Sample records for quality factor resonators

  1. Broken symmetry dielectric resonators for high quality factor Fano metasurfaces

    DOE PAGES

    Campione, Salvatore; Liu, Sheng; Basilio, Lorena I.; ...

    2016-10-25

    We present a new approach to dielectric metasurface design that relies on a single resonator per unit cell and produces robust, high quality factor Fano resonances. Our approach utilizes symmetry breaking of highly symmetric resonator geometries, such as cubes, to induce couplings between the otherwise orthogonal resonator modes. In particular, we design perturbations that couple “bright” dipole modes to “dark” dipole modes whose radiative decay is suppressed by local field effects in the array. Our approach is widely scalable from the near-infrared to radio frequencies. We first unravel the Fano resonance behavior through numerical simulations of a germanium resonator-based metasurfacemore » that achieves a quality factor of ~1300 at ~10.8 μm. Then, we present two experimental demonstrations operating in the near-infrared (~1 μm): a silicon-based implementation that achieves a quality factor of ~350; and a gallium arsenide-based structure that achieves a quality factor of ~600, the highest near-infrared quality factor experimentally demonstrated to date with this kind of metasurface. Importantly, large electromagnetic field enhancements appear within the resonators at the Fano resonant frequencies. Here, we envision that combining high quality factor, high field enhancement resonances with nonlinear and active/gain materials such as gallium arsenide will lead to new classes of active optical devices.« less

  2. Broken symmetry dielectric resonators for high quality factor Fano metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campione, Salvatore; Liu, Sheng; Basilio, Lorena I.

    We present a new approach to dielectric metasurface design that relies on a single resonator per unit cell and produces robust, high quality factor Fano resonances. Our approach utilizes symmetry breaking of highly symmetric resonator geometries, such as cubes, to induce couplings between the otherwise orthogonal resonator modes. In particular, we design perturbations that couple “bright” dipole modes to “dark” dipole modes whose radiative decay is suppressed by local field effects in the array. Our approach is widely scalable from the near-infrared to radio frequencies. We first unravel the Fano resonance behavior through numerical simulations of a germanium resonator-based metasurfacemore » that achieves a quality factor of ~1300 at ~10.8 μm. Then, we present two experimental demonstrations operating in the near-infrared (~1 μm): a silicon-based implementation that achieves a quality factor of ~350; and a gallium arsenide-based structure that achieves a quality factor of ~600, the highest near-infrared quality factor experimentally demonstrated to date with this kind of metasurface. Importantly, large electromagnetic field enhancements appear within the resonators at the Fano resonant frequencies. Here, we envision that combining high quality factor, high field enhancement resonances with nonlinear and active/gain materials such as gallium arsenide will lead to new classes of active optical devices.« less

  3. Improving the Optical Quality Factor of the WGM Resonator

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Iltchenko, Vladimir

    2008-01-01

    Resonators usually are characterized with two partially dependent values: finesse (F) and quality factor (Q). The finesse of an empty Fabry-Perot (FP) resonator is defined solely by the quality of its mirrors and is calculated as F=piR(exp 1/2)/(1-R). The maximum up-to-date value of reflectivity R approximately equal to 1 - 1.6 x 10(exp -6) is achieved with dielectric mirrors. An FP resonator made with the mirrors has finesse F=1.9 x 10(exp 6). Further practical increase of the finesse of FP resonators is problematic because of the absorption and the scattering of light in the mirror material through fundamental limit on the reflection losses given by the internal material losses and by thermodynamic density fluctuations on the order of parts in 109. The quality factor of a resonator depends on both its finesse and its geometrical size. A one-dimensional FP resonator has Q=2 F L/lambda, where L is the distance between the mirrors and lambda is the wavelength. It is easy to see that the quality factor of the resonator is unlimited because L is unlimited. F and Q are equally important. In some cases, finesse is technically more valuable than the quality factor. For instance, buildup of the optical power inside the resonator, as well as the Purcell factor, is proportional to finesse. Sometimes, however, the quality factor is more valuable. For example, inverse threshold power of intracavity hyperparametric oscillation is proportional to Q(exp 2) and efficiency of parametric frequency mixing is proportional to Q(exp 3). Therefore, it is important to know both the maximally achievable finesse and quality factor values of a resonator. Whispering gallery mode (WGM) resonators are capable of achieving larger finesse compared to FP resonators. For instance, fused silica resonators with finesse 2.3 x 10(exp 6) and 2.8 x 10(exp 6) have been demonstrated. Crystalline WGM resonators reveal even larger finesse values, F=6.3 x 10(exp 6), because of low attenuation of light in the

  4. High quality factor single-crystal diamond mechanical resonators

    NASA Astrophysics Data System (ADS)

    Ovartchaiyapong, P.; Pascal, L. M. A.; Myers, B. A.; Lauria, P.; Bleszynski Jayich, A. C.

    2012-10-01

    Single-crystal diamond is a promising material for microelectromechanical systems (MEMs) because of its low mechanical loss, compatibility with extreme environments, and built-in interface to high-quality spin centers. But its use has been limited by challenges in processing and growth. We demonstrate a wafer bonding-based technique to form diamond on insulator, from which we make single-crystal diamond micromechanical resonators with mechanical quality factors as high as 338 000 at room temperature. Variable temperature measurements down to 10 K reveal a nonmonotonic dependence of quality factor on temperature. These resonators enable integration of single-crystal diamond into MEMs technology for classical and quantum applications.

  5. High quality-factor fano metasurface comprising a single resonator unit cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinclair, Michael B.; Warne, Larry K.; Basilio, Lorena I.

    A new monolithic resonator metasurface design achieves ultra-high Q-factors while using only one resonator per unit cell. The metasurface relies on breaking the symmetry of otherwise highly symmetric resonators to induce intra-resonator mixing of bright and dark modes (rather than inter-resonator couplings), and is scalable from the near-infrared to radio frequencies and can be easily implemented in dielectric materials. The resulting high-quality-factor Fano metasurface can be used in many sensing, spectral filtering, and modulation applications.

  6. Microcrystalline diamond cylindrical resonators with quality-factor up to 0.5 million

    NASA Astrophysics Data System (ADS)

    Saito, Daisuke; Yang, Chen; Heidari, Amir; Najar, Hadi; Lin, Liwei; Horsley, David A.

    2016-02-01

    We demonstrate high quality-factor 1.5 mm diameter batch-fabricated microcrystalline diamond cylindrical resonators (CR) with quality-factors limited by thermoelastic damping (TED) and surface loss. Resonators were fabricated 2.6 and 5.3 μm thick in-situ boron-doped microcrystalline diamond films deposited using hot filament chemical vapor deposition. The quality-factor (Q) of as-fabricated CR's was found to increase with the resonator diameter and diamond thickness. Annealing the CRs at 700 °C in a nitrogen atmosphere led to a three-fold increase in Q, a result we attribute to thinning of the diamond layer via reaction with residual O2 in the annealing furnace. Post-anneal Q exceeding 0.5 million (528 000) was measured at the 19 kHz elliptical wineglass modes, producing a ring-down time of 8.9 s. A model for Q versus diamond thickness and resonance frequency is developed including the effects of TED and surface loss. Measured quality factors are shown to agree with the predictions of this model.

  7. Microcrystalline diamond cylindrical resonators with quality-factor up to 0.5 million

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Daisuke; Yang, Chen; Lin, Liwei

    2016-02-01

    We demonstrate high quality-factor 1.5 mm diameter batch-fabricated microcrystalline diamond cylindrical resonators (CR) with quality-factors limited by thermoelastic damping (TED) and surface loss. Resonators were fabricated 2.6 and 5.3 μm thick in-situ boron-doped microcrystalline diamond films deposited using hot filament chemical vapor deposition. The quality-factor (Q) of as-fabricated CR's was found to increase with the resonator diameter and diamond thickness. Annealing the CRs at 700 °C in a nitrogen atmosphere led to a three-fold increase in Q, a result we attribute to thinning of the diamond layer via reaction with residual O{sub 2} in the annealing furnace. Post-anneal Q exceeding 0.5 million (528 000)more » was measured at the 19 kHz elliptical wineglass modes, producing a ring-down time of 8.9 s. A model for Q versus diamond thickness and resonance frequency is developed including the effects of TED and surface loss. Measured quality factors are shown to agree with the predictions of this model.« less

  8. Accurate Determination of the Q Quality Factor in Magnetoelastic Resonant Platforms for Advanced Biological Detection

    PubMed Central

    Lopes, Ana Catarina; Sagasti, Ariane; Lasheras, Andoni; Muto, Virginia; Gutiérrez, Jon; Kouzoudis, Dimitris; Barandiarán, José Manuel

    2018-01-01

    The main parameters of magnetoelastic resonators in the detection of chemical (i.e., salts, gases, etc.) or biological (i.e., bacteria, phages, etc.) agents are the sensitivity S (or external agent change magnitude per Hz change in the resonance frequency) and the quality factor Q of the resonance. We present an extensive study on the experimental determination of the Q factor in such magnetoelastic resonant platforms, using three different strategies: (a) analyzing the real and imaginary components of the susceptibility at resonance; (b) numerical fitting of the modulus of the susceptibility; (c) using an exact mathematical expression for the real part of the susceptibility. Q values obtained by the three methods are analyzed and discussed, aiming to establish the most adequate one to accurately determine the quality factor of the magnetoelastic resonance. PMID:29547578

  9. Accurate Determination of the Q Quality Factor in Magnetoelastic Resonant Platforms for Advanced Biological Detection.

    PubMed

    Lopes, Ana Catarina; Sagasti, Ariane; Lasheras, Andoni; Muto, Virginia; Gutiérrez, Jon; Kouzoudis, Dimitris; Barandiarán, José Manuel

    2018-03-16

    The main parameters of magnetoelastic resonators in the detection of chemical (i.e., salts, gases, etc.) or biological (i.e., bacteria, phages, etc.) agents are the sensitivity S (or external agent change magnitude per Hz change in the resonance frequency) and the quality factor Q of the resonance. We present an extensive study on the experimental determination of the Q factor in such magnetoelastic resonant platforms, using three different strategies: (a) analyzing the real and imaginary components of the susceptibility at resonance; (b) numerical fitting of the modulus of the susceptibility; (c) using an exact mathematical expression for the real part of the susceptibility. Q values obtained by the three methods are analyzed and discussed, aiming to establish the most adequate one to accurately determine the quality factor of the magnetoelastic resonance.

  10. Single-crystal diamond nanomechanical resonators with quality factors exceeding one million

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Boss, J. M.; Moores, B. A.; Degen, C. L.

    2014-04-01

    Diamond has gained a reputation as a uniquely versatile material, yet one that is intricate to grow and process. Resonating nanostructures made of single-crystal diamond are expected to possess excellent mechanical properties, including high-quality factors and low dissipation. Here we demonstrate batch fabrication and mechanical measurements of single-crystal diamond cantilevers with thickness down to 85 nm, thickness uniformity better than 20 nm and lateral dimensions up to 240 μm. Quality factors exceeding one million are found at room temperature, surpassing those of state-of-the-art single-crystal silicon cantilevers of similar dimensions by roughly an order of magnitude. The corresponding thermal force noise for the best cantilevers is ~5·10-19 N Hz-1/2 at millikelvin temperatures. Single-crystal diamond could thus directly improve existing force and mass sensors by a simple substitution of resonator material. Presented methods are easily adapted for fabrication of nanoelectromechanical systems, optomechanical resonators or nanophotonic devices that may lead to new applications in classical and quantum science.

  11. All-dielectric metasurface analogue of electromagnetically induced transparency [High Quality Factor Fano-Resonant All-Dielectric Metamaterials

    DOE PAGES

    Yang, Yuanmu; Kravchenko, Ivan I.; Briggs, Dayrl P.; ...

    2014-12-16

    Fano-resonant plasmonic metamaterials and nanostructures have become a major focus of the nanophotonics fields over the past several years due their ability to produce high quality factor (Q-factor) resonances. The origin of such resonances is the interference between a broad and narrow resonance, ultimately allowing suppression of radiative damping. However, Fano-resonant plasmonic structures still suffer non-radiative damping due to Ohmic loss, ultimately limiting the achievable Q-factors to values less than ~10. Here, we report experimental demonstration of Fano-resonant silicon-based metamaterials that have a response that mimics the electromagnetically induced transparency (EIT) found in atomic systems. Due to extremely low absorptionmore » loss, a record-high quality factor (Q-factor) of 306 was experimentally observed. Furthermore, the unit cell of the metamaterial was designed with a feed-gap which results in strong local field enhancement in the surrounding medium resulting in strong light-matter interaction. This allows the metamaterial to serve as a refractive index sensor with a figure-of-merit (FOM) of 101, far exceeding the performance of previously demonstrated localized surface plasmon resonance sensors.« less

  12. Design and Measurement of a Digital Phase Locked BWO for Accurately Extracting the Quality Factors in a Biconcave Resonator System

    NASA Astrophysics Data System (ADS)

    Gao, Yuanci; Charles, Jones R.; Yu, Guofen; Jyotsna, Dutta M.

    2012-03-01

    A long loop phase locked backward-wave oscillator (BWO) for a high quality factor resonator system operating at D-band frequencies (130-170GHz) was described, the phase noise of the phased locked BWO was analyzed and measured at typical frequencies. When it used with a high quality factor open resonator for measuring the quality factor of simple harmonic resonators based on the magnitude transfer characteristic, this system has proven to be capable of accurate measuring the quality factor as high as 0.8 million with an uncertainty of less than 1.3% (Lorentzian fitting) at typical frequencies in the range of 130GHz-170GHz.

  13. Physics and material science of ultra-high quality factor superconducting resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vostrikov, Alexander

    2015-08-01

    The nitrogen doping into niobium superconducting radio frequency cavity walls aiming to improve the fundamental mode quality factor is the subject of the research in the given work. Quantitative nitrogen diffusion into niobium model calculating the concentration profile was developed. The model estimations were confirmed with secondary ion mass spectrometry technique measurements. The model made controlled nitrogen doping recipe optimization possible. As a result the robust reproducible recipe for SRF cavity walls treatment with nitrogen doping was developed. The cavities produced with optimized recipe met LCLS–II requirements on quality factor of 2.7 ∙ 10 10 at acceleration field of 16more » MV/m. The microscopic effects of nitrogen doping on superconducting niobium properties were studied with low energy muon spin rotation technique and magnetometer measurements. No significant effect of nitrogen on the following features was found: electron mean free path, magnetic field penetration depth, and upper and surface critical magnetic fields. It was detected that for nitrogen doped niobium samples magnetic flux starts to penetrate inside the superconductor at lower external magnetic field value compared to the low temperature baked niobium ones. This explains lower quench field of SRF cavities treated with nitrogen. Quality factor improvement of fundamental mode forced to analyze the high order mode (HOM) impact on the particle beam dynamics. Both resonant and cumulative effects caused by monopole and dipole HOMs respectively are found to be negligible within the requirements for LCLS–II.« less

  14. High quality factor surface Fabry-Perot cavity of acoustic waves

    NASA Astrophysics Data System (ADS)

    Xu, Yuntao; Fu, Wei; Zou, Chang-ling; Shen, Zhen; Tang, Hong X.

    2018-02-01

    Surface acoustic wave (SAW) resonators are critical components in wireless communications and many sensing applications. They have also recently emerged as a subject of study in quantum acoustics at the single phonon level. Acoustic loss reduction and mode confinement are key performance factors in SAW resonators. Here, we report the design and experimental realization of high quality factor Fabry-Perot SAW resonators formed in between the tapered phononic crystal mirrors patterned on a GaN-on-sapphire material platform. The fabricated SAW resonators are characterized by both an electrical network analyzer and an optical heterodyne vibrometer. We observed standing Rayleigh waves inside the cavity, with an intrinsic quality factor exceeding 1.3 × 104 at ambient conditions.

  15. Physics of Limiting Phenomena in Superconducting Microwave Resonators: Vortex Dissipation, Ultimate Quench and Quality Factor Degradation Mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checchin, Mattia

    Superconducting niobium accelerating cavities are devices operating in radio-frequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described inmore » detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associate d to the

  16. Physics of limiting phenomena in superconducting microwave resonators: Vortex dissipation, ultimate quench and quality factor degradation mechanisms

    NASA Astrophysics Data System (ADS)

    Checchin, Mattia

    Superconducting niobium accelerating cavities are devices operating in radiofrequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described in detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associated to the superheating

  17. A high-quality factor of 267 000 micromechanical silicon resonator utilizing TED-free torsional vibration mode

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Naito, Y.; Onishi, K.; Kawakatsu, H.

    2012-12-01

    In industrial applications of a micromechanical silicon resonator as a physical sensor, a high-quality factor Q and a low-temperature coefficient of Q (TCQ) are required for high sensitivity in a wide temperature range. Although the newly developed thin film encapsulation technique enables a beam to operate with low viscous damping in a vacuum cavity, the Q of a flexural vibration mode is limited by thermo-elastic damping (TED). We proposed a torsional beam resonator which features both a high Q and a low TCQ because theoretically the torsional vibration mode does not suffer from TED. From experiments, Q of 267 000 and TCQ of 1.4 for the 20 MHz torsional vibration mode were observed which were superior to those of the flexural mode. The pressure of the residual gas in the cavity of only 20 pl volume, which is one of the energy loss factors limiting the Q, was successfully estimated to be 1-14 Pa. Finally, the possibilities of improving the Q and the difference of the measured TCQ from a theoretical value were discussed.

  18. One-dimensional Multi-channel Photonic Crystal Resonators based on Silicon-On-Insulator with High Quality Factor

    NASA Astrophysics Data System (ADS)

    Faneca, Joaquin; Perova, Tatiana S.; Tolmachev, Vladimir; Baldycheva, Anna

    2018-05-01

    We have theoretically and experimentally demonstrated a Fabry-Pérot (FP) resonators based on a Si-air one-dimensional photonic crystal (1D PhC) with coupled triple-cavity modes (or defects). These defects are obtained by filling selected air channels in the 1D PhC with an actively reconfigurable fluid. Simulations of the optical properties of these FP resonators were performed in the wide infrared spectral range. It is shown that by changing the refractive index, nc, of the fluid simultaneously in all three channels, a set of narrow triple resonance peaks can be obtained within wide stop-bands of different order in the infrared range. In addition, at certain values of nc, splitting of the triple resonance peaks into a doublet and a single peak with a significantly larger quality factor, Q=21200, occurs. Prototype devices based on Silicon-On-Insulator platform were fabricated and characterized by electro-optical and spectroscopic measurements. The electro-optical measurements demonstrate the possibility of refractive index manipulation of the filler in the FP channels individually or simultaneously. Spectroscopic measurements performed in the range 1540 – 1630 nm using fibre-coupling confirm the presence of triple resonance peaks in the 3rd stop-band in the absence of an electric field applied to the FP channels. At an applied voltage of 10 V to the middle channel, an increase of Q to 3720 in the single peak is registered which is the highest Q demonstrated in SOI based 1D PhC to date.

  19. Evaluation of thermal effects on the beam quality of disk laser with unstable resonator

    NASA Astrophysics Data System (ADS)

    Shayganmanesh, Mahdi; Beirami, Reza

    2017-01-01

    In this paper thermal effects of the disk active medium and associated effects on the beam quality of laser are investigated. Using Collins integral and iterative method, transverse mode of an unstable resonator including a Yb:YAG active medium in disk geometry is calculated. After that the beam quality of the laser is calculated based on the generalized beam characterization method. Thermal lensing of the disk is calculated based on the OPD (Optical Path Difference) concept. Five factors influencing the OPD including temperature gradient, disk thermal expansion, photo-elastic effect, electronic lens and disk deformation are considered in our calculations. The calculations show that the effect of disk deformation factor on the quality of laser beam in the resonator is strong. However the total effect of all the thermal factors on the internal beam quality is fewer. Also it is shown that thermal effects degrade the output power, beam profile and beam quality of the output laser beam severely. As well the magnitude of each of affecting factors is evaluated distinctly.

  20. High quality factor indium oxide mechanical microresonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartolomé, Javier, E-mail: j.bartolome@fis.ucm.es; Cremades, Ana; Piqueras, Javier

    2015-11-09

    The mechanical resonance behavior of as-grown In{sub 2}O{sub 3} microrods has been studied in this work by in-situ scanning electron microscopy (SEM) electrically induced mechanical oscillations. Indium oxide microrods grown by a vapor–solid method are naturally clamped to an aluminum oxide ceramic substrate, showing a high quality factor due to reduced energy losses during mechanical vibrations. Quality factors of more than 10{sup 5} and minimum detectable forces of the order of 10{sup −16} N/Hz{sup 1/2} demonstrate their potential as mechanical microresonators for real applications. Measurements at low-vacuum using the SEM environmental operation mode were performed to study the effect ofmore » extrinsic damping on the resonators behavior. The damping coefficient has been determined as a function of pressure.« less

  1. Quality Factor and Microslipping of Fatigue Cracks in Thin Plates at Resonant Vibration

    NASA Technical Reports Server (NTRS)

    Wincheski, B.; Namkung, M.; Fulton, J. P.

    1993-01-01

    Resonant vibrations have been stimulated in thin metal plates using a non-contacting electromagnetic driver. A sinusoidal force was applied in a swept frequency fashion and the resulting surface displacements were monitored through the use of an acoustic microphone. It has been found that the presence of a fatigue crack in the sample causes a broadening of the second resonance peak. The Q factors of the resonance curves were determined and are directly correlated with the presence of fatigue cracks in the samples. The broadening of the curves is explained in terms of a microslipping at the crack face walls which reduces the amplitude of the resonant vibration by increasing the damping of the system. A comparison is made between the resonance characteristics of fatigue damaged and notched samples, where the stiffness of the two systems is nearly constant while the interaction between crack face walls is eliminated in the latter.

  2. Quality factor concept in piezoceramic transformer performance description.

    PubMed

    Mezheritsky, Alex V

    2006-02-01

    A new general approach based on the quality factor concept to piezoceramic transformer (PT) performance description is proposed. The system's quality factor, material elastic anisotropy, and coupling factors of the input and output sections of an electrically excited and electrically loaded PT fully characterize its resonance and near-resonance behavior. The PT efficiency, transformation ratio, and input and output power were analytically analyzed and simulated as functions of the load and frequency for the simplest classical Langevin-type and Rosen-type PT designs. A new formulation of the electrical input impedance allows one to separate the power consumed by PT from the power transferred into the load. The system's PT quality factor takes into account losses in each PT "input-output-load" functional components. The loading process is changing PT input electrical impedance on the way that under loading the minimum series impedance is increasing and the maximum parallel impedance is decreasing coincidentally. The quality-factors ratio, between the states of fully loaded and nonloaded PT, is one of the best measures of PTs dynamic performance--practically, the lower the ratio is, the better PT efficiency. A simple and effective method for the loaded PT quality factor determination is proposed. As was found, a piezoceramic with low piezoelectric anisotropy is required to provide maximum PT efficiency and higher corresponding voltage gain. Limitations on the PT output voltage and power, caused by nonlinear effects in piezoceramics, were established.

  3. Note: Calibration of atomic force microscope cantilevers using only their resonant frequency and quality factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sader, John E., E-mail: jsader@unimelb.edu.au; Friend, James R.; Department of Mechanical and Aerospace Engineering, University of California-San Diego, La Jolla, California 92122

    2014-11-15

    A simplified method for calibrating atomic force microscope cantilevers was recently proposed by Sader et al. [Rev. Sci. Instrum. 83, 103705 (2012); Sec. III D] that relies solely on the resonant frequency and quality factor of the cantilever in fluid (typically air). This method eliminates the need to measure the hydrodynamic function of the cantilever, which can be time consuming given the wide range of cantilevers now available. Using laser Doppler vibrometry, we rigorously assess the accuracy of this method for a series of commercially available cantilevers and explore its performance under non-ideal conditions. This shows that the simplified methodmore » is highly accurate and can be easily implemented to perform fast, robust, and non-invasive spring constant calibration.« less

  4. Fabrication of Silica Ultra High Quality Factor Microresonators

    PubMed Central

    Maker, Ashley J.; Armani, Andrea M.

    2012-01-01

    Whispering gallery resonant cavities confine light in circular orbits at their periphery.1-2 The photon storage lifetime in the cavity, quantified by the quality factor (Q) of the cavity, can be in excess of 500ns for cavities with Q factors above 100 million. As a result of their low material losses, silica microcavities have demonstrated some of the longest photon lifetimes to date1-2. Since a portion of the circulating light extends outside the resonator, these devices can also be used to probe the surroundings. This interaction has enabled numerous experiments in biology, such as single molecule biodetection and antibody-antigen kinetics, as well as discoveries in other fields, such as development of ultra-low-threshold microlasers, characterization of thin films, and cavity quantum electrodynamics studies.3-7 The two primary silica resonant cavity geometries are the microsphere and the microtoroid. Both devices rely on a carbon dioxide laser reflow step to achieve their ultra-high-Q factors (Q>100 million).1-2,8-9 However, there are several notable differences between the two structures. Silica microspheres are free-standing, supported by a single optical fiber, whereas silica microtoroids can be fabricated on a silicon wafer in large arrays using a combination of lithography and etching steps. These differences influence which device is optimal for a given experiment. Here, we present detailed fabrication protocols for both types of resonant cavities. While the fabrication of microsphere resonant cavities is fairly straightforward, the fabrication of microtoroid resonant cavities requires additional specialized equipment and facilities (cleanroom). Therefore, this additional requirement may also influence which device is selected for a given experiment. Introduction An optical resonator efficiently confines light at specific wavelengths, known as the resonant wavelengths of the device. 1-2 The common figure of merit for these optical resonators is the quality

  5. A time domain based method for the accurate measurement of Q-factor and resonance frequency of microwave resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyüre, B.; Márkus, B. G.; Bernáth, B.

    2015-09-15

    We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connesmore » (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation.« less

  6. Correction Factor for Determining the London Penetration Depth from Strip Resonators

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    1995-01-01

    A significant disagreement is often seen between the theoretical temperature dependent magnetic penetration depth profile and experimentally derived calculations based on stripline type resonators. This short paper shows that the disagreement can be attributed to the susceptance coupled into the resonator from the gap discontinuity as well as the feed line. When the effect is taken into account, the natural resonant frequency of the resonator is increased, and the frequency shift due to kinetic inductance can be calculated much more accurately. While it is necessary to include this effect to determine the penetration depth, it is shown that the impact on unloaded quality factor is generally negligible. The situation when the strip characteristic impedance is not matched to the generator is included.

  7. Analysis of Thickness and Quality factor of a Double Paddle Oscillator at Room Temperature.

    PubMed

    Shakeel, Hamza; Metcalf, Thomas H; Pomeroy, J M

    2016-01-01

    In this paper, we evaluate the quality (Q) factor and the resonance frequency of a double paddle oscillator (DPO) with different thickness using analytical, computational and experimental methods. The study is carried out for the 2 nd anti-symmetric resonance mode that provides extremely high experimental Q factors on the order of 10 5 . The results show that both the Q factor and the resonance frequency of a DPO increase with the thickness at room temperature.

  8. Microstrip resonators for electron paramagnetic resonance experiments

    NASA Astrophysics Data System (ADS)

    Torrezan, A. C.; Mayer Alegre, T. P.; Medeiros-Ribeiro, G.

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5×1010 spins/GHz1/2 despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  9. Microstrip resonators for electron paramagnetic resonance experiments.

    PubMed

    Torrezan, A C; Mayer Alegre, T P; Medeiros-Ribeiro, G

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5 x 10(10) spins/GHz(1/2) despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  10. Quench-Induced Degradation of the Quality Factor in Superconducting Resonators

    NASA Astrophysics Data System (ADS)

    Checchin, M.; Martinello, M.; Romanenko, A.; Grassellino, A.; Sergatskov, D. A.; Posen, S.; Melnychuk, O.; Zasadzinski, J. F.

    2016-04-01

    Quench of superconducting radio-frequency cavities frequently leads to the lowered quality factor Q0 , which had been attributed to the additional trapped magnetic flux. Here we demonstrate that the origin of this magnetic flux is purely extrinsic to the cavity by showing no extra dissipation (unchanged Q0) after quenching in zero magnetic field, which allows us to rule out intrinsic mechanisms of flux trapping such as generation of thermal currents or trapping of the rf field. We also show the clear relation of dissipation introduced by quenching to the orientation of the applied magnetic field and the possibility to fully recover the quality factor by requenching in the compensated field. We discover that for larger values of the ambient field, the Q -factor degradation may become irreversible by this technique, likely due to the outward flux migration beyond the normal zone opening during quench. Our findings are of special practical importance for accelerators based on low- and medium-β accelerating structures residing close to focusing magnets, as well as for all high-Q cavity-based accelerators.

  11. Error analysis for intrinsic quality factor measurement in superconducting radio frequency resonators

    DOE PAGES

    Melnychuk, O.; Grassellino, A.; Romanenko, A.

    2014-12-19

    In this paper, we discuss error analysis for intrinsic quality factor (Q₀) and accelerating gradient (E acc ) measurements in superconducting radio frequency (SRF) resonators. The analysis is applicable for cavity performance tests that are routinely performed at SRF facilities worldwide. We review the sources of uncertainties along with the assumptions on their correlations and present uncertainty calculations with a more complete procedure for treatment of correlations than in previous publications [T. Powers, in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24–27]. Applying this approach to cavity data collected at Vertical Test Stand facility atmore » Fermilab, we estimated total uncertainty for both Q₀ and E acc to be at the level of approximately 4% for input coupler coupling parameter β₁ in the [0.5, 2.5] range. Above 2.5 (below 0.5) Q₀ uncertainty increases (decreases) with β₁ whereas E acc uncertainty, in contrast with results in Powers [in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24–27], is independent of β₁. Overall, our estimated Q₀ uncertainty is approximately half as large as that in Powers [in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24–27].« less

  12. Unprecedented quality factors at accelerating gradients up to 45 MVm-1 in niobium superconducting resonators via low temperature nitrogen infusion

    NASA Astrophysics Data System (ADS)

    Grassellino, A.; Romanenko, A.; Trenikhina, Y.; Checchin, M.; Martinello, M.; Melnychuk, O. S.; Chandrasekaran, S.; Sergatskov, D. A.; Posen, S.; Crawford, A. C.; Aderhold, S.; Bice, D.

    2017-09-01

    We report the finding of new surface treatments that permits one to manipulate the niobium resonator nitrogen content in the first few nanometers in a controlled way, and the resonator fundamental Mattis-Bardeen surface resistance and residual resistance accordingly. In particular, we find surface ‘infusion’ conditions that systematically (a) increase the quality factor of these 1.3 GHz superconducting radio frequency (SRF) bulk niobium resonators, up to very high gradients; (b) increase the achievable accelerating gradient of the cavity compared to its own baseline with state-of-the-art surface processing. Cavities subject to the new surface process have more than two times the state-of-the-art Q at 2 K for accelerating fields >35 MVm-1. Moreover, very high accelerating gradients ˜45 MVm-1 are repeatedly reached, which correspond to peak magnetic surface fields of 190 mT, among the highest measured for bulk niobium cavities. These findings open the opportunity to tailor the surface impurity content distribution to maximize performance in Q and gradients, and have therefore very important implications on future performance and cost of SRF based accelerators. They also help deepen the understanding of the physics of the RF niobium cavity surface.

  13. Strong Photoluminescence Enhancement in All-Dielectric Fano Metasurface with High Quality Factor.

    PubMed

    Yuan, Shuai; Qiu, Xingzhi; Cui, Chengcong; Zhu, Liangqiu; Wang, Yuxi; Li, Yi; Song, Jinwen; Huang, Qingzhong; Xia, Jinsong

    2017-11-28

    All-dielectric metamaterials offer great flexibility for controlling light-matter interaction, owing to their strong electric and magnetic resonances with negligible loss at wavelengths above the material bandgap. Here, we propose an all-dielectric asymmetric metasurface structure exhibiting high quality factor and prominent Fano line shape. Over three-orders photoluminescence enhancement is demonstrated in the fabricated all-dielectric metasurface with record-high quality factor of 1011. We find this strong emission enhancement is attributed to the coherent Fano resonances, which originate from the destructive interferences of antisymmetric displacement currents in the asymmetric all-dielectric metasurface. Our observations show a promising approach to realize light emitters based on all-dielectric metasurfaces.

  14. The resonant body transistor.

    PubMed

    Weinstein, Dana; Bhave, Sunil A

    2010-04-14

    This paper introduces the resonant body transistor (RBT), a silicon-based dielectrically transduced nanoelectromechanical (NEM) resonator embedding a sense transistor directly into the resonator body. Combining the benefits of FET sensing with the frequency scaling capabilities and high quality factors (Q) of internal dielectrically transduced bar resonators, the resonant body transistor achieves >10 GHz frequencies and can be integrated into a standard CMOS process for on-chip clock generation, high-Q microwave circuits, fundamental quantum-state preparation and observation, and high-sensitivity measurements. An 11.7 GHz bulk-mode RBT is demonstrated with a quality factor Q of 1830, marking the highest frequency acoustic resonance measured to date on a silicon wafer.

  15. Quench-induced degradation of the quality factor in superconducting resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checchin, M.; Martinello, M.; Romanenko, A.

    Quench of superconducting radio-frequency cavities frequently leads to the lowered quality factor Q 0, which had been attributed to the additional trapped magnetic flux. Here we demonstrate that the origin of this magnetic flux is purely extrinsic to the cavity by showing no extra dissipation (unchanged Q 0) after quenching in zero magnetic field, which allows us to rule out intrinsic mechanisms of flux trapping such as generation of thermal currents or trapping of the rf field. We also show the clear relation of dissipation introduced by quenching to the orientation of the applied magnetic field and the possibility tomore » fully recover the quality factor by requenching in the compensated field. We discover that for larger values of the ambient field, the Q-factor degradation may become irreversible by this technique, likely due to the outward flux migration beyond the normal zone opening during quench. Lastly, our findings are of special practical importance for accelerators based on low- and medium-beta accelerating structures residing close to focusing magnets, as well as for all high-Q cavity-based accelerators.« less

  16. Quench-induced degradation of the quality factor in superconducting resonators

    DOE PAGES

    Checchin, M.; Martinello, M.; Romanenko, A.; ...

    2016-04-28

    Quench of superconducting radio-frequency cavities frequently leads to the lowered quality factor Q 0, which had been attributed to the additional trapped magnetic flux. Here we demonstrate that the origin of this magnetic flux is purely extrinsic to the cavity by showing no extra dissipation (unchanged Q 0) after quenching in zero magnetic field, which allows us to rule out intrinsic mechanisms of flux trapping such as generation of thermal currents or trapping of the rf field. We also show the clear relation of dissipation introduced by quenching to the orientation of the applied magnetic field and the possibility tomore » fully recover the quality factor by requenching in the compensated field. We discover that for larger values of the ambient field, the Q-factor degradation may become irreversible by this technique, likely due to the outward flux migration beyond the normal zone opening during quench. Lastly, our findings are of special practical importance for accelerators based on low- and medium-beta accelerating structures residing close to focusing magnets, as well as for all high-Q cavity-based accelerators.« less

  17. Effects of Aperture Size on Q factor and Shielding Effectiveness of a Cubic Resonator

    NASA Astrophysics Data System (ADS)

    Parr, Stefan; Chromy, Stephan; Dickmann, Stefan; Schaarschmidt, Martin

    2017-09-01

    The EMC properties of a cubic metallic shield are highly affected by its resonances. At the resonant frequencies, the shielding effectiveness (SE) collapses, which results in high field strengths inside the cavity. This can cause failure or even breakdown of electronic devices inside the shield. The resonant behaviour is mainly determined by the quality or Q factor of the shield. In this paper, the effects of the aperture size on the Q factor and the SE of an electrically large, cubic shield are analysed. At first, a method is developed in order to determine the Q factor based on the resonance behaviour of the shield in time domain. Only the first resonance of the shield is considered therefore. The results are evaluated for different aperture diameters and compared with theory for the Q factor. The dominant coupling mechanism of electromagnetic energy into the shield is thus identified. Then the effect of aperture size on the SE is analysed. The excitation of resonances is very probable if the interfering signal is an ultrawideband (UWB) pulse, which constitutes a typical intentional electromagnetic interference (IEMI) scenario. Therefore, the relation between aperture size and SE is analysed using the theory of the transient SE for a broadband signal with a constant spectral density distribution. The results show, that a worst case aperture size exists, where the SE has its minimum.

  18. Monolithic Cylindrical Fused Silica Resonators with High Q Factors

    PubMed Central

    Pan, Yao; Wang, Dongya; Wang, Yanyan; Liu, Jianping; Wu, Suyong; Qu, Tianliang; Yang, Kaiyong; Luo, Hui

    2016-01-01

    The cylindrical resonator gyroscope (CRG) is a typical Coriolis vibratory gyroscope whose performance is determined by the Q factor and frequency mismatch of the cylindrical resonator. Enhancing the Q factor is crucial for improving the rate sensitivity and noise performance of the CRG. In this paper, for the first time, a monolithic cylindrical fused silica resonator with a Q factor approaching 8 × 105 (ring-down time over 1 min) is reported. The resonator is made of fused silica with low internal friction and high isotropy, with a diameter of 25 mm and a center frequency of 3974.35 Hz. The structure of the resonator is first briefly introduced, and then the experimental non-contact characterization method is presented. In addition, the post-fabrication experimental procedure of Q factor improvement, including chemical and thermal treatment, is demonstrated. The Q factor improvement by both treatments is compared and the primary loss mechanism is analyzed. To the best of our knowledge, the work presented in this paper represents the highest reported Q factor for a cylindrical resonator. The proposed monolithic cylindrical fused silica resonator may enable high performance inertial sensing with standard manufacturing process and simple post-fabrication treatment. PMID:27483263

  19. Unprecedented quality factors at accelerating gradients up to 45 MVm -1 in niobium superconducting resonators via low temperature nitrogen infusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grassellino, A.; Romanenko, A.; Trenikhina, Y.

    We report the finding of new surface treatments that permit to manipulate the niobium resonator nitrogen content in the first few nanometers in a controlled way, and the resonator fundamental Mattis-Bardeen surface resistance and residual resistance accordingly. In particular, we find surface infusion conditions that systematically a) increase the quality factor of these 1.3 GHz superconducting radio frequency (SRF) bulk niobium resonators, up to very high gradients; b) increase the achievable accelerating gradient of the cavity compared to its own baseline with state-of-the-art surface processing. Cavities subject to the new surface process have larger than two times the state ofmore » the art Q at 2K for accelerating fields > 35 MV/m. Moreover, very high accelerating gradients ~ 45 MV/m are repeatedly reached, which correspond to peak magnetic surface fields of 190 mT, among the highest measured for bulk niobium cavities. These findings open the opportunity to tailor the surface impurity content distribution to maximize performance in Q and gradients, and have therefore very important implications on future performance and cost of SRF based accelerators. They also help deepen the understanding of the physics of the RF niobium cavity surface.« less

  20. To the theory of high-power gyrotrons with uptapered resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumbrajs, O.; Nusinovich, G. S.

    In high-power gyrotrons it is desirable to combine an optimal resonator length with the optimal value of the resonator quality factor. In resonators with the constant radius of the central part, the possibilities of this combination are limited because the quality factor of the resonator sharply increases with its length. Therefore the attempts to increase the length for maximizing the efficiency leads to such increase in the quality factor which makes the optimal current too small. Resonators with slightly uptapered profiles offer more flexibility in this regard. In such resonators, one can separate optimization of the interaction length from optimizationmore » of the quality factor because the quality factor determined by diffractive losses can be reduced by increasing the angle of uptapering. In the present paper, these issues are analyzed by studying as a typical high-power 17 GHz gyrotron which is currently under development in Europe for ITER (http://en.wikipedia.org/wiki/ITER). The effect of a slight uptapering of the resonator wall on the efficiency enhancement and the purity of the radiation spectrum in the process of the gyrotron start-up and power modulation are studied. Results show that optimal modification of the shape of a slightly uptapered resonator may result in increasing the gyrotron power from 1052 to 1360 kW.« less

  1. Apex-angle-dependent resonances in triangular split-ring resonators

    NASA Astrophysics Data System (ADS)

    Burnett, Max A.; Fiddy, Michael A.

    2016-02-01

    Along with other frequency selective structures (Pendry et al. in IEEE Trans Microw Theory Tech 47(11):2075-2084, 1999) (circles and squares), triangular split-ring resonators (TSRRs) only allow frequencies near the center resonant frequency to propagate. Further, TSRRs are attractive due to their small surface area (Vidhyalakshmi et al. in Stopband characteristics of complementary triangular split ring resonator loaded microstrip line, 2011), comparatively, and large quality factors ( Q) as previously investigated by Gay-Balmaz et al. (J Appl Phys 92(5):2929-2936, 2002). In this work, we examine the effects of varying the apex angle on the resonant frequency, the Q factor, and the phase shift imparted by the TSRR element within the GHz frequency regime.

  2. Pressure effects on the dissipative behavior of nanocrystalline diamond microelectromechanical resonators

    NASA Astrophysics Data System (ADS)

    Santos, J. T.; Holz, T.; Fernandes, A. J. S.; Costa, F. M.; Chu, V.; Conde, J. P.

    2015-02-01

    Diamond-based microelectromechanical resonators have the potential of enhanced performance due to the chemical inertness of the diamond structural layer and its high Young’s modulus, high wear resistance, low thermal expansion coefficient, and very high thermal conductivity. In this work, the resonance frequency and quality factor of MEMS resonators based on nanocrystalline diamond films are characterized under different air pressures. The dynamic behavior of 50-300 μm long linear bridges and double ended tuning forks, with resonance frequencies between 0.5 and 15 MHz and quality factors as high as 50 000 are described as a function of measurement pressure from high vacuum(~10 mTorr) up to atmospheric conditions. The resonance frequencies and quality factors in vacuum show good agreement with the theoretical models including anchor and thermoelastic dissipation (TED). The Young’s moduli for nanocrystalline diamond films extrapolated from experimental data are between 840-920 GPa. The critical pressure values, at which the quality factor starts decreasing due to dissipation in air, are dependent on the resonator length. Longer structures, with quality factors limited by TED and lower resonance frequencies, have low critical pressures, of the order of 1-10 Torr and go from an intrinsic dissipation, to a molecular dissipation regime and finally to a region of viscous dissipation. Shorter resonators, with higher resonance frequencies and quality factors limited by anchor losses, have higher critical pressures, some higher than atmospheric pressure, and enter directly into the viscous dissipation regime from the intrinsic region.

  3. On the tunability of quality-factor for optical Tamm plasmon modes

    NASA Astrophysics Data System (ADS)

    Kumar, Samir; Das, Ritwick

    2017-09-01

    We present a comprehensive investigation to ascertain the impact of gold and silver films on modifying the quality-factor (Q-factor) of optical Tamm-plasmon (OTP) resonance in a metal-distributed Bragg reflector (M-DBR) geometry. Here, OTP mode is excited using direct incidence of white-light-source at normal incidence as well as oblique incidence on M-DBR geometry. The lifetime of OTP in gold and silver deposited films on DBR mirror was determined from OTP resonance linewidth. The lifetime and the Q-factor of OTP modes are found to depend on DBR bilayers, metal film thickness as well as on different plasmon active metals. This finding would facilitate tuning the Q-factor and consequently, the lifetime of OTP modes for various applications in all-optical switches and modulators. In addition, we discuss the spectral characteristics of OTP modes excited using normal and oblique incident of source.

  4. High quality factor graphene varactors for wireless sensing applications

    NASA Astrophysics Data System (ADS)

    Koester, Steven J.

    2011-10-01

    A graphene wireless sensor concept is described. By utilizing thin gate dielectrics, the capacitance in a metal-insulator-graphene structure varies with charge concentration through the quantum capacitance effect. Simulations using realistic structural and transport parameters predict quality factors, Q, >60 at 1 GHz. When placed in series with an ideal inductor, a resonant frequency tuning ratio of 25% (54%) is predicted for sense charge densities ranging from 0.32 to 1.6 μC/cm2 at an equivalent oxide thickness of 2.0 nm (0.5 nm). The resonant frequency has a temperature sensitivity, df/dT, less than 0.025%/K for sense charge densities >0.32 μC/cm2.

  5. High-Q, in-plane modes of nanomechanical resonators operated in air

    NASA Astrophysics Data System (ADS)

    Waggoner, Philip S.; Tan, Christine P.; Bellan, Leon; Craighead, Harold G.

    2009-05-01

    Nanomechanical resonators have traditionally been limited to use in vacuum due to low quality factors that come as a result of viscous damping effects in air or liquid. We have fabricated arrays of 90 nm thick trampoline-shaped resonators, studied their resonant frequency spectrum as a function of pressure, and found that some high frequency modes exhibit quality factors over 2000 at atmospheric pressure. We have excited the in-plane resonances of these devices, verified their identities both experimentally and with finite element modeling, and demonstrated their advantageous characteristics for ambient sensing. Even after deposition of a relatively thick polymer layer, the in-plane resonant modes still boast quality factors on the order of 2000. These results show promise for the use of nanomechanical resonant sensors in real-time atmospheric sensing applications.

  6. Decay Times and Quality Factors for a Resonance Apparatus

    ERIC Educational Resources Information Center

    Stephens, Heather; Tam, Austin; Moloney, Michael

    2011-01-01

    The commercial resonance demonstration apparatus shown in Fig. 1 exhibits curious behavior. It consists of three pairs of slender spring-steel rods attached to a horizontal bar. When one of the rods is pulled aside and released, the rod of corresponding length is excited into visible motion, but the other rods remain apparently stationary. This…

  7. Enhanced quality factors and force sensitivity by attaching magnetic beads to cantilevers for atomic force microscopy in liquid

    NASA Astrophysics Data System (ADS)

    Hoof, Sebastian; Nand Gosvami, Nitya; Hoogenboom, Bart W.

    2012-12-01

    Dynamic-mode atomic force microscopy (AFM) in liquid remains complicated due to the strong viscous damping of the cantilever resonance. Here, we show that a high-quality resonance (Q >20) can be achieved in aqueous solution by attaching a microgram-bead at the end of the nanogram-cantilever. The resulting increase in cantilever mass causes the resonance frequency to drop significantly. However, the force sensitivity—as expressed via the minimum detectable force gradient—is hardly affected, because of the enhanced quality factor. Through the enhancement of the quality factor, the attached bead also reduces the relative importance of noise in the deflection detector. It can thus yield an improved signal-to-noise ratio when this detector noise is significant. We describe and analyze these effects for a set-up that includes magnetic actuation of the cantilevers and that can be easily implemented in any AFM system that is compatible with an inverted optical microscope.

  8. Reducing support loss in micromechanical ring resonators using phononic band-gap structures

    NASA Astrophysics Data System (ADS)

    Hsu, Feng-Chia; Hsu, Jin-Chen; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin

    2011-09-01

    In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.

  9. Testing of qubit materials and fabrication using superconducting resonators

    NASA Astrophysics Data System (ADS)

    Kumar, Shwetank; Steffen, Matthias; Divincenzo, David; Keefe, George; Rothwell, Mary Beth; Farinelli, Matthew; Rozen, Jim; Milliken, Frank; Ketchen, Mark

    2009-03-01

    We will present the results of measurements made on superconducting resonators fabricated using different substrates and superconducting metals. Specifically, the quality factor of these resonators will be shown to be closely related to not only the purity of the substrates and metals used in the process but also to the details of the fabrication. We will demonstrate the change in quality factor of a bare resonator when subjected to the qubit process. Based on our measurements we propose that superconducting resonators may form a test bed for troubleshooting the fabrication process for minimizing the materials related dissipation in the qubits.

  10. Stochastic resonance in micro/nano cantilever sensors

    NASA Astrophysics Data System (ADS)

    Singh, Priyanka; Yadava, R. D. S.

