrasonic sensor design with sonic velocity compensation is developed to improve the accuracy of distance measurement in membrane modules. High accuracy real-time distance measurements are needed in membrane fouling and compaction studies. The benefits of the sonic velocity compensation with a reference transducer are compared to the sonic velocity calculated with the measured temperature and pressure using the model by Belogol'skii, Sekoyan et al. In the experiments the temperature was changed from 25 to 60 °C at pressures of 0.1, 0.3 and 0.5 MPa. The set measurement distance was 17.8 mm. Distance measurements with sonic velocity compensation were over ten times more accurate than the ones calculated based on the model. Using the reference transducer measured sonic velocity, the standard deviations for the distance measurements varied from 0.6 to 2.0 µm, while using the calculated sonic velocity the standard deviations were 21-39 µm. In industrial liquors, not only the temperature and the pressure, which were studied in this paper, but also the properties of the filtered solution, such as solute concentration, density, viscosity, etc., may vary greatly, leading to inaccuracy in the use of the Belogol'skii, Sekoyan et al. model. Therefore, calibration of the sonic velocity with reference transducers is needed for accurate distance measurements.
Neutral Kaon Mixing from Lattice QCD
NASA Astrophysics Data System (ADS)
Bai, Ziyuan
In this work, we report the lattice calculation of two important quantities which emerge from second order, K0 - K¯0 mixing : DeltaMK and epsilonK. The RBC-UKQCD collaboration has performed the first calculation of DeltaMK with unphysical kinematics [1]. We now extend this calculation to near-physical and physical ensembles. In these physical or near-physical calculations, the two-pion energies are below the kaon threshold, and we have to examine the two-pion intermediate states contribution to DeltaMK, as well as the enhanced finite volume corrections arising from these two-pion intermediate states. We also report the ?rst lattice calculation of the long-distance contribution to the indirect CP violation parameter, the epsilonK. This calculation involves the treatment of a short-distance, ultra-violet divergence that is absent in the calculation of DeltaMK, and we will report our techniques for correcting this divergence on the lattice. In this calculation, we used unphysical quark masses on the same ensemble that we used in [1]. Therefore, rather than providing a physical result, this calculation demonstrates the technique for calculating epsilonK, and provides an approximate understanding the size of the long-distance contributions. Various new techniques are employed in this work, such as the use of All-Mode-Averaging (AMA), the All-to-All (A2A) propagators and the use of super-jackknife method in analyzing the data.
Comparison of four commercial devices for RapidArc and sliding window IMRT QA
Chandraraj, Varatharaj; Manickam, Ravikumar; Esquivel, Carlos; Supe, Sanjay S.; Papanikolaou, Nikos
2011-01-01
For intensity‐modulated radiation therapy, evaluation of the measured dose against the treatment planning calculated dose is essential in the context of patient‐specific quality assurance. The complexity of volumetric arc radiotherapy delivery attributed to its dynamic and synchronization nature require new methods and potentially new tools for the quality assurance of such techniques. In the present study, we evaluated and compared the dosimetric performance of EDR2 film and three other commercially available quality assurance devices: IBA I'MatriXX array, PTW Seven29 array and the Delta 4 array. The evaluation of these dosimetric systems was performed for RapidArc and IMRT deliveries using a Varian NovalisTX linear accelerator. The plans were generated using the Varian Eclipse treatment planning system. Our results showed that all four QA techniques yield equivalent results. All patient QAs passed our institutional clinical criteria of gamma index based on a 3% dose difference and 3 mm distance to agreement. In addition, the Bland‐Altman analysis was performed which showed that all the calculated gamma values of all three QA devices were within 5% from those of the film. The results showed that the four QA systems used in this patient‐specific IMRT QA analysis are equivalent. We concluded that the dosimetric systems under investigation can be used interchangeably for routine patient specific QA. PACS numbers: 87.55.Qr, 87.56.Fc
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J; Lu, B; Yan, G
Purpose: To identify the weakness of dose calculation algorithm in a treatment planning system for volumetric modulated arc therapy (VMAT) and sliding window (SW) techniques using a two-dimensional diode array. Methods: The VMAT quality assurance(QA) was implemented with a diode array using multiple partial arcs that divided from a VMAT plan; each partial arc has the same segments and the original monitor units. Arc angles were less than ± 30°. Multiple arcs delivered through consecutive and repetitive gantry operating clockwise and counterclockwise. The source-toaxis distance setup with the effective depths of 10 and 20 cm were used for a diodemore » array. To figure out dose errors caused in delivery of VMAT fields, the numerous fields having the same segments with the VMAT field irradiated using different delivery techniques of static and step-and-shoot. The dose distributions of the SW technique were evaluated by creating split fields having fine moving steps of multi-leaf collimator leaves. Calculated doses using the adaptive convolution algorithm were analyzed with measured ones with distance-to-agreement and dose difference of 3 mm and 3%.. Results: While the beam delivery through static and step-and-shoot techniques showed the passing rate of 97 ± 2%, partial arc delivery of the VMAT fields brought out passing rate of 85%. However, when leaf motion was restricted less than 4.6 mm/°, passing rate was improved up to 95 ± 2%. Similar passing rate were obtained for both 10 and 20 cm effective depth setup. The calculated doses using the SW technique showed the dose difference over 7% at the final arrival point of moving leaves. Conclusion: Error components in dynamic delivery of modulated beams were distinguished by using the suggested QA method. This partial arc method can be used for routine VMAT QA. Improved SW calculation algorithm is required to provide accurate estimated doses.« less
Exploratory Lattice QCD Study of the Rare Kaon Decay K^{+}→π^{+}νν[over ¯].
Bai, Ziyuan; Christ, Norman H; Feng, Xu; Lawson, Andrew; Portelli, Antonin; Sachrajda, Christopher T
2017-06-23
We report a first, complete lattice QCD calculation of the long-distance contribution to the K^{+}→π^{+}νν[over ¯] decay within the standard model. This is a second-order weak process involving two four-Fermi operators that is highly sensitive to new physics and being studied by the NA62 experiment at CERN. While much of this decay comes from perturbative, short-distance physics, there is a long-distance part, perhaps as large as the planned experimental error, which involves nonperturbative phenomena. The calculation presented here, with unphysical quark masses, demonstrates that this contribution can be computed using lattice methods by overcoming three technical difficulties: (i) a short-distance divergence that results when the two weak operators approach each other, (ii) exponentially growing, unphysical terms that appear in Euclidean, second-order perturbation theory, and (iii) potentially large finite-volume effects. A follow-on calculation with physical quark masses and controlled systematic errors will be possible with the next generation of computers.
Exploratory Lattice QCD Study of the Rare Kaon Decay K+→π+ν ν ¯
NASA Astrophysics Data System (ADS)
Bai, Ziyuan; Christ, Norman H.; Feng, Xu; Lawson, Andrew; Portelli, Antonin; Sachrajda, Christopher T.; Rbc-Ukqcd Collaboration
2017-06-01
We report a first, complete lattice QCD calculation of the long-distance contribution to the K+→π+ν ν ¯ decay within the standard model. This is a second-order weak process involving two four-Fermi operators that is highly sensitive to new physics and being studied by the NA62 experiment at CERN. While much of this decay comes from perturbative, short-distance physics, there is a long-distance part, perhaps as large as the planned experimental error, which involves nonperturbative phenomena. The calculation presented here, with unphysical quark masses, demonstrates that this contribution can be computed using lattice methods by overcoming three technical difficulties: (i) a short-distance divergence that results when the two weak operators approach each other, (ii) exponentially growing, unphysical terms that appear in Euclidean, second-order perturbation theory, and (iii) potentially large finite-volume effects. A follow-on calculation with physical quark masses and controlled systematic errors will be possible with the next generation of computers.
STScI-PRC96-21b DISTANCE MEASUREMENTS TO A TYPE-IA SUPERNOVA BEARING GALAXY
NASA Technical Reports Server (NTRS)
2002-01-01
This Hubble Space Telescope image shows NGC 4639, a spiral galaxy located 78 million light-years away in the Virgo cluster of galaxies. The blue dots in the galaxy's outlying regions indicate the presence of young stars. Among them are young, bright stars called Cepheids, which are used as reliable milepost markers to obtain accurate distances to nearby galaxies. Astronomers measure the brightness of Cepheids to calculate the distance to a galaxy. Allan Sandage's team used Cepheids to measure the distance to NGC 4639, the farthest galaxy to which Cepheid distance has been calculated. After using Cepheids to calculate the distance to NGC 4639, the team compared the results to the peak brightness measurements of SN 1990N, a type Ia supernova located in the galaxy. Then they compared those numbers with the peak brightness of supernovae similarly calibrated in nearby galaxies. The team then determined that type Ia supernovae are reliable secondary distance markers, and can be used to determine distances to galaxies several hundred times farther away than Cepheids. An accurate value for the Hubble Constant depends on Cepheids and secondary distance methods. The color image was made from separate exposures taken in the visible and near-infrared regions of the spectrum with the Wide Field Planetary Camera 2. Credit: A. Sandage (Carnegie Observatories), A. Saha (Space Telescope Science Institute), G.A. Tammann, and L. Labhardt (Astronomical Institute, University Basel), F.D. Macchetto and N. Panagia (Space Telescope Science Institute/ European Space Agency), and NASA Image files in GIF and JPEG format and captions may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo.
Accreditation of Distance Learning
ERIC Educational Resources Information Center
Demirel, Ergün
2016-01-01
The higher education institutes aspire to gain reputation of quality having accreditation from internationally recognized awarding bodies. The accreditation leads and provides quality assurance for education. Although distance learning becomes a significant part of the education system in the 21st century, there is still a common opinion that the…
Rushing, Clark S; Marra, Peter P; Dudash, Michele R
2016-05-01
Long-distance breeding and natal dispersal play central roles in many ecological and evolutionary processes, including gene flow, population dynamics, range expansion, and individual responses to fluctuating biotic and abiotic conditions. However, the relative contribution of long-distance dispersal to these processes depends on the ability of dispersing individuals to successfully reproduce in their new environment. Unfortunately, due to the difficulties associated with tracking dispersal in the field, relatively little is known about its reproductive consequences. Furthermore, because reproductive success is influenced by a variety of processes, disentangling the influence of each of these processes is critical to understanding the direct consequences of dispersal. In this study, we used stable hydrogen and carbon isotopes to estimate long-distance dispersal and winter territory quality in a migratory bird, the American Redstart (Setophaga ruticilla). We then applied Aster life-history models to quantify the strength of influence of these factors on apparent reproductive success. We found no evidence that male or female reproductive success was lower for long-distance dispersers relative to non-dispersing individuals. In contrast, carry-over effects from the winter season did influence male, but not female, reproductive success. Use of Aster models further revealed that for adult males, winter territory quality influenced the number of offspring produced whereas for yearling males, high-quality winter territories were associated with higher mating and nesting success. These results suggest that although long-distance natal and breeding dispersal carry no immediate reproductive cost for American Redstarts, reproductive success in this species may ultimately be limited by the quality of winter habitat.
Beibei, Zhou; Quanjiu, Wang; Shuai, Tan
2014-01-01
A theory based on Manning roughness equation, Philip equation and water balance equation was developed which only employed the advance distance in the calculation of the infiltration parameters and irrigation coefficients in both the border irrigation and the surge irrigation. The improved procedure was validated with both the border irrigation and surge irrigation experiments. The main results are shown as follows. Infiltration parameters of the Philip equation could be calculated accurately only using water advance distance in the irrigation process comparing to the experimental data. With the calculated parameters and the water balance equation, the irrigation coefficients were also estimated. The water advance velocity should be measured at about 0.5 m to 1.0 m far from the water advance in the experimental corn fields. PMID:25061664
Hawthorne, Timothy L; Kwan, Mei-Po
2012-01-01
Geographers play important roles in public health research, particularly in understanding healthcare accessibility, utilisation, and individual healthcare experiences. Most accessibility studies have benefited from the increased sophistication of geographic information systems (GIS). Some studies have been enhanced with semi-structured in-depth interviews to understand individual experiences of people as they access healthcare. However, few accessibility studies have explicitly utilised individual in-depth interview data in the construction of new GIS accessibility measures. Using mixed methods including GIS analysis and individual data from semi-structured in-depth interviews, we offer satisfaction-adjusted distance as a new way of conceptualising accessibility in GIS. Based on fieldwork in a predominantly lower-income community in Columbus, Ohio (USA), we find many residents felt neighbourhood healthcare facilities offered low-quality care, which suggested an added perceived distance as they attempt to access high-quality healthcare facilities. The satisfaction-adjusted distance measure accounts for the perceived distance some residents feel as they search for high-quality healthcare in lower-income urban neighbourhoods. In moving beyond conventional GIS and re-conceptualising accessibility in this way, we offer a more realistic portrayal of the issues lower-income urban residents face as they attempt to access high-quality healthcare facilities. The work has theoretical implications for conceptualising healthcare accessibility, advances the mixed-methodologies literature, and argues for a more equitable distribution of high-quality healthcare in urban neighbourhoods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S; Zhang, H; Zhang, B
2015-06-15
Purpose: To investigate the feasibility of a logistic function-based model to predict organ-at-risk (OAR) DVH for IMRT planning. The predicted DVHs are compared to achieved DVHs by expert treatment planners. Methods: A logistic function is used to model the OAR dose-gradient function. This function describes the percentage of the prescription dose as a function of the normal distance to PTV surface. The slope of dose-gradient function is function of relative spatial orientation of the PTV and OARs. The OAR DVH is calculated using the OAR dose-gradient function assuming that the dose is same for voxels with same normal distance tomore » PTV. Ten previously planned prostate IMRT plans were selected to build the model, and the following plan parameters were calculated as possible features to the model: the PTV maximum/minimum dose, PTV volume, bladder/rectum volume in the radiation field, percentage of bladder/rectum overlapping with PTV, and the distance between the bladder/rectum centroid and PTV. The bladder/rectum dose-gradient function was modeled and applied on 10 additional test cases, and the predicted and achieved clinical bladder/rectum DVHs were compared: V70 (percentage of volume receiving 70Gy and above), V65, V60, V55, V50, V45, V40. Results: The following parameters were selected as model features: PTV volume, and distance of centroid of rectum/bladder to PTV. The model was tested with 10 additional patients. For bladder, the absolute difference (mean±standard deviation) between predicted and clinical DVHs is V70=−0.3±3.2, V65=−0.8±3.9, V60=1.5±4.3, V55=1.7±5.3, V50=−0.6±6.4, V45=0.6±6.5, and V40=0.9±5.7, the correlation coefficient is 0.96; for rectum, the difference is V70=1.5±3.8, V65=1.2±4.2, V60=−0.1±5.3, V55=1.0±6.6, V50=1.6±8.7, V45=1.9±9.8, and V40=1.5±10.1, and the correlation coefficient is 0.87. Conclusion: The OAR DVH can be accurately predicted using the OAR dose-gradient function in IMRT plans. This approach may be used as a quality control tool and aid less experienced planners determine benchmarks for plan quality.« less
ERIC Educational Resources Information Center
Bolanos-Mora, Guiselle; And Others
1992-01-01
In response to the need for a system of control over the academic quality of distance education texts, this article proposes a methodological model based on criteria that evaluate written materials based on their instructional quality, design, and production. A discussion and figures evaluate educational aspects of content, communication,…
ERIC Educational Resources Information Center
Dailin, Liu; Fengyan, Chang; Shuangxu, Yin; Fenglong, Zhang
2008-01-01
Timely collection of feedback on the quality of teaching from graduates and their employers is of great significance in distance education, and can help enhance the quality of teaching and improve management and all-round learner support. However, since the graduates left university some years ago, are now widely dispersed and consequently may…
Integrated management of timber-elk-cattle: interior forests of western North America.
J.W. Thomas; D.A. Leckenby; L. Jack [and others]. Lyon
1988-01-01
The need for and the evaluation of elk-habitat evaluation models are reviewed, and a state-of-the-art example is presented that incorporates distribution of elk-habitat use related to distance from cover/forage edges, distance from roads, cover quality, and forage quantity and quality.
Quality Measures in Distance Learning.
ERIC Educational Resources Information Center
Husson, William J.; Waterman, Ellen K.
2002-01-01
The director of distance learning at Regis University in Colorado reflects on steps that must be taken to assure that university-level e-learning courses are the same quality as traditional courses. Key areas include: qualified faculty, teaching excellence, course design (with the added components of production as they apply to the application of…
The Quality of Distance Learning in the Situation of Technological Change
ERIC Educational Resources Information Center
Targamadze, Aleksandras; Petrauskiene, Ruta
2008-01-01
This paper analyses challenges for higher education raised by the rapid development of information and communication technologies. The paper explores the enhancement of distance education leading to new opportunities to improve quality and develop services in higher education institutions. The paper overviews technical means and systems and also…
Multi-Objective UAV Mission Planning Using Evolutionary Computation
2008-03-01
on a Solution Space. . . . . . . . . . . . . . . . . . . . 41 4.3. Crowding distance calculation. Dark points are non-dominated solutions. [14...SPEA2 was devel- oped by Zitzler [64] as an improvement to the original SPEA algorithm [65]. SPEA2 Figure 4.3: Crowding distance calculation. Dark ...thesis, Los Angeles, CA, USA, 2003. Adviser-Maja J. Mataric . 114 21. Homberger, Joerg and Hermann Gehring. “Two Evolutionary Metaheuristics for the
Inclusive Approach to the Psycho-Pedagogical Assistance of Distance Learning
ERIC Educational Resources Information Center
Akhmetova, Daniya Z.
2014-01-01
Author focuses on three groups of problems: quality of distance learning and e-learning; necessity to develop the facilitation skills for teachers who work using distance learning technologies; realization of inclusive approach for the organization of distance learning in inclusive groups where people with disabilities study with people without…
A DFT/HF study of the potential energy surface of protonated ethane C2H7+
NASA Astrophysics Data System (ADS)
Hrusak, Jan; Zabka, Jan; Dolejsek, Zdenek; Herman, Zdenek
1997-11-01
Structures and energies of several isomers of the C2H7+ cation have been calculated using the parametrized B3LYP HF/DFT method. The B3LYP/6-31G** geometries of the individual isomers are of at least the same quality as the MP2/6-31G** results. The zero-point-energy corrected relative stabilities of the individual C2H7+ isomers are in excellent agreement with the much more costly MP4SDTQ/6-31G** MO calculations. A structure with a linear C---H---C skeleton and a CC distance of about 2.5 A was found to be a higher order saddle point on the PES resulting from curve crossing between the reactant and product channels CH3+ + CH4; this finding is of importance in interpreting the experimental results on the hydride ion transfer between CH3+ and CH4. The calculations are also consistent with the earlier experimental results on the formation of the products C2H5+ + H2.
Multiobjective Policy Analysis to Evaluate Air Quality Impacts of Oil and Gas Regulations
NASA Astrophysics Data System (ADS)
Alongi, M.; Kasprzyk, J. R.; Milford, J.; Ryan, J. N.; Estep, M.
2016-12-01
Unconventional oil and gas development (UOGD) using hydraulic fracturing and horizontal drilling has recently fostered an unprecedented acceleration in energy development. Regulations seek to protect the public health of communities in proximity to UOGD and the environmental quality of these regions, while maintaining economic benefits. One such regulation is the setback distance, which dictates the minimum distance between an oil and gas well and an occupied structure, such as a residential or commercial building, or an area of special concern. This presentation discusses a new policy analysis framework for UOGD regulations, using the Borg multiobjective evolutionary algorithm (MOEA) coupled with AERMOD, a regulatory air dispersion model. The initial results explore how setback distance and well density regulations could impact the number of wells that can be drilled, based on a set of performance objectives that model potential increases in benzene, a hazardous air pollutant that has been linked to cancer and other detrimental health effects. The simulation calculates daily benzene averages using meteorological data from Greeley, CO. An important aspect of this work is to define representative quantitative objectives that accurately capture salient characteristics of the pollutant time series. For example, our framework will characterize the maximum concentration found over the entire spatial domain and over the duration of the simulation. Frequency-based objectives will also be explored, such as the number of exceedances of the benchmark annual average benzene concentration corresponding to a given level of cancer risk. The multiobjective analysis can also be expanded to integrate other objectives that represent performance-based outcomes on UOGD such as energy development profits, increases in noise pollution and decreases in property value. This research represents one application of how MOEAs can be used to inform policymaking for environmental regulations.
Towards routine determination of focal mechanisms obtained from first motion P-wave arrivals
NASA Astrophysics Data System (ADS)
Lentas, K.
2018-03-01
The Bulletin of the International Seismological Centre (ISC) contains information on earthquake mechanisms collected from many different sources including national and global agencies, resulting in a satisfactory coverage over a wide magnitude range (M ˜2-9). Nevertheless, there are still a vast number of earthquakes with no reported source mechanisms especially for magnitudes up to 5. This study investigates the possibility of calculating earthquake focal mechanisms in a routine and systematic way based on P-wave first motion polarities. Any available parametric data in the ISC database is being used, as well as auto-picked polarities from waveform data up to teleseismic epicentral distances (90°) for stations that are not reported to the ISC. The determination of the earthquake mechanisms is carried out with a modified version of the HASH algorithm that is compatible with a wide range of epicentral distances and takes into account the ellipsoids defined by the ISC location errors, and the Earth's structure uncertainties. Initially, benchmark tests for a set of ISC reviewed earthquakes (mb > 4.5) are carried out and the HASH mechanism classification scheme is used to define the mechanism quality. Focal mechanisms of quality A, B and C with an azimuthal gap up to 90° compare well to the benchmark mechanisms. Nevertheless, the majority of the obtained mechanisms fall into class D as a result of limited polarity data from stations in local/regional epicentral distances. Specifically, the computation of the minimum rotation angle between the obtained mechanisms and the benchmarks, reveals that 41 per cent of the examined earthquakes show rotation angles up to 35°. Finally, the current technique is applied to a small set of earthquakes from the reviewed ISC bulletin where 62 earthquakes, with no previously reported source mechanisms, are successfully obtained.
Goldstein, R.M.; Meador, M.R.
2005-01-01
We used species traits to examine the variation in fish assemblages for 21 streams in the Northern Lakes and Forests Ecoregion along a gradient of habitat disturbance. Fish species were classified based on five species trait-classes (trophic ecology, substrate preference, geomorphic preference, locomotion morphology, and reproductive strategy) and 29 categories within those classes. We used a habitat quality index to define a reference stream and then calculated Euclidean distances between the reference and each of the other sites for the five traits. Three levels of species trait analyses were conducted: (1) a composite measure (the sum of Euclidean distances across all five species traits), (2) Euclidean distances for the five individual species trait-classes, and (3) frequencies of occurrence of individual trait categories. The composite Euclidean distance was significantly correlated to the habitat index (r = -0.81; P = 0.001), as were the Euclidean distances for four of the five individual species traits (substrate preference: r = -0.70, P = 0.001; geomorphic preference: r = -0.69, P = 0.001; trophic ecology: r = -0.73, P = 0.001; and reproductive strategy: r = -0.64, P = 0.002). Although Euclidean distances for locomotion morphology were not significantly correlated to habitat index scores (r = -0.21; P = 0.368), analysis of variance and principal components analysis indicated that Euclidean distances for locomotion morphology contributed to significant variation in the fish assemblages among sites. Examination of trait categories indicated that low habitat index scores (degraded streams) were associated with changes in frequency of occurrence within the categories of all five of the species traits. Though the objectives and spatial scale of a study will dictate the level of species trait information required, our results suggest that species traits can provide critical information at multiple levels of data analysis. ?? Copyright by the American Fisheries Society 2005.
Matsumoto, Masatoshi; Ogawa, Takahiko; Kashima, Saori; Takeuchi, Keisuke
2012-07-23
Frequent and long-term commuting is a requirement for dialysis patients. Accessibility thus affects their quality of lives. In this paper, a new model for accessibility measurement is proposed in which both geographic distance and facility capacity are taken into account. Simulation of closure of rural facilities and that of capacity transfer between urban and rural facilities are conducted to evaluate the impacts of these phenomena on equity of accessibility among dialysis patients. Post code information as of August 2011 of all the 7,374 patients certified by municipalities of Hiroshima prefecture as having first or third grade renal disability were collected. Information on post code and the maximum number of outpatients (capacity) of all the 98 dialysis facilities were also collected. Using geographic information systems, patient commuting times were calculated in two models: one that takes into account road distance (distance model), and the other that takes into account both the road distance and facility capacity (capacity-distance model). Simulations of closures of rural and urban facilities were then conducted. The median commuting time among rural patients was more than twice as long as that among urban patients (15 versus 7 minutes, p<0.001). In the capacity-distance model 36.1% of patients commuted to the facilities which were different from the facilities in the distance model, creating a substantial gap of commuting time between the two models. In the simulation, when five rural public facilitiess were closed, Gini coefficient of commuting times among the patients increased by 16%, indicating a substantial worsening of equity, and the number of patients with commuting times longer than 90 minutes increased by 72 times. In contrast, closure of four urban public facilities with similar capacities did not affect these values. Closures of dialysis facilities in rural areas have a substantially larger impact on equity of commuting times among dialysis patients than closures of urban facilities. The accessibility simulations using the capacity-distance model will provide an analytic framework upon which rational resource distribution policies might be planned.
2012-01-01
Background Frequent and long-term commuting is a requirement for dialysis patients. Accessibility thus affects their quality of lives. In this paper, a new model for accessibility measurement is proposed in which both geographic distance and facility capacity are taken into account. Simulation of closure of rural facilities and that of capacity transfer between urban and rural facilities are conducted to evaluate the impacts of these phenomena on equity of accessibility among dialysis patients. Methods Post code information as of August 2011 of all the 7,374 patients certified by municipalities of Hiroshima prefecture as having first or third grade renal disability were collected. Information on post code and the maximum number of outpatients (capacity) of all the 98 dialysis facilities were also collected. Using geographic information systems, patient commuting times were calculated in two models: one that takes into account road distance (distance model), and the other that takes into account both the road distance and facility capacity (capacity-distance model). Simulations of closures of rural and urban facilities were then conducted. Results The median commuting time among rural patients was more than twice as long as that among urban patients (15 versus 7 minutes, p < 0.001). In the capacity-distance model 36.1% of patients commuted to the facilities which were different from the facilities in the distance model, creating a substantial gap of commuting time between the two models. In the simulation, when five rural public facilitiess were closed, Gini coefficient of commuting times among the patients increased by 16%, indicating a substantial worsening of equity, and the number of patients with commuting times longer than 90 minutes increased by 72 times. In contrast, closure of four urban public facilities with similar capacities did not affect these values. Conclusions Closures of dialysis facilities in rural areas have a substantially larger impact on equity of commuting times among dialysis patients than closures of urban facilities. The accessibility simulations using thecapacity-distance model will provide an analytic framework upon which rational resource distribution policies might be planned. PMID:22824294
Inaniwa, T; Kanematsu, N
2015-01-07
In scanned carbon-ion (C-ion) radiotherapy, some primary C-ions undergo nuclear reactions before reaching the target and the resulting particles deliver doses to regions at a significant distance from the central axis of the beam. The effects of these particles on physical dose distribution are accounted for in treatment planning by representing the transverse profile of the scanned C-ion beam as the superposition of three Gaussian distributions. In the calculation of biological dose distribution, however, the radiation quality of the scanned C-ion beam has been assumed to be uniform over its cross-section, taking the average value over the plane at a given depth (monochrome model). Since these particles, which have relatively low radiation quality, spread widely compared to the primary C-ions, the radiation quality of the beam should vary with radial distance from the central beam axis. To represent its transverse distribution, we propose a trichrome beam model in which primary C-ions, heavy fragments with atomic number Z ≥ 3, and light fragments with Z ≤ 2 are assigned to the first, second, and third Gaussian components, respectively. Assuming a realistic beam-delivery system, we performed computer simulations using Geant4 Monte Carlo code for analytical beam modeling of the monochrome and trichrome models. The analytical beam models were integrated into a treatment planning system for scanned C-ion radiotherapy. A target volume of 20 × 20 × 40 mm(3) was defined within a water phantom. A uniform biological dose of 2.65 Gy (RBE) was planned for the target with the two beam models based on the microdosimetric kinetic model (MKM). The plans were recalculated with Geant4, and the recalculated biological dose distributions were compared with the planned distributions. The mean target dose of the recalculated distribution with the monochrome model was 2.72 Gy (RBE), while the dose with the trichrome model was 2.64 Gy (RBE). The monochrome model underestimated the RBE within the target due to the assumption of no radial variations in radiation quality. Conversely, the trichrome model accurately predicted the RBE even in a small target. Our results verify the applicability of the trichrome model for clinical use in C-ion radiotherapy treatment planning.
NASA Astrophysics Data System (ADS)
Inaniwa, T.; Kanematsu, N.
2015-01-01
In scanned carbon-ion (C-ion) radiotherapy, some primary C-ions undergo nuclear reactions before reaching the target and the resulting particles deliver doses to regions at a significant distance from the central axis of the beam. The effects of these particles on physical dose distribution are accounted for in treatment planning by representing the transverse profile of the scanned C-ion beam as the superposition of three Gaussian distributions. In the calculation of biological dose distribution, however, the radiation quality of the scanned C-ion beam has been assumed to be uniform over its cross-section, taking the average value over the plane at a given depth (monochrome model). Since these particles, which have relatively low radiation quality, spread widely compared to the primary C-ions, the radiation quality of the beam should vary with radial distance from the central beam axis. To represent its transverse distribution, we propose a trichrome beam model in which primary C-ions, heavy fragments with atomic number Z ≥ 3, and light fragments with Z ≤ 2 are assigned to the first, second, and third Gaussian components, respectively. Assuming a realistic beam-delivery system, we performed computer simulations using Geant4 Monte Carlo code for analytical beam modeling of the monochrome and trichrome models. The analytical beam models were integrated into a treatment planning system for scanned C-ion radiotherapy. A target volume of 20 × 20 × 40 mm3 was defined within a water phantom. A uniform biological dose of 2.65 Gy (RBE) was planned for the target with the two beam models based on the microdosimetric kinetic model (MKM). The plans were recalculated with Geant4, and the recalculated biological dose distributions were compared with the planned distributions. The mean target dose of the recalculated distribution with the monochrome model was 2.72 Gy (RBE), while the dose with the trichrome model was 2.64 Gy (RBE). The monochrome model underestimated the RBE within the target due to the assumption of no radial variations in radiation quality. Conversely, the trichrome model accurately predicted the RBE even in a small target. Our results verify the applicability of the trichrome model for clinical use in C-ion radiotherapy treatment planning.
Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field
NASA Astrophysics Data System (ADS)
Thopan, P.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.
2015-12-01
In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.
The natural statistics of blur
Sprague, William W.; Cooper, Emily A.; Reissier, Sylvain; Yellapragada, Baladitya; Banks, Martin S.
2016-01-01
Blur from defocus can be both useful and detrimental for visual perception: It can be useful as a source of depth information and detrimental because it degrades image quality. We examined these aspects of blur by measuring the natural statistics of defocus blur across the visual field. Participants wore an eye-and-scene tracker that measured gaze direction, pupil diameter, and scene distances as they performed everyday tasks. We found that blur magnitude increases with increasing eccentricity. There is a vertical gradient in the distances that generate defocus blur: Blur below the fovea is generally due to scene points nearer than fixation; blur above the fovea is mostly due to points farther than fixation. There is no systematic horizontal gradient. Large blurs are generally caused by points farther rather than nearer than fixation. Consistent with the statistics, participants in a perceptual experiment perceived vertical blur gradients as slanted top-back whereas horizontal gradients were perceived equally as left-back and right-back. The tendency for people to see sharp as near and blurred as far is also consistent with the observed statistics. We calculated how many observations will be perceived as unsharp and found that perceptible blur is rare. Finally, we found that eye shape in ground-dwelling animals conforms to that required to put likely distances in best focus. PMID:27580043
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackin, Dennis; Li, Yupeng; Taylor, Michael B.
Purpose: The purpose of this study was to validate the use of HPlusQA, spot-scanning proton therapy (SSPT) dose calculation software developed at The University of Texas MD Anderson Cancer Center, as second-check dose calculation software for patient-specific quality assurance (PSQA). The authors also showed how HPlusQA can be used within the current PSQA framework.Methods: The authors compared the dose calculations of HPlusQA and the Eclipse treatment planning system with 106 planar dose measurements made as part of PSQA. To determine the relative performance and the degree of correlation between HPlusQA and Eclipse, the authors compared calculated with measured point doses.more » Then, to determine how well HPlusQA can predict when the comparisons between Eclipse calculations and the measured dose will exceed tolerance levels, the authors compared gamma index scores for HPlusQA versus Eclipse with those of measured doses versus Eclipse. The authors introduce the αβγ transformation as a way to more easily compare gamma scores.Results: The authors compared measured and calculated dose planes using the relative depth, z/R × 100%, where z is the depth of the measurement and R is the proton beam range. For relative depths than less than 80%, both Eclipse and HPlusQA calculations were within 2 cGy of dose measurements on average. When the relative depth was greater than 80%, the agreement between the calculations and measurements fell to 4 cGy. For relative depths less than 10%, the Eclipse and HPlusQA dose discrepancies showed a negative correlation, −0.21. Otherwise, the correlation between the dose discrepancies was positive and as large as 0.6. For the dose planes in this study, HPlusQA correctly predicted when Eclipse had and had not calculated the dose to within tolerance 92% and 79% of the time, respectively. In 4 of 106 cases, HPlusQA failed to predict when the comparison between measurement and Eclipse's calculation had exceeded the tolerance levels of 3% for dose and 3 mm for distance-to-agreement.Conclusions: The authors found HPlusQA to be reasonably effective (79%± 10%) in determining when the comparison between measured dose planes and the dose planes calculated by the Eclipse treatment planning system had exceeded the acceptable tolerance levels. When used as described in this study, HPlusQA can reduce the need for patient specific quality assurance measurements by 64%. The authors believe that the use of HPlusQA as a dose calculation second check can increase the efficiency and effectiveness of the QA process.« less
The Araucaria project. The distance to the small Magellanic Cloud from late-type eclipsing binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graczyk, Dariusz; Pietrzyński, Grzegorz; Gieren, Wolfgang
2014-01-01
We present a distance determination to the Small Magellanic Cloud (SMC) based on an analysis of four detached, long-period, late-type eclipsing binaries discovered by the Optical Gravitational Lensing Experiment (OGLE) survey. The components of the binaries show negligible intrinsic variability. A consistent set of stellar parameters was derived with low statistical and systematic uncertainty. The absolute dimensions of the stars are calculated with a precision of better than 3%. The surface brightness-infrared color relation was used to derive the distance to each binary. The four systems clump around a distance modulus of (m – M) = 18.99 with a dispersionmore » of only 0.05 mag. Combining these results with the distance published by Graczyk et al. for the eclipsing binary OGLE SMC113.3 4007, we obtain a mean distance modulus to the SMC of 18.965 ± 0.025 (stat.) ± 0.048 (syst.) mag. This corresponds to a distance of 62.1 ± 1.9 kpc, where the error includes both uncertainties. Taking into account other recent published determinations of the SMC distance we calculated the distance modulus difference between the SMC and the Large Magellanic Cloud equal to 0.458 ± 0.068 mag. Finally, we advocate μ{sub SMC} = 18.95 ± 0.07 as a new 'canonical' value of the distance modulus to this galaxy.« less
Liao, Wei; Hua, Xue-Ming; Zhang, Wang; Li, Fang
2014-05-01
In the present paper, the authors calculated the plasma's peak electron temperatures under different heat source separation distance in laser- pulse GMAW hybrid welding based on Boltzmann spectrometry. Plasma's peak electron densities under the corresponding conditions were also calculated by using the Stark width of the plasma spectrum. Combined with high-speed photography, the effect of heat source separation distance on electron temperature and electron density was studied. The results show that with the increase in heat source separation distance, the electron temperatures and electron densities of laser plasma did not changed significantly. However, the electron temperatures of are plasma decreased, and the electron densities of are plasma first increased and then decreased.
Guo, Na; Zhang, Guojie; Zhu, Dawei; Wang, Jian; Shi, Luwen
2017-05-15
Vaccination is an effective way to prevent infectious diseases. Most studies analysed people's vaccine decisions, but few studies have analysed the effects of convenience such as immunisation schedule and distance and the quality of vaccination service on vaccination uptake. The aim of this paper was to investigate adults' preferences for convenience and quality of vaccination service, calculate the private economic benefit from convenience (vaccination schedule and distance) and quality, and predict the uptake rate for different vaccine scenarios. In our study, we interviewed 266 adults in 2 counties of Shandong province in China. The discrete choice experiment (DCE) was employed to analyse the preference for hepatitis B virus (HBV) vaccination, and a mixed logit model was used to estimate respondent preferences for vaccination attributes included in the DCE. The protection rate against hepatitis B (HB), duration of protection, risk of side effects, vaccination cost, schedule, and vaccination sites were proved to influence adults' preferences for HBV vaccination. The estimated willingness to pay (WTP) for 1 dose schedule instead of 3 doses and for a third-level vaccination site instead of a first-level site was almost equal (19 RMB). However, if the protection duration of the vaccination programme changed from 5years to 20years, the adults were willing to pay 35.05 RMB, and WTP for a 99% protection rate instead of a 79% rate was 67.71 RMB. The predicted uptake rate is almost 43% for the base case of HBV vaccination. Adults made trade-offs between vaccination schedules, vaccination sites, and other characteristics of HBV vaccine. The impact of attributes of the vaccine itself, especially protection rate against HB, duration of protection, and risk of side-effects, is more dramatic than convenience and quality of vaccination service. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Ab initio Potential Energy Surface for H-H2
NASA Technical Reports Server (NTRS)
Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene
1993-01-01
Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.
Perceived Quality of Distance Education from the User Perspective
ERIC Educational Resources Information Center
Dursun, Tolga; Oskaybas, Kader; Gokmen, Cansu
2014-01-01
The purpose of this study is to measure the quality of distance education services received from educational institutions which are among the leading service enterprises. More specifically, the study aims to find out what the students' expectations are, to what extent the student expectations are met and whether or not the acquired findings vary…
Quality Assurance in Asian Open and Distance Learning: Policies and Implementation
ERIC Educational Resources Information Center
Darojat, Ojat; Nilson, Michelle; Kaufman, David
2015-01-01
Open universities have emerged as an innovative pillar in the expansion of access to higher education participation, with single-mode distance education providers broadening access in many countries through economies of scale supported by large enrolments. These models raise questions about the quality of education provided. This paper reports on…
Lifelong Learning & Distance Higher Education. Perspectives on Distance Education
ERIC Educational Resources Information Center
McIntosh, Christopher, Ed.
2005-01-01
Reflecting a common objective of ensuring quality Education for All, this book is a joint initiative of UNESCO and COL and jointly published. Lifelong Learning in Distance Higher Education brings together a diverse group of experts from many countries. The book provides a clear picture of the challenges, problems and potential of distance higher…
Distance Learners' Perspective on User-Friendly Instructional Materials at the University of Zambia
ERIC Educational Resources Information Center
Simui, F.; Thompson, L. C.; Mundende, K.; Mwewa, G.; Kakana, F.; Chishiba, A.; Namangala, B.
2017-01-01
This case study focuses on print-based instructional materials available to distance education learners at the University of Zambia. Using the Visual Paradigm Software, we model distance education learners' voices into sociograms to make a contribution to the ongoing discourse on quality distance learning in poorly resourced communities. Emerging…
Perceived Quality Dimensions in Distance Education: Excerpts from Student Experiences
ERIC Educational Resources Information Center
Thapliyal, Upasna
2014-01-01
Distance education by its nature differs from the regular mode of higher education. A viable option for providing access to higher education for students who cannot attend traditional, on-campus courses, distance education, often gets a tag of being sedentary. This puts into question the qualitative aspect of the distance education courses.…
Anaerobic work calculated in cycling time trials of different length.
Mulder, Roy C; Noordhof, Dionne A; Malterer, Katherine R; Foster, Carl; de Koning, Jos J
2015-03-01
Previous research showed that gross efficiency (GE) declines during exercise and therefore influences the expenditure of anaerobic and aerobic resources. To calculate the anaerobic work produced during cycling time trials of different length, with and without a GE correction. Anaerobic work was calculated in 18 trained competitive cyclists during 4 time trials (500, 1000, 2000, and 4000-m). Two additional time trials (1000 and 4000 m) that were stopped at 50% of the corresponding "full" time trial were performed to study the rate of the decline in GE. Correcting for a declining GE during time-trial exercise resulted in a significant (P<.001) increase in anaerobically attributable work of 30%, with a 95% confidence interval of [25%, 36%]. A significant interaction effect between calculation method (constant GE, declining GE) and distance (500, 1000, 2000, 4000 m) was found (P<.001). Further analysis revealed that the constant-GE calculation method was different from the declining method for all distances and that anaerobic work calculated assuming a constant GE did not result in equal values for anaerobic work calculated over different time-trial distances (P<.001). However, correcting for a declining GE resulted in a constant value for anaerobically attributable work (P=.18). Anaerobic work calculated during short time trials (<4000 m) with a correction for a declining GE is increased by 30% [25%, 36%] and may represent anaerobic energy contributions during high-intensity exercise better than calculating anaerobic work assuming a constant GE.
The ideal subject distance for passport pictures.
Verhoff, Marcel A; Witzel, Carsten; Kreutz, Kerstin; Ramsthaler, Frank
2008-07-04
In an age of global combat against terrorism, the recognition and identification of people on document images is of increasing significance. Experiments and calculations have shown that the camera-to-subject distance - not the focal length of the lens - can have a significant effect on facial proportions. Modern passport pictures should be able to function as a reference image for automatic and manual picture comparisons. This requires a defined subject distance. It is completely unclear which subject distance, in the taking of passport photographs, is ideal for the recognition of the actual person. We show here that the camera-to-subject distance that is perceived as ideal is dependent on the face being photographed, even if the distance of 2m was most frequently preferred. So far the problem of the ideal camera-to-subject distance for faces has only been approached through technical calculations. We have, for the first time, answered this question experimentally with a double-blind experiment. Even if there is apparently no ideal camera-to-subject distance valid for every face, 2m can be proposed as ideal for the taking of passport pictures. The first step would actually be the determination of a camera-to-subject distance for the taking of passport pictures within the standards. From an anthropological point of view it would be interesting to find out which facial features allow the preference of a shorter camera-to-subject distance and which allow the preference of a longer camera-to-subject distance.
NASA Astrophysics Data System (ADS)
Shavers, Mark Randall
1999-12-01
High-energy protons in the galactic cosmic rays (GCR)-or generated by nuclear interactions of GCR heavy-ions with material-are capable of penetrating great thicknesses of shielding to irradiate humans in spacecraft or in lunar or Martian habitats. As protons interact with the nuclei of the elemental constituents of soft tissue and bone, low energy nuclei-target fragments-are emitted into the cells responsible for bone development and maintenance and for hematopoiesis. Leukemogenesis is the principal endpoint of concern because it is the most likely deleterious effect, and it has a short latency period and comparatively low survival rate, although other myelo- proliferative disorders and osteosarcoma also may be induced. A one-dimensional proton-target fragment transport model was used to calculate the energy spectra of fragments produced in bone and soft tissue, and present in marrow cavities at distances from a bone interface. In terms of dose equivalent, the target fragments are as significant as the incident protons. An average radiation quality factor was found to be between 1.8 and 2.6. Biological response to the highly non- uniform energy deposition of the target fragments is such that an alternative approach to conventional predictive risk assessment is needed. Alternative procedures are presented. In vitro cell response and relative biological effectiveness were calculated from the radial dose distribution of each fragment produced by 1-GeV protons using parameters of a modified Ion-Gamma- Kill (IGK) model of radiation action. The modelled endpoints were survival of C3H10t 1/2 and V79 cells, neoplastic transformation of C3H10t1/2 cells, and mutation of the X-linked hypoxanthine phosphoribosyltransferase (HPRT) locus in V79 cells. The dose equivalent and cell responses increased by 10% or less near the interface. Since RBE increases with decreasing dose in the IGK model, comparisons with quality factors were made at dose levels 0.01 <= D [Gy] <= 2. Applying average quality factors derived herein to GCR exposures results in a <= 5% increase of in average quality. Calculated RBEs indicate that accepted quality factors for high-energy protons may be too low due to the relatively high effectiveness of the low-charged target fragments. Derived RBEs for target fragments increase the calculated biological effectiveness of GCR by 20% to 180%.