    2018-05-01

    In this paper we present a comparative study on the stochastic resonance in micro/nano cantilever resonators due to fluctuations in the fundamental frequency or the damping coefficient. Considering DC+AC electrostatic actuation in the presence of zero-mean Gaussian noise with exponential autocorrelation we analyze stochastic resonance behaviors for the frequency and the damping fluctuations separately, and compare the effects of stochastic resonance on Q-factor of the resonators for different levels of damping losses. It is found that even though the stochastic resonance occurs for both types of fluctuations, only the damping fluctuation produces right cooperative influence on the fundamental resonance that improves both the amplitude response and the quality factor of the resonator.

  11. Determination of Dimensionless Attenuation Coefficient in Shaped Resonators

    NASA Technical Reports Server (NTRS)

    Daniels, C.; Steinetz, B.; Finkbeiner, J.; Raman, G.; Li, X.

    2003-01-01

    The value of dimensionless attenuation coefficient is an important factor when numerically predicting high-amplitude acoustic waves in shaped resonators. Both the magnitude of the pressure waveform and the quality factor rely heavily on this dimensionless parameter. Previous authors have stated the values used, but have not completely explained their methods. This work fully describes the methodology used to determine this important parameter. Over a range of frequencies encompassing the fundamental resonance, the pressure waves were experimentally measured at each end of the shaped resonators. At the corresponding dimensionless acceleration, the numerical code modeled the acoustic waveforms generated in the resonator using various dimensionless attenuation coefficients. The dimensionless attenuation coefficient that most closely matched the pressure amplitudes and quality factors of the experimental and numerical results was determined to be the value to be used in subsequent studies.

  12. Low index contrast heterostructure photonic crystal cavities with high quality factors and vertical radiation coupling

    NASA Astrophysics Data System (ADS)

    Ge, Xiaochen; Minkov, Momchil; Fan, Shanhui; Li, Xiuling; Zhou, Weidong

    2018-04-01

    We report here design and experimental demonstration of heterostructure photonic crystal cavities resonating near the Γ point with simultaneous strong lateral confinement and highly directional vertical radiation patterns. The lateral confinement is provided by a mode gap originating from a gradual modulation of the hole radii. High quality factor resonance is realized with a low index contrast between silicon nitride and quartz. The near surface-normal directional emission is preserved when the size of the core region is scaled down. The influence of the cavity size parameters on the resonant modes is also investigated theoretically and experimentally.

  13. Electromagnetic properties of baryon resonances

    NASA Astrophysics Data System (ADS)

    Tiator, Lothar

    2013-10-01

    Longitudinal and transverse transition form factors for most of the four-star nucleon resonances have been obtained from high-quality cross section data and polarization observables measured at MAMI, ELSA, BATES, GRAAL and CEBAF. As an application, we further show how the transition form factors can be used to obtain empirical transverse charge densities. Contour plots of the thus derived densities are shown and compared for the Roper and S11 nucleon resonances.

  14. Tunable Superconducting Split Ring Resonators

    DTIC Science & Technology

    2012-09-19

    microwave field-strength distortion and quality- factor dependence on tuning. Feedback for changes in design and fabrication, (4) design and fabrication...elements. For many applications tuning of the resonance frequency of the SRR is needed. Classically this is done by varactor diodes. Their capacitance ... capacitance of the gap to form a resonator circuit. The advantage of such a circuit is its quite low resonance frequency compared to other structures

  15. Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator.

    PubMed

    Thackray, Benjamin D; Thomas, Philip A; Auton, Gregory H; Rodriguez, Francisco J; Marshall, Owen P; Kravets, Vasyl G; Grigorenko, Alexander N

    2015-05-13

    We present extremely narrow collective plasmon resonances observed in gold nanostripe arrays fabricated on a thin gold film, with the spectral line full width at half-maximum (fwhm) as low as 5 nm and quality factors Q reaching 300, at important fiber-optic telecommunication wavelengths around 1.5 μm. Using these resonances, we demonstrate a hybrid graphene-plasmonic modulator with the modulation depth of 20% in reflection operated by gating of a single layer graphene, the largest measured so far.

  16. Tunable Q-factor silicon microring resonators for ultra-low power parametric processes.

    PubMed

    Strain, Michael J; Lacava, Cosimo; Meriggi, Laura; Cristiani, Ilaria; Sorel, Marc

    2015-04-01

    A compact silicon ring resonator is demonstrated that allows simple electrical tuning of the ring coupling coefficient and Q-factor and therefore the resonant enhancement of on-chip nonlinear optical processes. Fabrication-induced variation in designed coupling fraction, crucial in the resonator performance, can be overcome using this post-fabrication trimming technique. Tuning of the microring resonator across the critical coupling point is demonstrated, exhibiting a Q-factor tunable between 9000 and 96,000. Consequently, resonantly enhanced four-wave mixing shows tunable efficiency between -40 and -16.3  dB at an ultra-low on-chip pump power of 0.7 mW.

  17. Fabrication of a microresonator-fiber assembly maintaining a high-quality factor by CO₂ laser welding.

    PubMed

    Fang, Zhiwei; Lin, Jintian; Wang, Min; Liu, Zhengming; Yao, Jinping; Qiao, Lingling; Cheng, Ya

    2015-10-19

    We demonstrate fabrication of a microtoroid resonator of a high-quality (high-Q) factor using femtosecond laser three-dimensional (3D) micromachining. A fiber taper is reliably assembled to the microtoroid using CO2 laser welding. Specifically, we achieve a high-Q-factor of 2.12 × 10(6) in the microresonator-fiber assembly by optimizing the contact position between the fiber taper and the microtoroid.

  18. Experienced quality factors: qualitative evaluation approach to audiovisual quality

    NASA Astrophysics Data System (ADS)

    Jumisko-Pyykkö, Satu; Häkkinen, Jukka; Nyman, Göte

    2007-02-01

    Subjective evaluation is used to identify impairment factors of multimedia quality. The final quality is often formulated via quantitative experiments, but this approach has its constraints, as subject's quality interpretations, experiences and quality evaluation criteria are disregarded. To identify these quality evaluation factors, this study examined qualitatively the criteria participants used to evaluate audiovisual video quality. A semi-structured interview was conducted with 60 participants after a subjective audiovisual quality evaluation experiment. The assessment compared several, relatively low audio-video bitrate ratios with five different television contents on mobile device. In the analysis, methodological triangulation (grounded theory, Bayesian networks and correspondence analysis) was applied to approach the qualitative quality. The results showed that the most important evaluation criteria were the factors of visual quality, contents, factors of audio quality, usefulness - followability and audiovisual interaction. Several relations between the quality factors and the similarities between the contents were identified. As a research methodological recommendation, the focus on content and usage related factors need to be further examined to improve the quality evaluation experiments.

  19. Factors Affecting Medical Service Quality.

    PubMed

    Mosadeghrad, Ali Mohammad

    2014-02-01

    A better understanding of factors influencing quality of medical service can pinpoint better strategies for quality assurance in medical services. This study aimed to identify factors affecting the quality of medical services provided by Iranian physicians. Exploratory in-depth individual interviews were conducted with sixty-four physicians working in various medical institutions in Iran. Individual, organizational and environmental factors enhance or inhibit the quality of medical services. Quality of medical services depends on the personal factors of the physician and patient, and factors pertaining to the healthcare setting and the broader environment. Differences in internal and external factors such as availability of resources, patient cooperation and collaboration among providers affect the quality of medical services and patient outcomes. Supportive leadership, proper planning, education and training and effective management of resources and processes improve the quality of medical services. This article contributes to healthcare theory and practice by developing a conceptual framework for understanding factors that influence medical services quality.

  20. Terahertz absorber based on Fano-like resonance of inverted quadrangular frustum pyramid metal grooves and sensor application

    NASA Astrophysics Data System (ADS)

    Yu, Yingying; Sun, Bo

    2018-07-01

    We investigate the multi-resonance coupling of inverted quadrangular frustum pyramid (IQFP) groove metal arrays at terahertz frequencies. The surface plasmon resonance (SPR) and groove resonance are induced, resulting in resonance coupling. The dipole of the groove resonance drives the quadrupole of the SPR and creates a sharp Fano-like resonance. The effects of geometry parameters including the width (at the bottom) and height are analyzed in detail. The results show that with the decrease in the sidewall slope of the groove, the confinement of the groove region on the electromagnetic field decreases, thereby increasing the resonance coupling. The Fano-like resonance is enhanced. The sensitivity and quality factor are discussed. The results show that the Fano-like resonance has high sensitivity and quality factor. With the increase in the sidewall slope of the groove, the sensitivity increases, and the quality factor decreases. The results show that the Fano-like resonance of IQFP groove metal arrays has a significant potential for biological monitoring and sensing.

  1. Porous silicon ring resonator for compact, high sensitivity biosensing applications

    DOE PAGES

    Rodriguez, Gilberto A.; Hu, Shuren; Weiss, Sharon M.

    2015-01-01

    A ring resonator is patterned on a porous silicon slab waveguide to produce a compact, high quality factor biosensor with a large internal surface area available for enhanced recognition of biological and chemical molecules. The porous nature of the ring resonator allows molecules to directly interact with the guided mode. Quality factors near 10,000 were measured for porous silicon ring resonators with a radius of 25 μm. A bulk detection sensitivity of 380 nm/RIU was measured upon exposure to salt water solutions. Specific detection of nucleic acid molecules was demonstrated with a surface detection sensitivity of 4 pm/nM.

  2. 3C-SiC microdisk mechanical resonators with multimode resonances at radio frequencies

    NASA Astrophysics Data System (ADS)

    Lee, Jaesung; Zamani, Hamidrera; Rajgopal, Srihari; Zorman, Christian A.; X-L Feng, Philip

    2017-07-01

    We report on the design, modeling, fabrication and measurement of single-crystal 3C-silicon carbide (SiC) microdisk mechanical resonators with multimode resonances operating at radio frequencies (RF). These microdisk resonators (center-clamped on a vertical stem pedestal) offer multiple flexural-mode resonances with frequencies dependent on both disk and anchor dimensions. The resonators are made using a novel fabrication method comprised of focused ion beam nanomachining and hydroflouic : nitric : acetic (HNA) acid etching. Resonance peaks (in the frequency spectrum) are detected through laser-interferometry measurements. Resonators with different dimensions are tested, and multimode resonances, mode splitting, energy dissipation (in the form of quality factor measurement) are investigated. Further, we demonstrate a feedback oscillator based on a passive 3C-SiC resonator. This investigation provides important guidelines for microdisk resonator development, ranging from an analytical prediction of frequency scaling law to fabrication, suggesting RF microdisk resonators can be good candidates for future sensing applications in harsh environments.

  3. Micro-optomechanical trampoline resonators

    NASA Astrophysics Data System (ADS)

    Pepper, Brian; Kleckner, Dustin; Sonin, Petro; Jeffrey, Evan; Bouwmeester, Dirk

    2011-03-01

    Recently, micro-optomechanical devices have been proposed for implementation of experiments ranging from non-demolition measurements of phonon number to creation of macroscopic quantum superpositions. All have strenuous requirements on optical finesse, mechanical quality factor, and temperature. We present a set of devices composed of dielectric mirrors on Si 3 N4 trampoline resonators. We describe the fabrication process and present data on finesse and quality factor. The authors gratefully acknowledge support from NSF PHY-0804177 and Marie Curie EXT-CT-2006-042580.

  4. Bound states in the continuum on periodic structures surrounded by strong resonances

    NASA Astrophysics Data System (ADS)

    Yuan, Lijun; Lu, Ya Yan

    2018-04-01

    Bound states in the continuum (BICs) are trapped or guided modes with their frequencies in the frequency intervals of the radiation modes. On periodic structures, a BIC is surrounded by a family of resonant modes with their quality factors approaching infinity. Typically the quality factors are proportional to 1 /|β - β*|2 , where β and β* are the Bloch wave vectors of the resonant modes and the BIC, respectively. But for some special BICs, the quality factors are proportional to 1 /|β - β*|4 . In this paper, a general condition is derived for such special BICs on two-dimensional periodic structures. As a numerical example, we use the general condition to calculate special BICs, which are antisymmetric standing waves, on a periodic array of circular cylinders, and show their dependence on parameters. The special BICs are important for practical applications, because they produce resonances with large quality factors for a very large range of β .

  5. Characterizing Quality Factor of Niobium Resonators Using a Markov Chain Monte Carlo Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu Thakur, Ritoban; Tang, Qing Yang; McGeehan, Ryan

    The next generation of radiation detectors in high precision Cosmology, Astronomy, and particle-astrophysics experiments will rely heavily on superconducting microwave resonators and kinetic inductance devices. Understanding the physics of energy loss in these devices, in particular at low temperatures and powers, is vital. We present a comprehensive analysis framework, using Markov Chain Monte Carlo methods, to characterize loss due to two-level system in concert with quasi-particle dynamics in thin-film Nb resonators in the GHz range.

  6. Improved RF Measurements of SRF Cavity Quality Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzbauer, J. P.; Contreras, C.; Pischalnikov, Y.

    SRF cavity quality factors can be accurately measured using RF-power based techniques only when the cavity is very close to critically coupled. This limitation is from systematic errors driven by non-ideal RF components. When the cavity is not close to critically coupled, these systematic effects limit the accuracy of the measurements. The combination of the complex base-band envelopes of the cavity RF signals in combination with a trombone in the circuit allow the relative calibration of the RF signals to be extracted from the data and systematic effects to be characterized and suppressed. The improved calibration allows accurate measurements tomore » be made over a much wider range of couplings. Demonstration of these techniques during testing of a single-spoke resonator with a coupling factor of near 7 will be presented, along with recommendations for application of these techniques.« less

  7. Electromagnetically induced transparency with hybrid silicon-plasmonic traveling-wave resonators

    NASA Astrophysics Data System (ADS)

    Ketzaki, Dimitra A.; Tsilipakos, Odysseas; Yioultsis, Traianos V.; Kriezis, Emmanouil E.

    2013-09-01

    Spectral filtering and electromagnetically induced transparency (EIT) with hybrid silicon-plasmonic traveling-wave resonators are theoretically investigated. The rigorous three-dimensional vector finite element method simulations are complemented with temporal coupled mode theory. We show that ring and disk resonators with sub-micron radii can efficiently filter the lightwave with minimal insertion loss and high quality factors (Q). It is shown that disk resonators feature reduced radiation losses and are thus advantageous. They exhibit unloaded quality factors as high as 1000 in the telecom spectral range, resulting in all-pass filtering components with sharp resonances. By cascading two slightly detuned resonators and providing an additional route for resonator interaction (i.e., a second bus waveguide), a response reminiscent of EIT is observed. The EIT transmission peak can be shaped by means of resonator detuning and interelement separation. Importantly, the respective Q can become higher than that of the single-resonator structure. Thus, the possibility of exploiting this peak in switching applications relying on the thermo-optic effect is, finally, assessed.

  8. Magnetic field dependence of the internal quality factor and noise performance of lumped-element kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Flanigan, D.; Johnson, B. R.; Abitbol, M. H.; Bryan, S.; Cantor, R.; Day, P.; Jones, G.; Mauskopf, P.; McCarrick, H.; Miller, A.; Zmuidzinas, J.

    2016-10-01

    We present a technique for increasing the internal quality factor of kinetic inductance detectors (KIDs) by nulling ambient magnetic fields with a properly applied magnetic field. The KIDs used in this study are made from thin-film aluminum, they are mounted inside a light-tight package made from bulk aluminum, and they are operated near 150 mK. Since the thin-film aluminum has a slightly elevated critical temperature (Tc = 1.4 K), it therefore transitions before the package (Tc = 1.2 K), which also serves as a magnetic shield. On cooldown, ambient magnetic fields as small as approximately 30 µT can produce vortices in the thin-film aluminum as it transitions because the bulk aluminum package has not yet transitioned and therefore is not yet shielding. These vortices become trapped inside the aluminum package below 1.2 K and ultimately produce low internal quality factors in the thin-film superconducting resonators. We show that by controlling the strength of the magnetic field present when the thin film transitions, we can control the internal quality factor of the resonators. We also compare the noise performance with and without vortices present, and find no evidence for excess noise beyond the increase in amplifier noise, which is expected with increasing loss.

  9. Travelling wave resonators fabricated with low-loss hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Lipka, Timo; Amthor, Julia; Trieu, Hoc Khiem; Müller, Jörg

    2013-05-01

    Low-loss hydrogenated amorphous silicon is employed for the fabrication of various planar integrated travelling wave resonators. Microring, racetrack, and disk resonators of different dimensions were fabricated with CMOS-compatible processes and systematically investigated. The key properties of notch filter ring resonators as extinction ratio, Q-factor, free spectral range, and the group refractive index were determined for resonators of varying radius, thereby achieving critically coupled photonic systems with high extinction ratios of about 20 dB for both polarizations. Racetrack resonators that are arranged in add/drop configuration and high quality factor microdisk resonators were optically characterized, with the microdisks exhibiting Q-factors of greater than 100000. Four-channel add/drop wavelength-division multiplexing filters that are based on cascaded racetrack resonators are studied. The design, the fabrication, and the optical characterization are presented.

  10. Factors influencing healthcare service quality

    PubMed Central

    Mosadeghrad, Ali Mohammad

    2014-01-01

    Background: The main purpose of this study was to identify factors that influence healthcare quality in the Iranian context. Methods: Exploratory in-depth individual and focus group interviews were conducted with 222 healthcare stakeholders including healthcare providers, managers, policy-makers, and payers to identify factors affecting the quality of healthcare services provided in Iranian healthcare organisations. Results: Quality in healthcare is a production of cooperation between the patient and the healthcare provider in a supportive environment. Personal factors of the provider and the patient, and factors pertaining to the healthcare organisation, healthcare system, and the broader environment affect healthcare service quality. Healthcare quality can be improved by supportive visionary leadership, proper planning, education and training, availability of resources, effective management of resources, employees and processes, and collaboration and cooperation among providers. Conclusion: This article contributes to healthcare theory and practice by developing a conceptual framework that provides policy-makers and managers a practical understanding of factors that affect healthcare service quality. PMID:25114946

  11. Protection layers on a superconducting microwave resonator toward a hybrid quantum system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jongmin, E-mail: jongmin.lee@sandia.gov; Sandia National Laboratories, Albuquerque, New Mexico 87123; Park, Dong Hun, E-mail: leomac@umd.edu

    2015-10-07

    We propose a protection scheme of a superconducting microwave resonator to realize a hybrid quantum system, where cold neutral atoms are coupled with a single microwave photon through magnetic dipole interaction at an interface inductor. The evanescent field atom trap, such as a waveguide/nanofiber atom trap, brings both surface-scattered photons and absorption-induced broadband blackbody radiation which result in quasiparticles and a low quality factor at the resonator. A proposed multiband protection layer consists of pairs of two dielectric layers and a thin nanogrid conductive dielectric layer above the interface inductor. We show numerical simulations of quality factors and reflection/absorption spectra,more » indicating that the proposed multilayer structure can protect a lumped-element microwave resonator from optical photons and blackbody radiation while maintaining a reasonably high quality factor.« less

  12. Magnetostatic wave tunable resonators

    NASA Astrophysics Data System (ADS)

    Castera, J.-P.; Hartemann, P.

    1983-06-01

    Theoretical principles and techniques for the implementation of magnetostatic surface wave and volume wave resonators in high frequency oscillators are discussed. Magnetostatic waves are magnetic waves that propagate in materials exposed to a polarized magnetic field. The propagation speed ranges from 3-300 km/sec for wavelengths between 1 micron and 10 mm, in the presence of lags from 10-1000 nsec/ cm. Tunable resonators in the 1-20 GHz frequency range have been manufactured with YIG using liquid phase epitaxy for deposition on gadolinium and gallium substrates. Distributed-mirror Fabry-Perot cavity resonators are described and performance tests results are reported, including losses of 8 dB, a quality coefficient under voltage of 450, and frequency rejection outside of resonance better than 10 dB. However, saturation occurs at low power levels at frequencies lower than 4.2 GHz, a feature overcome with forward volume magnetostatic wave generators, which have a quality factor of 500, an insertion loss of 22 dB, and rejection around 15 dB.

  13. CMOS compatible fabrication process of MEMS resonator for timing reference and sensing application

    NASA Astrophysics Data System (ADS)

    Huynh, Duc H.; Nguyen, Phuong D.; Nguyen, Thanh C.; Skafidas, Stan; Evans, Robin

    2015-12-01

    Frequency reference and timing control devices are ubiquitous in electronic applications. There is at least one resonator required for each of this device. Currently electromechanical resonators such as crystal resonator, ceramic resonator are the ultimate choices. This tendency will probably keep going for many more years. However, current market demands for small size, low power consumption, cheap and reliable products, has divulged many limitations of this type of resonators. They cannot be integrated into standard CMOS (Complement metaloxide- semiconductor) IC (Integrated Circuit) due to material and fabrication process incompatibility. Currently, these devices are off-chip and they require external circuitries to interface with the ICs. This configuration significantly increases the overall size and cost of the entire electronic system. In addition, extra external connection, especially at high frequency, will potentially create negative impacts on the performance of the entire system due to signal degradation and parasitic effects. Furthermore, due to off-chip packaging nature, these devices are quite expensive, particularly for high frequency and high quality factor devices. To address these issues, researchers have been intensively studying on an alternative for type of resonator by utilizing the new emerging MEMS (Micro-electro-mechanical systems) technology. Recent progress in this field has demonstrated a MEMS resonator with resonant frequency of 2.97 GHz and quality factor (measured in vacuum) of 42900. Despite this great achievement, this prototype is still far from being fully integrated into CMOS system due to incompatibility in fabrication process and its high series motional impedance. On the other hand, fully integrated MEMS resonator had been demonstrated but at lower frequency and quality factor. We propose a design and fabrication process for a low cost, high frequency and a high quality MEMS resonator, which can be integrated into a standard

  14. High Resolution and Large Dynamic Range Resonant Pressure Sensor Based on Q-Factor Measurement

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor); Stell, Christopher B. (Inventor); Tang, Tony K. (Inventor); Vorperian, Vatche (Inventor); Wilcox, Jaroslava (Inventor); Shcheglov, Kirill (Inventor); Kaiser, William J. (Inventor)

    2000-01-01

    A pressure sensor has a high degree of accuracy over a wide range of pressures. Using a pressure sensor relying upon resonant oscillations to determine pressure, a driving circuit drives such a pressure sensor at resonance and tracks resonant frequency and amplitude shifts with changes in pressure. Pressure changes affect the Q-factor of the resonating portion of the pressure sensor. Such Q-factor changes are detected by the driving/sensing circuit which in turn tracks the changes in resonant frequency to maintain the pressure sensor at resonance. Changes in the Q-factor are reflected in changes of amplitude of the resonating pressure sensor. In response, upon sensing the changes in the amplitude, the driving circuit changes the force or strength of the electrostatic driving signal to maintain the resonator at constant amplitude. The amplitude of the driving signals become a direct measure of the changes in pressure as the operating characteristics of the resonator give rise to a linear response curve for the amplitude of the driving signal. Pressure change resolution is on the order of 10(exp -6) torr over a range spanning from 7,600 torr to 10(exp -6) torr. No temperature compensation for the pressure sensor of the present invention is foreseen. Power requirements for the pressure sensor are generally minimal due to the low-loss mechanical design of the resonating pressure sensor and the simple control electronics.

  15. Ultra-high quality factors in superconducting niobium cavities in ambient magnetic fields up to 190 mG

    DOE PAGES

    Romanenko, A.; Grassellino, A.; Crawford, A. C.; ...

    2014-12-10

    Ambient magnetic field, if trapped in the penetration depth, leads to the residual resistance and therefore sets the limit for the achievable quality factors in superconducting niobium resonators for particle accelerators. Here, we show that a complete expulsion of the magnetic flux can be performed and leads to: (1) record quality factors Q > 2 x 10¹¹ up to accelerating gradient of 22 MV/m; (2) Q ~ 3 x 10¹⁰ at 2 K and 16 MV/m in up to 190 mG magnetic fields. This is achieved by large thermal gradients at the normal/superconducting phase front during the cooldown. Our findingsmore » open up a way to ultra-high quality factors at low temperatures and show an alternative to the sophisticated magnetic shielding implemented in modern superconducting accelerators.« less

  16. Unstable Resonator Optical Parametric Oscillator Based on Quasi-Phase-Matched RbTiOAsO(4).

    PubMed

    Hansson, G; Karlsson, H; Laurell, F

    2001-10-20

    We demonstrate improved signal and idler-beam quality of a 3-mm-aperture quasi-phase-matched RbTiOAsO(4) optical parametric oscillator through use of a confocal unstable resonator as compared with a plane-parallel resonator. Both oscillators were singly resonant, and the periodically poled RbTiOAsO(4) crystal generated a signal at 1.56 mum and an idler at 3.33 mum when pumped at 1.064 mum. We compared the beam quality produced by the 1.2-magnification confocal unstable resonator with the beam quality produced by the plane-parallel resonator by measuring the signal and the idler beam M(2) value. We also investigated the effect of pump-beam intensity distribution by comparing the result of a Gaussian and a top-hat intensity profile pump beam. We generated a signal beam of M(2) approximately 7 and an idler beam of M(2) approximately 2.5 through use of an unstable resonator and a Gaussian intensity profile pump beam. This corresponds to an increase of a factor of approximately 2 in beam quality for the signal and a factor of 3 for the idler, compared with the beam quality of the plane-parallel resonator optical parametric oscillator.

  17. Mitigating Thermoelastic Dissipation of Flexural Micromechanical Resonators by Decoupling Resonant Frequency from Thermal Relaxation Rate

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Xiao, Dingbang; Wu, Xuezhong; Li, Qingsong; Hou, Zhanqiang; He, Kaixuan; Wu, Yulie

    2017-12-01

    This paper reports an alternative design strategy to reduce thermoelastic dissipation (TED) for isothermal-mode micromechanical resonators. This involves hanging lumped masses on a frame structure to decouple the resonant frequency and the effective beamwidth of the resonators, which enables the separation of the thermal relaxation rate and frequency of vibration. This approach is validated using silicon-based micromechanical disklike resonators engineered to isolate TED. A threefold improvement in the quality factor and a tenfold improvement in the decay-time constant is demonstrated. This work proposes a solution for isothermal-mode (flexural) micromechanical resonators to effectively mitigate TED. Specifically, this approach is ideal for designing high-performance gyroscope resonators based on microelectromechanical systems (MEMS) technology. It may pave the way for the next generation inertial-grade MEMS gyroscope, which remains a great challenge and is very appealing.

  18. Probing dynamics of micro-magnets with multi-mode superconducting resonator

    NASA Astrophysics Data System (ADS)

    Golovchanskiy, I. A.; Abramov, N. N.; Stolyarov, V. S.; Shchetinin, I. V.; Dzhumaev, P. S.; Averkin, A. S.; Kozlov, S. N.; Golubov, A. A.; Ryazanov, V. V.; Ustinov, A. V.

    2018-05-01

    In this work, we propose and explore a sensitive technique for investigation of ferromagnetic resonance and corresponding magnetic properties of individual micro-scaled and/or weak ferromagnetic samples. The technique is based on coupling the investigated sample to a high-Q transmission line superconducting resonator, where the response of the sample is studied at eigen frequencies of the resonator. The high quality factor of the resonator enables sensitive detection of weak absorption losses at multiple frequencies of the ferromagnetic resonance. Studying the microwave response of individual micro-scaled permalloy rectangles, we have confirmed the superiority of fluxometric demagnetizing factor over the commonly accepted magnetometric one and have depicted the demagnetization of the sample, as well as magnetostatic standing wave resonance.

  19. Microscopic Nanomechanical Dissipation in Gallium Arsenide Resonators.

    PubMed

    Hamoumi, M; Allain, P E; Hease, W; Gil-Santos, E; Morgenroth, L; Gérard, B; Lemaître, A; Leo, G; Favero, I

    2018-06-01

    We report on a systematic study of nanomechanical dissipation in high-frequency (≈300  MHz) gallium arsenide optomechanical disk resonators, in conditions where clamping and fluidic losses are negligible. Phonon-phonon interactions are shown to contribute with a loss background fading away at cryogenic temperatures (3 K). Atomic layer deposition of alumina at the surface modifies the quality factor of resonators, pointing towards the importance of surface dissipation. The temperature evolution is accurately fitted by two-level systems models, showing that nanomechanical dissipation in gallium arsenide resonators directly connects to their microscopic properties. Two-level systems, notably at surfaces, appear to rule the damping and fluctuations of such high-quality crystalline nanomechanical devices, at all temperatures from 3 to 300 K.

  20. Microscopic Nanomechanical Dissipation in Gallium Arsenide Resonators

    NASA Astrophysics Data System (ADS)

    Hamoumi, M.; Allain, P. E.; Hease, W.; Gil-Santos, E.; Morgenroth, L.; Gérard, B.; Lemaître, A.; Leo, G.; Favero, I.

    2018-06-01

    We report on a systematic study of nanomechanical dissipation in high-frequency (≈300 MHz ) gallium arsenide optomechanical disk resonators, in conditions where clamping and fluidic losses are negligible. Phonon-phonon interactions are shown to contribute with a loss background fading away at cryogenic temperatures (3 K). Atomic layer deposition of alumina at the surface modifies the quality factor of resonators, pointing towards the importance of surface dissipation. The temperature evolution is accurately fitted by two-level systems models, showing that nanomechanical dissipation in gallium arsenide resonators directly connects to their microscopic properties. Two-level systems, notably at surfaces, appear to rule the damping and fluctuations of such high-quality crystalline nanomechanical devices, at all temperatures from 3 to 300 K.

  1. Evaluation of support loss in micro-beam resonators: A revisit

    NASA Astrophysics Data System (ADS)

    Chen, S. Y.; Liu, J. Z.; Guo, F. L.

    2017-12-01

    This paper presents an analytical study on evaluation of support loss in micromechanical resonators undergoing in-plane flexural vibrations. Two-dimensional elastic wave theory is used to determine the energy transmission from the vibrating resonator to the support. Fourier transform and Green's function technique are adopted to solve the problem of wave motions on the surface of the support excited by the forces transmitted by the resonator onto the support. Analytical expressions of support loss in terms of quality factor, taking into account distributed normal stress and shear stress in the attachment region, and coupling between the normal stress and shear stress as well as material disparity between the support and the resonator, have been derived. Effects of geometry of micro-beam resonators, and material dissimilarity between support and resonator on support loss are examined. Numerical results show that 'harder resonator' and 'softer support' combination leads to larger support loss. In addition, the Perfectly Matched Layer (PML) numerical simulation technique is employed for validation of the proposed analytical model. Comparing with results of quality factor obtained by PML technique, we find that the present model agrees well with the results of PML technique and the pure-shear model overestimates support loss noticeably, especially for resonators with small aspect ratio and large material dissimilarity between the support and resonator.

  2. Tunable High Q Superconducting Microwave Resonator for Hybrid System with ^87Rb atoms

    NASA Astrophysics Data System (ADS)

    Kim, Zaeill; Voigt, K. D.; Lee, Jongmin; Hoffman, J. E.; Grover, J. A.; Ravets, S.; Zaretskey, V.; Palmer, B. S.; Hafezi, M.; Taylor, J. M.; Anderson, J. R.; Dragt, A. J.; Lobb, C. J.; Orozco, L. A.; Rolston, S. L.; Wellstood, F. C.

    2012-02-01

    We have developed a frequency tuning system for a ``lumped-element'' thin-film superconducting Al microwave resonator [1] on sapphire intended for coupling to hyperfine ground states of cold trapped ^87Rb atoms, which are separated by about fRb=6.83 GHz. At T=12 mK and on resonance at 6.81 GHz, the loaded quality factor was 120,000. By moving a carefully machined Al pin towards the inductor of the resonator using a piezo stage, we were able to tune the resonance frequency over a range of 35 MHz and within a few kHz of fRb. While measuring the power dependent response of the resonator at each tuned frequency, we observed anomalous decreases in the quality factor at several frequencies. These drops were more pronounced at lower power. We discuss our results, which suggest these resonances are attributable to discrete two-level systems.[4pt] [1] Z. Kim et al., AIP ADVANCES 1, 042107 (2011).

  3. Optomechanical trampoline resonators.

    PubMed

    Kleckner, Dustin; Pepper, Brian; Jeffrey, Evan; Sonin, Petro; Thon, Susanna M; Bouwmeester, Dirk

    2011-09-26

    We report on the development of optomechanical "trampoline" resonators composed of a tiny SiO(2)/Ta(2)O(5) dielectric mirror on a silicon nitride micro-resonator. We observe optical finesses of up to 4 × 10(4) and mechanical quality factors as high as 9 × 10(5) in relatively massive (~100 ng) and low frequency (10-200 kHz) devices. This results in a photon-phonon coupling efficiency considerably higher than previous Fabry-Perot-type optomechanical systems. These devices are well suited to ultra-sensitive force detection, ground-state optical cooling experiments, and demonstrations of quantum dynamics for such systems. © 2011 Optical Society of America

  4. Molybdenum-rhenium alloy based high-Q superconducting microwave resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Vibhor, E-mail: v.singh@tudelft.nl; Schneider, Ben H.; Bosman, Sal J.

    2014-12-01

    Superconducting microwave resonators (SMRs) with high quality factors have become an important technology in a wide range of applications. Molybdenum-Rhenium (MoRe) is a disordered superconducting alloy with a noble surface chemistry and a relatively high transition temperature. These properties make it attractive for SMR applications, but characterization of MoRe SMR has not yet been reported. Here, we present the fabrication and characterization of SMR fabricated with a MoRe 60–40 alloy. At low drive powers, we observe internal quality-factors as high as 700 000. Temperature and power dependence of the internal quality-factors suggest the presence of the two level systems from themore » dielectric substrate dominating the internal loss at low temperatures. We further test the compatibility of these resonators with high temperature processes, such as for carbon nanotube chemical vapor deposition growth, and their performance in the magnetic field, an important characterization for hybrid systems.« less

  5. Interaction between bacterial outer membrane proteins and periplasmic quality control factors: a kinetic partitioning mechanism.

    PubMed

    Wu, Si; Ge, Xi; Lv, Zhixin; Zhi, Zeyong; Chang, Zengyi; Zhao, Xin Sheng

    2011-09-15

    The OMPs (outer membrane proteins) of Gram-negative bacteria have to be translocated through the periplasmic space before reaching their final destination. The aqueous environment of the periplasmic space and high permeability of the outer membrane engender such a translocation process inevitably challenging. In Escherichia coli, although SurA, Skp and DegP have been identified to function in translocating OMPs across the periplasm, their precise roles and their relationship remain to be elucidated. In the present paper, by using fluorescence resonance energy transfer and single-molecule detection, we have studied the interaction between the OMP OmpC and these periplasmic quality control factors. The results of the present study reveal that the binding rate of OmpC to SurA or Skp is much faster than that to DegP, which may lead to sequential interaction between OMPs and different quality control factors. Such a kinetic partitioning mechanism for the chaperone-substrate interaction may be essential for the quality control of the biogenesis of OMPs.

  6. A loop resonator for slice-selective in vivo EPR imaging in rats

    PubMed Central

    Hirata, Hiroshi; He, Guanglong; Deng, Yuanmu; Salikhov, Ildar; Petryakov, Sergey; Zweier, Jay L.

    2008-01-01

    A loop resonator was developed for 300-MHz continuous-wave electron paramagnetic resonance (CW-EPR) spectroscopy and imaging in live rats. A single-turn loop (55 mm in diameter) was used to provide sufficient space for the rat body. Efficiency for generating a radiofrequency magnetic field of 38 µT/W1/2 was achieved at the center of the loop. For the resonator itself, an unloaded quality factor of 430 was obtained. When a 350 g rat was placed in the resonator at the level of the lower abdomen, the quality factor decreased to 18. The sensitive volume in the loop was visualized with a bottle filled with an aqueous solution of the nitroxide spin probe 3-carbamoyl-2,2,5,5-tetramethyl-3-pyrrolin-1-yloxy (3-CP). The resonator was shown to enable EPR imaging in live rats. Imaging was performed for 3-CP that had been infused intravenously into the rat and its distribution was visualized within the lower abdomen. PMID:18006343

  7. Parametric amplification in a resonant sensing array

    NASA Astrophysics Data System (ADS)

    Yie, Zi; Miller, Nicholas J.; Shaw, Steven W.; Turner, Kimberly L.

    2012-03-01

    We demonstrate parametric amplification of a multidegree of freedom resonant mass sensing array via an applied base motion containing the appropriate frequency content and phases. Applying parametric forcing in this manner is simple and aligns naturally with the vibrational properties of the sensing structure. Using this technique, we observe an increase in the quality factors of the coupled array resonances, which provides an effective means of improving device sensitivity.

  8. Strongly driven electron spins using a Ku band stripline electron paramagnetic resonance resonator

    NASA Astrophysics Data System (ADS)

    Yap, Yung Szen; Yamamoto, Hiroshi; Tabuchi, Yutaka; Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro

    2013-07-01

    This article details our work to obtain strong excitation for electron paramagnetic resonance (EPR) experiments by improving the resonator's efficiency. The advantages and application of strong excitation are discussed. Two 17 GHz transmission-type, stripline resonators were designed, simulated and fabricated. Scattering parameter measurements were carried out and quality factor were measured to be around 160 and 85. Simulation results of the microwave's magnetic field distribution are also presented. To determine the excitation field at the sample, nutation experiments were carried out and power dependence were measured using two organic samples at room temperature. The highest recorded Rabi frequency was rated at 210 MHz with an input power of about 1 W, which corresponds to a π/2 pulse of about 1.2 ns.

  9. High bandwidth on-chip capacitive tuning of microtoroid resonators

    NASA Astrophysics Data System (ADS)

    Baker, Christopher G.; Bekker, Christiaan; McAuslan, David L.; Sheridan, Eoin; Bowen, Warwick P.

    2016-09-01

    We report on the design, fabrication and characterization of silica microtoroid based cavity opto-electromechanical systems (COEMS). Electrodes patterned onto the microtoroid resonators allow for rapid capacitive tuning of the optical whispering gallery mode resonances while maintaining their ultrahigh quality factor, enabling applications such as efficient radio to optical frequency conversion, optical routing and switching applications.

  10. The pattern space factor and quality factor of cylindrical source antennas

    NASA Astrophysics Data System (ADS)

    Jarem, John M.

    1982-09-01

    For the first time the quality factor of cylindrical source antennas is derived by a plane wave expansion. The evanescent energy (and therefore the quality factor) as defined by a plane wave expansion is shown to be different from Collin and Rothschild's [IEEE Trans. Antennas Propagation AP-12, 23 (1964)] quality factor.

  11. High-Q lattice mode matched structural resonances in terahertz metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ningning; Zhang, Weili, E-mail: weili.zhang@okstate.edu; Singh, Ranjan, E-mail: ranjans@ntu.edu.sg

    2016-07-11

    The quality (Q) factor of metamaterial resonances is limited by the radiative and non-radiative losses. At terahertz frequencies, the dominant loss channel is radiative in nature since the non-radiative losses are low due to high conductivity of metals. Radiative losses could be suppressed by engineering the meta-atom structure. However, such suppression usually occurs at the fundamental resonance mode which is typically a closed mode resonance such as an inductive-capacitive resonance or a Fano resonance. Here, we report an order of magnitude enhancement in Q factor of all the structural eigenresonances of a split-ring resonator fueled by the lattice mode matching.more » We match the fundamental order diffractive mode to each of the odd and even eigenresonances, thus leading to a tremendous line-narrowing of all the resonances. Such precise tailoring and control of the structural resonances in a metasurface lattice could have potential applications in low-loss devices, sensing, and design of high-Q metamaterial cavities.« less

  12. An energy-efficient readout circuit for resonant sensors based on ring-down measurement

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Pertijs, M. A. P.; Karabacak, D. M.

    2013-02-01

    This paper presents an energy-efficient readout circuit for resonant sensors that operates based on a transient measurement method. The resonant sensor is driven at a frequency close to its resonance frequency by an excitation source that can be intermittently disconnected, causing the sensor to oscillate at its resonance frequency with exponentially decaying amplitude. By counting the zero crossings of this ring-down response, the interface circuit can detect the resonance frequency. In contrast with oscillator-based readout, the presented readout circuit is readily able to detect quality factor (Q) of the resonator from the envelope of the ring-down response, and can be used even in the presence of large parasitic capacitors. A prototype of the readout circuit has been integrated in 0.35 μm CMOS technology, and consumes only 36 μA from a 3.3 V supply during a measurement time of 2 ms. The resonance frequency and quality factor of a micro-machined SiN resonator obtained using this prototype are in good agreement with results obtained using impedance analysis. Furthermore, a clear transient response is observed to ethanol flow using the presented readout, demonstrating the use of this technique in sensing applications.

  13. Resonant Enhanced Modulators

    DTIC Science & Technology

    2004-05-01

    Lepore, M. H. Kwakernaak, H. Mohseni, G. A. Pajer, G. Griffel , D. Bechtle, A. F. Ulmer, Z. A. Shellenbarger, H. An, I. Adesida, S. Rommel, J-W...Advanced nanofabrication and advanced process development Giora Griffel – Ring resonator concept Daniel W. Bechtle – RF electrode design University of...conducted in glass microspheres by Giora Griffel (then at Polytechnic University) and other workers. Extremely high quality factors (Q’s) could be

  14. High-Q BBO whispering gallery mode resonators

    NASA Astrophysics Data System (ADS)

    Lin, Guoping; Fürst, Josef U.; Strekalov, Dmitry V.; Grudinin, Ivan S.; Yu, Nan

    2013-02-01

    We report an investigation on optical whispering gallery mode (WGM) resonators made from non z-cut beta barium borate (BBO) crystals. We first fabricated high quality (Q) factor WGM resonators made of an angle-cut BBO crystal. Q factors of 1×108 level have been demonstrated at various wavelengths including UV. They led to new upper bounds for the absorption coefficients of BBO at 1560 nm, 980 nm and 370 nm. We observed only one set of ordinarily polarized WGMs with polarization rotating along the resonator circumference. We also fabricated xy-cut BBO WGM resonators, in which the optic axis is parallel to the resonator plane. In that case, two WGM families with different polarization exist, one with constant the other with oscillatory phase velocity. This enables a novel way of broadband phase matching in WGM resonators with cyclic gain. We experimentally demonstrated efficient second harmonic generation (SHG) to a wide harmonic wavelength range from 780 nm at near infrared to 317 nm in UV. It is also the first reported direct UV SHG in a high-Q WGM resonator. This work lays a foundation for further investigations of WGM properties of non-z cut birefringent resonators and their applications in nonlinear optics.

  15. Thin disk laser with unstable resonator and reduced output coupler

    NASA Astrophysics Data System (ADS)

    Gavili, Anwar; Shayganmanesh, Mahdi

    2018-05-01

    In this paper, feasibility of using unstable resonator with reduced output coupling in a thin disk laser is studied theoretically. Unstable resonator is modeled by wave-optics using Collins integral and iterative method. An Yb:YAG crystal with 250 micron thickness is considered as a quasi-three level active medium and modeled by solving rate equations of energy levels populations. The amplification of laser beam in the active medium is calculated based on the Beer-Lambert law and Rigrod method. Using generalized beam parameters method, laser beam parameters like, width, divergence, M2 factor, output power as well as near and far-field beam profiles are calculated for unstable resonator. It is demonstrated that for thin disk laser (with single disk) in spite of the low thickness of the disk which leads to low gain factor, it is possible to use unstable resonator (with reduced output coupling) and achieve good output power with appropriate beam quality. Also, the behavior of output power and beam quality versus equivalent Fresnel number is investigated and optimized value of output coupling for maximum output power is achieved.

  16. Nested trampoline resonators for optomechanics

    NASA Astrophysics Data System (ADS)

    Weaver, M. J.; Pepper, B.; Luna, F.; Buters, F. M.; Eerkens, H. J.; Welker, G.; Perock, B.; Heeck, K.; de Man, S.; Bouwmeester, D.

    2016-01-01

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating trampoline resonators made from low pressure chemical vapor deposition Si3N4 with a distributed Bragg reflector mirror. We design a nested double resonator structure with 80 dB of mechanical isolation from the mounting surface at the inner resonator frequency, and we demonstrate up to 45 dB of isolation at lower frequencies in agreement with the design. We reliably fabricate devices with mechanical quality factors of around 400 000 at room temperature. In addition, these devices were used to form optical cavities with finesse up to 181 000 ± 1000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators.

  17. Lasing from active optomechanical resonators

    PubMed Central

    Czerniuk, T.; Brüggemann, C.; Tepper, J.; Brodbeck, S.; Schneider, C.; Kamp, M.; Höfling, S.; Glavin, B. A.; Yakovlev, D. R.; Akimov, A. V.; Bayer, M.

    2014-01-01

    Planar microcavities with distributed Bragg reflectors (DBRs) host, besides confined optical modes, also mechanical resonances due to stop bands in the phonon dispersion relation of the DBRs. These resonances have frequencies in the 10- to 100-GHz range, depending on the resonator’s optical wavelength, with quality factors exceeding 1,000. The interaction of photons and phonons in such optomechanical systems can be drastically enhanced, opening a new route towards the manipulation of light. Here we implemented active semiconducting layers into the microcavity to obtain a vertical-cavity surface-emitting laser (VCSEL). Thereby, three resonant excitations—photons, phonons and electrons—can interact strongly with each other providing modulation of the VCSEL laser emission: a picosecond strain pulse injected into the VCSEL excites long-living mechanical resonances therein. As a result, modulation of the lasing intensity at frequencies up to 40 GHz is observed. From these findings, prospective applications of active optomechanical resonators integrated into nanophotonic circuits may emerge. PMID:25008784

  18. Morphology-dependent resonances of a microsphere-optical fiber system

    NASA Astrophysics Data System (ADS)

    Griffel, Giora; Arnold, Stephen; Taskent, Dogan; Serpengüzel, Ali; Connolly, John; Morris, Nancy

    1996-05-01

    Morphology-dependent resonances of microspheres sitting upon an index-matched single-mode fiber half-coupler are excited by a tunable 753-nm distributed-feedback laser. Resonance peaks in the scattering spectra and associated dips in the transmission spectra for the TE and TM modes are observed. We present a new model that describes this interaction in terms of the fiber-sphere coupling coefficient and the microsphere's intrinsic quality factor Q0 . This model enables us to obtain expressions for the finesse and the Q factor of the composite particle-fiber system, the resonance width, and the depth of the dips measured in the transmission spectra. Our model shows that index matching improves the coupling efficiency by more than a factor of 2 compared with that of a non-index-matched system.

  19. Morphology-dependent resonances of a microsphere-optical fiber system.

    PubMed

    Griffel, G; Arnold, S; Taskent, D; Serpengüzel, A; Connolly, J; Morris, N

    1996-05-15

    Morphology-dependent resonances of microspheres sitting upon an index-matched single-mode fiber half-coupler are excited by a tunable 753-nm distributed-feedback laser. Resonance peaks in the scattering spectra and associated dips in the transmission spectra for the TE and TM modes are observed. We present a new model that describes this interaction in terms of the fiber-sphere coupling coefficient and the microsphere's intrinsic quality factor Q(0). This model enables us to obtain expressions for the finesse and the Q factor of the composite particle-fiber system, the resonance width, and the depth of the dips measured in the transmission spectra. Our model shows that index matching improves the coupling efficiency by more than a factor of 2 compared with that of a non-index-matched system.