Vos, Eline K; Sambandamurthy, Sriram; Kamel, Maged; McKenney, Robert; van Uden, Mark J; Hoeks, Caroline M A; Yakar, Derya; Scheenen, Tom W J; Fütterer, Jurgen J
2014-01-01
The objectives of this study were to test the feasibility of an investigational dual-channel next-generation endorectal coil (NG-ERC) in vivo, to quantitatively assess signal-to-noise ratio (SNR), and to get an impression of image quality compared with the current clinically available single-loop endorectal coil (ERC) for prostate magnetic resonance imaging at both 1.5 and 3 T. The study was approved by the institutional review board, and written informed consent was obtained from all patients. In total, 8 consecutive patients with prostate cancer underwent a local staging magnetic resonance examination with the successive use of both coils in 1 session (4 patients at 1.5 T and 4 other patients at 3 T). Quantitative comparison of both coils was performed for the apex, mid-gland and base levels at both field strengths by calculating SNR profiles in the axial plane on an imaginary line in the anteroposterior direction perpendicular to the coil surface. Two radiologists independently assessed the image quality of the T2-weighted and apparent diffusion coefficient maps calculated from diffusion-weighted imaging using a 5-point scale. Improvement of geometric distortion on diffusion-weighted imaging with the use of parallel imaging was explored. Statistical analysis included a paired Wilcoxon signed rank test for SNR and image quality evaluation as well as κ statistics for interobserver agreement. No adverse events were reported. The SNR was higher for the NG-ERC compared with the ERC up to a distance of approximately 40 mm from the surface of the coil at 1.5 T (P < 0.0001 for the apex, the mid-gland, and the base) and approximately 17 mm (P = 0.015 at the apex level) and 30 mm at 3 T (P < 0.0001 for the mid-gland and base). Beyond this distance, the SNR profiles of both coils were comparable. Overall, T2-weighted image quality was considered better for NG-ERC at both field strengths. Quality of apparent diffusion coefficient maps with the use of parallel imaging was rated superior with the NG-ERC at 3 T. The investigational NG-ERC for prostate imaging outperforms the current clinically available ERC in terms of SNR and is feasible for continued development for future use as the next generation endorectal coil for prostate imaging in clinical practice.
A discrete search algorithm for finding the structure of protein backbones and side chains.
Sallaume, Silas; Martins, Simone de Lima; Ochi, Luiz Satoru; Da Silva, Warley Gramacho; Lavor, Carlile; Liberti, Leo
2013-01-01
Some information about protein structure can be obtained by using Nuclear Magnetic Resonance (NMR) techniques, but they provide only a sparse set of distances between atoms in a protein. The Molecular Distance Geometry Problem (MDGP) consists in determining the three-dimensional structure of a molecule using a set of known distances between some atoms. Recently, a Branch and Prune (BP) algorithm was proposed to calculate the backbone of a protein, based on a discrete formulation for the MDGP. We present an extension of the BP algorithm that can calculate not only the protein backbone, but the whole three-dimensional structure of proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buta, R.; de Vaucouleurs, G.
The diameters d/sub r/ of inner ring structures in disk galaxies are used as geometric distance indicators to derive the distances of 453 spiral and lenticular galaxies, mainly in the distance interval 4<..delta..<63 Mpc. The diameters are weighted means from the catalogs to Kormendy, Pedreros and Madore, and the authors. The distances are calculated by means of the two- and three-parameter formulae of Paper II; the adopted mean distance moduli ..mu../sub 0/(r) have mean errors from all sources of 0.6--0.7 mag for the well-observed galaxies.
Stopping Distances: An Excellent Example of Empirical Modelling.
ERIC Educational Resources Information Center
Lawson, D. A.; Tabor, J. H.
2001-01-01
Explores the derivation of empirical models for the stopping distance of a car being driven at a range of speeds. Indicates that the calculation of stopping distances makes an excellent example of empirical modeling because it is a situation that is readily understood and particularly relevant to many first-year undergraduates who are learning or…
Mukerjee, Shaibal; Smith, Luther A; Johnson, Mary M; Neas, Lucas M; Stallings, Casson A
2009-08-01
Passive ambient air sampling for nitrogen dioxide (NO(2)) and volatile organic compounds (VOCs) was conducted at 25 school and two compliance sites in Detroit and Dearborn, Michigan, USA during the summer of 2005. Geographic Information System (GIS) data were calculated at each of 116 schools. The 25 selected schools were monitored to assess and model intra-urban gradients of air pollutants to evaluate impact of traffic and urban emissions on pollutant levels. Schools were chosen to be statistically representative of urban land use variables such as distance to major roadways, traffic intensity around the schools, distance to nearest point sources, population density, and distance to nearest border crossing. Two approaches were used to investigate spatial variability. First, Kruskal-Wallis analyses and pairwise comparisons on data from the schools examined coarse spatial differences based on city section and distance from heavily trafficked roads. Secondly, spatial variation on a finer scale and as a response to multiple factors was evaluated through land use regression (LUR) models via multiple linear regression. For weeklong exposures, VOCs did not exhibit spatial variability by city section or distance from major roads; NO(2) was significantly elevated in a section dominated by traffic and industrial influence versus a residential section. Somewhat in contrast to coarse spatial analyses, LUR results revealed spatial gradients in NO(2) and selected VOCs across the area. The process used to select spatially representative sites for air sampling and the results of coarse and fine spatial variability of air pollutants provide insights that may guide future air quality studies in assessing intra-urban gradients.
Madeddu, M; Mosca, F; Abdel Sayed, A; Zaniboni, L; Mangiagalli, M G; Colombo, E; Cerolini, S
2016-08-01
The aim of the present trial was to study the effect of different freezing rates on the survival of cryopreserved rooster semen packaged in straws. Slow and fast freezing rates were obtained keeping straws at different distances in the vapor above the surface of the nitrogen during freezing. Adult Lohmann roosters (n=27) were used. Two experiments were conducted. In Experiment 1, semen was packaged in straws and frozen comparing the distances of 1, 3 and 5cm in nitrogen vapor above the surface of the liquid nitrogen. In Experiment 2, the distances of 3, 7 and 10cm above the surfaces of the liquid nitrogen were compared. Sperm viability, motility and progressive motility and the kinetic variables were assessed in fresh and cryopreserved semen samples. The recovery rates after freezing/thawing were also calculated. In Experiment 1, there were no significant differences among treatments for all semen quality variables. In Experiment 2, the percentage of viable (46%) and motile (22%) sperm in cryopreserved semen was greater when semen was placed 3cm compared with 7 and 10cm in the vapor above the surface of the liquid nitrogen. The recovery rate of progressive motile sperm after thawing was also greater when semen was stored 3cm in the vapor above the surface of the liquid nitrogen. More rapid freezing rates are required to improve the survival of rooster sperm after cryopreservation and a range of distances from 1 to 5cm in nitrogen vapor above the surface of the liquid nitrogen is recommended for optimal sperm viability. Copyright © 2016 Elsevier B.V. All rights reserved.
Influence des interactions entre écrans de soutènement sur le calcul de la butée
NASA Astrophysics Data System (ADS)
Magnan, Jean-Pierre; Meyer, Grégory
2018-05-01
La mobilisation de la butée devant un écran implique un volume de sol important, sur une distance plus grande que la fiche et qui dépend des paramètres du calcul. L'article passe en revue les méthodes de calcul utilisées pour évaluer la butée, en insistant sur la distance nécessaire au libre développement du mécanisme de butée. Il évalue ensuite de différentes façons l'effet de l'interaction entre deux écrans placés face à face de part et d'autre d'une excavation. La méthode recommandée pour calculer la butée mobilisable consiste à faire un calcul en éléments finis avec des valeurs réduites des paramètres de résistance au cisaillement dans la zone où se développera la butée. Cette démarche permet de déterminer des facteurs correctifs à appliquer au calcul de la butée d'un écran isolé en fonction du rapport de la distance entre écrans à leur fiche.
ERIC Educational Resources Information Center
Letseka, Moeketsi; Pitsoe, Victor
2013-01-01
The article explores the challenges of assessment in open distance learning (ODL). The authors argue that ultimately assessment should be about improving the quality of teaching and effective learning. It should be based on making expectations explicit and public, setting appropriate criteria and high standards for learning quality, systematically…
Demand for Primary Schooling in Rural Mali: Should User Fees Be Increased?
ERIC Educational Resources Information Center
Birdsall, Nancy; Orivel, Francois
1996-01-01
Assesses the effect of school fees on primary school attendance, using household and school survey data from rural Mali. Estimates elasticity of demand regarding fees and compares it with effects of distance and quality on enrollment. User fees can provide a partial solution to the quality/enrollment problem, but cannot solve the distance problem.…
A novel conformity index for intensity modulated radiation therapy plan evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Fion W. K.; Law, Maria Y. Y.; Medical Physics and Research Department, Hong Kong Sanatorium and Hospital, 999077 Hong Kong
2012-09-15
Purpose: Intensity modulated radiation therapy (IMRT) has gained popularity in the treatment of cancers. Manual evaluation of IMRT plans for head-and-neck cancers has been especially challenging necessitating efficient and objective assessment tools. In this work, the authors address this issue by developing a personalized conformity index (CI) for comparison of IMRT plans for head-and-neck cancers and evaluating its plan quality discerning power in comparison with other widely used CIs. Methods: A two-dimensional CI with dose and distance incorporated (CI{sub DD}) was developed using the MATLAB program language, to quantify the planning target volume (PTV) coverage. Valuable information contained in themore » digital imaging and communication in medicine (DICOM) RT objects were harvested for computation of each of the CI{sub DD} components. Apart from the dose penalty factor, a distance-based exponential function was employed by varying the penalty weight associated with the location of cold spots within the PTV. With the goal of deriving a customized penalty factor, the distances between individual pixel and its nearest PTV boundary was found. Using the exponential function, the impact of distance penalty was substantially larger for cold spots closer to the PTV centroid but petered out quickly wherever they were situated in the vicinity of PTV border. In order to evaluate the CI{sub DD} scoring system, three CT image data sets of nasopharyngeal carcinoma (NPC) patients were collected. Ten IMRT plans with degrading qualities were generated from each dataset and were ranked based on CI{sub DD} and other existing indices. The coefficient of variance was calculated for each dataset to compare the degree of variation. Results: The CI{sub DD} scoring system that considered spatial importance of each voxel within the PTV was successfully developed. The results demonstrated that the CI{sub DD} including four discrete factors could provide accurate rankings of plan quality by examining the relative importance of each cold spot within the PTVs. Apart from the dose penalty factor, a distance-based exponential function was employed taking the specific tumor geometry into account. Compared with other commonly used CIs, the CI{sub DD} resulted in the largest coefficient of variance among the ten IMRT plans for each dataset, indicating that its discerning power was the best among the CIs being compared. Conclusions: The CI{sub DD} scoring system was successfully developed to incorporate patient-specific spatial dose information and provide a geometry-based physical index for comparison of IMRT plans for head-and-neck cancers. By taking individual tumor geometry into account, the superiority of CI{sub DD} in plan discerning power was demonstrated. The use of CI{sub DD} could provide an effective means of benchmarking performance, reducing treatment plan variability, and advancing the quality of current IMRT planning.« less
Distance Education Quality Course Delivery Framework: A Formative Research Study
ERIC Educational Resources Information Center
Berta, Michael Raymond
2013-01-01
In the Fall 2010 semester, student enrollment in distance education courses increased in the United States to over 6.1 million students taking at least one distance course. Distance education allows institutions to meet increasing demands from the government and business sectors for more graduates in ways that face-to-face courses cannot meet with…
Kessel, Kerstin A; Habermehl, Daniel; Jäger, Andreas; Floca, Ralf O; Zhang, Lanlan; Bendl, Rolf; Debus, Jürgen; Combs, Stephanie E
2013-06-07
In radiation oncology recurrence analysis is an important part in the evaluation process and clinical quality assurance of treatment concepts. With the example of 9 patients with locally advanced pancreatic cancer we developed and validated interactive analysis tools to support the evaluation workflow. After an automatic registration of the radiation planning CTs with the follow-up images, the recurrence volumes are segmented manually. Based on these volumes the DVH (dose volume histogram) statistic is calculated, followed by the determination of the dose applied to the region of recurrence and the distance between the boost and recurrence volume. We calculated the percentage of the recurrence volume within the 80%-isodose volume and compared it to the location of the recurrence within the boost volume, boost + 1 cm, boost + 1.5 cm and boost + 2 cm volumes. Recurrence analysis of 9 patients demonstrated that all recurrences except one occurred within the defined GTV/boost volume; one recurrence developed beyond the field border/outfield. With the defined distance volumes in relation to the recurrences, we could show that 7 recurrent lesions were within the 2 cm radius of the primary tumor. Two large recurrences extended beyond the 2 cm, however, this might be due to very rapid growth and/or late detection of the tumor progression. The main goal of using automatic analysis tools is to reduce time and effort conducting clinical analyses. We showed a first approach and use of a semi-automated workflow for recurrence analysis, which will be continuously optimized. In conclusion, despite the limitations of the automatic calculations we contributed to in-house optimization of subsequent study concepts based on an improved and validated target volume definition.
On effective and optical resolutions of diffraction data sets.
Urzhumtseva, Ludmila; Klaholz, Bruno; Urzhumtsev, Alexandre
2013-10-01
In macromolecular X-ray crystallography, diffraction data sets are traditionally characterized by the highest resolution dhigh of the reflections that they contain. This measure is sensitive to individual reflections and does not refer to the eventual data incompleteness and anisotropy; it therefore does not describe the data well. A physically relevant and robust measure that provides a universal way to define the `actual' effective resolution deff of a data set is introduced. This measure is based on the accurate calculation of the minimum distance between two immobile point scatterers resolved as separate peaks in the Fourier map calculated with a given set of reflections. This measure is applicable to any data set, whether complete or incomplete. It also allows characterizion of the anisotropy of diffraction data sets in which deff strongly depends on the direction. Describing mathematical objects, the effective resolution deff characterizes the `geometry' of the set of measured reflections and is irrelevant to the diffraction intensities. At the same time, the diffraction intensities reflect the composition of the structure from physical entities: the atoms. The minimum distance for the atoms typical of a given structure is a measure that is different from and complementary to deff; it is also a characteristic that is complementary to conventional measures of the data-set quality. Following the previously introduced terms, this value is called the optical resolution, dopt. The optical resolution as defined here describes the separation of the atomic images in the `ideal' crystallographic Fourier map that would be calculated if the exact phases were known. The effective and optical resolution, as formally introduced in this work, are of general interest, giving a common `ruler' for all kinds of crystallographic diffraction data sets.
Dose Calculation For Accidental Release Of Radioactive Cloud Passing Over Jeddah
NASA Astrophysics Data System (ADS)
Alharbi, N. D.; Mayhoub, A. B.
2011-12-01
For the evaluation of doses after the reactor accident, in particular for the inhalation dose, a thorough knowledge of the concentration of the various radionuclide in air during the passage of the plume is required. In this paper we present an application of the Gaussian Plume Model (GPM) to calculate the atmospheric dispersion and airborne radionuclide concentration resulting from radioactive cloud over the city of Jeddah (KSA). The radioactive cloud is assumed to be emitted from a reactor of 10 MW power in postulated accidental release. Committed effective doses (CEDs) to the public at different distance from the source to the receptor are calculated. The calculations were based on meteorological condition and data of the Jeddah site. These data are: pasquill atmospheric stability is the class B and the wind speed is 2.4m/s at 10m height in the N direction. The residence time of some radionuclides considered in this study were calculated. The results indicate that, the values of doses first increase with distance, reach a maximum value and then gradually decrease. The total dose received by human is estimated by using the estimated values of residence time of each radioactive pollutant at different distances.
Evaluation of jamming efficiency for the protection of a single ground object
NASA Astrophysics Data System (ADS)
Matuszewski, Jan
2018-04-01
The electronic countermeasures (ECM) include methods to completely prevent or restrict the effective use of the electromagnetic spectrum by the opponent. The most widespread means of disorganizing the operation of electronic devices is to create active and passive radio-electronic jamming. The paper presents the way of jamming efficiency calculations for protecting ground objects against the radars mounted on the airborne platforms. The basic mathematical formulas for calculating the efficiency of active radar jamming are presented. The numerical calculations for ground object protection are made for two different electronic warfare scenarios: the jammer is placed very closely and in a determined distance from the protecting object. The results of these calculations are presented in the appropriate figures showing the minimal distance of effective jamming. The realization of effective radar jamming in electronic warfare systems depends mainly on the precise knowledge of radar and the jammer's technical parameters, the distance between them, the assumed value of the degradation coefficient, the conditions of electromagnetic energy propagation and the applied jamming method. The conclusions from these calculations facilitate making a decision regarding how jamming should be conducted to achieve high efficiency during the electronic warfare training.
Automobile Stopping Distances.
ERIC Educational Resources Information Center
Logue, L. J.
1979-01-01
Discusses the effect of vehicle mass on stopping distances. Analyzes an example of a sample vehicle and tire, and calculates the braking acceleration showing the effect of different factors on the stopping performance of the tires. (GA)
VizieR Online Data Catalog: 25 parsec local white dwarf population (Holberg+, 2016)
NASA Astrophysics Data System (ADS)
Holberg, J. B.; Oswalt, T. D.; Sion, E. M.; McCook, G. P.
2018-02-01
Table 1 presents the basic properties of the 232 WDs in the LS25 identified by WD number and alternate name. Existing multiband photometry for each star in our LS25 sample is listed in Table 2. Table 3 provides the adapted distances calculated from the trigonometric parallaxes (see Table 1) or photometric distances calculated from the adapted Teff and logg photometry in Table 2. (3 data files).
Gustavsen, Richard L.; Dattelbaum, Dana Mcgraw; Watkins, Erik Benjamin; ...
2017-03-10
Time resolved Small Angle X-ray Scattering (SAXS) experiments on detonating explosives have been conducted at Argonne National Laboratory's Advanced Photon Source Dynamic Compression Sector. The purpose of the experiments is to measure the SAXS patterns at tens of ns to a few μs behind the detonation front. Corresponding positions behind the detonation front are of order 0.1–10 mm. From the scattering patterns, properties of the explosive products relative to the time behind the detonation front can be inferred. Lastly, this report describes how the time and distance from the x-ray probe location to the detonation front is calculated, as wellmore » as the uncertainties and sources of uncertainty associated with the calculated times and distances.« less
Modeling the long-term evolution of space debris
Nikolaev, Sergei; De Vries, Willem H.; Henderson, John R.; Horsley, Matthew A.; Jiang, Ming; Levatin, Joanne L.; Olivier, Scot S.; Pertica, Alexander J.; Phillion, Donald W.; Springer, Harry K.
2017-03-07
A space object modeling system that models the evolution of space debris is provided. The modeling system simulates interaction of space objects at simulation times throughout a simulation period. The modeling system includes a propagator that calculates the position of each object at each simulation time based on orbital parameters. The modeling system also includes a collision detector that, for each pair of objects at each simulation time, performs a collision analysis. When the distance between objects satisfies a conjunction criterion, the modeling system calculates a local minimum distance between the pair of objects based on a curve fitting to identify a time of closest approach at the simulation times and calculating the position of the objects at the identified time. When the local minimum distance satisfies a collision criterion, the modeling system models the debris created by the collision of the pair of objects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavsen, Richard L.; Dattelbaum, Dana Mcgraw; Watkins, Erik Benjamin
Time resolved Small Angle X-ray Scattering (SAXS) experiments on detonating explosives have been conducted at Argonne National Laboratory's Advanced Photon Source Dynamic Compression Sector. The purpose of the experiments is to measure the SAXS patterns at tens of ns to a few μs behind the detonation front. Corresponding positions behind the detonation front are of order 0.1–10 mm. From the scattering patterns, properties of the explosive products relative to the time behind the detonation front can be inferred. Lastly, this report describes how the time and distance from the x-ray probe location to the detonation front is calculated, as wellmore » as the uncertainties and sources of uncertainty associated with the calculated times and distances.« less
Performance Evaluation of sUAS Equipped with Velodyne HDL-32E LiDAR Sensor
NASA Astrophysics Data System (ADS)
Jozkow, G.; Wieczorek, P.; Karpina, M.; Walicka, A.; Borkowski, A.
2017-08-01
The Velodyne HDL-32E laser scanner is used more frequently as main mapping sensor in small commercial UASs. However, there is still little information about the actual accuracy of point clouds collected with such UASs. This work evaluates empirically the accuracy of the point cloud collected with such UAS. Accuracy assessment was conducted in four aspects: impact of sensors on theoretical point cloud accuracy, trajectory reconstruction quality, and internal and absolute point cloud accuracies. Theoretical point cloud accuracy was evaluated by calculating 3D position error knowing errors of used sensors. The quality of trajectory reconstruction was assessed by comparing position and attitude differences from forward and reverse EKF solution. Internal and absolute accuracies were evaluated by fitting planes to 8 point cloud samples extracted for planar surfaces. In addition, the absolute accuracy was also determined by calculating point 3D distances between LiDAR UAS and reference TLS point clouds. Test data consisted of point clouds collected in two separate flights performed over the same area. Executed experiments showed that in tested UAS, the trajectory reconstruction, especially attitude, has significant impact on point cloud accuracy. Estimated absolute accuracy of point clouds collected during both test flights was better than 10 cm, thus investigated UAS fits mapping-grade category.
Balance ability and cognitive impairment influence sustained walking in an assisted living facility.
Bowen, Mary Elizabeth; Crenshaw, Jeremy; Stanhope, Steven J
The purpose of this study was to determine the influence of cognitive impairment (CI), 1 gait quality, and balance ability on walking distance and speed in an assisted living facility. This was a longitudinal cohort study of institutionalized older adults (N = 26; 555 observations) followed for up to 8 months. Hierarchical linear modeling statistical techniques were used to examine the effects of gait quality and balance ability (using the Tinetti Gait and Balance Test) and cognitive status (using the Montreal Cognitive Assessment) on walking activity (distance, sustained distance, sustained speed). The latter were measured objectively and continuously by a real-time locating system (RTLS). A one-point increase in balance ability was associated with an 8% increase in sustained walking distance (p = 0.03) and a 4% increase in sustained gait speed (p = 0.00). Gait quality was associated with decreased sustained gait speed (p = 0.03). Residents with moderate (ERR = 2.34;p = 0.01) or severe CI (trend with an ERR = 1.62; p = 0.06) had longer sustained walking distances at slower speeds when compared to residents with no CI. After accounting for cognitive status, it was balance ability, not gait quality, that was a determinant of sustained walking distances and speeds. Therefore, balance interventions for older adults in assisted living may enable sustained walking activity. Given that CI was associated with more sustained walking, limiting sustained walking in the form of wandering behavior, especially for those with balance impairments, may prevent adverse events, including fall-related injury. Published by Elsevier B.V.
Hyperspectral Image Denoising Using a Nonlocal Spectral Spatial Principal Component Analysis
NASA Astrophysics Data System (ADS)
Li, D.; Xu, L.; Peng, J.; Ma, J.
2018-04-01
Hyperspectral images (HSIs) denoising is a critical research area in image processing duo to its importance in improving the quality of HSIs, which has a negative impact on object detection and classification and so on. In this paper, we develop a noise reduction method based on principal component analysis (PCA) for hyperspectral imagery, which is dependent on the assumption that the noise can be removed by selecting the leading principal components. The main contribution of paper is to introduce the spectral spatial structure and nonlocal similarity of the HSIs into the PCA denoising model. PCA with spectral spatial structure can exploit spectral correlation and spatial correlation of HSI by using 3D blocks instead of 2D patches. Nonlocal similarity means the similarity between the referenced pixel and other pixels in nonlocal area, where Mahalanobis distance algorithm is used to estimate the spatial spectral similarity by calculating the distance in 3D blocks. The proposed method is tested on both simulated and real hyperspectral images, the results demonstrate that the proposed method is superior to several other popular methods in HSI denoising.
Muraoka, Azusa; Fujii, Mikiya; Mishima, Kenji; Matsunaga, Hiroki; Benten, Hiroaki; Ohkita, Hideo; Ito, Shinzaburo; Yamashita, Koichi
2018-05-07
Herein, we theoretically and experimentally investigated the mechanisms of charge separation processes of organic thin-film solar cells. PTB7, PTB1, and PTBF2 have been chosen as donors and PC 71 BM has been chosen as an acceptor considering that effective charge generation depends on the difference between the material combinations. Experimental results of transient absorption spectroscopy show that the hot process is a key step for determining external quantum efficiency (EQE) in these systems. From the quantum chemistry calculations, it has been found that EQE tends to increase as the transferred charge, charge transfer distance, and variation of dipole moments between the ground and excited states of the donor/acceptor complexes increase; this indicates that these physical quantities are a good descriptor to assess the donor-acceptor charge transfer quality contributing to the solar cell performance. We propose that designing donor/acceptor interfaces with large values of charge transfer distance and variation of dipole moments of the donor/acceptor complexes is a prerequisite for developing high-efficiency polymer/PCBM solar cells.
ERIC Educational Resources Information Center
Wakita, Takafumi; Ueshima, Natsumi; Noguchi, Hiroyuki
2012-01-01
This study examined whether the number of options in the Likert scale influences the psychological distance between categories. The most important assumption when using the Likert scale is that the psychological distance between options is equal. The authors proposed a new algorithm for calculating the scale values of options by applying item…
Spatial Allocation of Timber Product Output Roundwood Receipts
John P. Brown
2015-01-01
Data from Georgia timber product output studies were used to develop models that spatially allocate roundwood receipts data from primary wood-using mills. Mill receipts data were converted to a cumulative frequency based on a distance from the mill to a county center. Distances were calculated as either straight line or shortest road distance, and county centers were...
Readability of Distance Education Course Material.
ERIC Educational Resources Information Center
Mouli, C. Raja; Ramakrishna, C. Pushpa
1991-01-01
Flesch Reading Ease scores were calculated for 48 books used in distance education courses at Andhra Pradesh Open University (India). Scores ranged from 32 (public administration) to 46 (geology). Scores correlated positively with pass percentages. (SK)
Use of Educational Technology in Promoting Distance Education
ERIC Educational Resources Information Center
Rashid, Muhammad; Elahi, Uzma
2012-01-01
Educational technology plays an important role in distance education system. By adapting new communication educational technologies in distance educational programmes their quality could be ensured. Instructions conducted through the use of technologies which significantly or completely eliminate the traditional face to face communication between…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurer, J; Sintay, B; Varchena, V
2015-06-15
Purpose: Comprehensive quality assurance (QA) of a single isocenter technique for the simultaneous treatment of multiple brain metastases is presently impractical due to the time consuming nature of measuring each lesion’s dose on film or with a micro-chamber. Three dimensional diode array and full field film measurements are sometimes used to evaluate these plans, but gamma analysis may not reveal local errors that have significant effects on one or a few of several targets. This work aimed to design, build and test a phantom to simplify comprehensive measurement and evaluation. Methods: A phantom was designed with 28 stackable slabs. Themore » top and bottom slabs are 1.5 centimeters (cm) in thickness, and central 26 slabs are 0.5 cm thick. When assembled with radiochromic film in all 27 gaps, the phantom measures 16.5 x 15 x 19 cm. Etchings were designed to aide in identification of specific film planes on computed tomography (CT) images and correlation of individual PTVs with closest bisecting planes. Patient verification plans with a total of 16 PTVs were calculated on the phantom CT, and test deliveries both with and without couch kicks were performed to test the ability to identify correct film placements and subsequent PTV specific dose distributions on the films. Results: Bisecting planes corresponding to PTV locations were easily identified, and PTV specific dose distributions were clear for all 16 targets. For deliveries with couch kicks, the phantom PTV dose distributions closely approximated those calculated on the patient’s CT. For deliveries without couch kicks, PTV specific dosimetry was also possible, although the distributions had ‘ghosts’ equaling the number of couch kicks, with distance between ghosts increasing with distance from the isocenter. Conclusion: A new phantom facilitates fast comprehensive commissioning validation and PTV specific dosimetry for a single isocenter technique for treating multiple brain metastases. This work was partially funded by CIRS, Inc.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, A L; University of Surrey, Guildford, Surrey; Bradley, D A
Purpose: HDR brachytherapy is undergoing significant development, and quality assurance (QA) checks must keep pace. Current recommendations do not adequately verify delivered against planned dose distributions: This is particularly relevant for new treatment planning system (TPS) calculation algorithms (non TG-43 based), and an era of significant patient-specific plan optimisation. Full system checks are desirable in modern QA recommendations, complementary to device-centric individual tests. We present a QA system incorporating TPS calculation, dose distribution export, HDR unit performance, and dose distribution measurement. Such an approach, more common in external beam radiotherapy, has not previously been reported in the literature for brachytherapy.more » Methods: Our QA method was tested at 24 UK brachytherapy centres. As a novel approach, we used the TPS DICOM RTDose file export to compare planned dose distribution with that measured using Gafchromic EBT3 films placed around clinical brachytherapy treatment applicators. Gamma analysis was used to compare the dose distributions. Dose difference and distance to agreement were determined at prescription Point A. Accurate film dosimetry was achieved using a glass compression plate at scanning to ensure physically-flat films, simultaneous scanning of known dose films with measurement films, and triple-channel dosimetric analysis. Results: The mean gamma pass rate of RTDose compared to film-measured dose distributions was 98.1% at 3%(local), 2 mm criteria. The mean dose difference, measured to planned, at Point A was -0.5% for plastic treatment applicators and -2.4% for metal applicators, due to shielding not accounted for in TPS. The mean distance to agreement was 0.6 mm. Conclusion: It is recommended to develop brachytherapy QA to include full-system verification of agreement between planned and delivered dose distributions. This is a novel approach for HDR brachytherapy QA. A methodology using advanced film dosimetry and gamma comparison to DICOM RTDose files has been demonstrated as suitable to fulfil this need.« less
Electron beam collimation with a photon MLC for standard electron treatments
NASA Astrophysics Data System (ADS)
Mueller, S.; Fix, M. K.; Henzen, D.; Frei, D.; Frauchiger, D.; Loessl, K.; Stampanoni, M. F. M.; Manser, P.
2018-01-01
Standard electron treatments are currently still performed using standard or molded patient-specific cut-outs placed in the electron applicator. Replacing cut-outs and electron applicators with a photon multileaf collimator (pMLC) for electron beam collimation would make standard electron treatments more efficient and would facilitate advanced treatment techniques like modulated electron radiotherapy (MERT) and mixed beam radiotherapy (MBRT). In this work, a multiple source Monte Carlo beam model for pMLC shaped electron beams commissioned at a source-to-surface distance (SSD) of 70 cm is extended for SSDs of up to 100 cm and validated for several Varian treatment units with field sizes typically used for standard electron treatments. Measurements and dose calculations agree generally within 3% of the maximal dose or 2 mm distance to agreement. To evaluate the dosimetric consequences of using pMLC collimated electron beams for standard electron treatments, pMLC-based and cut-out-based treatment plans are created for a left and a right breast boost, a sternum, a testis and a parotid gland case. The treatment plans consist of a single electron field, either alone (1E) or in combination with two 3D conformal tangential photon fields (1E2X). For each case, a pMLC plan with similar treatment plan quality in terms of dose homogeneity to the target and absolute mean dose values to the organs at risk (OARs) compared to a cut-out plan is found. The absolute mean dose to an OAR is slightly increased for pMLC-based compared to cut-out-based 1E plans if the OAR is located laterally close to the target with respect to beam direction, or if a 6 MeV electron beam is used at an extended SSD. In conclusion, treatment plans using cut-out collimation can be replaced by plans of similar treatment plan quality using pMLC collimation with accurately calculated dose distributions.
Qian, Jing; Han, Zhuo; Wang, Haiwan; Li, Xiaoyan; Wang, Qiuyue
2014-01-01
The topic of how to prevent and reduce burnout has drawn great attention from researchers and practitioners in recent years. However, we know little about how mentoring as a form of social support exerts influence on employee burnout. This study aims to examine the contingency side of the mentoring-burnout relationship by addressing the exploratory question of whether individual differences in power distance and relationship quality play important roles in mentoring effectiveness in terms of reducing a protégé's burnout level. A total of 210 employees from a technology communications company completed the survey questionnaire. (1) A protégés' power distance moderates the negative relationship between mentoring and burnout in such a way that the relationship is stronger for protégés who are lower rather than higher in power distance; (2) mentor-protégé relationship quality moderates the negative relationship between mentoring and burnout in such a way that the relationship is stronger when the relationship quality is higher rather than lower. In sum, our results highlight the importance of studying the contingency side of mentoring effects on protégé burnout. Our findings suggest that the individuals' different cultural values of power distance and mentor-protégé relationship quality are the boundary conditions for the mentoring-burnout relationship. We therefore suggest that research on mentoring-burnout will be advanced by considering the role of the moderating process.
Ab Initio Potential Energy Surface for H-H2
NASA Technical Reports Server (NTRS)
Patridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene
1993-01-01
Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- 3 micro E(h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces (25-70 kcal/mol above the H-H2 asymptote) at small interatomic separations; the Boothroyd, Keogh, Martin, and Peterson (BKMP) potential energy surface is found to agree with results of the present calculations within the expected uncertainty (+/- 1 kcal/mol) of the fit. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(0)) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.
Popov, V L; Isakov, V D; Krivozheĭko, A G
1990-01-01
On the basis of equations of external ballistics and probability theory the largest possible distances of free (independent) flight of gunshot powder and metal particles having different forms and sizes were calculated. Experimental control of the calculated data for different types of battle and sports hand fire-arms was carried out. The correspondence of the calculated data to maximal free (independent) particle flight in blank shots was stated. In experiments with cartridges equipped with bullets the distances of free particle flight were significantly lesser (by 53-65%) which may be connected with effect of gunshot projectile on the process of particle distribution. Reversed adapted formulas and calculation variants are presented.
ERIC Educational Resources Information Center
Randolph, Justus
2005-01-01
A high quality review of the distance learning literature from 1992-1999 concluded that most of the research on distance learning had serious methodological flaws. This paper presents the results of a small-scale replication of that review. From three leading distance education journals, a sample of 66 articles was categorized by study type and…
ERIC Educational Resources Information Center
Scanlan, Craig L.
2003-01-01
U.S. universities and colleges offering distance education courses have increased immensely since 1998, and by 2004 it was expected that distance learners will constitute about 14% of all those enrolled in degree programs. In its preliminary review of distance learning, the Institute for Higher Education Policy (1998) emphasized the need for…
NASA Astrophysics Data System (ADS)
Moradi, F.; Ung, N. M.; Khandaker, M. U.; Mahdiraji, G. A.; Saad, M.; Malik, R. Abdul; Bustam, A. Z.; Zaili, Z.; Bradley, D. A.
2017-08-01
The relatively new treatment modality electronic intraoperative radiotherapy (IORT) is gaining popularity, irradiation being obtained within a surgically produced cavity being delivered via a low-energy x-ray source and spherical applicators, primarily for early stage breast cancer. Due to the spatially dramatic dose-rate fall off with radial distance from the source and effects related to changes in the beam quality of the low keV photon spectra, dosimetric account of the Intrabeam system is rather complex. Skin dose monitoring in IORT is important due to the high dose prescription per treatment fraction. In this study, modeling of the x-ray source and related applicators were performed using the Monte Carlo N-Particle transport code. The dosimetric characteristics of the model were validated against measured data obtained using an ionization chamber and EBT3 film as dosimeters. By using a simulated breast phantom, absorbed doses to the skin for different combinations of applicator size (1.5-5 cm) and treatment depth (0.5-3 cm) were calculated. Simulation results showed overdosing of the skin (>30% of prescribed dose) at a treatment depth of 0.5 cm using applicator sizes larger than 1.5 cm. Skin doses were significantly increased with applicator size, insofar as delivering 12 Gy (60% of the prescribed dose) to skin for the largest sized applicator (5 cm diameter) and treatment depth of 0.5 cm. It is concluded that the recommended 0.5-1 cm distance between the skin and applicator surface does not guarantee skin safety and skin dose is generally more significant in cases with the larger applicators. Highlights: • Intrabeam x-ray source and spherical applicators were simulated and skin dose was calculated. • Skin dose for constant skin to applicator distance strongly depends on applicator size. • Use of larger applicators generally results in higher skin dose. • The recommended 0.5-1 cm skin to applicator distance does not guarantee skin safety.
van de Geijn, J; Fraass, B A
1984-01-01
The net fractional depth dose (NFD) is defined as the fractional depth dose (FDD) corrected for inverse square law. Analysis of its behavior as a function of depth, field size, and source-surface distance has led to an analytical description with only seven model parameters related to straightforward physical properties. The determination of the characteristic parameter values requires only seven experimentally determined FDDs. The validity of the description has been tested for beam qualities ranging from 60Co gamma rays to 18-MV x rays, using published data from several different sources as well as locally measured data sets. The small number of model parameters is attractive for computer or hand-held calculator applications. The small amount of required measured data is important in view of practical data acquisition for implementation of a computer-based dose calculation system. The generating function allows easy and accurate generation of FDD, tissue-air ratio, tissue-maximum ratio, and tissue-phantom ratio tables.
Net fractional depth dose: a basis for a unified analytical description of FDD, TAR, TMR, and TPR
DOE Office of Scientific and Technical Information (OSTI.GOV)
van de Geijn, J.; Fraass, B.A.
The net fractional depth dose (NFD) is defined as the fractional depth dose (FDD) corrected for inverse square law. Analysis of its behavior as a function of depth, field size, and source-surface distance has led to an analytical description with only seven model parameters related to straightforward physical properties. The determination of the characteristic parameter values requires only seven experimentally determined FDDs. The validity of the description has been tested for beam qualities ranging from /sup 60/Co gamma rays to 18-MV x rays, using published data from several different sources as well as locally measured data sets. The small numbermore » of model parameters is attractive for computer or hand-held calculator applications. The small amount of required measured data is important in view of practical data acquisition for implementation of a computer-based dose calculation system. The generating function allows easy and accurate generation of FDD, tissue-air ratio, tissue-maximum ratio, and tissue-phantom ratio tables.« less
Biasing anisotropic scattering kernels for deep-penetration Monte Carlo calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, L.L.; Hendricks, J.S.
1983-01-01
The exponential transform is often used to improve the efficiency of deep-penetration Monte Carlo calculations. This technique is usually implemented by biasing the distance-to-collision kernel of the transport equation, but leaving the scattering kernel unchanged. Dwivedi obtained significant improvements in efficiency by biasing an isotropic scattering kernel as well as the distance-to-collision kernel. This idea is extended to anisotropic scattering, particularly the highly forward Klein-Nishina scattering of gamma rays.
Valiev, R R; Minaev, B F
2016-09-01
The electric dipole transitions between pure spin and mixed spin electronic states are calculated at the XMC-QDPT2 and MCSCF levels of theory, respectively, for different intermolecular distances of the C6H6 and O2 collisional complex. The magnetic dipole transition moment between the mixed-spin ground ("triplet") and the first excited ("singlet") states is calculated by quadratic response at MCSCF level of theory. The obtained results confirm the theory of intensity borrowing and increasing the intensity of electronic transitions in the C6H6 + O2 collision. The calculation of magnetically induced current density is performed for benzene molecule being in contact with O2 at the distances from 3.5 to 4.5 Å. The calculation shows that the aromaticity of benzene is rising due to the conjugation of π-MOs of both molecules. The C6H6 + O2 complex becomes nonaromatic at the short distances (r < 3.5 Å). The computation of static polarizability in the excited electronic states of the C6H6 + O2 collisional complex at various distances supports the theory of red solvatochromic shift of the a → X band. Graphical abstract The C6H6+ O2 collisional complex.
Wheeler, Stephanie B; Kuo, Tzy-Mey; Durham, Danielle; Frizzelle, Brian; Reeder-Hayes, Katherine; Meyer, Anne-Marie
2014-01-01
Distance to oncology service providers and rurality may affect receipt of guideline-recommended radiation therapy (RT), but the extent to which these factors affect the care of Medicare-insured patients is unknown. Using cancer registry data linked to Medicare claims from the Integrated Cancer Information and Surveillance System (ICISS), we identified all women aged 65 years or older who were diagnosed with stage I, II, or III breast cancer from 2003 through 2005, who had Medicare claims through 2006, and who were clinically eligible for RT. We geocoded the address of each RT service provider's practice location and calculated the travel distance from each patient's residential address to the nearest RT provider. We used ZIP codes to classify each patient's residence as rural or urban according to rural- urban commuting area codes. We used generalized estimating equations models with county-level clustering and interaction terms between distance categories and rural-urban status to estimate the effect of distance to care and rural-urban status on receipt of RT. In urban areas, increasing distance to the nearest RT provider was associated with a lower likelihood of receiving RT (odds ratio [OR] = 0.54; 95% confidence interval [CI], 0.30-0.97) for those living more than 20 miles from the nearest RT provider compared with those living less than 10 miles away. In rural areas, those living within 10-20 miles of the nearest RT provider were more likely to receive RT than those living less than 10 miles away (OR = 1.73; 95% CI, 1.08-2.76). Results may not be generalizable to areas outside North Carolina or to non-Medicare populations. Coordinated outreach programs targeted differently to rural and urban patients may be necessary to improve the quality of oncology care.
Instructor and Student Attitudes Toward Distance Learning.
ERIC Educational Resources Information Center
Inman, Elliot; Kerwin, Michael; Mayes, Larry
1999-01-01
Discusses data collected from 11 distance-learning classes. The instructors were willing to teach distance-learning classes again, but said the courses were of equal or lesser quality than traditional classes. The 334 students surveyed were highly satisfied with the courses and instructors. Contains 17 references. (TGO)
NASA Astrophysics Data System (ADS)
Javadi, Maryam; Shahrabi, Jamal
2014-03-01
The problems of facility location and the allocation of demand points to facilities are crucial research issues in spatial data analysis and urban planning. It is very important for an organization or governments to best locate its resources and facilities and efficiently manage resources to ensure that all demand points are covered and all the needs are met. Most of the recent studies, which focused on solving facility location problems by performing spatial clustering, have used the Euclidean distance between two points as the dissimilarity function. Natural obstacles, such as mountains and rivers, can have drastic impacts on the distance that needs to be traveled between two geographical locations. While calculating the distance between various supply chain entities (including facilities and demand points), it is necessary to take such obstacles into account to obtain better and more realistic results regarding location-allocation. In this article, new models were presented for location of urban facilities while considering geographical obstacles at the same time. In these models, three new distance functions were proposed. The first function was based on the analysis of shortest path in linear network, which was called SPD function. The other two functions, namely PD and P2D, were based on the algorithms that deal with robot geometry and route-based robot navigation in the presence of obstacles. The models were implemented in ArcGIS Desktop 9.2 software using the visual basic programming language. These models were evaluated using synthetic and real data sets. The overall performance was evaluated based on the sum of distance from demand points to their corresponding facilities. Because of the distance between the demand points and facilities becoming more realistic in the proposed functions, results indicated desired quality of the proposed models in terms of quality of allocating points to centers and logistic cost. Obtained results show promising improvements of the allocation, the logistics costs and the response time. It can also be inferred from this study that the P2D-based model and the SPD-based model yield similar results in terms of the facility location and the demand allocation. It is noted that the P2D-based model showed better execution time than the SPD-based model. Considering logistic costs, facility location and response time, the P2D-based model was appropriate choice for urban facility location problem considering the geographical obstacles.
Calculating Buffer Zones: A Guide for Applicators
Buffer zones provide distance between the application block (i.e., edge of the treated field) and bystanders, in order to control pesticide exposure risk from soil fumigants. Distance requirements may be reduced by credits such as tarps.
Nonlinear differential equations for the wavefront surface at arbitrary Hartmann-plane distances.