  20. Phonon-tunnelling dissipation in mechanical resonators

    PubMed Central

    Cole, Garrett D.; Wilson-Rae, Ignacio; Werbach, Katharina; Vanner, Michael R.; Aspelmeyer, Markus

    2011-01-01

    Microscale and nanoscale mechanical resonators have recently emerged as ubiquitous devices for use in advanced technological applications, for example, in mobile communications and inertial sensors, and as novel tools for fundamental scientific endeavours. Their performance is in many cases limited by the deleterious effects of mechanical damping. In this study, we report a significant advancement towards understanding and controlling support-induced losses in generic mechanical resonators. We begin by introducing an efficient numerical solver, based on the 'phonon-tunnelling' approach, capable of predicting the design-limited damping of high-quality mechanical resonators. Further, through careful device engineering, we isolate support-induced losses and perform a rigorous experimental test of the strong geometric dependence of this loss mechanism. Our results are in excellent agreement with the theory, demonstrating the predictive power of our approach. In combination with recent progress on complementary dissipation mechanisms, our phonon-tunnelling solver represents a major step towards accurate prediction of the mechanical quality factor. PMID:21407197

  1. Factors affecting dental service quality.

    PubMed

    Bahadori, Mohammadkarim; Raadabadi, Mehdi; Ravangard, Ramin; Baldacchino, Donia

    2015-01-01

    Measuring dental clinic service quality is the first and most important factor in improving care. The quality provided plays an important role in patient satisfaction. The purpose of this paper is to identify factors affecting dental service quality from the patients' viewpoint. This cross-sectional, descriptive-analytical study was conducted in a dental clinic in Tehran between January and June 2014. A sample of 385 patients was selected from two work shifts using stratified sampling proportional to size and simple random sampling methods. The data were collected, a self-administered questionnaire designed for the purpose of the study, based on the Parasuraman and Zeithaml's model of service quality which consisted of two parts: the patients' demographic characteristics and a 30-item questionnaire to measure the five dimensions of the service quality. The collected data were analysed using SPSS 21.0 and Amos 18.0 through some descriptive statistics such as mean, standard deviation, as well as analytical methods, including confirmatory factor. Results showed that the correlation coefficients for all dimensions were higher than 0.5. In this model, assurance (regression weight=0.99) and tangibility (regression weight=0.86) had, respectively, the highest and lowest effects on dental service quality. The Parasuraman and Zeithaml's model is suitable to measure quality in dental services. The variables related to dental services quality have been made according to the model. This is a pioneering study that uses Parasuraman and Zeithaml's model and CFA in a dental setting. This study provides useful insights and guidance for dental service quality assurance.

  2. Determination of quality factors by microdosimetry

    NASA Astrophysics Data System (ADS)

    Al-Affan, I. A. M.; Watt, D. E.

    1987-03-01

    The application of microdose parameters for the specification of a revised scale of quality factors which would be applicable at low doses and dose rates is examined in terms of an original proposal by Rossi. Two important modifications are suggested to enable an absolute scale of quality factors to be constructed. Allowance should be made to allow for the dependence of the saturation threshold of lineal energy on the type of heavy charged particle. Also, an artificial saturation threshold should be introduced for electron tracks as a mean of modifying the measurements made in the microdosimeter to the more realistic site sizes of nanometer dimensions. The proposed absolute scale of quality factors nicely encompasses the high RBEs of around 3 observed at low doses for tritium β rays and is consistent with the recent recommendation of the ICRP that the quality factor for fast neutrons be increased by a factor of two, assuming that there is no biological repair for the reference radiation.

  3. Double resonance calibration of g factor standards: Carbon fibers as a high precision standard

    NASA Astrophysics Data System (ADS)

    Herb, Konstantin; Tschaggelar, Rene; Denninger, Gert; Jeschke, Gunnar

    2018-04-01

    The g factor of paramagnetic defects in commercial high performance carbon fibers was determined by a double resonance experiment based on the Overhauser shift due to hyperfine coupled protons. Our carbon fibers exhibit a single, narrow and perfectly Lorentzian shaped ESR line and a g factor slightly higher than gfree with g = 2.002644 =gfree · (1 + 162ppm) with a relative uncertainty of 15ppm . This precisely known g factor and their inertness qualify them as a high precision g factor standard for general purposes. The double resonance experiment for calibration is applicable to other potential standards with a hyperfine interaction averaged by a process with very short correlation time.

  4. Optically-controlled extinction ratio and Q-factor tunable silicon microring resonators based on optical forces

    NASA Astrophysics Data System (ADS)

    Long, Yun; Wang, Jian

    2014-06-01

    Tunability is a desirable property of microring resonators to facilitate superior performance. Using light to control light, we present an alternative simple approach to tuning the extinction ratio (ER) and Q-factor of silicon microring resonators based on optical forces. We design an opto-mechanical tunable silicon microring resonator consisting of an add-drop microring resonator and a control-light-carrying waveguide (``controlling'' waveguide). One of the two bus waveguides of the microring resonator is a deformable nanostring put in parallel with the ``controlling'' waveguide. The tuning mechanism relies on the optical force induced deflection of suspended nanostring, leading to the change of coupling coefficient of microring and resultant tuning of ER and Q-factor. Two possible geometries, i.e. double-clamped nanostring and cantilever nanostring, are studied in detail for comparison. The obtained results imply a favorable structure with the microring positioned at the end of the cantilever nanostring. It features a wide tuning range of ER from 5.6 to 39.9 dB and Q-factor from 309 to 639 as changing the control power from 0 to 1.4 mW.

  5. Nested trampoline resonators for optomechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, M. J., E-mail: mweaver@physics.ucsb.edu; Pepper, B.; Luna, F.

    2016-01-18

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating trampoline resonators made from low pressure chemical vapor deposition Si{sub 3}N{sub 4} with a distributed Bragg reflector mirror. We design a nested double resonator structure with 80 dB of mechanical isolation from the mounting surface at the inner resonator frequency, and we demonstrate up to 45 dB of isolation at lower frequencies in agreement with the design. We reliably fabricate devices with mechanical quality factors of around 400 000 at room temperature. Inmore » addition, these devices were used to form optical cavities with finesse up to 181 000 ± 1000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators.« less

  6. High Q-factor metasurfaces based on miniaturized asymmetric single split resonators

    NASA Astrophysics Data System (ADS)

    Al-Naib, Ibraheem A. I.; Jansen, Christian; Koch, Martin

    2009-04-01

    We introduce asymmetric single split rectangular resonators as bandstop metasurfaces, which exhibit very high Q-factors in combination with low passband losses and a small electrical footprint. The effect of the degree of asymmetry on the frequency response is thoroughly studied. Furthermore, complementary structures, which feature a bandpass behavior, were derived by applying Babinet's principle and investigated with regards to their transmission characteristics. In future, asymmetric single split rectangular resonators could provide efficient unit cells for frequency selective surface devices, such as thin-film sensors or high performance filters.

  7. Tunneling effects in resonant acoustic scattering of an air bubble in unbounded water.

    PubMed

    Simão, André G; Guimarães, Luiz G

    2016-01-01

    The problem of acoustic scattering of a gaseous spherical bubble immersed within unbounded liquid surrounding is considered in this work. The theory of partial wave expansion related to this problem is revisited. A physical model based on the analogy between acoustic scattering and potential scattering in quantum mechanics is proposed to describe and interpret the acoustical natural oscillation modes of the bubble, namely, the resonances. In this context, a physical model is devised in order to describe the air water interface and the implications of the high density contrast on the various regimes of the scattering resonances. The main results are presented in terms of resonance lifetime periods and quality factors. The explicit numerical calculations are undertaken through an asymptotic analysis considering typical bubble dimensions and underwater sound wavelengths. It is shown that the resonance periods are scaled according to the Minnaert's period, which is the short lived resonance mode, called breathing mode of the bubble. As expected, resonances with longer lifetimes lead to impressive cavity quality Q-factor ranging from 1010 to 105. The present theoretical findings lead to a better understanding of the energy storage mechanism in a bubbly medium.

  8. Determination of the electromechanical coupling factor of gallium orthophosphate (GaPO4) and its influence on resonance-frequency temperature dependencies.

    PubMed

    Nosek, Jaroslav; Pustka, Martin

    2006-01-01

    The quartz homeotype gallium orthophosphate (GaPO4) is a representative of piezoelectric single crystals of large electromechanical coupling factor. It is known that its coupling factor kappa26 associated with the resonators vibrating in the thickness-shear mode is approximately two times greater than that of quartz. This property increases the spacing between the series and parallel resonance frequencies of resonators, as well as the difference between the resonance frequency temperature dependencies of the fundamental and harmonic resonance frequencies of resonators vibrating in the thickness-shear mode. In this paper, the methods for determination of the coupling factor kappa26 are presented, and the computed values are compared with the measured ones. The influence of the coupling factor to the resonance-frequency temperature dependencies of the fundamental and third harmonics of selected rotated Y-cut GaPO4 resonators vibrating in the thickness-shear mode is presented. The purely elastic case for a laterally unbounded plate, which corresponds closely to the limiting case of high harmonic resonance frequency-temperature behavior was assumed for the calculations. The computed temperature coefficients for the Y-cut orientation and calculated turnover point temperatures TTP for different (YX1) orientations are presented.

  9. Dynamic control of the asymmetric Fano resonance in side-coupled Fabry–Pérot and photonic crystal nanobeam cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Tong; Chau, Fook Siong; Zhou, Guangya, E-mail: mpezgy@nus.edu.sg

    2015-11-30

    Fano resonance is a prevailing interference phenomenon that stems from the intersection between discrete and continuum states in many fields. We theoretically and experimentally characterize the asymmetric Fano lineshape in side-coupled waveguide Fabry–Pérot and photonic crystal nanobeam cavities. The measured quality-factor of the Fano resonance before tuning is 28 100. A nanoelectromechanical systems bidirectional actuator is integrated seamlessly to control the shape of the Fano resonance through in-plane translations in two directions without sacrificing the quality-factor. The peak intensity level of the Fano resonance can be increased by 8.5 dB from 60 nW to 409 nW while the corresponding dip intensity ismore » increased by 12.8 dB from 1 nW to 18 nW. The maximum recorded quality-factor throughout the tuning procedure is up to 32 500. Potential applications of the proposed structure include enhancing the sensitivity of sensing, reconfigurable nanophotonics devices, and on-chip intensity modulator.« less

  10. Current-Tunable NbTiN Coplanar Photonic Bandgap Resonators

    NASA Astrophysics Data System (ADS)

    Asfaw, A.; Sigillito, A. J.; Tyryshkin, A. M.; Lyon, S. A.

    Coplanar waveguide resonators have been used in several experimental settings, from superconducting qubits to electron spin resonance. In our particular application of electron spin resonance, these resonators provide increased sensitivity to electron spins due to the small mode volume. Experiments have shown that these resonators can be used to readout as few as 300 spins per shot. Recently, photonic bandgap resonators have been shown to extend the advantages of traditional CPW resonators by allowing spin manipulation both at microwave and radio frequencies, thereby enabling both electron and nuclear spin resonance within the same resonator. We present measurements made using photonic bandgap resonators fabricated with thin NbTiN films which demonstrate microwave tunability of the resonator by modulating the kinetic inductance of the superconductor. Driving a small direct current through the center pin of the resonator allows us to tune the resonant frequency by over 30 MHz around 6.4 GHz while maintaining a quality factor over 8000 at 4.8K. This provides fast and simple tunability of coplanar waveguide resonators and opens new possibilities for multiple frequency electron spin resonance experiments.

  11. Double resonance calibration of g factor standards: Carbon fibers as a high precision standard.

    PubMed

    Herb, Konstantin; Tschaggelar, Rene; Denninger, Gert; Jeschke, Gunnar

    2018-04-01

    The g factor of paramagnetic defects in commercial high performance carbon fibers was determined by a double resonance experiment based on the Overhauser shift due to hyperfine coupled protons. Our carbon fibers exhibit a single, narrow and perfectly Lorentzian shaped ESR line and a g factor slightly higher than g free with g=2.002644=g free ·(1+162ppm) with a relative uncertainty of 15ppm. This precisely known g factor and their inertness qualify them as a high precision g factor standard for general purposes. The double resonance experiment for calibration is applicable to other potential standards with a hyperfine interaction averaged by a process with very short correlation time. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Bio-implantable passive on-chip RF-MEMS strain sensing resonators for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Melik, Rohat; Kosku Perkgoz, Nihan; Unal, Emre; Puttlitz, Christian; Demir, Hilmi Volkan

    2008-11-01

    One out of ten bone fractures does not heal properly due to improper load distribution and strain profiles during the healing process. To provide implantable tools for the assessment of bone fractures, we have designed novel, bio-implantable, passive, on-chip, RF-MEMS strain sensors that rely on the resonance frequency shift with mechanical deformation. For this purpose, we modeled, fabricated and experimentally characterized two on-chip sensors with high quality factors for in vivo implantation. One of the sensors has an area of ~0.12 mm2 with a quality factor of ~60 and the other has an area of ~0.07 mm2 with a quality factor of ~70. To monitor the mechanical deformation by measuring the change in the resonance frequencies with the applied load, we employed a controllable, point load applying experimental setup designed and constructed for in vitro characterization. In the case of the sensor with the larger area, when we apply a load of 3920 N, we obtain a frequency shift of ~330 MHz and a quality factor of ~76. For the smaller sensor, the frequency shift and the quality factor are increased to 360 MHz and 95, respectively. These data demonstrate that our sensor chips have the capacity to withstand relatively high physiologic loads, and that the concomitant and very large resonant frequency shift with the applied load is achieved while maintaining a high signal quality factor. These experiments demonstrate that these novel sensors have the capacity for producing high sensitivity strain readout, even when the total device area is considerably small. Also, we have demonstrated that our bio-implantable, passive sensors deliver a telemetric, real-time readout of the strain on a chip. Placing two more resonators on the sides of the sensor to serve as transmitter and receiver antennas, we achieved to transfer contactless power and read out loads in the absence of direct wiring to the sensor. With this model, where telemetric measurements become simpler due to the fact

  13. Fabrication and Characterization of Superconducting Resonators

    PubMed Central

    Cataldo, Giuseppe; Barrentine, Emily M.; Brown, Ari D.; Moseley, Samuel H.; U-Yen, Kongpop; Wollack, Edward J.

    2016-01-01

    Superconducting microwave resonators are of interest for a wide range of applications, including for their use as microwave kinetic inductance detectors (MKIDs) for the detection of faint astrophysical signatures, as well as for quantum computing applications and materials characterization. In this paper, procedures are presented for the fabrication and characterization of thin-film superconducting microwave resonators. The fabrication methodology allows for the realization of superconducting transmission-line resonators with features on both sides of an atomically smooth single-crystal silicon dielectric. This work describes the procedure for the installation of resonator devices into a cryogenic microwave testbed and for cool-down below the superconducting transition temperature. The set-up of the cryogenic microwave testbed allows one to do careful measurements of the complex microwave transmission of these resonator devices, enabling the extraction of the properties of the superconducting lines and dielectric substrate (e.g., internal quality factors, loss and kinetic inductance fractions), which are important for device design and performance. PMID:27284966

  14. Injection-controlled laser resonator

    DOEpatents

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  15. Injection-controlled laser resonator

    DOEpatents

    Chang, Jim J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality.

  16. A MEMS disk resonator-based band pass filter electrical equivalent circuit simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaram, G. M.; Angira, Mahesh; Gupta, Navneet

    In this paper, coupled beam bandpass Disk filter is designed for 1 MHz bandwidth. Filter electrical equivalent circuit simulation is performed using circuit simulators. Important filter parameters such as insertion loss, shape factor and Q factor aresetimated using coventorware simulation. Disk resonator based radial contour mode filter provides 1.5 MHz bandwidth and unloaded quality factor of resonator and filter as 233480, 21797 respectively. From the simulation result it’s found that insertion loss minimum is 151.49 dB, insertion loss maximum is 213.94 dB, and 40 dB shape factor is 4.17.

  17. Silicon rich nitride ring resonators for rare - earth doped telecommunications-band amplifiers pumped at the O-band.

    PubMed

    Xing, P; Chen, G F R; Zhao, X; Ng, D K T; Tan, M C; Tan, D T H

    2017-08-22

    Ring resonators on silicon rich nitride for potential use as rare-earth doped amplifiers pumped at 1310 nm with amplification at telecommunications-band are designed and characterized. The ring resonators are fabricated on 300 nm and 400 nm silicon rich nitride films and characterized at both 1310 nm and 1550 nm. We demonstrate ring resonators exhibiting similar quality factors exceeding 10,000 simultaneously at 1310 nm and 1550 nm. A Dysprosium-Erbium material system exhibiting photoluminescence at 1510 nm when pumped at 1310 nm is experimentally demonstrated. When used together with Dy-Er co-doped particles, these resonators with similar quality factors at 1310 nm and 1550 nm may be used for O-band pumped amplifiers for the telecommunications-band.

  18. General expressions for the coupling coefficient, quality and filling factors for a cavity with an insert using energy coupled mode theory

    NASA Astrophysics Data System (ADS)

    Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.

    2014-05-01

    A cavity (CV) with a dielectric resonator (DR) insert forms an excellent probe for the use in electron paramagnetic resonance (EPR) spectrometers. The probe’s coupling coefficient, κ, the quality factor, Q, and the filling factor, η are vital in assessing the EPR spectrometer’s performance. Coupled mode theory (CMT) is used to derive general expressions for these parameters. For large permittivity the dominating factor in κ is the ratio of the DR and CV cross sectional areas rather than the dielectric constant. Thus in some cases, resonators with low dielectric constant can couple much stronger with the cavity than do resonators with a high dielectric constant. When the DR and CV frequencies are degenerate, the coupled η is the average of the two uncoupled ones. In practical EPR probes the coupled η is approximately half of that of the DR. The Q of the coupled system generally depends on the eigenvectors, uncoupled frequencies (ω1, ω2) and the individual quality factors (Q1, Q2). It is calculated for different probe configurations and found to agree with the corresponding HFSS® simulations. Provided there is a large difference between the Q1, Q2 pair and the frequencies of DR and CV are degenerate, Q is approximately equal to double the minimum of Q1 and Q2. In general, the signal enhancement ratio, I/Iempty, is obtained from Q and η. For low loss DRs it only depends on η1/η2. However, when the DR has a low Q, the uncoupled Qs are also needed. In EPR spectroscopy it is desirable to excite only a single mode. The separation between the modes, Φ, is calculated as a function of κ and Q. It is found to be significantly greater than five times the average bandwidth. Thus for practical probes, it is possible to excite one of the coupled modes without exciting the other. The CMT expressions derived in this article are quite general and are in excellent agreement with the lumped circuit approach and finite numerical simulations. Hence they can also be

  19. Large scale integration of CVD-graphene based NEMS with narrow distribution of resonance parameters

    NASA Astrophysics Data System (ADS)

    Arjmandi-Tash, Hadi; Allain, Adrien; (Vitto Han, Zheng; Bouchiat, Vincent

    2017-06-01

    We present a novel method for the fabrication of the arrays of suspended micron-sized membranes, based on monolayer pulsed-CVD graphene. Such devices are the source of an efficient integration of graphene nano-electro-mechanical resonators, compatible with production at the wafer scale using standard photolithography and processing tools. As the graphene surface is continuously protected by the same polymer layer during the whole process, suspended graphene membranes are clean and free of imperfections such as deposits, wrinkles and tears. Batch fabrication of 100 μm-long multi-connected suspended ribbons is presented. At room temperature, mechanical resonance of electrostatically-actuated devices show narrow distribution of their characteristic parameters with high quality factor and low effective mass and resonance frequencies, as expected for low stress and adsorbate-free membranes. Upon cooling, a sharp increase of both resonant frequency and quality factor is observed, enabling to extract the thermal expansion coefficient of CVD graphene. Comparison with state-of-the-art graphene NEMS is presented.

  20. Laser Beam and Resonator Calculations on Desktop Computers.

    NASA Astrophysics Data System (ADS)

    Doumont, Jean-Luc

    There is a continuing interest in the design and calculation of laser resonators and optical beam propagation. In particular, recently, interest has increased in developing concepts such as one-sided unstable resonators, supergaussian reflectivity profiles, diode laser modes, beam quality concepts, mode competition, excess noise factors, and nonlinear Kerr lenses. To meet these calculation needs, I developed a general-purpose software package named PARAXIA ^{rm TM}, aimed at providing optical scientists and engineers with a set of powerful design and analysis tools that provide rapid and accurate results and are extremely easy to use. PARAXIA can handle separable paraxial optical systems in cartesian or cylindrical coordinates, including complex-valued and misaligned ray matrices, with full diffraction effects between apertures. It includes the following programs:. ABCD provides complex-valued ray-matrix and gaussian -mode analyses for arbitrary paraxial resonators and optical systems, including astigmatism and misalignment in each element. This program required that I generalize the theory of gaussian beam propagation to the case of an off-axis gaussian beam propagating through a misaligned, complex -valued ray matrix. FRESNEL uses FFT and FHT methods to propagate an arbitrary wavefront through an arbitrary paraxial optical system using Huygens' integral in rectangular or radial coordinates. The wavefront can be multiplied by an arbitrary mirror profile and/or saturable gain sheet on each successive propagation through the system. I used FRESNEL to design a one-sided negative-branch unstable resonator for a free -electron laser, and to show how a variable internal aperture influences the mode competition and beam quality in a stable cavity. VSOURCE implements the virtual source analysis to calculate eigenvalues and eigenmodes for unstable resonators with both circular and rectangular hard-edged mirrors (including misaligned rectangular systems). I used VSOURCE to

  1. Superconducting micro-resonator arrays with ideal frequency spacing

    NASA Astrophysics Data System (ADS)

    Liu, X.; Guo, W.; Wang, Y.; Dai, M.; Wei, L. F.; Dober, B.; McKenney, C. M.; Hilton, G. C.; Hubmayr, J.; Austermann, J. E.; Ullom, J. N.; Gao, J.; Vissers, M. R.

    2017-12-01

    We present a wafer trimming technique for producing superconducting micro-resonator arrays with highly uniform frequency spacing. With the light-emitting diode mapper technique demonstrated previously, we first map the measured resonance frequencies to the physical resonators. Then, we fine-tune each resonator's frequency by lithographically trimming a small length, calculated from the deviation of the measured frequency from its design value, from the interdigitated capacitor. We demonstrate this technique on a 127-resonator array made from titanium-nitride and show that the uniformity of frequency spacing is greatly improved. The array yield in terms of frequency collisions improves from 84% to 97%, while the quality factors and noise properties are unaffected. The wafer trimming technique provides an easy-to-implement tool to improve the yield and multiplexing density of large resonator arrays, which is important for various applications in photon detection and quantum computing.

  2. Parametric amplification in MoS2 drum resonator.

    PubMed

    Prasad, Parmeshwar; Arora, Nishta; Naik, A K

    2017-11-30

    Parametric amplification is widely used in diverse areas from optics to electronic circuits to enhance low level signals by varying relevant system parameters. Parametric amplification has also been performed in several micro-nano resonators including nano-electromechanical system (NEMS) resonators based on a two-dimensional (2D) material. Here, we report the enhancement of mechanical response in a MoS 2 drum resonator using degenerate parametric amplification. We use parametric pumping to modulate the spring constant of the MoS 2 resonator and achieve a 10 dB amplitude gain. We also demonstrate quality factor enhancement in the resonator with parametric amplification. We investigate the effect of cubic nonlinearity on parametric amplification and show that it limits the gain of the mechanical resonator. Amplifying ultra-small displacements at room temperature and understanding the limitations of the amplification in these devices is key for using these devices for practical applications.

  3. Microspherical photonics: Sorting resonant photonic atoms by using light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maslov, Alexey V., E-mail: avmaslov@yandex.ru; Astratov, Vasily N., E-mail: astratov@uncc.edu

    2014-09-22

    A method of sorting microspheres by resonant light forces in vacuum, air, or liquid is proposed. Based on a two-dimensional model, it is shown that the sorting can be realized by allowing spherical particles to traverse a focused beam. Under resonance with the whispering gallery modes, the particles acquire significant velocity along the beam direction. This opens a unique way of large-volume sorting of nearly identical photonic atoms with 1/Q accuracy, where Q is the resonance quality factor. This is an enabling technology for developing super-low-loss coupled-cavity structures and devices.

  4. Quality factor analysis for aberrated laser beam

    NASA Astrophysics Data System (ADS)

    Ghafary, B.; Alavynejad, M.; Kashani, F. D.

    2006-12-01

    The quality factor of laser beams has attracted considerable attention and some different approaches have been reported to treat the problem. In this paper we analyze quality factor of laser beam and compare the effect of different aberrations on beam quality by expanding pure phase term of wavefront in terms of Zernike polynomials. Also we analyze experimentally the change of beam quality for different Astigmatism aberrations, and compare theoretical results with experimentally results. The experimental and theoretical results are in good agreement.

  5. Mid-infrared ZGP OPO with divergence compensation and high beam quality.

    PubMed

    Schellhorn, Martin; Spindler, Gerhard; Eichhorn, Marc

    2018-01-22

    Divergence compensation, optimization of the optical-to-optical efficiency, and high beam quality of signal and idler beams of a high-energy mid-infrared ZnGeP 2 (ZGP) optical parametric oscillator (OPO) have been demonstrated by use of a Galilean telescope inside the nonplanar fractional-image-rotation enhancement (FIRE) ring resonator. With a small variation of the distance between the lenses of the telescope, the divergences of signal and idler beams could be adjusted. Up to 36 mJ of mid-infrared pulse energy in the 3-5 µm wavelength range is obtained with 92 mJ of pump energy on crystal. The beam quality factors M 2 are < 1.5 for the resonant signal beam and the non-resonant idler beam, respectively. Actually, this is an improvement of the beam quality by a factor 3 for the signal and ~2.7 for the idler beam compared without using a telescope inside the FIRE ring resonator.

  6. Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication.

    PubMed

    Chandrahalim, Hengky; Chen, Qiushu; Said, Ali A; Dugan, Mark; Fan, Xudong

    2015-05-21

    We designed, fabricated, and characterized a monolithically integrated optofluidic ring resonator laser that is mechanically, thermally, and chemically robust. The entire device, including the ring resonator channel and sample delivery microfluidics, was created in a block of fused-silica glass using a 3-dimensional femtosecond laser writing process. The gain medium, composed of Rhodamine 6G (R6G) dissolved in quinoline, was flowed through the ring resonator. Lasing was achieved at a pump threshold of approximately 15 μJ mm(-2). Detailed analysis shows that the Q-factor of the optofluidic ring resonator is 3.3 × 10(4), which is limited by both solvent absorption and scattering loss. In particular, a Q-factor resulting from the scattering loss can be as high as 4.2 × 10(4), suggesting the feasibility of using a femtosecond laser to create high quality optical cavities.

  7. Ten Ghz YBa2Cu3O(7-Delta) Superconducting Ring Resonators on NdGaO3 Substrates

    NASA Technical Reports Server (NTRS)

    To, H. Y.; Valco, G. J.; Bhasin, K. B.

    1993-01-01

    YBa2Cu3O(7-delta) thin films were formed on NdGaO3 substrates by laser ablation. Critical temperatures greater than 89 K and critical current densities exceeding 2 x 10(exp 8) Acm(sub -2) at 77 K were obtained. The microwave performance of films patterned into microstrip ring resonators with gold ground planes was measured. An unloaded quality factor six times larger than that of a gold resonator of identical geometry was achieved. The unloaded quality factor decreased below 70 K for both the superconducting and gold resonators due to increasing dielectric losses in the substrate. The temperature dependence of the loss tangent of NdGaO3 was extracted from the measurements.

  8. Diet-Quality Scores and Prevalence of Nonalcoholic Fatty Liver Disease: A Population Study Using Proton-Magnetic Resonance Spectroscopy

    PubMed Central

    Chan, Ruth; Wong, Vincent Wai-Sun; Chu, Winnie Chiu-Wing; Wong, Grace Lai-Hung; Li, Liz Sin; Leung, Jason; Chim, Angel Mei-Ling; Yeung, David Ka-Wai; Sea, Mandy Man-Mei; Woo, Jean; Chan, Francis Ka-Leung; Chan, Henry Lik-Yuen

    2015-01-01

    Dietary pattern analysis is an alternative approach to examine the association between diet and nonalcoholic fatty liver disease (NAFLD). This study examined the association of two diet-quality scores, namely Diet Quality Index-International (DQI-I) and Mediterranean Diet Score (MDS) with NAFLD prevalence. Apparently healthy Chinese adults (332 male, 465 female) aged 18 years or above were recruited through a population screening between 2008 and 2010 in a cross-sectional population-based study in Hong Kong. DQI-I and MDS, as well as major food group and nutrient intakes were calculated based on dietary data from a food frequency questionnaire. NAFLD was defined as intrahepatic triglyceride content at ≥5% by proton-magnetic resonance spectroscopy. Multivariate logistic regression models were used to examine the association between each diet-quality score or dietary component and prevalent NAFLD with adjustment for potential lifestyle, metabolic and genetic factors. A total of 220 subjects (27.6%) were diagnosed with NAFLD. DQI-I but not MDS was associated with the prevalence of NAFLD. A 10-unit decrease in DQI-I was associated with 24% increase in the likelihood of having NAFLD in the age and sex adjusted model (95% CI: 1.06–1.45, p = 0.009), and the association remained significant when the model was further adjusted for other lifestyle factors, metabolic and genetic factors [OR: 1.26 (95% CI: 1.03–1.54), p = 0.027]. Multivariate regression analyses showed an inverse association of the intake of vegetables and legumes, fruits and dried fruits, as well as vitamin C with the NAFLD prevalence (p<0.05). In conclusion, a better diet quality as characterized by a higher DQI-I and a higher consumption of vegetables, legumes and fruits was associated with a reduced likelihood of having NAFLD in Hong Kong Chinese. PMID:26418083

  9. Magnetic field detection using magnetorheological optical resonators

    NASA Astrophysics Data System (ADS)

    Rubino, Edoardo; Ioppolo, Tindaro

    2018-02-01

    In this paper, we investigate the feasibility of a magnetic field sensor that is based on a magnetorheological micro-optical resonator. The optical resonator has a spherical shape and a diameter of a few hundred micrometers. The resonator is fabricated by using a polymeric matrix made of polyvinyl chloride (PVC) plastisol with embedded magnetically polarizable micro-particles. When the optical resonator is subjected to an external magnetic field, the morphology (radius and refractive index) of the resonator is perturbed by the magnetic forces acting on it, leading to a shift of the optical resonances also known as whispering gallery modes (WGM). In this study, the effect of a static and harmonic magnetic field, as well as the concentration of the magnetic micro-particles on the optical mode shift is investigated. The optical resonances obtained with the PVC plastisol resonator showed a quality factor of 106 . The dynamical behavior of the optical resonator is investigated in the range between 0 and 200 Hz. The sensitivity of the optical resonator reaches a maximum value for a ratio between micro-particles and the polymeric matrix of 2:1 in weight. Experimental results indicate a sensitivity of 0.297 pm/mT leading to a resolution of 336 μT.

  10. Investigations on LGS and LGT crystals to realize BAW resonators.

    PubMed

    Imbaud, Joël; Boy, Jean-Jacques; Galliou, Serge; Bourquin, Roger; Romand, Jean Pierre

    2008-11-01

    The LGS family are promising materials for the design of high quality bulk acoustic wave resonators. We have manufactured many plano-convex 10 MHz 5th overtone Y-cut resonators using langasite (LGS, La(3)Ga(5)SiO(14)) and langatate (LGT, La(3)Ga(5.5)Ta(0.5)O(14)) crystals. We observed that the quality factor strongly depends on the polishing method, the supplier of the material, and on the energy trapping. For quartz crystals, we have found that resulting IR spectra exhibit absorption peaks more or less deep, linked to defects. These predominant criteria are not surprising, but they have to be defined in manner similar to that used for quartz crystal. A satisfying machining and polishing method has been first applied to elaborate high Q resonators, and a comparison between samples of LGS and LGT materials from different suppliers is established. In addition, LGT resonators are characterized by their motional parameters and frequency-temperature curves. Nevertheless, one of the main results is that the measured Q x f product is not the expected one. We present results of Q-factor versus radius of curvature: it appears that an optimization should be performed and that this last one cannot be directly transposed from that of quartz crystal resonator. Currently, the best resonator that we have made has a Q x f product of 1.4 x 10(13) on its 5th overtone (1.7 x 10(13) on its 9th overtone). This result is slightly higher than the similar parameter obtained on a state-of-the-art SC-cut quartz crystal resonator working at the same frequency.

  11. Resonant coupling into hybrid 3D micro-resonator devices on organic/biomolecular film/glass photonic structures

    NASA Astrophysics Data System (ADS)

    Bêche, Bruno; Potel, Arnaud; Barbe, Jérémy; Vié, Véronique; Zyss, Joseph; Godet, Christian; Huby, Nolwenn; Pluchon, David; Gaviot, Etienne

    2010-01-01

    We have designed and realized an integrated photonic family of micro-resonators (MR) on multilayer SU8/lipidic film/glass materials. Such a family involves hybrid 3D-MR structures composed of spherical glass-MR arranged upon organic pair-SU8-waveguides, an efficient coupling being ensured with a Langmuir-Blodgett Dipalmitoylphosphatidylcholine (DPPC-lipid from Avanti Polar ®) film whose thickness is ranging from 12 to 48 nm. We have characterized such add/drop filters, respectively, in intensity and spectral measurements, and experimentally achieved an evanescent resonant-photonic-coupling between the 3D-MR and the 4-ports structure through the DPPC-gap. Spectral resonances have been measured for 4-whispering gallery-modes (WGM) into such 3D-structures, respectively, characterized with a 0.97 nm free spectral range (FSR) and a high quality Q-factor up to 4.10 4.

  12. Optical micro-bubble resonators as promising biosensors

    NASA Astrophysics Data System (ADS)

    Giannetti, A.; Barucci, A.; Berneschi, S.; Cosci, A.; Cosi, F.; Farnesi, D.; Nunzi Conti, G.; Pelli, S.; Soria, S.; Tombelli, S.; Trono, C.; Righini, G. C.; Baldini, F.

    2015-05-01

    Recently, optical micro-bubble resonators (OMBRs) have gained an increasing interest in many fields of photonics thanks to their particular properties. These hollow microstructures can be suitable for the realization of label - free optical biosensors by combining the whispering gallery mode (WGM) resonator properties with the intrinsic capability of integrated microfluidics. In fact, the WGMs are morphology-dependent modes: any change on the OMBR inner surface (due to chemical and/or biochemical binding) causes a shift of the resonance position and reduces the Q factor value of the cavity. By measuring this shift, it is possible to obtain information on the concentration of the analyte to be detected. A crucial step for the development of an OMBR-based biosensor is constituted by the functionalization of its inner surface. In this work we report on the development of a physical and chemical process able to guarantee a good homogeneity of the deposed bio-layer and, contemporary, to preserve a high quality factor Q of the cavity. The OMBR capability of working as bioassay was proved by different optical techniques, such as the real time measurement of the resonance broadening after each functionalization step and fluorescence microscopy.

  13. Lithium Niobate Whispering Gallery Resonators: Applications and Fundamental Studies

    NASA Astrophysics Data System (ADS)

    Maleki, L.; Matsko, A. B.

    Optical whispering gallery modes (WGMs) are closed circulating electromagnetic waves undergoing total internal reflection inside an axio-symmetric body of a transparent dielectric that forms a resonator. Radiative losses are negligible in these modes if the radius of the resonator exceeds several tens of wavelengths, and surface scattering losses can be made small with surface conditioning techniques. Thus, the quality factor (Q) in crystalline WGM resonators is limited by material losses that are, nevertheless, extremely small in optical materials. WGM resonators made of LiNbO3 have been successfully used in optics and microwave photonics. The resonators are characterized by narrow bandwidth, in the hundred kilohertz to gigahertz range. A proper choice of highly transparent and/or nonlinear resonator material, like lithium niobate, allows for realization of a number of high performance devices: tunable and multi-pole filters, resonant electro-optic modulators, photonic microwave receivers, opto-electronic microwave oscillators, and parametric frequency converters, among others.

  14. Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guoping, E-mail: guoping.lin@femto-st.fr; Diallo, Souleymane; Saleh, Khaldoun

    2014-12-08

    We report the observation of stimulated Brillouin scattering and lasing at 1550 nm in barium fluoride (BaF{sub 2}) crystal. Brillouin lasing was achieved with ultra-high quality (Q) factor monolithic whispering gallery mode mm-size disk resonators. Overmoded resonators were specifically used to provide cavity resonances for both the pump and all Brillouin Stokes waves. Single and multiple Brillouin Stokes radiations with frequency shift ranging from 8.2 GHz up to 49 GHz have been generated through cascaded Brillouin lasing. BaF{sub 2} resonator-based Brillouin lasing can find potential applications for high-coherence lasers and microwave photonics.

  15. Factors associated with sleep quality among operating engineers.

    PubMed

    Choi, Seung Hee; Terrell, Jeffrey E; Pohl, Joanne M; Redman, Richard W; Duffy, Sonia A

    2013-06-01

    Blue collar workers generally report high job stress and are exposed to loud noises at work and engage in many of risky health behavioral factors, all of which have been associated with poor sleep quality. However, sleep quality of blue collar workers has not been studied extensively, and no studies have focused Operating Engineers (heavy equipment operators) among whom daytime fatigue would place them at high risk for accidents. Therefore, the purpose of this study was to determine variables associated with sleep quality among Operating Engineers. This was a cross-sectional survey design with a dependent variable of sleep quality and independent variables of personal and related health behavioral factors. A convenience sample of 498 Operating Engineers was recruited from approximately 16,000 Operating Engineers from entire State of Michigan in 2008. Linear regression was used to determine personal and related health behavior factors associated with sleep quality. Multivariate analyses showed that personal factors related to poor sleep quality were younger age, female sex, higher pain, more medical comorbidities and depressive symptoms and behavioral factors related to poor sleep quality were nicotine dependence. While sleep scores were similar to population norms, approximately 34 % (n = 143) showed interest in health services for sleep problems. While many personal factors are not changeable, interventions to improve sleep hygiene as well as interventions to treat pain, depression and smoking may improve sleep quality resulting in less absenteeism, fatal work accidents, use of sick leave, work disability, medical comorbidities, as well as subsequent mortality.

  16. Factors Associated With Sleep Quality Among Operating Engineers

    PubMed Central

    Choi, Seung Hee; Terrell, Jeffrey E.; Pohl, Joanne M.; Redman, Richard W.

    2016-01-01

    Blue collar workers generally report high job stress and are exposed to loud noises at work and engage in many of the health behavioral factors, all of which have been associated with poor sleep quality. However, sleep quality of blue collar workers has not been studied extensively, and no studies have focused Operating Engineers (heavy equipment operators) among whom daytime fatigue would place them at high risk for accidents. Therefore, the purpose of this study was to determine variables associated with sleep quality among Operating Engineers. This was a cross-sectional survey design with a dependent variable of sleep quality and independent variables of personal and related health behavioral factors. A convenience sample of 498 Operating Engineers was recruited from approximately 16,000 Operating Engineers from entire State of Michigan in 2008. Linear regression was used to determine personal and related health behavior factors associated with sleep quality. Multivariate analyses showed that personal factors related to poor sleep quality were younger age, female sex, higher pain, more medical comorbidities and depressive symptoms and behavioral factors related to poor sleep quality were nicotine dependence. While sleep scores were similar to population norms, approximately 34% (n=143) showed interest in health services for sleep problems. While many personal factors are not changeable, interventions to improve sleep hygiene as well as interventions to treat pain, depression and smoking may improve sleep quality resulting in less absenteeism, fatal work accidents, use of sick leave, work disability, medical comorbidities, as well as subsequent mortality. PMID:23393021

  17. A quasioptically stabilized resonant-tunneling-diode oscillator for the millimeter- and submillimeter-wave regions

    NASA Technical Reports Server (NTRS)

    Brown, Elliott R.; Parker, Christopher D.; Molvar, Karen M.; Stephan, Karl D.

    1992-01-01

    A semiconfocal open-cavity resonator has been used to stabilize a resonant-tunneling-diode waveguide oscillator at frequencies near 100 GHz. The high quality factor of the open cavity resulted in a linewidth of approximately 10 kHz at 10 dB below the peak, which is about 100 times narrower than the linewidth of an unstabilized waveguide oscillator. This technique is well suited for resonant-tunneling-diode oscillators in the submillimeter-wave region.

  18. General expressions for the coupling coefficient, quality and filling factors for a cavity with an insert using energy coupled mode theory.

    PubMed

    Elnaggar, Sameh Y; Tervo, Richard; Mattar, Saba M

    2014-05-01

    A cavity (CV) with a dielectric resonator (DR) insert forms an excellent probe for the use in electron paramagnetic resonance (EPR) spectrometers. The probe's coupling coefficient, κ, the quality factor, Q, and the filling factor, η are vital in assessing the EPR spectrometer's performance. Coupled mode theory (CMT) is used to derive general expressions for these parameters. For large permittivity the dominating factor in κ is the ratio of the DR and CV cross sectional areas rather than the dielectric constant. Thus in some cases, resonators with low dielectric constant can couple much stronger with the cavity than do resonators with a high dielectric constant. When the DR and CV frequencies are degenerate, the coupled η is the average of the two uncoupled ones. In practical EPR probes the coupled η is approximately half of that of the DR. The Q of the coupled system generally depends on the eigenvectors, uncoupled frequencies (ω1,ω2) and the individual quality factors (Q1,Q2). It is calculated for different probe configurations and found to agree with the corresponding HFSS® simulations. Provided there is a large difference between the Q1, Q2 pair and the frequencies of DR and CV are degenerate, Q is approximately equal to double the minimum of Q1 and Q2. In general, the signal enhancement ratio, Iwithinsert/Iempty, is obtained from Q and η. For low loss DRs it only depends on η1/η2. However, when the DR has a low Q, the uncoupled Qs are also needed. In EPR spectroscopy it is desirable to excite only a single mode. The separation between the modes, Φ, is calculated as a function of κ and Q. It is found to be significantly greater than five times the average bandwidth. Thus for practical probes, it is possible to excite one of the coupled modes without exciting the other. The CMT expressions derived in this article are quite general and are in excellent agreement with the lumped circuit approach and finite numerical simulations. Hence they can also be

  19. Drive-level dependence of doubly rotated langasite resonators with different configurations.

    PubMed

    Zhang, Haifeng; Kosinski, John; Xie, Yuan; Turner, Joseph

    2013-05-01

    The miniaturization of crystal resonators and filters toward the micro electromechanical systems (MEMS) and nano-structured scales demands improvement of nonlinear piezoelectricity theory and a better understanding of the nonlinear behavior of new crystal materials. The nonlinearities affect the quality factor and acoustic behavior of MEMS and nano-structured resonators and filters. Among these nonlinear effects, drive-level dependence (DLD), which describes the instability of the resonator frequency resulting from voltage level and/or power density, is a potentially significant problem for miniaturized resonators. Langasite, a promising new piezoelectric material, is of current interest for a variety of applications because of its good temperature behavior, good piezoelectric coupling, low acoustic loss, and high Q-factor. It has been recently used to make high-temperature MEMS. In this paper, we report experimental measurements of the DLD of langasite resonators with different resonator configurations (plano-plano, single bevel, and double bevel). The results show that the resonator configuration affects the DLD of the langasite resonator. The DLD measurement results for langasite are compared with literature values for quartz, langaniste, and langatate, and with additional new measurements for a GaPO4 resonator of type R-30 (-11.1° rotated Y-cut). Uncertainty analysis for the measured drive-level sensitivity is performed as well.

  20. Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials

    NASA Astrophysics Data System (ADS)

    Yang, Shengyan; Liu, Zhe; Xia, Xiaoxiang; E, Yiwen; Tang, Chengchun; Wang, Yujin; Li, Junjie; Wang, Li; Gu, Changzhi

    2016-06-01

    We experimentally demonstrate a metamaterial structure composed of two mirror-symmetric joint split ring resonators (JSRRs) that support extremely sharp trapped-mode resonance with a large modulation depth in the terahertz region. Contrary to the regular mirror-arranged SRR arrays in which both the subradiant inductive-capacitive (LC) resonance and quadrupole-mode resonance can be excited, our designed structure features a metallic microstrip bridging the adjacent SRRs, which leads to the emergence of an otherwise inaccessible ultrahigh-quality-factor resonance. The ultrasharp resonance occurs near the Wood-Rayleigh anomaly frequency, and the underlying mechanism can be attributed to the strong coupling between the in-plane propagating collective lattice surface mode originating from the array periodicity and localized surface plasmon resonance in mirror-symmetric coupled JSRRs, which dramatically reduces radiative damping. The ultrasharp resonance shows great potential for multifunctional applications such as plasmonic switching, low-power nonlinear processing, and chemical and biological sensing.

  1. TT-Cut Torsional Quartz Crystal Resonators of Free-Free Bar-Type

    NASA Astrophysics Data System (ADS)

    Kawashima, Hirofumi; Nakazato, Mitsuhiro

    1994-05-01

    This paper describes a TT-cut torsional quartz crystal resonator of free-free bar type. An object of this paper is to clarify the frequency temperature behavior, series resistance and a quality factor for TT-cut torsional quartz crystal resonators of free-free bar-type. The analysis results are then compared with the measured data. The principal results indicate that the calculated values of frequency temperature behavior for resonators of free-free bar-type agree comparatively well with the measured ones. Similar to the torsional resonators of tuning fork-type, a torsional quartz crystal resonator of free-free bar-type is also found to have an absolute value of the second order temperature coefficient β smaller than half a value of that for a flexural mode quartz crystal resonator.

  2. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications.

    PubMed

    Kravets, V G; Kabashin, A V; Barnes, W L; Grigorenko, A N

    2018-06-27

    When metal nanoparticles are arranged in an ordered array, they may scatter light to produce diffracted waves. If one of the diffracted waves then propagates in the plane of the array, it may couple the localized plasmon resonances associated with individual nanoparticles together, leading to an exciting phenomenon, the drastic narrowing of plasmon resonances, down to 1-2 nm in spectral width. This presents a dramatic improvement compared to a typical single particle resonance line width of >80 nm. The very high quality factors of these diffractively coupled plasmon resonances, often referred to as plasmonic surface lattice resonances, and related effects have made this topic a very active and exciting field for fundamental research, and increasingly, these resonances have been investigated for their potential in the development of practical devices for communications, optoelectronics, photovoltaics, data storage, biosensing, and other applications. In the present review article, we describe the basic physical principles and properties of plasmonic surface lattice resonances: the width and quality of the resonances, singularities of the light phase, electric field enhancement, etc. We pay special attention to the conditions of their excitation in different experimental architectures by considering the following: in-plane and out-of-plane polarizations of the incident light, symmetric and asymmetric optical (refractive index) environments, the presence of substrate conductivity, and the presence of an active or magnetic medium. Finally, we review recent progress in applications of plasmonic surface lattice resonances in various fields.

  3. Quantum information processing using quasiclassical electromagnetic interactions between qubits and electrical resonators

    NASA Astrophysics Data System (ADS)

    Kerman, Andrew

    2013-03-01

    Electrical resonators are widely used in quantum information processing with any qubits that are manipulated via electromagnetic interactions. In most cases they are engineered to interact with qubits via real or virtual exchange of (typically microwave) photons, and the resonator must therefore have both a high quality factor and strong quantum fluctuations, corresponding to the strong-coupling limit of cavity QED. Although great strides in the control of quantum information have been made using this so-called ``circuit QED'' architecture, it also comes with some important disadvantages. In this talk, we discuss a new paradigm for coupling qubits electromagnetically via resonators, in which the qubits do not exchange photons with the resonator, but instead exert quasi-classical, effective ``forces'' on it. We show how this type of interaction is similar to that induced between the internal state of a trapped atomic ion and its center-of-mass motion by the photon recoil momentum, and that the resulting entangling operations are insensitive both to the state of the resonator and to its quality factor. The methods we describe are applicable to a variety of qubit-resonator systems, including superconducting and semiconducting solid-state qubits, and trapped molecular ions. This work is sponsored by the ASDR&E under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government.

  4. Microwave-to-Optical Conversion in WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Yu, Nan; Matsko, Andrey; Maleki, Lute

    2008-01-01

    Microwave-to-optical frequency converters based on whispering-gallery-mode (WGM) resonators have been proposed as mixers for the input ends of microwave receivers in which, downstream of the input ends, signals would be processed photonically. A frequency converter as proposed (see figure) would exploit the nonlinearity of the electromagnetic response of a WGM resonator made of LiNbO3 or another suitable ferroelectric material. Up-conversion would take place by three-wave mixing in the resonator. The WGM resonator would be de - signed and fabricated to obtain (1) resonance at both the microwave and the optical operating frequencies and (2) phase matching among the input and output microwave and optical signals as described in the immediately preceding article. Because the resonator would be all dielectric there would be no metal electrodes signal losses would be very low and, consequently, the resonance quality factors (Q values) of the microwave and optical fields would be very large. The long lifetimes associated with the large Q values would enable attainment of high efficiency of nonlinear interaction with low saturation power. It is anticipated that efficiency would be especially well enhanced by the combination of optical and microwave resonances in operation at input signal frequencies between 90 and 300 GHz.

  5. Ultra-High Q Acoustic Resonance in Superfluid ^4He

    NASA Astrophysics Data System (ADS)

    De Lorenzo, L. A.; Schwab, K. C.

    2017-02-01

    We report the measurement of the acoustic quality factor of a gram-scale, kilohertz-frequency superfluid resonator, detected through the parametric coupling to a superconducting niobium microwave cavity. For temperatures between 400 mK and 50 mK, we observe a T^{-4} temperature dependence of the quality factor, consistent with a 3-phonon dissipation mechanism. We observe Q factors up to 1.4× 10^8, consistent with the dissipation due to dilute ^3He impurities, and expect that significant further improvements are possible. These experiments are relevant to exploring quantum behavior and decoherence of massive macroscopic objects, the laboratory detection of continuous gravitational waves from pulsars, and the probing of possible limits to physical length scales.

  6. Note: Vector network analyzer-ferromagnetic resonance spectrometer using high Q-factor cavity.

    PubMed

    Lo, C K; Lai, W C; Cheng, J C

    2011-08-01

    A ferromagnetic resonance (FMR) spectrometer whose main components consist of an X-band resonator and a vector network analyzer (VNA) was developed. This spectrometer takes advantage of a high Q-factor (9600) cavity and state-of-the-art VNA. Accordingly, field modulation lock-in technique for signal to noise ratio (SNR) enhancement is no longer necessary, and FMR absorption can therefore be extracted directly. Its derivative for the ascertainment of full width at half maximum height of FMR peak can be found by taking the differentiation of original data. This system was characterized with different thicknesses of permalloy (Py) films and its multilayer, and found that the SNR of 5 nm Py on glass was better than 50, and did not have significant reduction even at low microwave excitation power (-20 dBm), and at low Q-factor (3000). The FMR other than X-band can also be examined in the same manner by using a suitable band cavity within the frequency range of VNA.

  7. Electromagnetically induced transparency in planar metamaterials based on guided mode resonance

    NASA Astrophysics Data System (ADS)

    Sun, Yaru; Chen, Hang; Li, Xiangjun; Hong, Zhi

    2017-06-01

    We present and numerically demonstrate a novel, electromagnetically induced transparency (EIT) in planar metamaterials (MMs) based on guided mode resonance (GMR). The unit cell of the MM consists of two metallic ring resonators. The GMR with high quality factor (Q) is achieved by changing the distance between the two rings of the MM. Narrow EIT-like spectral response is realized by coupling between a high Q GMR and a low Q dipolar resonance of the MM. Our work could provide another efficient way towards the realization of EIT with large group index using very simple structures.

  8. Interacting dark resonances with plasmonic meta-molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jha, Pankaj K.; Mrejen, Michael; Kim, Jeongmin

    2014-09-15

    Dark state physics has led to a variety of remarkable phenomena in atomic physics, quantum optics, and information theory. Here, we investigate interacting dark resonance type physics in multi-layered plasmonic meta-molecules. We theoretically demonstrate that these plasmonic meta-molecules exhibit sub-natural spectral response, analogous to conventional atomic four-level configuration, by manipulating the evanescent coupling between the bright and dark elements (plasmonic atoms). Using cascaded coupling, we show nearly 4-fold reduction in linewidth of the hybridized resonance compared to a resonantly excited single bright plasmonic atom with same absorbance. In addition, we engineered the geometry of the meta-molecules to realize efficient intramolecularmore » excitation transfer with nearly 80%, on resonant excitation, of the total absorption being localized at the second dark plasmonic atom. An analytical description of the spectral response of the structure is presented with full electrodynamics simulations to corroborate our results. Such multilayered meta-molecules can bring a new dimension to higher quality factor plasmonic resonance, efficient excitation transfer, wavelength demultiplexing, and enhanced non-linearity at nanoscale.« less

  9. Resonant nonlinear ultrasound spectroscopy

    DOEpatents

    Johnson, Paul A.; TenCate, James A.; Guyer, Robert A.; Van Den Abeele, Koen E. A.

    2001-01-01

    Components with defects are identified from the response to strains applied at acoustic and ultrasound frequencies. The relative resonance frequency shift .vertline..DELTA..function./.function..sub.0.vertline., is determined as a function of applied strain amplitude for an acceptable component, where .function..sub.0 is the frequency of the resonance peak at the lowest amplitude of applied strain and .DELTA..function. is the frequency shift of the resonance peak of a selected mode to determine a reference relationship. Then, the relative resonance frequency shift .vertline..DELTA..function./.function..sub.0 is determined as a function of applied strain for a component under test, where fo .function..sub.0 the frequency of the resonance peak at the lowest amplitude of applied strain and .DELTA..function. is the frequency shift of the resonance peak to determine a quality test relationship. The reference relationship is compared with the quality test relationship to determine the presence of defects in the component under test.

  10. High-Q resonant cavities for terahertz quantum cascade lasers.

    PubMed

    Campa, A; Consolino, L; Ravaro, M; Mazzotti, D; Vitiello, M S; Bartalini, S; De Natale, P

    2015-02-09

    We report on the realization and characterization of two different designs for resonant THz cavities, based on wire-grid polarizers as input/output couplers, and injected by a continuous-wave quantum cascade laser (QCL) emitting at 2.55 THz. A comparison between the measured resonators parameters and the expected theoretical values is reported. With achieved quality factor Q ≈ 2.5 × 10(5), these cavities show resonant peaks as narrow as few MHz, comparable with the typical Doppler linewidth of THz molecular transitions and slightly broader than the free-running QCL emission spectrum. The effects of the optical feedback from one cavity to the QCL are examined by using the other cavity as a frequency reference.

  11. Progress in performance enhancement methods for capacitive silicon resonators

    NASA Astrophysics Data System (ADS)

    Van Toan, Nguyen; Ono, Takahito

    2017-11-01

    In this paper, we review the progress in recent studies on the performance enhancement methods for capacitive silicon resonators. We provide information on various fabrication technologies and design considerations that can be employed to improve the performance of capacitive silicon resonators, including low motional resistance, small insertion loss, and high quality factor (Q). This paper contains an overview of device structures and working principles, fabrication technologies consisting of hermetic packaging, deep reactive-ion etching and neutral beam etching, and design considerations including mechanically coupled, movable electrode structures and piezoresistive heat engines.

  12. Significant improvement in the thermal annealing process of optical resonators

    NASA Astrophysics Data System (ADS)

    Salzenstein, Patrice; Zarubin, Mikhail

    2017-05-01

    Thermal annealing performed during process improves the quality of the roughness of optical resonators reducing stresses at the periphery of their surface thus allowing higher Q-factors. After a preliminary realization, the design of the oven and the electronic method were significantly improved thanks to nichrome resistant alloy wires and chopped basalt fibers for thermal isolation during the annealing process. Q-factors can then be improved.

  13. Unidirectional reflectionless propagation in non-Hermitian metamaterial based on phase coupling between two resonators

    NASA Astrophysics Data System (ADS)

    Yin, Hongda; Bai, Ruiping; Gu, Xintong; Zhang, Cong; Gu, Guang Rui; Zhang, Ying Qiao; Jin, Xing Ri; Lee, YoungPak

    2018-05-01

    Unidirectional reflectionless propagation in a non-Hermitian metamaterial is obtained based on phase coupling between two resonators. The unidirectional reflectionless propagation can be obtained at exceptional point by adjusting polarization angle θ and distance d between two resonators. Moreover, coherent prefect absorptions are obtained near exceptional point with the high absorbance of ∼0.99 and high quality factor of ∼83.

  14. Microoptical device for efficient read-out of active WGM resonators

    NASA Astrophysics Data System (ADS)

    Wienhold, Tobias; Brammer, Marko; Grossmann, Tobias; Schneider, Marc; Kalt, Heinz; Mappes, Timo

    2012-06-01

    Whispering-gallery mode (WGM) resonators are known to offer outstanding properties for applications in photonics and telecommunication. Despite their promising performance, one major obstacle for the use of WGM resonators in industrial products is the need of expensive components and high-precision setups for their operation, requiring a controlled lab environment. For industrial applications technically simpler and more robust realizations are desired. Active WGM resonators utilize an optical gain medium for light amplification within the resonator and may be operated as lasers. They offer several advantages over their passive counterparts, such as cheap pump sources, free space excitation of resonator modes, and potentially narrower line widths. However, collection of the light emitted from the resonator still bears several challenges. Emission occurs in plane of the resonator and radiation is emitted isotropically along the circumference. Thus, detectors positioned in plane of the resonator may collect only a limited angular segment of the resonator's light emission. We report on a microoptical device which is integrated on the resonator chip and redirects all in-plane emission of active WGM resonators into a defined off-plane direction. Redirected light can easily be collected using a standard detector. Contrary to other approaches our microoptical device does not decrease the quality factor (Q factor) of the resonator. As light from all angular segments of the resonator is collected, the detected signal-to-noise ratio is expected to be largely improved. Our microoptical device therefore offers a promising approach towards mass-producible integration of active WGM resonators, e. g. into a Lab-on-a-Chip, for sensor applications, where smallest possible frequency shifts need to be read out by a highly sensitive detector.

  15. Fano resonance engineering in mirror-symmetry-broken THz metamaterials

    NASA Astrophysics Data System (ADS)

    Li, Xuefeng; Bian, Xinya; Milne, William I.; Chu, Daping

    2016-04-01

    We introduce a comprehensive approach to the design of mirror-symmetry-broken terahertz (THz) metamaterials and present both the simulation and experimental results which show the desired asymmetric Fano resonances and electromagnetically induced transparency-like windows. With a full-wave simulation, we find these asymmetry-induced resonance modes possess extremely high quality factors and they broaden with an increase in the structure asymmetry. This phenomenon arises from the destructive interference of a super-radiative bright mode and a sub-radiative dark mode which cannot be excited directly. Surface current and electric field distributions are analyzed to explain the emergence of these Fano resonances. An intuitive mechanical coupled oscillator model is derived to explain the unique line-shape of such Fano resonances. Moreover, large resonant frequency tuning (50 GHz) of Fano resonance has been demonstrated by temperature-induced phase change in liquid crystals. We believe that the Fano resonance in THz metamaterials may serve as a strong building block for passive or active THz elements with potential applications for future detection and sensing systems and devices.

  16. Resonant frequency method for bearing ball inspection

    DOEpatents

    Khuri-Yakub, B.T.; Chungkao Hsieh.

    1993-11-02

    The present invention provides for an inspection system and method for detecting defects in test objects which includes means for generating expansion inducing energy focused upon the test object at a first location, such expansion being allowed to contract, thereby causing pressure wave within and on the surface of the test object. Such expansion inducing energy may be provided by, for example, a laser beam or ultrasonic energy. At a second location, the amplitudes and phases of the acoustic waves are detected and the resonant frequencies' quality factors are calculated and compared to predetermined quality factor data, such comparison providing information of whether the test object contains a defect. The inspection system and method also includes means for mounting the bearing ball for inspection. 5 figures.

  17. Resonant frequency method for bearing ball inspection

    DOEpatents

    Khuri-Yakub, B. T.; Hsieh, Chung-Kao

    1993-01-01

    The present invention provides for an inspection system and method for detecting defects in test objects which includes means for generating expansion inducing energy focused upon the test object at a first location, such expansion being allowed to contract, thereby causing pressure wave within and on the surface of the test object. Such expansion inducing energy may be provided by, for example, a laser beam or ultrasonic energy. At a second location, the amplitudes and phases of the acoustic waves are detected and the resonant frequencies' quality factors are calculated and compared to predetermined quality factor data, such comparison providing information of whether the test object contains a defect. The inspection system and method also includes means for mounting the bearing ball for inspection.

  18. Analytical study of the acoustic field in a spherical resonator for single bubble sonoluminescence.

    PubMed

    Dellavale, Damián; Urteaga, Raúl; Bonetto, Fabián J

    2010-01-01

    The acoustic field in the liquid within a spherical solid shell is calculated. The proposed model takes into account Stoke's wave equation in the viscous fluid, the membrane theory to describe the solid shell motion and the energy loss through the external couplings of the system. A point source at the resonator center is included to reproduce the acoustic emission of a sonoluminescence bubble. Particular calculations of the resulting acoustic field are performed for viscous liquids of interest in single bubble sonoluminescence. The model reveals that in case of radially symmetric modes of low frequency, the quality factor is mainly determined by the acoustic energy flowing through the mechanical coupling of the resonator. Alternatively, for high frequency modes the quality factor is mainly determined by the viscous dissipation in the liquid. Furthermore, the interaction between the bubble acoustic emission and the resonator modes is analyzed. It was found that the bubble acoustic emission produces local maxima in the resonator response. The calculated amplitudes and relative phases of the harmonics constituting the bubble acoustic environment can be used to improve multi-frequency driving in sonoluminescence.

  19. Characteristic analysis and comparison of two kinds of hybrid plasmonic annular resonators

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Shi, Feifei; Zhou, Taojie; He, Kebo; Qiu, Bocang; Zhang, Zhaoyu

    2017-04-01

    We designed two kinds of hybrid plasmonic annular resonators with different cross-sectional shapes, i.e., a square and circle called "square ring" and "circle ring" resonators, respectively. Both resonators feature an ultracompact mode volume of ˜10-4 μm3 and a relatively high-quality factor of ˜102 at a submicron footprint within our studied wavelength range from 400 to 900 nm. Their performance as defined by the Q/V ratio (quality factor over mode volume) is enhanced considerably with a reduction in their physical dimensions. There exists critical annular radii, which increase from 400 to 600 nm with an increase in the azimuthal numbers from m=7 to m=10, if the two types of rings are compared with the same mode numbers and same ring thickness of 120 nm. Below the critical radii, the circle ring resonator outperforms the square ring resonator in terms of the Q/V ratio, and the difference in Q/V of the two types of rings increases rapidly with the decrease of the radii. On the other hand, they have critical annular radii of ˜250 nm, below which the square ring resonator outperforms the circle ring resonator at the wavelengths of 490 and 595 nm however, the difference in Q/V of the two types of rings remains small within the radii range we consider. It is suggested that, in practice, with the consideration of the wavelength of green emission for these two ring structures with radii from 100 to 500 nm and ring thickness ˜120 nm, they have a negligible difference in Q/V performance.

  20. Dynamical Nuclear Magnetic Resonance Imaging of Micron-scale Liquids

    NASA Astrophysics Data System (ADS)

    Sixta, Aimee; Choate, Alexandra; Maeker, Jake; Bogat, Sophia; Tennant, Daniel; Mozaffari, Shirin; Markert, John

    We report our efforts in the development of Nuclear Magnetic Resonance Force Microscopy (NMRFM) for dynamical imaging of liquid media at the micron scale. Our probe contains microfluidic samples sealed in thin-walled (µm) quartz tubes, with a micro-oscillator sensor nearby in vacuum to maintain its high mechanical resonance quality factor. Using 10 µm spherical permalloy magnets at the oscillator tips, a 3D T1-resolved image of spin density can be obtained by reconstruction from our magnetostatics-modelled resonance slices; as part of this effort, we are exploring single-shot T1 measurements for faster dynamical imaging. We aim to further enhance imaging by using a 2 ω technique to eliminate artifact signals during the cyclic inversion of nuclear spins. The ultimate intent of these efforts is to perform magnetic resonance imaging of individual biological cells.

  1. Agarose coated spherical micro resonator for humidity measurements.

    PubMed

    Mallik, Arun Kumar; Liu, Dejun; Kavungal, Vishnu; Wu, Qiang; Farrell, Gerald; Semenova, Yuliya

    2016-09-19

    A new type of fiber optic relative humidity (RH) sensor based on an agarose coated silica microsphere resonator is proposed and experimentally demonstrated. Whispering gallery modes (WGMs) in the micro resonator are excited by evanescent coupling using a tapered fiber with ~3.3 µm waist diameter. A change in the relative humidity of the surrounding the resonator air induces changes in the refractive index (RI) and thickness of the Agarose coating layer. These changes in turn lead to a spectral shift of the WGM resonances, which can be related to the RH value after a suitable calibration. Studies of the repeatability, long-term stability, measurement accuracy and temperature dependence of the proposed sensor are carried out. The RH sensitivity of the proposed sensor depends on the concentration of the agarose gel which determines the initial thickness of the deposited coating layer. Studies of the micro- resonators with coating layers fabricated from gels with three different Agarose concentrations of 0.5%, 1.125% and 2.25 wt./vol.% showed that an increase in the initial thickness of the coating material results in an increase in sensitivity but also leads to a decrease of quality factor (Q) of the micro resonator. The highest sensitivity achieved in our experiments was 518 pm/%RH in the RH range from 30% to 70%. The proposed sensor offers the advantages of a very compact form factor, low hysteresis, good repeatability, and low cross sensitivity to temperature.

  2. Erbium-doped fiber ring resonator for resonant fiber optical gyro applications

    NASA Astrophysics Data System (ADS)

    Li, Chunming; Zhao, Rui; Tang, Jun; Xia, Meijing; Guo, Huiting; Xie, Chengfeng; Wang, Lei; Liu, Jun

    2018-04-01

    This paper reports a fiber ring resonator with erbium-doped fiber (EDF) for resonant fiber optical gyro (RFOG). To analyze compensation mechanism of the EDF on resonator, a mathematical model of the erbium-doped fiber ring resonator (EDFRR) is established based on Jones matrix to be followed by the design and fabrication of a tunable EDFRR. The performances of the fabricated EDFRR were measured and the experimental Q-factor of 2 . 47 × 108 and resonant depth of 109% were acquired separately. Compared with the resonator without the EDF, the resonant depth and Q-factor of the proposed device are increased by 2.5 times and 14 times, respectively. A potential optimum shot noise limited resolution of 0 . 042∘ / h can be obtained for the RFOG, which is promising for low-cost and high precise detection.

  3. Laser ablated YBa2Cu3O(7-x) high temperature superconductor coplanar waveguide resonator

    NASA Technical Reports Server (NTRS)

    Valco, G. J.; Blemker, A. R.; Bhasin, K. B.

    1992-01-01

    Several 8.8-GHz coplanar waveguide resonators are fabricated and tested that are made from laser ablated YBa2Cu3O(7-x) thin films on LaAlO3 substrates. A quality factor of 1250 at 77 K was measured. A correlation between the microwave performance of the resonators and the critical temperature and morphology of the films was observed.

  4. Surface-emitting circular DFB, disk- and ring- Bragg resonator lasers with chirped gratings: a unified theory and comparative study.

    PubMed

    Sun, Xiankai; Yariv, Amnon

    2008-06-09

    We have developed a theory that unifies the analysis of the modal properties of surface-emitting chirped circular grating lasers. This theory is based on solving the resonance conditions which involve two types of reflectivities of chirped circular gratings. This approach is shown to be in agreement with previous derivations which use the characteristic equations. Utilizing this unified analysis, we obtain the modal properties of circular DFB, disk-, and ring- Bragg resonator lasers. We also compare the threshold gain, single mode range, quality factor, emission efficiency, and modal area of these types of circular grating lasers. It is demonstrated that, under similar conditions, disk Bragg resonator lasers have the highest quality factor, the highest emission efficiency, and the smallest modal area, indicating their suitability in low-threshold, high-efficiency, ultracompact laser design, while ring Bragg resonator lasers have a large single mode range, high emission efficiency, and large modal area, indicating their suitability for high-efficiency, large-area, high-power applications.

  5. Streptavidin Modified ZnO Film Bulk Acoustic Resonator for Detection of Tumor Marker Mucin 1

    NASA Astrophysics Data System (ADS)

    Zheng, Dan; Guo, Peng; Xiong, Juan; Wang, Shengfu

    2016-09-01

    A ZnO-based film bulk acoustic resonator has been fabricated using a magnetron sputtering technology, which was employed as a biosensor for detection of mucin 1. The resonant frequency of the thin-film bulk acoustic resonator was located near at 1503.3 MHz. The average electromechanical coupling factor {K}_{eff}^2 and quality factor Q were 2.39 % and 224, respectively. Using the specific binding system of avidin-biotin, the streptavidin was self-assembled on the top gold electrode as the sensitive layer to indirectly test the MUC1 molecules. The resonant frequency of the biosensor decreases in response to the mass loading in range of 20-500 nM. The sensor modified with the streptavidin exhibits a high sensitivity of 4642.6 Hz/nM and a good selectivity.

  6. Optical investigation of domain resonances in magnetic garnet films

    NASA Astrophysics Data System (ADS)

    Bahlmann, N.; Gerhardt, R.; Dötsch, H.

    1996-08-01

    Magnetic garnet films of composition (Y,Bi) 3(Fe,Al) 5O 12 are grown by liquid phase epitaxy on [111] oriented substrates of Gd 3Ga 5O 12. Lattices of parallel stripe domains are stabilized by a static induction applied in the film plane. The two branches DR ± of the domain resonance and the domain wall resonance DWR are excited by microwave magnetic fields in the frequency range up to 6 GHz. Light passing the stripe domain lattice parallel to the film normal is modulated at the excitation frequency. A modulation bandwidth of more than 2 GHz is observed. The resonances can be calculated with high accuracy by a hybridization model, if the quality factor Q of the film exceeds 0.5. For Q < 0.5 a simple approximation is used to describe the superposition of the DR + and DR - resonances. The superposition model predicts two stability states of the resonance DR + which are observed experimentally. From the optical measurements precession angles of the resonance DR - of nearly 6° and wall oscillation amplitudes up to 25 nm are derived.

  7. Two-Dimensional Edge Detection by Guided Mode Resonant Metasurface

    NASA Astrophysics Data System (ADS)

    Saba, Amirhossein; Tavakol, Mohammad Reza; Karimi-Khoozani, Parisa; Khavasi, Amin

    2018-05-01

    In this letter, a new approach to perform edge detection is presented using an all-dielectric CMOS-compatible metasurface. The design is based on guided-mode resonance which provides a high quality factor resonance to make the edge detection experimentally realizable. The proposed structure that is easy to fabricate, can be exploited for detection of edges in two dimensions due to its symmetry. Also, the trade-off between gain and resolution of edge detection is discussed which can be adjusted by appropriate design parameters. The proposed edge detector has also the potential to be used in ultrafast analog computing and image processing.

  8. Analysis and optimization of acoustic wave micro-resonators integrating piezoelectric zinc oxide layers

    NASA Astrophysics Data System (ADS)

    Mortada, O.; Zahr, A. H.; Orlianges, J.-C.; Crunteanu, A.; Chatras, M.; Blondy, P.

    2017-02-01

    This paper reports on the design, simulation, fabrication, and test results of ZnO-based contour-mode micro-resonators integrating piezoelectric zinc oxide (ZnO) layers. The inter-digitated (IDT) type micro-resonators are fabricated on ZnO films and suspended top of 2 μm thick silicon membranes using silicon-on insulator technology. We analyze several possibilities of increasing the quality factor (Q) and the electromechanical coupling coefficient (kt2) of the devices by varying the numbers and lengths of the IDT electrodes and using different thicknesses of the ZnO layer. We designed and fabricated IDTs of different finger numbers (n = 25, 40, 50, and 80) and lengths (L = 100/130/170/200 μm) for three different thicknesses of ZnO films (200, 600, and 800 nm). The measured Q factor confirms that reducing the length and the number of IDT fingers enables us to reach better electrical performances at resonant frequencies around 700 MHz. The extracted results for an optimized micro-resonator device having an IDT length of 100 μm and 40 finger electrodes show a Q of 1180 and a kt2 of 7.4%. We demonstrate also that the reduction of the ZnO thickness from 800 nm to 200 nm increases the quality factor from 430 to 1600, respectively, around 700 MHz. Experimental data are in very good agreement with theoretical simulations of the fabricated devices

  9. Recent developments of film bulk acoustic resonators

    NASA Astrophysics Data System (ADS)

    Gao, Junning; Liu, Guorong; Li, Jie; Li, Guoqiang

    2016-06-01

    Film bulk acoustic wave resonator (FBAR) experienced skyrocketing development in the past 15 years, owing to the explosive development of mobile communication. It stands out in acoustic filters mainly because of high quality factor, which enables low insertion loss and sharp roll off. Except for the massive application in wireless communication, FBARs are also promising sensors because of the high sensitivity and readily integration ability to miniaturize circuits. On the ground of summarizing FBAR’s application in wireless communication as filters and in sensors including electronic nose, bio field, and pressure sensing, this paper review the main challenges of each application faced. The number of filters installed in the mobile phone has being grown explosively, which leads to overcrowded bands and put harsh requirements on component size and power consumption control for each unit. Data flow and rate are becoming increasingly demanding as well. This paper discusses three promising technical strategies addressing these issues. Among which coupled resonator filter is given intense attention because it is able to vigorously reduce the filter size by stacking two or more resonators together, and it is a great technique to increase data flow and rate. Temperature compensation methods are discussed considering their vital influence on frequency stability. Finally, materials improvement and novel materials exploration for band width modulation, tunable band acquisition, and quality factor improvement are discussed. The authors appeal attention of the academic society to bring AlN epitaxial thin film into the FBAR fabrication and have proposed a configuration to implement this idea.

  10. Form factors of the d*(2380 ) resonance

    NASA Astrophysics Data System (ADS)

    Dong, Yubing; Shen, Pengnian; Zhang, Zongye

    2018-06-01

    In order to explore the possible physical quantities for judging different structures of the newly observed resonance d*(2380 ), we study its electromagnetic form factors. In addition to the electric charge monopole C 0 , we calculate its electric quadrupole E 2 , magnetic dipole M 1 , and magnetic octupole M 3 form factors on the base of the realistic coupled Δ Δ +C8C8 channel d* wave function with both the S - and D -partial waves. The results show that the magnetic dipole moment and electric quadrupole deformation of d* are 7.602 and 2.53 ×10-2 fm2 , respectively. The calculated magnetic dipole moment in the naive constituent quark model is also compared with the result of D12π picture. By comparing with partial results where the d* state is considered with a single Δ Δ and with a D12π structures, we find that in addition to the charge distribution of d*, the magnetic dipole moment and magnetic radius can be used to discriminate different structures of d*. Moreover, a quite small electric quadrupole deformation indicates that d* is more inclined to a slightly oblate shape due to our compact hexaquark dominated structure of d*.

  11. Fiber ring resonator based opto-electronic oscillator: phase noise optimisation and thermal stability study

    NASA Astrophysics Data System (ADS)

    Saleh, K.; Bouchier, A.; Merrer, P. H.; Llopis, O.; Cibiel, G.

    2011-03-01

    In the microwave domain and among many other advantages, optics represents an elegant solution to increase the quality Q factor in a system. Different types of optical resonators lead to Q factors above 109, and these resonators can be used as an alternative to optical delay lines to set up the frequency in optoelectronic oscillators (OEO). However, microwave-optics is also a complex field, and if the use of optical resonators in high spectral purity frequency generation systems like OEO has been already demonstrated, many aspects of these OEOs are still incompletely understood, especially the contribution to the oscillator phase noise of the different optical and microwave elements used in the oscillator system. In order to improve the phase noise of a fiber ring resonator based OEO, this oscillator has been theoretically studied in term of white frequency noise. In this paper, we present a theoretical study that has lead us to optimize a fiber ring resonator and the experimental phase noise results obtained for an OEO based on an optimized optical resonator. The OEO thermal stability is also investigated in this paper.

  12. Lithographed Superconducting Resonator Development for Next-Generation Frequency Multiplexing Readout of Transition-Edge Sensors

    NASA Astrophysics Data System (ADS)

    Faramarzi, F.; De Haan, T.; Kusaka, A.; Lee, A.; Neuhauser, B.; Plambeck, R.; Raum, C.; Suzuki, A.; Westbrook, B.

    2018-03-01

    Ground-based cosmic microwave background (CMB) experiments are undergoing a period of exponential growth. Current experiments are observing with 1000-10,000 detectors, and the next-generation experiment (CMB stage 4) is proposing to deploy approximately 500,000 detectors. This order of magnitude increase in detector count will require a new approach for readout electronics. We have developed superconducting resonators for next-generation frequency-domain multiplexing (fMUX) readout architecture. Our goal is to reduce the physical size of resonators, such that resonators and detectors can eventually be integrated on a single wafer. To reduce the size of these resonators, we have designed spiral inductors and interdigitated capacitors that resonate around 10-100 MHz, an order of magnitude higher frequency compared to current fMUX readout systems. The higher frequency leads to a wider bandwidth and would enable higher multiplexing factor than the current ˜ 50 detectors per readout channel. We will report on the simulation, fabrication method, characterization technique, and measurement of quality factor of these resonators.

  13. Fast 3D magnetic resonance fingerprinting for a whole-brain coverage.

    PubMed

    Ma, Dan; Jiang, Yun; Chen, Yong; McGivney, Debra; Mehta, Bhairav; Gulani, Vikas; Griswold, Mark

    2018-04-01

    The purpose of this study was to accelerate the acquisition and reconstruction time of 3D magnetic resonance fingerprinting scans. A 3D magnetic resonance fingerprinting scan was accelerated by using a single-shot spiral trajectory with an undersampling factor of 48 in the x-y plane, and an interleaved sampling pattern with an undersampling factor of 3 through plane. Further acceleration came from reducing the waiting time between neighboring partitions. The reconstruction time was accelerated by applying singular value decomposition compression in k-space. Finally, a 3D premeasured B 1 map was used to correct for the B 1 inhomogeneity. The T 1 and T 2 values of the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology MRI phantom showed a good agreement with the standard values, with an average concordance correlation coefficient of 0.99, and coefficient of variation of 7% in the repeatability scans. The results from in vivo scans also showed high image quality in both transverse and coronal views. This study applied a fast acquisition scheme for a fully quantitative 3D magnetic resonance fingerprinting scan with a total acceleration factor of 144 as compared with the Nyquist rate, such that 3D T 1 , T 2 , and proton density maps can be acquired with whole-brain coverage at clinical resolution in less than 5 min. Magn Reson Med 79:2190-2197, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. Nanoscale welding aerosol sensing based on whispering gallery modes in a cylindrical silica resonator.

    PubMed

    Lee, Aram; Mills, Thomas; Xu, Yong

    2015-03-23

    We report an experimental technique where one uses a standard silica fiber as a cylindrical whispering gallery mode (WGM) resonator to sense airborne nanoscale aerosols produced by electric arc welding. We find that the accumulation of aerosols on the resonator surface induces a measurable red-shift in resonance frequency, and establish an empirical relation that links the magnitude of resonance shift with the amount of aerosol deposition. The WGM quality factors, by contrast, do not decrease significantly, even for samples with a large percentage of surface area covered by aerosols. Our experimental results are discussed and compared with existing literature on WGM-based nanoparticle sensing.

  15. Factor selection for service quality evaluation: a hospital case study.

    PubMed

    Ameryoun, Ahmad; Najafi, Seyedvahid; Nejati-Zarnaqi, Bayram; Khalilifar, Seyed Omid; Ajam, Mahdi; Ansarimoghadam, Ahmad

    2017-02-13

    Purpose The purpose of this paper is to develop a systematic approach to predict service quality dimension's influence on service quality using a novel analysis based on data envelopment and SERVQUAL. Design/methodology/approach To assess hospital service quality in Tehran, expectation and perception of those who received the services were evaluated using SERVQUAL. The hospital service quality dimensions were found by exploratory factor analysis (EFA). To compare customer expectation and perception, perceived service quality index (PSQI) was measured using a new method based on common weights. A novel sensitivity approach was used to test the service quality factor's impact on the PSQI. Findings A new service quality dimension named "trust in services" was found using EFA, which is not an original SERVQUAL factor. The approach was applied to assess the hospital's service quality. Since the PSQI value was 0.76 it showed that improvements are needed to meet customer expectations. The results showed the factor order that affect PSQI. "Trust in services" has the strongest influence on PSQI followed by "tangibles," "assurance," "empathy," and "responsiveness," respectively. Practical implications This work gives managers insight into service quality by following a systematic method; i.e., measuring perceived service quality from the customer viewpoint and service factors' impact on customer perception. Originality/value The procedure helps managers to select the required service quality dimensions which need improvement and predict their effects on customer perception.

  16. Thermoelastic Damping in Cone Microcantilever Resonator

    NASA Astrophysics Data System (ADS)

    Li, Pu; Zhou, Hongyue

    2017-07-01

    Microbeams with continuous or discontinuous variable cross-section have been applied in Microelectromechanical Systems (MEMS) resonators, such as tapered microbeam, torsion microbeam and stepped microbeam. Thermoelastic damping (TED), which is verified as a fundamental energy lost mechanism for microresonators, is calculated by the Zener’s model and Lifshits and Roukes’s (LR) model in general. However, for non-uniform microbeam resonators, these two classical models are not suitable in some cases. On the basis of Zener’s theory, a TED model for cone microcantilever with rectangular cross-section has been derived in this study. The comparison of results obtained by the present model and Finite Element Method (FEM) model proves that the proposed model is able to predict TED value for cone microcantilever. In addition, TED in cone microcantilever is nearly same as TED in wedge microcantilever. The results show that quality factors (Q-factors) of cone microcantilever and wedge microcantilever are larger than Q-factor of uniform microbeam at low frequencies. The Debye peak value of a uniform microcantilever is equal to 0.5Δ E , while those of cone microcantilever and wedge microcantilever are about 0.438ΔE and 0.428ΔE, respectively.

  17. Fabrication of an integrated high-quality-factor (high-Q) optofluidic sensor by femtosecond laser micromachining.

    PubMed

    Song, Jiangxin; Lin, Jintian; Tang, Jialei; Liao, Yang; He, Fei; Wang, Zhaohui; Qiao, Lingling; Sugioka, Koji; Cheng, Ya

    2014-06-16

    We report on fabrication of a microtoroid resonator of a high-quality factor (i.e., Q-factor of ~3.24 × 10(6) measured under the critical coupling condition) integrated in a microfluidic channel using femtosecond laser three-dimensional (3D) micromachining. Coupling of light into and out of the microresonator has been realized with a fiber taper that is reliably assembled with the microtoroid. The assembly of the fiber to the microtoroid is achieved by welding the fiber taper onto the sidewall of the microtoroid using CO2 laser irradiation. The integrated microresonator maintains a high Q-factor of 3.21 × 10(5) as measured in air, which should still be sufficient for many sensing applications. We test the functionality of the integrated optofluidic sensor by performing bulk refractive index sensing of purified water doped with tiny amount of salt. It is shown that a detection limit of ~1.2 × 10(-4) refractive index unit can be achieved. Our result showcases the capability of integration of high-Q microresonators with complex microfluidic systems using femtosecond laser 3D micromachining.

  18. Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface.

    PubMed

    Liu, Gui-Dong; Zhai, Xiang; Xia, Sheng-Xuan; Lin, Qi; Zhao, Chu-Jun; Wang, Ling-Ling

    2017-10-16

    In this paper, we demonstrate the combination of a dielectric metasurface with a graphene layer to realize a high performance toroidal resonance based optical modulator. The dielectric metasurface consists of two mirrored asymmetric silicon split-ring resonators (ASSRRs) that can support strong toroidal dipolar resonance with narrow line width (~0.77 nm) and high quality (Q)-factor (~1702) and contrast ratio (~100%). Numerical simulation results show that the transmission amplitude of the toroidal dipolar resonance can be efficiently modulated by varying the Fermi energy EF when the graphene layer is integrated with the dielectric metasurface, and a max transmission coefficient difference up to 78% is achieved indicating that the proposed hybrid graphene/dielectric metasurface shows good performance as an optical modulator. The effects of the asymmetry degree of the ASSRRs on the toroidal dipolar resonance are studied and the efficiency of the transmission amplitude modulation of graphene is also investigated. Our results may also provide potential applications in optical filter and bio-chemical sensing.

  19. Dimensionality in voice quality.

    PubMed

    Bele, Irene Velsvik

    2007-05-01

    This study concerns speaking voice quality in a group of male teachers (n = 35) and male actors (n = 36), as the purpose was to investigate normal and supranormal voices. The goal was the development of a method of valid perceptual evaluation for normal to supranormal and resonant voices. The voices (text reading at two loudness levels) had been evaluated by 10 listeners, for 15 vocal characteristics using VA scales. In this investigation, the results of an exploratory factor analysis of the vocal characteristics used in this method are presented, reflecting four dimensions of major importance for normal and supranormal voices. Special emphasis is placed on the effects on voice quality of a change in the loudness variable, as two loudness levels are studied. Furthermore, the vocal characteristics Sonority and Ringing voice quality are paid special attention, as the essence of the term "resonant voice" was a basic issue throughout a doctoral dissertation where this study was included.

  20. Graphene photonics for resonator-enhanced electro-optic devices and all-optical interactions

    DOEpatents

    Englund, Dirk R.; Gan, Xuetao

    2017-03-21

    Techniques for coupling light into graphene using a planar photonic crystal having a resonant cavity characterized by a mode volume and a quality factor and at least one graphene layer positioned in proximity to the planar photonic crystal to at least partially overlap with an evanescent field of the resonant cavity. At least one mode of the resonant cavity can couple into the graphene layer via evanescent coupling. The optical properties of the graphene layer can be controlled, and characteristics of the graphene-cavity system can be detected. Coupling light into graphene can include electro-optic modulation of light, photodetection, saturable absorption, bistability, and autocorrelation.

  1. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate

    PubMed Central

    Witmer, Jeremy D.; Valery, Joseph A.; Arrangoiz-Arriola, Patricio; Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.

    2017-01-01

    Future quantum networks, in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platform to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality (Q) factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical Q factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices. PMID:28406177

  2. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate

    NASA Astrophysics Data System (ADS)

    Witmer, Jeremy D.; Valery, Joseph A.; Arrangoiz-Arriola, Patricio; Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.

    2017-04-01

    Future quantum networks, in which superconducting quantum processors are connected via optical links, will require microwave-to-optical photon converters that preserve entanglement. A doubly-resonant electro-optic modulator (EOM) is a promising platform to realize this conversion. Here, we present our progress towards building such a modulator by demonstrating the optically-resonant half of the device. We demonstrate high quality (Q) factor ring, disk and photonic crystal resonators using a hybrid silicon-on-lithium-niobate material system. Optical Q factors up to 730,000 are achieved, corresponding to propagation loss of 0.8 dB/cm. We also use the electro-optic effect to modulate the resonance frequency of a photonic crystal cavity, achieving a electro-optic modulation coefficient between 1 and 2 pm/V. In addition to quantum technology, we expect that our results will be useful both in traditional silicon photonics applications and in high-sensitivity acousto-optic devices.

  3. Interrelation of the effects caused by the rotation of the whispering gallery modes resonator

    NASA Astrophysics Data System (ADS)

    Dmitriyeva, Anna D.; Filatov, Yuri V.; Shalymov, Egor V.; Venediktov, Vladimir Yu.

    2016-11-01

    Optical whispering gallery modes resonators are characterized by unique properties: ultrahigh quality factor, small amount of the modes and small size. It allows to use them in compact high-precision measuring devices. In particular these resonators can be used in the composition of gyros. For today all researches, devoted to the application of the whispering gallery modes resonators in gyros, deals only with one of induced by the rotation effects (Sagnac effect or the influence of centrifugal forces on the resonator size). In this work we study the interrelation of the effects caused by the rotation of the whispering gallery modes resonator. Also in work we consider the possibility of joint application of both effects (the influence of centrifugal forces and Sagnac effect) for measuring angular velocity.

  4. Edge waves and resonances in two-dimensional phononic crystal plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Jin-Chen, E-mail: hsujc@yuntech.edu.tw; Hsu, Chih-Hsun

    2015-05-07

    We present a numerical study on phononic band gaps and resonances occurring at the edge of a semi-infinite two-dimensional (2D) phononic crystal plate. The edge supports localized edge waves coupling to evanescent phononic plate modes that decay exponentially into the semi-infinite phononic crystal plate. The band-gap range and the number of edge-wave eigenmodes can be tailored by tuning the distance between the edge and the semi-infinite 2D phononic lattice. As a result, a phononic band gap for simultaneous edge waves and plate waves is created, and phononic cavities beside the edge can be built to support high-frequency edge resonances. Wemore » design an L3 edge cavity and analyze its resonance characteristics. Based on the band gap, high quality factor and strong confinement of resonant edge modes are achieved. The results enable enhanced control over acoustic energy flow in phononic crystal plates, which can be used in designing micro and nanoscale resonant devices and coupling of edge resonances to other types of phononic or photonic crystal cavities.« less

  5. Analysis of psychological factors for quality assessment of interactive multimodal service

    NASA Astrophysics Data System (ADS)

    Yamagishi, Kazuhisa; Hayashi, Takanori

    2005-03-01

    We proposed a subjective quality assessment model for interactive multimodal services. First, psychological factors of an audiovisual communication service were extracted by using the semantic differential (SD) technique and factor analysis. Forty subjects participated in subjective tests and performed point-to-point conversational tasks on a PC-based TV phone that exhibits various network qualities. The subjects assessed those qualities on the basis of 25 pairs of adjectives. Two psychological factors, i.e., an aesthetic feeling and a feeling of activity, were extracted from the results. Then, quality impairment factors affecting these two psychological factors were analyzed. We found that the aesthetic feeling is mainly affected by IP packet loss and video coding bit rate, and the feeling of activity depends on delay time and video frame rate. We then proposed an opinion model derived from the relationships among quality impairment factors, psychological factors, and overall quality. The results indicated that the estimation error of the proposed model is almost equivalent to the statistical reliability of the subjective score. Finally, using the proposed model, we discuss guidelines for quality design of interactive audiovisual communication services.

  6. Evaluation of Effective Parameters on Quality of Magnetic Resonance Imaging-computed Tomography Image Fusion in Head and Neck Tumors for Application in Treatment Planning.

    PubMed

    Shirvani, Atefeh; Jabbari, Keyvan; Amouheidari, Alireza

    2017-01-01

    In radiation therapy, computed tomography (CT) simulation is used for treatment planning to define the location of tumor. Magnetic resonance imaging (MRI)-CT image fusion leads to more efficient tumor contouring. This work tried to identify the practical issues for the combination of CT and MRI images in real clinical cases. The effect of various factors is evaluated on image fusion quality. In this study, the data of thirty patients with brain tumors were used for image fusion. The effect of several parameters on possibility and quality of image fusion was evaluated. These parameters include angles of the patient's head on the bed, slices thickness, slice gap, and height of the patient's head. According to the results, the first dominating factor on quality of image fusion was the difference slice gap between CT and MRI images (cor = 0.86, P < 0.005) and second factor was the angle between CT and MRI slice in the sagittal plane (cor = 0.75, P < 0.005). In 20% of patients, this angle was more than 28° and image fusion was not efficient. In 17% of patients, difference slice gap in CT and MRI was >4 cm and image fusion quality was <25%. The most important problem in image fusion is that MRI images are taken without regard to their use in treatment planning. In general, parameters related to the patient position during MRI imaging should be chosen to be consistent with CT images of the patient in terms of location and angle.

  7. Evaluation of Effective Parameters on Quality of Magnetic Resonance Imaging-computed Tomography Image Fusion in Head and Neck Tumors for Application in Treatment Planning

    PubMed Central

    Shirvani, Atefeh; Jabbari, Keyvan; Amouheidari, Alireza

    2017-01-01

    Background: In radiation therapy, computed tomography (CT) simulation is used for treatment planning to define the location of tumor. Magnetic resonance imaging (MRI)-CT image fusion leads to more efficient tumor contouring. This work tried to identify the practical issues for the combination of CT and MRI images in real clinical cases. The effect of various factors is evaluated on image fusion quality. Materials and Methods: In this study, the data of thirty patients with brain tumors were used for image fusion. The effect of several parameters on possibility and quality of image fusion was evaluated. These parameters include angles of the patient's head on the bed, slices thickness, slice gap, and height of the patient's head. Results: According to the results, the first dominating factor on quality of image fusion was the difference slice gap between CT and MRI images (cor = 0.86, P < 0.005) and second factor was the angle between CT and MRI slice in the sagittal plane (cor = 0.75, P < 0.005). In 20% of patients, this angle was more than 28° and image fusion was not efficient. In 17% of patients, difference slice gap in CT and MRI was >4 cm and image fusion quality was <25%. Conclusion: The most important problem in image fusion is that MRI images are taken without regard to their use in treatment planning. In general, parameters related to the patient position during MRI imaging should be chosen to be consistent with CT images of the patient in terms of location and angle. PMID:29387672

  8. Factors influencing microinjection molding replication quality

    NASA Astrophysics Data System (ADS)

    Vera, Julie; Brulez, Anne-Catherine; Contraires, Elise; Larochette, Mathieu; Trannoy-Orban, Nathalie; Pignon, Maxime; Mauclair, Cyril; Valette, Stéphane; Benayoun, Stéphane

    2018-01-01

    In recent years, there has been increased interest in producing and providing high-precision plastic parts that can be manufactured by microinjection molding: gears, pumps, optical grating elements, and so on. For all of these applications, the replication quality is essential. This study has two goals: (1) fabrication of high-precision parts using the conventional injection molding machine; (2) identification of robust parameters that ensure production quality. Thus, different technological solutions have been used: cavity vacuuming and the use of a mold coated with DLC or CrN deposits. AFM and SEM analyses were carried out to characterize the replication profile. The replication quality was studied in terms of the process parameters, coated and uncoated molds and crystallinity of the polymer. Specific studies were processed to quantify the replicability of injection molded parts (ABS, PC and PP). Analysis of the Taguchi experimental designs permits prioritization of the impact of each parameter on the replication quality. A discussion taking into account these new parameters and the thermal and spreading properties on the coatings is proposed. It appeared that, in general, increasing the mold temperature improves the molten polymer fill in submicron features except for the steel insert (for which the presence of a vacuum is the most important factor). Moreover, the DLC coating was the best coating to increase the quality of the replication. This result could be explained by the lower thermal diffusivity of this coating. We noted that the viscosity of the polymers is not a primordial factor of the replication quality.

  9. High quality factor, fully switchable terahertz superconducting metasurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scalari, G., E-mail: scalari@phys.ethz.ch; Maissen, C.; Faist, J.

    2014-12-29

    We present a complementary THz metasurface realised with Niobium thin film which displays a quality factor Q = 54 and a fully switchable behaviour as a function of the temperature. The switching behaviour and the high quality factor are due to a careful design of the metasurface aimed at maximising the ohmic losses when the Nb is above the critical temperature and minimising the radiative coupling. The superconductor allows the operation of the cavity with high Q and the use of inductive elements with a high aspect ratio. Comparison with three dimensional finite element simulations highlights the crucial role of the inductivemore » elements and of the kinetic inductance of the Cooper pairs in achieving the high quality factor and the high field enhancement.« less

  10. The Impact of Soft Factors on Quality Improvement in Manufacturing Industry

    NASA Astrophysics Data System (ADS)

    Chan, Shiau Wei; Fauzi Ahmad, Md; Kong, Mei Wan

    2017-08-01

    Nowadays, soft factors have become the key factors of success in quality improvement of an organisation. Many organisations have neglected the importance of soft factors, this may influence the organisational performance. Hence, the purpose of this research is to examine the impact of soft factors on quality improvement in manufacturing industries. Six hypotheses were examined while considering six dimensions of soft factors including management commitment, customer focus, supplier relationship, employee involvement, training and education, and reward and recognition that have a positive impact on quality improvement. In this study, eighty one managers from the quality department were randomly selected in the manufacturing industry in Batu Pahat, Johor. The questionnaires were distributed to them. The researcher analysed the quantitatively collected data using descriptive analysis and correlation analysis. The findings of this study revealed that all soft factors are correlated to the quality improvement in an organisation with a high significant value but the regression analysis shows that the supplier relationship and employee involvement has more significant impact on quality improvement as compared to other soft factors which contributes of this study.