Téllez-Quiñones, Alejandro; Malacara-Doblado, Daniel; Flores-Hernández, Ricardo; Gutiérrez-Hernández, David A; León-Rodríguez, Miguel
2016-03-20
In the Hartmann test, a wave aberration function W is estimated from the information of the spot diagram drawn in an observation plane. The distance from a reference plane to the observation plane, the Hartmann-plane distance, is typically chosen as z=f, where f is the radius of a reference sphere. The function W and the transversal aberrations {X,Y} calculated at the plane z=f are related by two well-known linear differential equations. Here, we propose two nonlinear differential equations to denote a more general relation between W and the transversal aberrations {U,V} calculated at any arbitrary Hartmann-plane distance z=r. We also show how to directly estimate the wavefront surface w from the information of {U,V}. The use of arbitrary r values could improve the reliability of the measurements of W, or w, when finding difficulties in adequate ray identification at z=f.
Collision for Li++He System. I. Potential Curves and Non-Adiabatic Coupling Matrix Elements
NASA Astrophysics Data System (ADS)
Yoshida, Junichi; O-Ohata, Kiyosi
1984-02-01
The potential curves and the non-adiabatic coupling matrix elements for the Li++He collision system were computed. The SCF molecular orbitals were constructed with the CGTO atomic bases centered on each nucleus and the center of mass of two nuclei. The SCF and CI calculations were done at various internuclear distances in the range of 0.1˜25.0 a.u. The potential energies and the wavefunctions were calculated with good approximation over whole internuclear distance. The non-adiabatic coupling matrix elements were calculated with the tentative method in which the ETF are approximately taken into account.
Research on Signature Verification Method Based on Discrete Fréchet Distance
NASA Astrophysics Data System (ADS)
Fang, J. L.; Wu, W.
2018-05-01
This paper proposes a multi-feature signature template based on discrete Fréchet distance, which breaks through the limitation of traditional signature authentication using a single signature feature. It solves the online handwritten signature authentication signature global feature template extraction calculation workload, signature feature selection unreasonable problem. In this experiment, the false recognition rate (FAR) and false rejection rate (FRR) of the statistical signature are calculated and the average equal error rate (AEER) is calculated. The feasibility of the combined template scheme is verified by comparing the average equal error rate of the combination template and the original template.
Nuclear Fusion Rate Study of a Muonic Molecule via Nuclear Threshold Resonances
NASA Astrophysics Data System (ADS)
Faghihi, F.; Eskandari, M. R.
This work follows our previous calculations of the ground state binding energy, size, and the effective nuclear charge of the muonic T3 molecule, using the Born-Oppenheimer adiabatic approximation. In our past articles, we showed that the system possesses two minimum positions, the first one at the muonic distance and the second at the atomic distance. Also, the symmetric planner vibrational model assumed between the two minima and the approximated potential were calculated. Following from the previous studies, we now calculate the fusion rate of the T3 muonic molecule according to the overlap integral of the resonance nuclear compound nucleus and the molecular wave functions.
Relationship of the actual thick intraocular lens optic to the thin lens equivalent.
Holladay, J T; Maverick, K J
1998-09-01
To theoretically derive and empirically validate the relationship between the actual thick intraocular lens and the thin lens equivalent. Included in the study were 12 consecutive adult patients ranging in age from 54 to 84 years (mean +/- SD, 73.5 +/- 9.4 years) with best-corrected visual acuity better than 20/40 in each eye. Each patient had bilateral intraocular lens implants of the same style, placed in the same location (bag or sulcus) by the same surgeon. Preoperatively, axial length, keratometry, refraction, and vertex distance were measured. Postoperatively, keratometry, refraction, vertex distance, and the distance from the vertex of the cornea to the anterior vertex of the intraocular lens (AV(PC1)) were measured. Alternatively, the distance (AV(PC1)) was then back-calculated from the vergence formula used for intraocular lens power calculations. The average (+/-SD) of the absolute difference in the two methods was 0.23 +/- 0.18 mm, which would translate to approximately 0.46 diopters. There was no statistical difference between the measured and calculated values; the Pearson product-moment correlation coefficient from linear regression was 0.85 (r2 = .72, F = 56). The average intereye difference was -0.030 mm (SD, 0.141 mm; SEM, 0.043 mm) using the measurement method and +0.124 mm (SD, 0.412 mm; SEM, 0.124 mm) using the calculation method. The relationship between the actual thick intraocular lens and the thin lens equivalent has been determined theoretically and demonstrated empirically. This validation provides the manufacturer and surgeon additional confidence and utility for lens constants used in intraocular lens power calculations.
NASA Astrophysics Data System (ADS)
Baker, Ernest; van der Voort, Martijn; NATO Munitions Safety Information Analysis Centre Team
2017-06-01
Ballistics trajectory and impact conditions calculations were conducted in order to investigate the origin of the projection criteria for Insensitive Munitions (IM) and Hazard Classification (HC). The results show that the existing IM and HC projection criteria distance-mass relations are based on launch energy rather than impact conditions. The distance-mass relations were reproduced using TRAJCAN trajectory analysis by using launch energies of 8, 20 and 79J and calculating the maximum impact distance reached by a natural fragment (steel) launched from 1 m height. The analysis shows that at the maximum throw distances, the impact energy is generally much smaller than the launch energy. Using maximum distance projections, new distance-mass relations were developed that match the criteria based on impact energy at 15m and beyond rather than launch energy. Injury analysis was conducted using penetration injury and blunt injury models. The smallest projectile masses in the distance-mass relations are in the transition region from penetration injury to blunt injury. For this reason, blunt injury dominates the assessment of injury or lethality. State of the art blunt injury models predict only minor injury for a 20J impact. For a 79J blunt impact, major injury is likely to occur. MSIAC recommends changing the distance-mass relation that distinguishes a munitions burning response to a 20 J impact energy criterion at 15 m and updating of the UN Orange Book.
a Fast Method for Measuring the Similarity Between 3d Model and 3d Point Cloud
NASA Astrophysics Data System (ADS)
Zhang, Zongliang; Li, Jonathan; Li, Xin; Lin, Yangbin; Zhang, Shanxin; Wang, Cheng
2016-06-01
This paper proposes a fast method for measuring the partial Similarity between 3D Model and 3D point Cloud (SimMC). It is crucial to measure SimMC for many point cloud-related applications such as 3D object retrieval and inverse procedural modelling. In our proposed method, the surface area of model and the Distance from Model to point Cloud (DistMC) are exploited as measurements to calculate SimMC. Here, DistMC is defined as the weighted distance of the distances between points sampled from model and point cloud. Similarly, Distance from point Cloud to Model (DistCM) is defined as the average distance of the distances between points in point cloud and model. In order to reduce huge computational burdens brought by calculation of DistCM in some traditional methods, we define SimMC as the ratio of weighted surface area of model to DistMC. Compared to those traditional SimMC measuring methods that are only able to measure global similarity, our method is capable of measuring partial similarity by employing distance-weighted strategy. Moreover, our method is able to be faster than other partial similarity assessment methods. We demonstrate the superiority of our method both on synthetic data and laser scanning data.
A Compact X-Ray System for Macromolecular Crystallography. 5
NASA Technical Reports Server (NTRS)
Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Joy, Marshall
2000-01-01
We describe the design and performance of a high flux x-ray system for macromolecular crystallography that combines a microfocus x-ray generator (40 gm FWHM spot size at a power level of 46.5Watts) and a 5.5 mm focal distance polycapillary optic. The Cu K(sub alpha) X-ray flux produced by this optimized system is 7.0 times above the X-ray flux previously reported. The X-ray flux from the microfocus system is also 3.2 times higher than that produced by the rotating anode generator equipped with a long focal distance graded multilayer monochromator (Green optic; CMF24-48-Cu6) and 30% less than that produced by the rotating anode generator with the newest design of graded multilayer monochromator (Blue optic; CMF12-38-Cu6). Both rotating anode generators operate at a power level of 5000 Watts, dissipating more than 100 times the power of our microfocus x-ray system. Diffraction data collected from small test crystals are of high quality. For example, 42,540 reflections collected at ambient temperature from a lysozyme crystal yielded R(sub sym) 5.0% for the data extending to 1.7A, and 4.8% for the complete set of data to 1.85A. The amplitudes of the reflections were used to calculate difference electron density maps that revealed positions of structurally important ions and water molecules in the crystal of lysozyme using the phases calculated from the protein model.
Double quantum coherence ESR spectroscopy and quantum chemical calculations on a BDPA biradical.
Haeri, Haleh Hashemi; Spindler, Philipp; Plackmeyer, Jörn; Prisner, Thomas
2016-10-26
Carbon-centered radicals are interesting alternatives to otherwise commonly used nitroxide spin labels for dipolar spectroscopy techniques because of their narrow ESR linewidth. Herein, we present a novel BDPA biradical, where two BDPA (α,α,γ,γ-bisdiphenylene-β-phenylallyl) radicals are covalently tethered by a saturated biphenyl acetylene linker. The inter-spin distance between the two spin carrier fragments was measured using double quantum coherence (DQC) ESR methodology. The DQC experiment revealed a mean distance of only 1.8 nm between the two unpaired electron spins. This distance is shorter than the predictions based on a simple modelling of the biradical geometry with the electron spins located at the central carbon atoms. Therefore, DFT (density functional theory) calculations were performed to obtain a picture of the spin delocalization, which may give rise to a modified dipolar interaction tensor, and to find those conformations that correspond best to the experimentally observed inter-spin distance. Quantum chemical calculations showed that the attachment of the biphenyl acetylene linker at the second position of the fluorenyl ring of BDPA did not affect the spin population or geometry of the BDPA radical. Therefore, spin delocalization and geometry optimization of each BDPA moiety could be performed on the monomeric unit alone. The allylic dihedral angle θ 1 between the fluorenyl rings in the monomer subunit was determined to be 30° or 150° using quantum chemical calculations. The proton hyperfine coupling constant calculated from both energy minima was in very good agreement with literature values. Based on the optimal monomer geometries and spin density distributions, the dipolar coupling interaction between both BDPA units could be calculated for several dimer geometries. It was shown that the rotation of the BDPA units around the linker axis (θ 2 ) does not significantly influence the dipolar coupling strength when compared to the allylic dihedral angle θ 1 . A good agreement between the experimental and calculated dipolar coupling was found for θ 1 = 30°.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Unseren, M.A.; Baker, J.E.
We discuss a series of surface following experiments using a range finder mounted on the end of an arm that is mounted on a vehicle. The goal is to keep the range finder at a fixed distance from an unknown surface and to keep the orientation of the range finder perpendicular to the surface. During the experiments, the vehicle moves along a predefined trajectory while planning software determines the position and orientation of the arm. To keep the range finder perpendicular to the surface, the planning software calculates the surface normal for the unknown surface. We assume that the unknownmore » surface is a cylinder (the surface depends on x and y but does not depend on z). To calculate the surface normal, the planning software must calculate the locations (x,y) of points on the surface in world coordinates. The calculation requires data on the position and orientation of the vehicle, the position and orientation of the arm, and the distance from the range finder to the surface. We discuss four series of experiments. During the first series of experiments, the calculated surface normal values had large high frequency random variations. A filter was used to produce an average value for the surface normal and we limited the rate of change in the yaw angle target for the arm. We performed the experiment for a variety of concave and convex surfaces. While the experiments were qualitative successes, the measured distance to the surface was significantly different than the target. The distance errors were systematic, low frequency, and had magnitudes up to 25 mm. During the second series of experiments, we reduced the variations in the calculated surface normal values. While reviewing the data collected while following the surface of a barrel, we found that the radius of the calculated surface was significantly different than the measured radius of the barrel.« less
Yu, Liang; Wang, Bingbo; Ma, Xiaoke; Gao, Lin
2016-12-23
Extracting drug-disease correlations is crucial in unveiling disease mechanisms, as well as discovering new indications of available drugs, or drug repositioning. Both the interactome and the knowledge of disease-associated and drug-associated genes remain incomplete. We present a new method to predict the associations between drugs and diseases. Our method is based on a module distance, which is originally proposed to calculate distances between modules in incomplete human interactome. We first map all the disease genes and drug genes to a combined protein interaction network. Then based on the module distance, we calculate the distances between drug gene sets and disease gene sets, and take the distances as the relationships of drug-disease pairs. We also filter possible false positive drug-disease correlations by p-value. Finally, we validate the top-100 drug-disease associations related to six drugs in the predicted results. The overlapping between our predicted correlations with those reported in Comparative Toxicogenomics Database (CTD) and literatures, and their enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways demonstrate our approach can not only effectively identify new drug indications, but also provide new insight into drug-disease discovery.
Development of a S/w System for Relative Positioning Using GPS Carrier Phase
NASA Astrophysics Data System (ADS)
Ahn, Yong-Won; Kim, Chun-Hwey; Park, Pil-Ho; Park, Jong-Uk; Jo, Jeong-Ho
1997-12-01
We developed a GPS phase data processing S/W system which calculates baseline vectors and distances between two points located in the surface of the Earth. For this development a Double-Difference method and L1 carrier phase data from GPS(Global Positioning System) were used. This S/W system consists of four main parts : satellite position calculation, Single-Difference equation, Double-Difference equation, and correlation. To verify our S/W, we fixed KAO(N36.37, E127.37, H77.61m), one of the International GPS Services for Geodynamics, which is located at Tae-Jon, and we measured baseline vectors and relative distances with data from observations at approximate baseline distances of 2.7, 42.1, 81.1, 146.6km. Then we compared the vectors and distances with the data which we obtained from the GPSurvery S/W system, with the L1/L2 ION-Free method and broadcast ephemeris. From the comparison of the vectors and distances with the data from the GPSurvey S/W system, we found baseline vectors X, Y, Z and baseline distances matched well within the extent of 50cm and 10cm, respectively.
Library Services to Distance Learners in the Commonwealth: A Reader.
ERIC Educational Resources Information Center
Watson, Elizabeth F., Ed.; Jagannathan, Neela, Ed.
The provision of good library services is a crucial factor in determining the quality of distance education. This collection of articles acquaints readers with distance librarianship as it is practiced in developed and developing countries throughout the British Commonwealth. The reader includes: "Introduction" (Michael Wooliscroft);…
Evaluation of Hybrid and Distance Education Learning Environments in Spain
ERIC Educational Resources Information Center
Ferrer-Cascales, Rosario; Walker, Scott L.; Reig-Ferrer, Abilio; Fernandez-Pascual, Maria Dolores; Albaladejo-Blazquez, Natalia
2011-01-01
This article describes the adaptation and validation of the "Distance Education Learning Environments Survey" (DELES) for use in investigating the qualities found in distance and hybrid education psycho-social learning environments in Spain. As Europe moves toward post-secondary student mobility, equanimity in access to higher education,…
Distance Education: An Overview.
ERIC Educational Resources Information Center
Batey, Anne; Cowell, Richard N.
Distance education is a current "catch-all" phrase for any form of instruction in which the learner is linked to an educational institution and is formally enrolled, but instruction does not necessarily have to be delivered to or from an official school site. Distance education can provide equity and increase the quality of educational…
Mobile Learning in Distance Education: Utility or Futility?
ERIC Educational Resources Information Center
Koole, Marguerite; McQuilkin, Janice Letkeman; Ally, Mohamed
2010-01-01
Can mobile technology improve flexibility and quality of interaction for graduate students in distance programs? This paper reports the results of an innovative study exploring the usability, learning, and social interaction of mobile access to online course materials at a Canadian distance education university. Through a system called MobiGlam,…
Walking tree heuristics for biological string alignment, gene location, and phylogenies
NASA Astrophysics Data System (ADS)
Cull, P.; Holloway, J. L.; Cavener, J. D.
1999-03-01
Basic biological information is stored in strings of nucleic acids (DNA, RNA) or amino acids (proteins). Teasing out the meaning of these strings is a central problem of modern biology. Matching and aligning strings brings out their shared characteristics. Although string matching is well-understood in the edit-distance model, biological strings with transpositions and inversions violate this model's assumptions. We propose a family of heuristics called walking trees to align biologically reasonable strings. Both edit-distance and walking tree methods can locate specific genes within a large string when the genes' sequences are given. When we attempt to match whole strings, the walking tree matches most genes, while the edit-distance method fails. We also give examples in which the walking tree matches substrings even if they have been moved or inverted. The edit-distance method was not designed to handle these problems. We include an example in which the walking tree "discovered" a gene. Calculating scores for whole genome matches gives a method for approximating evolutionary distance. We show two evolutionary trees for the picornaviruses which were computed by the walking tree heuristic. Both of these trees show great similarity to previously constructed trees. The point of this demonstration is that WHOLE genomes can be matched and distances calculated. The first tree was created on a Sequent parallel computer and demonstrates that the walking tree heuristic can be efficiently parallelized. The second tree was created using a network of work stations and demonstrates that there is suffient parallelism in the phylogenetic tree calculation that the sequential walking tree can be used effectively on a network.
Precise Distances for Main-belt Asteroids in Only Two Nights
NASA Astrophysics Data System (ADS)
Heinze, Aren N.; Metchev, Stanimir
2015-10-01
We present a method for calculating precise distances to asteroids using only two nights of data from a single location—far too little for an orbit—by exploiting the angular reflex motion of the asteroids due to Earth’s axial rotation. We refer to this as the rotational reflex velocity method. While the concept is simple and well-known, it has not been previously exploited for surveys of main belt asteroids (MBAs). We offer a mathematical development, estimates of the errors of the approximation, and a demonstration using a sample of 197 asteroids observed for two nights with a small, 0.9-m telescope. This demonstration used digital tracking to enhance detection sensitivity for faint asteroids, but our distance determination works with any detection method. Forty-eight asteroids in our sample had known orbits prior to our observations, and for these we demonstrate a mean fractional error of only 1.6% between the distances we calculate and those given in ephemerides from the Minor Planet Center. In contrast to our two-night results, distance determination by fitting approximate orbits requires observations spanning 7-10 nights. Once an asteroid’s distance is known, its absolute magnitude and size (given a statistically estimated albedo) may immediately be calculated. Our method will therefore greatly enhance the efficiency with which 4m and larger telescopes can probe the size distribution of small (e.g., 100 m) MBAs. This distribution remains poorly known, yet encodes information about the collisional evolution of the asteroid belt—and hence the history of the Solar System.
NASA Astrophysics Data System (ADS)
Budzan, Sebastian
2018-04-01
In this paper, the automatic method of grain detection and classification has been presented. As input, it uses a single digital image obtained from milling process of the copper ore with an high-quality digital camera. The grinding process is an extremely energy and cost consuming process, thus granularity evaluation process should be performed with high efficiency and time consumption. The method proposed in this paper is based on the three-stage image processing. First, using Seeded Region Growing (SRG) segmentation with proposed adaptive thresholding based on the calculation of Relative Standard Deviation (RSD) all grains are detected. In the next step results of the detection are improved using information about the shape of the detected grains using distance map. Finally, each grain in the sample is classified into one of the predefined granularity class. The quality of the proposed method has been obtained by using nominal granularity samples, also with a comparison to the other methods.
Clustering analysis of line indices for LAMOST spectra with AstroStat
NASA Astrophysics Data System (ADS)
Chen, Shu-Xin; Sun, Wei-Min; Yan, Qi
2018-06-01
The application of data mining in astronomical surveys, such as the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) survey, provides an effective approach to automatically analyze a large amount of complex survey data. Unsupervised clustering could help astronomers find the associations and outliers in a big data set. In this paper, we employ the k-means method to perform clustering for the line index of LAMOST spectra with the powerful software AstroStat. Implementing the line index approach for analyzing astronomical spectra is an effective way to extract spectral features for low resolution spectra, which can represent the main spectral characteristics of stars. A total of 144 340 line indices for A type stars is analyzed through calculating their intra and inter distances between pairs of stars. For intra distance, we use the definition of Mahalanobis distance to explore the degree of clustering for each class, while for outlier detection, we define a local outlier factor for each spectrum. AstroStat furnishes a set of visualization tools for illustrating the analysis results. Checking the spectra detected as outliers, we find that most of them are problematic data and only a few correspond to rare astronomical objects. We show two examples of these outliers, a spectrum with abnormal continuumand a spectrum with emission lines. Our work demonstrates that line index clustering is a good method for examining data quality and identifying rare objects.
Model calculations of the interaction of two parallel antiaromatic 4n π-electron systems
Böhm, Michael C.; Bickert, Peter; Hafner, Klaus; Boekelheide, V.
1984-01-01
The nature of the interaction between decks of a pentalene dimer and an s-indacene dimer has been studied by semi-empirical MNDO/1 and MINDO/3 calculations for distances between decks of from 5 Å to 2 Å. In contradiction to qualitative predictions from a frontier orbital analysis, it is found that the 4n-4n π-electron interaction between decks for such dimers is destabilizing for distances exceeding about 2.5 Å. PMID:16593458
Width of the confining string in Yang-Mills theory.
Gliozzi, F; Pepe, M; Wiese, U-J
2010-06-11
We investigate the transverse fluctuations of the confining string connecting two static quarks in (2+1)D SU(2) Yang-Mills theory using Monte Carlo calculations. The exponentially suppressed signal is extracted from the large noise by a very efficient multilevel algorithm. The resulting width of the string increases logarithmically with the distance between the static quark charges. Corrections at intermediate distances due to universal higher-order terms in the effective string action are calculated analytically. They accurately fit the numerical data.
NASA Astrophysics Data System (ADS)
Lyuty, V. M.; Abdullayev, B. I.; Alekberov, I. A.; Gulmaliyev, N. I.; Mikayilov, Kh. M.; Rustamov, B. N.
2009-12-01
Short description of optical and electric scheme of CCD photometer with camera U-47 installed on the Cassegrain focus of ZEISS-600 telescope of the ShAO NAS Azerbaijan is provided. The reducer of focus with factor of reduction 1.7 is applied. It is calculated equivalent focal distances of a telescope with a focus reducer. General calculations of optimum distance from focal plane and t sizes of optical filters of photometer are presented.
Charge-exchange plasma generated by an ion thruster
NASA Technical Reports Server (NTRS)
Kaufman, H. R.
1977-01-01
The charge exchange plasma generated by an ion thruster was investigated experimentally using both 5 cm and 15 cm thrusters. Results are shown for wide ranges of radial distance from the thruster and angle from the beam direction. Considerations of test environment, as well as distance from the thruster, indicate that a valid simulation of a thruster on a spacecraft was obtained. A calculation procedure and a sample calculation of charge exchange plasma density and saturation electron current density are included.
NASA Astrophysics Data System (ADS)
Bonin, Timothy A.; Goines, David C.; Scott, Aaron K.; Wainwright, Charlotte E.; Gibbs, Jeremy A.; Chilson, Phillip B.
2015-06-01
The structure function is often used to quantify the intensity of spatial inhomogeneities within turbulent flows. Here, the Small Multifunction Research and Teaching Sonde (SMARTSonde), an unmanned aerial system, is used to measure horizontal variations in temperature and to calculate the structure function of temperature at various heights for a range of separation distances. A method for correcting for the advection of turbulence in the calculation of the structure function is discussed. This advection correction improves the data quality, particularly when wind speeds are high. The temperature structure-function parameter can be calculated from the structure function of temperature. Two case studies from which the SMARTSonde was able to take measurements used to derive at several heights during multiple consecutive flights are discussed and compared with sodar measurements, from which is directly related to return power. Profiles of from both the sodar and SMARTSonde from an afternoon case exhibited generally good agreement. However, the profiles agreed poorly for a morning case. The discrepancies are partially attributed to different averaging times for the two instruments in a rapidly evolving environment, and the measurement errors associated with the SMARTSonde sampling within the stable boundary layer.
NASA Astrophysics Data System (ADS)
Chau, P.-L.; Dean, P. M.
1994-10-01
Electrostatic interactions have always been considered an important factor governing ligand-receptor interactions. Previous work in this field has established the existence of electrostatic complementarity between the ligand and its receptor site. However, this property has not been treated rigorously, and the description remains largely qualitative. In this work, 34 data sets of high quality were chosen from the Brookhaven Protein Databank. The electrostatic complementarity has been calculated between the surface potentials; complementarity is absent between adjacent or neighbouring atoms of the ligand and the receptor. There is little difference between complementarities on the total ligand surface and the interfacial region. Altering the homogeneous dielectric to distance-dependent dielectrics reduces the complementarity slightly, but does not affect the pattern of complementarity.
Chau, P L; Dean, P M
1994-10-01
Electrostatic interactions have always been considered an important factor governing ligand-receptor interactions. Previous work in this field has established the existence of electrostatic complementarity between the ligand and its receptor site. However, this property has not been treated rigorously, and the description remains largely qualitative. In this work, 34 data sets of high quality were chosen from the Brookhaven Protein Databank. The electrostatic complementary has been calculated between the surface potentials; complementarity is absent between adjacent or neighbouring atoms of the ligand and the receptor. There is little difference between complementarities on the total ligand surface and the interfacial region. Altering the homogeneous dielectric to distance-dependent dielectrics reduces the complementarity slightly, but does not affect the pattern of complementarity.
The effects of optical sensor-tissue separation in endocavitary photoplethysmography.
Patel, Zaibaa; Thaha, Mohamed A; Kyriacou, Panayiotis A
2018-06-12
<i>Objective:</i> Intestinal anastomotic failure that occurs mainly due to ischaemia is a serious risk in colorectal cancer patients undergoing surgery. Surgeons continue to rely on subjective methods such as visual inspection to assess intestinal viability during surgery and there are no clinical tools to directly monitor viability postoperatively. A dual wavelength, reflectance optical sensor has been developed for continuous and dynamic monitoring of intestinal viability via the intestinal lumen. Maintaining direct contact between the sensor and the inner intestinal wall can be difficult in an intraluminal design, therefore impacting on signal acquisition and quality. This paper investigates the effect of direct contact versus variable distances between the sensor and the tissue surface of the buccal mucosa as a surrogate. <i>Approach:</i> The <i>in-vivo</i> study involved 20 healthy volunteers to measure the effect of optical sensor-tissue distances on the ability to acquire photoplethysmography signals and their quality. Signals were acquired from the buccal mucosa at five optical sensor-tissue distances. <i>Main results:</i> Distances between 0 mm (contact) to 5 mm were the most optimal, producing signals of high quality and signal-to-noise ratio, resulting in reliable estimations of the blood oxygen saturation. Distances exceeding 5 mm compromised the acquired signals, and were of poor quality, thereby unreliably estimating the blood oxygen saturation. <i>Significance:</i> The developed optical sensor proved to be reliable for acquiring photoplethysmography signals for cases where distances between the optical sensor-tissue may arise during the assessment of intraluminal intestinal viability. © 2018 Institute of Physics and Engineering in Medicine.
NASA Astrophysics Data System (ADS)
DeGroff, F. A.
2016-12-01
Anthropogenic changes to non-anthropogenic carbon fluxes are a primary driver of climate change. There currently exists no comprehensive metric to measure and value anthropogenic changes in carbon flux between all states of carbon. Focusing on atmospheric carbon emissions as a measure of anthropogenic activity on the environment ignores the fungible characteristics of carbon that are crucial in both the biosphere and the worldwide economy. Focusing on a single form of inorganic carbon as a proxy metric for the plethora of anthropogenic activity and carbon compounds will prove inadequate, convoluted, and unmanageable. A broader, more basic metric is needed to capture the entirety of carbon activity, particularly in an economic, profit-driven environment. We propose a new metric to measure changes in the temporal distance of any form or state of carbon from one state to another. Such a metric would be especially useful to measure the temporal distance of carbon from sinks such as the atmosphere or oceans. The effect of changes in carbon flux as a result of any human activity can be measured by the difference between the anthropogenic and non-anthropogenic temporal distance. The change in the temporal distance is a measure of the climate change potential much like voltage is a measure of electrical potential. The integral of the climate change potential is proportional to the anthropogenic climate change. We also propose a logarithmic vector scale for carbon quality, cq, as a measure of anthropogenic changes in carbon flux. The distance between the cq vector starting and ending temporal distances represents the change in cq. A base-10 logarithmic scale would allow the addition and subtraction of exponents to calculate changes in cq. As anthropogenic activity changes the temporal distance of carbon, the change in cq is measured as: cq = ß ( log10 [mean carbon temporal distance] ) where ß represents the carbon price coefficient for a particular country. For any country, cq measures the climate change potential for any domestic anthropogenic activity that results in a change in temporal distance of any carbon. The greater the carbon fees for a country, the larger the ß coefficient would be, and the greater the import fees would be to achieve carbon parity on imports from countries with lower carbon fees.
NASA Astrophysics Data System (ADS)
Hao, Huadong; Shi, Haolei; Yi, Pengju; Liu, Ying; Li, Cunjun; Li, Shuguang
2018-01-01
A Volume Metrology method based on Internal Electro-optical Distance-ranging method is established for large vertical energy storage tank. After analyzing the vertical tank volume calculation mathematical model, the key processing algorithms, such as gross error elimination, filtering, streamline, and radius calculation are studied for the point cloud data. The corresponding volume values are automatically calculated in the different liquids by calculating the cross-sectional area along the horizontal direction and integrating from vertical direction. To design the comparison system, a vertical tank which the nominal capacity is 20,000 m3 is selected as the research object, and there are shown that the method has good repeatability and reproducibility. Through using the conventional capacity measurement method as reference, the relative deviation of calculated volume is less than 0.1%, meeting the measurement requirements. And the feasibility and effectiveness are demonstrated.
An Information-Theoretic-Cluster Visualization for Self-Organizing Maps.
Brito da Silva, Leonardo Enzo; Wunsch, Donald C
2018-06-01
Improved data visualization will be a significant tool to enhance cluster analysis. In this paper, an information-theoretic-based method for cluster visualization using self-organizing maps (SOMs) is presented. The information-theoretic visualization (IT-vis) has the same structure as the unified distance matrix, but instead of depicting Euclidean distances between adjacent neurons, it displays the similarity between the distributions associated with adjacent neurons. Each SOM neuron has an associated subset of the data set whose cardinality controls the granularity of the IT-vis and with which the first- and second-order statistics are computed and used to estimate their probability density functions. These are used to calculate the similarity measure, based on Renyi's quadratic cross entropy and cross information potential (CIP). The introduced visualizations combine the low computational cost and kernel estimation properties of the representative CIP and the data structure representation of a single-linkage-based grouping algorithm to generate an enhanced SOM-based visualization. The visual quality of the IT-vis is assessed by comparing it with other visualization methods for several real-world and synthetic benchmark data sets. Thus, this paper also contains a significant literature survey. The experiments demonstrate the IT-vis cluster revealing capabilities, in which cluster boundaries are sharply captured. Additionally, the information-theoretic visualizations are used to perform clustering of the SOM. Compared with other methods, IT-vis of large SOMs yielded the best results in this paper, for which the quality of the final partitions was evaluated using external validity indices.
Adaptive density trajectory cluster based on time and space distance
NASA Astrophysics Data System (ADS)
Liu, Fagui; Zhang, Zhijie
2017-10-01
There are some hotspot problems remaining in trajectory cluster for discovering mobile behavior regularity, such as the computation of distance between sub trajectories, the setting of parameter values in cluster algorithm and the uncertainty/boundary problem of data set. As a result, based on the time and space, this paper tries to define the calculation method of distance between sub trajectories. The significance of distance calculation for sub trajectories is to clearly reveal the differences in moving trajectories and to promote the accuracy of cluster algorithm. Besides, a novel adaptive density trajectory cluster algorithm is proposed, in which cluster radius is computed through using the density of data distribution. In addition, cluster centers and number are selected by a certain strategy automatically, and uncertainty/boundary problem of data set is solved by designed weighted rough c-means. Experimental results demonstrate that the proposed algorithm can perform the fuzzy trajectory cluster effectively on the basis of the time and space distance, and obtain the optimal cluster centers and rich cluster results information adaptably for excavating the features of mobile behavior in mobile and sociology network.
Thermophysical properties of krypton-helium gas mixtures from ab initio pair potentials
2017-01-01
A new potential energy curve for the krypton-helium atom pair was developed using supermolecular ab initio computations for 34 interatomic distances. Values for the interaction energies at the complete basis set limit were obtained from calculations with the coupled-cluster method with single, double, and perturbative triple excitations and correlation consistent basis sets up to sextuple-zeta quality augmented with mid-bond functions. Higher-order coupled-cluster excitations up to the full quadruple level were accounted for in a scheme of successive correction terms. Core-core and core-valence correlation effects were included. Relativistic corrections were considered not only at the scalar relativistic level but also using full four-component Dirac–Coulomb and Dirac–Coulomb–Gaunt calculations. The fitted analytical pair potential function is characterized by a well depth of 31.42 K with an estimated standard uncertainty of 0.08 K. Statistical thermodynamics was applied to compute the krypton-helium cross second virial coefficients. The results show a very good agreement with the best experimental data. Kinetic theory calculations based on classical and quantum-mechanical approaches for the underlying collision dynamics were utilized to compute the transport properties of krypton-helium mixtures in the dilute-gas limit for a large temperature range. The results were analyzed with respect to the orders of approximation of kinetic theory and compared with experimental data. Especially the data for the binary diffusion coefficient confirm the predictive quality of the new potential. Furthermore, inconsistencies between two empirical pair potential functions for the krypton-helium system from the literature could be resolved. PMID:28595411
Thermophysical properties of krypton-helium gas mixtures from ab initio pair potentials
NASA Astrophysics Data System (ADS)
Jäger, Benjamin; Bich, Eckard
2017-06-01
A new potential energy curve for the krypton-helium atom pair was developed using supermolecular ab initio computations for 34 interatomic distances. Values for the interaction energies at the complete basis set limit were obtained from calculations with the coupled-cluster method with single, double, and perturbative triple excitations and correlation consistent basis sets up to sextuple-zeta quality augmented with mid-bond functions. Higher-order coupled-cluster excitations up to the full quadruple level were accounted for in a scheme of successive correction terms. Core-core and core-valence correlation effects were included. Relativistic corrections were considered not only at the scalar relativistic level but also using full four-component Dirac-Coulomb and Dirac-Coulomb-Gaunt calculations. The fitted analytical pair potential function is characterized by a well depth of 31.42 K with an estimated standard uncertainty of 0.08 K. Statistical thermodynamics was applied to compute the krypton-helium cross second virial coefficients. The results show a very good agreement with the best experimental data. Kinetic theory calculations based on classical and quantum-mechanical approaches for the underlying collision dynamics were utilized to compute the transport properties of krypton-helium mixtures in the dilute-gas limit for a large temperature range. The results were analyzed with respect to the orders of approximation of kinetic theory and compared with experimental data. Especially the data for the binary diffusion coefficient confirm the predictive quality of the new potential. Furthermore, inconsistencies between two empirical pair potential functions for the krypton-helium system from the literature could be resolved.
Padma 28 for intermittent claudication.
Morling, Joanne R; Maxwell, Heather; Stewart, Marlene
2013-07-16
Intermittent claudication is pain caused by chronic occlusive arterial disease that develops in a limb during exercise and is relieved with rest. Most drug treatments of intermittent claudication have a limited effect in improving walking distance. Padma 28, a Tibetan herbal preparation, has been used to treat intermittent claudication, but there is debate as to whether Padma 28 produces a clinical benefit beyond the placebo effect. To determine whether Padma 28 is effective, compared with placebo or other medications, in increasing pain-free and maximum walking distance for patients with intermittent claudication. The Cochrane Peripheral Vascular Diseases Group Trials Search Co-ordinator (TSC) searched the Specialised Register (last searched April 2013), CENTRAL (2013, Issue 3) and clinical trials databases. In addition, a pharmaceutical company was contacted. Randomised controlled trials of Padma 28 compared with placebo or other pharmacological treatments in people suffering from intermittent claudication. All review authors independently assessed the selected studies and extracted the data. Risk of bias was evaluated independently by two review authors. Depending on the data provided in the individual trials, we extracted mean or median walking distance at the end of the trial, or change in walking distance over the course of the trial, or both. Where not provided, and whenever possible, the statistical significance of differences in these parameters between treatment and placebo groups in individual trials was calculated. Where possible, data were combined by meta-analysis. Five trials involving 365 participants were identified. All trials compared Padma 28 with placebo for at least 16 weeks of follow-up. Pain-free and maximum walking distances both increased significantly in the groups treated with Padma 28, with no significant change in the placebo group. In general, the studies presented results comparing the treatment arms before and after treatment but made no comparisons between the Padma 28 and placebo groups. Pooled data of maximum walking distance after treatment with Padma 28 and placebo from two studies indicated a statistically significant difference in maximum walking distance (mean difference (MD) 95.97 m, 95% confidence interval (CI) 79.07 m to 112.88 m, P < 0.00001). The clinical importance of these observed changes in walking distance is unclear as no quality of life data were reported. There was no effect on ankle brachial index. Mild side effects, especially gastrointestinal discomfort, tiredness and skin eruption, were reported but this outcome was not statistically significantly different between the groups (odds ratio (OR) 1.09, 95% CI 0.42 to 2.83, P = 0.86). Some evidence exists from individual trials to suggest that Padma 28 may be effective in increasing walking distances, at least in the short term (four months), in people with intermittent claudication. Side effects do not appear to be a problem. However, the longer term effects of treatment are unknown and the clinical significance of the improvements in walking distance are questionable. Moreover, the quality of the evidence is limited by the small sample size of the available trials, lack of detail on key elements required to assess sources of bias, such as around randomisation and blinding, limited reporting of statistical analyses that compared treatment groups, and relatively high withdrawal rates that were linked to the outcome that is patients were withdrawn if they failed to improve walking distance. There was also evidence of publication bias. We therefore feel there is currently insufficient evidence to support the use of Padma 28 in the routine management of intermittent claudication. Further well-designed research would be required to determine the true effects of this herbal preparation.
47 CFR 73.6008 - Distance computations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Distance computations. 73.6008 Section 73.6008 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES... reference points must be calculated in accordance with § 73.208(c) of this part. ...
Measuring Distance of Fuzzy Numbers by Trapezoidal Fuzzy Numbers
NASA Astrophysics Data System (ADS)
Hajjari, Tayebeh
2010-11-01
Fuzzy numbers and more generally linguistic values are approximate assessments, given by experts and accepted by decision-makers when obtaining value that is more accurate is impossible or unnecessary. Distance between two fuzzy numbers plays an important role in linguistic decision-making. It is reasonable to define a fuzzy distance between fuzzy objects. To achieve this aim, the researcher presents a new distance measure for fuzzy numbers by means of improved centroid distance method. The metric properties are also studied. The advantage is the calculation of the proposed method is far simple than previous approaches.
Distance to Care, Facility Delivery and Early Neonatal Mortality in Malawi and Zambia
Lohela, Terhi J.; Campbell, Oona M. R.; Gabrysch, Sabine
2012-01-01
Background Globally, approximately 3 million babies die annually within their first month. Access to adequate care at birth is needed to reduce newborn as well as maternal deaths. We explore the influence of distance to delivery care and of level of care on early neonatal mortality in rural Zambia and Malawi, the influence of distance (and level of care) on facility delivery, and the influence of facility delivery on early neonatal mortality. Methods and Findings National Health Facility Censuses were used to classify the level of obstetric care for 1131 Zambian and 446 Malawian delivery facilities. Straight-line distances to facilities were calculated for 3771 newborns in the 2007 Zambia DHS and 8842 newborns in the 2004 Malawi DHS. There was no association between distance to care and early neonatal mortality in Malawi (OR 0.97, 95%CI 0.58–1.60), while in Zambia, further distance (per 10 km) was associated with lower mortality (OR 0.55, 95%CI 0.35–0.87). The level of care provided in the closest facility showed no association with early neonatal mortality in either Malawi (OR 1.02, 95%CI 0.90–1.16) or Zambia (OR 1.02, 95%CI 0.82–1.26). In both countries, distance to care was strongly associated with facility use for delivery (Malawi: OR 0.35 per 10km, 95%CI 0.26–0.46). All results are adjusted for available confounders. Early neonatal mortality did not differ by frequency of facility delivery in the community. Conclusions While better geographic access and higher level of care were associated with more frequent facility delivery, there was no association with lower early neonatal mortality. This could be due to low quality of care for newborns at health facilities, but differential underreporting of early neonatal deaths in the DHS is an alternative explanation. Improved data sources are needed to monitor progress in the provision of obstetric and newborn care and its impact on mortality. PMID:23300599
On-line Adaptive Radiation Treatment of Prostate Cancer
2008-01-01
novel imaging system using a linear x-ray source and a linear detector . This imaging system may significantly improve the quality of online images...yielded the Euclidean voxel distances nside the ROI. The two distance maps were combined with ositive distances outside and negative distances inside...is reduced by 1cm. IMRT is more sensitive to organ motion. Large discrepancies of bladder and rectum doses were observed compared to the actual
ERIC Educational Resources Information Center
Portugal, Lisa Marie
2006-01-01
This paper discusses the enormous impact distance learning has had on traditional higher education and addresses emerging leadership roles. The writer will address and discuss qualities that are necessary for leaders and the success of their distance education initiatives. Topics discussed include critical issues relating to the evolution and…
The Distance Education and Training Council Salutes the 1997 Outstanding Graduates.
ERIC Educational Resources Information Center
Accrediting Commission of the Distance Education and Training Council, Washington, DC.
This booklet recognizes the achievements of 23 exceptional distance study graduates who were selected by the distance education institutions they attended. Selection criteria include the graduates' academic records and the level and quality of their contribution to society and to their chosen profession. Brief biographies are provided for the 23…
Distance Teaching: A Catalyst for Curriculum Change for Introducing Vocational Subjects.
ERIC Educational Resources Information Center
Jenkins, Janet; And Others
Distance education offers a set of techniques through which new content can be rapidly and effectively introduced into schools. Its growing importance is due to these key factors: educational expansion, democratization of education, improving quality, and reducing costs. If distance teaching methods are to be used successfully for curriculum…
ERIC Educational Resources Information Center
Ashcroft, Judy Copeland
2013-01-01
In American universities, early distance education needed both continuing education and academic departments for establishing institutional cooperation, developing quality standards, adapting to change, and finding a funding model. Today, the Internet and the need for additional revenue are driving new distance education models.
Providing Quality Laboratories to Long-Distance Educational Programs.
ERIC Educational Resources Information Center
Gammon, Tammy; Sutton, John
2003-01-01
North Carolina State University (UNC) has been on the forefront of long-distance education by offering a Bachelor of Science in Engineering with a Mechatronics Concentration at its remote campus located at UNC Asheville. The program demonstrates that long-distance laboratories are feasible and should not be a stumbling block to offering…
Term Length as an Indicator of Attrition in Online Learning
ERIC Educational Resources Information Center
Diaz, David; Cartnal, Ryan
2006-01-01
Distance education cannot escape comparisons to traditional classes, and critics of distance education frequently point to the higher drop rate in distance education as evidence of its lower educational quality. While David Diaz and Ryan Cartnal note that this conclusion is a debatable one, they acknowledge that reducing drop rates in online…
Impact of contact lens zone geometry and ocular optics on bifocal retinal image quality
Bradley, Arthur; Nam, Jayoung; Xu, Renfeng; Harman, Leslie; Thibos, Larry
2014-01-01
Purpose To examine the separate and combined influences of zone geometry, pupil size, diffraction, apodisation and spherical aberration on the optical performance of concentric zonal bifocals. Methods Zonal bifocal pupil functions representing eye + ophthalmic correction were defined by interleaving wavefronts from separate optical zones of the bifocal. A two-zone design (a central circular inner zone surrounded by an annular outer-zone which is bounded by the pupil) and a five-zone design (a central small circular zone surrounded by four concentric annuli) were configured with programmable zone geometry, wavefront phase and pupil transmission characteristics. Using computational methods, we examined the effects of diffraction, Stiles Crawford apodisation, pupil size and spherical aberration on optical transfer functions for different target distances. Results Apodisation alters the relative weighting of each zone, and thus the balance of near and distance optical quality. When spherical aberration is included, the effective distance correction, add power and image quality depend on zone-geometry and Stiles Crawford Effect apodisation. When the outer zone width is narrow, diffraction limits the available image contrast when focused, but as pupil dilates and outer zone width increases, aberrations will limit the best achievable image quality. With two-zone designs, balancing near and distance image quality is not achieved with equal area inner and outer zones. With significant levels of spherical aberration, multi-zone designs effectively become multifocals. Conclusion Wave optics and pupil varying ocular optics significantly affect the imaging capabilities of different optical zones of concentric bifocals. With two-zone bifocal designs, diffraction, pupil apodisation spherical aberration, and zone size influence both the effective add power and the pupil size required to balance near and distance image quality. Five-zone bifocal designs achieve a high degree of pupil size independence, and thus will provide more consistent performance as pupil size varies with light level and convergence amplitude. PMID:24588552
ERIC Educational Resources Information Center
Miles, Jessica A.