  11. Performance of monolayer graphene nanomechanical resonators with electrical readout.

    PubMed

    Chen, Changyao; Rosenblatt, Sami; Bolotin, Kirill I; Kalb, William; Kim, Philip; Kymissis, Ioannis; Stormer, Horst L; Heinz, Tony F; Hone, James

    2009-12-01

    The enormous stiffness and low density of graphene make it an ideal material for nanoelectromechanical applications. Here, we demonstrate the fabrication and electrical readout of monolayer graphene resonators, and test their response to changes in mass and temperature. The devices show resonances in the megahertz range, and the strong dependence of resonant frequency on applied gate voltage can be fitted to a membrane model to yield the mass density and built-in strain of the graphene. Following the removal and addition of mass, changes in both density and strain are observed, indicating that adsorbates impart tension to the graphene. On cooling, the frequency increases, and the shift rate can be used to measure the unusual negative thermal expansion coefficient of graphene. The quality factor increases with decreasing temperature, reaching approximately 1 x 10(4) at 5 K. By establishing many of the basic attributes of monolayer graphene resonators, the groundwork for applications of these devices, including high-sensitivity mass detectors, is put in place.

  12. Anisotropic resonator analysis using the Fourier-Bessel mode solver

    NASA Astrophysics Data System (ADS)

    Gauthier, Robert C.

    2018-03-01

    A numerical mode solver for optical structures that conform to cylindrical symmetry using Faraday's and Ampere's laws as starting expressions is developed when electric or magnetic anisotropy is present. The technique builds on the existing Fourier-Bessel mode solver which allows resonator states to be computed exploiting the symmetry properties of the resonator and states to reduce the matrix system. The introduction of anisotropy into the theoretical frame work facilitates the inclusion of PML borders permitting the computation of open ended structures and a better estimation of the resonator state quality factor. Matrix populating expressions are provided that can accommodate any material anisotropy with arbitrary orientation in the computation domain. Several example of electrical anisotropic computations are provided for rationally symmetric structures such as standard optical fibers, axial Bragg-ring fibers and bottle resonators. The anisotropy present in the materials introduces off diagonal matrix elements in the permittivity tensor when expressed in cylindrical coordinates. The effects of the anisotropy of computed states are presented and discussed.

  13. Understanding the Institutional-Level Factors of Urban School Quality

    ERIC Educational Resources Information Center

    Gottfried, Michael A.

    2012-01-01

    Background/Context: This article addresses which school-level factors contribute to school quality. Previous research has focused on assessing the effects of school-level variables on student-level quality (e.g., achievement). However, the field has been limited in not evaluating the effects of school-level factors directly on measured…

  14. Efficient and robust analysis of complex scattering data under noise in microwave resonators.

    PubMed

    Probst, S; Song, F B; Bushev, P A; Ustinov, A V; Weides, M

    2015-02-01

    Superconducting microwave resonators are reliable circuits widely used for detection and as test devices for material research. A reliable determination of their external and internal quality factors is crucial for many modern applications, which either require fast measurements or operate in the single photon regime with small signal to noise ratios. Here, we use the circle fit technique with diameter correction and provide a step by step guide for implementing an algorithm for robust fitting and calibration of complex resonator scattering data in the presence of noise. The speedup and robustness of the analysis are achieved by employing an algebraic rather than an iterative fit technique for the resonance circle.

  15. Ripple feedback for the resonant-filter unity-power-factor rectifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streng, S.A.; King, R.J.

    1992-07-01

    An unusual bucklike unity-power-factor rectifier with a resonant load-balancing network permits current-limited operation down to zero output voltage in a single-stage-topology. However, this rectifier has been found to be sensitive to ac-line voltage distortion and is potentially unstable with realistic values of ac-line impedance. In this paper, a new ripple feedback is proposed that solves both problems. A large-signal time-varying analysis is given along with incremental, quasi-static, and low-frequency approximations. Experimental verification is provided by a 500-W 50-kHz rectifier operating from the 120-V 60-Hz distribution system.

  16. Photonic crystal ring resonator-based four-channel dense wavelength division multiplexing demultiplexer on silicon on insulator platform: design and analysis

    NASA Astrophysics Data System (ADS)

    Sreenivasulu, Tupakula; Bhowmick, Kaustav; Samad, Shafeek A.; Yadunath, Thamerassery Illam R.; Badrinarayana, Tarimala; Hegde, Gopalkrishna; Srinivas, Talabattula

    2018-04-01

    A micro/nanofabrication feasible compact photonic crystal (PC) ring-resonator-based channel drop filter has been designed and analyzed for operation in C and L bands of communication window. The four-channel demultiplexer consists of ring resonators of holes in two-dimensional PC slab. The proposed assembly design of dense wavelength division multiplexing setup is shown to achieve optimal quality factor, without altering the lattice parameters or resonator size or inclusion of scattering holes. Transmission characteristics are analyzed using the three-dimensional finite-difference time-domain simulation approach. The radiation loss of the ring resonator was minimized by forced cancelation of radiation fields by fine-tuning the air holes inside the ring resonator. An average cross talk of -34 dB has been achieved between the adjacent channels maintaining an average quality factor of 5000. Demultiplexing is achieved by engineering only the air holes inside the ring, which makes it a simple and tolerant design from the fabrication perspective. Also, the device footprint of 500 μm2 on silicon on insulator platform makes it easy to fabricate the device using e-beam lithography technique.

  17. Factors Associated with Sleep Quality in Maxillectomy Patients.

    PubMed

    Li, Na; Otomaru, Takafumi; Said, Mohamed Moustafa; Kanazaki, Ayako; Yeerken, Yesiboli; Taniguchi, Hisashi

    To investigate factors affecting sleep quality in maxillectomy patients after prosthetic rehabilitation and to determine the association between defect status and sleep quality. A total of 57 patients participated in this study. Sleep quality, general health, and oral health-related quality of life (OHRQoL) were evaluated. Of the total sample, 89% had poor sleep quality. Early morning awakening and daytime sleepiness were the most common complaints. Defect status and the extent of neck dissection could affect sleep quality in these patients. Improvement of OHRQoL in patients with dentomaxillary prostheses may help improve sleep.

  18. Modelling of resonant MEMS magnetic field sensor with electromagnetic induction sensing

    NASA Astrophysics Data System (ADS)

    Liu, Song; Xu, Huaying; Xu, Dehui; Xiong, Bin

    2017-06-01

    This paper presents an analytical model of resonant MEMS magnetic field sensor with electromagnetic induction sensing. The resonant structure vibrates in square extensional (SE) mode. By analyzing the vibration amplitude and quality factor of the resonant structure, the magnetic field sensitivity as a function of device structure parameters and encapsulation pressure is established. The developed analytical model has been verified by comparing calculated results with experiment results and the deviation between them is only 10.25%, which shows the feasibility of the proposed device model. The model can provide theoretical guidance for further design optimization of the sensor. Moreover, a quantitative study of the magnetic field sensitivity is conducted with respect to the structure parameters and encapsulation pressure based on the proposed model.

  19. Factors associated with health-related quality of life among operating engineers.

    PubMed

    Choi, Seung Hee; Redman, Richard W; Terrell, Jeffrey E; Pohl, Joanne M; Duffy, Sonia A

    2012-11-01

    Because health-related quality of life among blue-collar workers has not been well studied, the purpose of this study was to determine factors associated with health-related quality of life among Operating Engineers. With cross-sectional data from a convenience sample of 498 Operating Engineers, personal and health behavioral factors associated with health-related quality of life were examined. Multivariate linear regression analysis revealed that personal factors (older age, being married, more medical comorbidities, and depression) and behavioral factors (smoking, low fruit and vegetable intake, low physical activity, high body mass index, and low sleep quality) were associated with poor health-related quality of life. Operating Engineers are at risk for poor health-related quality of life. Underlying medical comorbidities and depression should be well managed. Worksite wellness programs addressing poor health behaviors may be beneficial.

  20. Training, Quality Assurance Factors, and Tools Investigation: a Work Report and Suggestions on Software Quality Assurance

    NASA Technical Reports Server (NTRS)

    Lee, Pen-Nan

    1991-01-01

    Previously, several research tasks have been conducted, some observations were obtained, and several possible suggestions have been contemplated involving software quality assurance engineering at NASA Johnson. These research tasks are briefly described. Also, a brief discussion is given on the role of software quality assurance in software engineering along with some observations and suggestions. A brief discussion on a training program for software quality assurance engineers is provided. A list of assurance factors as well as quality factors are also included. Finally, a process model which can be used for searching and collecting software quality assurance tools is presented.

  1. Fabrication and characterisation of nanocrystalline graphite MEMS resonators using a geometric design to control buckling

    NASA Astrophysics Data System (ADS)

    Fishlock, S. J.; O'Shea, S. J.; McBride, J. W.; Chong, H. M. H.; Pu, S. H.

    2017-09-01

    The simulation, fabrication and characterisation of nanographite MEMS resonators is reported in this paper. The deposition of nanographite is achieved using plasma-enhanced chemical vapour deposition directly onto numerous substrates such as commercial silicon wafers. As a result, many of the reliability issues of devices based on transferred graphene are avoided. The fabrication of the resonators is presented along with a simple undercutting method to overcome buckling, by changing the effective stress of the structure from ~436 MPa compressive, to ~13 MPa tensile. The characterisation of the resonators using electrostatic actuation and laser Doppler vibrometry is reported, demonstrating resonator frequencies from 5-640 kHz and quality factor above 1819 in vacuum obtained.

  2. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas

    PubMed Central

    Alfaro-Mozaz, F. J.; Alonso-González, P.; Vélez, S.; Dolado, I.; Autore, M.; Mastel, S.; Casanova, F.; Hueso, L. E.; Li, P.; Nikitin, A. Y.; Hillenbrand, R.

    2017-01-01

    Polaritons in layered materials—including van der Waals materials—exhibit hyperbolic dispersion and strong field confinement, which makes them highly attractive for applications including optical nanofocusing, sensing and control of spontaneous emission. Here we report a near-field study of polaritonic Fabry–Perot resonances in linear antennas made of a hyperbolic material. Specifically, we study hyperbolic phonon–polaritons in rectangular waveguide antennas made of hexagonal boron nitride (h-BN, a prototypical van der Waals crystal). Infrared nanospectroscopy and nanoimaging experiments reveal sharp resonances with large quality factors around 100, exhibiting atypical modal near-field patterns that have no analogue in conventional linear antennas. By performing a detailed mode analysis, we can assign the antenna resonances to a single waveguide mode originating from the hybridization of hyperbolic surface phonon–polaritons (Dyakonov polaritons) that propagate along the edges of the h-BN waveguide. Our work establishes the basis for the understanding and design of linear waveguides, resonators, sensors and metasurface elements based on hyperbolic materials and metamaterials. PMID:28589941

  3. Induced high-order resonance linewidth shrinking with multiple coupled resonators in silicon-organic hybrid slotted two-dimensional photonic crystals for reduced optical switching power in bistable devices

    NASA Astrophysics Data System (ADS)

    Hoang, Thu Trang; Ngo, Quang Minh; Vu, Dinh Lam; Le, Khai Q.; Nguyen, Truong Khang; Nguyen, Hieu P. T.

    2018-01-01

    Shrinking the linewidth of resonances induced by multiple coupled resonators is comprehensively analyzed using the coupled-mode theory (CMT) in time. Two types of coupled resonators under investigation are coupled resonator optical waveguides (CROWs) and side-coupled resonators with waveguide (SCREW). We examine the main parameters influencing on the spectral response such as the number of resonators (n) and the phase shift (φ) between two adjacent resonators. For the CROWs geometry consisting of n coupled resonators, we observe the quality (Q) factor of the right- and left-most resonant lineshapes increases n times larger than that of a single resonator. For the SCREW geometry, relying on the phase shift, sharp, and asymmetric resonant lineshape of the high Q factor a narrow linewidth of the spectral response could be achieved. We employ the finite-difference time-domain (FDTD) method to design and simulate two proposed resonators for practical applications. The proposed coupled resonators in silicon-on-insulator (SOI) slotted two-dimensional (2-D) photonic crystals (PhCs) filled and covered with a low refractive index organic material. Slotted PhC waveguides and cavities are designed to enhance the electromagnetic intensity and to confine the light into small cross-sectional area with low refractive index so that efficient optical devices could be achieved. A good agreement between the theoretical CMT analysis and the FDTD simulation is shown as an evidence for our accurate investigation. All-optical switches based on the CROWs in the SOI slotted 2-D PhC waveguide that are filled and covered by a nonlinear organic cladding to overcome the limitations of its well-known intrinsic properties are also presented. From the calculations, we introduce a dependency of the normalized linewidth of the right-most resonance and its switching power of the all-optical switches on number of resonator, n. This result might provide a guideline for all-optical signal processing on

  4. Optoreflectometry determination of the resonance properties of a vocal fold.

    PubMed

    Garrel, Renaud; Nicollas, Richard; Giovanni, Antoine; Ouaknine, Maurice

    2007-09-01

    A new method of measuring the resonance properties of a vocal fold using electromagnetic excitation and laser optoreflectometry for response monitoring is described. Two resonance peaks were experimentally identified with one magnet stuck on the vocal fold at frequencies F0(1m)=54.7 Hz and F0'(1m)=35.8 Hz. The addition of a second magnet allowed calculation of the actual viscoelastic properties of the vocal fold: F0=71.8 Hz; quality factor Q=8.03; mass m=0.057 g; stiffness k=11.6 Nm; and damping zeta=0.0032 Nm(-1). A numerical simulation of a two-layered model verified the experimental data.

  5. Realization of high quality production schedules: Structuring quality factors via iteration of user specification processes

    NASA Technical Reports Server (NTRS)

    Hamazaki, Takashi

    1992-01-01

    This paper describes an architecture for realizing high quality production schedules. Although quality is one of the most important aspects of production scheduling, it is difficult, even for a user, to specify precisely. However, it is also true that the decision as to whether a scheduler is good or bad can only be made by the user. This paper proposes the following: (1) the quality of a schedule can be represented in the form of quality factors, i.e. constraints and objectives of the domain, and their structure; (2) quality factors and their structure can be used for decision making at local decision points during the scheduling process; and (3) that they can be defined via iteration of user specification processes.

  6. Edge geometry effects on resonance response of electroplated cylindrical Ni/PZT/Ni magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Yakubov, Vladislav; Xu, Lirong; Volinsky, Alex A.; Qiao, Lijie; Pan, De'an

    2017-08-01

    Trilayer Ni/PZT/Ni cylindrical magnetoelectric (ME) composites were prepared by electrodeposition, a process, which creates sub-millimeter raised edges due to current concentration near sharp points. The ME response in both axial and vertical modes was measured with the edges, with only outer edges removed, and with both outer and inner edges removed. The ME voltage coefficient improved at resonance by 40% and 147% without the edges in the vertical and axial modes, respectively. The observed improvements in three different samples were only present at the ME resonance and no changes were detected outside of the ME resonance. Mechanical quality factor at resonance also improved with no effect on the resonant frequency. Experimentally demonstrated minor geometry changes resulted in substantial ME improvement at resonant frequency. This study demonstrates device performance optimization. The observed effects have been attributed to improved vibrations in terms of decreased damping coefficient and enhanced vibration amplitude at resonance.

  7. Low-noise, transformer-coupled resonant photodetector for squeezed state generation.

    PubMed

    Chen, Chaoyong; Shi, Shaoping; Zheng, Yaohui

    2017-10-01

    In an actual setup of squeezed state generation, the stability of a squeezing factor is mainly limited by the performance of the servo-control system, which is mainly influenced by the shot noise and gain of a photodetector. We present a unique transformer-coupled LC resonant amplifier as a photodetector circuit to reduce the electronic noise and increase the gain of the photodetector. As a result, we obtain a low-noise, high gain photodetector with the gain of more than 1.8×10 5 V/A, and the input current noise of less than 4.7 pA/Hz. By adjusting the parameters of the transformer, the quality factor Q of the resonant circuit is close to 100 in the frequency range of more than 100 MHz, which meets the requirement for weak power detection in the application of squeezed state generation.

  8. Temperature Dependence of the Resonant Magnetoelectric Effect in Layered Heterostructures.

    PubMed

    Burdin, Dmitrii A; Ekonomov, Nikolai A; Chashin, Dmitrii V; Fetisov, Leonid Y; Fetisov, Yuri K; Shamonin, Mikhail

    2017-10-16

    The dependence of the resonant direct magnetoelectric effect on temperature is studied experimentally in planar composite structures. Samples of rectangular shapes with dimensions of 5 mm × 20 mm employed ferromagnetic layers of either an amorphous (metallic glass) alloy or nickel with a thickness of 20-200 μm and piezoelectric layers of single crystalline langatate material or lead zirconate titanate piezoelectric ceramics with a thickness of 500 μm. The temperature of the samples was varied in a range between 120 and 390 K by blowing a gaseous nitrogen stream around them. It is shown that the effective characteristics of the magnetoelectric effect-such as the mechanical resonance frequency f r , the quality factor Q and the magnitude of the magnetoelectric coefficient α E at the resonance frequency-are contingent on temperature. The interrelations between the temperature changes of the characteristics of the magnetoelectric effect and the temperature variations of the following material parameters-Young's modulus Y , the acoustic quality factor of individual layers, the dielectric constant ε , the piezoelectric modulus d of the piezoelectric layer as well as the piezomagnetic coefficients λ (n) of the ferromagnetic layer-are established. The effect of temperature on the characteristics of the nonlinear magnetoelectric effect is observed for the first time. The results can be useful for designing magnetoelectric heterostructures with specified temperature characteristics, in particular, for the development of thermally stabilized magnetoelectric devices.

  9. Temperature Dependence of the Resonant Magnetoelectric Effect in Layered Heterostructures

    PubMed Central

    Burdin, Dmitrii A.; Ekonomov, Nikolai A.; Chashin, Dmitrii V.; Fetisov, Leonid Y.; Fetisov, Yuri K.

    2017-01-01

    The dependence of the resonant direct magnetoelectric effect on temperature is studied experimentally in planar composite structures. Samples of rectangular shapes with dimensions of 5 mm × 20 mm employed ferromagnetic layers of either an amorphous (metallic glass) alloy or nickel with a thickness of 20–200 μm and piezoelectric layers of single crystalline langatate material or lead zirconate titanate piezoelectric ceramics with a thickness of 500 μm. The temperature of the samples was varied in a range between 120 and 390 K by blowing a gaseous nitrogen stream around them. It is shown that the effective characteristics of the magnetoelectric effect—such as the mechanical resonance frequency fr, the quality factor Q and the magnitude of the magnetoelectric coefficient αE at the resonance frequency—are contingent on temperature. The interrelations between the temperature changes of the characteristics of the magnetoelectric effect and the temperature variations of the following material parameters—Young’s modulus Y, the acoustic quality factor of individual layers, the dielectric constant ε, the piezoelectric modulus d of the piezoelectric layer as well as the piezomagnetic coefficients λ(n) of the ferromagnetic layer—are established. The effect of temperature on the characteristics of the nonlinear magnetoelectric effect is observed for the first time. The results can be useful for designing magnetoelectric heterostructures with specified temperature characteristics, in particular, for the development of thermally stabilized magnetoelectric devices. PMID:29035312

  10. Stamp transferred suspended graphene mechanical resonators for radio frequency electrical readout.

    PubMed

    Song, Xuefeng; Oksanen, Mika; Sillanpää, Mika A; Craighead, H G; Parpia, J M; Hakonen, Pertti J

    2012-01-11

    We present a simple micromanipulation technique to transfer suspended graphene flakes onto any substrate and to assemble them with small localized gates into mechanical resonators. The mechanical motion of the graphene is detected using an electrical, radio frequency (RF) reflection readout scheme where the time-varying graphene capacitor reflects a RF carrier at f = 5-6 GHz producing modulation sidebands at f ± f(m). A mechanical resonance frequency up to f(m) = 178 MHz is demonstrated. We find both hardening/softening Duffing effects on different samples and obtain a critical amplitude of ~40 pm for the onset of nonlinearity in graphene mechanical resonators. Measurements of the quality factor of the mechanical resonance as a function of dc bias voltage V(dc) indicates that dissipation due to motion-induced displacement currents in graphene electrode is important at high frequencies and large V(dc). © 2011 American Chemical Society

  11. Accurate simulation of backscattering spectra in the presence of sharp resonances

    NASA Astrophysics Data System (ADS)

    Barradas, N. P.; Alves, E.; Jeynes, C.; Tosaki, M.

    2006-06-01

    In elastic backscattering spectrometry, the shape of the observed spectrum due to resonances in the nuclear scattering cross-section is influenced by many factors. If the energy spread of the beam before interaction is larger than the resonance width, then a simple convolution with the energy spread on exit and with the detection system resolution will lead to a calculated spectrum with a resonance much sharper than the observed signal. Also, the yield from a thin layer will not be calculated accurately. We have developed an algorithm for the accurate simulation of backscattering spectra in the presence of sharp resonances. Albeit approximate, the algorithm leads to dramatic improvements in the quality and accuracy of the simulations. It is simple to implement and leads to only small increases of the calculation time, being thus suitable for routine data analysis. We show different experimental examples, including samples with roughness and porosity.

  12. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation.

    PubMed

    Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil; Proksch, Roger

    2015-08-01

    Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the "forest of peaks" frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM in air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.

  13. 1 million-Q optomechanical microdisk resonators for sensing with very large scale integration

    NASA Astrophysics Data System (ADS)

    Hermouet, M.; Sansa, M.; Banniard, L.; Fafin, A.; Gely, M.; Allain, P. E.; Santos, E. Gil; Favero, I.; Alava, T.; Jourdan, G.; Hentz, S.

    2018-02-01

    Cavity optomechanics have become a promising route towards the development of ultrasensitive sensors for a wide range of applications including mass, chemical and biological sensing. In this study, we demonstrate the potential of Very Large Scale Integration (VLSI) with state-of-the-art low-loss performance silicon optomechanical microdisks for sensing applications. We report microdisks exhibiting optical Whispering Gallery Modes (WGM) with 1 million quality factors, yielding high displacement sensitivity and strong coupling between optical WGMs and in-plane mechanical Radial Breathing Modes (RBM). Such high-Q microdisks with mechanical resonance frequencies in the 102 MHz range were fabricated on 200 mm wafers with Variable Shape Electron Beam lithography. Benefiting from ultrasensitive readout, their Brownian motion could be resolved with good Signal-to-Noise ratio at ambient pressure, as well as in liquid, despite high frequency operation and large fluidic damping: the mechanical quality factor reduced from few 103 in air to 10's in liquid, and the mechanical resonance frequency shifted down by a few percent. Proceeding one step further, we performed an all-optical operation of the resonators in air using a pump-probe scheme. Our results show our VLSI process is a viable approach for the next generation of sensors operating in vacuum, gas or liquid phase.

  14. Directed growth of horizontally aligned gallium nitride nanowires for nanoelectromechanical resonator arrays.

    PubMed

    Henry, Tania; Kim, Kyungkon; Ren, Zaiyuan; Yerino, Christopher; Han, Jung; Tang, Hong X

    2007-11-01

    We report the growth of horizontally aligned arrays and networks of GaN nanowires (NWs) as resonant components in nanoelectromechanical systems (NEMS). A combination of top-down selective area growth (SAG) and bottom-up vapor-liquid-solid (VLS) synthesis enables flexible fabrication of highly ordered nanowire arrays in situ with no postgrowth dispersion. Mechanical resonance of free-standing nanowires are measured, with quality factors (Q) ranging from 400 to 1000. We obtained a Young's modulus (E) of approximately 338 GPa from an array of NWs with varying diameters and lengths. The measurement allows detection of nanowire motion with a rotating frame and reveals dual fundamental resonant modes in two orthogonal planes. A universal ratio between the resonant frequencies of these two fundamental modes, irrespective of their dimensions, is observed and attributed to an isosceles cross section of GaN NWs.

  15. Analysis of a log periodic nano-antenna for multi-resonant broadband field enhancement and the Purcell factor

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Kong, Fanmin; Li, Kang; Sheng, Shiwei

    2015-05-01

    Broadband nano-antennas play a central role in many areas of science and technology. However, a more intuitive understanding for rational design of nano-antennas with broadband response is desirable. A log periodic nano-antenna was studied in the paper. The finite-difference time-domain method was used to explore the spectral characteristics of the log periodic nano-antenna by the excitation mode of reception and emission. The effects of geometry on field enhancement and the Purcell factor were systematically described and investigated. The field enhancement of the nano-antenna can be tuned by geometric parameters such as the outer radius, the tooth angle, and the ratio of the radial sizes of successive teeth, which provide control over both the spectral resonance position and the field enhancement peak amplitude. The Purcell factor mainly depends on the outer radius, the tooth angle, and the bow angle. In addition, multi-resonant field enhancement was analyzed in detail by conformal transformation. Furthermore, a careful comparison of the characteristics of a bowtie nano-antenna demonstrated that the log periodic nano-antenna has considerable potential for multi-resonant field enhancement and improvement of the Purcell factor. The results provide a promising prospect for designing and optimizing the log periodic nano-antenna in a broad range of wavelengths.

  16. Graphene as an active virtually massless top electrode for RF solidly mounted bulk acoustic wave (SMR-BAW) resonators

    NASA Astrophysics Data System (ADS)

    Knapp, Marius; Hoffmann, René; Lebedev, Vadim; Cimalla, Volker; Ambacher, Oliver

    2018-03-01

    Mechanical and electrical losses induced by an electrode material greatly influence the performance of bulk acoustic wave (BAW) resonators. Graphene as a conducting and virtually massless 2D material is a suitable candidate as an alternative electrode material for BAW resonators which reduces electrode induced mechanical losses. In this publication we show that graphene acts as an active top electrode for solidly mounted BAW resonators (BAW-SMR) at 2.1 GHz resonance frequency. Due to a strong decrease of mass loading and its remarkable electronic properties, graphene demonstrates its ability as an ultrathin conductive layer. In our experiments we used an optimized graphene wet transfer on aluminum nitride-based solidly mounted resonator devices. We achieved more than a triplication of the resonator’s quality factor Q and a resonance frequency close to an ‘unloaded’ resonator without metallization. Our results reveal the direct influence of both, the graphene quality and the graphene contacting via metal structures, on the performance characteristic of a BAW resonator. These findings clearly show the potential of graphene in minimizing mechanical losses due to its virtually massless character. Moreover, they highlight the advantages of graphene and other 2D conductive materials for alternative electrodes in electroacoustic resonators for radio frequency applications.

  17. Trampoline Resonator Fabrication for Tests of Quantum Mechanics at High Mass

    NASA Astrophysics Data System (ADS)

    Weaver, Matthew; Pepper, Brian; Sonin, Petro; Eerkens, Hedwig; Buters, Frank; de Man, Sven; Bouwmeester, Dirk

    2014-03-01

    There has been much interest recently in optomechanical devices that can reach the ground state. Two requirements for achieving ground state cooling are high optical finesse in the cavity and high mechanical quality factor. We present a set of trampoline resonator devices using high stress silicon nitride and superpolishing of mirrors with sufficient finesse (as high as 60,000) and quality factor (as high as 480,000) for ground state cooling in a dilution refrigerator. These devices have a higher mass, between 80 and 100 ng, and lower frequency, between 200 and 500 kHz, than other devices that have been cooled to the ground state, enabling tests of quantum mechanics at a larger mass scale.

  18. High spectral purity silicon ring resonator photon-pair source

    NASA Astrophysics Data System (ADS)

    Steidle, Jeffrey A.; Fanto, Michael L.; Tison, Christopher C.; Wang, Zihao; Preble, Stefan F.; Alsing, Paul M.

    2015-05-01

    Here we present the experimental demonstration of a Silicon ring resonator photon-pair source. The crystalline Silicon ring resonator (radius of 18.5μm) was designed to realize low dispersion across multiple resonances, which allows for operation with a high quality factor of Q~50k. In turn, the source exhibits very high brightness of >3x105 photons/s/mW2/GHz since the produced photon pairs have a very narrow bandwidth. Furthermore, the waveguidefiber coupling loss was minimized to <1.5dB using an inverse tapered waveguide (tip width of ~150nm over a 300μm length) that is butt-coupled to a high-NA fiber (Nufern UHNA-7). This ensured minimal loss of photon pairs to the detectors, which enabled very high purity photon pairs with minimal noise, as exhibited by a very high Coincidental-Accidental Ratio of >1900. The low coupling loss (3dB fiber-fiber) also allowed for operation with very low off-chip pump power of <200μW. In addition, the zero dispersion of the ring resonator resulted in the production of a photon-pair comb across multiple resonances symmetric about the pump resonance (every ~5nm spanning >20nm), which could be used in future wavelength division multiplexed quantum networks.

  19. Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance.

    PubMed

    Vandersypen, L M; Steffen, M; Breyta, G; Yannoni, C S; Sherwood, M H; Chuang, I L

    The number of steps any classical computer requires in order to find the prime factors of an l-digit integer N increases exponentially with l, at least using algorithms known at present. Factoring large integers is therefore conjectured to be intractable classically, an observation underlying the security of widely used cryptographic codes. Quantum computers, however, could factor integers in only polynomial time, using Shor's quantum factoring algorithm. Although important for the study of quantum computers, experimental demonstration of this algorithm has proved elusive. Here we report an implementation of the simplest instance of Shor's algorithm: factorization of N = 15 (whose prime factors are 3 and 5). We use seven spin-1/2 nuclei in a molecule as quantum bits, which can be manipulated with room temperature liquid-state nuclear magnetic resonance techniques. This method of using nuclei to store quantum information is in principle scalable to systems containing many quantum bits, but such scalability is not implied by the present work. The significance of our work lies in the demonstration of experimental and theoretical techniques for precise control and modelling of complex quantum computers. In particular, we present a simple, parameter-free but predictive model of decoherence effects in our system.

  20. Piezoelectric MEMS resonators for monitoring grape must fermentation

    NASA Astrophysics Data System (ADS)

    Toledo, J.; Jiménez-Márquez, F.; Úbeda, J.; Ruiz-Díez, V.; Pfusterschmied, G.; Schmid, U.; Sánchez-Rojas, J. L.

    2016-10-01

    The traditional procedure followed by winemakers for monitoring grape must fermentation is not automated, has not enough accuracy or has only been tested in discrete must samples. In order to contribute to the automation and improvement of the wine fermentation process, we have designed an AlN-based piezoelectric microresonator, serving as a density sensor and being excited in the 4th-order roof tile-shaped vibration mode. Furthermore, conditioning circuits were designed to convert the one-port impedance of the resonator into a resonant two-port transfer function. This allowed us to design a Phase Locked Loop-based oscillator circuit, implemented with a commercial lock-in amplifier with an oscillation frequency determined by the vibrating mode. We were capable of measuring the fermentation kinetics by both tracking the resonance frequency and by determining the quality factor measurements of the microresonator. Moreover, the resonator was calibrated with an artificial model solution of grape must and then applied for the monitoring of real grape must fermentation. Our results demonstrate the high potential of MEMS resonators to detect the decrease in sugar and the increase in ethanol concentrations during the grape must fermentation with a resolution of 100 μg/ml and a sensitivity of 0.16 Hz/μg/ml as upper limits.

  1. Optimal all-optical switching of a microcavity resonance in the telecom range using the electronic Kerr effect.

    PubMed

    Yüce, Emre; Ctistis, Georgios; Claudon, Julien; Gérard, Jean-Michel; Vos, Willem L

    2016-01-11

    We have switched GaAs/AlAs and AlGaAs/AlAs planar microcavities that operate in the "Original" (O) telecom band by exploiting the instantaneous electronic Kerr effect. We observe that the resonance frequency reversibly shifts within one picosecond when the nanostructure is pumped with low-energy photons. We investigate experimentally and theoretically the role of several parameters: the material backbone and its electronic bandgap, the quality factor, and the duration of the switch pulse. The magnitude of the frequency shift is reduced when the backbone of the central λ-layer has a greater electronic bandgap compared to the cavity resonance frequency and the frequency of the pump. This observation is caused by the fact that pumping with photon energies near the bandgap resonantly enhances the switched magnitude. We thus find that cavities operating in the telecom O-band are more amenable to ultrafast Kerr switching than those operating at lower frequencies, such as the C-band. Our results indicate that the large bandgap of AlGaAs/AlAs cavity allows to tune both the pump and the probe to the telecom range to perform Kerr switching without detrimental two-photon absorption. We observe that the magnitude of the resonance frequency shift decreases with increasing quality factor of the cavity. Our model shows that the magnitude of the resonance frequency shift depends on the pump pulse duration and is maximized when the duration matches the cavity storage time to within a factor two. In our experiments, we obtain a maximum shift of the cavity resonance relative to the cavity linewidth of 20%. We project that the shift of the cavity resonance can be increased twofold with a pump pulse duration that better matches the cavity storage time. We provide the essential parameter settings for different materials so that the frequency shift of the cavity resonance can be maximized using the electronic Kerr effect.

  2. Perpendicularly magnetized YIG-film resonators and waveguides with high operating power

    DOE PAGES

    Balinskiy, M.; Mongolov, B.; Gutierrez, D.; ...

    2016-12-27

    We propose a novel technique for building YIG film-based resonators and waveguides for high power operating microwave devices. Our approach is based on the effect of total internal reflection (TIR) at the interface between the non-metalized and metalized regions of YIG film, which take place for forward volume magnetostatic spin waves in perpendicularly magnetized YIG films. Prototype resonators and waveguides were designed, fabricated, and tested. The obtained experimental data demonstrate high quality factor of 50 dB and a high power operation up to +15 dBm in the frequency range from 1.8 GHz to 5.1 GHz. Application of such resonators andmore » waveguides in electrically tunable microwave oscillators promises an extremely low phase noises about - 135 dB/Hz at 10 kHz offset.« less

  3. Factors Affecting Sleep Quality of Patients in Intensive Care Unit

    PubMed Central

    Bihari, Shailesh; Doug McEvoy, R.; Matheson, Elisha; Kim, Susan; Woodman, Richard J.; Bersten, Andrew D.

    2012-01-01

    Introduction: Sleep disturbance is a frequently overlooked complication of intensive care unit (ICU) stay. Aim: To evaluate sleep quality among patients admitted to ICU and investigate environmental and non-environmental factors that affect sleep quality in ICU. Methods: Over a 22-month period, we consecutively recruited patients who spent ≥ 2 nights post-endotracheal extubation in ICU and who were orientated to time, place, and person on the day of discharge. Self-reported sleep quality, according to a modified Freedman questionnaire, which provided data on self-reported ICU sleep quality in ICU and environmental factors affecting sleep quality in the ICU, were collected. We also investigated non-environmental factors, such as severity of illness, ICU interventions, and medications that can affect sleep quality. Results: Fifty males and 50 females were recruited with a mean (± SD) age of 65.1 ± 15.2 years. APACHE II score at admission to ICU was 18.1 ± 7.5 with duration of stay 6.7 ± 6.5days. Self-reported sleep quality score at home (1 = worst; 10 = best) was 7.0 ± 2.2; this decreased to 4.0 ± 1.7 during their stay in ICU (p < 0.001). In multivariate analysis with APACHE III as severity of illness (R2 = 0.25), factors [exp(b)(95% CI), p value] which significantly affected sleep in ICU were sex [0.37(0.19-0.72), p < 0.01], age and sex interaction [1.02(1.01-1.03), p < 0.01], bedside phone [0.92(0.87-0.97), p < 0.01], prior quality of sleep at home [1.30(1.05-1.62), p = 0.02], and use of steroids [0.82(0.69-0.98), p = 0.03] during the stay in ICU. Conclusion: Reduced sleep quality is a common problem in ICU with a multifactorial etiology. Citation: Bihari S; McEvoy RD; Kim S; Woodman RJ; Bersten AD. Factors affecting sleep quality of patients in intensive care unit. J Clin Sleep Med 2012;8(3):301-307. PMID:22701388

  4. Huge light-enhancement by coupling a Bowtie Nano-antenna's plasmonic resonance to a photonic crystal mode.

    PubMed

    Eter, Ali El; Grosjean, Thierry; Viktorovitch, Pierre; Letartre, Xavier; Benyattou, Taha; Baida, Fadi I

    2014-06-16

    We numerically demonstrate a drastic enhancement of the light intensity in the vicinity of the gap of Bowtie Nano-antenna (BA) through its coupling with Photonic Crystal (PC) resonator. The resulting huge energy transfer toward the BA is based on the coupling between two optical resonators (BA and PC membrane) of strongly unbalanced quality factors. Thus, these two resonators are designed so that the PC is only slightly perturbed in term of resonance properties. The proposed hybrid dielectric-plasmonic structure may open new avenues in the generation of deeply subwavelength intense optical sources, with direct applications in various domains such as data storage, non-linear optics, optical trapping and manipulation, microscopy, etc.

  5. A Thermoelastic Damping Model for the Cone Microcantilever Resonator with Circular Cross-section

    NASA Astrophysics Data System (ADS)

    Li, Pu; Zhou, Hongyue

    2017-07-01

    Microbeams with variable cross-section have been applied in Microelectromechanical Systems (MEMS) resonators. Quality factor (Q-factor) is an important factor evaluating the performance of MEMS resonators, and high Q-factor stands for the excellent performance. Thermoelastic damping (TED), which has been verified as a fundamental energy lost mechanism for microresonators, determines the upper limit of Q-factor. TED can be calculated by the Zener’s model and Lifshits and Roukes (LR) model. However, for microbeam resonators with variable cross-sections, these two models become invalid in some cases. In this work, we derived the TED model for cone microcantilever with circular cross-section that is a representative non-uniform microbeam. The comparison of results obtained by the present model and Finite Element Method (FEM) model proves that the present model is valid for predicting TED value for cone microcantilever with circular cross-section. The results suggest that the first-order natural frequencies and TED values of cone microcantilever are larger than those of uniform microbeam for large aspect ratios (l/r 0). In addition, the Debye peak value of a uniform microcantilever is equal to 0.5ΔE, while that of cone microcantilever is about 0.438ΔE.

  6. Preslaughter factors affecting poultry meat quality chapter 2.

    USDA-ARS?s Scientific Manuscript database

    Poultry meat quality is affected by numerous antemortem factors, in particular those occurring during the last 24 hours that the bird is alive. These short term factors influence carcass yield (live shrink), carcass defects (bruising, broken/dislocated bones), carcass microbiological contamination, ...

  7. Dielectric perturbations and Rayleigh scattering from an optical fiber near a superconducting resonator

    NASA Astrophysics Data System (ADS)

    Voigt, Kristen; Hertzberg, Jared; Dutta, Sudeep; Budoyo, Rangga; Ballard, Cody; Lobb, Chris; Wellstood, Frederick

    As part of an experiment to optically trap 87Rb atoms near a superconducting device, we have coupled an optical fiber to a translatable thin-film lumped-element superconducting Al microwave resonator that is cooled to 15 mK in a dilution refrigerator. The lumped-element resonator has a resonance frequency of 6.15 GHz, a quality factor of 8 x 105 at high powers, and is mounted inside a superconducting aluminum 3D cavity. The 60-µm-diameter optical fiber passes through small openings in the cavity and close to the lumped-element resonator. The 3D cavity is mounted on an x-z Attocube-translation stage that allows the lumped-element resonator and optical fiber to be moved relative to each other. When the resonator is brought near to the fiber, we observe a shift in resonance frequency, of up to 8 MHz, due to the presence of the fiber dielectric. When optical power is sent through the fiber, Rayleigh scattering in the fiber causes a position-dependent weak illumination of the thin-film resonator affecting its resonance frequency and Q. We model the optical response of the resonator by taking into account optical production, recombination, and diffusion of quasiparticles as well as the non-uniform position-dependent illumination of the resonator.

  8. Identifying Key Hospital Service Quality Factors in Online Health Communities

    PubMed Central

    Jung, Yuchul; Hur, Cinyoung; Jung, Dain

    2015-01-01

    Background The volume of health-related user-created content, especially hospital-related questions and answers in online health communities, has rapidly increased. Patients and caregivers participate in online community activities to share their experiences, exchange information, and ask about recommended or discredited hospitals. However, there is little research on how to identify hospital service quality automatically from the online communities. In the past, in-depth analysis of hospitals has used random sampling surveys. However, such surveys are becoming impractical owing to the rapidly increasing volume of online data and the diverse analysis requirements of related stakeholders. Objective As a solution for utilizing large-scale health-related information, we propose a novel approach to identify hospital service quality factors and overtime trends automatically from online health communities, especially hospital-related questions and answers. Methods We defined social media–based key quality factors for hospitals. In addition, we developed text mining techniques to detect such factors that frequently occur in online health communities. After detecting these factors that represent qualitative aspects of hospitals, we applied a sentiment analysis to recognize the types of recommendations in messages posted within online health communities. Korea’s two biggest online portals were used to test the effectiveness of detection of social media–based key quality factors for hospitals. Results To evaluate the proposed text mining techniques, we performed manual evaluations on the extraction and classification results, such as hospital name, service quality factors, and recommendation types using a random sample of messages (ie, 5.44% (9450/173,748) of the total messages). Service quality factor detection and hospital name extraction achieved average F1 scores of 91% and 78%, respectively. In terms of recommendation classification, performance (ie, precision) is

  9. Identifying key hospital service quality factors in online health communities.

    PubMed

    Jung, Yuchul; Hur, Cinyoung; Jung, Dain; Kim, Minki

    2015-04-07

    The volume of health-related user-created content, especially hospital-related questions and answers in online health communities, has rapidly increased. Patients and caregivers participate in online community activities to share their experiences, exchange information, and ask about recommended or discredited hospitals. However, there is little research on how to identify hospital service quality automatically from the online communities. In the past, in-depth analysis of hospitals has used random sampling surveys. However, such surveys are becoming impractical owing to the rapidly increasing volume of online data and the diverse analysis requirements of related stakeholders. As a solution for utilizing large-scale health-related information, we propose a novel approach to identify hospital service quality factors and overtime trends automatically from online health communities, especially hospital-related questions and answers. We defined social media-based key quality factors for hospitals. In addition, we developed text mining techniques to detect such factors that frequently occur in online health communities. After detecting these factors that represent qualitative aspects of hospitals, we applied a sentiment analysis to recognize the types of recommendations in messages posted within online health communities. Korea's two biggest online portals were used to test the effectiveness of detection of social media-based key quality factors for hospitals. To evaluate the proposed text mining techniques, we performed manual evaluations on the extraction and classification results, such as hospital name, service quality factors, and recommendation types using a random sample of messages (ie, 5.44% (9450/173,748) of the total messages). Service quality factor detection and hospital name extraction achieved average F1 scores of 91% and 78%, respectively. In terms of recommendation classification, performance (ie, precision) is 78% on average. Extraction and

  10. Low-noise, transformer-coupled resonant photodetector for squeezed state generation

    NASA Astrophysics Data System (ADS)

    Chen, Chaoyong; Shi, Shaoping; Zheng, Yaohui

    2017-10-01

    In an actual setup of squeezed state generation, the stability of a squeezing factor is mainly limited by the performance of the servo-control system, which is mainly influenced by the shot noise and gain of a photodetector. We present a unique transformer-coupled LC resonant amplifier as a photodetector circuit to reduce the electronic noise and increase the gain of the photodetector. As a result, we obtain a low-noise, high gain photodetector with the gain of more than 1.8 ×1 05 V/A, and the input current noise of less than 4.7 pA/√{Hz }. By adjusting the parameters of the transformer, the quality factor Q of the resonant circuit is close to 100 in the frequency range of more than 100 MHz, which meets the requirement for weak power detection in the application of squeezed state generation.

  11. Preventing Raman Lasing in High-Q WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry; Maleki, Lute

    2007-01-01

    A generic design has been conceived to suppress the Raman effect in whispering- gallery-mode (WGM) optical resonators that have high values of the resonance quality factor (Q). Although it is possible to exploit the Raman effect (even striving to maximize the Raman gain to obtain Raman lasing), the present innovation is intended to satisfy a need that arises in applications in which the Raman effect inhibits the realization of the full potential of WGM resonators as frequency-selection components. Heretofore, in such applications, it has been necessary to operate high-Q WGM resonators at unattractively low power levels to prevent Raman lasing. (The Raman-lasing thresholds of WGM optical resonators are very low and are approximately proportional to Q(sup -2)). Heretofore, two ways of preventing Raman lasting at high power levels have been known, but both entail significant disadvantages: A resonator can be designed so that the optical field is spread over a relatively large mode volume to bring the power density below the threshold. For any given combination of Q and power level, there is certain mode volume wherein Raman lasing does not start. Unfortunately, a resonator that has a large mode volume also has a high spectral density, which is undesirable in a typical photonic application. A resonator can be cooled to the temperature of liquid helium, where the Raman spectrum is narrower and, therefore, the Raman gain is lower. However, liquid-helium cooling is inconvenient. The present design overcomes these disadvantages, making it possible to operate a low-spectral-density (even a single-mode) WGM resonator at a relatively high power level at room temperature, without risk of Raman lasing.

  12. Frequency-tunable superconducting resonators via nonlinear kinetic inductance

    NASA Astrophysics Data System (ADS)

    Vissers, M. R.; Hubmayr, J.; Sandberg, M.; Chaudhuri, S.; Bockstiegel, C.; Gao, J.

    2015-08-01

    We have designed, fabricated, and tested a frequency-tunable high-Q superconducting resonator made from a niobium titanium nitride film. The frequency tunability is achieved by injecting a DC through a current-directing circuit into the nonlinear inductor whose kinetic inductance is current-dependent. We have demonstrated continuous tuning of the resonance frequency in a 180 MHz frequency range around 4.5 GHz while maintaining the high internal quality factor Qi > 180 000. This device may serve as a tunable filter and find applications in superconducting quantum computing and measurement. It also provides a useful tool to study the nonlinear response of a superconductor. In addition, it may be developed into techniques for measurement of the complex impedance of a superconductor at its transition temperature and for readout of transition-edge sensors.

  13. Evaluation of diet quality of the elderly and associated factors.

    PubMed

    Pinto de Souza Fernandes, Dalila; Duarte, Maria Sônia Lopes; Pessoa, Milene Cristine; Franceschini, Sylvia do Carmo Castro; Ribeiro, Andréia Queiroz

    2017-09-01

    Observational studies suggest healthy dietary patterns are associated with risk reduction and better control of various chronic diseases. However, few Brazilian studies have focused on evaluating the quality of the elderly diet and its relationship with diseases. This study aimed to estimate the association between diet quality and socioeconomic factors, health and nutrition of the elderly. This is a cross-sectional population-based study whose target population were non-institutionalized elderly residents in the city of Viçosa, Brazil. Anthropometric, socioeconomic, health conditions, lifestyle and food consumption variables were obtained from a semi-structured questionnaire. The quality of the diet was assessed by the revised Healthy Eating Index classified into tertiles, considering the first tertile as "Poor diet quality," the second as 'Intermediate diet quality' and the third as "Better diet quality." To identify factors independently associated with diet quality model, the works used multinomial logistic regression. In the results of the multivariate analysis, the factors independently associated with "better diet quality" included female gender, higher education, history of one to five medical visits in the past year, history of diabetes mellitus, dyslipidemia and the use of polypharmacy. Our results show that most seniors need to improve the quality of their diet and those of male gender with no or little education, and those who do not seek medical services constitute the group that needs attention concerning the measures to improve the quality of their diet. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil

    2015-08-15

    Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the “forest of peaks” frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM inmore » air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.« less

  15. The human factors of quality and QA in R D environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, S.G.

    1990-01-01

    Achieving quality is a human activity. It is therefore important to consider the human in the design, development and evaluation of work processes and environments in an effort to enhance human performance and minimize error. It is also important to allow for individual differences when considering human factors issues. Human Factors is the field of study which can provide information on integrating the human into the system. Human factors and quality are related for the customer of R D work, R D personnel who perform the work, and the quality professional who overviews the process of quality in the work.more » 18 refs., 1 fig.« less

  16. Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials

    NASA Astrophysics Data System (ADS)

    Lecaplain, C.; Javerzac-Galy, C.; Gorodetsky, M. L.; Kippenberg, T. J.

    2016-11-01

    The unavailability of highly transparent materials in the mid-infrared has been the main limitation in the development of ultra-sensitive molecular sensors or cavity-based spectroscopy applications. Whispering gallery mode microresonators have attained ultra-high-quality (Q) factor resonances in the near-infrared and visible. Here we report ultra-high Q factors in the mid-infrared using polished alkaline earth metal fluoride crystals. Using an uncoated chalcogenide tapered fibre as a high-ideality coupler in the mid-infrared, we study via cavity ringdown technique the losses of BaF2, CaF2, MgF2 and SrF2 microresonators. We show that MgF2 is limited by multiphonon absorption by studying the temperature dependence of the Q factor. In contrast, in SrF2 and BaF2 the lower multiphonon absorption leads to ultra-high Q factors at 4.5 μm. These values correspond to an optical finesse of , the highest value achieved for any type of mid-infrared resonator to date.

  17. Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials

    PubMed Central

    Lecaplain, C.; Javerzac-Galy, C.; Gorodetsky, M. L.; Kippenberg, T. J.

    2016-01-01

    The unavailability of highly transparent materials in the mid-infrared has been the main limitation in the development of ultra-sensitive molecular sensors or cavity-based spectroscopy applications. Whispering gallery mode microresonators have attained ultra-high-quality (Q) factor resonances in the near-infrared and visible. Here we report ultra-high Q factors in the mid-infrared using polished alkaline earth metal fluoride crystals. Using an uncoated chalcogenide tapered fibre as a high-ideality coupler in the mid-infrared, we study via cavity ringdown technique the losses of BaF2, CaF2, MgF2 and SrF2 microresonators. We show that MgF2 is limited by multiphonon absorption by studying the temperature dependence of the Q factor. In contrast, in SrF2 and BaF2 the lower multiphonon absorption leads to ultra-high Q factors at 4.5 μm. These values correspond to an optical finesse of , the highest value achieved for any type of mid-infrared resonator to date. PMID:27869119

  18. Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials.

    PubMed

    Lecaplain, C; Javerzac-Galy, C; Gorodetsky, M L; Kippenberg, T J

    2016-11-21

    The unavailability of highly transparent materials in the mid-infrared has been the main limitation in the development of ultra-sensitive molecular sensors or cavity-based spectroscopy applications. Whispering gallery mode microresonators have attained ultra-high-quality (Q) factor resonances in the near-infrared and visible. Here we report ultra-high Q factors in the mid-infrared using polished alkaline earth metal fluoride crystals. Using an uncoated chalcogenide tapered fibre as a high-ideality coupler in the mid-infrared, we study via cavity ringdown technique the losses of BaF 2 , CaF 2 , MgF 2 and SrF 2 microresonators. We show that MgF 2 is limited by multiphonon absorption by studying the temperature dependence of the Q factor. In contrast, in SrF 2 and BaF 2 the lower multiphonon absorption leads to ultra-high Q factors at 4.5 μm. These values correspond to an optical finesse of , the highest value achieved for any type of mid-infrared resonator to date.

  19. Directly q-switched high power resonator based on XLMA-fibers

    NASA Astrophysics Data System (ADS)

    Giesberts, M.; Fitzau, O.; Hoffmann, H.-D.; Lange, R.; Bachert, C.; Krause, V.

    2018-02-01

    In this paper we present a simple approach to achieving nanosecond pulses from a directly q-switched high-power resonator based on extra-large mode area (XLMA) fibers with a beam quality factor M2 < 15. An average output power of > 500 W has been demonstrated for repetition frequencies between 50-100 kHz. The resonator consists of a single fiber q-switched with soldered Pockels-cells which exhibit a very high contrast ratio leading to output pulses down to about 10 ns and peak powers up to > 250 kW at 1064 nm wavelength. By using this design instead of a fiber MOPA setup, a cost-effective and less complex system could be implemented.

  20. Parametric Oscillation, Frequency Mixing, and Injection Locking of Strongly Coupled Nanomechanical Resonator Modes.

    PubMed

    Seitner, Maximilian J; Abdi, Mehdi; Ridolfo, Alessandro; Hartmann, Michael J; Weig, Eva M

    2017-06-23

    We study locking phenomena of two strongly coupled, high quality factor nanomechanical resonator modes to a common parametric drive at a single drive frequency in different parametric driving regimes. By controlled dielectric gradient forces we tune the resonance frequencies of the flexural in-plane and out-of-plane oscillation of the high stress silicon nitride string through their mutual avoided crossing. For the case of the strong common parametric drive signal-idler generation via nondegenerate parametric two-mode oscillation is observed. Broadband frequency tuning of the very narrow linewidth signal and idler resonances is demonstrated. When the resonance frequencies of the signal and idler get closer to each other, partial injection locking, injection pulling, and complete injection locking to half of the drive frequency occurs depending on the pump strength. Furthermore, satellite resonances, symmetrically offset from the signal and idler by their beat note, are observed, which can be attributed to degenerate four-wave mixing in the highly nonlinear mechanical oscillations.

  1. A Lateral Differential Resonant Pressure Microsensor Based on SOI-Glass Wafer-Level Vacuum Packaging.

    PubMed

    Xie, Bo; Xing, Yonghao; Wang, Yanshuang; Chen, Jian; Chen, Deyong; Wang, Junbo

    2015-09-21

    This paper presents the fabrication and characterization of a resonant pressure microsensor based on SOI-glass wafer-level vacuum packaging. The SOI-based pressure microsensor consists of a pressure-sensitive diaphragm at the handle layer and two lateral resonators (electrostatic excitation and capacitive detection) on the device layer as a differential setup. The resonators were vacuum packaged with a glass cap using anodic bonding and the wire interconnection was realized using a mask-free electrochemical etching approach by selectively patterning an Au film on highly topographic surfaces. The fabricated resonant pressure microsensor with dual resonators was characterized in a systematic manner, producing a quality factor higher than 10,000 (~6 months), a sensitivity of about 166 Hz/kPa and a reduced nonlinear error of 0.033% F.S. Based on the differential output, the sensitivity was increased to two times and the temperature-caused frequency drift was decreased to 25%.

  2. A resonance approach to cochlear mechanics.

    PubMed

    Bell, Andrew

    2012-01-01

    How does the cochlea analyse sound into its component frequencies? In the 1850s Helmholtz thought it occurred by resonance, whereas a century later Békésy's work indicated a travelling wave. The latter answer seemed to settle the question, but with the discovery in 1978 that the cochlea emits sound, the mechanics of the cochlea was back on the drawing board. Recent studies have raised questions about whether the travelling wave, as currently understood, is adequate to explain observations. Applying basic resonance principles, this paper revisits the question. A graded bank of harmonic oscillators with cochlear-like frequencies and quality factors is simultaneously excited, and it is found that resonance gives rise to similar frequency responses, group delays, and travelling wave velocities as observed by experiment. The overall effect of the group delay gradient is to produce a decelerating wave of peak displacement moving from base to apex at characteristic travelling wave speeds. The extensive literature on chains of coupled oscillators is considered, and the occurrence of travelling waves, pseudowaves, phase plateaus, and forced resonance in such systems is noted. This alternative approach to cochlear mechanics shows that a travelling wave can simply arise as an apparently moving amplitude peak which passes along a bank of resonators without carrying energy. This highlights the possible role of the fast pressure wave and indicates how phase delays and group delays of a set of driven harmonic oscillators can generate an apparent travelling wave. It is possible to view the cochlea as a chain of globally forced coupled oscillators, and this model incorporates fundamental aspects of both the resonance and travelling wave theories.

  3. A Resonance Approach to Cochlear Mechanics

    PubMed Central

    Bell, Andrew

    2012-01-01

    Background How does the cochlea analyse sound into its component frequencies? In the 1850s Helmholtz thought it occurred by resonance, whereas a century later Békésy's work indicated a travelling wave. The latter answer seemed to settle the question, but with the discovery in 1978 that the cochlea emits sound, the mechanics of the cochlea was back on the drawing board. Recent studies have raised questions about whether the travelling wave, as currently understood, is adequate to explain observations. Approach Applying basic resonance principles, this paper revisits the question. A graded bank of harmonic oscillators with cochlear-like frequencies and quality factors is simultaneously excited, and it is found that resonance gives rise to similar frequency responses, group delays, and travelling wave velocities as observed by experiment. The overall effect of the group delay gradient is to produce a decelerating wave of peak displacement moving from base to apex at characteristic travelling wave speeds. The extensive literature on chains of coupled oscillators is considered, and the occurrence of travelling waves, pseudowaves, phase plateaus, and forced resonance in such systems is noted. Conclusion and significance This alternative approach to cochlear mechanics shows that a travelling wave can simply arise as an apparently moving amplitude peak which passes along a bank of resonators without carrying energy. This highlights the possible role of the fast pressure wave and indicates how phase delays and group delays of a set of driven harmonic oscillators can generate an apparent travelling wave. It is possible to view the cochlea as a chain of globally forced coupled oscillators, and this model incorporates fundamental aspects of both the resonance and travelling wave theories. PMID:23144835

  4. Ringing phenomenon in coupled cavities: Application to modal coupling in whispering-gallery-mode resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trebaol, Stephane; Dumeige, Yannick; Feron, Patrice

    We present a simple model to describe the transient response of two coupled resonators probed by a monochromatic wave whose frequency is rapidly swept across the resonances with respect to their characteristic photon lifetimes. The model is applied to analyze the dynamic behavior of the modal coupling between two degenerate resonances of the same cavity. In particular, this can be used to describe the coupling of counterpropagating whispering gallery modes (WGMs) by Rayleigh scattering. The theory is successfully compared to experiments carried out in silica microspheres. These results show that this ringdown technique can be extended to accurately measure linearmore » properties and frequency splittings of high-quality factor WGM microresonators.« less

  5. Terahertz Sensor Using Photonic Crystal Cavity and Resonant Tunneling Diodes

    NASA Astrophysics Data System (ADS)

    Okamoto, Kazuma; Tsuruda, Kazuisao; Diebold, Sebastian; Hisatake, Shintaro; Fujita, Masayuki; Nagatsuma, Tadao

    2017-09-01

    In this paper, we report on a terahertz (THz) sensing system. Compared to previously reported systems, it has increased system sensitivity and reduced size. Both are achieved by using a photonic crystal (PC) cavity as a resonator and compact resonant tunneling diodes (RTDs) as signal source and as detector. The measured quality factor of the PC cavity is higher than 10,000, and its resonant frequency is 318 GHz. To demonstrate the operation of the refractive index sensing system, dielectric tapes of various thicknesses are attached to the PC cavity and the change in the resonator's refractive index is measured. The figure of merit of refractive index sensing using the developed system is one order higher than that of previous studies, which used metallic metamaterial resonators. The frequency of the RTD-based source can be swept from 316 to 321 GHz by varying the RTD direct current voltage. This effect is used to realize a compact frequency tunable signal source. Measurements using a commercial signal source and detector are carried out to verify the accuracy of the data obtained using RTDs as a signal source and as a detector.

  6. Resonance Frequency Readout Circuit for a 900 MHz SAW Device

    PubMed Central

    Liu, Heng; Zhang, Chun; Weng, Zhaoyang; Guo, Yanshu; Wang, Zhihua

    2017-01-01

    A monolithic resonance frequency readout circuit with high resolution and short measurement time is presented for a 900 MHz RF surface acoustic wave (SAW) sensor. The readout circuit is composed of a fractional-N phase-locked loop (PLL) as the stimulus source to the SAW device and a phase-based resonance frequency detecting circuit using successive approximation (SAR). A new resonance frequency searching strategy has been proposed based on the fact that the SAW device phase-frequency response crosses zero monotonically around the resonance frequency. A dedicated instant phase difference detecting circuit is adopted to facilitate the fast SAR operation for resonance frequency searching. The readout circuit has been implemented in 180 nm CMOS technology with a core area of 3.24 mm2. In the experiment, it works with a 900 MHz SAW resonator with a quality factor of Q = 130. Experimental results show that the readout circuit consumes 7 mW power from 1.6 V supply. The frequency resolution is 733 Hz, and the relative accuracy is 0.82 ppm, and it takes 0.48 ms to complete one measurement. Compared to the previous results in the literature, this work has achieved the shortest measurement time with a trade-off between measurement accuracy and measurement time. PMID:28914799

  7. Resonance Frequency Readout Circuit for a 900 MHz SAW Device.

    PubMed

    Liu, Heng; Zhang, Chun; Weng, Zhaoyang; Guo, Yanshu; Wang, Zhihua

    2017-09-15

    A monolithic resonance frequency readout circuit with high resolution and short measurement time is presented for a 900 MHz RF surface acoustic wave (SAW) sensor. The readout circuit is composed of a fractional-N phase-locked loop (PLL) as the stimulus source to the SAW device and a phase-based resonance frequency detecting circuit using successive approximation (SAR). A new resonance frequency searching strategy has been proposed based on the fact that the SAW device phase-frequency response crosses zero monotonically around the resonance frequency. A dedicated instant phase difference detecting circuit is adopted to facilitate the fast SAR operation for resonance frequency searching. The readout circuit has been implemented in 180 nm CMOS technology with a core area of 3.24 mm². In the experiment, it works with a 900 MHz SAW resonator with a quality factor of Q = 130. Experimental results show that the readout circuit consumes 7 mW power from 1.6 V supply. The frequency resolution is 733 Hz, and the relative accuracy is 0.82 ppm, and it takes 0.48 ms to complete one measurement. Compared to the previous results in the literature, this work has achieved the shortest measurement time with a trade-off between measurement accuracy and measurement time.

  8. Magnetic Resonance Imaging at 1.5 Tesla With a Cochlear Implant Magnet in Place: Image Quality and Usability.

    PubMed

    Sharon, Jeffrey D; Northcutt, Benjamin G; Aygun, Nafi; Francis, Howard W

    2016-10-01

    To study the quality and usability of magnetic resonance imaging (MRI) obtained with a cochlear implant magnet in situ. Retrospective chart review. Tertiary care center. All patients who underwent brain MRI with a cochlear implant magnet in situ from 2007 to 2016. None. Grade of view of the ipsilateral internal auditory canal (IAC) and cerebellopontine angle (CPA). Inclusion criteria were met by 765 image sequences in 57 MRI brain scans. For the ipsilateral IAC, significant predictors of a grade 1 (normal) view included: absence of fat saturation algorithm (p = 0.001), nonaxial plane of imaging (p = 0.01), and contrast administration (p = 0.001). For the ipsilateral CPA, significant predictors of a grade 1 view included: absence of fat saturation algorithm (p = 0.001), high-resolution images (p = 0.001), and nonaxial plane of imaging (p = 0.001). Overall, coronal T1 high-resolution images produced the highest percentage of grade 1 views (89%). Fat saturation also caused a secondary ring-shaped distortion artifact, which impaired the view of the contralateral CPA 52.7% of the time, and the contralateral IAC 42.8% of the time. MRI scans without any usable (grade 1) sequences had fewer overall sequences (N = 4.3) than scans with at least one usable sequence (N = 7.1, p = 0.001). MRI image quality with a cochlear implant magnet in situ depends on several factors, which can be modified to maximize image quality in this unique patient population.

  9. Hindcasting the paroxysmal eruption of Villarrica using resonant infrasound tones

    NASA Astrophysics Data System (ADS)

    Johnson, J. B.; Watson, L. M.; Dunham, E. M.; Anderson, J.; Franco, L.; Cardona, C., Sr.; Palma, J.

    2017-12-01

    Volcanoes radiate their most intense sounds in the infrasound band (below 20 Hz), which can be well recorded many kilometers from a vent. Open-vent volcanic systems, with active degassing, are particularly effective at producing infrasound, and they characteristically produce resonant tones controlled by the geometry of their crater. Changes in infrasound resonant tones, and their damping coefficient, thus provide a means to infer crater geometry, including crater volume, depth, and profile. This study analyzes the rapidly varying infrasound tone and quality factor of infrasound at Volcan Villarrica (Chile) leading up to its paroxysmal eruption on 3 March 2015. The changes in infrasound reflected a rise in the lava lake surface starting 100 hours prior to the violent and sudden eruption. We suggest that infrasound surveillance of open-vent resonance is a powerful tool with application for forecasting volcanic unrest at open vent volcanoes.

  10. Direct laser writing of polymer micro-ring resonator ultrasonic sensors

    NASA Astrophysics Data System (ADS)

    Wei, Heming; Krishnaswamy, Sridhar

    2017-04-01

    With the development of photoacoustic technology in recent years, ultrasound-related sensors play a vital role in a number of areas ranging from scientific research to nondestructive testing. Compared with the traditional PZT transducer as ultrasonic sensors, novel ultrasonic sensors based on optical methods such as micro-ring resonators have gained increasing attention. The total internal reflection of the light along the cavity results in light propagating in microcavities as whispering gallery modes (WGMs), which are extremely sensitive to change in the radius and refractive index of the cavity induced by ultrasound strain field. In this work, we present a polymer optical micro-ring resonator based ultrasonic sensor fabricated by direct laser writing optical lithography. The design consists of a single micro-ring and a straight tapered waveguide that can be directly coupled by single mode fibers (SMFs). The design and fabrication of the printed polymer resonator have been optimized to provide broad bandwidth and high optical quality factor to ensure high detection sensitivity. The experiments demonstrate the potential of the polymer micro-ring resonator to works as a high-performance ultrasonic sensor.

  11. Determination of the shear impedance of viscoelastic liquids using cylindrical piezoceramic resonators.

    PubMed

    Kiełczyński, Piotr; Pajewski, Wincenty; Szalewski, Marek

    2003-03-01

    In this paper, a new method for determining the rheological parameters of viscoelastic liquids is presented. To this end, we used the perturbation method applied to shear vibrations of cylindrical piezoceramic resonators. The resonator was viscoelastically loaded on the outer cylindrical surface. Due to this loading, the resonant frequency and quality factor of the resonator changed. According to the perturbation method, the change in the complex resonant frequency deltaomega = deltaomega(re) + jdeltaomega(im) is directly proportional to the specific acoustic impedance for cylindrical waves Zc of a viscoelastic liquid surrounding the resonator, i.e., deltaomega is approximately equal to jZc, where j = (-1)1/2. Hence, the measurement of the real and imaginary parts of the complex resonant frequency deltaomega determines the real part, Rc, and imaginary part, Xc, of the complex acoustic impedance for cylindrical waves Zc of an investigated liquid. Furthermore, the specific impedance ZL for plane waves was related to the specific impedance Zc for cylindrical waves. Using theoretical formulas established and the results of the experiments performed, the shear storage modulus mu and the viscosity eta for various liquids (e.g., epoxy resins) were determined. Moreover, the authors derived for cylindrical resonators a formula that relates the shift in resonant frequency to the viscosity of the liquid. This formula is analogous to the Kanazawa-Gordon formula that was derived for planar resonators and Newtonian liquids.

  12. Resonant Tunneling in Photonic Double Quantum Well Heterostructures.

    PubMed

    Cox, Joel D; Singh, Mahi R

    2010-01-30

    Here, we study the resonant photonic states of photonic double quantum well (PDQW) heterostructures composed of two different photonic crystals. The heterostructure is denoted as B/A/B/A/B, where photonic crystals A and B act as photonic wells and barriers, respectively. The resulting band structure causes photons to become confined within the wells, where they occupy discrete quantized states. We have obtained an expression for the transmission coefficient of the PDQW heterostructure using the transfer matrix method and have found that resonant states exist within the photonic wells. These resonant states occur in split pairs, due to a coupling between degenerate states shared by each of the photonic wells. It is observed that when the resonance energy lies at a bound photonic state and the two photonic quantum wells are far away from each other, resonant states appear in the transmission spectrum of the PDQW as single peaks. However, when the wells are brought closer together, coupling between bound photonic states causes an energy-splitting effect, and the transmitted states each have two peaks. Essentially, this means that the system can be switched between single and double transparent states. We have also observed that the total number of resonant states can be controlled by varying the width of the photonic wells, and the quality factor of transmitted peaks can be drastically improved by increasing the thickness of the outer photonic barriers. It is anticipated that the resonant states described here can be used to develop new types of photonic-switching devices, optical filters, and other optoelectronic devices.

  13. Surface conductance of graphene from non-contact resonant cavity.

    PubMed

    Obrzut, Jan; Emiroglu, Caglar; Kirillov, Oleg; Yang, Yanfei; Elmquist, Randolph E

    2016-06-01

    A method is established to reliably determine surface conductance of single-layer or multi-layer atomically thin nano-carbon graphene structures. The measurements are made in an air filled standard R100 rectangular waveguide configuration at one of the resonant frequency modes, typically at TE 103 mode of 7.4543 GHz. Surface conductance measurement involves monitoring a change in the quality factor of the cavity as the specimen is progressively inserted into the cavity in quantitative correlation with the specimen surface area. The specimen consists of a nano-carbon-layer supported on a low loss dielectric substrate. The thickness of the conducting nano-carbon layer does not need to be explicitly known, but it is assumed that the lateral dimension is uniform over the specimen area. The non-contact surface conductance measurements are illustrated for a typical graphene grown by chemical vapor deposition process, and for a high quality monolayer epitaxial graphene grown on silicon carbide wafers for which we performed non-gated quantum Hall resistance measurements. The sequence of quantized transverse Hall resistance at the Landau filling factors ν = ±6 and ±2, and the absence of the Hall plateau at ν = 4 indicate that the epitaxially grown graphene is a high quality mono-layer. The resonant microwave cavity measurement is sensitive to the surface and bulk conductivity, and since no additional processing is required, it preserves the integrity of the conductive graphene layer. It allows characterization with high speed, precision and efficiency, compared to transport measurements where sample contacts must be defined and applied in multiple processing steps.

  14. Superconducting Microwave Resonator Arrays for Submillimeter/Far-Infrared Imaging

    NASA Astrophysics Data System (ADS)

    Noroozian, Omid

    Superconducting microwave resonators have the potential to revolutionize submillimeter and far-infrared astronomy, and with it our understanding of the universe. The field of low-temperature detector technology has reached a point where extremely sensitive devices like transition-edge sensors are now capable of detecting radiation limited by the background noise of the universe. However, the size of these detector arrays are limited to only a few thousand pixels. This is because of the cost and complexity of fabricating large-scale arrays of these detectors that can reach up to 10 lithographic levels on chip, and the complicated SQUID-based multiplexing circuitry and wiring for readout of each detector. In order to make substantial progress, next-generation ground-based telescopes such as CCAT or future space telescopes require focal planes with large-scale detector arrays of 104--10 6 pixels. Arrays using microwave kinetic inductance detectors (MKID) are a potential solution. These arrays can be easily made with a single layer of superconducting metal film deposited on a silicon substrate and pattered using conventional optical lithography. Furthermore, MKIDs are inherently multiplexable in the frequency domain, allowing ˜ 10 3 detectors to be read out using a single coaxial transmission line and cryogenic amplifier, drastically reducing cost and complexity. An MKID uses the change in the microwave surface impedance of a superconducting thin-film microresonator to detect photons. Absorption of photons in the superconductor breaks Cooper pairs into quasiparticles, changing the complex surface impedance, which results in a perturbation of resonator frequency and quality factor. For excitation and readout, the resonator is weakly coupled to a transmission line. The complex amplitude of a microwave probe signal tuned on-resonance and transmitted on the feedline past the resonator is perturbed as photons are absorbed in the superconductor. The perturbation can be

  15. Qubit Coupled Mechanical Resonator in an Electromechanical System

    NASA Astrophysics Data System (ADS)

    Hao, Yu

    This thesis describes the development of a hybrid quantum electromechanical system. In this system the mechanical resonator is capacitively coupled to a superconducting transmon which is embedded in a superconducting coplanar waveguide (CPW) cavity. The difficulty of achieving high quality of superconducting qubit in a high-quality voltage-biased cavity is overcome by integrating a superconducting reflective T-filter to the cavity. Further spectroscopic and pulsed measurements of the hybrid system demonstrate interactions between the ultra-high frequency mechanical resonator and transmon qubit. The noise of mechanical resonator close to ground state is measured by looking at the spectroscopy of the transmon. At last, fabrication and tests of membrane resonators are discussed.

  16. Factors affecting maintenance overlay ride quality : 1996 rideability status.

    DOT National Transportation Integrated Search

    1997-01-01

    In early 1996, the Virginia Transportation Research Council initiated a formal analysis of the factors affecting overlay ride quality. As part of that effort, a statewide, multi-year survey of the ride quality for both new overlays and pavement await...

  17. High quality factor manganese-doped aluminum lumped-element kinetic inductance detectors sensitive to frequencies below 100 GHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, G.; Johnson, B. R.; Abitbol, M. H.

    Aluminum lumped-element kinetic inductance detectors (LEKIDs) sensitive to millimeter-wave photons have been shown to exhibit high quality factors, making them highly sensitive and multiplexable. The superconducting gap of aluminum limits aluminum LEKIDs to photon frequencies above 100 GHz. Manganese-doped aluminum (Al-Mn) has a tunable critical temperature and could therefore be an attractive material for LEKIDs sensitive to frequencies below 100 GHz if the internal quality factor remains sufficiently high when manganese is added to the film. To investigate, we measured some of the key properties of Al-Mn LEKIDs. A prototype eight-element LEKID array was fabricated using a 40 nm thickmore » film of Al-Mn deposited on a 500 μm thick high-resistivity, float-zone silicon substrate. The manganese content was 900 ppm, the measured T c = 694 ± 1mK, and the resonance frequencies were near 150 MHz. Using measurements of the forward scattering parameter S 21 at various bath temperatures between 65 and 250 mK, we determined that the Al-Mn LEKIDs we fabricated have internal quality factors greater than 2 × 10 5, which is high enough for millimeter-wave astrophysical observations. In the dark conditions under which these devices were measured, the fractional frequency noise spectrum shows a shallow slope that depends on bath temperature and probe tone amplitude, which could be two-level system noise. In conclusion, the anticipated white photon noise should dominate this level of low-frequency noise when the detectors are illuminated with millimeter-waves in future measurements. The LEKIDs responded to light pulses from a 1550 nm light-emitting diode, and we used these light pulses to determine that the quasiparticle lifetime is 60 μs.« less

  18. High quality factor manganese-doped aluminum lumped-element kinetic inductance detectors sensitive to frequencies below 100 GHz

    DOE PAGES

    Jones, G.; Johnson, B. R.; Abitbol, M. H.; ...

    2017-05-29

    Aluminum lumped-element kinetic inductance detectors (LEKIDs) sensitive to millimeter-wave photons have been shown to exhibit high quality factors, making them highly sensitive and multiplexable. The superconducting gap of aluminum limits aluminum LEKIDs to photon frequencies above 100 GHz. Manganese-doped aluminum (Al-Mn) has a tunable critical temperature and could therefore be an attractive material for LEKIDs sensitive to frequencies below 100 GHz if the internal quality factor remains sufficiently high when manganese is added to the film. To investigate, we measured some of the key properties of Al-Mn LEKIDs. A prototype eight-element LEKID array was fabricated using a 40 nm thickmore » film of Al-Mn deposited on a 500 μm thick high-resistivity, float-zone silicon substrate. The manganese content was 900 ppm, the measured T c = 694 ± 1mK, and the resonance frequencies were near 150 MHz. Using measurements of the forward scattering parameter S 21 at various bath temperatures between 65 and 250 mK, we determined that the Al-Mn LEKIDs we fabricated have internal quality factors greater than 2 × 10 5, which is high enough for millimeter-wave astrophysical observations. In the dark conditions under which these devices were measured, the fractional frequency noise spectrum shows a shallow slope that depends on bath temperature and probe tone amplitude, which could be two-level system noise. In conclusion, the anticipated white photon noise should dominate this level of low-frequency noise when the detectors are illuminated with millimeter-waves in future measurements. The LEKIDs responded to light pulses from a 1550 nm light-emitting diode, and we used these light pulses to determine that the quasiparticle lifetime is 60 μs.« less

  19. Factors Affecting School Quality in Florida

    ERIC Educational Resources Information Center

    Thornton, Barry; Arbogast, Gordon

    2014-01-01

    This paper examines the factors that are theorized to be determinants of school quality in the 67 counties of Florida from 2000 to 2011. The model constructed for this purpose is comprised of a mix of independent variables that include county educational attainment (number of high school graduates and State University System enrollees) and…

  20. Effects of magnetic field and pressure in magnetoelastic stress reconfigurable thin film resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staruch, M.; Bussmann, K.; Finkel, P.

    2015-07-20

    Free-standing CoFe thin-film doubly clamped stress reconfigurable resonators were investigated as a function of magnetic field and pressure. A large uniaxial anisotropy resulting from residual uniaxial tensile stress, as revealed from magnetic hysteresis loops, leads to an easy magnetization axis aligned along the length of the beams. The quality factor of the driven resonator beams under vacuum is increased by 30 times, leading to an enhanced signal-to-noise ratio and a predicted reduction in the intrinsic magnetic noise by a factor of 6, potentially reaching as low as ∼25 pT/√Hz at 1 Torr. Stress reconfigurable sensors operating under vacuum could thus furthermore » improve the limit of detection and advance development of magnetic field sensing technology.« less

  1. Frequency-Temperature Compensation Techniques for High-Q Microwave Resonators

    NASA Astrophysics Data System (ADS)

    Hartnett, John G.; Tobar, Michael E.

    Low-noise high-stability resonator oscillators based on high-Q monolithic sapphire ``Whispering Gallery'' (WG)-mode resonators have become important devices for telecommunication, radar and metrological applications. The extremely high quality factor of sapphire, of 2 x10^5 at room temperature, 5 x10^7 at liquid nitrogen temperature and 5 x10^9 at liquid helium temperature has enabled the lowest phase noise and highly frequency-stable oscillators in the microwave regime to be constructed. To create an oscillator with exceptional frequency stability, the resonator must have its frequency-temperature dependence annulled at some temperature, as well as a high quality factor. The Temperature Coefficient of Permittivity (TCP) for sapphire is quite large, at 10-100parts per million/K above 77K. This mechanism allows temperature fluctuations to transform to resonator frequency fluctuations.A number of research groups worldwide have investigated various methods of compensating the TCP of a sapphire dielectric resonator at different temperatures. The usual electromagnetic technique of annulment involves the use of paramagnetic impurities contributing an opposite temperature coefficient of the magnetic susceptibility to the TCP. This technique has only been realized successfully in liquid helium environments. Near 4K the thermal expansion and permittivity effects are small and only small quantities of the paramagnetic ions are necessary to compensate the mode frequency. Compensation is due to impurity ions that were incidentally left over from the manufacturing process.Recently, there has been an effort to dispense with the need for liquid helium and make a compact flywheel oscillator for the new generation of primary frequency standards such as the cesium fountain at the Laboratoire Primaire du Temps et des Fréquences (LPTF), France. To achieve the stability limit imposed

  2. Factors associated with quality of life in patients undergoing coronary angioplasty

    PubMed Central

    Darvishpour, Azar; Javadi-Pashaki, Nazila; Salari, Arsalan; Sadeghi, Tahere; Taleshan-Nejad, Marayam

    2017-01-01

    Objective: Percutaneous coronary intervention has been effective in increasing longevity of patients with cardiovascular disease. However, the evidence shows that the quality of life after the intervention is still lower than optimal level. The quality of life can be affected by various factors. The aim of this study is to determine the quality of life and its related factors in patients undergoing coronary angioplasty. Methods: This cross-sectional study was performed on 106 patients undergoing coronary angioplasty during 2015-2016. This study population included all patients who referred to a cardiac clinic in Rasht, Iran, were passed 3 months after their angioplasty. Research samples met the inclusion criteria and were willing to participate to the study, were selected gradually (continually). Research tools were a self-structured questionnaire regarding factors associated with the quality of life and the MacNew quality of life questionnaire. Data were collected through asking patients questions and using patient’s medical records. Data analysis was conducted using descriptive and inferential statistics. Results: The results of multivariate linear regression analysis showed that independent variables of age (P = 0.0001), the number of diseased vessels (P = 0.0001), and the number of comorbidities (P < 0.05) were the most important factors associated with the quality of life. Conclusion: Health-care professionals can play an effective role in promoting the quality of life of patients undergoing coronary angioplasty by modifying lifestyle based on the related factors and to provide comprehensive care programs, especially for elderly. PMID:29085266

  3. Theory of coupled resonator optical waveguides exhibiting high-order exceptional points of degeneracy

    NASA Astrophysics Data System (ADS)

    Nada, Mohamed Y.; Othman, Mohamed A. K.; Capolino, Filippo

    2017-11-01

    We present an approach and a theoretical framework for generating high-order exceptional points of degeneracy (EPDs) in photonic structures based on periodic coupled resonator optical waveguides (CROWs). Such EPDs involve the coalescence of Floquet-Bloch eigenwaves in CROWs, without the presence of gain and loss, which contrasts with the parity-time symmetry required to develop exceptional points based on gain and loss balance. The EPDs arise here by introducing symmetry breaking in a conventional chain of coupled resonators through periodic coupling to an adjacent uniform optical waveguide, which leads to unique modal characteristics that cannot be realized in conventional CROWs. Such remarkable characteristics include high quality factors (Q factors) and strong field enhancement, even without any mirrors at the two ends of a cavity. We show for the first time the capability of CROWs to exhibit EPDs of various orders, including the degenerate band edge (DBE) and the stationary inflection point. The proposed CROW of finite length shows an enhanced quality factor when operating near the DBE, and the Q factor exhibits an unconventional scaling with the CROW's length. We develop the theory of EPDs in such unconventional CROW using coupled-wave equations, and we derive an analytical expression for the dispersion relation. The proposed unconventional CROW concepts have various potential applications including Q switching, nonlinear devices, lasers, and extremely sensitive sensors.

  4. Micro - ring resonator with variety of gap width for acid rain sensing application: preliminary study

    NASA Astrophysics Data System (ADS)

    Mulyanti, B.; Ramza, H.; Pawinanto, R. E.; Rahman, J. A.; Ab-Rahman, M. S.; Putro, W. S.; Hasanah, L.; Pantjawati, A. B.

    2017-05-01

    The acid rain is an environmental disaster that it will be intimidates human life. The development micro-ring resonator sensor created from SOI (Silicon on insulator) and it used to detect acid rain index. In this study, the LUMERICAL software was used to simulate SOI material micro-ring resonator. The result shows the optimum values of fixed parameters from ring resonator have dependent variable in gap width. The layers under ring resonator with silicone (Si) and wafer layer of silicone material (Si) were added to seen three conditions of capability model. Model - 3 is an additional of bottom layer that gives the significant effect on the factor of quality. The optimum value is a peak value that given by the FSR calculation. FSR = 0, it means that is not shows the light propagation in the ring resonator and none of the light coming out on the bus - line.

  5. A Lateral Differential Resonant Pressure Microsensor Based on SOI-Glass Wafer-Level Vacuum Packaging

    PubMed Central

    Xie, Bo; Xing, Yonghao; Wang, Yanshuang; Chen, Jian; Chen, Deyong; Wang, Junbo

    2015-01-01

    This paper presents the fabrication and characterization of a resonant pressure microsensor based on SOI-glass wafer-level vacuum packaging. The SOI-based pressure microsensor consists of a pressure-sensitive diaphragm at the handle layer and two lateral resonators (electrostatic excitation and capacitive detection) on the device layer as a differential setup. The resonators were vacuum packaged with a glass cap using anodic bonding and the wire interconnection was realized using a mask-free electrochemical etching approach by selectively patterning an Au film on highly topographic surfaces. The fabricated resonant pressure microsensor with dual resonators was characterized in a systematic manner, producing a quality factor higher than 10,000 (~6 months), a sensitivity of about 166 Hz/kPa and a reduced nonlinear error of 0.033% F.S. Based on the differential output, the sensitivity was increased to two times and the temperature-caused frequency drift was decreased to 25%. PMID:26402679

  6. Effects of 780 nm Optical Illumination on Loss in Superconducting Microwave Resonator

    NASA Astrophysics Data System (ADS)

    Budoyo, R. P.; Hertzberg, J. B.; Ballard, C. J.; Voigt, K. D.; Hoffman, J. E.; Grover, J. A.; Solano, P.; Lee, J.; Rolston, S. L.; Orozco, L. A.; Anderson, J. R.; Lobb, C. J.; Wellstood, F. C.

    2015-03-01

    Understanding the effects of light incident on a superconducting circuit is an important step toward building a hybrid quantum system where a superconducting qubit or resonator is coupled to atoms trapped on a tapered optical fiber. We fabricated a microscale thin-film Al superconducting LC resonator (frequency 6.72 GHz) on sapphire substrate and mounted it inside an Al 3d cavity (TE101 mode frequency 7.50 GHz). Using an optical fiber, we illuminated the resonator with 780 nm light, and measured the change in internal quality factor and resonant frequency of the resonator as a function of applied optical power. The results suggest that the illumination causes an increase in rf drive-dependent dissipation. While optical illumination is expected to enhance dissipation due to quasiparticles, rf drive dependence is more typically seen in two-level-system dissipation. We compare the results with the change in loss from increased resonator temperature, and discuss various mechanisms of loss from optical illumination. Work supported by NSF through the Physics Frontier Center at the Joint Quantum Institute (JQI), and by the Center of Nanophysics and Advanced Materials (CNAM).

  7. An Analysis Method for Superconducting Resonator Parameter Extraction with Complex Baseline Removal

    NASA Technical Reports Server (NTRS)

    Cataldo, Giuseppe

    2014-01-01

    A new semi-empirical model is proposed for extracting the quality (Q) factors of arrays of superconducting microwave kinetic inductance detectors (MKIDs). The determination of the total internal and coupling Q factors enables the computation of the loss in the superconducting transmission lines. The method used allows the simultaneous analysis of multiple interacting discrete resonators with the presence of a complex spectral baseline arising from reflections in the system. The baseline removal allows an unbiased estimate of the device response as measured in a cryogenic instrumentation setting.

  8. Modeling laser brightness from cross Porro prism resonators

    NASA Astrophysics Data System (ADS)

    Forbes, Andrew; Burger, Liesl; Litvin, Igor Anatolievich

    2006-08-01

    Laser brightness is a parameter often used to compare high power laser beam delivery from various sources, and incorporates both the power contained in the particular mode, as well as the propagation of that mode through the beam quality factor, M2. In this study a cross Porro prism resonator is considered; crossed Porro prism resonators have been known for some time, but until recently have not been modeled as a complete physical optics system that allows the modal output to be determined as a function of the rotation angle of the prisms. In this paper we consider the diffraction losses as a function of the prism rotation angle relative to one another, and combine this with the propagation of the specific modes to determine the laser output brightness as a function of the prism orientation.

  9. Frequency-tunable superconducting resonators via nonlinear kinetic inductance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vissers, M. R.; Hubmayr, J.; Sandberg, M.

    2015-08-10

    We have designed, fabricated, and tested a frequency-tunable high-Q superconducting resonator made from a niobium titanium nitride film. The frequency tunability is achieved by injecting a DC through a current-directing circuit into the nonlinear inductor whose kinetic inductance is current-dependent. We have demonstrated continuous tuning of the resonance frequency in a 180 MHz frequency range around 4.5 GHz while maintaining the high internal quality factor Q{sub i} > 180 000. This device may serve as a tunable filter and find applications in superconducting quantum computing and measurement. It also provides a useful tool to study the nonlinear response of a superconductor. In addition,more » it may be developed into techniques for measurement of the complex impedance of a superconductor at its transition temperature and for readout of transition-edge sensors.« less

  10. Calculation of astrophysical S-factor in reaction ^{13}C(p,γ )^{14}N for first resonance levels

    NASA Astrophysics Data System (ADS)

    Moghadasi, A.; Sadeghi, H.; Pourimani, R.

    2018-01-01

    The ^{13}C(p,γ )^{14}N reaction is one of the important reactions in the CNO cycle, which is a key process in nucleosynthesis. We first calculated wave functions for the bound state of ^{14}N with Faddeev's method. In this method, the considered reaction components are ^{12}C+n+p. Then, by using direct capture cross section and Breit-Wigner formulae, the non-resonant and resonant cross sections were calculated, respectively. In the next step, we calculated the total S-factor and compared it with experimental data, which showed good agreement between them. Next, we extrapolated the S-factor for the transition to the ground state at zero energy and obtained S(0)=5.8 ± 0.7 (keV b) and then calculate reaction rate. These ones are in agreement with previous reported results.

  11. Automated Quality Assessment of Structural Magnetic Resonance Brain Images Based on a Supervised Machine Learning Algorithm.

    PubMed

    Pizarro, Ricardo A; Cheng, Xi; Barnett, Alan; Lemaitre, Herve; Verchinski, Beth A; Goldman, Aaron L; Xiao, Ena; Luo, Qian; Berman, Karen F; Callicott, Joseph H; Weinberger, Daniel R; Mattay, Venkata S

    2016-01-01

    High-resolution three-dimensional magnetic resonance imaging (3D-MRI) is being increasingly used to delineate morphological changes underlying neuropsychiatric disorders. Unfortunately, artifacts frequently compromise the utility of 3D-MRI yielding irreproducible results, from both type I and type II errors. It is therefore critical to screen 3D-MRIs for artifacts before use. Currently, quality assessment involves slice-wise visual inspection of 3D-MRI volumes, a procedure that is both subjective and time consuming. Automating the quality rating of 3D-MRI could improve the efficiency and reproducibility of the procedure. The present study is one of the first efforts to apply a support vector machine (SVM) algorithm in the quality assessment of structural brain images, using global and region of interest (ROI) automated image quality features developed in-house. SVM is a supervised machine-learning algorithm that can predict the category of test datasets based on the knowledge acquired from a learning dataset. The performance (accuracy) of the automated SVM approach was assessed, by comparing the SVM-predicted quality labels to investigator-determined quality labels. The accuracy for classifying 1457 3D-MRI volumes from our database using the SVM approach is around 80%. These results are promising and illustrate the possibility of using SVM as an automated quality assessment tool for 3D-MRI.

  12. Functional magnetic resonance imaging of awake monkeys: some approaches for improving imaging quality

    PubMed Central

    Chen, Gang; Wang, Feng; Dillenburger, Barbara C.; Friedman, Robert M.; Chen, Li M.; Gore, John C.; Avison, Malcolm J.; Roe, Anna W.

    2011-01-01

    Functional magnetic resonance imaging (fMRI), at high magnetic field strength can suffer from serious degradation of image quality because of motion and physiological noise, as well as spatial distortions and signal losses due to susceptibility effects. Overcoming such limitations is essential for sensitive detection and reliable interpretation of fMRI data. These issues are particularly problematic in studies of awake animals. As part of our initial efforts to study functional brain activations in awake, behaving monkeys using fMRI at 4.7T, we have developed acquisition and analysis procedures to improve image quality with encouraging results. We evaluated the influence of two main variables on image quality. First, we show how important the level of behavioral training is for obtaining good data stability and high temporal signal-to-noise ratios. In initial sessions, our typical scan session lasted 1.5 hours, partitioned into short (<10 minutes) runs. During reward periods and breaks between runs, the monkey exhibited movements resulting in considerable image misregistrations. After a few months of extensive behavioral training, we were able to increase the length of individual runs and the total length of each session. The monkey learned to wait until the end of a block for fluid reward, resulting in longer periods of continuous acquisition. Each additional 60 training sessions extended the duration of each session by 60 minutes, culminating, after about 140 training sessions, in sessions that last about four hours. As a result, the average translational movement decreased from over 500 μm to less than 80 μm, a displacement close to that observed in anesthetized monkeys scanned in a 7 T horizontal scanner. Another major source of distortion at high fields arises from susceptibility variations. To reduce such artifacts, we used segmented gradient-echo echo-planar imaging (EPI) sequences. Increasing the number of segments significantly decreased susceptibility

  13. Examining the Factor Structure and Hierarchical Nature of the Quality of Life Construct

    ERIC Educational Resources Information Center

    Wang, Mian; Schalock, Robert L.; Verdugo, Miguel A.; Jenaro, Christina

    2010-01-01

    There is considerable debate in the area of individual quality of life research regarding the factor structure and hierarchical nature of the quality of life construct. Our purpose in this study was to test via structural equation modeling an a priori quality of life model consisting of eight first-order factors and one second-order factor. Data…

  14. Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection

    NASA Astrophysics Data System (ADS)

    Nan, Tianxiang; Hui, Yu; Rinaldi, Matteo; Sun, Nian X.

    2013-06-01

    High sensitivity magnetoelectric sensors with their electromechanical resonance frequencies < 200 kHz have been recently demonstrated using magnetostrictive/piezoelectric magnetoelectric heterostructures. In this work, we demonstrate a novel magnetoelectric nano-electromechanical systems (NEMS) resonator with an electromechanical resonance frequency of 215 MHz based on an AlN/(FeGaB/Al2O3) × 10 magnetoelectric heterostructure for detecting DC magnetic fields. This magnetoelectric NEMS resonator showed a high quality factor of 735, and strong magnetoelectric coupling with a large voltage tunable sensitivity. The admittance of the magnetoelectric NEMS resonator was very sensitive to DC magnetic fields at its electromechanical resonance, which led to a new detection mechanism for ultra-sensitive self-biased RF NEMS magnetoelectric sensor with a low limit of detection of DC magnetic fields of ~300 picoTelsa. The magnetic/piezoelectric heterostructure based RF NEMS magnetoelectric sensor is compact, power efficient and readily integrated with CMOS technology, which represents a new class of ultra-sensitive magnetometers for DC and low frequency AC magnetic fields.

  15. Mechanically coupled CMOS-MEMS free-free beam resonator arrays with enhanced power handling capability.

    PubMed

    Li, Ming-Huang; Chen, Wen-Chien; Li, Sheng-Shian

    2012-03-01

    Integrated CMOS-MEMS free-free beam resonator arrays operated in a standard two-port electrical configuration with low motional impedance and high power handling capability, centered at 10.5 MHz, have been demonstrated using the combination of pull-in gap reduction mechanism and mechanically coupled array design. The mechanical links (i.e., coupling elements) using short stubs connect each constituent resonator of an array to its adjacent ones at the high-velocity vibrating locations to accentuate the desired mode and reject all other spurious modes. A single second-mode free-free beam resonator with quality factor Q > 2200 and motional impedance R(m) < 150 kΩ has been used to achieve mechanically coupled resonator arrays in this work. In array design, a 9-resonator array has been experimentally characterized to have performance improvement of approximately 10× on motional impedance and power handling as compared with that of a single resonator. In addition, the two-port electrical configuration is much preferred over a one-port configuration because of its low-feedthrough and high design flexibility for future oscillator and filter implementation.