2014-01-01
The purpose of this research was to identify the impact of students' choice of time of day for class activity and their sleep quality on academic performance in multidisciplinary distance education courses at a southeastern U.S. state college. The research addressed the relationship of other individual student characteristics (i.e., age, gender,…
Influence of scanning parameters on the estimation accuracy of control points of B-spline surfaces
NASA Astrophysics Data System (ADS)
Aichinger, Julia; Schwieger, Volker
2018-04-01
This contribution deals with the influence of scanning parameters like scanning distance, incidence angle, surface quality and sampling width on the average estimated standard deviations of the position of control points from B-spline surfaces which are used to model surfaces from terrestrial laser scanning data. The influence of the scanning parameters is analyzed by the Monte Carlo based variance analysis. The samples were generated for non-correlated and correlated data, leading to the samples generated by Latin hypercube and replicated Latin hypercube sampling algorithms. Finally, the investigations show that the most influential scanning parameter is the distance from the laser scanner to the object. The angle of incidence shows a significant effect for distances of 50 m and longer, while the surface quality contributes only negligible effects. The sampling width has no influence. Optimal scanning parameters can be found in the smallest possible object distance at an angle of incidence close to 0° in the highest surface quality. The consideration of correlations improves the estimation accuracy and underlines the importance of complete stochastic models for TLS measurements.
Evaluation on Cost Overrun Risks of Long-distance Water Diversion Project Based on SPA-IAHP Method
NASA Astrophysics Data System (ADS)
Yuanyue, Yang; Huimin, Li
2018-02-01
Large investment, long route, many change orders and etc. are main causes for costs overrun of long-distance water diversion project. This paper, based on existing research, builds a full-process cost overrun risk evaluation index system for water diversion project, apply SPA-IAHP method to set up cost overrun risk evaluation mode, calculate and rank weight of every risk evaluation indexes. Finally, the cost overrun risks are comprehensively evaluated by calculating linkage measure, and comprehensive risk level is acquired. SPA-IAHP method can accurately evaluate risks, and the reliability is high. By case calculation and verification, it can provide valid cost overrun decision making information to construction companies.
Sun, Fei; Xu, Bing; Zhang, Yi; Dai, Shengyun; Yang, Chan; Cui, Xianglong; Shi, Xinyuan; Qiao, Yanjiang
2016-01-01
The quality of Chinese herbal medicine tablets suffers from batch-to-batch variability due to a lack of manufacturing process understanding. In this paper, the Panax notoginseng saponins (PNS) immediate release tablet was taken as the research subject. By defining the dissolution of five active pharmaceutical ingredients and the tablet tensile strength as critical quality attributes (CQAs), influences of both the manipulated process parameters introduced by an orthogonal experiment design and the intermediate granules' properties on the CQAs were fully investigated by different chemometric methods, such as the partial least squares, the orthogonal projection to latent structures, and the multiblock partial least squares (MBPLS). By analyzing the loadings plots and variable importance in the projection indexes, the granule particle sizes and the minimal punch tip separation distance in tableting were identified as critical process parameters. Additionally, the MBPLS model suggested that the lubrication time in the final blending was also important in predicting tablet quality attributes. From the calculated block importance in the projection indexes, the tableting unit was confirmed to be the critical process unit of the manufacturing line. The results demonstrated that the combinatorial use of different multivariate modeling methods could help in understanding the complex process relationships as a whole. The output of this study can then be used to define a control strategy to improve the quality of the PNS immediate release tablet.
NASA Astrophysics Data System (ADS)
Munoz, Joshua
The primary focus of this research is evaluation of feasibility, applicability, and accuracy of Doppler Light Detection And Ranging (LIDAR) sensors as non-contact means for measuring track speed, distance traveled, and curvature. Speed histories, currently measured with a rotary, wheelmounted encoder, serve a number of useful purposes, one significant use involving derailment investigations. Distance calculation provides a spatial reference system for operators to locate track sections of interest. Railroad curves, using an IMU to measure curvature, are monitored to maintain track infrastructure within regulations. Speed measured with high accuracy leads to highfidelity distance and curvature data through utilization of processor clock rate and left-and rightrail speed differentials during curve navigation, respectively. Wheel-mounted encoders, or tachometers, provide a relatively low-resolution speed profile, exhibit increased noise with increasing speed, and are subject to the inertial behavior of the rail car which affects output data. The IMU used to measure curvature is dependent on acceleration and yaw rate sensitivity and experiences difficulty in low-speed conditions. Preliminary system tests onboard a "Hy-Rail" utility vehicle capable of traveling on rail show speed capture is possible using the rails as the reference moving target and furthermore, obtaining speed profiles from both rails allows for the calculation of speed differentials in curves to estimate degrees curvature. Ground truth distance calibration and curve measurement were also carried out. Distance calibration involved placement of spatial landmarks detected by a sensor to synchronize distance measurements as a pre-processing procedure. Curvature ground truth measurements provided a reference system to confirm measurement results and observe alignment variation throughout a curve. Primary testing occurred onboard a track geometry rail car, measuring rail speed over substantial mileage in various weather conditions, providing highaccuracy data to further calculate distance and curvature along the test routes. Tests results indicate the LIDAR system measures speed at higher accuracy than the encoder, absent of noise influenced by increasing speed. Distance calculation is also high in accuracy, results showing high correlation with encoder and ground truth data. Finally, curvature calculation using speed data is shown to have good correlation with IMU measurements and a resolution capable of revealing localized track alignments. Further investigations involve a curve measurement algorithm and speed calibration method independent from external reference systems, namely encoder and ground truth data. The speed calibration results show a high correlation with speed data from the track geometry vehicle. It is recommended that the study be extended to provide assessment of the LIDAR's sensitivity to car body motion in order to better isolate the embedded behavior in the speed and curvature profiles. Furthermore, in the interest of progressing the system toward a commercially viable unit, methods for self-calibration and pre-processing to allow for fully independent operation is highly encouraged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belley, MD; Current Address Rhode Island Hospital, Providence, RI; Faught, A
Purpose: Development of a novel on-line dosimetry tool is needed to move toward patient-specific quality assurance measurements for Ir-192 HDR brachytherapy to verify accurate dose delivery to the intended location. This work describes the development and use of a nano-crystalline yttrium oxide inorganic scintillator based optical-fiber detector capable of acquiring real-time high-precision dose measurements during tandem and ovoid (T&O) gynecological (GYN) applicator Ir-192 HDR brachytherapy procedures. Methods: An optical-fiber detector was calibrated by acquiring light output measurements in liquid water at 3, 5, 7, and 9cm radial source-detector-distances from an Ir-192 HDR source. A regression model was fit to themore » data to describe the relative light output per unit dose (TG-43 derived) as a function of source-detector-distance. Next, the optical-fiber detector was attached to a vaginal balloon fixed to a Varian Fletcher-Suit-Delclos-style applicator (to mimic clinical setup), and localized by acquiring high-resolution computed tomography (CT) images. To compare the physical point dose to the TPS calculated values (TG-43 and Acuros-BV), a phantom measurement was performed, by submerging the T&O applicator in a liquid water bath and delivering a treatment template representative of a clinical T&O procedure. The fiber detector collected scintillation signal as a function of time, and the calibration data was applied to calculate both real-time dose rate, and cumulative dose. Results: Fiber cumulative dose values were 100.0cGy, 94.3cGy, and 348.9cGy from the tandem, left ovoid, and right ovoid dwells, respectively (total of 443.2cGy). A plot of real time dose rate during the treatment was also acquired. The TPS values at the fiber location were 458.4cGy using TG-43, and 437.6cGy using Acuros-BV calculated as Dm,m (per TG-186). Conclusion: The fiber measured dose value agreement was 3% vs TG-43 and −1% vs Acuros-BV. This fiber detector opens up new possibilities for performing patient-specific quality assurance for Ir-192 HDR GYN procedures. Funding from Coulter Foundation, Duke Bio-medical Engineering. Company is being created around the detector technology. Duke holds patents on the technology.« less
Reyes-Centeno, Hugo; Ghirotto, Silvia; Harvati, Katerina
2017-01-01
In modern humans, the significant correlation between neutral genetic loci and cranial anatomy suggests that the cranium preserves a population history signature. However, there is disagreement on whether certain parts of the cranium preserve this signature to a greater degree than other parts. It is also unclear how different quantitative measures of phenotype affect the association of genetic variation and anatomy. Here, we revisit these matters by testing the correlation of genetic distances and various phenotypic distances for ten modern human populations. Geometric morphometric shape data from the crania of adult individuals (n = 224) are used to calculate phenotypic P ST , Procrustes, and Mahalanobis distances. We calculate their correlation to neutral genetic distances, F ST , derived from single nucleotide polymorphisms (SNPs). We subset the cranial data into landmark configurations that include the neurocranium, the face, and the temporal bone in order to evaluate whether these cranial regions are differentially correlated to neutral genetic variation. Our results show that P ST , Mahalanobis, and Procrustes distances are correlated with F ST distances to varying degrees. They indicate that overall cranial shape is significantly correlated with neutral genetic variation. Of the component parts examined, P ST distances for both the temporal bone and the face have a stronger association with F ST distances than the neurocranium. When controlling for population divergence time, only the whole cranium and the temporal bone have a statistically significant association with F ST distances. Our results confirm that the cranium, as a whole, and the temporal bone can be used to reconstruct modern human population history. © 2016 Wiley Periodicals, Inc.
Growth in Head Size during Infancy: Implications for Sound Localization.
ERIC Educational Resources Information Center
Clifton, Rachel K.; And Others
1988-01-01
Compared head circumference and interaural distance in infants between birth and 22 weeks of age and in a small sample of preschool children and adults. Calculated changes in interaural time differences according to age. Found a large shift in distance. (SKC)
Maintaining data integrity in a rural clinical trial.
Van den Broeck, Jan; Mackay, Melanie; Mpontshane, Nontobeko; Kany Kany Luabeya, Angelique; Chhagan, Meera; Bennish, Michael L
2007-01-01
Clinical trials conducted in rural resource-poor settings face special challenges in ensuring quality of data collection and handling. The variable nature of these challenges, ways to overcome them, and the resulting data quality are rarely reported in the literature. To provide a detailed example of establishing local data handling capacity for a clinical trial conducted in a rural area, highlight challenges and solutions in establishing such capacity, and to report the data quality obtained by the trial. We provide a descriptive case study of a data system for biological samples and questionnaire data, and the problems encountered during its implementation. To determine the quality of data we analyzed test-retest studies using Kappa statistics of inter- and intra-observer agreement on categorical data. We calculated Technical Errors of Measurement of anthropometric measurements, audit trail analysis was done to assess error correction rates, and residual error rates were calculated by database-to-source document comparison. Initial difficulties included the unavailability of experienced research nurses, programmers and data managers in this rural area and the difficulty of designing new software tools and a complex database while making them error-free. National and international collaboration and external monitoring helped ensure good data handling and implementation of good clinical practice. Data collection, fieldwork supervision and query handling depended on streamlined transport over large distances. The involvement of a community advisory board was helpful in addressing cultural issues and establishing community acceptability of data collection methods. Data accessibility for safety monitoring required special attention. Kappa values and Technical Errors of Measurement showed acceptable values. Residual error rates in key variables were low. The article describes the experience of a single-site trial and does not address challenges particular to multi-site trials. Obtaining and maintaining data integrity in rural clinical trials is feasible, can result in acceptable data quality and can be used to develop capacity in developing country sites. It does, however, involve special challenges and requirements.
NASA Astrophysics Data System (ADS)
Minakova, E. A.; Shlychkov, A. P.; Arinina, A. V.
2018-01-01
The urban environment is a complex of natural, natural-anthropogenic and socioeconomic factors that exert a large and diverse impact on urban residents. In addition to traditional environmental monitoring, we propose to use a new bioindication method based on the evaluation of morphological changes in the leaves of Betula pendula Roth by fluctuating asymmetry (FA) to assess the quality of recreational areas. Such screening for the purpose of assessing of the environment state is very informative, since the bioindication assessment is an integral characteristic of the quality of the environment which is under the influence of all the abundance of chemical, physical and other factors. The two-sided symmetry of a leaf was calculated on the sites in the middle of the park zone, on the border of the park and on a roadside strip. The results of the study showed a connection between the FA values and the distance to the highway, and also revealed the absence of significant differences in FA indicators at the surveyed sites, which may indicate insufficient sizes of recreational areas and their insufficient potential to contribute to improving the quality of the environment.
Impact of 4D image quality on the accuracy of target definition.
Nielsen, Tine Bjørn; Hansen, Christian Rønn; Westberg, Jonas; Hansen, Olfred; Brink, Carsten
2016-03-01
Delineation accuracy of target shape and position depends on the image quality. This study investigates whether the image quality on standard 4D systems has an influence comparable to the overall delineation uncertainty. A moving lung target was imaged using a dynamic thorax phantom on three different 4D computed tomography (CT) systems and a 4D cone beam CT (CBCT) system using pre-defined clinical scanning protocols. Peak-to-peak motion and target volume were registered using rigid registration and automatic delineation, respectively. A spatial distribution of the imaging uncertainty was calculated as the distance deviation between the imaged target and the true target shape. The measured motions were smaller than actual motions. There were volume differences of the imaged target between respiration phases. Imaging uncertainties of >0.4 cm were measured in the motion direction which showed that there was a large distortion of the imaged target shape. Imaging uncertainties of standard 4D systems are of similar size as typical GTV-CTV expansions (0.5-1 cm) and contribute considerably to the target definition uncertainty. Optimising and validating 4D systems is recommended in order to obtain the most optimal imaged target shape.
Na, Hyuntae; Song, Guang
2015-07-01
In a recent work we developed a method for deriving accurate simplified models that capture the essentials of conventional all-atom NMA and identified two best simplified models: ssNMA and eANM, both of which have a significantly higher correlation with NMA in mean square fluctuation calculations than existing elastic network models such as ANM and ANMr2, a variant of ANM that uses the inverse of the squared separation distances as spring constants. Here, we examine closely how the performance of these elastic network models depends on various factors, namely, the presence of hydrogen atoms in the model, the quality of input structures, and the effect of crystal packing. The study reveals the strengths and limitations of these models. Our results indicate that ssNMA and eANM are the best fine-grained elastic network models but their performance is sensitive to the quality of input structures. When the quality of input structures is poor, ANMr2 is a good alternative for computing mean-square fluctuations while ANM model is a good alternative for obtaining normal modes. © 2015 Wiley Periodicals, Inc.
Assessment of tools for protection of quality of water: Uncontrollable discharges of pollutants.
Dehghani Darmian, Mohsen; Hashemi Monfared, Seyed Arman; Azizyan, Gholamreza; Snyder, Shane A; Giesy, John P
2018-06-06
Selecting an appropriate crisis management plans during uncontrollable loading of pollution to water systems is crucial. In this research the quality of water resources against uncontrollable pollution is protected by use of suitable tools. Case study which was chosen in this investigation was a river-reservoir system. Analytical and numerical solutions of pollutant transport equation were considered as the simulation strategy to calculate the efficient tools to protect water quality. These practical instruments are dilution flow and a new tool called detention time which is proposed and simulated for the first time in this study. For uncontrollable pollution discharge which was approximately 130% of the river's assimilation capacity, as long as the duration of contact (T c ) was considered as a constraint, by releasing 30% of the base flow of the river from the upstream dilution reservoir, the unallowable pollution could be treated. Moreover, when the affected distance (X c ) was selected as a constraint, the required detention time that the rubber dam should detained the water to be treated was equal to 187% of the initial duration of contact. Copyright © 2018 Elsevier Inc. All rights reserved.
Winkler, Peter; Zurl, Brigitte; Guss, Helmuth; Kindl, Peter; Stuecklschweiger, Georg
2005-02-21
A system for dosimetric verification of intensity-modulated radiotherapy (IMRT) treatment plans using absolute calibrated radiographic films is presented. At our institution this verification procedure is performed for all IMRT treatment plans prior to patient irradiation. Therefore clinical treatment plans are transferred to a phantom and recalculated. Composite treatment plans are irradiated to a single film. Film density to absolute dose conversion is performed automatically based on a single calibration film. A software application encompassing film calibration, 2D registration of measurement and calculated distributions, image fusion, and a number of visual and quantitative evaluation utilities was developed. The main topic of this paper is a performance analysis for this quality assurance procedure, with regard to the specification of tolerance levels for quantitative evaluations. Spatial and dosimetric precision and accuracy were determined for the entire procedure, comprising all possible sources of error. The overall dosimetric and spatial measurement uncertainties obtained thereby were 1.9% and 0.8 mm respectively. Based on these results, we specified 5% dose difference and 3 mm distance-to-agreement as our tolerance levels for patient-specific quality assurance for IMRT treatments.
An improved approach to the analysis of drug-protein binding by distance geometry
NASA Technical Reports Server (NTRS)
Goldblum, A.; Kieber-Emmons, T.; Rein, R.
1986-01-01
The calculation of side chain centers of coordinates and the subsequent generation of side chain-side chain and side chain-backbone distance matrices is suggested as an improved method for viewing interactions inside proteins and for the comparison of protein structures. The use of side chain distance matrices is demonstrated with free PTI, and the use of difference distance matrices for side chains is shown for free and trypsin-bound PTI as well as for the X-ray structures of trypsin complexes with PTI and with benzamidine. It is found that conformational variations are reflected in the side chain distance matrices much more than in the standard C-C distance representations.
Time Variation of the Distance Separating Bomb and Dive Bomber Subsequent to Bomb Release
NASA Technical Reports Server (NTRS)
Mathews, Charles W.
1952-01-01
A study has been made of the variation of the distance separating bomb and aircraft with time after release as applied to dive-bombing operations, Separation distances determined from this study are presented in terms of two variables only, dive angle and maximum airplane accelerometer reading; the values of separation distance include the effects of delay in initiation of the pull-out and lag in attainment of the maximum normal acceleration.Contains analysis and calculations of the separation distances between bomb and dive bomber following bomb release, Separation distances as determined by the dive angle and the maximum airplane accelerometer reading are presented in a single chart.
Evaluation of Distance Course Effectiveness - Exploring the Quality of Interactive Processes
NASA Astrophysics Data System (ADS)
Botelho, Francisco Villa Ulhôa; Vicari, Rosa Maria
Understanding the dynamics of learning processes implies an understanding of their components: individuals, environment or context and mediation. It is known that distance learning (DL) has a distinctive characteristic in relation to the mediation component. Due to the need of overcoming the barriers of distance and time, DL intensively uses information and communication technologies (ICT) to perform interactive processes. Construction of effective learning environments depends on human relationships. It also depends on the emotionality placed on such relationships. Therefore, knowing how to act in virtual environments in the sense of creating the required ambiance for animation of learning processes has a unique importance. This is the theme of this study. Its general objectives were achieved and can be summarized as follows: analyze indexes that are significant for evaluations of distance course effectiveness; investigate to which extent effectiveness of DL courses is correlated with quality of interactive processes; search characteristics of the conversations by individuals interacting in study groups that are formed in virtual environments, which may contribute to effectiveness of distance courses.
Stow, Sarah M; Goodwin, Cody R; Kliman, Michal; Bachmann, Brian O; McLean, John A; Lybrand, Terry P
2014-12-04
Ion mobility-mass spectrometry (IM-MS) allows the separation of ionized molecules based on their charge-to-surface area (IM) and mass-to-charge ratio (MS), respectively. The IM drift time data that is obtained is used to calculate the ion-neutral collision cross section (CCS) of the ionized molecule with the neutral drift gas, which is directly related to the ion conformation and hence molecular size and shape. Studying the conformational landscape of these ionized molecules computationally provides interpretation to delineate the potential structures that these CCS values could represent, or conversely, structural motifs not consistent with the IM data. A challenge in the IM-MS community is the ability to rapidly compute conformations to interpret natural product data, a class of molecules exhibiting a broad range of biological activity. The diversity of biological activity is, in part, related to the unique structural characteristics often observed for natural products. Contemporary approaches to structurally interpret IM-MS data for peptides and proteins typically utilize molecular dynamics (MD) simulations to sample conformational space. However, MD calculations are computationally expensive, they require a force field that accurately describes the molecule of interest, and there is no simple metric that indicates when sufficient conformational sampling has been achieved. Distance geometry is a computationally inexpensive approach that creates conformations based on sampling different pairwise distances between the atoms within the molecule and therefore does not require a force field. Progressively larger distance bounds can be used in distance geometry calculations, providing in principle a strategy to assess when all plausible conformations have been sampled. Our results suggest that distance geometry is a computationally efficient and potentially superior strategy for conformational analysis of natural products to interpret gas-phase CCS data.
2015-01-01
Ion mobility-mass spectrometry (IM-MS) allows the separation of ionized molecules based on their charge-to-surface area (IM) and mass-to-charge ratio (MS), respectively. The IM drift time data that is obtained is used to calculate the ion-neutral collision cross section (CCS) of the ionized molecule with the neutral drift gas, which is directly related to the ion conformation and hence molecular size and shape. Studying the conformational landscape of these ionized molecules computationally provides interpretation to delineate the potential structures that these CCS values could represent, or conversely, structural motifs not consistent with the IM data. A challenge in the IM-MS community is the ability to rapidly compute conformations to interpret natural product data, a class of molecules exhibiting a broad range of biological activity. The diversity of biological activity is, in part, related to the unique structural characteristics often observed for natural products. Contemporary approaches to structurally interpret IM-MS data for peptides and proteins typically utilize molecular dynamics (MD) simulations to sample conformational space. However, MD calculations are computationally expensive, they require a force field that accurately describes the molecule of interest, and there is no simple metric that indicates when sufficient conformational sampling has been achieved. Distance geometry is a computationally inexpensive approach that creates conformations based on sampling different pairwise distances between the atoms within the molecule and therefore does not require a force field. Progressively larger distance bounds can be used in distance geometry calculations, providing in principle a strategy to assess when all plausible conformations have been sampled. Our results suggest that distance geometry is a computationally efficient and potentially superior strategy for conformational analysis of natural products to interpret gas-phase CCS data. PMID:25360896
Lu, Haiting; Huang, Xiaoqin; AbdulHameed, Mohamed Diwan M; Zhan, Chang-Guo
2014-04-01
Molecular dynamics (MD) simulations and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations have been performed to explore the dynamic behaviors of cytochrome P450 2A6 (CYP2A6) binding with nicotine analogs (that are typical inhibitors) and to calculate their binding free energies in combination with Poisson-Boltzmann surface area (PBSA) calculations. The combined MD simulations and QM/MM-PBSA calculations reveal that the most important structural parameters affecting the CYP2A6-inhibitor binding affinity are two crucial internuclear distances, that is, the distance between the heme iron atom of CYP2A6 and the coordinating atom of the inhibitor, and the hydrogen-bonding distance between the N297 side chain of CYP2A6 and the pyridine nitrogen of the inhibitor. The combined MD simulations and QM/MM-PBSA calculations have led to dynamic CYP2A6-inhibitor binding structures that are consistent with the observed dynamic behaviors and structural features of CYP2A6-inhibitor binding, and led to the binding free energies that are in good agreement with the experimentally-derived binding free energies. The agreement between the calculated binding free energies and the experimentally-derived binding free energies suggests that the combined MD and QM/MM-PBSA approach may be used as a valuable tool to accurately predict the CYP2A6-inhibitor binding affinities in future computational design of new, potent and selective CYP2A6 inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nutaro, James; Kuruganti, Teja
2017-02-24
Numerical simulations of the wave equation that are intended to provide accurate time domain solutions require a computational mesh with grid points separated by a distance less than the wavelength of the source term and initial data. However, calculations of radio signal pathloss generally do not require accurate time domain solutions. This paper describes an approach for calculating pathloss by using the finite difference time domain and transmission line matrix models of wave propagation on a grid with points separated by distances much greater than the signal wavelength. The calculated pathloss can be kept close to the true value formore » freespace propagation with an appropriate selection of initial conditions. This method can also simulate diffraction with an error governed by the ratio of the signal wavelength to the grid spacing.« less
Skyshine at neutron energies less than or equal to 400 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alsmiller, A.G. Jr.; Barish, J.; Childs, R.L.
1980-10-01
The dose equivalent at an air-ground interface as a function of distance from an assumed azimuthally symmetric point source of neutrons can be calculated as a double integral. The integration is over the source strength as a function of energy and polar angle weighted by an importance function that depends on the source variables and on the distance from the source to the filed point. The neutron importance function for a source 15 m above the ground emitting only into the upper hemisphere has been calculated using the two-dimensional discrete ordinates code, DOT, and the first collision source code, GRTUNCL,more » in the adjoint mode. This importance function is presented for neutron energies less than or equal to 400 MeV, for source cosine intervals of 1 to .8, .8 to .6 to .4, .4 to .2 and .2 to 0, and for various distances from the source to the field point. As part of the adjoint calculations a photon importance function is also obtained. This importance function for photon energies less than or equal to 14 MEV and for various source cosine intervals and source-to-field point distances is also presented. These importance functions may be used to obtain skyshine dose equivalent estimates for any known source energy-angle distribution.« less
Both, Stefan; Alecu, Ionut M; Stan, Andrada R; Alecu, Marius; Ciura, Andrei; Hansen, Jeremy M; Alecu, Rodica
2007-03-07
An effective patient quality assurance (QA) program for intensity-modulated radiation therapy (IMRT) requires accurate and realistic plan acceptance criteria--that is, action limits. Based on dose measurements performed with a commercially available two-dimensional (2D) diode array, we analyzed 747 fluence maps resulting from a routine patient QA program for IMRT plans. The fluence maps were calculated by three different commercially available (ADAC, CMS, Eclipse) treatment planning systems (TPSs) and were delivered using 6-MV X-ray beams produced by linear accelerators. To establish reasonably achievable and clinically acceptable limits for the dose deviations, the agreement between the measured and calculated fluence maps was evaluated in terms of percent dose error (PDE) for a few points and percent of passing points (PPP) for the isodose distribution. The analysis was conducted for each TPS used in the study (365 ADAC, 162 CMS,220 Eclipse), for multiple treatment sites (prostate, pelvis, head and neck, spine, rectum, anus, lung, brain), at the normalization point for 3% percentage difference (%Diff) and 3-mm distance to agreement (DTA) criteria. We investigated the treatment-site dependency of PPP and PDE. The results show that, at 3% and 3-mm criteria, a 95% PPP and 3% PDE can be achieved for prostate treatments and a 90% PPP and 5% PDE are attainable for any treatment site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karthikeyan, N; Ganesh, K M; Vikraman, S
2014-06-15
Purpose: To evaluate the angular dependence correction for Matrix Evolution 2D array detector in quality assurance of volumetric modulated arc therapy(VMAT). Methods: Total ten patients comprising of different sites were planned for VMAT and taken for the study. Each plan was exposed on Matrix Evolution 2D array detector with Omnipro IMRT software based on the following three different methods using 6MV photon beams from Elekta Synergy linear accelerator. First method, VMAT plan was delivered on Matrix Evolution detector as it gantry mounted with dedicated holder with build-up of 2.3cm. Second, the VMAT plan was delivered with the static gantry anglemore » on to the table mounted setup. Third, the VMAT plan was delivered with actual gantry angle on Matrix Evolution detector fixed in Multicube phantom with gantry angle sensor and angular dependence correction were applied to quantify the plan quality. For all these methods, the corresponding QA plans were generated in TPS and the dose verification was done for both point and 2D fluence analysis with pass criteria of 3% dose difference and 3mm distance to agreement. Results: The measured point dose variation for the first method was observed as 1.58±0.6% of mean and SD with TPS calculated. For second and third method, the mean and standard deviation(SD) was observed as 1.67±0.7% and 1.85±0.8% respectively. The 2D fluence analysis of measured and TPS calculated has the mean and SD of 97.9±1.1%, 97.88±1.2% and 97.55±1.3% for first, second and third methods respectively. The calculated two-tailed Pvalue for point dose and 2D fluence analysis shows the insignificance with values of 0.9316 and 0.9015 respectively, among the different methods of QA. Conclusion: The qualitative evaluation of angular dependence correction for Matrix Evolution 2D array detector shows its competency in accuracy of quality assurance measurement of composite dose distribution of volumetric modulated arc therapy.« less
The Changeable Block Distance System Analysis
NASA Astrophysics Data System (ADS)
Lewiński, Andrzej; Toruń, Andrzej
The paper treats about efficiency analysis in Changeable Block Distance (CBD) System connected with wireless positioning and control of train. The analysis is based on modeling of typical ERTMS line and comparison with actual and future traffic. The calculations are related to assumed parameters of railway traffic corresponding to real time - table of distance Psary - Góra Włodowska from CMK line equipped in classic, ETCS Level 1 and ETCS with CBD systems.
Evidence for asymptotic safety from lattice quantum gravity.
Laiho, J; Coumbe, D
2011-10-14
We calculate the spectral dimension for nonperturbative quantum gravity defined via Euclidean dynamical triangulations. We find that it runs from a value of ∼3/2 at short distance to ∼4 at large distance scales, similar to results from causal dynamical triangulations. We argue that the short-distance value of 3/2 for the spectral dimension may resolve the tension between asymptotic safety and the holographic principle.
Television, Learning and Distance Education. IET Paper No. 262.
ERIC Educational Resources Information Center
Bates, A. W.
This lecture considers the effectiveness of television as a medium for distance education in light of the experiences of the Open University in Great Britain. The main theses of the paper are that television is an important component of high quality open and distance education, but only when its unique teaching characteristics are exploited, and…
ERIC Educational Resources Information Center
Chacon-Duque, Fabio J.
The factors that determine course completion and achievement in college distance education were investigated using a sample of 25 courses offered through the Independent Learning Program at the Pennsylvania State University. The main objective was to develop a multivariate model to explain and predict outcomes of distance education. Additional…
Towards Ubiquitous Communication Support for Distance Education with Alert Management
ERIC Educational Resources Information Center
Chiu, Dickson K. W.; Choi, Samuel P. M.; Wang, Minhong; Kafeza, Eleanna
2008-01-01
In distance education, communications among students, educators, and administrators have been one of the most important problems. The distance education programs in The Open University of Hong Kong (OUHK) span not only Hong Kong but also many cities over a large area in China. To improve and monitor the quality of communications among students,…
ERIC Educational Resources Information Center
Macmullen, Paul
The main focus of this document is on audioconferencing, which in distance education contexts provides "virtual" interaction equivalent in quality to face-to-face, conventional classroom interaction. The applications of audiotape and audio broadcast are covered only briefly. Discussion first includes reasons for using audioconferencing…
The Provision of Distance Learning in Italy (Summary Report).
ERIC Educational Resources Information Center
Osbat, Luciano
A study examined the volume and quality of distance training in Italy, the bodies most directly interested, and problems and trends. Two factors were singled out that not only led to greater interest in distance training between 1970 and 1980 but also to the first experiments being carried out--the economic crisis and the modernization process.…
Structural model of dioxouranium(VI) with hydrazono ligands.
Mubarak, Ahmed T
2005-04-01
Synthesis and characterization of several new coordination compounds of dioxouranium(VI) heterochelates with bidentate hydrazono compounds derived from 1-phenyl-3-methyl-5-pyrazolone are described. The ligands and uranayl complexes have been characterized by various physico-chemical techniques. The bond lengths and the force constant have been calculated from asymmetric stretching frequency of OUO groups. The infrared spectral studies showed a monobasic bidentate behaviour with the oxygen and hydrazo nitrogen donor system. The effect of Hammett's constant on the bond distances and the force constants were also discussed and drawn. Wilson's matrix method, Badger's formula, Jones and El-Sonbati equations were used to determine the stretching and interaction force constant from which the UO bond distances were calculated. The bond distances of these complexes were also investigated.
Structural model of dioxouranium(VI) with hydrazono ligands
NASA Astrophysics Data System (ADS)
Mubarak, Ahmed T.
2005-04-01
Synthesis and characterization of several new coordination compounds of dioxouranium(VI) heterochelates with bidentate hydrazono compounds derived from 1-phenyl-3-methyl-5-pyrazolone are described. The ligands and uranayl complexes have been characterized by various physico-chemical techniques. The bond lengths and the force constant have been calculated from asymmetric stretching frequency of O sbnd U sbnd O groups. The infrared spectral studies showed a monobasic bidentate behaviour with the oxygen and hydrazo nitrogen donor system. The effect of Hammett's constant on the bond distances and the force constants were also discussed and drawn. Wilson's matrix method, Badger's formula, Jones and El-Sonbati equations were used to determine the stretching and interaction force constant from which the U sbnd O bond distances were calculated. The bond distances of these complexes were also investigated.
Protein structure estimation from NMR data by matrix completion.
Li, Zhicheng; Li, Yang; Lei, Qiang; Zhao, Qing
2017-09-01
Knowledge of protein structures is very important to understand their corresponding physical and chemical properties. Nuclear Magnetic Resonance (NMR) spectroscopy is one of the main methods to measure protein structure. In this paper, we propose a two-stage approach to calculate the structure of a protein from a highly incomplete distance matrix, where most data are obtained from NMR. We first randomly "guess" a small part of unobservable distances by utilizing the triangle inequality, which is crucial for the second stage. Then we use matrix completion to calculate the protein structure from the obtained incomplete distance matrix. We apply the accelerated proximal gradient algorithm to solve the corresponding optimization problem. Furthermore, the recovery error of our method is analyzed, and its efficiency is demonstrated by several practical examples.
NASA Technical Reports Server (NTRS)
Brandt, J. C.
1972-01-01
The distance from the sun to the center of the star, Gamma Velorium, is determined in an effort to draw a physical model and identify the ionized energy source of the Gum nebula. The distance is calculated from the local hydrogen density of radio astronomy studies and the hydrogen measure.
Scalable parallel distance field construction for large-scale applications
Yu, Hongfeng; Xie, Jinrong; Ma, Kwan -Liu; ...
2015-10-01
Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. Anew distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking overtime, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate itsmore » efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. In conclusion, our work greatly extends the usability of distance fields for demanding applications.« less
Scalable Parallel Distance Field Construction for Large-Scale Applications.
Yu, Hongfeng; Xie, Jinrong; Ma, Kwan-Liu; Kolla, Hemanth; Chen, Jacqueline H
2015-10-01
Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. A new distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking over time, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate its efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. Our work greatly extends the usability of distance fields for demanding applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, Valerio; Kolb, Edward W.; Matarrese, Sabino
Photon geodesics are calculated in a Swiss-cheese model, where the cheese is made of the usual Friedmann-Robertson-Walker (FRW) solution and the holes are constructed from a Lemaitre-Tolman-Bondi solution of Einstein's equations. The observables on which we focus are the changes in the redshift, in the angular-diameter-distance relation, in the luminosity-distance-redshift relation, and in the corresponding distance modulus. We find that redshift effects are suppressed when the hole is small because of a compensation effect acting on the scale of half a hole resulting from the special case of spherical symmetry. However, we find interesting effects in the calculation of themore » angular distance: strong evolution of the inhomogeneities (as in the approach to caustic formation) causes the photon path to deviate from that of the FRW case. Therefore, the inhomogeneities are able to partly mimic the effects of a dark-energy component. Our results also suggest that the nonlinear effects of caustic formation in cold dark matter models may lead to interesting effects on photon trajectories.« less
A New Distance Metric for Unsupervised Learning of Categorical Data.
Jia, Hong; Cheung, Yiu-Ming; Liu, Jiming
2016-05-01
Distance metric is the basis of many learning algorithms, and its effectiveness usually has a significant influence on the learning results. In general, measuring distance for numerical data is a tractable task, but it could be a nontrivial problem for categorical data sets. This paper, therefore, presents a new distance metric for categorical data based on the characteristics of categorical values. In particular, the distance between two values from one attribute measured by this metric is determined by both the frequency probabilities of these two values and the values of other attributes that have high interdependence with the calculated one. Dynamic attribute weight is further designed to adjust the contribution of each attribute-distance to the distance between the whole data objects. Promising experimental results on different real data sets have shown the effectiveness of the proposed distance metric.
Detecting duplicate biological entities using Shortest Path Edit Distance.
Rudniy, Alex; Song, Min; Geller, James
2010-01-01
Duplicate entity detection in biological data is an important research task. In this paper, we propose a novel and context-sensitive Shortest Path Edit Distance (SPED) extending and supplementing our previous work on Markov Random Field-based Edit Distance (MRFED). SPED transforms the edit distance computational problem to the calculation of the shortest path among two selected vertices of a graph. We produce several modifications of SPED by applying Levenshtein, arithmetic mean, histogram difference and TFIDF techniques to solve subtasks. We compare SPED performance to other well-known distance algorithms for biological entity matching. The experimental results show that SPED produces competitive outcomes.
Ginkgo biloba for intermittent claudication.
Nicolaï, Saskia P A; Kruidenier, Lotte M; Bendermacher, Bianca L W; Prins, Martin H; Stokmans, Rutger A; Broos, Pieter P H L; Teijink, Joep A W
2013-06-06
People with intermittent claudication (IC) suffer from pain in the muscles of the leg occurring during exercise which is relieved by a short period of rest. Symptomatic relief can be achieved by (supervised) exercise therapy and pharmacological treatments. Ginkgo biloba is a vasoactive agent and is used to treat IC. To assess the effect of Ginkgo biloba on walking distance in people with intermittent claudication. For this update the Cochrane Peripheral Vascular Diseases Group Trials Search Co-ordinator searched the Specialised Register (March 2013) and CENTRAL (2013, Issue 2). Randomised controlled trials of Ginkgo biloba extract, irrespective of dosage, versus placebo in people with IC. Two authors independently assessed trials for selection, assessed study quality and extracted data. We extracted number of patients, mean walking distances or times and standard deviations. To standardise walking distance or time, caloric expenditures were used to express the difference between the different treadmill protocols, which were calculated from the speed and incline of the treadmill. Fourteen trials with a total of 739 participants were included. Eleven trials involving 477 participants compared Ginkgo biloba with placebo and assessed the absolute claudication distance (ACD). Following treatment with Ginkgo biloba at the end of the study the ACD increased with an overall effect size of 3.57 kilocalories (confidence interval (CI) -0.10 to 7.23, P = 0.06), compared with placebo. This translates to an increase of just 64.5 ( CI -1.8 to 130.7) metres on a flat treadmill with an average speed of 3.2 km/h. Publication bias leading to missing data or "negative" trials is likely to have inflated the effect size. Overall, there is no evidence that Ginkgo biloba has a clinically significant benefit for patients with peripheral arterial disease.
NASA Astrophysics Data System (ADS)
Samigulina, Galina A.; Shayakhmetova, Assem S.
2016-11-01
Research objective is the creation of intellectual innovative technology and information Smart-system of distance learning for visually impaired people. The organization of the available environment for receiving quality education for visually impaired people, their social adaptation in society are important and topical issues of modern education.The proposed Smart-system of distance learning for visually impaired people can significantly improve the efficiency and quality of education of this category of people. The scientific novelty of proposed Smart-system is using intelligent and statistical methods of processing multi-dimensional data, and taking into account psycho-physiological characteristics of perception and awareness learning information by visually impaired people.
ERIC Educational Resources Information Center
Commonwealth of Learning, 2004
2004-01-01
Both of these "Surveys of policy and practice" were conducted on behalf of COL by the South African Institute for Distance Education (SAIDE) as part of COL's partnership agreement with the Association for the Development of Education in Africa (ADEA) Working Group on Distance Education and Open Learning. The first report identifies…
Naftidrofuryl for intermittent claudication.
De Backer, T L M; Vander Stichele, R; Lehert, P; Van Bortel, L
2008-04-16
Lifestyle changes and cardiovascular prevention measures are a primary treatment for intermittent claudication (IC). Symptomatic treatment with vasoactive agents (Anatomic Therapeutic Chemical Classification (ATC) for medicines from the World Health Organisation class CO4A) is controversial. To evaluate evidence on the efficacy and safety of oral naftidrofuryl (ATC CO4 21) versus placebo on the pain-free walking distance (PFWD) of people with IC by using a meta-analysis based on individual patient data (IPD). The Cochrane Peripheral Vascular Diseases Group searched their Trials Register (last searched December 2007) and CENTRAL (last searched 2007, Issue 4). We searched MEDLINE, EMBASE, International Pharmaceutical Abstracts, the Science Citation Index and contacted the authors and checked the reference lists of retrieved articles. We asked the manufacturing company for IPD. We included only randomized controlled trials (RCTs) with low or moderate risk of bias for which the IPD were available. We collected data from the electronic data file or from the case report form and checked the data by a statistical quality control procedure. All randomized patients were analyzed following the intention-to-treat (ITT) principle. The geometric mean of the relative improvement in PFWD was calculated for both treatment groups in all identified studies. The effect of the drug was assessed compared with placebo on final walking distance (WDf) using multilevel and random-effect models and adjusting for baseline walking distance (WD0). For the responder analysis, therapeutic success was defined as an improvement of walking distance of at least 50%. We included seven studies in the IPD (n = 1266 patients). One of these studies (n = 183) was only used in the sensitivity analysis so that the main analysis included 1083 patients. The ratio of the relative improvement in PFWD (naftidrofuryl compared with placebo) was 1.37 (95% confidence interval (CI) 1.32 to 1.51, P < 0.001). The absolute difference in responder rate, or proportion successfully treated, was 22.3% (95% CI 17.1% to 27.6%). The calculated number needed to treat was 4.5 (95% CI 3.6 to 5.8). Naftidrofuryl has a statistically significant and clinically meaningful effect of improving walking distance in the six months after initiation of therapy for people with intermittent claudication. Access by researchers to data from RCTs that is suitable for IPD analysis should be possible through repositories of data from pharmacological trials. Regular formal appraisal of the balance of risk and benefit is needed for older pharmaceutical products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutaro, James; Kuruganti, Teja
Numerical simulations of the wave equation that are intended to provide accurate time domain solutions require a computational mesh with grid points separated by a distance less than the wavelength of the source term and initial data. However, calculations of radio signal pathloss generally do not require accurate time domain solutions. This paper describes an approach for calculating pathloss by using the finite difference time domain and transmission line matrix models of wave propagation on a grid with points separated by distances much greater than the signal wavelength. The calculated pathloss can be kept close to the true value formore » freespace propagation with an appropriate selection of initial conditions. This method can also simulate diffraction with an error governed by the ratio of the signal wavelength to the grid spacing.« less
NASA Astrophysics Data System (ADS)
Linh, Dang Khanh; Khanh, Nguyen Quoc
2018-03-01
We calculate the zero-temperature conductivity of bilayer graphene (BLG) impacted by Coulomb impurity scattering using four different screening models: unscreened, Thomas-Fermi (TF), overscreened and random phase approximation (RPA). We also calculate the conductivity and thermal conductance of BLG using TF, zero- and finite-temperature RPA screening functions. We find large differences between the results of the models and show that TF and finite-temperature RPA give similar results for diffusion thermopower Sd. Using the finite-temperature RPA, we calculate temperature and density dependence of Sd in BLG on SiO2, HfO2 substrates and suspended BLG for different values of interlayer distance c and distance between the first layer and the substrate d.
Poster - Thurs Eve-43: Verification of dose calculation with tissue inhomogeneity using MapCHECK.