  16. Wedge Waveguides and Resonators for Quantum Plasmonics

    PubMed Central

    2015-01-01

    Plasmonic structures can provide deep-subwavelength electromagnetic fields that are useful for enhancing light–matter interactions. However, because these localized modes are also dissipative, structures that offer the best compromise between field confinement and loss have been sought. Metallic wedge waveguides were initially identified as an ideal candidate but have been largely abandoned because to date their experimental performance has been limited. We combine state-of-the-art metallic wedges with integrated reflectors and precisely placed colloidal quantum dots (down to the single-emitter level) and demonstrate quantum-plasmonic waveguides and resonators with performance approaching theoretical limits. By exploiting a nearly 10-fold improvement in wedge-plasmon propagation (19 μm at a vacuum wavelength, λvac, of 630 nm), efficient reflectors (93%), and effective coupling (estimated to be >70%) to highly emissive (∼90%) quantum dots, we obtain Ag plasmonic resonators at visible wavelengths with quality factors approaching 200 (3.3 nm line widths). As our structures offer modal volumes down to ∼0.004λvac3 in an exposed single-mode waveguide–resonator geometry, they provide advantages over both traditional photonic microcavities and localized-plasmonic resonators for enhancing light–matter interactions. Our results confirm the promise of wedges for creating plasmonic devices and for studying coherent quantum-plasmonic effects such as long-distance plasmon-mediated entanglement and strong plasmon–matter coupling. PMID:26284499

  17. Continuum Modeling of Inductor Hysteresis and Eddy Current Loss Effects in Resonant Circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pries, Jason L.; Tang, Lixin; Burress, Timothy A.

    This paper presents experimental validation of a high-fidelity toroid inductor modeling technique. The aim of this research is to accurately model the instantaneous magnetization state and core losses in ferromagnetic materials. Quasi–static hysteresis effects are captured using a Preisach model. Eddy currents are included by coupling the associated quasi-static Everett function to a simple finite element model representing the inductor cross sectional area. The modeling technique is validated against the nonlinear frequency response from two different series RLC resonant circuits using inductors made of electrical steel and soft ferrite. The method is shown to accurately model shifts in resonant frequencymore » and quality factor. The technique also successfully predicts a discontinuity in the frequency response of the ferrite inductor resonant circuit.« less

  18. Identifying Consistent and Coherent Dimensions of Nursing Home Quality: Exploratory Factor Analysis of Quality Indicators.

    PubMed

    Xu, Dongjuan; Kane, Robert L; Shippee, Tetyana; Lewis, Teresa M

    2016-12-01

    There is a general belief that the markers of nursing home quality do not aggregate easily. Identifying consistent and coherent dimensions of quality that usefully summarize the multiplicity of nursing home quality measures is an important goal. It would simplify interpretation and help consumers, their families and advocates to choose nursing facilities. This study uses quality indicators (QIs) from a state nursing home report card to explore the dimensionality of quality in nursing homes and to determine whether aggregation at the resident versus facility level yields the same underlying dimensions. Cross-sectional study. 382 Medicare- and/or Medicaid-certified nursing homes in Minnesota. Residents admitted to the nursing homes during 2011-2012. 16 QIs obtained from the Minimum Data Set 3.0 assessment instrument between 2011 and 2012 were used in the exploratory factor analysis. Factor analysis results suggest four main factors or dimensions to characterize facility performance: continence care (including 4 QIs), restraints and behavioral symptoms (including 3 QIs), care for specific conditions (including 6 QIs), and physical functioning (including 3 QIs). The resident-level and facility-level results generally agreed for 11 QIs. Nursing home quality of care can be captured in summary measures, which can be used by consumers, providers and researchers. Reporting at the resident or facility level will depend on the purpose. These summary measures can be used by policy-makers to identify and reward high-performing facilities and by families to choose nursing facilities for care. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  19. In situ real-time monitoring of biomolecular interactions based on resonating microcantilevers immersed in a viscous fluid

    NASA Astrophysics Data System (ADS)

    Kwon, Tae Yun; Eom, Kilho; Park, Jae Hong; Yoon, Dae Sung; Kim, Tae Song; Lee, Hong Lim

    2007-05-01

    The authors report the precise (noise-free) in situ real-time monitoring of a specific protein antigen-antibody interaction by using a resonating microcantilever immersed in a viscous fluid. In this work, they utilized a resonating piezoelectric thick film microcantilever, which exhibits the high quality factor (e.g., Q =15) in a viscous liquid at a viscosity comparable to that of human blood serum. This implies a great potential of the resonating microcantilever to in situ biosensor applications. It is shown that the microcantilever enables them to monitor the C reactive protein antigen-antibody interactions in real time, providing an insight into the protein binding kinetics.

  20. Simple estimation of Förster Resonance Energy Transfer (FRET) orientation factor distribution in membranes.

    PubMed

    Loura, Luís M S

    2012-11-19

    Because of its acute sensitivity to distance in the nanometer scale, Förster resonance energy transfer (FRET) has found a large variety of applications in many fields of chemistry, physics, and biology. One important issue regarding the correct usage of FRET is its dependence on the donor-acceptor relative orientation, expressed as the orientation factor k(2). Different donor/acceptor conformations can lead to k(2) values in the 0 ≤ k(2) ≤ 4 range. Because the characteristic distance for FRET, R(0), is proportional to (k(2))1/6, uncertainties in the orientation factor are reflected in the quality of information that can be retrieved from a FRET experiment. In most cases, the average value of k(2) corresponding to the dynamic isotropic limit ( = 2/3) is used for computation of R(0) and hence donor-acceptor distances and acceptor concentrations. However, this can lead to significant error in unfavorable cases. This issue is more critical in membrane systems, because of their intrinsically anisotropic nature and their reduced fluidity in comparison to most common solvents. Here, a simple numerical simulation method for estimation of the probability density function of k(2) for membrane-embedded donor and acceptor fluorophores in the dynamic regime is presented. In the simplest form, the proposed procedure uses as input the most probable orientations of the donor and acceptor transition dipoles, obtained by experimental (including linear dichroism) or theoretical (such as molecular dynamics simulation) techniques. Optionally, information about the widths of the donor and/or acceptor angular distributions may be incorporated. The methodology is illustrated for special limiting cases and common membrane FRET pairs.

  1. Investigations of thickness-shear mode elastic constant and damping of shunted piezoelectric materials with a coupling resonator

    NASA Astrophysics Data System (ADS)

    Hu, Ji-Ying; Li, Zhao-Hui; Sun, Yang; Li, Qi-Hu

    2016-12-01

    Shear-mode piezoelectric materials have been widely used to shunt the damping of vibrations where utilizing surface or interface shear stresses. The thick-shear mode (TSM) elastic constant and the mechanical loss factor can change correspondingly when piezoelectric materials are shunted to different electrical circuits. This phenomenon makes it possible to control the performance of a shear-mode piezoelectric damping system through designing the shunt circuit. However, due to the difficulties in directly measuring the TSM elastic constant and the mechanical loss factor of piezoelectric materials, the relationships between those parameters and the shunt circuits have rarely been investigated. In this paper, a coupling TSM electro-mechanical resonant system is proposed to indirectly measure the variations of the TSM elastic constant and the mechanical loss factor of piezoelectric materials. The main idea is to transform the variations of the TSM elastic constant and the mechanical loss factor into the changes of the easily observed resonant frequency and electrical quality factor of the coupling electro-mechanical resonator. Based on this model, the formular relationships are set up theoretically with Mason equivalent circuit method and they are validated with finite element (FE) analyses. Finally, a prototype of the coupling electro-mechanical resonator is fabricated with two shear-mode PZT5A plates to investigate the TSM elastic constants and the mechanical loss factors of different circuit-shunted cases of the piezoelectric plate. Both the resonant frequency shifts and the bandwidth changes observed in experiments are in good consistence with the theoretical and FE analyses under the same shunt conditions. The proposed coupling resonator and the obtained relationships are validated with but not limited to PZT5A. Project supported by the National Defense Foundation of China (Grant No. 9149A12050414JW02180).

  2. Evaluation of resonating Si cantilevers sputter-deposited with AlN piezoelectric thin films for mass sensing applications

    NASA Astrophysics Data System (ADS)

    Sökmen, Ü.; Stranz, A.; Waag, A.; Ababneh, A.; Seidel, H.; Schmid, U.; Peiner, E.

    2010-06-01

    We report on a micro-machined resonator for mass sensing applications which is based on a silicon cantilever excited with a sputter-deposited piezoelectric aluminium nitride (AlN) thin film actuator. An inductively coupled plasma (ICP) cryogenic dry etching process was applied for the micro-machining of the silicon substrate. A shift in resonance frequency was observed, which was proportional to a mass deposited in an e-beam evaporation process on top. We had a mass sensing limit of 5.2 ng. The measurements from the cantilevers of the two arrays revealed a quality factor of 155-298 and a mass sensitivity of 120.34 ng Hz-1 for the first array, and a quality factor of 130-137 and a mass sensitivity of 104.38 ng Hz-1 for the second array. Furthermore, we managed to fabricate silicon cantilevers, which can be improved for the detection in the picogram range due to a reduction of the geometrical dimensions.

  3. Towards a fully integrated optical gyroscope using whispering gallery modes resonators

    NASA Astrophysics Data System (ADS)

    Amrane, T.; Jager, J.-B.; Jager, T.; Calvo, V.; Léger, J.-M.

    2017-11-01

    Since the developments of lasers and the optical fibers in the 70s, the optical gyroscopes have been subject to an intensive research to improve both their resolution and stability performances. However the best optical gyroscopes currently on the market, the ring laser gyroscope and the interferometer fiber optic gyroscope are still macroscopic devices and cannot address specific applications where size and weight constraints are critical. One solution to overcome these limitations could be to use an integrated resonator as a sensitive part to build a fully Integrated Optical Resonant Gyroscope (IORG). To keep a high rotation sensitivity, which is usually degraded when downsizing this kind of optical sensors based on the Sagnac effect, the resonator has to exhibit a very high quality factor (Q): as detailed in equation (1) where the minimum rotation rate resolution for an IORG is given as a function of the resonator characteristics (Q and diameter D) and of the global system optical system characteristics (i.e. SNR and bandwidth B), the higher the Q×D product, the lower the resolution.

  4. Quality factor and dose equivalent investigations aboard the Soviet Space Station Mir

    NASA Astrophysics Data System (ADS)

    Bouisset, P.; Nguyen, V. D.; Parmentier, N.; Akatov, Ia. A.; Arkhangel'Skii, V. V.; Vorozhtsov, A. S.; Petrov, V. M.; Kovalev, E. E.; Siegrist, M.

    1992-07-01

    Since Dec 1988, date of the French-Soviet joint space mission 'ARAGATZ', the CIRCE device, had recorded dose equivalent and quality factor values inside the Mir station (380-410 km, 51.5 deg). After the initial gas filling two years ago, the low pressure tissue equivalent proportional counter is still in good working conditions. Some results of three periods are presented. The average dose equivalent rates measured are respectively 0.6, 0.8 and 0.6 mSv/day with a quality factor equal to 1.9. Some detailed measurements show the increasing of the dose equivalent rates through the SAA and near polar horns. The real time determination of the quality factors allows to point out high linear energy transfer events with quality factors in the range 10-20.

  5. Bandwidth-limited control and ringdown suppression in high-Q resonators.

    PubMed

    Borneman, Troy W; Cory, David G

    2012-12-01

    We describe how the transient behavior of a tuned and matched resonator circuit and a ringdown suppression pulse may be integrated into an optimal control theory (OCT) pulse-design algorithm to derive control sequences with limited ringdown that perform a desired quantum operation in the presence of resonator distortions of the ideal waveform. Inclusion of ringdown suppression in numerical pulse optimizations significantly reduces spectrometer deadtime when using high quality factor (high-Q) resonators, leading to increased signal-to-noise ratio (SNR) and sensitivity of inductive measurements. To demonstrate the method, we experimentally measure the free-induction decay of an inhomogeneously broadened solid-state free radical spin system at high Q. The measurement is enabled by using a numerically optimized bandwidth-limited OCT pulse, including ringdown suppression, robust to variations in static and microwave field strengths. We also discuss the applications of pulse design in high-Q resonators to universal control of anisotropic-hyperfine coupled electron-nuclear spin systems via electron-only modulation even when the bandwidth of the resonator is significantly smaller than the hyperfine coupling strength. These results demonstrate how limitations imposed by linear response theory may be vastly exceeded when using a sufficiently accurate system model to optimize pulses of high complexity. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. A flexible, gigahertz, and free-standing thin film piezoelectric MEMS resonator with high figure of merit

    NASA Astrophysics Data System (ADS)

    Jiang, Yuan; Zhang, Menglun; Duan, Xuexin; Zhang, Hao; Pang, Wei

    2017-07-01

    In this paper, a 2.6 GHz air-gap type thin film piezoelectric MEMS resonator was fabricated on a flexible polyethylene terephthalate film. A fabrication process combining transfer printing and hot-embossing was adopted to form a free-standing structure. The flexible radio frequency MEMS resonator possesses a quality factor of 946 and an effective coupling coefficient of 5.10%, and retains its high performance at a substrate bending radius of 1 cm. The achieved performance is comparable to that of conventional resonators on rigid silicon wafers. Our demonstration provides a viable approach to realizing universal MEMS devices on flexible polymer substrates, which is of great significance for building future fully integrated and multi-functional wireless flexible electronic systems.

  7. Factors that Predict Quality Classroom Technology Use

    ERIC Educational Resources Information Center

    Hastings, Tricia A.

    2009-01-01

    Despite technological advancements intended to enhance teaching and learning in the 21st century, numerous teacher and school factors continue to impede quality classroom technology use. Determining the effectiveness of educational technology is challenging and requires a detailed understanding of multifaceted, complex, contextual relationships.…

  8. Key factors for a high-quality VR experience

    NASA Astrophysics Data System (ADS)

    Champel, Mary-Luc; Doré, Renaud; Mollet, Nicolas

    2017-09-01

    For many years, Virtual Reality has been presented as a promising technology that could deliver a truly new experience to users. The media and entertainment industry is now investigating the possibility to offer a video-based VR 360 experience. Nevertheless, there is a substantial risk that VR 360 could have the same fate as 3DTV if it cannot offer more than just being the next fad. The present paper aims at presenting the various quality factors required for a high-quality VR experience. More specifically, this paper will focus on the main three VR quality pillars: visual, audio and immersion.

  9. Asymmetric resonance frequency analysis of in-plane electrothermal silicon cantilevers for nanoparticle sensors

    NASA Astrophysics Data System (ADS)

    Bertke, Maik; Hamdana, Gerry; Wu, Wenze; Marks, Markus; Suryo Wasisto, Hutomo; Peiner, Erwin

    2016-10-01

    The asymmetric resonance frequency analysis of silicon cantilevers for a low-cost wearable airborne nanoparticle detector (Cantor) is described in this paper. The cantilevers, which are operated in the fundamental in-plane resonance mode, are used as a mass-sensitive microbalance. They are manufactured out of bulk silicon, containing a full piezoresistive Wheatstone bridge and an integrated thermal heater for reading the measurement output signal and stimulating the in-plane excitation, respectively. To optimize the sensor performance, cantilevers with different cantilever geometries are designed, fabricated and characterized. Besides the resonance frequency, the quality factor (Q) of the resonance curve has a high influence concerning the sensor sensitivity. Because of an asymmetric resonance behaviour, a novel fitting function and method to extract the Q is created, different from that of the simple harmonic oscillator (SHO). For testing the sensor in a long-term frequency analysis, a phase- locked loop (PLL) circuit is employed, yielding a frequency stability of up to 0.753 Hz at an Allan variance of 3.77 × 10-6. This proposed asymmetric resonance frequency analysis method is expected to be further used in the process development of the next-generation Cantor.

  10. Microstrip Ring Resonator for Soil Moisture Measurements

    NASA Technical Reports Server (NTRS)

    Sarabandi, Kamal; Li, Eric S.

    1993-01-01

    Accurate determination of spatial soil moisture distribution and monitoring its temporal variation have a significant impact on the outcomes of hydrologic, ecologic, and climatic models. Development of a successful remote sensing instrument for soil moisture relies on the accurate knowledge of the soil dielectric constant (epsilon(sub soil)) to its moisture content. Two existing methods for measurement of dielectric constant of soil at low and high frequencies are, respectively, the time domain reflectometry and the reflection coefficient measurement using an open-ended coaxial probe. The major shortcoming of these methods is the lack of accurate determination of the imaginary part of epsilon(sub soil). In this paper a microstrip ring resonator is proposed for the accurate measurement of soil dielectric constant. In this technique the microstrip ring resonator is placed in contact with soil medium and the real and imaginary parts of epsilon(sub soil) are determined from the changes in the resonant frequency and the quality factor of the resonator respectively. The solution of the electromagnetic problem is obtained using a hybrid approach based on the method of moments solution of the quasi-static formulation in conjunction with experimental data obtained from reference dielectric samples. Also a simple inversion algorithm for epsilon(sub soil) = epsilon'(sub r) + j(epsilon"(sub r)) based on regression analysis is obtained. It is shown that the wide dynamic range of the measured quantities provides excellent accuracy in the dielectric constant measurement. A prototype microstrip ring resonator at L-band is designed and measurements of soil with different moisture contents are presented and compared with other approaches.

  11. Factors influencing health-related quality of life among Korean cancer survivors.

    PubMed

    Kim, KiSook; Kim, Ji-Su

    2017-01-01

    Early cancer detection and remarkable improvements in cancer treatment have seen the cancer survival rate grow steadily for the past 40 years. Despite expectations regarding treatment effectiveness, acceptable quality of life, and a comfortable death, patients with cancer generally have a decreased quality of life. The study aim was to examine the factors influencing health-related quality of life among South Korean cancer survivors for future development of an intervention to enhance their survivorship. Korea National Health and Nutrition Examination Survey 2008-2012 data regarding 1020 cancer survivors were used for analysis. Health-related quality of life was measured using the EuroQol 5-Dimension. The factors influencing health-related quality of life were age, educational status, employment status, income, smoking, time since diagnosis, subjective health status, stress, depression, and suicidal ideation. Individual-centered clinical interventions that consider dimensional-influencing factors, including subjective health status, are needed to improve cancer survivors' health-related quality of life. Subsequent systematic studies are needed regarding dimension-specific differences according to cancer types and time since diagnosis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Modeling of the whispering gallery mode in microdisk and microgear resonators using a Toeplitz matrix formalism for single-photon source

    NASA Astrophysics Data System (ADS)

    Attia, Moez; Gueddana, Amor; Chatta, Rihab; Morand, Alain

    2013-09-01

    The work presented in this paper develops a new formalism to design microdisks and microgears structures. The main objective is to study the optics and geometrics parameters influence on the microdisks and microgears structures resonance behavior. This study is conducted to choice a resonance structure with height quality factor Q to be associated with Quantum dot to form a single photon source. This new method aims to design resonant structures that are simpler and requires less computing performances than FDTD and Floquet Block methods. This formalism is based on simplifying Fourier transformed and using toeplitz matrix writing. This new writing allows designing all kind of resonance structures with any defect and any modification. In other study we have design a quantum dot emitting a photon at 1550 nm of the fundamental mode, but the quantum dot emits other photons at other wavelengths. The focus of the resonant structure and the quantum dot association is the resonance of the photon at 1550 nm and the elimination of all other photons with others energies. The quantum dot studied in [1] is an InAs/GaAs quantum dot, we design an GaAS microdisk and microgear and we compare the quality factor Q of this two structures and we conclude that the microgear is more appropriated to be associate to the quantum dot and increase the probability P1 to obtain a single photon source at 1550 nm and promotes the obtaining of single photon. The performance improving of the resonant structure is able to increase the success of quantum applications such as quantum gates based on single photon source.

  13. White-Light Whispering-Gallery-Mode Optical Resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute

    2006-01-01

    Whispering-gallery-mode (WGM) optical resonators can be designed to exhibit continuous spectra over wide wavelength bands (in effect, white-light spectra), with ultrahigh values of the resonance quality factor (Q) that are nearly independent of frequency. White-light WGM resonators have potential as superior alternatives to (1) larger, conventional optical resonators in ring-down spectroscopy, and (2) optical-resonator/electro-optical-modulator structures used in coupling of microwave and optical signals in atomic clocks. In these and other potential applications, the use of white-light WGM resonators makes it possible to relax the requirement of high-frequency stability of lasers, thereby enabling the use of cheaper lasers. In designing a white-light WGM resonator, one exploits the fact that the density of the mode spectrum increases predictably with the thickness of the resonator disk. By making the resonator disk sufficiently thick, one can make the frequency differences between adjacent modes significantly less than the spectral width of a single mode, so that the spectral peaks of adjacent modes overlap, making the resonator spectrum essentially continuous. Moreover, inasmuch as the Q values of the various modes are determined primarily by surface Rayleigh scattering that does not depend on mode numbers, all the modes have nearly equal Q. By use of a proper coupling technique, one can ensure excitation of a majority of the modes. For an experimental demonstration of a white-light WGM resonator, a resonator disk 0.5-mm thick and 5 mm in diameter was made from CaF2. The shape of the resonator and the fiberoptic coupling arrangement were as shown in Figure 1. The resonator was excited with laser light having a wavelength of 1,320 nm and a spectral width of 4 kHz. The coupling efficiency exceeded 80 percent at any frequency to which the laser could be set in its tuning range, which was >100-GHz wide. The resonator response was characterized by means of ring

  14. Image Quality of Cardiac Magnetic Resonance Imaging in Patients With an Implantable Cardioverter Defibrillator System Designed for the Magnetic Resonance Imaging Environment.

    PubMed

    Schwitter, Juerg; Gold, Michael R; Al Fagih, Ahmed; Lee, Sung; Peterson, Michael; Ciuffo, Allen; Zhang, Yan; Kristiansen, Nina; Kanal, Emanuel; Sommer, Torsten

    2016-05-01

    Recently, magnetic resonance (MR)-conditional implantable cardioverter defibrillator (ICD) systems have become available. However, associated cardiac MR image (MRI) quality is unknown. The goal was to evaluate the image quality performance of various cardiac MR sequences in a multicenter trial of patients implanted with an MR-conditional ICD system. The Evera-MRI trial enrolled 275 patients in 42 centers worldwide. There were 263 patients implanted with an Evera-MRI single- or dual-chamber ICD and randomized to controls (n=88) and MRI (n=175), 156 of whom underwent a protocol-required MRI (9-12 weeks post implant). Steady-state-free-precession (SSFP) and fast-gradient-echo (FGE) sequences were acquired in short-axis and horizontal long-axis orientations. Qualitative and quantitative assessment of image quality was performed by using a 7-point scale (grades 1-3: good quality, grades 6-7: nondiagnostic) and measuring ICD- and lead-related artifact size. Good to moderate image quality (grades 1-5) was obtained in 53% and 74% of SSFP and FGE acquisitions, respectively, covering the left ventricle, and in 69% and 84%, respectively, covering the right ventricle. Odds for better image quality were greater for right ventricle versus left ventricle (odds ratio, 1.8; 95% confidence interval, 1.5-2.2; P<0.0001) and greater for FGE versus SSFP (odds ratio, 3.5; 95% confidence interval, 2.5-4.8; P<0.0001). Compared with SSFP, ICD-related artifacts on FGE were smaller (141±65 versus 75±57 mm, respectively; P<0.0001). Lead artifacts were much smaller than ICD artifacts (P<0.0001). FGE yields good to moderate quality in 74% of left ventricle and 84% of right ventricle acquisitions and performs better than SSFP in patients with an MRI-conditional ICD system. In these patients, cardiac MRI can offer diagnostic information in most cases. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02117414. © 2016 American Heart Association, Inc.

  15. Carbon nuclear magnetic resonance spectroscopic fingerprinting of commercial gasoline: pattern-recognition analyses for screening quality control purposes.

    PubMed

    Flumignan, Danilo Luiz; Boralle, Nivaldo; Oliveira, José Eduardo de

    2010-06-30

    In this work, the combination of carbon nuclear magnetic resonance ((13)C NMR) fingerprinting with pattern-recognition analyses provides an original and alternative approach to screening commercial gasoline quality. Soft Independent Modelling of Class Analogy (SIMCA) was performed on spectroscopic fingerprints to classify representative commercial gasoline samples, which were selected by Hierarchical Cluster Analyses (HCA) over several months in retails services of gas stations, into previously quality-defined classes. Following optimized (13)C NMR-SIMCA algorithm, sensitivity values were obtained in the training set (99.0%), with leave-one-out cross-validation, and external prediction set (92.0%). Governmental laboratories could employ this method as a rapid screening analysis to discourage adulteration practices. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Hollow Microtube Resonators via Silicon Self-Assembly toward Subattogram Mass Sensing Applications.

    PubMed

    Kim, Joohyun; Song, Jungki; Kim, Kwangseok; Kim, Seokbeom; Song, Jihwan; Kim, Namsu; Khan, M Faheem; Zhang, Linan; Sader, John E; Park, Keunhan; Kim, Dongchoul; Thundat, Thomas; Lee, Jungchul

    2016-03-09

    Fluidic resonators with integrated microchannels (hollow resonators) are attractive for mass, density, and volume measurements of single micro/nanoparticles and cells, yet their widespread use is limited by the complexity of their fabrication. Here we report a simple and cost-effective approach for fabricating hollow microtube resonators. A prestructured silicon wafer is annealed at high temperature under a controlled atmosphere to form self-assembled buried cavities. The interiors of these cavities are oxidized to produce thin oxide tubes, following which the surrounding silicon material is selectively etched away to suspend the oxide tubes. This simple three-step process easily produces hollow microtube resonators. We report another innovation in the capping glass wafer where we integrate fluidic access channels and getter materials along with residual gas suction channels. Combined together, only five photolithographic steps and one bonding step are required to fabricate vacuum-packaged hollow microtube resonators that exhibit quality factors as high as ∼ 13,000. We take one step further to explore additionally attractive features including the ability to tune the device responsivity, changing the resonator material, and scaling down the resonator size. The resonator wall thickness of ∼ 120 nm and the channel hydraulic diameter of ∼ 60 nm are demonstrated solely by conventional microfabrication approaches. The unique characteristics of this new fabrication process facilitate the widespread use of hollow microtube resonators, their translation between diverse research fields, and the production of commercially viable devices.

  17. Impact of Geomorphological Changes to Harbor Resonance During Meteotsunamis: The Vela Luka Bay Test Case

    NASA Astrophysics Data System (ADS)

    Denamiel, Cléa; Šepić, Jadranka; Vilibić, Ivica

    2018-05-01

    In engineering studies, harbor resonance, including quality and amplification factors, is typically computed for swell and waves with periods shorter than 10 min. However, in various locations around the world, such as Vela Luka Bay in Croatia, meteotsunami waves of periods greater than 10 min can excite the bay or harbor natural modes and produce substantial structural damages. In this theoretical study, the impact of some geomorphological changes of Vela Luka Bay—i.e. deepening of the bay, dredging the harbor, adding a pier or a marina—to the amplification of the meteotsunami waves are presented for a set of 6401 idealized pressure wave field forcing used to derive robust statistics. The most substantial increase in maximum elevation is found when the Vela Luka harbor is dredged to a 5 m depth, which is in contradiction with the calculation of the quality factor showing a decrease of the harbor natural resonance. It has been shown that the forcing energy content at different frequency bands should also be taken into account when estimating the quality and amplification factors, as their typical definitions derived from the peak frequency of the sea level spectrum fail to represent the harbor response during meteotsunami events. New definitions of these factors are proposed in this study and are shown to be in good agreement with the results of the statistical analysis of the Vela Luka Bay maximum elevation results. In addition, the presented methodology can easily be applicable to any other location in the world where meteotsunamis occur.

  18. Surface Participation Effects in Titanium Nitride and Niobium Resonators

    NASA Astrophysics Data System (ADS)

    Dove, Allison; Kreikebaum, John Mark; Livingston, William; Delva, Remy; Qiu, Yanjie; Lolowang, Reinhard; Ramasesh, Vinay; O'Brien, Kevin; Siddiqi, Irfan

    Improving the coherence time of superconducting qubits requires a precise understanding of the location and density of surface defects. Superconducting microwave resonators are commonly used for quantum state readout and are a versatile testbed to systematically characterize materials properties as a function of device geometry and fabrication method. We report on sputter deposited titanium nitride and niobium on silicon coplanar waveguide resonators patterned using reactive ion etches to define the device geometry. We discuss the impact of different growth conditions (temperature and electrical bias) and processing techniques on the internal quality factor (Q) of these devices. In particular, to investigate the effect of surface participation, we use a Bosch process to etch many-micron-deep trenches in the silicon substrate and quantify the impact of etch depth and profile on the internal Q. This research was supported by the ARO.

  19. Conductor-backed coplanar waveguide resonators of Y-Ba-Cu-O and Tl-Ba-Ca-Cu-O on LaAlO3

    NASA Technical Reports Server (NTRS)

    Miranda, F. A.; Bhasin, K. B.; Stan, M. A.; Kong, K. S.; Itoh, T.

    1992-01-01

    Conductor-backed coplanar waveguide (CBCPW) resonators operating at 10.8 GHz have been fabricated from Tl-Ba-Ca-O (TBCCO) and Y-Ba-Cu-O (YBCO) thin films on LaAlO3. The resonators consist of a coplanar waveguide (CPW) patterned on the superconducting film side of the LaAlO3 substrate with a gold ground plane coated on the opposite side. These resonators were tested in the temperature range from 14 to 106 K. At 77 K, the best of our TBCCO and YBCO resonators have an unloaded quality factor (Qo) 7 and 4 times, respectively, larger than that of a similar all-gold resonator. In this study, the Qo's of the TBCCO resonators were larger than those of their YBCO counterparts throughout the aforementioned temperature range.

  20. ESR spectrometer with a loop-gap resonator for cw and time resolved studies in a superconducting magnet.

    PubMed

    Simon, Ferenc; Murányi, Ferenc

    2005-04-01

    The design and performance of an electron spin resonance spectrometer operating at 3 and 9 GHz microwave frequencies combined with a 9-T superconducting magnet are described. The probehead contains a compact two-loop, one gap resonator, and is inside the variable temperature insert of the magnet enabling measurements in the 0-9T magnetic field and 1.5-400 K temperature range. The spectrometer allows studies on systems where resonance occurs at fields far above the g approximately 2 paramagnetic condition such as in antiferromagnets. The low quality factor of the resonator allows time resolved experiments such as, e.g., longitudinally detected ESR. We demonstrate the performance of the spectrometer on the NaNiO2 antiferromagnet, the MgB2 superconductor, and the RbC60 conducting alkaline fulleride polymer.

  1. Recombinant epidermal growth factor-like domain-1 from coagulation factor VII functionalized iron oxide nanoparticles for targeted glioma magnetic resonance imaging.

    PubMed

    Liu, Heng; Chen, Xiao; Xue, Wei; Chu, Chengchao; Liu, Yu; Tong, Haipeng; Du, Xuesong; Xie, Tian; Liu, Gang; Zhang, Weiguo

    The highly infiltrative and invasive nature of glioma cells often leads to blurred tumor margins, resulting in incomplete tumor resection and tumor recurrence. Accurate detection and precise delineation of glioma help in preoperative delineation, surgical planning and survival prediction. In this study, recombinant epidermal growth factor-like domain-1, derived from human coagulation factor VII, was conjugated to iron oxide nanoparticles (IONPs) for targeted glioma magnetic resonance (MR) imaging. The synthesized EGF1-EGFP-IONPs exhibited excellent targeting ability toward tissue factor (TF)-positive U87MG cells and human umbilical vein endothelial cells in vitro, and demonstrated persistent and efficient MR contrast enhancement up to 12 h for preclinical glioma models with high targeting specificity in vivo. They hold great potential for clinical translation and developing targeted theranostics against brain glioma.

  2. Exploring Factors That Influence Quality Literature Circles

    ERIC Educational Resources Information Center

    Young, Chase; Mohr, Kathleen A. J.

    2018-01-01

    Research indicates that literature circles are an authentic means for literacy development that students typically enjoy. To better understand the potential value and to add to the research base regarding literature circles, this study, involving 17 fourth graders, explores factors that may influence the quality of literature discussions,…

  3. Benchmarking Potential Factors Leading to Education Quality: A Study of Cambodian Higher Education

    ERIC Educational Resources Information Center

    Chen, Ching-Yaw; Sok, Phyra; Sok, Keomony

    2007-01-01

    Purpose: To study the quality in higher education in Cambodia and explore the potential factors leading to quality in Cambodian higher education. Design/methodology/approach: Five main factors that were deemed relevant in providing quality in Cambodian higher education were proposed: academic curriculum and extra-curricular activities, teachers'…

  4. CONDITIONS OF PASSAGE AND ENTRAPMENT OF TERRESTRIAL PLANETS IN SPIN-ORBIT RESONANCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Valeri V., E-mail: vvm@usno.navy.mil

    The dynamical evolution of terrestrial planets resembling Mercury in the vicinity of spin-orbit resonances is investigated using comprehensive harmonic expansions of the tidal torque taking into account the frequency-dependent quality factors and Love numbers. The torque equations are integrated numerically with a small step in time, including the oscillating triaxial torque components but neglecting the layered structure of the planet and assuming a zero obliquity. We find that a Mercury-like planet with a current value of orbital eccentricity (0.2056) is always captured in 3:2 resonance. The probability of capture in the higher 2:1 resonance is approximately 0.23. These results aremore » confirmed by a semi-analytical estimation of capture probabilities as functions of eccentricity for both prograde and retrograde evolutions of spin rate. As follows from analysis of equilibrium torques, entrapment in 3:2 resonance is inevitable at eccentricities between 0.2 and 0.41. Considering the phase space parameters at the times of periastron, the range of spin rates and phase angles for which an immediate resonance passage is triggered is very narrow, and yet a planet like Mercury rarely fails to align itself into this state of unstable equilibrium before it traverses 2:1 resonance.« less

  5. Identifying items to assess methodological quality in physical therapy trials: a factor analysis.

    PubMed

    Armijo-Olivo, Susan; Cummings, Greta G; Fuentes, Jorge; Saltaji, Humam; Ha, Christine; Chisholm, Annabritt; Pasichnyk, Dion; Rogers, Todd

    2014-09-01

    Numerous tools and individual items have been proposed to assess the methodological quality of randomized controlled trials (RCTs). The frequency of use of these items varies according to health area, which suggests a lack of agreement regarding their relevance to trial quality or risk of bias. The objectives of this study were: (1) to identify the underlying component structure of items and (2) to determine relevant items to evaluate the quality and risk of bias of trials in physical therapy by using an exploratory factor analysis (EFA). A methodological research design was used, and an EFA was performed. Randomized controlled trials used for this study were randomly selected from searches of the Cochrane Database of Systematic Reviews. Two reviewers used 45 items gathered from 7 different quality tools to assess the methodological quality of the RCTs. An exploratory factor analysis was conducted using the principal axis factoring (PAF) method followed by varimax rotation. Principal axis factoring identified 34 items loaded on 9 common factors: (1) selection bias; (2) performance and detection bias; (3) eligibility, intervention details, and description of outcome measures; (4) psychometric properties of the main outcome; (5) contamination and adherence to treatment; (6) attrition bias; (7) data analysis; (8) sample size; and (9) control and placebo adequacy. Because of the exploratory nature of the results, a confirmatory factor analysis is needed to validate this model. To the authors' knowledge, this is the first factor analysis to explore the underlying component items used to evaluate the methodological quality or risk of bias of RCTs in physical therapy. The items and factors represent a starting point for evaluating the methodological quality and risk of bias in physical therapy trials. Empirical evidence of the association among these items with treatment effects and a confirmatory factor analysis of these results are needed to validate these items.

  6. A Multivariate Evaluation of Factors Affecting the Quality of Freshly Frozen Tissue Specimens.

    PubMed

    Wang, Tong-Hong; Chen, Chin-Chuan; Liang, Kung-Hao; Chen, Chi-Yuan; Chuang, Wen-Yu; Ueng, Shir-Hwa; Chu, Pao-Hsien; Huang, Chung-Guei; Chen, Tse-Ching; Hsueh, Chuen

    2017-08-01

    Well-prepared and preserved freshly frozen specimens are indispensable materials for clinical studies. To manage specimen quality and to understand the factors potentially affecting specimen quality during preservation processes, we analyzed the quality of RNA and genomic DNA of various tissues collected between 2002 and 2011 in Linkou Chang Gung Memorial Hospital, Taiwan. During this period, a total of 1059 freshly frozen specimens from eight major cancer categories were examined. It was found that preservation duration, organ origin, and tissue type could all influence the quality of RNA samples. The increased preservation period correlated with decreased RNA quality; the brain, breast, and stomach RNA specimens displayed faster degradation rates than those of other organs, and RNA specimens isolated from tumor tissues were apparently more stable than those of other tissues. These factors could all be used as quality predictors of RNA quality. In contrast, almost all analyses revealed that the genomic DNA samples had good quality, which was not influenced by the aforementioned factors. The results assisted us in determining preservation factors that affect specimen quality, which could provide evidence for improving processes of sample collection and preservation. Furthermore, the results are also useful for researchers to adopt as the evaluation criteria for choosing specimen collection and preservation strategies.

  7. Optimized Shielding and Fabrication Techniques for TiN and Al Microwave Resonators

    NASA Astrophysics Data System (ADS)

    Kreikebaum, John Mark; Kim, Eunseong; Livingston, William; Dove, Allison; Calusine, Gregory; Hover, David; Rosenberg, Danna; Oliver, William; Siddiqi, Irfan

    We present a systematic study of the effects of shielding and packaging on the internal quality factor (Qi) of Al and TiN microwave resonators designed for use in qubit readout. Surprisingly, Qi =1.3x106 TiN samples investigated at 100 mK exhibited no significant changes in linewidth when operated without magnetic shielding and in an open cryo-package. In contrast, Al resonators showed systematic improvement in Qi with each successive shield. Measurements were performed in an adiabatic demagnetization refrigerator, where typical ambient fields of 0.2 mT are present at the sample stage. We discuss the effect of 100 mK and 500 mK Cu radiation shields and cryoperm magnetic shielding on resonator Q as a function of temperature and input power in samples prepared with a variety of surface treatments, fabrication recipes, and embedding circuits. This research was supported by the ARO and IARPA.

  8. Factors affecting the quality of walnut lumber and veneer

    Treesearch

    Daniel L. Cassens

    2004-01-01

    Walnut is a unique species in both its timber and wood characteristics. Although market conditions vary it is generally considered a valuable species. Because of these factors, setting quality (value) levels for both lumber and veneer can be involved. Lumber grades are quantitative thus straight forward once the system is understood. Determining quality in veneer is...

  9. [Research on quality regionalization of cultivated Pseudostellaria heterophylla based on climate factors].

    PubMed

    Kang, Chuan-Zhi; Zhou, Tao; Jiang, Wei-Ke; Guo, Lan-Ping; Zhang, Xiao-Bo; Xiao, Cheng-Hong; Zhao, Dan

    2016-07-01

    Maxent model was applied in the study to filtering the climate factors layer by layer. Polysaccharides and pseudostellarin B the two internal quality evaluation index were combined to analyse the interlinkages between climate factors and chemical constituents in order to search for the critical climate factors of Pseudostellaria heterophylla. Then based on the key climate factors to explicit the quality spatial distribution of P. heterophylla. The results showed that polysaccharides and climatic factors had no significant correlation, suggesting that the indicator was not climate-driven metabolites. Pseudostellarin B could construct regression model with the precipitation. And quality regionalization results showed that pseudostellarin B content presented firstly increased and then decreased trend from southeast to northwest, which was the consistent change with precipitation. It clearly proposed that precipitation was the key climate factor, which affected the accumulation of cyclopeptide compound for Pseudostellariae Radix. Copyright© by the Chinese Pharmaceutical Association.

  10. Machine-Specific Magnetic Resonance Imaging Quality Control Procedures for Stereotactic Radiosurgery Treatment Planning

    PubMed Central

    Taghizadeh, Somayeh; Yang, Claus Chunli; R. Kanakamedala, Madhava; Morris, Bart; Vijayakumar, Srinivasan

    2017-01-01

    Purpose Magnetic resonance (MR) images are necessary for accurate contouring of intracranial targets, determination of gross target volume and evaluation of organs at risk during stereotactic radiosurgery (SRS) treatment planning procedures. Many centers use magnetic resonance imaging (MRI) simulators or regular diagnostic MRI machines for SRS treatment planning; while both types of machine require two stages of quality control (QC), both machine- and patient-specific, before use for SRS, no accepted guidelines for such QC currently exist. This article describes appropriate machine-specific QC procedures for SRS applications. Methods and materials We describe the adaptation of American College of Radiology (ACR)-recommended QC tests using an ACR MRI phantom for SRS treatment planning. In addition, commercial Quasar MRID3D and Quasar GRID3D phantoms were used to evaluate the effects of static magnetic field (B0) inhomogeneity, gradient nonlinearity, and a Leksell G frame (SRS frame) and its accessories on geometrical distortion in MR images. Results QC procedures found in-plane distortions (Maximum = 3.5 mm, Mean = 0.91 mm, Standard deviation = 0.67 mm, >2.5 mm (%) = 2) in X-direction (Maximum = 2.51 mm, Mean = 0.52 mm, Standard deviation = 0.39 mm, > 2.5 mm (%) = 0) and in Y-direction (Maximum = 13. 1 mm , Mean = 2.38 mm, Standard deviation = 2.45 mm, > 2.5 mm (%) = 34) in Z-direction and < 1 mm distortion at a head-sized region of interest. MR images acquired using a Leksell G frame and localization devices showed a mean absolute deviation of 2.3 mm from isocenter. The results of modified ACR tests were all within recommended limits, and baseline measurements have been defined for regular weekly QC tests. Conclusions With appropriate QC procedures in place, it is possible to routinely obtain clinically useful MR images suitable for SRS treatment planning purposes. MRI examination for SRS planning can benefit from the improved localization and planning possible

  11. Machine-Specific Magnetic Resonance Imaging Quality Control Procedures for Stereotactic Radiosurgery Treatment Planning.

    PubMed

    Fatemi, Ali; Taghizadeh, Somayeh; Yang, Claus Chunli; R Kanakamedala, Madhava; Morris, Bart; Vijayakumar, Srinivasan

    2017-12-18

    Purpose Magnetic resonance (MR) images are necessary for accurate contouring of intracranial targets, determination of gross target volume and evaluation of organs at risk during stereotactic radiosurgery (SRS) treatment planning procedures. Many centers use magnetic resonance imaging (MRI) simulators or regular diagnostic MRI machines for SRS treatment planning; while both types of machine require two stages of quality control (QC), both machine- and patient-specific, before use for SRS, no accepted guidelines for such QC currently exist. This article describes appropriate machine-specific QC procedures for SRS applications. Methods and materials We describe the adaptation of American College of Radiology (ACR)-recommended QC tests using an ACR MRI phantom for SRS treatment planning. In addition, commercial Quasar MRID 3D and Quasar GRID 3D phantoms were used to evaluate the effects of static magnetic field (B 0 ) inhomogeneity, gradient nonlinearity, and a Leksell G frame (SRS frame) and its accessories on geometrical distortion in MR images. Results QC procedures found in-plane distortions (Maximum = 3.5 mm, Mean = 0.91 mm, Standard deviation = 0.67 mm, >2.5 mm (%) = 2) in X-direction (Maximum = 2.51 mm, Mean = 0.52 mm, Standard deviation = 0.39 mm, > 2.5 mm (%) = 0) and in Y-direction (Maximum = 13. 1 mm , Mean = 2.38 mm, Standard deviation = 2.45 mm, > 2.5 mm (%) = 34) in Z-direction and < 1 mm distortion at a head-sized region of interest. MR images acquired using a Leksell G frame and localization devices showed a mean absolute deviation of 2.3 mm from isocenter. The results of modified ACR tests were all within recommended limits, and baseline measurements have been defined for regular weekly QC tests. Conclusions With appropriate QC procedures in place, it is possible to routinely obtain clinically useful MR images suitable for SRS treatment planning purposes. MRI examination for SRS planning can benefit from the improved localization and planning

  12. Comparative mass spectrometry & nuclear magnetic resonance metabolomic approaches for nutraceuticals quality control analysis: a brief review.

    PubMed

    Farag, Mohamed A

    2014-01-01

    The number of botanical dietary supplements in the market has recently increased primarily due to increased health awareness. Standardization and quality control of the constituents of these plant extracts is an important topic, particularly when such ingredients are used long term as dietary supplements, or in cases where higher doses are marketed as drugs. The development of fast, comprehensive, and effective untargeted analytical methods for plant extracts is of high interest. Nuclear magnetic resonance spectroscopy and mass spectrometry are the most informative tools, each of which enables high-throughput and global analysis of hundreds of metabolites in a single step. Although only one of the two techniques is utilized in the majority of plant metabolomics applications, there is a growing interest in combining the data from both platforms to effectively unravel the complexity of plant samples. The application of combined MS and NMR in the quality control of nutraceuticals forms the major part of this review. Finally I will look at the future developments and perspectives of these two technologies for the quality control of herbal materials.

  13. Development of a 10 MHz oscillator working with an LGT crystal resonator: preliminary results.

    PubMed

    Imbaud, Joël; Galliou, Serge; Romand, Jean Pierre; Abbe, Philippe; Bourquin, Roger

    2008-09-01

    Presently, to our knowledge, measurement of the noise of langatate (LGT) crystal oscillators has not previously been reported. First results of such a measurement are given in this paper. They have been obtained from 10 MHz resonator prototypes tested with a dedicated electronics. The main steps of the resonator manufacturing are described in this paper. Good quality factors, close to 1.4 10(6), have already been achieved on the 5th overtone of the thickness shear mode of LGT Y cuts, even if the energy trapping should still be optimized. The motional parameters of these resonator prototypes are quite different from those of usual quartz crystal resonators. As a consequence, dedicated sustaining electronics have been designed. The explored options are reported to justify the implemented one. Moreover, the high thermal sensitivity of LGT crystal resonators (parabolic f-T curve) requires that particular attention be paid to the oven thermal stability. This important feature is also pointed out in the paper. The preliminary version of the resulting system exhibits a relative frequency stability of 6 10(-12).

  14. Whispering Gallery Mode Optomechanical Resonator

    NASA Technical Reports Server (NTRS)

    Aveline, David C.; Strekalov, Dmitry V.; Yu, Nan; Yee, Karl Y.

    2012-01-01

    Great progress has been made in both micromechanical resonators and micro-optical resonators over the past decade, and a new field has recently emerged combining these mechanical and optical systems. In such optomechanical systems, the two resonators are strongly coupled with one influencing the other, and their interaction can yield detectable optical signals that are highly sensitive to the mechanical motion. A particularly high-Q optical system is the whispering gallery mode (WGM) resonator, which has many applications ranging from stable oscillators to inertial sensor devices. There is, however, limited coupling between the optical mode and the resonator s external environment. In order to overcome this limitation, a novel type of optomechanical sensor has been developed, offering great potential for measurements of displacement, acceleration, and mass sensitivity. The proposed hybrid device combines the advantages of all-solid optical WGM resonators with high-quality micro-machined cantilevers. For direct access to the WGM inside the resonator, the idea is to radially cut precise gaps into the perimeter, fabricating a mechanical resonator within the WGM. Also, a strategy to reduce losses has been developed with optimized design of the cantilever geometry and positions of gap surfaces.

  15. Whole-lung resonance in a bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas).

    PubMed

    Finneran, James J

    2003-07-01

    An acoustic backscatter technique was used to estimate in vivo whole-lung resonant frequencies in a bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas). Subjects were trained to submerge and position themselves near an underwater sound projector and a receiving hydrophone. Acoustic pressure measurements were made near the thorax while the subject was insonified with pure tones at frequencies from 16 to 100 Hz. Whole-lung resonant frequencies were estimated by comparing pressures measured near the subject's thorax to those measured from the same location without the subject present. Experimentally measured resonant frequencies for the white whale and dolphin lungs were 30 and 36 Hz, respectively. These values were significantly higher than those predicted using a free-spherical air bubble model. Experimentally measured damping ratios and quality factors at resonance were 0.20 and 2.5, respectively, for the white whale, and 0.16 and 3.1, respectively, for the dolphin.