Korol, R; Chen, J; Mosalaei, H; Karnas, S
2008-07-01
MapCHECK (Sun Nuclear, Melbourne, FL) with 445 diode detectors has been used widely for routine IMRT quality assurance (QA) 1 . However, routine IMRT QA has not included the verification of inhomogeneity effects. The objective of this study is to use MapCHECK and a phantom to verify dose calculation and IMRT delivery with tissue inhomogeneity. A phantom with tissue inhomogeneities was placed on top of MapCHECK to measure the planar dose for an anterior beam with photon energy 6 MV or 18 MV. The phantom was composed of a 3.5 cm thick block of lung equivalent material and solid water arranged side by side with a 0.5 cm slab of solid water on the top of the phantom. The phantom setup including MapCHECK was CT scanned and imported into Pinnacle 8.0d for dose calculation. Absolute dose distributions were compared with gamma criteria 3% for dose difference and 3 mm for distance-to-agreement. The results are in good agreement between the measured and calculated planar dose with 88% pass rate based on the gamma analysis. The major dose difference was at the lung-water interface. Further investigation will be performed on a custom designed inhomogeneity phantom with inserts of varying densities and effective depth to create various dose gradients at the interface for dose calculation and delivery verification. In conclusion, a phantom with tissue inhomogeneities can be used with MapCHECK for verification of dose calculation and delivery with tissue inhomogeneity. © 2008 American Association of Physicists in Medicine.
Zhang, Ting-Ting; Wu, Yi; Hang, Tai-Jun
2009-05-01
To establish a stable and repeatable HPLC fingerprint standard and evaluate the flavonoids from Houttuynia cordata qualitatively and quantitatively. HPLC separation was performed on a C18 column with methanol-0.1% phosphoric acid mixed solution as mobile phase in gradient elution mode. The fingerprint reference was determined as one of the most typical chromatograms and used to be compared with other samples through Cosine and Relative Euclid Distance methods, thus the chromatographic fingerprints of flavonoids from Houttuynia cordata were evaluated by constitutes and contents, respectively. Fourteen mutual peaks were fixed in the HPLC fingerprint of flavonoids from Houttaynia cordata. It showed good results in validation tests in which the quercitrin's peak was set as the reference peak to calculate relative retention time and area of other peaks in the chromatograms, and the RSD were less than 0.2% and 5.0%, respectively. The linear ranges for quercitrin was 1.07-83.4 microg/mL (r=0.9999) and the average recovery was 100.3%. The method shows good repeatability, ruggedness and reliability. Comparing with the established reference fingerprint, the evaluation system including Cosine and Relative Euclid Distance methods lays dependable foundation for controlling the quality of Houttuynia cordata.
Oblique Aerial Photography Tool for Building Inspection and Damage Assessment
NASA Astrophysics Data System (ADS)
Murtiyoso, A.; Remondino, F.; Rupnik, E.; Nex, F.; Grussenmeyer, P.
2014-11-01
Aerial photography has a long history of being employed for mapping purposes due to some of its main advantages, including large area imaging from above and minimization of field work. Since few years multi-camera aerial systems are becoming a practical sensor technology across a growing geospatial market, as complementary to the traditional vertical views. Multi-camera aerial systems capture not only the conventional nadir views, but also tilted images at the same time. In this paper, a particular use of such imagery in the field of building inspection as well as disaster assessment is addressed. The main idea is to inspect a building from four cardinal directions by using monoplotting functionalities. The developed application allows to measure building height and distances and to digitize man-made structures, creating 3D surfaces and building models. The realized GUI is capable of identifying a building from several oblique points of views, as well as calculates the approximate height of buildings, ground distances and basic vectorization. The geometric accuracy of the results remains a function of several parameters, namely image resolution, quality of available parameters (DEM, calibration and orientation values), user expertise and measuring capability.
Savini, Giacomo; Hoffer, Kenneth J; Lombardo, Marco; Serrao, Sebastiano; Schiano-Lomoriello, Domenico; Ducoli, Pietro
2016-01-01
To calculate the near focal distance of different multifocal intraocular lenses (IOLs) as a function of the 2 parameters that are measured before cataract surgery; that is, axial length (AL) and refractive corneal power (keratometry [K]). GB Bietti Foundation IRCCS, Rome, Italy. Noninterventional theoretical study. The IOL power for emmetropia was first calculated in an eye model with the AL ranging from 20 to 30 mm and K from 38 to 48 diopters (D). Then, the predicted myopic refraction for any given IOL add power (from +1.5 to +4.0 D) was calculated, and from this value the near focal distance was obtained. Calculations were also performed for the average eye (K = 43.81 D; AL = 23.65 mm). The near focal distance increased with increasing values of K and AL for each near power add. The near focal distance ranged between 53 cm and 72 cm (21 inches and 28 inches) for a multifocal IOL with +2.50 D, between 44 cm and 60 cm (17 inches and 24 inches) for a multifocal IOL with +3.00 D add, and between 33 cm and 44 cm (13 inches and 18 inches) for a multifocal IOL with +4.00 D add. In the average eye, the near focal distance ranges between 36 cm (near add power = 4.00 D) and 99 cm (near add power = 1.5 D). Longer eyes with steeper corneas showed the longest near focal distance and could experience more difficulties in focusing near objects after surgery. The opposite was true for short hyperopic eyes. Dr. Hoffer receives licensing fees for the commercial use of the registered trademark Hoffer from all biometry manufacturers using the Hoffer Q formula to ensure that it is programmed correctly and book royalties from Slack, Inc., for the textbook IOL Power. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Veigel, Cornelia; Hartmann, Günther H.; Fritz, Peter; Debus, Jürgen; Weber, Klaus-Josef
2017-02-01
Afterloading brachytherapy is conducted by the stepwise movement of a radioactive source through surgically implanted applicator tubes where at predefined dwell positions calculated dwell times optimize spatial dose delivery with respect to a planned dose level. The temporal exposure pattern exhibits drastic fluctuations in dose rate at a given coordinate and within a single treatment session because of the discontinuous and repeated source movement into the target volume. This could potentially affect biological response. Therefore, mammalian cells were exposed as monolayers to a high dose rate 192Ir source by utilizing a dedicated irradiation device where the distance between a planar array of radioactive source positions and the plane of the cell monolayer could be varied from 2.5 mm to 40 mm, thus varying dose rate pattern for any chosen total dose. The Gammamed IIi afterloading system equipped with a nominal 370 GBq (10 Ci) 192-Ir source was used to irradiate V79 Chinese hamster lung fibroblasts from both confluent and from exponential growth phase with dose up to 12 Gy (at room temperature, total exposure not exceeding 1 h). For comparison, V79 cells were also exposed to 6 MV x-rays from a clinical linear accelerator (dose rate of 2.5 Gy min-1). As biological endpoint, cell survival was determined by standard colony forming assay. Dose measurements were conducted with a diamond detector (sensitive area 7.3 mm2), calibrated by means of 60Co radiation. Additionally, dose delivery was simulated by Monte Carlo calculations using the EGSnrc code system. The calculated secondary electron fluence spectra at the cell location did not indicate a significant change of radiation quality (i.e. higher linear energy transfer) at the lower distances. Clonogenic cell survival curves obtained after brachytherapy exhibited an altered biological response compared to x-rays which was characterized by a significant reduction of the survival curve shoulder when dose rate fluctuations were high. Therefore, also for the time scale of the present investigation, cellular effects of radiation are not invariant to the temporal pattern in dose rate. We propose that with high dose rate variation the cells activate less efficiently their DNA damage response than after continuous irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martins, S.A.; Shinn, J.H.
1993-05-01
The Chemical Hazard Warning System (CHAWS) is designed to collect meteorological data and to display, in real time, the dispersion of hazardous chemicals that may result from an accidental release. Meteorological sensors have been placed strategically around the Lexington-Blue Grass Army Depot and are used to calculate direction and hazard distance for the release. Based on these data, arrows depicting the release direction and distance traveled are graphically displayed on a computer screen showing a site map of the facility. The objectives of CHAWS are as follows: To determine the trajectory of the center of mass of released material frommore » the measured wind field; to calculate the dispersion of the released material based on the measured lateral turbulence intensity (sigma theta); to determine the height of the mixing zone by measurement of the inversion height and wind profiles up to an altitude of about 1 km at sites that have SODAR units installed; to archive meteorological data for potential use in climatological descriptions for emergency planning; to archive air-quality data for preparation of compliance reports; and to provide access to the data for near real time hazard analysis purposes. CHAWS sites are located at the Pine Bluff Arsenal, Arkansas, Edgewood area of Aberdeen Proving Ground, Maryland, Tooele Depot, Utah, Lexington-Blue Grass Depot, Kentucky, and Johnston Island in the Pacific. The systems vary between sites with different features and various types of hardware. The basic system, however, is the same. Nonetheless, we have tailored the manuals to the equipment found at each site.« less
Dobkin, Bruce H; Xu, Xiaoyu; Batalin, Maxim; Thomas, Seth; Kaiser, William
2011-08-01
Outcome measures of mobility for large stroke trials are limited to timed walks for short distances in a laboratory, step counters and ordinal scales of disability and quality of life. Continuous monitoring and outcome measurements of the type and quantity of activity in the community would provide direct data about daily performance, including compliance with exercise and skills practice during routine care and clinical trials. Twelve adults with impaired ambulation from hemiparetic stroke and 6 healthy controls wore triaxial accelerometers on their ankles. Walking speed for repeated outdoor walks was determined by machine-learning algorithms and compared to a stopwatch calculation of speed for distances not known to the algorithm. The reliability of recognizing walking, exercise, and cycling by the algorithms was compared to activity logs. A high correlation was found between stopwatch-measured outdoor walking speed and algorithm-calculated speed (Pearson coefficient, 0.98; P=0.001) and for repeated measures of algorithm-derived walking speed (P=0.01). Bouts of walking >5 steps, variations in walking speed, cycling, stair climbing, and leg exercises were correctly identified during a day in the community. Compared to healthy subjects, those with stroke were, as expected, more sedentary and slower, and their gait revealed high paretic-to-unaffected leg swing ratios. Test-retest reliability and concurrent and construct validity are high for activity pattern-recognition Bayesian algorithms developed from inertial sensors. This ratio scale data can provide real-world monitoring and outcome measurements of lower extremity activities and walking speed for stroke and rehabilitation studies.
Distance between configurations in Markov chain Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Fukuma, Masafumi; Matsumoto, Nobuyuki; Umeda, Naoya
2017-12-01
For a given Markov chain Monte Carlo algorithm we introduce a distance between two configurations that quantifies the difficulty of transition from one configuration to the other configuration. We argue that the distance takes a universal form for the class of algorithms which generate local moves in the configuration space. We explicitly calculate the distance for the Langevin algorithm, and show that it certainly has desired and expected properties as distance. We further show that the distance for a multimodal distribution gets dramatically reduced from a large value by the introduction of a tempering method. We also argue that, when the original distribution is highly multimodal with large number of degenerate vacua, an anti-de Sitter-like geometry naturally emerges in the extended configuration space.
Issues in the Management of Distance Education.
ERIC Educational Resources Information Center
Murgatroyd, Stephen; Woudstra, Andrew
1989-01-01
Examines key issues facing administrators at Athabasca University and discusses their implications for distance education organizations. Topics discussed include strategic planning; accountability and cost effectiveness; consortia and cooperation; instructional design; managing technological innovation; marketing; quality assurance; and…
NASA Astrophysics Data System (ADS)
Syafriharti, R.; Kombaitan, B.; Kusumantoro, I. P.; Syabri, I.
2018-05-01
Access mode is an important factor in public transport systems. Most of the train users from Cicalengka to Padalarang via Bandung use paratransit as access mode. Access modes under this study are only paratransit and walking. This study aims to explore the relationship between access mode choice to the station and the perception about walking distance to station, perception about attributes of paratransit service quality which consist of accessibility, cheapness, comfortable, swiftness, safety, security and easiness. Of all the variables tested, walking distance to the station is the only variable relating to the mode access choice. So, a person will tend to use paratransit when his/her perception of walking distance to station is relatively far away. While perceptions about the quality of paratransit service can not determine whether a person will choose paratransit or not.
Simulation of devices mobility to estimate wireless channel quality metrics in 5G networks
NASA Astrophysics Data System (ADS)
Orlov, Yu.; Fedorov, S.; Samuylov, A.; Gaidamaka, Yu.; Molchanov, D.
2017-07-01
The problem of channel quality estimation for devices in a wireless 5G network is formulated. As a performance metrics of interest we choose the signal-to-interference-plus-noise ratio, which depends essentially on the distance between the communicating devices. A model with a plurality of moving devices in a bounded three-dimensional space and a simulation algorithm to determine the distances between the devices for a given motion model are devised.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roots, R; Okada, S
1975-11-01
We have used a mammalian tissue culture system to calculate the life times and diffusion distances in DNA scissions as well as cell killing for the three main products of water radiolysis: OH, H, and e$sup -$/sub aq/. Using various alcohols as radical scavengers, the average life time for OH in DNA single-strand breaks was calculated to be about 4 x 10$sup -9$ sec. Using the same data and published rate constants, the apparent life time of H atoms was calculated to vary from about 2 x 10$sup -7$ to 4 x 10$sup -6$ sec and, similarly, the calculated lifemore » time of the hydrated electron was found to vary more than was the case for OH. From these life times, the radical diffusion distances were estimated to be approximately 60 A for OH, which is reasonable, but the values for both H and e$sup -$/sub aq/ were unrealistically large, i.e., 880 to 4040 A for H and 9590 to 19,810 A for e$sup -$/sub aq/. In cell killing, the OH radical life time was estimated to be about 8.7 x 10$sup -9$ sec which gives an average diffusion distance for this radical of about 93 A. Our data support the idea that OH is the radical species primarily responsible for the indirect effect in radiation injury measured as DNA single-strand breaks or cell killing, and that H and e$sup -$/sub aq/ are not significantly involved. (auth)« less
The influence of the types of marine fuel over the Energy Efficiency Operational Index
NASA Astrophysics Data System (ADS)
Acomi, Nicoleta; Acomi, Ovidiu
2014-05-01
One of the main concerns of our society is certainly the environment protection. The international efforts for maintaining the environment clean are various and this paper refers to the efforts in the maritime transport field. Marine pollution consists of the water pollution and also the air pollution. Regardless of the delay in recognizing the later type of pollution, it rapidly gains many organizations to argue on it. The first step was including a dedicated annex (Annex VI) in the International Convention for the Prevention of Pollution from Ships, in 1997, which seeks to minimize the airborne emissions from ships. In order to control and minimize the air pollution, the International Maritime Organization has also developed a series of measures for monitoring the emissions. These measures are grouped in three main directions: technical, operational and management related. The subject of our study is the concept of Energy Efficiency Operational Index (EEOI), developed to provide ship-owners with assistance in the process of establishing the emissions from ships in operation, and to suggest the methods for achieving their reduction. As a monitoring tool, EEOI represents the mass of CO2 emitted per unit of transport work. The actual CO2 emission from combustion of fuel on board a ship during each voyage is calculated by multiplying total fuel consumption for each type of fuel (e.g. diesel oil, gas oil, light fuel oil, heavy fuel oil, liquefied petroleum gas, liquefied natural gas) with the carbon to CO2 conversion factor for the fuel in question. The performed transport work is calculated by multiplying mass of cargo (tonnes, number of TEU/cars, or number of passengers) with the distance in nautical miles corresponding to the transport work done. Using the software developed by the author it will be emphasized the variation of the EEOI value for one vessel using different types of fuel for the voyage's legs (distance to discharge port, distance to loading port, the period of time the vessel is idle or in port, days at anchor), according to the Engine Log Book. The main consumers considered are main engine, diesel generators, boiler and inert gas generator, and the types of fuel used will be according to the marine legal requirements for each port of call. The results for the quality parameter EEOI and the average cost of achieving them will be included in compared cost-to-quality graphs, in order to underline the profitability of the studied methods for minimizing the air emissions.
ERIC Educational Resources Information Center
Epp, Jordan; McKee, Jeanette
2015-01-01
This report of practice describes a five-year process to establish and implement quality standards for a substantial portfolio of distance delivered courses at the Centre for Continuing and Distance Education, University of Saskatchewan. The report describes an analysis of the issues and the solutions found that led to our current curriculum…
ERIC Educational Resources Information Center
Gor, Peter Ochieng
2012-01-01
With the increasing popularity of distance education, focus has turned to the role of libraries in distance learning process. It is widely agreed that like their campus-based counterparts, distance education learners need adequate library services if they are to gain quality education. This study sought to examine library utilization by students…
Virgilio, Massimiliano; Jordaens, Kurt; Breman, Floris C; Backeljau, Thierry; De Meyer, Marc
2012-01-01
We propose a general working strategy to deal with incomplete reference libraries in the DNA barcoding identification of species. Considering that (1) queries with a large genetic distance with their best DNA barcode match are more likely to be misidentified and (2) imposing a distance threshold profitably reduces identification errors, we modelled relationships between identification performances and distance thresholds in four DNA barcode libraries of Diptera (n = 4270), Lepidoptera (n = 7577), Hymenoptera (n = 2067) and Tephritidae (n = 602 DNA barcodes). In all cases, more restrictive distance thresholds produced a gradual increase in the proportion of true negatives, a gradual decrease of false positives and more abrupt variations in the proportions of true positives and false negatives. More restrictive distance thresholds improved precision, yet negatively affected accuracy due to the higher proportions of queries discarded (viz. having a distance query-best match above the threshold). Using a simple linear regression we calculated an ad hoc distance threshold for the tephritid library producing an estimated relative identification error <0.05. According to the expectations, when we used this threshold for the identification of 188 independently collected tephritids, less than 5% of queries with a distance query-best match below the threshold were misidentified. Ad hoc thresholds can be calculated for each particular reference library of DNA barcodes and should be used as cut-off mark defining whether we can proceed identifying the query with a known estimated error probability (e.g. 5%) or whether we should discard the query and consider alternative/complementary identification methods.
Virgilio, Massimiliano; Jordaens, Kurt; Breman, Floris C.; Backeljau, Thierry; De Meyer, Marc
2012-01-01
We propose a general working strategy to deal with incomplete reference libraries in the DNA barcoding identification of species. Considering that (1) queries with a large genetic distance with their best DNA barcode match are more likely to be misidentified and (2) imposing a distance threshold profitably reduces identification errors, we modelled relationships between identification performances and distance thresholds in four DNA barcode libraries of Diptera (n = 4270), Lepidoptera (n = 7577), Hymenoptera (n = 2067) and Tephritidae (n = 602 DNA barcodes). In all cases, more restrictive distance thresholds produced a gradual increase in the proportion of true negatives, a gradual decrease of false positives and more abrupt variations in the proportions of true positives and false negatives. More restrictive distance thresholds improved precision, yet negatively affected accuracy due to the higher proportions of queries discarded (viz. having a distance query-best match above the threshold). Using a simple linear regression we calculated an ad hoc distance threshold for the tephritid library producing an estimated relative identification error <0.05. According to the expectations, when we used this threshold for the identification of 188 independently collected tephritids, less than 5% of queries with a distance query-best match below the threshold were misidentified. Ad hoc thresholds can be calculated for each particular reference library of DNA barcodes and should be used as cut-off mark defining whether we can proceed identifying the query with a known estimated error probability (e.g. 5%) or whether we should discard the query and consider alternative/complementary identification methods. PMID:22359600
Ryu, Hyojung; Lim, GyuTae; Sung, Bong Hyun; Lee, Jinhyuk
2016-02-15
Protein structure refinement is a necessary step for the study of protein function. In particular, some nuclear magnetic resonance (NMR) structures are of lower quality than X-ray crystallographic structures. Here, we present NMRe, a web-based server for NMR structure refinement. The previously developed knowledge-based energy function STAP (Statistical Torsion Angle Potential) was used for NMRe refinement. With STAP, NMRe provides two refinement protocols using two types of distance restraints. If a user provides NOE (Nuclear Overhauser Effect) data, the refinement is performed with the NOE distance restraints as a conventional NMR structure refinement. Additionally, NMRe generates NOE-like distance restraints based on the inter-hydrogen distances derived from the input structure. The efficiency of NMRe refinement was validated on 20 NMR structures. Most of the quality assessment scores of the refined NMR structures were better than those of the original structures. The refinement results are provided as a three-dimensional structure view, a secondary structure scheme, and numerical and graphical structure validation scores. NMRe is available at http://psb.kobic.re.kr/nmre/. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Computing Q-D Relationships for Storage of Rocket Fuels
NASA Technical Reports Server (NTRS)
Jester, Keith
2005-01-01
The Quantity Distance Measurement Tool is a GIS BASEP computer program that aids safety engineers by calculating quantity-distance (Q-D) relationships for vessels that contain explosive chemicals used in testing rocket engines. (Q-D relationships are standard relationships between specified quantities of specified explosive materials and minimum distances by which they must be separated from persons, objects, and other explosives to obtain specified types and degrees of protection.) The program uses customized geographic-information-system (GIS) software and calculates Q-D relationships in accordance with NASA's Safety Standard For Explosives, Propellants, and Pyrotechnics. Displays generated by the program enable the identification of hazards, showing the relationships of propellant-storage-vessel safety buffers to inhabited facilities and public roads. Current Q-D information is calculated and maintained in graphical form for all vessels that contain propellants or other chemicals, the explosiveness of which is expressed in TNT equivalents [amounts of trinitrotoluene (TNT) having equivalent explosive effects]. The program is useful in the acquisition, siting, construction, and/or modification of storage vessels and other facilities in the development of an improved test-facility safety program.
NASA Astrophysics Data System (ADS)
Lan, G.; Jiang, J.; Li, D. D.; Yi, W. S.; Zhao, Z.; Nie, L. N.
2013-12-01
The calculation of water-hammer pressure phenomenon of single-phase liquid is already more mature for a pipeline of uniform characteristics, but less research has addressed the calculation of slurry water hammer pressure in complex pipelines with slurry flows carrying solid particles. In this paper, based on the developments of slurry pipelines at home and abroad, the fundamental principle and method of numerical simulation of transient processes are presented, and several boundary conditions are given. Through the numerical simulation and analysis of transient processes of a practical engineering of long-distance slurry transportation pipeline system, effective protection measures and operating suggestions are presented. A model for calculating the water impact of solid and fluid phases is established based on a practical engineering of long-distance slurry pipeline transportation system. After performing a numerical simulation of the transient process, analyzing and comparing the results, effective protection measures and operating advice are recommended, which has guiding significance to the design and operating management of practical engineering of longdistance slurry pipeline transportation system.
Measuring Distances Using Digital Cameras
ERIC Educational Resources Information Center
Kendal, Dave
2007-01-01
This paper presents a generic method of calculating accurate horizontal and vertical object distances from digital images taken with any digital camera and lens combination, where the object plane is parallel to the image plane or tilted in the vertical plane. This method was developed for a project investigating the size, density and spatial…
An algorithm for calculating minimum Euclidean distance between two geographic features
NASA Astrophysics Data System (ADS)
Peuquet, Donna J.
1992-09-01
An efficient algorithm is presented for determining the shortest Euclidean distance between two features of arbitrary shape that are represented in quadtree form. These features may be disjoint point sets, lines, or polygons. It is assumed that the features do not overlap. Features also may be intertwined and polygons may be complex (i.e. have holes). Utilizing a spatial divide-and-conquer approach inherent in the quadtree data model, the basic rationale is to narrow-in on portions of each feature quickly that are on a facing edge relative to the other feature, and to minimize the number of point-to-point Euclidean distance calculations that must be performed. Besides offering an efficient, grid-based alternative solution, another unique and useful aspect of the current algorithm is that is can be used for rapidly calculating distance approximations at coarser levels of resolution. The overall process can be viewed as a top-down parallel search. Using one list of leafcode addresses for each of the two features as input, the algorithm is implemented by successively dividing these lists into four sublists for each descendant quadrant. The algorithm consists of two primary phases. The first determines facing adjacent quadrant pairs where part or all of the two features are separated between the two quadrants, respectively. The second phase then determines the closest pixel-level subquadrant pairs within each facing quadrant pair at the lowest level. The key element of the second phase is a quick estimate distance heuristic for further elimination of locations that are not as near as neighboring locations.
Using Clinical Data Standards to Measure Quality: A New Approach.
D'Amore, John D; Li, Chun; McCrary, Laura; Niloff, Jonathan M; Sittig, Dean F; McCoy, Allison B; Wright, Adam
2018-04-01
Value-based payment for care requires the consistent, objective calculation of care quality. Previous initiatives to calculate ambulatory quality measures have relied on billing data or individual electronic health records (EHRs) to calculate and report performance. New methods for quality measure calculation promoted by federal regulations allow qualified clinical data registries to report quality outcomes based on data aggregated across facilities and EHRs using interoperability standards. This research evaluates the use of clinical document interchange standards as the basis for quality measurement. Using data on 1,100 patients from 11 ambulatory care facilities and 5 different EHRs, challenges to quality measurement are identified and addressed for 17 certified quality measures. Iterative solutions were identified for 14 measures that improved patient inclusion and measure calculation accuracy. Findings validate this approach to improving measure accuracy while maintaining measure certification. Organizations that report care quality should be aware of how identified issues affect quality measure selection and calculation. Quality measure authors should consider increasing real-world validation and the consistency of measure logic in respect to issues identified in this research. Schattauer GmbH Stuttgart.
1994-12-01
Army Research Laboratory ATTN: AMSRL-WT-PA Aberdeen Proving Ground, MD 21005-5066 9 . SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING...8 1.5 DISTANCE vs. TIME CALCULATION ........................................... 9 2. D ISCU SSIO N...21 Figure 9 : Comparison of calculated thrust curves ..................................... 32 v
Double-β decay matrix elements from lattice quantum chromodynamics
NASA Astrophysics Data System (ADS)
Tiburzi, Brian C.; Wagman, Michael L.; Winter, Frank; Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Orginos, Kostas; Savage, Martin J.; Shanahan, Phiala E.; Nplqcd Collaboration
2017-09-01
A lattice quantum chromodynamics (LQCD) calculation of the nuclear matrix element relevant to the n n →p p e e ν¯eν¯e transition is described in detail, expanding on the results presented in Ref. [P. E. Shanahan et al., Phys. Rev. Lett. 119, 062003 (2017), 10.1103/PhysRevLett.119.062003]. This matrix element, which involves two insertions of the weak axial current, is an important input for phenomenological determinations of double-β decay rates of nuclei. From this exploratory study, performed using unphysical values of the quark masses, the long-distance deuteron-pole contribution to the matrix element is separated from shorter-distance hadronic contributions. This polarizability, which is only accessible in double-weak processes, cannot be constrained from single-β decay of nuclei, and is found to be smaller than the long-distance contributions in this calculation, but non-negligible. In this work, technical aspects of the LQCD calculations, and of the relevant formalism in the pionless effective field theory, are described. Further calculations of the isotensor axial polarizability, in particular near and at the physical values of the light-quark masses, are required for precise determinations of both two-neutrino and neutrinoless double-β decay rates in heavy nuclei.
A new method for photon transport in Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Sato, T.; Ogawa, K.
1999-12-01
Monte Carlo methods are used to evaluate data methods such as scatter and attenuation compensation in single photon emission CT (SPECT), treatment planning in radiation therapy, and in many industrial applications. In Monte Carlo simulation, photon transport requires calculating the distance from the location of the emitted photon to the nearest boundary of each uniform attenuating medium along its path of travel, and comparing this distance with the length of its path generated at emission. Here, the authors propose a new method that omits the calculation of the location of the exit point of the photon from each voxel and of the distance between the exit point and the original position. The method only checks the medium of each voxel along the photon's path. If the medium differs from that in the voxel from which the photon was emitted, the authors calculate the location of the entry point in the voxel, and the length of the path is compared with the mean free path length generated by a random number. Simulations using the MCAT phantom show that the ratios of the calculation time were 1.0 for the voxel-based method, and 0.51 for the proposed method with a 256/spl times/256/spl times/256 matrix image, thereby confirming the effectiveness of the algorithm.
Deducing protein structures using logic programming: exploiting minimum data of diverse types.
Sibbald, P R
1995-04-21
The extent to which a protein can be modeled from constraint data depends on the amount and quality of the data. This report quantifies a relationship between the amount of data and the achievable model resolution. In an information-theoretic framework the number of bits of information per residue needed to constrain a solution was calculated. The number of bits provided by different kinds of constraints was estimated from a tetrahedral lattice where all unique molecules of 6, 9, ..., 21 atoms were enumerated. Subsets of these molecules consistent with different constraint sets were then chosen, counted, and the root-mean-square distance between them calculated. This provided the desired relations. In a discrete system the number of possible models can be severely limited with relatively few constraints. An expert system that can model a protein from data of different types was built to illustrate the principle and was tested using known proteins as examples. C-alpha resolutions of 5 A are obtainable from 5 bits of information per amino acid and, in principle, from data that could be rapidly collected using standard biophysical techniques.
Blaschke, A P; Derx, J; Zessner, M; Kirnbauer, R; Kavka, G; Strelec, H; Farnleitner, A H; Pang, L
2016-12-15
Contamination of groundwater by pathogenic viruses from small biological wastewater treatment system discharges in remote areas is a major concern. To protect drinking water wells against virus contamination, safe setback distances are required between wastewater disposal fields and water supply wells. In this study, setback distances are calculated for alluvial sand and gravel aquifers for different vadose zone and aquifer thicknesses and horizontal groundwater gradients. This study applies to individual households and small settlements (1-20 persons) in decentralized locations without access to receiving surface waters but with the legal obligation of biological wastewater treatment. The calculations are based on Monte Carlo simulations using an analytical model that couples vertical unsaturated and horizontal saturated flow with virus transport. Hydraulic conductivities and water retention curves were selected from reported distribution functions depending on the type of subsurface media. The enteric virus concentration in effluent discharge was calculated based on reported ranges of enteric virus concentration in faeces, virus infectivity, suspension factor, and virus reduction by mechanical-biological wastewater treatment. To meet the risk target of <10 -4 infections/person/year, a 12 log 10 reduction was required, using a linear dose-response relationship for the total amount of enteric viruses, at very low exposure concentrations. The results of this study suggest that the horizontal setback distances vary widely ranging 39 to 144m in sand aquifers, 66-289m in gravel aquifers and 1-2.5km in coarse gravel aquifers. It also varies for the same aquifers, depending on the thickness of the vadose zones and the groundwater gradient. For vulnerable fast-flow alluvial aquifers like coarse gravels, the calculated setback distances were too large to achieve practically. Therefore, for this category of aquifer, a high level of treatment is recommended before the effluent is discharged to the ground surface. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
High Performance Automatic Character Skinning Based on Projection Distance
NASA Astrophysics Data System (ADS)
Li, Jun; Lin, Feng; Liu, Xiuling; Wang, Hongrui
2018-03-01
Skeleton-driven-deformation methods have been commonly used in the character deformations. The process of painting skin weights for character deformation is a long-winded task requiring manual tweaking. We present a novel method to calculate skinning weights automatically from 3D human geometric model and corresponding skeleton. The method first, groups each mesh vertex of 3D human model to a skeleton bone by the minimum distance from a mesh vertex to each bone. Secondly, calculates each vertex's weights to the adjacent bones by the vertex's projection point distance to the bone joints. Our method's output can not only be applied to any kind of skeleton-driven deformation, but also to motion capture driven (mocap-driven) deformation. Experiments results show that our method not only has strong generality and robustness, but also has high performance.
Extending the Applicability of Exact Nuclear Overhauser Enhancements to Large Proteins and RNA.
Nichols, Parker; Born, Alexandra; Henen, Morkos; Strotz, Dean; Chi, Celestine N; Güntert, Peter; Vögeli, Beat Rolf
2018-06-08
Distance-dependent NOEs are one of the most popular and important experimental restraints for calculating NMR structures. Despite this, they are mostly employed as semi-quantitative upper distance bounds, which discards a wealth of information that is encoded in the cross-relaxation rate constant. Information that is lost includes exact distances between protons and dynamics that occur on the sub-millisecond time-scale. Our recently introduced exact measurement of the NOE (eNOE) requires little additional experimental effort relative to other NMR observables. So far, we have used eNOEs to calculate multi-state ensembles of proteins up to ~150 residues. Here, we briefly revisit the eNOE methodology and present two new directions for the use of eNOEs: Applications to large proteins and RNA. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gardner, Andrew W; Montgomery, Polly S
2008-06-01
To determine the effect of metabolic syndrome components on intermittent claudication, physical function, health-related quality of life, and peripheral circulation in patients with peripheral arterial disease (PAD), and to identify the metabolic syndrome components most predictive of each outcome measure. Patients limited by intermittent claudication with three (n = 48), four (n = 45), or five (n = 40) components of metabolic syndrome were studied. Patients were assessed on PAD-specific measures consisting of ankle-brachial index (ABI), initial claudication distance, absolute claudication distance, physical function measures, health-related quality of life, and calf blood flow and transcutaneous oxygen tension responses after 3 minutes of vascular occlusion. Initial claudication distance (mean +/- SD) progressively declined (P = .019) in those with three (203 +/- 167 m), four (124 +/- 77 m), and five (78 +/- 57 m) metabolic syndrome components, and absolute claudication distance progressively declined (P = .036) in these groups as well (414 +/- 224 m vs 323 +/- 153 m vs 249 +/- 152 m, respectively). Furthermore, compared with patients with only three components of metabolic syndrome, those with all five components had impaired values (P < .05) for peak oxygen uptake, ischemic window, 6-minute walk distance, self-perceived walking ability and health, daily physical activity, health-related quality of life on six of eight domains, calf hyperemia, and calf ischemia after vascular occlusion. Abdominal obesity was the predictor (P < .05) of exercise performance during the treadmill and 6-minute walk tests, as well as physical activity. Elevated fasting glucose was the predictor (P < .05) of peripheral vascular measures, self-perceived walking ability and health, and health-related quality of life. PAD patients with more metabolic syndrome components have worsened intermittent claudication, physical function, health-related quality of life, and peripheral circulation. Abdominal obesity and elevated fasting glucose are the metabolic syndrome components that are most predictive of these outcome measures. Aggressively treating these metabolic syndrome components may be particularly important in managing symptoms and long-term prognosis of PAD patients.
Chambela, Mayara C; Mediano, Mauro F F; Ferreira, Roberto R; Japiassú, André M; Waghabi, Mariana C; da Silva, Gilberto M S; Saraiva, Roberto M
2017-10-01
To evaluate the correlation of the total distance walked during the six-minute walk test (6MWT) with left ventricular function and quality of life in patients with Chagas Disease (ChD) complicated by heart failure. This is a cross-sectional study of adult patients with ChD and heart failure diagnosed based on Framingham criteria. 6MWT was performed following international guidelines. New York Heart Association functional class, brain natriuretic peptide (BNP) serum levels, echocardiographic parameters and quality of life (SF-36 and MLHFQ questionnaires) were determined and their correlation with the distance covered at the 6MWT was tested. Forty adult patients (19 male; 60 ± 12 years old) with ChD and heart failure were included in this study. The mean left ventricular ejection fraction was 35 ± 12%. Only two patients (5%) ceased walking before 6 min had elapsed. There were no cardiac events during the test. The average distance covered was 337 ± 105 metres. The distance covered presented a negative correlation with BNP (r = -0.37; P = 0.02), MLHFQ quality-of-life score (r = -0.54; P = 0.002), pulmonary artery systolic pressure (r = -0.42; P = 0.02) and the degree of diastolic dysfunction (r = -0.36; P = 0.03) and mitral regurgitation (r = -0.53; P = 0.0006) and positive correlation with several domains of the SF-36 questionnaire. The distance walked during the 6MWT correlates with BNP, quality of life and parameters of left ventricular diastolic function in ChD patients with heart failure. We propose this test to be adopted in endemic areas with limited resources to aid in the identification of patients who need referral for tertiary centres for further evaluation and treatment. © 2017 John Wiley & Sons Ltd.
Rius, Anna; Artazcoz, Lucía; Guisasola, Laura; Benach, Joan
2014-01-01
The objectives of this study were to examine for the first time the prevalence of visual impairment and blindness among adults in Spain, to explore regional differences, and to assess whether they may vary as a function of sex or be explained by age and individual or regional socioeconomic position. Data were obtained from the 2008 Spanish Survey on Disability, Personal Autonomy, and Dependency Situations, a cross-sectional survey based on a representative sample of the noninstitutionalized population of Spain. The sample was composed of 213 626 participants aged ≥15 years (103 093 men and 110 533 women); 360 were blind (160 men and 200 women), 4048 had near visual impairment (1397 men and 2651 women), and 4034 had distance visual impairment (1445 men and 2589 women). The prevalence of near and distance visual impairment was calculated for each region. Multiple logistic regression models were fitted to calculate odds ratios and 95% confidence intervals. All analyses were stratified by sex. Visual impairment was based on 3 questions aimed at identifying blindness and near and distance visual impairment. The prevalence (percentage) of blindness was 0.17 (men, 0.16; women, 0.18): 1.89 for near visual impairment (men, 1.36; women, 2.40), 1.89 for distance visual impairment (men, 1.40; women, 2.34), and 2.43 for any visual impairment (men, 1.81; women, 3.02). Regional inequalities in the prevalence of visual impairment were observed, correlated with regional income, and the prevalence was consistently higher among women than men. The magnitude of the inequalities remained after adjusting for age and educational level, and a north-to-south pattern of increasing prevalence was observed. Regional and sex inequalities in the prevalence of visual impairment and blindness were observed in Spain, with a north-to-south gradient of increasing prevalence that was not explained by age or individual educational level but was correlated with regional level of economic development. Factors that could be prioritized for future policies and research include differential regional economic development, rural environment, quality of eye care services, diabetes, ultraviolet light exposure, or gender inequalities in diagnostic and therapeutic health care. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Hanni, Matti; Lantto, Perttu; Runeberg, Nino; Jokisaari, Jukka; Vaara, Juha
2004-09-22
Quantum chemical calculations of the nuclear shielding tensor, the nuclear quadrupole coupling tensor, and the spin-rotation tensor are reported for the Xe dimer using ab initio quantum chemical methods. The binary chemical shift delta, the anisotropy of the shielding tensor Delta sigma, the nuclear quadrupole coupling tensor component along the internuclear axis chi( parallel ), and the spin-rotation constant C( perpendicular ) are presented as a function of internuclear distance. The basis set superposition error is approximately corrected for by using the counterpoise correction (CP) method. Electron correlation effects are systematically studied via the Hartree-Fock, complete active space self-consistent field, second-order Møller-Plesset many-body perturbation, and coupled-cluster singles and doubles (CCSD) theories, the last one without and with noniterative triples, at the nonrelativistic all-electron level. We also report a high-quality theoretical interatomic potential for the Xe dimer, gained using the relativistic effective potential/core polarization potential scheme. These calculations used valence basis set of cc-pVQZ quality supplemented with a set of midbond functions. The second virial coefficient of Xe nuclear shielding, which is probably the experimentally best-characterized intermolecular interaction effect in nuclear magnetic resonance spectroscopy, is computed as a function of temperature, and compared to experiment and earlier theoretical results. The best results for the second virial coefficient, obtained using the CCSD(CP) binary chemical shift curve and either our best theoretical potential or the empirical potentials from the literature, are in good agreement with experiment. Zero-point vibrational corrections of delta, Delta sigma, chi (parallel), and C (perpendicular) in the nu=0, J=0 rovibrational ground state of the xenon dimer are also reported.
Jones, Andrew D
2017-01-01
On-farm crop species richness (CSR) may be important for maintaining the diversity and quality of diets of smallholder farming households. The objectives of this study were to 1) determine the association of CSR with the diversity and quality of household diets in Malawi and 2) assess hypothesized mechanisms for this association via both subsistence- and market-oriented pathways. Longitudinal data were assessed from nationally representative household surveys in Malawi between 2010 and 2013 (n = 3000 households). A household diet diversity score (DDS) and daily intake per adult equivalent of energy, protein, iron, vitamin A, and zinc were calculated from 7-d household consumption data. CSR was calculated from plot-level data on all crops cultivated during the 2009-2010 and 2012-2013 agricultural seasons in Malawi. Adjusted generalized estimating equations were used to assess the longitudinal relation of CSR with household diet quality and diversity. CSR was positively associated with DDS (β: 0.08; 95% CI: 0.06, 0.12; P < 0.001), as well as daily intake per adult equivalent of energy (kilocalories) (β: 41.6; 95% CI: 20.9, 62.2; P < 0.001), protein (grams) (β: 1.78; 95% CI: 0.80, 2.75; P < 0.001), iron (milligrams) (β: 0.30; 95% CI: 0.16, 0.44; P < 0.001), vitamin A (micrograms of retinol activity equivalent) (β: 25.8; 95% CI: 12.7, 38.9; P < 0.001), and zinc (milligrams) (β: 0.26; 95% CI: 0.13, 0.38; P < 0.001). Neither proportion of harvest sold nor distance to nearest population center modified the relation between CSR and household diet diversity or quality (P ≥ 0.05). Households with greater CSR were more commercially oriented (least-squares mean proportion of harvest sold ± SE, highest tertile of CSR: 17.1 ± 0.52; lowest tertile of CSR: 8.92 ± 1.09) (P < 0.05). Promoting on-farm CSR may be a beneficial strategy for simultaneously supporting enhanced diet quality and diversity while also creating opportunities for smallholder farmers to engage with markets in subsistence agricultural contexts. © 2017 American Society for Nutrition.
Numerical calculation of the Fresnel transform.
Kelly, Damien P
2014-04-01
In this paper, we address the problem of calculating Fresnel diffraction integrals using a finite number of uniformly spaced samples. General and simple sampling rules of thumb are derived that allow the user to calculate the distribution for any propagation distance. It is shown how these rules can be extended to fast-Fourier-transform-based algorithms to increase calculation efficiency. A comparison with other theoretical approaches is made.
Effects of lunar phase on sleep in men and women in Surrey.
Della Monica, Ciro; Atzori, Giuseppe; Dijk, Derk-Jan
2015-12-01
Recently, evidence has emerged that the phases of the moon may modulate subjective sleep quality and polysomnographically assessed sleep structure in humans. We aimed to explore further the putative effects of circa-lunar periodicity (~29.5 days) on subjective and objective parameters of human sleep in a retrospective analysis. The baseline sleep recordings of 205 (91 males and 114 females; mean age = 47.47 years, standard deviation =19.01; range: 20-84 years) healthy and carefully screened participants who participated in two clinical trials in the Surrey Clinical Research Centre were included in the analyses. Sleep was recorded in windowless sleep laboratories. For each study night, we calculated the distance, in days, to the date of the closest full moon phase and based on this distance, classified sleep records in three lunar classes. Univariate analysis of variance with factors lunar class, age and sex was applied to each of 21 sleep parameters. No significant main effect for the factor lunar class was observed for any of the objective sleep parameters and subjective sleep quality but some significant interactions were observed. The interaction between lunar class and sex was significant for total sleep time, Stage 4 sleep and rapid eye movement (REM) sleep. Separate analyses for men and women indicated that in women total sleep time, Stage 4 sleep and REM sleep were reduced when sleep occurred close to full moon, whereas in men REM duration increased around full moon. These data provide limited evidence for an effect of lunar phase on human sleep. © 2015 European Sleep Research Society.
Gagnon, Yakir Luc; Wilby, David; Temple, Shelby Eric
2016-09-01
Light rays of different wavelengths are focused at different distances when they pass through a lens (longitudinal chromatic aberration [LCA]). For animals with color vision this can pose a serious problem, because in order to perceive a sharp image the rays must be focused at the shallow plane of the photoreceptor's outer segments in the retina. A variety of fish and tetrapods have been found to possess multifocal lenses, which correct for LCA by assigning concentric zones to correctly focus specific wavelengths. Each zone receives light from a specific beam entrance position (BEP) (the lateral distance between incoming light and the center of the lens). Any occlusion of incoming light at specific BEPs changes the composition of the wavelengths that are correctly focused on the retina. Here, we calculated the effect of lens position relative to the plane of the iris and light entering the eye at oblique angles on how much of the lens was involved in focusing the image on the retina (measured as the availability of BEPs). We used rotational photography of fish eyes and mathematical modeling to quantify the degree of lens occlusion. We found that, at most lens positions and viewing angles, there was a decrease of BEP availability and in some cases complete absence of some BEPs. Given the implications of these effects on image quality, we postulate that three morphological features (aphakic spaces, curvature of the iris, and intraretinal variability in spectral sensitivity) may, in part, be adaptations to mitigate the loss of spectral image quality in the periphery of the eyes of fishes.
Ramón, María L; Piñero, David P; Pérez-Cambrodí, Rafael J
2012-02-01
To examine the visual performance of a rotationally asymmetric multifocal intraocular lens (IOL) by correlating the defocus curve of the IOL-implanted eye with the intraocular aberrometric profile and impact on the quality of life. A prospective, consecutive, case series study including 26 eyes from 13 patients aged between 50 and 83 years (mean: 65.54±7.59 years) was conducted. All patients underwent bilateral cataract surgery with implantation of a rotationally asymmetric multifocal IOL (Lentis Mplus LS-312 MF30, Oculentis GmbH). Distance and near visual acuity outcomes, intraocular aberrations, defocus curve, and quality of life (assessed using the National Eye Institute Visual Functioning Questionnaire-25) were evaluated postoperatively (mean follow-up: 6.42±2.24 months). A significant improvement in distance visual acuity was found postoperatively (P<.01). Mean postoperative logMAR distance-corrected near visual acuity was 0.19±0.12 (∼20/30). Corrected distance visual acuity and near visual acuity of 20/20 or better were achieved by 30.8% and 7.7% of eyes, respectively. Of all eyes, 96.2% had a postoperative addition between 0 and 1.00 diopter (D). The defocus curve showed two peaks of maximum visual acuity (0 and 3.00 D of defocus), with an acceptable range of intermediate vision. LogMAR visual acuity corresponding to near defocus was directly correlated with some higher order intraocular aberrations (r⩾0.44, P⩽.04). Some difficulties evaluated with the quality of life test correlated directly with near and intermediate visual acuity (r⩾0.50, P⩽.01). The Lentis Mplus multifocal IOL provides good distance, intermediate, and near visual outcomes; however, the induced intraocular aberrometric profile may limit the potential visual benefit. Copyright 2012, SLACK Incorporated.
Physical qualities and activity profiles of sub-elite and recreational Australian football players.
Stein, Josh G; Gabbett, Tim J; Townshend, Andrew D; Dawson, Brian T
2015-11-01
To investigate the relationship between physical qualities and match activity profiles of recreational Australian football players. Prospective cohort study. Forty players from three recreational Australian football teams (Division One, Two and Three) underwent a battery of fitness tests (vertical jump, 10 and 40 m sprint, 6 m × 30 m repeated sprint test, Yo-Yo intermittent recovery level Two and 2-km time trial). The activity profiles of competitive match-play were quantified using 10-Hz Global Positioning System units. Division One players possessed greater maximum velocity, Yo-Yo level Two and 2-km time trial performances than Division Two and Three players. In addition, Division One players covered greater relative distance, and relative distances at moderate- and high-intensities during match-play than Division Two and Three players. Division Two players had better 2-km time trial performances than Division Three players. Positive associations (P < 0.05) were found between 10 m acceleration, maximum velocity, Yo-Yo level Two and 2-km time trial performances and relative distance, and relative distances covered at moderate- and high-intensities during match-play. Moderate relationships were found between vertical jump and relative distance and high-intensity running. Sub-elite Australian football players competing at a higher level exhibit greater physical qualities and match-play activity profiles than lesser-skilled recreational players. Acceleration and maximum velocity, 2-km time trial and Yo-Yo level Two performances discriminate between players of different playing levels, and are related to physical match performance in recreational Australian football. The development of these qualities is likely to contribute to improved match performance in recreational Australian football players. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Heavy metals in surface lake sediments on the Kola Penninsula as an index of air quality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dauvalter, V.
1996-12-31
The investigations of heavy metal (Ni, Cu, Co, Zn, Pb, Cd, Hg) distribution in sediments of more than 100 lakes were carried out between 1989 and 1994. The study lakes are situated at different distances from two main heavy metal pollution sources of the Kola Peninsula-smelters of the Pechenganickel and Severonickel Companies. To assess the pollution extent of investigated lakes, values of factor and degree of contamination were calculated according to the method suggested by Hakanson (1980). Heavy metal contamination factor (C{sub f}) for each heavy metal was calculated as the quotient of concentration from the uppermost (0-1 cm) sedimentmore » to the mean preindustrial background value (concentrations from 20-30 cm sediment layers) for the investigated region. Degree of contamination (C{sub d}) was defined as the sum of all contamination factors for studied heavy metals. To quantitatively express the potential ecological risk of given contaminants created for ecosystems, risk factor (Er) for each heavy metal has been calculated. Er takes into account the toxicity of a heavy metal and bioproduction index (BPI) of a lake. Risk index (RI) was determined as the sum of all ecological risk factor for studied heavy metals.« less
Lei, Yu; Lin, Guan-yu
2013-01-01
Tandem gratings of double-dispersion mount make it possible to design an imaging spectrometer for the weak light observation with high spatial resolution, high spectral resolution, and high optical transmission efficiency. The traditional tandem Wadsworth mounting is originally designed to match the coaxial telescope and large-scale imaging spectrometer. When it is used to connect the off-axis telescope such as off-axis parabolic mirror, it presents lower imaging quality than to connect the coaxial telescope. It may also introduce interference among the detector and the optical elements as it is applied to the short focal length and small-scale spectrometer in a close volume by satellite. An advanced tandem Wadsworth mounting has been investigated to deal with the situation. The Wadsworth astigmatism-corrected mounting condition for which is expressed as the distance between the second concave grating and the imaging plane is calculated. Then the optimum arrangement for the first plane grating and the second concave grating, which make the anterior Wadsworth condition fulfilling each wavelength, is analyzed by the geometric and first order differential calculation. These two arrangements comprise the advanced Wadsworth mounting condition. The spectral resolution has also been calculated by these conditions. An example designed by the optimum theory proves that the advanced tandem Wadsworth mounting performs excellently in spectral broadband.
A novel dual-camera calibration method for 3D optical measurement
NASA Astrophysics Data System (ADS)
Gai, Shaoyan; Da, Feipeng; Dai, Xianqiang
2018-05-01
A novel dual-camera calibration method is presented. In the classic methods, the camera parameters are usually calculated and optimized by the reprojection error. However, for a system designed for 3D optical measurement, this error does not denote the result of 3D reconstruction. In the presented method, a planar calibration plate is used. In the beginning, images of calibration plate are snapped from several orientations in the measurement range. The initial parameters of the two cameras are obtained by the images. Then, the rotation and translation matrix that link the frames of two cameras are calculated by using method of Centroid Distance Increment Matrix. The degree of coupling between the parameters is reduced. Then, 3D coordinates of the calibration points are reconstructed by space intersection method. At last, the reconstruction error is calculated. It is minimized to optimize the calibration parameters. This error directly indicates the efficiency of 3D reconstruction, thus it is more suitable for assessing the quality of dual-camera calibration. In the experiments, it can be seen that the proposed method is convenient and accurate. There is no strict requirement on the calibration plate position in the calibration process. The accuracy is improved significantly by the proposed method.
Quality Assurance--Best Practices for Assessing Online Programs
ERIC Educational Resources Information Center
Wang, Qi
2006-01-01
Educators have long sought to define quality in education. With the proliferation of distance education and online learning powered by the Internet, the tasks required to assess the quality of online programs become even more challenging. To assist educators and institutions in search of quality assurance methods to continuously improve their…
Mason’s equation application for prediction of voltage of oil shale treeing breakdown
NASA Astrophysics Data System (ADS)
Martemyanov, S. M.
2017-05-01
The application of the formula, which is used to calculate the maximum field at the tip of the pin-plane electrode system was proposed to describe the process of electrical treeing and treeing breakdown in an oil shale. An analytical expression for the calculation of the treeing breakdown voltage in the oil shale, as a function of the inter-electrode distance, was taken. A high accuracy of the correspondence of the model to the experimental data in the range of inter-electrode distances from 0.03 to 0.5 m was taken.
VizieR Online Data Catalog: Extinction map towards the Galactic bulge (Chen+, 2013)
NASA Astrophysics Data System (ADS)
Chen, B.; Schultheis, M.; Jiang, B.; Gonzalez, O. A.; Robin, A. C.; Rejkuba, M.; Minniti, D.
2012-11-01
We combine the observations with the Besancon model of the Galaxy to investigate the variations of extinction along different lines of sight towards the inner Galactic bulge as a function of distance. The full results are listed in Table 1 and Table 2. These results will be also added into the BEAM calculator webpage (http://mill.astro.puc.cl/BEAM/calculator.php). For each position we give the E(J-Ks), E(H-Ks) as well as the corresponding sigma for each distance bin starting from 1 to 10kpc. (2 data files).
Multidimensional Risk Analysis: MRISK
NASA Technical Reports Server (NTRS)
McCollum, Raymond; Brown, Douglas; O'Shea, Sarah Beth; Reith, William; Rabulan, Jennifer; Melrose, Graeme
2015-01-01
Multidimensional Risk (MRISK) calculates the combined multidimensional score using Mahalanobis distance. MRISK accounts for covariance between consequence dimensions, which de-conflicts the interdependencies of consequence dimensions, providing a clearer depiction of risks. Additionally, in the event the dimensions are not correlated, Mahalanobis distance reduces to Euclidean distance normalized by the variance and, therefore, represents the most flexible and optimal method to combine dimensions. MRISK is currently being used in NASA's Environmentally Responsible Aviation (ERA) project o assess risk and prioritize scarce resources.
Analog Correlator Based on One Bit Digital Correlator
NASA Technical Reports Server (NTRS)
Prokop, Norman (Inventor); Krasowski, Michael (Inventor)
2017-01-01
A two input time domain correlator may perform analog correlation. In order to achieve high throughput rates with reduced or minimal computational overhead, the input data streams may be hard limited through adaptive thresholding to yield two binary bit streams. Correlation may be achieved through the use of a Hamming distance calculation, where the distance between the two bit streams approximates the time delay that separates them. The resulting Hamming distance approximates the correlation time delay with high accuracy.
ERIC Educational Resources Information Center
Joo, K. P.; Andrés, Carmen; Shearer, Rick
2014-01-01
To explore effective learning design for students' cognitive engagement, a design-based case study was conducted in a quality control course in the Costa Rican National University of Distance Education between the 2011 and 2012 academic years. The course was revised for the 2012 provision in terms of the assignment structure, the number of…
Propagation of rotational Risley-prism-array-based Gaussian beams in turbulent atmosphere
NASA Astrophysics Data System (ADS)
Chen, Feng; Ma, Haotong; Dong, Li; Ren, Ge; Qi, Bo; Tan, Yufeng
2018-03-01
Limited by the size and weight of prism and optical assembling, Rotational Risley-prism-array system is a simple but effective way to realize high power and superior beam quality of deflecting laser output. In this paper, the propagation of the rotational Risley-prism-array-based Gaussian beam array in atmospheric turbulence is studied in detail. An analytical expression for the average intensity distribution at the receiving plane is derived based on nonparaxial ray tracing method and extended Huygens-Fresnel principle. Power in the diffraction-limited bucket is chosen to evaluate beam quality. The effect of deviation angle, propagation distance and intensity of turbulence on beam quality is studied in detail by quantitative simulation. It reveals that with the propagation distance increasing, the intensity distribution gradually evolves from multiple-petal-like shape into the pattern that contains one main-lobe in the center with multiple side-lobes in weak turbulence. The beam quality of rotational Risley-prism-array-based Gaussian beam array with lower deviation angle is better than its counterpart with higher deviation angle when propagating in weak and medium turbulent (i.e. Cn2 < 10-13m-2/3), the beam quality of higher deviation angle arrays degrades faster as the intensity of turbulence gets stronger. In the case of propagating in strong turbulence, the long propagation distance (i.e. z > 10km ) and deviation angle have no influence on beam quality.
NASA Astrophysics Data System (ADS)
Hipp, J. R.; Encarnacao, A.; Ballard, S.; Young, C. J.; Phillips, W. S.; Begnaud, M. L.
2011-12-01
Recently our combined SNL-LANL research team has succeeded in developing a global, seamless 3D tomographic P-velocity model (SALSA3D) that provides superior first P travel time predictions at both regional and teleseismic distances. However, given the variable data quality and uneven data sampling associated with this type of model, it is essential that there be a means to calculate high-quality estimates of the path-dependent variance and covariance associated with the predicted travel times of ray paths through the model. In this paper, we show a methodology for accomplishing this by exploiting the full model covariance matrix. Our model has on the order of 1/2 million nodes, so the challenge in calculating the covariance matrix is formidable: 0.9 TB storage for 1/2 of a symmetric matrix, necessitating an Out-Of-Core (OOC) blocked matrix solution technique. With our approach the tomography matrix (G which includes Tikhonov regularization terms) is multiplied by its transpose (GTG) and written in a blocked sub-matrix fashion. We employ a distributed parallel solution paradigm that solves for (GTG)-1 by assigning blocks to individual processing nodes for matrix decomposition update and scaling operations. We first find the Cholesky decomposition of GTG which is subsequently inverted. Next, we employ OOC matrix multiply methods to calculate the model covariance matrix from (GTG)-1 and an assumed data covariance matrix. Given the model covariance matrix we solve for the travel-time covariance associated with arbitrary ray-paths by integrating the model covariance along both ray paths. Setting the paths equal gives variance for that path. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Yarbrough, Wendell G; Sewell, Andrew; Tickle, Erin; Rhinehardt, Eric; Harkleroad, Rod; Bennett, Marc; Johnson, Deborah; Wen, Li; Pfeiffer, Matthew; Benegas, Manny; Morath, Julie
2014-12-01
Hospital leaders lack tools to determine the financial impact of poor patient outcomes and adverse events. To provide health-care leaders with decision support for investments to improve care, we created a tool, the Healthcare Quality Calculator (HQCal), which uses institution-specific financial data to calculate impact of poor patient outcomes or quality improvement on present and future margin. Excel and Web-based versions of the HQCal were based on a cohort study framework and created with modular components including major drivers of cost and reimbursement. The Healthcare Quality Calculator (HQCal) compares payment, cost, and profit/loss for patients with and without poor outcomes or quality issues. Cost and payment information for groups with and without quality issues are used by the HQCal to calculate profit or loss. Importantly, institution-specific payment and cost data are used to calculate financial impact and attributable cost associated with poor patient outcomes, adverse events, or quality issues. Because future cost and reimbursement changes can be forecast, the HQCal incorporates a forward-looking component. The flexibility of the HQCal was demonstrated using surgical site infections after abdominal surgery and postoperative surgical airway complications. The Healthcare Quality Calculator determines financial impact of poor patient outcomes and the benefit of initiatives to improve quality. The calculator can identify quality issues that would provide the largest financial benefit if improved; however, it cannot identify specific interventions. The calculator provides a tool to improve transparency regarding both short- and long-term financial consequences of funding, or failing to fund, initiatives to close gaps in quality or improve patient outcomes.
Sun, Fei; Xu, Bing; Zhang, Yi; Dai, Shengyun; Yang, Chan; Cui, Xianglong; Shi, Xinyuan; Qiao, Yanjiang
2016-01-01
The quality of Chinese herbal medicine tablets suffers from batch-to-batch variability due to a lack of manufacturing process understanding. In this paper, the Panax notoginseng saponins (PNS) immediate release tablet was taken as the research subject. By defining the dissolution of five active pharmaceutical ingredients and the tablet tensile strength as critical quality attributes (CQAs), influences of both the manipulated process parameters introduced by an orthogonal experiment design and the intermediate granules’ properties on the CQAs were fully investigated by different chemometric methods, such as the partial least squares, the orthogonal projection to latent structures, and the multiblock partial least squares (MBPLS). By analyzing the loadings plots and variable importance in the projection indexes, the granule particle sizes and the minimal punch tip separation distance in tableting were identified as critical process parameters. Additionally, the MBPLS model suggested that the lubrication time in the final blending was also important in predicting tablet quality attributes. From the calculated block importance in the projection indexes, the tableting unit was confirmed to be the critical process unit of the manufacturing line. The results demonstrated that the combinatorial use of different multivariate modeling methods could help in understanding the complex process relationships as a whole. The output of this study can then be used to define a control strategy to improve the quality of the PNS immediate release tablet. PMID:27932865
Allegrini, Maria-Cristina; Canullo, Roberto; Campetella, Giandiego
2009-04-01
Knowledge of accuracy and precision rates is particularly important for long-term studies. Vegetation assessments include many sources of error related to overlooking and misidentification, that are usually influenced by some factors, such as cover estimate subjectivity, observer biased species lists and experience of the botanist. The vegetation assessment protocol adopted in the Italian forest monitoring programme (CONECOFOR) contains a Quality Assurance programme. The paper presents the different phases of QA, separates the 5 main critical points of the whole protocol as sources of random or systematic errors. Examples of Measurement Quality Objectives (MQOs) expressed as Data Quality Limits (DQLs) are given for vascular plant cover estimates, in order to establish the reproducibility of the data. Quality control activities were used to determine the "distance" between the surveyor teams and the control team. Selected data were acquired during the training and inter-calibration courses. In particular, an index of average cover by species groups was used to evaluate the random error (CV 4%) as the dispersion around the "true values" of the control team. The systematic error in the evaluation of species composition, caused by overlooking or misidentification of species, was calculated following the pseudo-turnover rate; detailed species censuses on smaller sampling units were accepted as the pseudo-turnover which always fell below the 25% established threshold; species density scores recorded at community level (100 m(2) surface) rarely exceeded that limit.
Generalising Ward's Method for Use with Manhattan Distances.
Strauss, Trudie; von Maltitz, Michael Johan
2017-01-01
The claim that Ward's linkage algorithm in hierarchical clustering is limited to use with Euclidean distances is investigated. In this paper, Ward's clustering algorithm is generalised to use with l1 norm or Manhattan distances. We argue that the generalisation of Ward's linkage method to incorporate Manhattan distances is theoretically sound and provide an example of where this method outperforms the method using Euclidean distances. As an application, we perform statistical analyses on languages using methods normally applied to biology and genetic classification. We aim to quantify differences in character traits between languages and use a statistical language signature based on relative bi-gram (sequence of two letters) frequencies to calculate a distance matrix between 32 Indo-European languages. We then use Ward's method of hierarchical clustering to classify the languages, using the Euclidean distance and the Manhattan distance. Results obtained from using the different distance metrics are compared to show that the Ward's algorithm characteristic of minimising intra-cluster variation and maximising inter-cluster variation is not violated when using the Manhattan metric.
Shock heating of the solar wind plasma
NASA Technical Reports Server (NTRS)
Whang, Y. C.; Liu, Shaoliang; Burlaga, L. F.
1990-01-01
The role played by shocks in heating solar-wind plasma is investigated using data on 413 shocks which were identified from the plasma and magnetic-field data collected between 1973 and 1982 by Pioneer and Voyager spacecraft. It is found that the average shock strength increased with the heliocentric distance outside 1 AU, reaching a maximum near 5 AU, after which the shock strength decreased with the distance; the entropy of the solar wind protons also reached a maximum at 5 AU. An MHD simulation model in which shock heating is the only heating mechanism available was used to calculate the entropy changes for the November 1977 event. The calculated entropy agreed well with the value calculated from observational data, suggesting that shocks are chiefly responsible for heating solar wind plasma between 1 and 15 AU.
Prediction of the far field noise from wind energy farms
NASA Technical Reports Server (NTRS)
Shepherd, K. P.; Hubbard, H. H.
1986-01-01
The basic physical factors involved in making predictions of wind turbine noise and an approach which allows for differences in the machines, the wind energy farm configurations and propagation conditions are reviewed. Example calculations to illustrate the sensitivity of the radiated noise to such variables as machine size, spacing and numbers, and such atmosphere variables as absorption and wind direction are presented. It is found that calculated far field distances to particular sound level contours are greater for lower values of atmospheric absorption, for a larger total number of machines, for additional rows of machines and for more powerful machines. At short and intermediate distances, higher sound pressure levels are calculated for closer machine spacings, for more powerful machines, for longer row lengths and for closer row spacings.
Dosimetric investigation of LDR brachytherapy ¹⁹²Ir wires by Monte Carlo and TPS calculations.
Bozkurt, Ahmet; Acun, Hediye; Kemikler, Gonul
2013-01-01
The aim of this study was to investigate the dose rate distribution around (192)Ir wires used as radioactive sources in low-dose-rate brachytherapy applications. Monte Carlo modeling of a 0.3-mm diameter source and its surrounding water medium was performed for five different wire lengths (1-5 cm) using the MCNP software package. The computed dose rates per unit of air kerma at distances from 0.1 up to 10 cm away from the source were first verified with literature data sets. Then, the simulation results were compared with the calculations from the XiO CMS commercial treatment planning system. The study results were found to be in concordance with the treatment planning system calculations except for the shorter wires at close distances.
High-resolution mobile optical 3D scanner with color mapping
NASA Astrophysics Data System (ADS)
Ramm, Roland; Bräuer-Burchardt, Christian; Kühmstedt, Peter; Notni, Gunther
2017-07-01
A high-resolution mobile handheld scanning device suitable for 3D data acquisition and analysis for forensic investigations, rapid prototyping, design, quality management, and archaeology with a measurement volume of approximately 325 mm x 200 mm x 100mm and a lateral object resolution of 170 µm developed at our institute is introduced. The scanners weight is 4.4 kg with an optional color DLSR camera. The PC for measurement control and point calculation is included inside the housing. Power supply is realized by rechargeable batteries. Possible operation time is between 30 and 60 minutes. The object distance is between 400 and 500 mm, and the scan time for one 3D shot may vary between 0.1 and 0.5 seconds. The complete 3D result is obtained a few seconds after starting the scan. For higher quality 3D and color images the scanner is attachable to tripod use. Measurement objects larger than the measurement volume must be acquired partly. The different resulting datasets are merged using a suitable software module. The scanner has been successfully used in various applications.
A quality-of-life-oriented endpoint for comparing therapies.
Gelber, R D; Gelman, R S; Goldhirsch, A
1989-09-01
An endpoint, time without symptoms of disease and toxicity of treatment (TWiST), is defined to provide a single measure of length and quality of survival. Time with subjective side effects of treatment and time with unpleasant symptoms of disease are subtracted from overall survival time to calculate TWiST for each patient. The purpose of this paper is to describe the construction of this endpoint, and to elaborate on its interpretation for patient care decision-making. Estimating the distribution of TWiST using actuarial methods is shown by simulation studies to be biased as a result of induced dependency between TWiST and its censoring distribution. Considering the distribution of TWiST accumulated within a specified time from start of therapy, L, allows one to reduce this bias by substituting estimated TWiST for censored values and provides a method to evaluate the "payback" period for early toxic effects. Quantile distance plots provide graphical representations for treatment comparisons. The analysis of Ludwig Trial III evaluating toxic adjuvant therapies versus a no-treatment control group for postmenopausal women with node-positive breast cancer illustrates the methodology.
Building a Sustainable Quality Matters™ Community of Practice through Social Network Analysis
ERIC Educational Resources Information Center
Cowan, John; Richter, Stephanie; Miller, Tracy; Rhode, Jason; Click, Aline; Underwood, Jason
2017-01-01
The growth of distance education has necessitated strong evidence of quality for institutions of higher education, and numerous standards and principles of quality have been developed, such as Quality Matters™ (Quality Matters). These systems are often considered only at the course level to guide design and improve student outcomes, but they can…
A Formula for Planning and Predicting Postoperative Mammoplasty Results.
Smithson, Mary G; Collawn, Sherry S; Mousa, Mina S; Bramel, Carly M
2017-06-01
For women with macromastia, reduction mammoplasty is a safe and effective solution to increasing quality of life through alleviating pain and improving aesthetics. This study developed a way to combine a surgeon's view of breast measurement (volume) with a patient's view of breast measurement (distance between nipple and notch, inframammary fold, or midline) to provide patients with a better understanding of expected surgical outcomes after breast reduction with a medial superior pedicle. An institutional review board approved retrospective chart review was performed on all medial superior pedicle reduction mammoplasties performed by a single surgeon at a university medical center from 2008 to 2016, and a total of 133 patients were identified. Measurements of interest for this study were nipple to sternal notch (N-S), nipple to inframammary fold (N-I), nipple to midline (N-M), and breast diameter (BD). The average bilateral change per measurement was calculated for each patient in centimeters. Change was averaged for left and right breasts for N-S, N-I, N-M, and BD per patient. Grams removed for left and right breasts were also averaged. Each measurement of average change was divided by the gram average and multiplied by 100 to obtain centimeter change per 100 grams. Individual patient measurements per type of measurement were averaged to achieve a final improvement reported in centimeters per 100 g tissue removed per breast. The average change in the N-S distance was calculated to be a decrease of 1.5 ± 0.8 cm/100 g of breast tissue removed. The average change in N-I was calculated to be an overall decrease of 0.7 ± 0.5 cm/100 g. The average change in N-M was calculated to be a decrease of 0.1 ± 0.3 cm/100 g. Finally, the average change in BD was calculated to be 0.0 ± 0.4 cm/100 g. A surgeon's expression of breast measurements in terms of volume can be difficult for a patient to understand and visualize. This study determined the impact volume has on length of typical breast measurements to increase patients' understanding of expected outcomes. In summary, patients can be told to expect to see a nipple elevation of 1.5 cm per 100 grams of breast tissue removed using this medial superior pedicle technique.
NASA Astrophysics Data System (ADS)
Larsson, Sven; Volosov, Andrey
1987-12-01
Rate constants for photoinduced intramolecular electron transfer are calculated for four of the molecules studied by Hush et al. The electronic factor is obtained in quantum chemical calculations using the CNDO/S method. The results agree reasonably well with experiments for the forward reaction. Possible reasons for the disagreement for the charge recombination process are offered.
NASA Astrophysics Data System (ADS)
Bustamam, A.; Ulul, E. D.; Hura, H. F. A.; Siswantining, T.
2017-07-01
Hierarchical clustering is one of effective methods in creating a phylogenetic tree based on the distance matrix between DNA (deoxyribonucleic acid) sequences. One of the well-known methods to calculate the distance matrix is k-mer method. Generally, k-mer is more efficient than some distance matrix calculation techniques. The steps of k-mer method are started from creating k-mer sparse matrix, and followed by creating k-mer singular value vectors. The last step is computing the distance amongst vectors. In this paper, we analyze the sequences of MERS-CoV (Middle East Respiratory Syndrome - Coronavirus) DNA by implementing hierarchical clustering using k-mer sparse matrix in order to perform the phylogenetic analysis. Our results show that the ancestor of our MERS-CoV is coming from Egypt. Moreover, we found that the MERS-CoV infection that occurs in one country may not necessarily come from the same country of origin. This suggests that the process of MERS-CoV mutation might not only be influenced by geographical factor.
Confronting the Gaia and NLTE spectroscopic parallaxes for the FGK stars
NASA Astrophysics Data System (ADS)
Sitnova, Tatyana; Mashonkina, Lyudmila; Pakhomov, Yury
2018-04-01
The understanding of the chemical evolution of the Galaxy relies on the stellar chemical composition. Accurate atmospheric parameters is a prerequisite of determination of accurate chemical abundances. For late type stars with known distance, surface gravity (log g) can be calculated from well-known relation between stellar mass, T eff, and absolute bolometric magnitude. This method weakly depends on model atmospheres, and provides reliable log g. However, accurate distances are available for limited number of stars. Another way to determine log g for cool stars is based on ionisation equilibrium, i.e. consistent abundances from lines of neutral and ionised species. In this study we determine atmospheric parameters moving step-by-step from well-studied nearby dwarfs to ultra-metal poor (UMP) giants. In each sample, we select stars with the most reliable T eff based on photometry and the distance-based log g, and compare with spectroscopic gravity calculated taking into account deviations from local thermodinamic equilibrium (LTE). After that, we apply spectroscopic method of log g determination to other stars of the sample with unknown distances.
Rise and Shock: Optimal Defibrillator Placement in a High-rise Building.
Chan, Timothy C Y
2017-01-01
Out-of-hospital cardiac arrests (OHCA) in high-rise buildings experience lower survival and longer delays until paramedic arrival. Use of publicly accessible automated external defibrillators (AED) can improve survival, but "vertical" placement has not been studied. We aim to determine whether elevator-based or lobby-based AED placement results in shorter vertical distance travelled ("response distance") to OHCAs in a high-rise building. We developed a model of a single-elevator, n-floor high-rise building. We calculated and compared the average distance from AED to floor of arrest for the two AED locations. We modeled OHCA occurrences using floor-specific Poisson processes, the risk of OHCA on the ground floor (λ 1 ) and the risk on any above-ground floor (λ). The elevator was modeled with an override function enabling direct travel to the target floor. The elevator location upon override was modeled as a discrete uniform random variable. Calculations used the laws of probability. Elevator-based AED placement had shorter average response distance if the number of floors (n) in the building exceeded three quarters of the ratio of ground-floor OHCA risk to above-ground floor risk (λ 1 /λ) plus one half (n ≥ 3λ 1 /4λ + 0.5). Otherwise, a lobby-based AED had shorter average response distance. If OHCA risk on each floor was equal, an elevator-based AED had shorter average response distance. Elevator-based AEDs travel less vertical distance to OHCAs in tall buildings or those with uniform vertical risk, while lobby-based AEDs travel less vertical distance in buildings with substantial lobby, underground, and nearby street-level traffic and OHCA risk.
How variations in distance affect eyewitness reports and identification accuracy.
Lindsay, R C L; Semmler, Carolyn; Weber, Nathan; Brewer, Neil; Lindsay, Marilyn R
2008-12-01
Witnesses observe crimes at various distances and the courts have to interpret their testimony given the likely quality of witnesses' views of events. We examined how accurately witnesses judged the distance between themselves and a target person, and how distance affected description accuracy, choosing behavior, and identification test accuracy. Over 1,300 participants were approached during normal daily activities, and asked to observe a target person at one of a number of possible distances. Under a Perception, Immediate Memory, or Delayed Memory condition, witnesses provided a brief description of the target, estimated the distance to the target, and then examined a 6-person target-present or target-absent lineup to see if they could identify the target. Errors in distance judgments were often substantial. Description accuracy was mediocre and did not vary systematically with distance. Identification choosing rates were not affected by distance, but decision accuracy declined with distance. Contrary to previous research, a 15-m viewing distance was not critical for discriminating accurate from inaccurate decisions.
77 FR 19273 - National Advisory Committee on Institutional Quality and Integrity (NACIQI)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-30
... distance education.) Requested Scope: The accreditation of nursing education programs in the United States... preaccreditation (Accreditation Candidate) throughout the United States of education programs in audiology and... States offering undergraduate programs through both campus- based instruction and distance education...
Mackeen, Mukram; Almond, Andrew; Cumpstey, Ian; Enis, Seth C; Kupce, Eriks; Butters, Terry D; Fairbanks, Antony J; Dwek, Raymond A; Wormald, Mark R
2006-06-07
The experimental determination of oligosaccharide conformations has traditionally used cross-linkage 1H-1H NOE/ROEs. As relatively few NOEs are observed, to provide sufficient conformational constraints this method relies on: accurate quantification of NOE intensities (positive constraints); analysis of absent NOEs (negative constraints); and hence calculation of inter-proton distances using the two-spin approximation. We have compared the results obtained by using 1H 2D NOESY, ROESY and T-ROESY experiments at 500 and 700 MHz to determine the conformation of the terminal Glc alpha1-2Glc alpha linkage in a dodecasaccharide and a related tetrasaccharide. For the tetrasaccharide, the NOESY and ROESY spectra produced the same qualitative pattern of linkage cross-peaks but the quantitative pattern, the relative peak intensities, was different. For the dodecasaccharide, the NOESY and ROESY spectra at 500 MHz produced a different qualitative pattern of linkage cross-peaks, with fewer peaks in the NOESY spectrum. At 700 MHz, the NOESY and ROESY spectra of the dodecasaccharide produced the same qualitative pattern of peaks, but again the relative peak intensities were different. These differences are due to very significant differences in the local correlation times for different proton pairs across this glycosidic linkage. The local correlation time for each proton pair was measured using the ratio of the NOESY and T-ROESY cross-relaxation rates, leaving the NOESY and ROESY as independent data sets for calculating the inter-proton distances. The inter-proton distances calculated including the effects of differences in local correlation times give much more consistent results.
Orientation-dependent potential of mean force for protein folding
NASA Astrophysics Data System (ADS)
Mukherjee, Arnab; Bhimalapuram, Prabhakar; Bagchi, Biman
2005-07-01
We present a solvent-implicit minimalistic model potential among the amino acid residues of proteins, obtained by using the known native structures [deposited in the Protein Data Bank (PDB)]. In this model, the amino acid side chains are represented by a single ellipsoidal site, defined by the group of atoms about the center of mass of the side chain. These ellipsoidal sites interact with other sites through an orientation-dependent interaction potential which we construct in the following fashion. First, the site-site potential of mean force (PMF) between heavy atoms is calculated [following F. Melo and E. Feytsman, J. Mol. Biol. 267, 207 (1997)] from statistics of their distance separation obtained from crystal structures. These site-site potentials are then used to calculate the distance and the orientation-dependent potential between side chains of all the amino acid residues (AAR). The distance and orientation dependencies show several interesting results. For example, we find that the PMF between two hydrophobic AARs, such as phenylalanine, is strongly attractive at short distances (after the obvious repulsive region at very short separation) and is characterized by a deep minimum, for specific orientations. For the interaction between two hydrophilic AARs, such a deep minimum is absent and in addition, the potential interestingly reveals the combined effect of polar (charge) and hydrophobic interactions among some of these AARs. The effectiveness of our potential has been tested by calculating the Z-scores for a large set of proteins. The calculated Z-scores show high negative values for most of them, signifying the success of the potential to identify the native structure from among a large number of its decoy states.
Distance measurement using frequency scanning interferometry with mode-hoped laser
NASA Astrophysics Data System (ADS)
Medhat, M.; Sobee, M.; Hussein, H. M.; Terra, O.
2016-06-01
In this paper, frequency scanning interferometry is implemented to measure distances up to 5 m absolutely. The setup consists of a Michelson interferometer, an external cavity tunable diode laser, and an ultra-low expansion (ULE) Fabry-Pérot (FP) cavity to measure the frequency scanning range. The distance is measured by acquiring simultaneously the interference fringes from, the Michelson and the FP interferometers, while scanning the laser frequency. An online fringe processing technique is developed to calculate the distance from the fringe ratio while removing the parts result from the laser mode-hops without significantly affecting the measurement accuracy. This fringe processing method enables accurate distance measurements up to 5 m with measurements repeatability ±3.9×10-6 L. An accurate translation stage is used to find the FP cavity free-spectral-range and therefore allow accurate measurement. Finally, the setup is applied for the short distance calibration of a laser distance meter (LDM).
1980-05-28
Total Deviation Angles and Measured Inlet Axial Velocity . . . . 55 ix LIST OF FIGURES (Continued) Figure Page 19 Points Defining Blade Sections of...distance from leading edge to point of maximum camber along chord line ar tip vortex core radius AVR axial velocity ratio (Vx /V x c chord length CL tip...yaw ceoefficient d longitudinal distance from leading edge to tip vortex calculation point G distance from chord line to maximum camber point K cascade
Maximum Range of a Projectile Thrown from Constant-Speed Circular Motion
NASA Astrophysics Data System (ADS)
Poljak, Nikola
2016-11-01
The problem of determining the angle θ at which a point mass launched from ground level with a given speed v0 will reach a maximum distance is a standard exercise in mechanics. There are many possible ways of solving this problem, leading to the well-known answer of θ = π/4, producing a maximum range of D max = v0 2 / g , with g being the free-fall acceleration. Conceptually and calculationally more difficult problems have been suggested to improve student proficiency in projectile motion, with the most famous example being the Tarzan swing problem. The problem of determining the maximum distance of a point mass thrown from constant-speed circular motion is presented and analyzed in detail in this text. The calculational results confirm several conceptually derived conclusions regarding the initial throw position and provide some details on the angles and the way of throwing (underhand or overhand) that produce the maximum throw distance.
An iterative method for obtaining the optimum lightning location on a spherical surface
NASA Technical Reports Server (NTRS)
Chao, Gao; Qiming, MA
1991-01-01
A brief introduction to the basic principles of an eigen method used to obtain the optimum source location of lightning is presented. The location of the optimum source is obtained by using multiple direction finders (DF's) on a spherical surface. An improvement of this method, which takes the distance of source-DF's as a constant, is presented. It is pointed out that using a weight factor of signal strength is not the most ideal method because of the inexact inverse signal strength-distance relation and the inaccurate signal amplitude. An iterative calculation method is presented using the distance from the source to the DF as a weight factor. This improved method has higher accuracy and needs only a little more calculation time. Some computer simulations for a 4DF system are presented to show the improvement of location through use of the iterative method.
Strain induced plasmon tuning in planar square-shaped aluminum nanoparticles array
NASA Astrophysics Data System (ADS)
Mokkath, Junais Habeeb
2018-06-01
Metal nanoparticle aggregate is an exciting platform for manipulating light-matter interactions at the nanoscale, thanks to the optically driven free electrons couple electrically across the inter-particle gap region. We use time dependent density functional theory calculations to investigate the optical response modulations in planar square-shaped aluminum nanoparticles array via morphology deformation (varying the inter-particle gap distance in the range of 2-20 Å) separately along one and two directions. We report the surprising observation that irrespective of the different morphology deformations, there exists a unique inter-particle gap distance of 12 Å for which, a maximum optical field enhancement can be achieved. We remark that plasmonic interaction between metal nanoparticles in an aggregate is controlled to a large extent by the size of the inter-particle gap distance. We believe that our quantum mechanical calculations will inspire and contribute to the design, control, and exploitation of aluminum based plasmonic devices.
ERIC Educational Resources Information Center
Lehner, H.; Weingartz, M.
The typical traits of a ready-made system as well as those of an individualized system are constituent characteristics of distance education. Within the framework set by these qualities and the extent to which they differ from one another, one seeks to achieve the fundamental educational aim of distance students' autonomy. The way institutions see…
Isonymy structure of four Venezuelan states.
Rodríguez-Larralde, A; Barrai, I; Alfonzo, J C
1993-01-01
The isonymy structure of four Venezuelan States-Falcón, Mérida, Nueva Esparta and Yaracuy-was studied using the surnames of the Venezuelan register of electors updated in 1984. The surname distributions of 155 counties were obtained and, for each county, estimates of consanguinity due to random isonymy and Fisher's alpha were calculated. It was shown that for large sample sizes the inverse of Fisher's alpha is identical to the unbiased estimate of within-population random isonymy. A three-dimensional isometric surface plot was obtained for each State, based on the counties' random isonymy estimates. The highest estimates of random consanguinity were found in the States of Nueva Esparta and Mérida, while the lowest were found in Yaracuy. Other microdifferentiation indicators from the same data gave similar results, and an interpretation was attempted, based on the particular economic and geographic characteristics of each State. Four different genetic distances between all possible pairs of counties were calculated within States; geographic distance shows the highest correlations with random isonymy and Euclidean distance, with the exception of the State of Nueva Esparta, where there is no correlation between geographic distance and random isonymy. It was possible to group counties in clusters, from dendrograms based on Euclidean distance. Isonymy clustering was also consistent with socioeconomic and geographic characteristics of the counties.
Phylo_dCor: distance correlation as a novel metric for phylogenetic profiling.
Sferra, Gabriella; Fratini, Federica; Ponzi, Marta; Pizzi, Elisabetta
2017-09-05
Elaboration of powerful methods to predict functional and/or physical protein-protein interactions from genome sequence is one of the main tasks in the post-genomic era. Phylogenetic profiling allows the prediction of protein-protein interactions at a whole genome level in both Prokaryotes and Eukaryotes. For this reason it is considered one of the most promising methods. Here, we propose an improvement of phylogenetic profiling that enables handling of large genomic datasets and infer global protein-protein interactions. This method uses the distance correlation as a new measure of phylogenetic profile similarity. We constructed robust reference sets and developed Phylo-dCor, a parallelized version of the algorithm for calculating the distance correlation that makes it applicable to large genomic data. Using Saccharomyces cerevisiae and Escherichia coli genome datasets, we showed that Phylo-dCor outperforms phylogenetic profiling methods previously described based on the mutual information and Pearson's correlation as measures of profile similarity. In this work, we constructed and assessed robust reference sets and propose the distance correlation as a measure for comparing phylogenetic profiles. To make it applicable to large genomic data, we developed Phylo-dCor, a parallelized version of the algorithm for calculating the distance correlation. Two R scripts that can be run on a wide range of machines are available upon request.
Using multiple travel paths to estimate daily travel distance in arboreal, group-living primates.
Steel, Ruth Irene
2015-01-01
Primate field studies often estimate daily travel distance (DTD) in order to estimate energy expenditure and/or test foraging hypotheses. In group-living species, the center of mass (CM) method is traditionally used to measure DTD; a point is marked at the group's perceived center of mass at a set time interval or upon each move, and the distance between consecutive points is measured and summed. However, for groups using multiple travel paths, the CM method potentially creates a central path that is shorter than the individual paths and/or traverses unused areas. These problems may compromise tests of foraging hypotheses, since distance and energy expenditure could be underestimated. To better understand the magnitude of these potential biases, I designed and tested the multiple travel paths (MTP) method, in which DTD was calculated by recording all travel paths taken by the group's members, weighting each path's distance based on its proportional use by the group, and summing the weighted distances. To compare the MTP and CM methods, DTD was calculated using both methods in three groups of Udzungwa red colobus monkeys (Procolobus gordonorum; group size 30-43) for a random sample of 30 days between May 2009 and March 2010. Compared to the CM method, the MTP method provided significantly longer estimates of DTD that were more representative of the actual distance traveled and the areas used by a group. The MTP method is more time-intensive and requires multiple observers compared to the CM method. However, it provides greater accuracy for testing ecological and foraging models.
Crystalens HD intraocular lens analysis using an adaptive optics visual simulator.
Pérez-Vives, Cari; Montés-Micó, Robert; López-Gil, Norberto; Ferrer-Blasco, Teresa; García-Lázaro, Santiago
2013-12-01
To compare visual and optical quality of the Crystalens HD intraocular lens (IOL) with that of a monofocal IOL. The wavefront aberration patterns of the monocular Akreos Adapt AO IOL and the single-optic accommodating Crystalens HD IOL were measured in a model eye. The Crystalens IOL was measured in its nonaccommodative state and then, after flexing the haptic to produce 1.4 mm of movement, in its accommodative state. Using an adaptive optics system, subjects' aberrations were removed and replaced with those of pseudophakes viewing with either lens. Monocular distance visual acuity (DVA) at high (100%), medium (50%), and low (10%) contrast and contrast sensitivity (CS) were measured for both IOL optics. Near VA (NVA) and CS were measured for the Crystalens HD IOL in its accommodative state. Depth of focus around the distance and near focus was also evaluated for the Crystalens HD IOL. Modulation transfer function (MTF), point spread function (PSF), and Strehl ratio were also calculated. All measures were taken for 3- and 5-mm pupils. The MTF, PSF, and Strehl ratio showed comparable values between IOLs (p > 0.05). There were no significant differences in DVA and CS between IOLs for all contrasts and pupils (p > 0.05). When spherically focused, mean DVA and NVA with the Crystalens HD IOL were ≥20/20 at 100 and 50% contrasts for both pupils. Monocular DVA, NVA, and CS were slightly better with 3- than 5-mm pupils, but without statistically significant differences. The Crystalens HD IOL showed about 0.75 and 0.50 D of depth of focus in its accommodative state and nonaccommodative state, respectively. The optical and visual quality with the nonaccommodatied Crystalens HD IOL was comparable to that of a monofocal IOL. If this lens can move 1.4 mm in the eye, it will provide high-quality optics for near vision as well.
Margeta, Milica A; Kuo, Anthony N; Proia, Alan D; Freedman, Sharon F
2017-02-01
To provide guidelines for safe implantation of glaucoma drainage devices (GDDs) in small and pediatric eyes to avoid contact between the optic nerve (ON) and the posterior edge of the GDD plate. We developed a formula for calculating limbus-to-ON distance to estimate the available "real estate" for GDD placement in small eyes. The formula was validated using eyes of pediatric decedents undergoing clinical autopsy, with axial lengths (AL) of 15-24 mm. For each autopsy eye, we measured AL, anterior chamber depth, corneal diameter, and limbus-to-ON distances for the four eye quadrants. The main outcome measure was the degree of agreement between measured and calculated limbus-to-ON distances. A total of 15 autopsy eyes were divided into derivation (n = 10) and validation (n = 5) groups. A formula was derived to estimate superotemporal limbus-to-ON distance (D ST ) using AL and corneal diameter data. Linear regression showed excellent correlation between the measured D ST and AL (R 2 = 0.98). There was excellent agreement between measured and calculated limbus-to-ON values for all four eye quadrants (R 2 range, 0.92-0.98). Our formula accurately predicts limbus-to-ON distances across a wide range of clinically relevant ALs. Based on this information, GDD surgery in small eyes can be adjusted by positioning the GDD closer to the limbus or by trimming the posterior edge of the GDD plate. To our knowledge, this is the first set of guidelines developed to promote safe implantation of GDDs in small eyes. Copyright © 2017 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.
Distance-Learning, ADHD Quality Improvement in Primary Care: A Cluster-Randomized Trial.
Fiks, Alexander G; Mayne, Stephanie L; Michel, Jeremy J; Miller, Jeffrey; Abraham, Manju; Suh, Andrew; Jawad, Abbas F; Guevara, James P; Grundmeier, Robert W; Blum, Nathan J; Power, Thomas J
2017-10-01
To evaluate a distance-learning, quality improvement intervention to improve pediatric primary care provider use of attention-deficit/hyperactivity disorder (ADHD) rating scales. Primary care practices were cluster randomized to a 3-part distance-learning, quality improvement intervention (web-based education, collaborative consultation with ADHD experts, and performance feedback reports/calls), qualifying for Maintenance of Certification (MOC) Part IV credit, or wait-list control. We compared changes relative to a baseline period in rating scale use by study arm using logistic regression clustered by practice (primary analysis) and examined effect modification by level of clinician participation. An electronic health record-linked system for gathering ADHD rating scales from parents and teachers was implemented before the intervention period at all sites. Rating scale use was ascertained by manual chart review. One hundred five clinicians at 19 sites participated. Differences between arms were not significant. From the baseline to intervention period and after implementation of the electronic system, clinicians in both study arms were significantly more likely to administer and receive parent and teacher rating scales. Among intervention clinicians, those who participated in at least 1 feedback call or qualified for MOC credit were more likely to give parents rating scales with differences of 14.2 (95% confidence interval [CI], 0.6-27.7) and 18.8 (95% CI, 1.9-35.7) percentage points, respectively. A 3-part clinician-focused distance-learning, quality improvement intervention did not improve rating scale use. Complementary strategies that support workflows and more fully engage clinicians may be needed to bolster care. Electronic systems that gather rating scales may help achieve this goal. Index terms: ADHD, primary care, quality improvement, clinical decision support.
Development and validation of a vision-specific quality-of-life questionnaire for Timor-Leste.
du Toit, Rènée; Palagyi, Anna; Ramke, Jacqueline; Brian, Garry; Lamoureux, Ecosse L
2008-10-01
To develop and determine the reliability and validity of a vision-specific quality-of-life instrument (TL-VSQOL) designed to assess the impact of distance and near vision impairment in adults living in Timor-Leste. A vision-specific quality-of-life questionnaire was developed, piloted, and administered to 704 Timorese aged >or=40 years during a population-based eye health rapid assessment. Rasch analysis was performed on the data of 457 participants with presenting near vision worse than N8 (78.5%) and/or distance vision worse than 6/18 (69.8%). Unidimensionality, item fit to the model, response category performance, differential item functioning, and targeting of items to participants were assessed. Initially, the questionnaire lacked fit to the Rasch model. Removal of two items concerning emotional well-being resulted in a fit of the data (overall item-trait interaction: chi(2) (df) = 81 (51); mean (SD) person and item fit residual values: -0.30 (1.02) and -0.32 (1.46), and good targeting of person ability and item difficulty was evident. Poorer distance and near visual acuities were significantly associated with worse quality-of-life scores (P < 0.001). Person separation reliability was substantial (0.93), indicating that the instrument can discriminate between groups with normal and impaired vision. All 17 items were free of differential item functioning, and there was no evidence of multidimensionality. This 17-item TL-VSQOL has high reliability, construct, and criterion validity and effective targeting. It can effectively assess the impact on quality of life of adult Timorese with distance and near vision impairment. The TL-VSQOL could be adapted for use in other low-resource settings.
Tong, Zheming; Chen, Yujiao; Malkawi, Ali; Adamkiewicz, Gary; Spengler, John D
2016-01-01
Improper natural ventilation practices may deteriorate indoor air quality when in close proximity to roadways, although the intention is often to reduce energy consumption. In this study, we employed a CFD-based air quality model to quantify the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Our study found that the building envelope restricts dispersion and dilution of particulate matter. The indoor concentration in the baseline condition located 10m away from the roadway is roughly 16-21% greater than that at the edge of the roadway. The indoor flow recirculation creates a well-mixed zone with little variation in fine particle concentration (i.e., 253nm). For ultrafine particles (<100nm), a noticeable decrease in particle concentrations indoors with increasing distance from the road is observed due to Brownian and turbulent diffusion. In addition, the indoor concentration strongly depends on the distance between the roadway and building, particle size, wind condition, and window size and location. A break-even point is observed at D'~2.1 (normalized distance from the roadway by the width of the road). The indoor particle concentration is greater than that at the highway where D'<2.1, and vice versa. For new building planning, the distance from the roadway and the ambient wind condition need to be considered at the early design stage whereas the size and location of the window openings, the interior layout, and the placement of fresh air intakes are important to the indoor air quality of existing buildings adjacent to roadways. Copyright © 2016 Elsevier Ltd. All rights reserved.
Geometric facial comparisons in speed-check photographs.
Buck, Ursula; Naether, Silvio; Kreutz, Kerstin; Thali, Michael
2011-11-01
In many cases, it is not possible to call the motorists to account for their considerable excess in speeding, because they deny being the driver on the speed-check photograph. An anthropological comparison of facial features using a photo-to-photo comparison can be very difficult depending on the quality of the photographs. One difficulty of that analysis method is that the comparison photographs of the presumed driver are taken with a different camera or camera lens and from a different angle than for the speed-check photo. To take a comparison photograph with exactly the same camera setup is almost impossible. Therefore, only an imprecise comparison of the individual facial features is possible. The geometry and position of each facial feature, for example the distances between the eyes or the positions of the ears, etc., cannot be taken into consideration. We applied a new method using 3D laser scanning, optical surface digitalization, and photogrammetric calculation of the speed-check photo, which enables a geometric comparison. Thus, the influence of the focal length and the distortion of the objective lens are eliminated and the precise position and the viewing direction of the speed-check camera are calculated. Even in cases of low-quality images or when the face of the driver is partly hidden, good results are delivered using this method. This new method, Geometric Comparison, is evaluated and validated in a prepared study which is described in this article.
Alecu, Ionut M.; Stan, Andrada R.; Alecu, Marius; Ciura, Andrei; Hansen, Jeremy M.; Alecu, Rodica
2007-01-01
An effective patient quality assurance (QA) program for intensity‐modulated radiation therapy (IMRT) requires accurate and realistic plan acceptance criteria—that is, action limits. Based on dose measurements performed with a commercially available two‐dimensional (2D) diode array, we analyzed 747 fluence maps resulting from a routine patient QA program for IMRT plans. The fluence maps were calculated by three different commercially available (ADAC, CMS, Eclipse) treatment planning systems (TPSs) and were delivered using 6‐MV X‐ray beams produced by linear accelerators. To establish reasonably achievable and clinically acceptable limits for the dose deviations, the agreement between the measured and calculated fluence maps was evaluated in terms of percent dose error (PDE) for a few points and percent of passing points (PPP) for the isodose distribution. The analysis was conducted for each TPS used in the study (365 ADAC, 162 CMS, 220 Eclipse), for multiple treatment sites (prostate, pelvis, head and neck, spine, rectum, anus, lung, brain), at the normalization point for 3% percentage difference (%Diff) and 3‐mm distance to agreement (DTA) criteria. We investigated the treatment‐site dependency of PPP and PDE. The results show that, at 3% and 3‐mm criteria, a 95% PPP and 3% PDE can be achieved for prostate treatments and a 90% PPP and 5% PDE are attainable for any treatment site. PACS Numbers: 87.53Dq, 87.53Tf, 87.53Xd, 87.56Fc PMID:17592459
Reference layer adaptive filtering (RLAF) for EEG artifact reduction in simultaneous EEG-fMRI.
Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R
2017-04-01
Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) combines advantages of both methods, namely high temporal resolution of EEG and high spatial resolution of fMRI. However, EEG quality is limited due to severe artifacts caused by fMRI scanners. To improve EEG data quality substantially, we introduce methods that use a reusable reference layer EEG cap prototype in combination with adaptive filtering. The first method, reference layer adaptive filtering (RLAF), uses adaptive filtering with reference layer artifact data to optimize artifact subtraction from EEG. In the second method, multi band reference layer adaptive filtering (MBRLAF), adaptive filtering is performed on bandwidth limited sub-bands of the EEG and the reference channels. The results suggests that RLAF outperforms the baseline method, average artifact subtraction, in all settings and also its direct predecessor, reference layer artifact subtraction (RLAS), in lower (<35 Hz) frequency ranges. MBRLAF is computationally more demanding than RLAF, but highly effective in all EEG frequency ranges. Effectivity is determined by visual inspection, as well as root-mean-square voltage reduction and power reduction of EEG provided that physiological EEG components such as occipital EEG alpha power and visual evoked potentials (VEP) are preserved. We demonstrate that both, RLAF and MBRLAF, improve VEP quality. For that, we calculate the mean-squared-distance of single trial VEP to the mean VEP and estimate single trial VEP classification accuracies. We found that the average mean-squared-distance is lowest and the average classification accuracy is highest after MBLAF. RLAF was second best. In conclusion, the results suggests that RLAF and MBRLAF are potentially very effective in improving EEG quality of simultaneous EEG-fMRI. Highlights We present a new and reusable reference layer cap prototype for simultaneous EEG-fMRI We introduce new algorithms for reducing EEG artifacts due to simultaneous fMRI The algorithms combine a reference layer and adaptive filtering Several evaluation criteria suggest superior effectivity in terms of artifact reduction We demonstrate that physiological EEG components are preserved.
Reference layer adaptive filtering (RLAF) for EEG artifact reduction in simultaneous EEG-fMRI
NASA Astrophysics Data System (ADS)
Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R.
2017-04-01
Objective. Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) combines advantages of both methods, namely high temporal resolution of EEG and high spatial resolution of fMRI. However, EEG quality is limited due to severe artifacts caused by fMRI scanners. Approach. To improve EEG data quality substantially, we introduce methods that use a reusable reference layer EEG cap prototype in combination with adaptive filtering. The first method, reference layer adaptive filtering (RLAF), uses adaptive filtering with reference layer artifact data to optimize artifact subtraction from EEG. In the second method, multi band reference layer adaptive filtering (MBRLAF), adaptive filtering is performed on bandwidth limited sub-bands of the EEG and the reference channels. Main results. The results suggests that RLAF outperforms the baseline method, average artifact subtraction, in all settings and also its direct predecessor, reference layer artifact subtraction (RLAS), in lower (<35 Hz) frequency ranges. MBRLAF is computationally more demanding than RLAF, but highly effective in all EEG frequency ranges. Effectivity is determined by visual inspection, as well as root-mean-square voltage reduction and power reduction of EEG provided that physiological EEG components such as occipital EEG alpha power and visual evoked potentials (VEP) are preserved. We demonstrate that both, RLAF and MBRLAF, improve VEP quality. For that, we calculate the mean-squared-distance of single trial VEP to the mean VEP and estimate single trial VEP classification accuracies. We found that the average mean-squared-distance is lowest and the average classification accuracy is highest after MBLAF. RLAF was second best. Significance. In conclusion, the results suggests that RLAF and MBRLAF are potentially very effective in improving EEG quality of simultaneous EEG-fMRI. Highlights We present a new and reusable reference layer cap prototype for simultaneous EEG-fMRI We introduce new algorithms for reducing EEG artifacts due to simultaneous fMRI The algorithms combine a reference layer and adaptive filtering Several evaluation criteria suggest superior effectivity in terms of artifact reduction We demonstrate that physiological EEG components are preserved
Innovative Methods for Providing Instruction to Distance Students Using Technology.
ERIC Educational Resources Information Center
Pival, Paul R.; Tunon, Johanna
2001-01-01
Examines three innovative methods tried at Nova Southeastern University for providing quality bibliographic instruction to distance students: one synchronous, one asynchronous, and one that combined features from both synchronous and asynchronous methods of delivering instruction. Topics include compressed video, collaborative groupware, streaming…
Requiring Writing, Ensuring Distance-Learning Outcomes.
ERIC Educational Resources Information Center
Mulligan, Roark; Geary, Susan
1999-01-01
Discussion of the quality of distance learning programs focuses on a study of Christopher Newport University (CPU ONLINE) that showed learning outcomes in online courses were as good as outcomes in traditional courses. Describes online writing requirements that helped students develop critical thinking skills. (Author/LRW)
Developing Strategies for Networked Education.
ERIC Educational Resources Information Center
Peregoy, Richard; Kroder, Stanley
2000-01-01
Assesses the strengths, weaknesses, opportunities and threats (SWOT) of the distance learning approach to education, and discusses how one institution, the University of Dallas Graduate School of Management, has developed a progressively expanding networked distance education program. Includes quotes from three students that suggest the quality of…
The Year Ahead: Will Distance Education Enter the Mainstream?
ERIC Educational Resources Information Center
Saba, Farhad, Ed.
1998-01-01
Discusses the following indicators for measuring success in mainstreaming distance education in higher education: integration, resulting in funding and credit for off-campus students; course ownership, providing legal protection for faculty; product differentiation among institutions in course offerings, quality, and flexibility; flexible time…
The Competitive Advantage of Online versus Traditional Education
ERIC Educational Resources Information Center
Peat, Jillian A.; Helland, Katherine R.
2004-01-01
This paper examined attitudes concerning the effectiveness of distance learning, and determined the impact these perceptions had on selection decisions. Results partially supported the hypotheses, demonstrating that individuals believed distance education was of lower quality than traditional classes, and this perception impacted their hiring…
Schwemmer, Philipp; Weiel, Stefan; Garthe, Stefan
2017-01-01
A fundamental study by Ens et al. (1992, Journal of Animal Ecology , 61, 703) developed the concept of two different nest-territory qualities in Eurasian oystercatchers ( Haematopus ostralegus , L.), resulting in different reproductive successes. "Resident" oystercatchers use breeding territories close to the high-tide line and occupy adjacent foraging territories on mudflats. "Leapfrog" oystercatchers breed further away from their foraging territories. In accordance with this concept, we hypothesized that both foraging trip duration and trip distance from the high-tide line to the foraging territory would be linearly related to distance between the nest site and the high tide line. We also expected tidal stage and time of day to affect this relationship. The former study used visual observations of marked oystercatchers, which could not be permanently tracked. This concept model can now be tested using miniaturized GPS devices able to record data at high temporal and spatial resolutions. Twenty-nine oystercatchers from two study sites were equipped with GPS devices during the incubation periods (however, not during chick rearing) over 3 years, providing data for 548 foraging trips. Trip distances from the high-tide line were related to distance between the nest and high-tide line. Tidal stage and time of day were included in a mixing model. Foraging trip distance, but not duration (which was likely more impacted by intake rate), increased with increasing distance between the nest and high-tide line. There was a site-specific effect of tidal stage on both trip parameters. Foraging trip duration, but not distance, was significantly longer during the hours of darkness. Our findings support and additionally quantify the previously developed concept. Furthermore, rather than separating breeding territory quality into two discrete classes, this classification should be extended by the linear relationship between nest-site and foraging location. Finally, oystercatcher's foraging territories overlapped strongly in areas of high food abundance.
Distance management of inflammatory bowel disease: Systematic review and meta-analysis
Huang, Vivian W; Reich, Krista M; Fedorak, Richard N
2014-01-01
AIM: To review the effectiveness of distance management methods in the management of adult inflammatory bowel disease (IBD) patients. METHODS: A systematic review and meta-analysis of randomized controlled trials comparing distance management and standard clinic follow-up in the management of adult IBD patients. Distance management intervention was defined as any remote management method in which there is a patient self-management component whereby the patient interacts remotely via a self-guided management program, electronic interface, or self-directs open access to clinic follow up. The search strategy included electronic databases (Medline, PubMed, CINAHL, The Cochrane Central Register of Controlled Trials, EMBASE, KTPlus, Web of Science, and SCOPUS), conference proceedings, and internet search for web publications. The primary outcome was the mean difference in quality of life, and the secondary outcomes included mean difference in relapse rate, clinic visit rate, and hospital admission rate. Study selection, data extraction, and risk of bias assessment were completed by two independent reviewers. RESULTS: The search strategy identified a total of 4061 articles, but only 6 randomized controlled trials met the inclusion and exclusion criteria for the systematic review and meta-analysis. Three trials involved telemanagement, and three trials involved directed patient self-management and open access clinics. The total sample size was 1463 patients. There was a trend towards improved quality of life in distance management patients with an end IBDQ quality of life score being 7.28 (95%CI: -3.25-17.81) points higher than standard clinic follow-up. There was a significant decrease in the clinic visit rate among distance management patients mean difference -1.08 (95%CI: -1.60--0.55), but no significant change in relapse rate or hospital admission rate. CONCLUSION: Distance management of IBD significantly decreases clinic visit utilization, but does not significantly affect relapse rates or hospital admission rates. PMID:24574756
Independent Monte-Carlo dose calculation for MLC based CyberKnife radiotherapy
NASA Astrophysics Data System (ADS)
Mackeprang, P.-H.; Vuong, D.; Volken, W.; Henzen, D.; Schmidhalter, D.; Malthaner, M.; Mueller, S.; Frei, D.; Stampanoni, M. F. M.; Dal Pra, A.; Aebersold, D. M.; Fix, M. K.; Manser, P.
2018-01-01
This work aims to develop, implement and validate a Monte Carlo (MC)-based independent dose calculation (IDC) framework to perform patient-specific quality assurance (QA) for multi-leaf collimator (MLC)-based CyberKnife® (Accuray Inc., Sunnyvale, CA) treatment plans. The IDC framework uses an XML-format treatment plan as exported from the treatment planning system (TPS) and DICOM format patient CT data, an MC beam model using phase spaces, CyberKnife MLC beam modifier transport using the EGS++ class library, a beam sampling and coordinate transformation engine and dose scoring using DOSXYZnrc. The framework is validated against dose profiles and depth dose curves of single beams with varying field sizes in a water tank in units of cGy/Monitor Unit and against a 2D dose distribution of a full prostate treatment plan measured with Gafchromic EBT3 (Ashland Advanced Materials, Bridgewater, NJ) film in a homogeneous water-equivalent slab phantom. The film measurement is compared to IDC results by gamma analysis using 2% (global)/2 mm criteria. Further, the dose distribution of the clinical treatment plan in the patient CT is compared to TPS calculation by gamma analysis using the same criteria. Dose profiles from IDC calculation in a homogeneous water phantom agree within 2.3% of the global max dose or 1 mm distance to agreement to measurements for all except the smallest field size. Comparing the film measurement to calculated dose, 99.9% of all voxels pass gamma analysis, comparing dose calculated by the IDC framework to TPS calculated dose for the clinical prostate plan shows 99.0% passing rate. IDC calculated dose is found to be up to 5.6% lower than dose calculated by the TPS in this case near metal fiducial markers. An MC-based modular IDC framework was successfully developed, implemented and validated against measurements and is now available to perform patient-specific QA by IDC.
Fluorescence quenching by TEMPO: a sub-30 A single-molecule ruler.
Zhu, Peizhi; Clamme, Jean-Pierre; Deniz, Ashok A
2005-11-01
A series of DNA molecules labeled with 5-carboxytetramethylrhodamine (5-TAMRA) and the small nitroxide radical TEMPO were synthesized and tested to investigate whether the intramolecular quenching efficiency can be used to measure short intramolecular distances in small ensemble and single-molecule experiments. In combination with distance calculations using molecular mechanics modeling, the experimental results from steady-state ensemble fluorescence and fluorescence correlation spectroscopy measurements both show an exponential decrease in the quenching rate constant with the dye-quencher distance in the 10-30 A range. The results demonstrate that TEMPO-5-TAMRA fluorescence quenching is a promising method to measure short distance changes within single biomolecules.
Research and simulation on the rollover system of corn harvester
NASA Astrophysics Data System (ADS)
Li, Shizhuang; Cao, Shukun
2017-01-01
The structural characteristics of our country's corn harvester are narrow-track, high centroid and existence of eccentric distance, so rollover accident is easily to occur when driving in mountainous and hilly regions. In order to improve the design quality of corn harvester and enhance the security of operation, it is of great significance to research the rollover prevention system of the corn harvester. Hydro-pneumatic suspension has powerful function of adjusting the balance of automobile body and good shock absorption function. In this paper, hydro-pneumatic suspension is applied to the rollover prevention system of the corn harvester to improve the ability of anti-rollover. At last using ADAMS simulation technology to simulate the roll stability of traditional corn harvester and the corn harvester with hydro pneumatic suspension, then calculating the heeling angle in both cases.
Pfeiffer, Tobias; Weber, Stefan; Klier, Jens; Bachtler, Sebastian; Molter, Daniel; Jonuscheit, Joachim; Von Freymann, Georg
2018-05-14
In many industrial fields, like automotive and painting industry, the thickness of thin layers is a crucial parameter for quality control. Hence, the demand for thickness measurement techniques continuously grows. In particular, non-destructive and contact-free terahertz techniques access a wide range of thickness determination applications. However, terahertz time-domain spectroscopy based systems perform the measurement in a sampling manner, requiring fixed distances between measurement head and sample. In harsh industrial environments vibrations of sample and measurement head distort the time-base and decrease measurement accuracy. We present an interferometer-based vibration correction for terahertz time-domain measurements, able to reduce thickness distortion by one order of magnitude for vibrations with frequencies up to 100 Hz and amplitudes up to 100 µm. We further verify the experimental results by numerical calculations and find very good agreement.
Molinos-Senante, María; Maziotis, Alexandros; Sala-Garrido, Ramón
2016-01-01
Service quality to customers is an aspect that cannot be ignored in the performance assessment of water companies. Nowadays water regulators introduce awards or penalties to incentivize companies to improve service quality to customers when setting prices. In this study, the directional distance function is employed to estimate the shadow prices of variables indicating the lack of service quality to customers in the water industry i.e., written complaints, unplanned interruptions and properties below the reference level. To calculate the shadow price of each undesirable output for each water company, it is needed to ascribe a reference price for the desirable output which is the volume of water delivered. An empirical application is carried out for water companies in England and Wales. Hence, the shadow price of each undesirable output is expressed both as a percentage of the price of the desirable output and in pence per cubic meter of water delivered The estimated results indicate that on average, each additional written complaint that needs to be dealt with by the water company includes a service quality cost of 0.399p/m(3). As expected, when looking at the other service quality variables which involve network repair or replacement, these values are considerably higher. On average, the water company must spend an extra 0.622p/m(3) to prevent one unplanned interruption and 0.702p/m(3) to avoid one water pressure below the reference level. The findings of this study are of great importance for regulated companies and regulators as it has been illustrated that improvements in the service quality in terms of customer service could be challenging and therefore ongoing investments will be required to address these issues. Copyright © 2015 Elsevier B.V. All rights reserved.
Molecular Dynamics Simulation of Telomere and TRF1
NASA Astrophysics Data System (ADS)
Kaburagi, Masaaki; Fukuda, Masaki; Yamada, Hironao; Miyakawa, Takeshi; Morikawa, Ryota; Takasu, Masako; Kato, Takamitsu A.; Uesaka, Mitsuru
Telomeres play a central role in determining longevity of a cell. Our study focuses on the interaction between telomeric guanines and TRF1 as a means to observe the telomeric based mechanism of the genome protection. In this research, we performed molecular dynamics simulations of a telomeric DNA and TRF1. Our results show a stable structure with a high affinity for the specific protein. Additionally, we calculated the distance between guanines and the protein in their complex state. From this comparison, we found the calculated values of distance to be very similar, and the angle of guanines in their complex states was larger than that in their single state.
Calculating lunar retreat rates using tidal rhythmites
Kvale, E.P.; Johnson, H.W.; Sonett, C.P.; Archer, A.W.; Zawistoski, A.N.N.
1999-01-01
Tidal rhythmites are small-scale sedimenta??r}- structures that can preserve a hierarchy of astronomically induced tidal periods. They can also preserve a record of periodic nontidal sedimentation. If properly interpreted and understood, tidal rhjthmites can be an important component of paleoastronomy and can be used to extract information on ancient lunar orbital dynamics including changes in Earth-Moon distance through geologic time. Herein we present techniques that can be used to calculate ancient Earth-Moon distances. Each of these techniques, when used on a modern high-tide data set, results in calculated estimates of lunar orbital periods and an EarthMoon distance that fall well within 1 percent of the actual values. Comparisons to results from modern tidal data indicate that ancient tidal rhythmite data as short as 4 months can provide suitable estimates of lunar orbital periods if these tidal records are complete. An understanding of basic tidal theory allows for the evaluation of completeness of the ancient tidal record as derived from an analysis of tidal rhythmites. Utilizing the techniques presented herein, it appears from the rock record that lunar orbital retreat slowed sometime during the midPaleozoic. Copyright ??1999, SEPM (Society for Sedimentary Geology).
Cooper, Justin; Marx, Bernd; Buhl, Johannes; Hombach, Volker
2002-09-01
This paper investigates the minimum distance for a human body in the near field of a cellular telephone base station antenna for which there is compliance with the IEEE or ICNIRP threshold values for radio frequency electromagnetic energy absorption in the human body. First, local maximum specific absorption rates (SARs), measured and averaged over volumes equivalent to 1 and to 10 g tissue within the trunk region of a physical, liquid filled shell phantom facing and irradiated by a typical GSM 900 base station antenna, were compared to corresponding calculated SAR values. The calculation used a homogeneous Visible Human body model in front of a simulated base station antenna of the same type. Both real and simulated base station antennas operated at 935 MHz. Antenna-body distances were between 1 and 65 cm. The agreement between measurements and calculations was excellent. This gave confidence in the subsequent calculated SAR values for the heterogeneous Visible Human model, for which each tissue was assigned the currently accepted values for permittivity and conductivity at 935 MHz. Calculated SAR values within the trunk of the body were found to be about double those for the homogeneous case. When the IEEE standard and the ICNIRP guidelines are both to be complied with, the local SAR averaged over 1 g tissue was found to be the determining parameter. Emitted power values from the antenna that produced the maximum SAR value over 1 g specified in the IEEE standard at the base station are less than those needed to reach the ICNIRP threshold specified for the local SAR averaged over 10 g. For the GSM base station antenna investigated here operating at 935 MHz with 40 W emitted power, the model indicates that the human body should not be closer to the antenna than 18 cm for controlled environment exposure, or about 95 cm for uncontrolled environment exposure. These safe distance limits are for SARs averaged over 1 g tissue. The corresponding safety distance limits under the ICNIRP guidelines for SAR taken over 10 g tissue are 5 cm for occupational exposure and about 75 cm for general-public exposure. Copyright 2002 Wiley-Liss, Inc.
47 CFR 22.911 - Cellular geographic service area.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the SAB is calculated as a function of effective radiated power (ERP) and antenna center of radiation...: d is the radial distance in kilometers h is the radial antenna HAAT in meters p is the radial ERP in... the radial distance in kilometers h is the radial antenna HAAT in meters p is the radial ERP in Watts...
NASA Astrophysics Data System (ADS)
Kaufman, Richard
2017-12-01
A fairly recent paper resolves a large discrepancy in the internal energy utilized to fire a cannon as calculated by two inertial observers. Earth and its small reaction velocity must be considered in the system so that the change in kinetic energy is calculated correctly. This paper uses a car in a similar scenario, but considers the work done by forces acting over distances. An analysis of the system must include all energy interactions, including the work done on the car and especially the (negative) work done on Earth in a moving reference frame. This shows the importance of considering the force on Earth and the distance Earth travels. For calculation of work in inertial reference frames, the center of mass perspective is shown to be useful. We also consider the energy requirements to efficiently accelerate a mass among interacting masses.
Naumov, Sergej; Schöneich, Christian
2009-01-01
Density Functional Theory (DFT) and ab initio calculations were carried out to evaluate the potential for intramolecular addition of cysteine (Cys) thiyl radicals (CysS•) to aromatic amino acids (Phe and Tyr) in water. These calculations yielded stable cyclic conformations, in which π-complexes were more stable than cyclohexadienyl radicals in water. In these π-complexes, the C2-S distances were significantly shorter compared to the C1-S and C3-S distances. Comparable results on the relative stabilities were obtained for model calculations for the addition of HS•/CH3S• to toluene and para-hydroxytoluene. The adduct of thiyl radicals with Phe was more stable than that with Tyr, and the stabilization energies depended on the C-terminal substituents. PMID:19309133
Monte Carlo based toy model for fission process
NASA Astrophysics Data System (ADS)
Kurniadi, R.; Waris, A.; Viridi, S.
2014-09-01
There are many models and calculation techniques to obtain visible image of fission yield process. In particular, fission yield can be calculated by using two calculations approach, namely macroscopic approach and microscopic approach. This work proposes another calculation approach in which the nucleus is treated as a toy model. Hence, the fission process does not represent real fission process in nature completely. The toy model is formed by Gaussian distribution of random number that randomizes distance likesthe distance between particle and central point. The scission process is started by smashing compound nucleus central point into two parts that are left central and right central points. These three points have different Gaussian distribution parameters such as mean (μCN, μL, μR), and standard deviation (σCN, σL, σR). By overlaying of three distributions, the number of particles (NL, NR) that are trapped by central points can be obtained. This process is iterated until (NL, NR) become constant numbers. Smashing process is repeated by changing σL and σR, randomly.
Consistent individual differences in seed disperser quality in a seed-eating fish.
Pollux, Bart J A
2017-01-01
Animal-mediated seed dispersal (zoochory) is considered to be an important mechanism regulating biological processes at larger spatial scales. To date, intra-specific variation in seed disperser quality within seed-dispersing animals has not been studied. Here, I employed seed feeding trials to quantify individual differences in disperser quality within the common carp (Cyprinus carpio) using seeds of two aquatic plants: unbranched bur-reed (Sparganium emersum, Sparganiaceae) and arrowhead (Sagittaria sagittifolia, Alismataceae). I found substantial variation among carp individuals in their propensity to ingest seeds and their ability to digest them, resulting in up to 31-fold differences in the probability of seed dispersal. In addition, there were significant differences in the time that seeds are retained in their digestive systems, generating a twofold difference in the maximum distance over which they can potentially disperse seeds. I propose that seed-eating animal species consist of individuals that display continuous variation in disperser quality, with at one end of the continuum individuals that are likely to eat seeds, pass them unharmed through their digestive tract and transport them over large distances to new locations (i.e. high-quality seed dispersers) and at the other end individuals that rarely eat seeds, destroy most of the ones they ingest and transport the few surviving seeds over relatively short distances (low-quality seed dispersers). Although individual differences in seed dispersal quality could be the result of a variety of factors, these results underline the ecological and evolutionary potential of such variation for both plants and animals.
2014-01-01
Background It is important to predict the quality of a protein structural model before its native structure is known. The method that can predict the absolute local quality of individual residues in a single protein model is rare, yet particularly needed for using, ranking and refining protein models. Results We developed a machine learning tool (SMOQ) that can predict the distance deviation of each residue in a single protein model. SMOQ uses support vector machines (SVM) with protein sequence and structural features (i.e. basic feature set), including amino acid sequence, secondary structures, solvent accessibilities, and residue-residue contacts to make predictions. We also trained a SVM model with two new additional features (profiles and SOV scores) on 20 CASP8 targets and found that including them can only improve the performance when real deviations between native and model are higher than 5Å. The SMOQ tool finally released uses the basic feature set trained on 85 CASP8 targets. Moreover, SMOQ implemented a way to convert predicted local quality scores into a global quality score. SMOQ was tested on the 84 CASP9 single-domain targets. The average difference between the residue-specific distance deviation predicted by our method and the actual distance deviation on the test data is 2.637Å. The global quality prediction accuracy of the tool is comparable to other good tools on the same benchmark. Conclusion SMOQ is a useful tool for protein single model quality assessment. Its source code and executable are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/. PMID:24776231
Cao, Renzhi; Wang, Zheng; Wang, Yiheng; Cheng, Jianlin
2014-04-28
It is important to predict the quality of a protein structural model before its native structure is known. The method that can predict the absolute local quality of individual residues in a single protein model is rare, yet particularly needed for using, ranking and refining protein models. We developed a machine learning tool (SMOQ) that can predict the distance deviation of each residue in a single protein model. SMOQ uses support vector machines (SVM) with protein sequence and structural features (i.e. basic feature set), including amino acid sequence, secondary structures, solvent accessibilities, and residue-residue contacts to make predictions. We also trained a SVM model with two new additional features (profiles and SOV scores) on 20 CASP8 targets and found that including them can only improve the performance when real deviations between native and model are higher than 5Å. The SMOQ tool finally released uses the basic feature set trained on 85 CASP8 targets. Moreover, SMOQ implemented a way to convert predicted local quality scores into a global quality score. SMOQ was tested on the 84 CASP9 single-domain targets. The average difference between the residue-specific distance deviation predicted by our method and the actual distance deviation on the test data is 2.637Å. The global quality prediction accuracy of the tool is comparable to other good tools on the same benchmark. SMOQ is a useful tool for protein single model quality assessment. Its source code and executable are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/.
Quality Assurance in Engineering Education: Comparison of Accreditation Schemes and ISO 9001.
ERIC Educational Resources Information Center
Karapetrovic, Stanislav; Rajamani, Divakar; Willborn, Walter
1998-01-01
Outlines quality assurance schemes for distance-education technologies that are based on the ISO 9000 family of international quality-assurance standards. Argues that engineering faculties can establish such systems on the basis of and integrated with accreditation schemes. Contains 34 references. (DDR)
Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex
2010-01-21
In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.
NASA Astrophysics Data System (ADS)
Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex
2010-01-01
In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.
Cetnar, Jeremy P; Hampton, John M; Williamson, Amy A; Downs, Tracy; Wang, Dian; Owen, Jean B; Crouse, Byron; Jones, Nathan; Wilson, J Frank; Trentham-Dietz, Amy
2013-03-01
To determine whether rural residents were at a disadvantage compared with urban residents with regard to the receipt of curative therapy for prostate cancer. Using the Breast and Prostate Cancer Data Quality and Patterns of Care Study II, patients with prostate cancer who were diagnosed in 2004 were identified. Registrars reviewed the medical records of randomly selected patients with incident prostate cancer (n = 1906). The patients' residential address was geocoded and linked to the census tract from the 2000 U.S. Census. The place of residence was defined as rural or nonrural according to the census tract and rural-urban commuting area categorization. The distance from the residence to the nearest radiation oncology facility was calculated. The odds ratio and 95% confidence intervals associated with receipt of noncurative treatment was calculated from logistic regression models and adjusted for several potential confounders. Of the incident patients, 39.1% lived in urban census tracts, 41.5% lived in mixed tracts, and 19.4% lived in rural tracts. Hormone-only or active surveillance was received by 15.4% of the patients. Relative to the urban patients, the odds ratio for noncurative treatment was 1.01 (95% confidence interval 0.59-1.74) for those living in mixed tracts and 0.96 (95% confidence interval 0.52-1.77) for those living in rural tracts. No association was found for noncurative treatment according to the Rural-Urban Commuting Area categorization. The linear trend was null between noncurative treatment and the distance to nearest radiation oncology facility (P = .92). The choice of curative treatment did not significantly depend on the patient's place of residence, suggesting a lack of geographic disparity for the primary treatment of prostate cancer. Copyright © 2013 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Duranton, Helene; Mason, Adrienne
2012-01-01
Using the translation programme at the University of Bristol as a case study, we shall argue in this paper that distance delivery can have a very positive impact on recruitment but that the quality of the students' experience depends upon the capacity of the organisation to support course development and delivery, both in terms of instructional…
Improving Audio Quality in Distance Learning Applications.
ERIC Educational Resources Information Center
Richardson, Craig H.
This paper discusses common causes of problems encountered with audio systems in distance learning networks and offers practical suggestions for correcting the problems. Problems and discussions are divided into nine categories: (1) acoustics, including reverberant classrooms leading to distorted or garbled voices, as well as one-dimensional audio…
Hoefling, Martin; Lima, Nicola; Haenni, Dominik; Seidel, Claus A. M.; Schuler, Benjamin; Grubmüller, Helmut
2011-01-01
Förster Resonance Energy Transfer (FRET) experiments probe molecular distances via distance dependent energy transfer from an excited donor dye to an acceptor dye. Single molecule experiments not only probe average distances, but also distance distributions or even fluctuations, and thus provide a powerful tool to study biomolecular structure and dynamics. However, the measured energy transfer efficiency depends not only on the distance between the dyes, but also on their mutual orientation, which is typically inaccessible to experiments. Thus, assumptions on the orientation distributions and averages are usually made, limiting the accuracy of the distance distributions extracted from FRET experiments. Here, we demonstrate that by combining single molecule FRET experiments with the mutual dye orientation statistics obtained from Molecular Dynamics (MD) simulations, improved estimates of distances and distributions are obtained. From the simulated time-dependent mutual orientations, FRET efficiencies are calculated and the full statistics of individual photon absorption, energy transfer, and photon emission events is obtained from subsequent Monte Carlo (MC) simulations of the FRET kinetics. All recorded emission events are collected to bursts from which efficiency distributions are calculated in close resemblance to the actual FRET experiment, taking shot noise fully into account. Using polyproline chains with attached Alexa 488 and Alexa 594 dyes as a test system, we demonstrate the feasibility of this approach by direct comparison to experimental data. We identified cis-isomers and different static local environments as sources of the experimentally observed heterogeneity. Reconstructions of distance distributions from experimental data at different levels of theory demonstrate how the respective underlying assumptions and approximations affect the obtained accuracy. Our results show that dye fluctuations obtained from MD simulations, combined with MC single photon kinetics, provide a versatile tool to improve the accuracy of distance distributions that can be extracted from measured single molecule FRET efficiencies. PMID:21629703
Bäckström, G; Galassi, M E; Tilly, N; Ahnesjö, A; Fernández-Varea, J M
2013-06-01
The LIonTrack (Light Ion Track) Monte Carlo (MC) code for the simulation of H(+), He(2+), and other light ions in liquid water is presented together with the results of a novel investigation of energy-deposition site properties from single ion tracks. The continuum distorted-wave formalism with the eikonal initial state approximation (CDW-EIS) is employed to generate the initial energy and angle of the electrons emitted in ionizing collisions of the ions with H2O molecules. The model of Dingfelder et al. ["Electron inelastic-scattering cross sections in liquid water," Radiat. Phys. Chem. 53, 1-18 (1998); "Comparisons of calculations with PARTRAC and NOREC: Transport of electrons in liquid water," Radiat. Res. 169, 584-594 (2008)] is linked to the general-purpose MC code PENELOPE/penEasy to simulate the inelastic interactions of the secondary electrons in liquid water. In this way, the extended PENELOPE/penEasy code may provide an improved description of the 3D distribution of energy deposits (EDs), making it suitable for applications at the micrometer and nanometer scales. Single-ionization cross sections calculated with the ab initio CDW-EIS formalism are compared to available experimental values, some of them reported very recently, and the theoretical electronic stopping powers are benchmarked against those recommended by the ICRU. The authors also analyze distinct aspects of the spatial patterns of EDs, such as the frequency of nearest-neighbor distances for various radiation qualities, and the variation of the mean specific energy imparted in nanoscopic targets located around the track. For 1 MeV/u particles, the C(6+) ions generate about 15 times more clusters of six EDs within an ED distance of 3 nm than H(+). On average clusters of two to three EDs for 1 MeV/u H(+) and clusters of four to five EDs for 1 MeV/u C(6+) could be expected for a modeling double strand break distance of 3.4 nm.
Barcoding Neotropical birds: assessing the impact of nonmonophyly in a highly diverse group.
Chaves, Bárbara R N; Chaves, Anderson V; Nascimento, Augusto C A; Chevitarese, Juliana; Vasconcelos, Marcelo F; Santos, Fabrício R
2015-07-01
In this study, we verified the power of DNA barcodes to discriminate Neotropical birds using Bayesian tree reconstructions of a total of 7404 COI sequences from 1521 species, including 55 Brazilian species with no previous barcode data. We found that 10.4% of species were nonmonophyletic, most likely due to inaccurate taxonomy, incomplete lineage sorting or hybridization. At least 0.5% of the sequences (2.5% of the sampled species) retrieved from GenBank were associated with database errors (poor-quality sequences, NuMTs, misidentification or unnoticed hybridization). Paraphyletic species (5.8% of the total) can be related to rapid speciation events leading to nonreciprocal monophyly between recently diverged sister species, or to absence of synapomorphies in the small COI region analysed. We also performed two series of genetic distance calculations under the K2P model for intraspecific and interspecific comparisons: the first included all COI sequences, and the second included only monophyletic taxa observed in the Bayesian trees. As expected, the mean and median pairwise distances were smaller for intraspecific than for interspecific comparisons. However, there was no precise 'barcode gap', which was shown to be larger in the monophyletic taxon data set than for the data from all species, as expected. Our results indicated that although database errors may explain some of the difficulties in the species discrimination of Neotropical birds, distance-based barcode assignment may also be compromised because of the high diversity of bird species and more complex speciation events in the Neotropics. © 2014 John Wiley & Sons Ltd.
Dose gradient curve: A new tool for evaluating dose gradient.
Sung, KiHoon; Choi, Young Eun
2018-01-01
Stereotactic radiotherapy, which delivers an ablative high radiation dose to a target volume for maximum local tumor control, requires a rapid dose fall-off outside the target volume to prevent extensive damage to nearby normal tissue. Currently, there is no tool to comprehensively evaluate the dose gradient near the target volume. We propose the dose gradient curve (DGC) as a new tool to evaluate the quality of a treatment plan with respect to the dose fall-off characteristics. The average distance between two isodose surfaces was represented by the dose gradient index (DGI) estimated by a simple equation using the volume and surface area of isodose levels. The surface area was calculated by mesh generation and surface triangulation. The DGC was defined as a plot of the DGI of each dose interval as a function of the dose. Two types of DGCs, differential and cumulative, were generated. The performance of the DGC was evaluated using stereotactic radiosurgery plans for virtual targets. Over the range of dose distributions, the dose gradient of each dose interval was well-characterized by the DGC in an easily understandable graph format. Significant changes in the DGC were observed reflecting the differences in planning situations and various prescription doses. The DGC is a rational method for visualizing the dose gradient as the average distance between two isodose surfaces; the shorter the distance, the steeper the dose gradient. By combining the DGC with the dose-volume histogram (DVH) in a single plot, the DGC can be utilized to evaluate not only the dose gradient but also the target coverage in routine clinical practice.
Feature selection for the classification of traced neurons.
López-Cabrera, José D; Lorenzo-Ginori, Juan V
2018-06-01
The great availability of computational tools to calculate the properties of traced neurons leads to the existence of many descriptors which allow the automated classification of neurons from these reconstructions. This situation determines the necessity to eliminate irrelevant features as well as making a selection of the most appropriate among them, in order to improve the quality of the classification obtained. The dataset used contains a total of 318 traced neurons, classified by human experts in 192 GABAergic interneurons and 126 pyramidal cells. The features were extracted by means of the L-measure software, which is one of the most used computational tools in neuroinformatics to quantify traced neurons. We review some current feature selection techniques as filter, wrapper, embedded and ensemble methods. The stability of the feature selection methods was measured. For the ensemble methods, several aggregation methods based on different metrics were applied to combine the subsets obtained during the feature selection process. The subsets obtained applying feature selection methods were evaluated using supervised classifiers, among which Random Forest, C4.5, SVM, Naïve Bayes, Knn, Decision Table and the Logistic classifier were used as classification algorithms. Feature selection methods of types filter, embedded, wrappers and ensembles were compared and the subsets returned were tested in classification tasks for different classification algorithms. L-measure features EucDistanceSD, PathDistanceSD, Branch_pathlengthAve, Branch_pathlengthSD and EucDistanceAve were present in more than 60% of the selected subsets which provides evidence about their importance in the classification of this neurons. Copyright © 2018 Elsevier B.V. All rights reserved.
The quality of free antenatal and delivery services in Northern Sierra Leone.
Koroma, Manso M; Kamara, Samuel S; Bangura, Evelyn A; Kamara, Mohamed A; Lokossou, Virgil; Keita, Namoudou
2017-07-12
The number of maternal deaths in sub-Saharan Africa continues to be overwhelmingly high. In West Africa, Sierra Leone leads the list, with the highest maternal mortality ratio. In 2010, financial barriers were removed as an incentive for more women to use available antenatal, delivery and postnatal services. Few published studies have examined the quality of free antenatal services and access to emergency obstetric care in Sierra Leone. A cross-sectional survey was conducted in 2014 in all 97 peripheral health facilities and three hospitals in Bombali District, Northern Region. One hundred antenatal care providers were interviewed, 276 observations were made and 486 pregnant women were interviewed. We assessed the adequacy of antenatal and delivery services provided using national standards. The distance was calculated between each facility providing delivery services and the nearest comprehensive emergency obstetric care (CEOC) facility, and the proportion of facilities in a chiefdom within 15 km of each CEOC facility was also calculated. A thematic map was developed to show inequities. The quality of services was poor. Based on national standards, only 27% of women were examined, 2% were screened on their first antenatal visit and 47% received interventions as recommended. Although 94% of facilities provided delivery services, a minority had delivery rooms (40%), delivery kits (42%) or portable water (46%). Skilled attendants supervised 35% of deliveries, and in only 35% of these were processes adequately documented. None of the five basic emergency obstetric care facilities were fully compliant with national standards, and the central and northernmost parts of the district had the least access to comprehensive emergency obstetric care. The health sector needs to monitor the quality of antenatal interventions in addition to measuring coverage. The quality of delivery services is compromised by poor infrastructure, inadequate skilled staff, stock-outs of consumables, non-functional basic emergency obstetric care facilities, and geographic inequities in access to CEOC facilities. These findings suggest that the health sector needs to urgently investigate continuing inequities adversely influencing the uptake of these services, and explore more sustainable funding mechanisms. Without this, the country is unlikely to achieve its goal of reducing maternal deaths.
Quality Practices: An Open Distance Learning Perspective
ERIC Educational Resources Information Center
Ramdass, Kemlall; Nemavhola, Fulufhelo
2018-01-01
Global transformation in higher education over the past two decades has led to the implementation of national policies in order to measure the performance of institutions in South Africa. The Higher Education Quality Council (HEQC) adopted the quality assurance (QA) model for the purposes of accountability and governance in South African Higher…
Multi-viewpoint Image Array Virtual Viewpoint Rapid Generation Algorithm Based on Image Layering
NASA Astrophysics Data System (ADS)
Jiang, Lu; Piao, Yan
2018-04-01
The use of multi-view image array combined with virtual viewpoint generation technology to record 3D scene information in large scenes has become one of the key technologies for the development of integrated imaging. This paper presents a virtual viewpoint rendering method based on image layering algorithm. Firstly, the depth information of reference viewpoint image is quickly obtained. During this process, SAD is chosen as the similarity measure function. Then layer the reference image and calculate the parallax based on the depth information. Through the relative distance between the virtual viewpoint and the reference viewpoint, the image layers are weighted and panned. Finally the virtual viewpoint image is rendered layer by layer according to the distance between the image layers and the viewer. This method avoids the disadvantages of the algorithm DIBR, such as high-precision requirements of depth map and complex mapping operations. Experiments show that, this algorithm can achieve the synthesis of virtual viewpoints in any position within 2×2 viewpoints range, and the rendering speed is also very impressive. The average result proved that this method can get satisfactory image quality. The average SSIM value of the results relative to real viewpoint images can reaches 0.9525, the PSNR value can reaches 38.353 and the image histogram similarity can reaches 93.77%.
Goldberg, Kenneth A; Yashchuk, Valeriy V
2016-05-01
For glancing-incidence optical systems, such as short-wavelength optics used for nano-focusing, incorporating physical factors in the calculations used for shape optimization can improve performance. Wavefront metrology, including the measurement of a mirror's shape or slope, is routinely used as input for mirror figure optimization on mirrors that can be bent, actuated, positioned, or aligned. Modeling shows that when the incident power distribution, distance from focus, angle of incidence, and the spatially varying reflectivity are included in the optimization, higher Strehl ratios can be achieved. Following the works of Maréchal and Mahajan, optimization of the Strehl ratio (for peak intensity with a coherently illuminated system) occurs when the expectation value of the phase error's variance is minimized. We describe an optimization procedure based on regression analysis that incorporates these physical parameters. This approach is suitable for coherently illuminated systems of nearly diffraction-limited quality. Mathematically, this work is an enhancement of the methods commonly applied for ex situ alignment based on uniform weighting of all points on the surface (or a sub-region of the surface). It follows a similar approach to the optimization of apodized and non-uniformly illuminated optical systems. Significantly, it reaches a different conclusion than a more recent approach based on minimization of focal plane ray errors.
Variability Analysis of Therapeutic Movements using Wearable Inertial Sensors.
López-Nava, Irvin Hussein; Arnrich, Bert; Muñoz-Meléndez, Angélica; Güneysu, Arzu
2017-01-01
A variability analysis of upper limb therapeutic movements using wearable inertial sensors is presented. Five healthy young adults were asked to perform a set of movements using two sensors placed on the upper arm and forearm. Reference data were obtained from three therapists. The goal of the study is to determine an intra and inter-group difference between a number of given movements performed by young people with respect to the movements of therapists. This effort is directed toward studying other groups characterized by motion impairments, and it is relevant to obtain a quantified measure of the quality of movement of a patient to follow his/her recovery. The sensor signals were processed by applying two approaches, time-domain features and similarity distance between each pair of signals. The data analysis was divided into classification and variability using features and distances calculated previously. The classification analysis was made to determine if the movements performed by the test subjects of both groups are distinguishable among them. The variability analysis was conducted to measure the similarity of the movements. According to the results, the flexion/extension movement had a high intra-group variability. In addition, meaningful information were provided in terms of change of velocity and rotational motions for each individual.
Hudda, N; Fruin, S A
2016-04-05
We measured particle size distributions and spatial patterns of particle number (PN) and particle surface area concentrations downwind from the Los Angeles International Airport (LAX) where large increases (over local background) in PN concentrations routinely extended 18 km downwind. These elevations were mostly comprised of ultrafine particles smaller than 40 nm. For a given downwind distance, the greatest increases in PN concentrations, along with the smallest mean sizes, were detected at locations under the landing jet trajectories. The smaller size of particles in the impacted area, as compared to the ambient urban aerosol, increased calculated lung deposition fractions to 0.7-0.8 from 0.5-0.7. A diffusion charging instrument (DiSCMini), that simulates alveolar lung deposition, measured a fivefold increase in alveolar-lung deposited surface area concentrations 2-3 km downwind from the airport (over local background), decreasing steadily to a twofold increase 18 km downwind. These ratios (elevated lung-deposited surface area over background) were lower than the corresponding ratios for elevated PN concentrations, which decreased from tenfold to twofold over the same distance, but the spatial patterns of elevated concentrations were similar. It appears that PN concentration can serve as a nonlinear proxy for lung deposited surface area downwind of major airports.
Technical Report: Evaluation of peripheral dose for flattening filter free photon beams.
Covington, E L; Ritter, T A; Moran, J M; Owrangi, A M; Prisciandaro, J I
2016-08-01
To develop a comprehensive peripheral dose (PD) dataset for the two unflattened beams of nominal energy 6 and 10 MV for use in clinical care. Measurements were made in a 40 × 120 × 20 cm(3) (width × length × depth) stack of solid water using an ionization chamber at varying depths (dmax, 5, and 10 cm), field sizes (3 × 3 to 30 × 30 cm(2)), and distances from the field edge (5-40 cm). The effects of the multileaf collimator (MLC) and collimator rotation were also evaluated for a 10 × 10 cm(2) field. Using the same phantom geometry, the accuracy of the analytic anisotropic algorithm (AAA) and Acuros dose calculation algorithm was assessed and compared to the measured values. The PDs for both the 6 flattening filter free (FFF) and 10 FFF photon beams were found to decrease with increasing distance from the radiation field edge and the decreasing field size. The measured PD was observed to be higher for the 6 FFF than for the 10 FFF for all field sizes and depths. The impact of collimator rotation was not found to be clinically significant when used in conjunction with MLCs. AAA and Acuros algorithms both underestimated the PD with average errors of -13.6% and -7.8%, respectively, for all field sizes and depths at distances of 5 and 10 cm from the field edge, but the average error was found to increase to nearly -69% at greater distances. Given the known inaccuracies of peripheral dose calculations, this comprehensive dataset can be used to estimate the out-of-field dose to regions of interest such as organs at risk, electronic implantable devices, and a fetus. While the impact of collimator rotation was not found to significantly decrease PD when used in conjunction with MLCs, results are expected to be machine model and beam energy dependent. It is not recommended to use a treatment planning system to estimate PD due to the underestimation of the out-of-field dose and the inability to calculate dose at extended distances due to the limits of the dose calculation matrix.
Star Schools Projects: Distance Learning Model Practices.
ERIC Educational Resources Information Center
Lane, Carla; Cassidy, Sheila
This document describes model practices of the Star Schools Program, whose purpose is to provide quality, cost-effective instruction and training through distance education technologies. Benefits which have resulted from the Star Schools Projects for local staff, teachers, and parents are identified. The TEAMS Project focuses on a Three-Tier…
Will E-Business Shape the Future of Open and Distance Learning?
ERIC Educational Resources Information Center
Oblinger, Diana
2001-01-01
Explores the impact that electronic business is likely to have on the growth of open and distance learning. Discusses global consortia and global virtual universities; technological developments, including Web qualities; value chains; pricing models; the importance of scale; operating efficiencies; and increasing competition. (Author/LRW)
ERIC Educational Resources Information Center
Guri-Rozenblit, Sarah
1990-01-01
Based on the experience of Everyman's University (Israel), it is proposed that the experience of distance teaching institutions will contribute to: improving university textbook quality; enhancing independent study skills; improving college instruction; promoting interdisciplinary courses; promoting interinstitutional collaboration; advancing the…
Factors for Successful Evolution and Sustainability of Quality Distance Education
ERIC Educational Resources Information Center
Angolia, Mark G.; Pagliari, Leslie R.
2016-01-01
Distance education (DE) is entering its fourth generation, requiring universities to consider how to sustain this continually evolving delivery method. Competition from for-profit entities, open-source depositories, and an increasing number of non-profit universities has created a competitive marketplace for academia to navigate. Rather than…
A New Interactive Method to Distance English Learning in Conceptual Age
ERIC Educational Resources Information Center
Xu, Wei
2013-01-01
Latest advance in information technology and innovative teaching confronts DEL (distance English learning) with new challenges and problems. According to the DEL analysis, the paper firstly presents cloud service's functions to the support service, which serves to distribute and store quality learning resources. Meanwhile, practice-focused…
ERIC Educational Resources Information Center
Press, Harold; Galway, Gerald; Collins, Alice
2003-01-01
Newfoundland and Labrador has many rural communities, low literacy rates, high unemployment, declining enrollment and population, and teacher shortages. Policy responses have been to consolidate schools, increase rural teacher pay, increase teacher recruitment, implement distance learning and distance professional development, intensify…
Hageman, David; Fokkenrood, Hugo Jp; Gommans, Lindy Nm; van den Houten, Marijn Ml; Teijink, Joep Aw
2018-04-06
Although supervised exercise therapy (SET) provides significant symptomatic benefit for patients with intermittent claudication (IC), it remains an underutilized tool. Widespread implementation of SET is restricted by lack of facilities and funding. Structured home-based exercise therapy (HBET) with an observation component (e.g., exercise logbooks, pedometers) and just walking advice (WA) are alternatives to SET. This is the second update of a review first published in 2006. The primary objective was to provide an accurate overview of studies evaluating effects of SET programs, HBET programs, and WA on maximal treadmill walking distance or time (MWD/T) for patients with IC. Secondary objectives were to evaluate effects of SET, HBET, and WA on pain-free treadmill walking distance or time (PFWD/T), quality of life, and self-reported functional impairment. The Cochrane Vascular Information Specialist searched the Cochrane Vascular Specialised Register (December 16, 2016) and the Cochrane Central Register of Controlled Trials (2016, Issue 11). We searched the reference lists of relevant studies identified through searches for other potential trials. We applied no restriction on language of publication. We included parallel-group randomized controlled trials comparing SET programs with HBET programs and WA in participants with IC. We excluded studies in which control groups did not receive exercise or walking advice (maintained normal physical activity). We also excluded studies comparing exercise with percutaneous transluminal angioplasty, bypass surgery, or drug therapy. Three review authors (DH, HF, and LG) independently selected trials, extracted data, and assessed trials for risk of bias. Two other review authors (MvdH and JT) confirmed the suitability and methodological quality of trials. For all continuous outcomes, we extracted the number of participants, mean outcome, and standard deviation for each treatment group through the follow-up period, if available. We extracted Medical Outcomes Study Short Form 36 outcomes to assess quality of life, and Walking Impairment Questionnaire outcomes to assess self-reported functional impairment. As investigators used different scales to present results of walking distance and time, we standardized reported data to effect sizes to enable calculation of an overall standardized mean difference (SMD). We obtained summary estimates for all outcome measures using a random-effects model. We assessed the quality of evidence using the GRADE approach. For this update, we included seven additional studies, making a total of 21 included studies, which involved a total of 1400 participants: 635 received SET, 320 received HBET, and 445 received WA. In general, SET and HBET programs consisted of three exercise sessions per week. Follow-up ranged from six weeks to two years. Most trials used a treadmill walking test to investigate effects of exercise therapy on walking capacity. However, two trials assessed only quality of life, functional impairment, and/or walking behavior (i.e., daily steps measured by pedometer). The overall methodological quality of included trials was moderate to good. However, some trials were small with respect to numbers of participants, ranging from 20 to 304.SET groups showed clear improvement in MWD/T compared with HBET and WA groups, with overall SMDs at three months of 0.37 (95% confidence interval [CI] 0.12 to 0.62; P = 0.004; moderate-quality evidence) and 0.80 (95% CI 0.53 to 1.07; P < 0.00001; high-quality evidence), respectively. This translates to differences in increased MWD of approximately 120 and 210 meters in favor of SET groups. Data show improvements for up to six and 12 months, respectively. The HBET group did not show improvement in MWD/T compared with the WA group (SMD 0.30, 95% CI -0.45 to 1.05; P = 0.43; moderate-quality evidence).Compared with HBET, SET was more beneficial for PFWD/T but had no effect on quality of life parameters nor on self-reported functional impairment. Compared with WA, SET was more beneficial for PFWD/T and self-reported functional impairment, as well as for some quality of life parameters (e.g., physical functioning, pain, and physical component summary after 12 months), and HBET had no effect.Data show no obvious effects on mortality rates. Thirteen of the 1400 participants died, but no deaths were related to exercise therapy. Overall, adherence to SET was approximately 80%, which was similar to that reported with HBET. Only limited adherence data were available for WA groups. Evidence of moderate and high quality shows that SET provides an important benefit for treadmill-measured walking distance (MWD and PFWD) compared with HBET and WA, respectively. Although its clinical relevance has not been definitively demonstrated, this benefit translates to increased MWD of 120 and 210 meters after three months in SET groups. These increased walking distances are likely to have a positive impact on the lives of patients with IC. Data provide no clear evidence of a difference between HBET and WA. Trials show no clear differences in quality of life parameters nor in self-reported functional impairment between SET and HBET. However, evidence is of low and very low quality, respectively. Investigators detected some improvements in quality of life favoring SET over WA, but analyses were limited by small numbers of studies and participants. Future studies should focus on disease-specific quality of life and other functional outcomes, such as walking behavior and physical activity, as well as on long-term follow-up.
Optical inverse-square displacement sensor
Howe, Robert D.; Kychakoff, George
1989-01-01
This invention comprises an optical displacement sensor that uses the inverse-square attenuation of light reflected from a diffused surface to calculate the distance from the sensor to the reflecting surface. Light emerging from an optical fiber or the like is directed onto the surface whose distance is to be measured. The intensity I of reflected light is angle dependent, but within a sufficiently small solid angle it falls off as the inverse square of the distance from the surface. At least a pair of optical detectors are mounted to detect the reflected light within the small solid angle, their ends being at different distances R and R+.DELTA.R from the surface. The distance R can then be found in terms of the ratio of the intensity measurements and the separation length as ##EQU1##
Some computer graphical user interfaces in radiation therapy.
Chow, James C L
2016-03-28
In this review, five graphical user interfaces (GUIs) used in radiation therapy practices and researches are introduced. They are: (1) the treatment time calculator, superficial X-ray treatment time calculator (SUPCALC) used in the superficial X-ray radiation therapy; (2) the monitor unit calculator, electron monitor unit calculator (EMUC) used in the electron radiation therapy; (3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy (SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy; (4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and (5) the monitor unit calculator, photon beam monitor unit calculator (PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls the multileaf collimator to deliver intensity modulated beams for a specific fluence map used in quality assurance or research. DOSCTP is a treatment planning system using the computed tomography images. Radiation beams (photon or electron) with different energies and field sizes produced by a linear accelerator can be placed in different positions to irradiate the tumour in the patient. DOSCTP is linked to a Monte Carlo simulation engine using the EGSnrc-based code, so that 3D dose distribution can be determined accurately for radiation therapy. Moreover, DOSCTP can be used for treatment planning of patient or small animal. PMUC is a GUI for calculation of the monitor unit based on the prescription dose of patient in photon beam radiation therapy. The calculation is based on dose corrections in changes of photon beam energy, treatment depth, field size, jaw position, beam axis, treatment distance and beam modifiers. All GUIs mentioned in this review were written either by the Microsoft Visual Basic.net or a MATLAB GUI development tool called GUIDE. In addition, all GUIs were verified and tested using measurements to ensure their accuracies were up to clinical acceptable levels for implementations.
Kazmier, Kelli; Alexander, Nathan S.; Meiler, Jens; Mchaourab, Hassane S.
2010-01-01
A hybrid protein structure determination approach combining sparse Electron Paramagnetic Resonance (EPR) distance restraints and Rosetta de novo protein folding has been previously demonstrated to yield high quality models (Alexander et al., 2008). However, widespread application of this methodology to proteins of unknown structures is hindered by the lack of a general strategy to place spin label pairs in the primary sequence. In this work, we report the development of an algorithm that optimally selects spin labeling positions for the purpose of distance measurements by EPR. For the α-helical subdomain of T4 lysozyme (T4L), simulated restraints that maximize sequence separation between the two spin labels while simultaneously ensuring pairwise connectivity of secondary structure elements yielded vastly improved models by Rosetta folding. 50% of all these models have the correct fold compared to only 21% and 8% correctly folded models when randomly placed restraints or no restraints are used, respectively. Moreover, the improvements in model quality require a limited number of optimized restraints, the number of which is determined by the pairwise connectivities of T4L α-helices. The predicted improvement in Rosetta model quality was verified by experimental determination of distances between spin labels pairs selected by the algorithm. Overall, our results reinforce the rationale for the combined use of sparse EPR distance restraints and de novo folding. By alleviating the experimental bottleneck associated with restraint selection, this algorithm sets the stage for extending computational structure determination to larger, traditionally elusive protein topologies of critical structural and biochemical importance. PMID:21074624
Assessment of imaging quality in magnified phase CT of human bone tissue at the nanoscale
NASA Astrophysics Data System (ADS)
Yu, Boliang; Langer, Max; Pacureanu, Alexandra; Gauthier, Remy; Follet, Helene; Mitton, David; Olivier, Cecile; Cloetens, Peter; Peyrin, Francoise
2017-10-01
Bone properties at all length scales have a major impact on the fracture risk in disease such as osteoporosis. However, quantitative 3D data on bone tissue at the cellular scale are still rare. Here we propose to use magnified X-ray phase nano-CT to quantify bone ultra-structure in human bone, on the new setup developed on the beamline ID16A at the ESRF, Grenoble. Obtaining 3D images requires the application of phase retrieval prior to tomographic reconstruction. Phase retrieval is an ill-posed problem for which various approaches have been developed. Since image quality has a strong impact on the further quantification of bone tissue, our aim here is to evaluate different phase retrieval methods for imaging bone samples at the cellular scale. Samples from femurs of female donors were scanned using magnified phase nano-CT at voxel sizes of 120 and 30 nm with an energy of 33 keV. Four CT scans at varying sample-to-detector distances were acquired for each sample. We evaluated three phase retrieval methods adapted to these conditions: Paganin's method at single distance, Paganin's method extended to multiple distances, and the contrast transfer function (CTF) approach for pure phase objects. These methods were used as initialization to an iterative refinement step. Our results based on visual and quantitative assessment show that the use of several distances (as opposed to single one) clearly improves image quality and the two multi-distance phase retrieval methods give similar results. First results on the segmentation of osteocyte lacunae and canaliculi from such images are presented.
Detection of periodicity based on independence tests - III. Phase distance correlation periodogram
NASA Astrophysics Data System (ADS)
Zucker, Shay
2018-02-01
I present the Phase Distance Correlation (PDC) periodogram - a new periodicity metric, based on the Distance Correlation concept of Gábor Székely. For each trial period, PDC calculates the distance correlation between the data samples and their phases. PDC requires adaptation of the Székely's distance correlation to circular variables (phases). The resulting periodicity metric is best suited to sparse data sets, and it performs better than other methods for sawtooth-like periodicities. These include Cepheid and RR-Lyrae light curves, as well as radial velocity curves of eccentric spectroscopic binaries. The performance of the PDC periodogram in other contexts is almost as good as that of the Generalized Lomb-Scargle periodogram. The concept of phase distance correlation can be adapted also to astrometric data, and it has the potential to be suitable also for large evenly spaced data sets, after some algorithmic perfection.
NASA Astrophysics Data System (ADS)
Zhao, Yiyi
2017-07-01
Dependency Distance, proposed by Hudson [1], calculated by Liu [2,3], is an important concept in Dependency Theory. It can be used as a measure of the syntactic difficulty, and lots of research [2,4] have testified the universal of Dependency Distance in various languages. Human languages seem to present a preference for short dependency distance, which may be explained in terms of general cognitive constraint of limited working memory [5]. Psychological experiments in English, German, Russian and Chinese support the hypothesis that Dependency Distance minimization (DDM) make languages to evolve into some syntactic patterns to reduce memory burden [6-9]. The study of psychology focuses on the process and mechanism of syntactic structure selection in speech comprehension. In many speech comprehension experiments [10], ambiguous structure is an important experimental material.
Brenner, Luis F
2015-12-01
To evaluate the changes in corneal higher-order aberrations (HOAs) and their impact on corneal higher-order Strehl ratio after aberration-free ablation profile. Verter Institute, H. Olhos, São Paulo, Brazil. Prospective interventional study. Eyes that had aberration-free myopic ablation were divided into 3 groups, based on the spherical equivalent (SE). The corneal HOAs and higher-order Strehl ratios were calculated before surgery and 3 months after surgery. The postoperative uncorrected-distance visual acuity, corrected-distance visual acuity, and SE did not present statistical differences among groups (88 eyes, P > .05). For a 6 mm pupil, the corneal HOA showed a mean increase of 0.17 μm (range 0.39 to 0.56 μm) (P < .001) and the corneal higher-order Strehl ratio presented a reduction of 0.03 (from 0.25 to 0.22) (P = .001). The following consistent linear predictive model was obtained: corneal HOA induction = 1.474 - 0.032 × SE - 0.225 × OZ, where OZ is the optical zone (R(2) = 0.49, adjusted R(2) = 0.48, P < .001). The corneal HOAs and the higher-order Strehl ratios deteriorated after moderate and high myopic ablations. The worsening in corneal aberrations and optical quality were related to the magnitude of the intended correction and did not affect high-contrast visual performance. The OZ was the only modifiable parameter capable to restrain the optical quality loss. The author has no financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
San Segundo, Eugenia; Tsanas, Athanasios; Gómez-Vilda, Pedro
2017-01-01
There is a growing consensus that hybrid approaches are necessary for successful speaker characterization in Forensic Speaker Comparison (FSC); hence this study explores the forensic potential of voice features combining source and filter characteristics. The former relate to the action of the vocal folds while the latter reflect the geometry of the speaker's vocal tract. This set of features have been extracted from pause fillers, which are long enough for robust feature estimation while spontaneous enough to be extracted from voice samples in real forensic casework. Speaker similarity was measured using standardized Euclidean Distances (ED) between pairs of speakers: 54 different-speaker (DS) comparisons, 54 same-speaker (SS) comparisons and 12 comparisons between monozygotic twins (MZ). Results revealed that the differences between DS and SS comparisons were significant in both high quality and telephone-filtered recordings, with no false rejections and limited false acceptances; this finding suggests that this set of voice features is highly speaker-dependent and therefore forensically useful. Mean ED for MZ pairs lies between the average ED for SS comparisons and DS comparisons, as expected according to the literature on twin voices. Specific cases of MZ speakers with very high ED (i.e. strong dissimilarity) are discussed in the context of sociophonetic and twin studies. A preliminary simplification of the Vocal Profile Analysis (VPA) Scheme is proposed, which enables the quantification of voice quality features in the perceptual assessment of speaker similarity, and allows for the calculation of perceptual-acoustic correlations. The adequacy of z-score normalization for this study is also discussed, as well as the relevance of heat maps for detecting the so-called phantoms in recent approaches to the biometric menagerie. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Roberson, A.M.; Andersen, D.E.; Kennedy, P.L.
2005-01-01
Broadcast surveys using conspecific calls are currently the most effective method for detecting northern goshawks (Accipiter gentilis) during the breeding season. These surveys typically use alarm calls during the nestling phase and juvenile food-begging calls during the fledgling-dependency phase. Because goshawks are most vocal during the courtship phase, we hypothesized that this phase would be an effective time to detect goshawks. Our objective was to improve current survey methodology by evaluating the probability of detecting goshawks at active nests in northern Minnesota in 3 breeding phases and at 4 broadcast distances and to determine the effective area surveyed per broadcast station. Unlike previous studies, we broadcast calls at only 1 distance per trial. This approach better quantifies (1) the relationship between distance and probability of detection, and (2) the effective area surveyed (EAS) per broadcast station. We conducted 99 broadcast trials at 14 active breeding areas. When pooled over all distances, detection rates were highest during the courtship (70%) and fledgling-dependency phases (68%). Detection rates were lowest during the nestling phase (28%), when there appeared to be higher variation in likelihood of detecting individuals. EAS per broadcast station was 39.8 ha during courtship and 24.8 ha during fledgling-dependency. Consequently, in northern Minnesota, broadcast stations may be spaced 712m and 562 m apart when conducting systematic surveys during courtship and fledgling-dependency, respectively. We could not calculate EAS for the nestling phase because probability of detection was not a simple function of distance from nest. Calculation of EAS could be applied to other areas where the probability of detection is a known function of distance.
Huang, Jian; Du, Feng-lei; Yao, Yuan; Wan, Qun; Wang, Xiao-song; Chen, Fei-yan
2015-01-01
Distance effect has been regarded as the best established marker of basic numerical magnitude processes and is related to individual mathematical abilities. A larger behavioral distance effect is suggested to be concomitant with lower mathematical achievement in children. However, the relationship between distance effect and superior mathematical abilities is unclear. One could get superior mathematical abilities by acquiring the skill of abacus-based mental calculation (AMC), which can be used to solve calculation problems with exceptional speed and high accuracy. In the current study, we explore the relationship between distance effect and superior mathematical abilities by examining whether and how the AMC training modifies numerical magnitude processing. Thus, mathematical competencies were tested in 18 abacus-trained children (who accepted the AMC training) and 18 non-trained children. Electroencephalography (EEG) waveforms were recorded when these children executed numerical comparison tasks in both Arabic digit and dot array forms. We found that: (a) the abacus-trained group had superior mathematical abilities than their peers; (b) distance effects were found both in behavioral results and on EEG waveforms; (c) the distance effect size of the average amplitude on the late negative-going component was different between groups in the digit task, with a larger effect size for abacus-trained children; (d) both the behavioral and EEG distance effects were modulated by the notation. These results revealed that the neural substrates of magnitude processing were modified by AMC training, and suggested that the mechanism of the representation of numerical magnitude for children with superior mathematical abilities was different from their peers. In addition, the results provide evidence for a view of non-abstract numerical representation. PMID:26238541
Prediction of distance in hammer throwing.
Dapena, Jesús; Gutiérrez-Dávila, Marcos; Soto, Víctor M; Rojas, Francisco J
2003-01-01
The aim of this study was to determine how much the predicted distance of a hammer throw is affected by (1) ignoring air resistance and (2) assuming that the centre of mass of the hammer coincides with the centre of the ball. Three-dimensional data from actual throws (men: 72.82 +/- 7.43 m; women: 67.78 +/- 4.02 m) were used to calculate the kinematic conditions of the hammer at release. A mathematical model of the hammer was then used to simulate the three-dimensional airborne motion of the hammer and to predict the distance of the throw. The distance predicted for vacuum conditions and using the ball centre to represent the hammer centre of mass was 4.30 +/- 2.64 m longer than the official distance of the throw for the men and 8.82 +/- 3.20 m longer for the women. Predictions using the true centre of mass of the hammer reduced the discrepancy to 2.39 +/- 2.58 m for the men and 5.28 +/- 2.88 m for the women. Predictions using air resistance and the true centre of mass of the hammer further reduced the discrepancy to -0.46 +/- 2.63 m for the men and 1.16 +/- 2.31 m for the women. Approximately half the loss of distance produced by air resistance was due to forces made on the ball and the remainder to forces made on the cable and handle. Equations were derived for calculation of the effects of air resistance and of the assumption that the centre of mass of the hammer coincides with the centre of the ball, on the distance of the throw.
Oda, Akifumi; Nakayoshi, Tomoki; Fukuyoshi, Shuichi; Kurimoto, Eiji; Takahashi, Ohgi
2018-07-01
Recently, non-enzymatic stereoinversions of aspartic acid (Asp) residues in proteins and peptides have been reported. Here, we performed replica exchange molecular dynamics (REMD) simulations of model peptides (exon 6, 26A-1, and 26A-2) extracted from elastin to investigate their structural features, thereby revealing the factor that influences stereoinversions. For REMD trajectories, we calculated distances between carboxyl carbon in Asp and amide nitrogen in the (n + 1) residue (CN distances). Because bond formation between carbon and nitrogen is indispensable to the formation of a succinimide intermediate the distance between them seems to play an important role in stereoinversion. Moreover, we calculated polar surface areas (PSAs) for the trajectories, finding that CN distances and PSA were different for each peptide, with the longest CN distance and smallest PSA observed for exon 6 peptide, where stereoinversion of Asp is the slowest. Although the average CN distance was shorter for exon 26A-1 peptide than for exon 26A-2 peptide, the number of conformations with CN distances <3.0 Å was greater for exon 26A-2 peptide than for exon 26A-1 peptide. Furthermore, PSA for amide nitrogen of the (n + 1) residue was larger for exon 26A-2 peptide than for exon 26A-1 peptide. These results indicated that the flexibility of Asp and (n + 1) residues and hydrophilicity of peptides, especially in the (n + 1) residue, play important roles in the stereoinversion of Asp. This article is part of a Special Issue entitled: D-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca. Copyright © 2018 Elsevier B.V. All rights reserved.
File Carving and Malware Identification Algorithms Applied to Firmware Reverse Engineering
2013-03-21
33 3.5 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.6 Experimental...consider a byte value rate-of-change frequency metric [32]. Their system calculates the absolute value of the distance between all consecutive bytes, then...the rate-of-change means and standard deviations. Karresand and Shahmehri use the same distance metric for both byte value frequency and rate-of-change
Laaksonen, Sauli; Jokelainen, Pikka; Pusenius, Jyrki; Oksanen, Antti
2017-03-15
Slaughter reindeer are exposed to stress caused by gathering, handling, loading and unloading, and by conditions in vehicles during transport. These stress factors can lead to compromised welfare and trauma such as bruises or fractures, aspiration of rumen content, and abnormal odour in carcasses, and causing condemnations in meat inspection and lower meat quality. We investigated the statistical association of slaughter transport distance with these indices using meat inspection data from years 2004-2016, including inspection of 669,738 reindeer originating from Finnish reindeer herding areas. Increased stress and decreased welfare of reindeer, as indicated by higher incidence of carcass condemnation due to bruises or fractures, aspiration of rumen content, or abnormal odour, were positively associated with systems involving shorter transport distances to abattoirs. Significant differences in incidence of condemnations were also detected between abattoirs and reindeer herding cooperatives. This study indicates that in particular the short-distance transports of reindeer merit more attention. While the results suggest that factors associated with long distance transport, such as driver education, truck design, veterinary supervision, and specialist equipment, may be favourable to reducing pre-slaughter stress in reindeer when compared with short distance transport systems, which occur in a variety of vehicle types and may be done by untrained handlers. Further work is required to elucidate the causal factors to the current results.
Correlation Between Cometary Gas/Dust Ratios and Heliocentric Distance
NASA Astrophysics Data System (ADS)
Harrington, Olga; Womack, Maria; Lastra, Nathan
2017-10-01
We compiled CO-based gas/dust ratios for several comets out to heliocentric distances, rh, of 8 au to probe whether there is a noticeable change in comet behavior over the range that water-ice sublimation starts. Previously, gas/dust ratios were calculated for an ensemble of comets using Q(CO2)/efp values derived from infrared measurements, which showed that the gas/dust ratio follows a rh-2 within 4 AU, but is flat at greater distances (Bauer et al. 2015). Our project focuses on gas/dust ratios for which CO is assumed to be the dominant gas, in order to test whether similar breaks in slope occur for CO. The gas/dust ratios were calculated from measurements of CO production rates (mostly from millimeter-wavelength spectroscopy) and reflected sunlight of comets (mostly via reported visual magnitudes of dusty comets). We present our new CO-based gas/dust ratios at different heliocentric distances, compare them to existing CO2-based gas/dust ratios, and discuss implications for CO-driven and CO2-driven activity. We discuss O.H. acknowledges support from the Hartmann Student Travel Grant program. M.W. acknowledges support from NSF grant AST-1615917.
NASA Astrophysics Data System (ADS)
Tarigan, U.; Sidabutar, R. F.; Tarigan, U. P. P.; Chen, A.
2018-04-01
Manufacturers engaged in the business, producing CPO and kernels whose raw materials are oil palm fresh fruit bunches taken from their own plantation, generally face problems of transporting from plantation to factory where there is often a change of distance traveled by the truck the carrier of FFB is due to non-specific transport instructions. The research was conducted to determine the optimal transportation route in terms of distance, time and route number. The determination of this transportation route is solved using Nearest Neighbours and Clarke & Wright Savings methods. Based on the calculations performed then found in area I with method Nearest Neighbours has a distance of 200.78 Km while Clarke & Wright Savings as with a result of 214.09 Km. As for the harvest area, II obtained results with Nearest Neighbours method of 264.37 Km and Clarke & Wright Savings method with a total distance of 264.33 Km. Based on the calculation of the time to do all the activities of transporting FFB juxtaposed with the work time of the driver got the reduction of conveyance from 8 units to 5 units. There is also improvement of fuel efficiency by 0.8%.
NASA Astrophysics Data System (ADS)
Khruschov, V. V.; Fomichev, S. V.
2017-11-01
In the framework of the model with three sterile neutrinos, the transition probabilities for different flavours of neutrino are calculated and the graphical dependences are obtained, in particular, for the appearance probability of electron neutrino and antineutrino in the muon neutrino and antineutrino jets as a function of distance and other model parameters at their acceptable values and at the neutrino energy less than 50 MeV, as well as a function of a ratio of distance to the neutrino energy. The theoretical results obtained can be used for analysis of the neutrino data related to the anomalies on small distances.
Fluorescence Quenching by TEMPO: A Sub-30 Å Single-Molecule Ruler
Zhu, Peizhi; Clamme, Jean-Pierre; Deniz, Ashok A.
2005-01-01
A series of DNA molecules labeled with 5-carboxytetramethylrhodamine (5-TAMRA) and the small nitroxide radical TEMPO were synthesized and tested to investigate whether the intramolecular quenching efficiency can be used to measure short intramolecular distances in small ensemble and single-molecule experiments. In combination with distance calculations using molecular mechanics modeling, the experimental results from steady-state ensemble fluorescence and fluorescence correlation spectroscopy measurements both show an exponential decrease in the quenching rate constant with the dye-quencher distance in the 10–30 Å range. The results demonstrate that TEMPO-5-TAMRA fluorescence quenching is a promising method to measure short distance changes within single biomolecules. PMID:16199509
Clark, R. C.; Brebner, J. S.
2017-01-01
Researchers must assess similarities and differences in colour from an animal's eye view when investigating hypotheses in ecology, evolution and behaviour. Nervous systems generate colour perceptions by comparing the responses of different spectral classes of photoreceptor through colour opponent mechanisms, and the performance of these mechanisms is limited by photoreceptor noise. Accordingly, the receptor noise limited (RNL) colour distance model of Vorobyev and Osorio (Vorobyev & Osorio 1998 Proc. R. Soc. Lond. B 265, 351–358 (doi:10.1098/rspb.1998.0302)) generates predictions about the discriminability of colours that agree with behavioural data, and consequently it has found wide application in studies of animal colour vision. Vorobyev and Osorio (1998) provide equations to calculate RNL colour distances for animals with di-, tri- and tetrachromatic vision, which is adequate for many species. However, researchers may sometimes wish to compute RNL colour distances for potentially more complex colour visual systems. Thus, we derive a simple, single formula for the computation of RNL distance between two measurements of colour, equivalent to the published di-, tri- and tetrachromatic equations of Vorobyev and Osorio (1998), and valid for colour visual systems with any number of types of noisy photoreceptors. This formula will allow the easy application of this important colour visual model across the fields of ecology, evolution and behaviour. PMID:28989773
Bargallo-Rocha, Juan Enrique; Soto-Perez-de-Celis, Enrique; Picó-Guzmán, Francisco Javier; Quintero-Rodríguez, Carlos Eduardo; Almog, David; Santiago-Concha, Gabriel; Flores-Balcazar, Christian Haydee; Corona, Jaime; Vazquez-Romo, Rafael; Villarreal-Garza, Cynthia; Mohar, Alejandro
2017-11-01
The low availability and poor access to external beam radiotherapy (EBRT) in developing countries makes it hard for women with breast cancer to receive breast conservation. We studied the effect of providing intraoperative radiotherapy (IORT) on the travel time, distance, and costs of in the Mexico City Metropolitan Area (MCMA). Sixty-nine patients treated between January 2013 and September 2014 were analyzed. Travel distance and transit time was calculated using Google Maps. The time and distance patients living in the MCMA treated with IORT would have spent if they had received EBRT was calculated. Cost analysis for each modality was performed. 71% (n = 49) lived in the MCMA. Sixteen (33%) received additional EBRT and 33 (66%) received IORT only. Mean driving distance and transit time of those 33 women was 132.6 km (SD 25.7) and 66 min (SD 32.9). Patients from the MCMA receiving IORT alone avoided 990 visits, 43 700 km and 65 400 min in transit. IORT led to a 12% reduction in costs per patient. By reducing costs and time needed for patients to receive radiotherapy, IORT could potentially enhance access to breast conservation in resource-limited developing countries. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Vázquez, Héctor; Troisi, Alessandro
2013-11-01
We investigate the process of exciton dissociation in ordered and disordered model donor/acceptor systems and describe a method to calculate exciton dissociation rates. We consider a one-dimensional system with Frenkel states in the donor material and states where charge transfer has taken place between donor and acceptor. We introduce a Green's function approach to calculate the generation rates of charge-transfer states. For disorder in the Frenkel states we find a clear exponential dependence of charge dissociation rates with exciton-interface distance, with a distance decay constant β that increases linearly with the amount of disorder. Disorder in the parameters that describe (final) charge-transfer states has little effect on the rates. Exciton dissociation invariably leads to partially separated charges. In all cases final states are “hot” charge-transfer states, with electron and hole located far from the interface.
Hirschi, Jennifer S.; Takeya, Tetsuya; Hang, Chao; Singleton, Daniel A.
2009-01-01
We suggest here and evaluate a methodology for the measurement of specific interatomic distances from a combination of theoretical calculations and experimentally measured 13C kinetic isotope effects. This process takes advantage of a broad diversity of transition structures available for the epoxidation of 2-methyl-2-butene with oxaziridines. From the isotope effects calculated for these transition structures, a theory-independent relationship between the C-O bond distances of the newly forming bonds and the isotope effects is established. Within the precision of the measurement, this relationship in combination with the experimental isotope effects provides a highly accurate picture of the C-O bonds forming at the transition state. The diversity of transition structures also allows an evaluation of the Schramm process for defining transition state geometries based on calculations at non-stationary points, and the methodology is found to be reasonably accurate. PMID:19146405
Chen, Hung-Cheng; Hsu, Chao-Ping
2005-12-29
To calculate electronic couplings for photoinduced electron transfer (ET) reactions, we propose and test the use of ab initio quantum chemistry calculation for excited states with the generalized Mulliken-Hush (GMH) method. Configuration-interaction singles (CIS) is proposed to model the locally excited (LE) and charge-transfer (CT) states. When the CT state couples with other high lying LE states, affecting coupling values, the image charge approximation (ICA), as a simple solvent model, can lower the energy of the CT state and decouple the undesired high-lying local excitations. We found that coupling strength is weakly dependent on many details of the solvent model, indicating the validity of the Condon approximation. Therefore, a trustworthy value can be obtained via this CIS-GMH scheme, with ICA used as a tool to improve and monitor the quality of the results. Systems we tested included a series of rigid, sigma-linked donor-bridge-acceptor compounds where "through-bond" coupling has been previously investigated, and a pair of molecules where "through-space" coupling was experimentally demonstrated. The calculated results agree well with experimentally inferred values in the coupling magnitudes (for both systems studied) and in the exponential distance dependence (for the through-bond series). Our results indicate that this new scheme can properly account for ET coupling arising from both through-bond and through-space mechanisms.
Community of inquiry model: advancing distance learning in nurse anesthesia education.
Pecka, Shannon L; Kotcherlakota, Suhasini; Berger, Ann M
2014-06-01
The number of distance education courses offered by nurse anesthesia programs has increased substantially. Emerging distance learning trends must be researched to ensure high-quality education for student registered nurse anesthetists. However, research to examine distance learning has been hampered by a lack of theoretical models. This article introduces the Community of Inquiry model for use in nurse anesthesia education. This model has been used for more than a decade to guide and research distance learning in higher education. A major strength of this model learning. However, it lacks applicability to the development of higher order thinking for student registered nurse anesthetists. Thus, a new derived Community of Inquiry model was designed to improve these students' higher order thinking in distance learning. The derived model integrates Bloom's revised taxonomy into the original Community of Inquiry model and provides a means to design, evaluate, and research higher order thinking in nurse anesthesia distance education courses.
The cyanogen band of Comet Halley
NASA Astrophysics Data System (ADS)
Tatum, J. B.; Campbell, E. C.
The results of improved whole disk solar irradiance spectrum calculations performed for projected Halley's Comet heliocentric radial velocity and distance are provided. The computations were carried out to account for Doppler effects in the Fraunhofer lines of rotational excitation bands of violet CN emissions from the comet in its encounters with solar radiation. The calculations spanned every half-day for 200 days before and after perihelion. The 801 computer images of the expected intensities were photographed in sequence to form an animated film paced by background music from Liszt's Second Hungarian Rhapsody. The results are intended for accounting for spectral changes observed due to Doppler effects induced by changing velocity and distance, rather than physical mechanisms of the emitting processes.