  16. Ultra-high-Q three-dimensional photonic crystal nano-resonators.

    PubMed

    Tang, Lingling; Yoshie, Tomoyuki

    2007-12-10

    Two nano-resonator modes are designed in a woodpile three-dimensional photonic crystal by the modulation of unit cell size along a low-loss optical waveguide. One is a dipole mode with 2.88 cubic half-wavelengths mode volume. The other is a quadrupole mode with 8.3 cubic half-wavelengths mode volume. Light is three-dimensionally confined by a complete photonic band gap so that, in the analyzed range, the quality factor exponentially increases as the increase in the number of unit cells used for confinement of light.

  17. Analysis and Validation of Contactless Time-Gated Interrogation Technique for Quartz Resonator Sensors

    PubMed Central

    Baù, Marco; Ferrari, Marco; Ferrari, Vittorio

    2017-01-01

    A technique for contactless electromagnetic interrogation of AT-cut quartz piezoelectric resonator sensors is proposed based on a primary coil electromagnetically air-coupled to a secondary coil connected to the electrodes of the resonator. The interrogation technique periodically switches between interleaved excitation and detection phases. During the excitation phase, the resonator is set into vibration by a driving voltage applied to the primary coil, whereas in the detection phase, the excitation signal is turned off and the transient decaying response of the resonator is sensed without contact by measuring the voltage induced back across the primary coil. This approach ensures that the readout frequency of the sensor signal is to a first order approximation independent of the interrogation distance between the primary and secondary coils. A detailed theoretical analysis of the interrogation principle based on a lumped-element equivalent circuit is presented. The analysis has been experimentally validated on a 4.432 MHz AT-cut quartz crystal resonator, demonstrating the accurate readout of the series resonant frequency and quality factor over an interrogation distance of up to 2 cm. As an application, the technique has been applied to the measurement of liquid microdroplets deposited on a 4.8 MHz AT-cut quartz crystal. More generally, the proposed technique can be exploited for the measurement of any physical or chemical quantities affecting the resonant response of quartz resonator sensors. PMID:28574459

  18. Analysis and Validation of Contactless Time-Gated Interrogation Technique for Quartz Resonator Sensors.

    PubMed

    Baù, Marco; Ferrari, Marco; Ferrari, Vittorio

    2017-06-02

    A technique for contactless electromagnetic interrogation of AT-cut quartz piezoelectric resonator sensors is proposed based on a primary coil electromagnetically air-coupled to a secondary coil connected to the electrodes of the resonator. The interrogation technique periodically switches between interleaved excitation and detection phases. During the excitation phase, the resonator is set into vibration by a driving voltage applied to the primary coil, whereas in the detection phase, the excitation signal is turned off and the transient decaying response of the resonator is sensed without contact by measuring the voltage induced back across the primary coil. This approach ensures that the readout frequency of the sensor signal is to a first order approximation independent of the interrogation distance between the primary and secondary coils. A detailed theoretical analysis of the interrogation principle based on a lumped-element equivalent circuit is presented. The analysis has been experimentally validated on a 4.432 MHz AT-cut quartz crystal resonator, demonstrating the accurate readout of the series resonant frequency and quality factor over an interrogation distance of up to 2 cm. As an application, the technique has been applied to the measurement of liquid microdroplets deposited on a 4.8 MHz AT-cut quartz crystal. More generally, the proposed technique can be exploited for the measurement of any physical or chemical quantities affecting the resonant response of quartz resonator sensors.

  19. Multi-frequency interpolation in spiral magnetic resonance fingerprinting for correction of off-resonance blurring.

    PubMed

    Ostenson, Jason; Robison, Ryan K; Zwart, Nicholas R; Welch, E Brian

    2017-09-01

    Magnetic resonance fingerprinting (MRF) pulse sequences often employ spiral trajectories for data readout. Spiral k-space acquisitions are vulnerable to blurring in the spatial domain in the presence of static field off-resonance. This work describes a blurring correction algorithm for use in spiral MRF and demonstrates its effectiveness in phantom and in vivo experiments. Results show that image quality of T1 and T2 parametric maps is improved by application of this correction. This MRF correction has negligible effect on the concordance correlation coefficient and improves coefficient of variation in regions of off-resonance relative to uncorrected measurements. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Influences on diet quality in older age: the importance of social factors.

    PubMed

    Bloom, Ilse; Edwards, Mark; Jameson, Karen A; Syddall, Holly E; Dennison, Elaine; Gale, Catharine R; Baird, Janis; Cooper, Cyrus; Aihie Sayer, Avan; Robinson, Sian

    2017-03-01

    poor diet quality is common among older people, but little is known about influences on food choice, including the role of psychosocial factors at this age. to identify psychosocial correlates of diet quality in a community-dwelling population of men and women aged 59-73 years; to describe relationships with change in diet quality over 10 years. Longitudinal cohort, Hertfordshire Cohort Study (HCS). HCS participants assessed at baseline (1998-2003: 1,048 men, 862 women); 183 men and 189 women re-assessed in 2011. diet was assessed by administered food frequency questionnaire; diet scores were calculated to describe diet quality at baseline and follow-up. A range of psychosocial factors (social support, social network, participation in leisure activities, depression and anxiety, sense of control) were assessed by questionnaire. at baseline, better diet quality was related to a range of social factors, including increased confiding/emotional social support (men and women), practical support (men) and a larger social network (women) (all P < 0.05). For both men and women, greater participation in social and cognitive leisure activities was related to better diet quality (P < 0.005). There were few associations between measured psychosocial factors at baseline and change in diet score over 10 years, in the follow-up sub-group. However, greater participation in leisure activities, especially cognitive activities, at baseline was associated with smaller declines in diet quality over the 10-year follow-up period for both men (P = 0.017) and women (P = 0.014). in community-dwelling older adults, a range of social factors, that includes greater participation in leisure activities, were associated with diets of better quality. © The Author 2016. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  1. High-Q Hybrid Plasmon-Photon Modes in a Bottle Resonator Realized with a Silver-Coated Glass Fiber with a Varying Diameter

    NASA Astrophysics Data System (ADS)

    Rottler, Andreas; Harland, Malte; Bröll, Markus; Klingbeil, Matthias; Ehlermann, Jens; Mendach, Stefan

    2013-12-01

    We experimentally demonstrate that hybrid plasmon-photon modes exist in a silver-coated glass bottle resonator. The bottle resonator is realized in a glass fiber with a smoothly varying diameter, which is subsequently coated with a rhodamine 800-dye doped acryl-glass layer and a 30 nm thick silver layer. We show by means of photoluminescence experiments supported by electromagnetic simulations that the rhodamine 800 photoluminescence excites hybrid plasmon-photon modes in such a bottle resonator, which provide a plasmon-type field enhancement at the outer silver surface and exhibit quality factors as high as 1000.

  2. Leadership styles of Finnish nurse managers and factors influencing it.

    PubMed

    Vesterinen, Soili; Isola, Arja; Paasivaara, Leena

    2009-05-01

    The purpose of the present study was to explore nurse managers' perceptions of their leadership styles and factors influencing it. It is a challenge for nurse managers to retain nurses in hospitals and to ensure a high quality of care in nursing practice. Leadership style is an important part of leadership. Knowledge concerning nurse managers' resonant and non-resonant leadership styles provides nurse managers with tools to reflect on their own leadership style. Open-ended, tape-recorded interviews were conducted with 13 nurse managers from five Finnish hospitals and two long-term care facilities. The data were analysed using qualitative content analysis. Five categories of leadership style were discerned: visionary, coaching, affiliate, democratic, commanding. Factors that influence leadership style were identified: earlier superiors, values, information, cooperation, employees and education. The results of this study show that Finnish nurse managers use both resonant and non-resonant leadership styles. The findings of this study show that nurse managers use a variety of leadership styles. The study demonstrates the importance of knowledge about leadership styles and factors influencing it among nurse managers providing future leadership and management education.

  3. Psychosocial Factors Associated with Diet Quality in a Working Adult Population

    PubMed Central

    Dunbar, Sandra B.; Higgins, Melinda; Dai, Jun; Ziegler, Thomas R.; Frediani, Jennifer K.; Reilly, Carolyn; Brigham, Kenneth L.

    2014-01-01

    The associations between specific intra- and inter-personal psychosocial factors and dietary patterns were explored in a healthy, working adult population. Participants (N= 640) were enrolled in a prospective predictive health study and characterized by a mean age of 48(SD = 11) years, 67% women, and 30% minority. Baseline psychosocial measures of perceived stress, depressive symptoms, social support, and family functioning were examined for their relationships with three diet quality indices - AHEI, DASH, and the Mediterranean. Dietary intake was of moderate quality in this high income, well-educated, psychosocially healthy population. Social support was positively associated with better diet quality for all three indices (p< .01). Further research should focus on socio-environmental factors associated with diet quality. PMID:23408456

  4. Superconducting Resonators with Parasitic Electromagnetic Environments

    NASA Astrophysics Data System (ADS)

    Hornibrook, John; Mitchell, Emma; Reilly, David

    2012-02-01

    Microwave losses in niobium superconducting resonators are investigated at milli-Kelvin temperatures and with low drive power. In addition to the well-known suppression of Q-factor that arises from coupling between the resonator and two-level defects in the dielectric substrate [1-4], we report strong dependence of the loaded Q-factor and resonance line-shape on the electromagnetic environment. Methods to suppress parasitic coupling between the resonator and its environment are demonstrated.[4pt] [1] Day, P.K. et al., Nature 425, 817-821 (2003).[0pt] [2] Wallraff, A. et. al., Nature 451, 162-167 (2004).[0pt] [3] Macha, P. et. al., Appl. Phys. Lett., 96, 062503 (2010).[0pt] [4] O'Connell, A.D. et. al., Appl. Phys. Lett., 92, 112903 (2008).

  5. Identifying Items to Assess Methodological Quality in Physical Therapy Trials: A Factor Analysis

    PubMed Central

    Cummings, Greta G.; Fuentes, Jorge; Saltaji, Humam; Ha, Christine; Chisholm, Annabritt; Pasichnyk, Dion; Rogers, Todd

    2014-01-01

    Background Numerous tools and individual items have been proposed to assess the methodological quality of randomized controlled trials (RCTs). The frequency of use of these items varies according to health area, which suggests a lack of agreement regarding their relevance to trial quality or risk of bias. Objective The objectives of this study were: (1) to identify the underlying component structure of items and (2) to determine relevant items to evaluate the quality and risk of bias of trials in physical therapy by using an exploratory factor analysis (EFA). Design A methodological research design was used, and an EFA was performed. Methods Randomized controlled trials used for this study were randomly selected from searches of the Cochrane Database of Systematic Reviews. Two reviewers used 45 items gathered from 7 different quality tools to assess the methodological quality of the RCTs. An exploratory factor analysis was conducted using the principal axis factoring (PAF) method followed by varimax rotation. Results Principal axis factoring identified 34 items loaded on 9 common factors: (1) selection bias; (2) performance and detection bias; (3) eligibility, intervention details, and description of outcome measures; (4) psychometric properties of the main outcome; (5) contamination and adherence to treatment; (6) attrition bias; (7) data analysis; (8) sample size; and (9) control and placebo adequacy. Limitation Because of the exploratory nature of the results, a confirmatory factor analysis is needed to validate this model. Conclusions To the authors' knowledge, this is the first factor analysis to explore the underlying component items used to evaluate the methodological quality or risk of bias of RCTs in physical therapy. The items and factors represent a starting point for evaluating the methodological quality and risk of bias in physical therapy trials. Empirical evidence of the association among these items with treatment effects and a confirmatory factor

  6. The quality of risk factor screening during antenatal consultations in Niger.

    PubMed

    Prual, A; Toure, A; Huguet, D; Laurent, Y

    2000-03-01

    A decade after the first International Conference on Safe Motherhood, maternal mortality remains very high in most West African countries, even in capital cities. The detection of high risk pregnancies, known as the risk approach, during antenatal consultations has been the basis of most maternal and child health programmes over the last decade. The effectiveness of antenatal care as a tool to prevent or predict obstetric complications is being questioned more and more. In addition to the scarcity of reliable data about the predictivity of most risk factors, the quality of the screening must be questioned. The goal of this study was to assess the frequency of risk factors among a sample of pregnant women attending antenatal care in Niger and to assess the quality of the screening of those risk factors. Overall, 330 pregnant women were enrolled in the study. Each woman was examined twice: the first time by a midwife, the second time by one of the authors but without knowledge of the results of the first consultation. Fifty-five percent of pregnant women had at least one risk factor, 31% had more than one. Ninety-one percent of the risk factors were detected at interview. The following risk factors were not systematically searched for by midwives: height (48.5%), blood pressure (43.6%), glycosuria (40.6%), vaginal bleeding (38.2%), oedema (37.3%), parity (17%), age (16%), previous caesarean section (15.2%), previous stillbirth (15.2%) and previous miscarriages (14.8%). This study has shown that, in Niger, the quality of screening for risk factors during antenatal consultation is poor. In the urban settings where this study took place, lack of personnel, lack of equipment, lack of time and poor compliance by women cannot be made responsible for this situation. While screening of these risk factors continues as policy, the quality of screening must be dramatically improved.

  7. Using Whispering-Gallery-Mode Resonators for Refractometry

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Savchenkov, Anatoliy; Strekalov, Dmitry; Iltchenko, Vladimir; Maleki, Lute

    2010-01-01

    A method of determining the refractive and absorptive properties of optically transparent materials involves a combination of theoretical and experimental analysis of electromagnetic responses of whispering-gallery-mode (WGM) resonator disks made of those materials. The method was conceived especially for use in studying transparent photorefractive materials, for which purpose this method affords unprecedented levels of sensitivity and accuracy. The method is expected to be particularly useful for measuring temporally varying refractive and absorptive properties of photorefractive materials at infrared wavelengths. Still more particularly, the method is expected to be useful for measuring drifts in these properties that are so slow that, heretofore, the properties were assumed to be constant. The basic idea of the method is to attempt to infer values of the photorefractive properties of a material by seeking to match (1) theoretical predictions of the spectral responses (or selected features thereof) of a WGM of known dimensions made of the material with (2) the actual spectral responses (or selected features thereof). Spectral features that are useful for this purpose include resonance frequencies, free spectral ranges (differences between resonance frequencies of adjacently numbered modes), and resonance quality factors (Q values). The method has been demonstrated in several experiments, one of which was performed on a WGM resonator made from a disk of LiNbO3 doped with 5 percent of MgO. The free spectral range of the resonator was approximately equal to 3.42 GHz at wavelengths in the vicinity of 780 nm, the smallest full width at half maximum of a mode was approximately equal to 50 MHz, and the thickness of the resonator in the area of mode localization was 30 microns. In the experiment, laser power of 9 mW was coupled into the resonator with an efficiency of 75 percent, and the laser was scanned over a frequency band 9 GHz wide at a nominal wavelength of

  8. A technique for magnetic resonance imaging of equine cadaver specimens.

    PubMed

    Widmer, W R; Buckwalter, K A; Hill, M A; Fessler, J F; Ivancevich, S

    1999-01-01

    We tested an adaptation of a technique for performing magnetic resonance (MR) imaging of human cadaver limbs in the horse. The forelimbs from a normal horse were collected, frozen, and sealed with a paraffin-polymer combination prior to imaging with either a high- or midfield magnetic resonance scanner. Each forelimb was defrosted, scanned, and refrozen on two separate occasions. A five-point scale was used to evaluate the quality of each set of sagittal and transverse, T1-weighted images of each digit. There was no difference in image quality between first and second scans of either specimen (p > 0.05). We conclude that this technique allows investigators to bank tissue specimens for future magnetic resonance imaging without significant loss of image quality.

  9. Development and validation of a questionnaire evaluating patient anxiety during Magnetic Resonance Imaging: the Magnetic Resonance Imaging-Anxiety Questionnaire (MRI-AQ).

    PubMed

    Ahlander, Britt-Marie; Årestedt, Kristofer; Engvall, Jan; Maret, Eva; Ericsson, Elisabeth

    2016-06-01

    To develop and validate a new instrument measuring patient anxiety during Magnetic Resonance Imaging examinations, Magnetic Resonance Imaging- Anxiety Questionnaire. Questionnaires measuring patients' anxiety during Magnetic Resonance Imaging examinations have been the same as used in a wide range of conditions. To learn about patients' experience during examination and to evaluate interventions, a specific questionnaire measuring patient anxiety during Magnetic Resonance Imaging is needed. Psychometric cross-sectional study with test-retest design. A new questionnaire, Magnetic Resonance Imaging-Anxiety Questionnaire, was designed from patient expressions of anxiety in Magnetic Resonance Imaging-scanners. The sample was recruited between October 2012-October 2014. Factor structure was evaluated with exploratory factor analysis and internal consistency with Cronbach's alpha. Criterion-related validity, known-group validity and test-retest was calculated. Patients referred for Magnetic Resonance Imaging of either the spine or the heart, were invited to participate. The development and validation of Magnetic Resonance Imaging-Anxiety Questionnaire resulted in 15 items consisting of two factors. Cronbach's alpha was found to be high. Magnetic Resonance Imaging-Anxiety Questionnaire correlated higher with instruments measuring anxiety than with depression scales. Known-group validity demonstrated a higher level of anxiety for patients undergoing Magnetic Resonance Imaging scan of the heart than for those examining the spine. Test-retest reliability demonstrated acceptable level for the scale. Magnetic Resonance Imaging-Anxiety Questionnaire bridges a gap among existing questionnaires, making it a simple and useful tool for measuring patient anxiety during Magnetic Resonance Imaging examinations. © 2016 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.

  10. The Effect of Viscous Air Damping on an Optically Actuated Multilayer MoS2 Nanomechanical Resonator Using Fabry-Perot Interference

    PubMed Central

    She, Yumei; Li, Cheng; Lan, Tian; Peng, Xiaobin; Liu, Qianwen; Fan, Shangchun

    2016-01-01

    We demonstrated a multilayer molybdenum disulfide (MoS2) nanomechanical resonator by using optical Fabry-Perot (F-P) interferometric excitation and detection. The thin circular MoS2 nanomembrane with an approximate 8-nm thickness was transferred onto the endface of a ferrule with an inner diameter of 125 μm, which created a low finesse F-P interferometer with a cavity length of 39.92 μm. The effects of temperature and viscous air damping on resonance behavior of the resonator were investigated in the range of −10–80 °C. Along with the optomechanical behavior of the resonator in air, the measured resonance frequencies ranged from 36 kHz to 73 kHz with an extremely low inflection point at 20 °C, which conformed reasonably to those solved by previously obtained thermal expansion coefficients of MoS2. Further, a maximum quality (Q) factor of 1.35 for the resonator was observed at 0 °C due to viscous dissipation, in relation to the lower Knudsen number of 0.0025~0.0034 in the tested temperature range. Moreover, measurements of Q factor revealed little dependence of Q on resonance frequency and temperature. These measurements shed light on the mechanisms behind viscous air damping in MoS2, graphene, and other 2D resonators. PMID:28335290

  11. Optical Analog to Electromagnetically Induced Transparency in Cascaded Ring-Resonator Systems.

    PubMed

    Wang, Yonghua; Zheng, Hua; Xue, Chenyang; Zhang, Wendong

    2016-07-25

    The analogue of electromagnetically induced transparency in optical methods has shown great potential in slow light and sensing applications. Here, we experimentally demonstrated a coupled resonator induced transparency system with three cascaded ring coupled resonators in a silicon chip. The structure was modeled by using the transfer matrix method. Influences of various parameters including coupling ratio of couplers, waveguide loss and additional loss of couplers on transmission characteristic and group index have been investigated theoretically and numerically in detail. The transmission character of the system was measured by the vertical grating coupling method. The enhanced quality factor reached 1.22 × 10⁵. In addition, we further test the temperature performance of the device. The results provide a new method for the manipulation of light in highly integrated optical circuits and sensing applications.

  12. Surface acoustic wave resonators

    NASA Astrophysics Data System (ADS)

    Avitabile, Gianfranco; Roselli, Luca; Atzeni, Carlo; Manes, Gianfranco

    1991-10-01

    The development of surface acoustic wave (SAW) resonators is reviewed with attention given to the design of a simulation package for CAD-assisted SAW resonator design. Basic design configurations and operation parameters are set forth for the SAW resonators including the phase of the reflection factor, evaluation of the stopband center frequency, stopband width, and the free propagation speed. The use of synchronous designs is shown to reduce device sensitivity to variations in the technological process but generate higher insertion losses. The existence of transverse modes and propagation losses is shown to affect the rejection of spurious modes and the achievement of low insertion losses. Several SAW resonators are designed and fabricated with the CAD process, and the resonators in the VHF-UHF bands perform in a manner predicted by simulated results.

  13. [Quality of life and related factors among climacteric women from south Brazil].

    PubMed

    de Lorenzi, Dino R S; Saciloto, Bruno; Artico, Graziela R; Fontana, Sabrina K R

    2009-01-01

    This study aimed to evaluate the quality of life in climacteric and associated factor among women from Southeast Brazil. A cross-section study of 506 women aged between 45 and 60 years old attended at a university climacteric clinic from South Brazil from June to October 2002. Hysterectomized women, as well as hormonal therapy or hormonal contraceptive users were excluded. The quality of life was evaluated by the Women's Health Questionnaire (WHQ). Statistical analysis was performed with multiple linear regression analysis. The average of the age among the studied women was 51.3 (+/- 4.5) years old. About 15.4% were premenopausal, 34.4% perimenopausal and 50.2% postmenopausal women. The quality of life showed up deteriorated among the studied women. The factors related with quality of life were: the educational level (p < 0.01), the confirmation of smoking in the last year (p < 0.01), regular physical activity (p < 0.01), the confirmation of previous co-morbidities (p < 0.01) and the menopausal status (p < 0.01). A higher educational level, as well as the confirmation of regular physical activity led to a significant increase on their life quality. Smoking and previous clinical co-morbidities were responsible for the lower scores of quality of life. The pre-menopause was associated with a higher life quality level if compared to peri and post menopause. No differences in relation to the scores of life were identified among the perimenopausal and postmenopausal women. Nevertheless the menopausal status showed up associated to the quality of life, the results of the study pointed out that the climacteric is not just influenced by biological factors, but also by psychosocial and cultural factors.

  14. Hybrid III-V on Si grating as a broadband reflector and a high-Q resonator

    NASA Astrophysics Data System (ADS)

    Chung, Il-Sug; Taghizadeh, Alireza; Park, Gyeong Cheol

    2016-03-01

    Hybrid grating (HG) with a high-refractive-index cap layer added onto a high contrast grating (HCG), can provide a high reflectance close 100 % over a broader wavelength range than HCGs, or work as a ultrahigh quality (Q) factor resonator. The reflection and resonance properties of HGs have been investigated and the mechanisms leading to these properties are discussed. A HG reflector sample integrating a III-V cap layer with InGaAlAs quantum wells onto a Si grating has been fabricated and its reflection property has been characterized. The HG-based lasers have a promising prospect for silicon photonics light source or high-speed laser applications.

  15. Short-Term Effect of Two Semi-Occluded Vocal Tract Training Programs on the Vocal Quality of Future Occupational Voice Users: "Resonant Voice Training Using Nasal Consonants" Versus "Straw Phonation".

    PubMed

    Meerschman, Iris; Van Lierde, Kristiane; Peeters, Karen; Meersman, Eline; Claeys, Sofie; D'haeseleer, Evelien

    2017-09-18

    The purpose of this study was to determine the short-term effect of 2 semi-occluded vocal tract training programs, "resonant voice training using nasal consonants" versus "straw phonation," on the vocal quality of vocally healthy future occupational voice users. A multigroup pretest-posttest randomized control group design was used. Thirty healthy speech-language pathology students with a mean age of 19 years (range: 17-22 years) were randomly assigned into a resonant voice training group (practicing resonant exercises across 6 weeks, n = 10), a straw phonation group (practicing straw phonation across 6 weeks, n = 10), or a control group (receiving no voice training, n = 10). A voice assessment protocol consisting of both subjective (questionnaire, participant's self-report, auditory-perceptual evaluation) and objective (maximum performance task, aerodynamic assessment, voice range profile, acoustic analysis, acoustic voice quality index, dysphonia severity index) measurements and determinations was used to evaluate the participants' voice pre- and posttraining. Groups were compared over time using linear mixed models and generalized linear mixed models. Within-group effects of time were determined using post hoc pairwise comparisons. No significant time × group interactions were found for any of the outcome measures, indicating no differences in evolution over time among the 3 groups. Within-group effects of time showed a significant improvement in dysphonia severity index in the resonant voice training group, and a significant improvement in the intensity range in the straw phonation group. Results suggest that the semi-occluded vocal tract training programs using resonant voice training and straw phonation may have a positive impact on the vocal quality and vocal capacities of future occupational voice users. The resonant voice training caused an improved dysphonia severity index, and the straw phonation training caused an expansion of the intensity range in

  16. Engineered SOI slot waveguide ring resonator V-shape resonance combs for refraction index sensing up to 1300nm/RIU (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Weiwei; Serna, Samuel; Le Roux, Xavier; Vivien, Laurent; Cassan, Eric

    2016-05-01

    Bio-detection based on CMOS technology boosts the miniaturization of detection systems and the success on highly efficient, robust, accurate, and low coast Lab-on-Chip detection schemes. Such on chip detection technologies have covered healthy related harmful gases, bio-chemical analytes, genetic micro RNA, etc. Their monitoring accuracy is mainly qualified in terms of sensitivity and limit of the detection (LOD) of the detection system. In this context, recently developed silicon on insulator (SOI) optical devices have displayed highly performant detection abilities that LOD could go beyond 10-8RIU and sensitivity could exceeds 103nm/RIU. The SOI integrated optical sensing devices include strip/slotted waveguide consisting in structures like Mach-Zehnder interferometers (MZI), ring resonators (RR), nano cavities, etc. Typically, hollow core RR and nano-cavities could exhibit higher sensitivity due to their optical mode confinement properties with a partial localization of the electric field in low index sensing regions than devices based on evanescent field tails outside of the optical cores. Furthermore, they also provide larger sensing areas for surface functionalization to reach higher sensitivities and lower LODs. The state of art of hollow core devices, either based on Bragg gratings formed from a slot waveguide cavity or photonic crystal slot cavities, show sensitivities (S) up to 400nm/RIU and Figure of Merit (FOM) around 3,000 in water environment, FOM being defined as the inverse of LOD and precisely as FOM=SQ/λ, with λ the resonance wavelength and Q the quality factor of the considered resonator. Such high achieved FOMs in nano cavities are mainly due to their large Q factors around 15,000. While for mostly used RR, which do not require particular design strategies, relatively low Q factors around 1800 in water are met and moderate sensitivities about 300nm/RIU are found. In this work, we present here a novel slot ring resonator design to make

  17. Neutrons in proton pencil beam scanning: parameterization of energy, quality factors and RBE

    NASA Astrophysics Data System (ADS)

    Schneider, Uwe; Hälg, Roger A.; Baiocco, Giorgio; Lomax, Tony

    2016-08-01

    The biological effectiveness of neutrons produced during proton therapy in inducing cancer is unknown, but potentially large. In particular, since neutron biological effectiveness is energy dependent, it is necessary to estimate, besides the dose, also the energy spectra, in order to obtain quantities which could be a measure of the biological effectiveness and test current models and new approaches against epidemiological studies on cancer induction after proton therapy. For patients treated with proton pencil beam scanning, this work aims to predict the spatially localized neutron energies, the effective quality factor, the weighting factor according to ICRP, and two RBE values, the first obtained from the saturation corrected dose mean lineal energy and the second from DSB cluster induction. A proton pencil beam was Monte Carlo simulated using GEANT. Based on the simulated neutron spectra for three different proton beam energies a parameterization of energy, quality factors and RBE was calculated. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed parameterizations in order to calculate the spatially localized neutron energy, quality factors and RBE for each treated patient. The parameterization represents the simple quantification of neutron energy in two energy bins and the quality factors and RBE with a satisfying precision up to 85 cm away from the proton pencil beam when compared to the results based on 3D Monte Carlo simulations. The root mean square error of the energy estimate between Monte Carlo simulation based results and the parameterization is 3.9%. For the quality factors and RBE estimates it is smaller than 0.9%. The model was successfully integrated into the PSI treatment planning system. It was found that the parameterizations for neutron energy, quality factors and RBE were independent of proton energy in the investigated energy range of interest for proton therapy. The pencil beam algorithm has

  18. Neutrons in proton pencil beam scanning: parameterization of energy, quality factors and RBE.

    PubMed

    Schneider, Uwe; Hälg, Roger A; Baiocco, Giorgio; Lomax, Tony

    2016-08-21

    The biological effectiveness of neutrons produced during proton therapy in inducing cancer is unknown, but potentially large. In particular, since neutron biological effectiveness is energy dependent, it is necessary to estimate, besides the dose, also the energy spectra, in order to obtain quantities which could be a measure of the biological effectiveness and test current models and new approaches against epidemiological studies on cancer induction after proton therapy. For patients treated with proton pencil beam scanning, this work aims to predict the spatially localized neutron energies, the effective quality factor, the weighting factor according to ICRP, and two RBE values, the first obtained from the saturation corrected dose mean lineal energy and the second from DSB cluster induction. A proton pencil beam was Monte Carlo simulated using GEANT. Based on the simulated neutron spectra for three different proton beam energies a parameterization of energy, quality factors and RBE was calculated. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed parameterizations in order to calculate the spatially localized neutron energy, quality factors and RBE for each treated patient. The parameterization represents the simple quantification of neutron energy in two energy bins and the quality factors and RBE with a satisfying precision up to 85 cm away from the proton pencil beam when compared to the results based on 3D Monte Carlo simulations. The root mean square error of the energy estimate between Monte Carlo simulation based results and the parameterization is 3.9%. For the quality factors and RBE estimates it is smaller than 0.9%. The model was successfully integrated into the PSI treatment planning system. It was found that the parameterizations for neutron energy, quality factors and RBE were independent of proton energy in the investigated energy range of interest for proton therapy. The pencil beam algorithm has

  19. ZnO on nickel RF micromechanical resonators for monolithic wireless communication applications

    NASA Astrophysics Data System (ADS)

    Wei, Mian; Avila, Adrian; Rivera, Ivan; Baghelani, Masoud; Wang, Jing

    2017-05-01

    On-chip integrability of high-Q RF passives alongside CMOS transistors is crucial for the implementation of monolithic radio transceivers. One of the most significant bottlenecks in back-end-of-line (BEoL) integration of MEMS devices on CMOS processed wafers is their relatively low thermal budget, which is less than that required for typical MEMS material deposition processes. This paper investigates electroplated nickel as a structural material for piezoelectrically-transduced resonators to demonstrate ZnO-on-nickel resonators with a CMOS-compatible low temperature process for the first time. Aside from the obvious manufacturing cost benefit, electroplated nickel is a reasonable substitute for polycrystalline or single crystal silicon and thin-film microcrystalline diamond device layers, while realizing decent acoustic velocity and moderate Q. Electroplated nickel has been already adopted by MEMSCAP, a multi-user MEMS process foundry, in its MetalMUMPs process. Furthermore, it is observed that a localized annealing process through Joule heating can be exploited to significantly improve the effective mechanical quality factor for the ZnO-on-nickel resonators, which is still lower than the reported AlN resonators. This work demonstrates ZnO-on-nickel piezoelectrically-actuated MEMS resonators and resonator arrays by using an IC compatible low temperature process. There is room for performance improvement by lowering the acoustic energy losses in the ZnO and nickel layers.

  20. [Temporal variation of water quality and driving factors in Yanghe watershed of Zhangjiakou].

    PubMed

    Pang, Bo; Wang, Tie-Yu; Lü, Yong-Long; Du, Li-Yu; Luo, Wei

    2013-01-01

    Yanghe is an important water source for Guanting Reservoir, which once supplied the Beijing city with drinking water, industrial process water and water-use in landscape. Based on the data of water quality monitored by Yanghe watershed monitoring stations from 1992 to 2009, 11 pollutants were selected for analysis. The trends of changes in water quality were figured out, and the major pollutants and driving factors were measured by the integrated standard index and grey correlation analytical methods. The results showed that there were two stages of water quality change in Yanghe watershed of Zhangjiakou. Firstly, the water was polluted seriously but recovered rapidly from 1992 to 1996. Secondly, although light pollution occurred in the watershed from 1997 to 2009, the pollution factors were still above the limits. The main pollution factors are ammonia nitrogen, petroleum, permanganate index, BOD5, Cr6+ and Cd. The main driving factor of water quality is the change of land use type, and the agricultural land showed less impact on water quality than the industrial land.

  1. Conductor disc used to suppress spurious mode and enhance electric coupling in a dielectric loaded combline resonator

    NASA Astrophysics Data System (ADS)

    Pholele, T. M.; Chuma, J. M.

    2016-03-01

    The effects of conductor disc in a dielectric loaded combline resonator on its spurious performance, unloaded quality factor (Qu), and coupling coefficients are analysed using a commercial electromagnetic software package CST Microwave Studio (CST MWS). The disc improves the spurious free band but simultaneously deteriorates the Qu. The presence of the disc substantially improves the electric coupling by a factor of 1.891 for an aperture opening of 12 mm, while it has insignificant effect on the magnetic coupling.

  2. Analysis and Optimization of Four-Coil Planar Magnetically Coupled Printed Spiral Resonators.

    PubMed

    Khan, Sadeque Reza; Choi, GoangSeog

    2016-08-03

    High-efficiency power transfer at a long distance can be efficiently established using resonance-based wireless techniques. In contrast to the conventional two-coil-based inductive links, this paper presents a magnetically coupled fully planar four-coil printed spiral resonator-based wireless power-transfer system that compensates the adverse effect of low coupling and improves efficiency by using high quality-factor coils. A conformal architecture is adopted to reduce the transmitter and receiver sizes. Both square architecture and circular architectures are analyzed and optimized to provide maximum efficiency at a certain operating distance. Furthermore, their performance is compared on the basis of the power-transfer efficiency and power delivered to the load. Square resonators can produce higher measured power-transfer efficiency (79.8%) than circular resonators (78.43%) when the distance between the transmitter and receiver coils is 10 mm of air medium at a resonant frequency of 13.56 MHz. On the other hand, circular coils can deliver higher power (443.5 mW) to the load than the square coils (396 mW) under the same medium properties. The performance of the proposed structures is investigated by simulation using a three-layer human-tissue medium and by experimentation.

  3. Resonances from lattice QCD

    DOE PAGES

    Briceno, Raul A.

    2018-03-26

    The spectrum of hadron is mainly composed as shortly-lived states (resonance) that decay onto two or more hadrons. These resonances play an important role in a variety of phenomenologically significant processes. In this talk, I give an overview on the present status of a rigorous program for studying of resonances and their properties using lattice QCD. I explain the formalism needed for extracting resonant amplitudes from the finite-volume spectra. From these one can extract the masses and widths of resonances. I present some recent examples that illustrate the power of these ideas. I then explain similar formalism that allows formore » the determination of resonant electroweak amplitudes from finite-volume matrix elements. I use the recent calculation of the πγ* → ππ amplitude as an example illustrating the power of this formalism. From such amplitudes one can determine transition form factors of resonances. I close by reviewing on-going efforts to generalize these ideas to increasingly complex reactions and I then give a outlook of the field.« less

  4. Resonances from lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briceno, Raul A.

    The spectrum of hadron is mainly composed as shortly-lived states (resonance) that decay onto two or more hadrons. These resonances play an important role in a variety of phenomenologically significant processes. In this talk, I give an overview on the present status of a rigorous program for studying of resonances and their properties using lattice QCD. I explain the formalism needed for extracting resonant amplitudes from the finite-volume spectra. From these one can extract the masses and widths of resonances. I present some recent examples that illustrate the power of these ideas. I then explain similar formalism that allows formore » the determination of resonant electroweak amplitudes from finite-volume matrix elements. I use the recent calculation of the πγ* → ππ amplitude as an example illustrating the power of this formalism. From such amplitudes one can determine transition form factors of resonances. I close by reviewing on-going efforts to generalize these ideas to increasingly complex reactions and I then give a outlook of the field.« less

  5. High-Q Wafer Level Package Based on Modified Tri-Layer Anodic Bonding and High Performance Getter and Its Evaluation for Micro Resonant Pressure Sensor.

    PubMed

    Wang, Liying; Du, Xiaohui; Wang, Lingyun; Xu, Zhanhao; Zhang, Chenying; Gu, Dandan

    2017-03-16

    In order to achieve and maintain a high quality factor (high-Q) for the micro resonant pressure sensor, this paper presents a new wafer level package by adopting cross-layer anodic bonding technique of the glass/silicon/silica (GSS) stackable structure and integrated Ti getter. A double-layer structure similar to a silicon-on-insulator (SOI) wafer is formed after the resonant layer and the pressure-sensitive layer are bonded by silicon direct bonding (SDB). In order to form good bonding quality between the pressure-sensitive layer and the glass cap layer, the cross-layer anodic bonding technique is proposed for vacuum package by sputtering Aluminum (Al) on the combination wafer of the pressure-sensitive layer and the resonant layer to achieve electrical interconnection. The model and the bonding effect of this technique are discussed. In addition, in order to enhance the performance of titanium (Ti) getter, the prepared and activation parameters of Ti getter under different sputtering conditions are optimized and discussed. Based on the optimized results, the Ti getter (thickness of 300 nm to 500 nm) is also deposited on the inside of the glass groove by magnetron sputtering to maintain stable quality factor (Q). The Q test of the built testing system shows that the number of resonators with a Q value of more than 10,000 accounts for more than 73% of the total. With an interval of 1.5 years, the Q value of the samples remains almost constant. It proves the proposed cross-layer anodic bonding and getter technique can realize high-Q resonant structure for long-term stable operation.

  6. Encapsulated high frequency (235 kHz), high-Q (100 k) disk resonator gyroscope with electrostatic parametric pump

    NASA Astrophysics Data System (ADS)

    Ahn, C. H.; Nitzan, S.; Ng, E. J.; Hong, V. A.; Yang, Y.; Kimbrell, T.; Horsley, D. A.; Kenny, T. W.

    2014-12-01

    In this paper, we explore the effects of electrostatic parametric amplification on a high quality factor (Q > 100 000) encapsulated disk resonator gyroscope (DRG), fabricated in <100> silicon. The DRG was operated in the n = 2 degenerate wineglass mode at 235 kHz, and electrostatically tuned so that the frequency split between the two degenerate modes was less than 100 mHz. A parametric pump at twice the resonant frequency is applied to the sense axis of the DRG, resulting in a maximum scale factor of 156.6 μV/(°/s), an 8.8× improvement over the non-amplified performance. When operated with a parametric gain of 5.4, a minimum angle random walk of 0.034°/√h and bias instability of 1.15°/h are achieved, representing an improvement by a factor of 4.3× and 1.5×, respectively.

  7. The study of surgical image quality evaluation system by subjective quality factor method

    NASA Astrophysics Data System (ADS)

    Zhang, Jian J.; Xuan, Jason R.; Yang, Xirong; Yu, Honggang; Koullick, Edouard

    2016-03-01

    GreenLightTM procedure is an effective and economical way of treatment of benign prostate hyperplasia (BPH); there are almost a million of patients treated with GreenLightTM worldwide. During the surgical procedure, the surgeon or physician will rely on the monitoring video system to survey and confirm the surgical progress. There are a few obstructions that could greatly affect the image quality of the monitoring video, like laser glare by the tissue and body fluid, air bubbles and debris generated by tissue evaporation, and bleeding, just to name a few. In order to improve the physician's visual experience of a laser surgical procedure, the system performance parameter related to image quality needs to be well defined. However, since image quality is the integrated set of perceptions of the overall degree of excellence of an image, or in other words, image quality is the perceptually weighted combination of significant attributes (contrast, graininess …) of an image when considered in its marketplace or application, there is no standard definition on overall image or video quality especially for the no-reference case (without a standard chart as reference). In this study, Subjective Quality Factor (SQF) and acutance are used for no-reference image quality evaluation. Basic image quality parameters, like sharpness, color accuracy, size of obstruction and transmission of obstruction, are used as subparameter to define the rating scale for image quality evaluation or comparison. Sample image groups were evaluated by human observers according to the rating scale. Surveys of physician groups were also conducted with lab generated sample videos. The study shows that human subjective perception is a trustworthy way of image quality evaluation. More systematic investigation on the relationship between video quality and image quality of each frame will be conducted as a future study.

  8. Room-Temperature Pressure-Induced Optically-Actuated Fabry-Perot Nanomechanical Resonator with Multilayer Graphene Diaphragm in Air.

    PubMed

    Li, Cheng; Lan, Tian; Yu, Xiyu; Bo, Nan; Dong, Jingyu; Fan, Shangchun

    2017-11-04

    We demonstrated a miniature and in situ ~13-layer graphene nanomechanical resonator by utilizing a simple optical fiber Fabry-Perot (F-P) interferometric excitation and detection scheme. The graphene film was transferred onto the endface of a ferrule with a 125-μm inner diameter. In contrast to the pre-tension induced in membrane that increased quality ( Q ) factor to ~18.5 from ~3.23 at room temperature and normal pressure, the limited effects of air damping on resonance behaviors at 10 -2 and 10⁵ Pa were demonstrated by characterizing graphene F-P resonators with open and micro-air-gap cavities. Then in terms of optomechanical behaviors of the resonator with an air micro-cavity configuration using a polished ferrule substrate, measured resonance frequencies were increased to the range of 509-542 kHz from several kHz with a maximum Q factor of 16.6 despite the lower Knudsen number ranging from 0.0002 to 0.0006 in damping air over a relative pressure range of 0-199 kPa. However, there was the little dependence of Q on resonance frequency. Note that compared with the inferior F-P cavity length response to applied pressures due to interfacial air leakage, the developed F-P resonator exhibited a consistent fitted pressure sensitivity of 1.18 × 10⁵ kHz³/kPa with a good linearity error of 5.16% in the tested range. These measurements shed light on the pre-stress-dominated pressure-sensitive mechanisms behind air damping in in situ F-P resonant sensors using graphene or other 2D nanomaterials.

  9. Snacking patterns, diet quality, and cardiovascular risk factors in adults

    USDA-ARS?s Scientific Manuscript database

    The relationship of snacking patterns on nutrient intake and cardiovascular risk factors in adults is unknown. The aim of this study was to examine the associations of snacking patterns with nutrient intake, diet quality, and a selection of cardiovascular risk factors in adults participating in the ...

  10. Quality control in the development of coagulation factor concentrates.

    PubMed

    Snape, T J

    1987-01-01

    Limitation of process change is a major factor contributing to assurance of quality in pharmaceutical manufacturing. This is particularly true in the manufacture of coagulation factor concentrates, for which presumptive testing for poorly defined product characteristics is an integral feature of finished product quality control. The development of new or modified preparations requires that this comfortable position be abandoned, and that the effect on finished product characteristics of changes to individual process steps (and components) be assessed. The degree of confidence in the safety and efficacy of the new product will be determined by, amongst other things, the complexity of the process alteration and the extent to which the results of finished product tests can be considered predictive. The introduction of a heat-treatment step for inactivation of potential viral contaminants in coagulation factor concentrates presents a significant challenge in both respects, quite independent of any consideration of assessment of the effectiveness of the viral inactivation step. These interactions are illustrated by some of the problems encountered with terminal dry heat-treatment (72 h. at 80 degrees C) of factor VIII and prothrombin complex concentrates manufactured by the Blood Products Laboratory.

  11. Optical resonators and neural networks

    NASA Astrophysics Data System (ADS)

    Anderson, Dana Z.

    1986-08-01

    It may be possible to implement neural network models using continuous field optical architectures. These devices offer the inherent parallelism of propagating waves and an information density in principle dictated by the wavelength of light and the quality of the bulk optical elements. Few components are needed to construct a relatively large equivalent network. Various associative memories based on optical resonators have been demonstrated in the literature, a ring resonator design is discussed in detail here. Information is stored in a holographic medium and recalled through a competitive processes in the gain medium supplying energy to the ring rsonator. The resonator memory is the first realized example of a neural network function implemented with this kind of architecture.

  12. Impact of orthodontic appliances on the quality of craniofacial anatomical magnetic resonance imaging and real-time speech imaging.

    PubMed

    Wylezinska, Marzena; Pinkstone, Marie; Hay, Norman; Scott, Andrew D; Birch, Malcolm J; Miquel, Marc E

    2015-12-01

    The aim of this work was to investigate the effects of commonly used orthodontic appliances on the magnetic resonance (MR) image quality of the craniofacial region, with special interest in the soft palate and velopharyngeal wall using real-time speech imaging sequences and anatomical imaging of the temporomandibular joints (TMJ) and pituitaries. Common orthodontic appliances were studied on 1.5 T scanner using standard spin and gradient echo sequences (based on the American Society for Testing and Materials standard test method) and sequences previously applied for high-resolution anatomical and dynamic real-time imaging during speech. Images were evaluated for the presence and size of artefacts. Metallic orthodontic appliances had different effects on image quality. The most extensive individual effects were associated with the presence of stainless steel archwire, particularly if combined with stainless steel brackets and stainless steel molar bands. With those appliances, diagnostic quality of magnetic resonance imaging speech and palate images will be most likely severely degraded, or speech imaging and imaging of pituitaries and TMJ will be not possible. All non-metallic, non-metallic with Ni/Cr reinforcement or Ni/Ti alloys appliances were of little concern. The results in the study are only valid at 1.5 T and for the sequences and devices used and cannot necessarily be extrapolated to all sequences and devices. Furthermore, both geometry and size of some appliances are subject dependent, and consequently, the effects on the image quality can vary between subjects. Therefore, the results presented in this article should be treated as a guide when assessing the risks of image quality degradation rather than an absolute evaluation of possible artefacts. Appliances manufactured from stainless steel cause extensive artefacts, which may render image non-diagnostic. The presence and type of orthodontic appliances should be always included in the patient

  13. Characterization of the dominant loss mechanisms in superconducting coplanar waveguide resonators

    NASA Astrophysics Data System (ADS)

    Calusine, Greg; Melville, Alexander; Woods, Wayne; Kim, David K.; Miloshi, Xhovalin; Sevi, Arjan; Yoder, Jonilyn; Oliver, William D.

    The characterization of losses in superconducting coplanar waveguide (CPW) resonators is commonly used as a surrogate means to probe relaxation in superconducting qubit capacitor structures. However, this method is complicated by device-to-device variations that result from a sensitivity to variations in fabrication processes, packaging, and measurement methods. We present results on characterizing ensembles of aluminum, niobium, and titanium nitride superconducting CPW resonators to determine the statistical significance of the effects of fabrication process changes on resonator intrinsic quality factor. Furthermore, we report progress on experiments aimed at determining the impact of other competing loss mechanisms such as vortex trapping, package coupling, and substrate loss. These results are then applied to the study of relaxation in superconducting qubits and investigations into the microscopic origins of surface losses. This research was funded in part by the Intelligence Advanced Research Projects Activity (IARPA). The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IARPA or the US Government.

  14. Ultra-high Q terahertz whispering-gallery modes in a silicon resonator

    NASA Astrophysics Data System (ADS)

    Vogt, Dominik Walter; Leonhardt, Rainer

    2018-05-01

    We report on the first experimental demonstration of terahertz (THz) whispering-gallery modes (WGMs) with an ultra-high quality factor of 1.5 × 104 at 0.62 THz. The WGMs are observed in a high resistivity float zone silicon spherical resonator coupled to a sub-wavelength silica waveguide. A detailed analysis of the coherent continuous wave THz spectroscopy measurements combined with a numerical model based on Mie-Debye-Aden-Kerker theory allows us to unambiguously identify the observed higher order radial THz WGMs.

  15. Factors affecting the quality of life in childhood epilepsy in China.

    PubMed

    Yong, L; Chengye, J; Jiong, Q

    2006-03-01

    To explore the level of, and factors affecting the quality of life (QOL) in childhood epilepsy in China. At the Peking University First Hospital, we consecutively identified 418 parents whose children were with known epilepsy to complete a questionnaire, which included children's demographic characteristics, clinical message of epilepsy, QOL, familial message, parental symptoms of anxiety/depression. Significant (p<0.05) affecting factors of children's quality of life included current educational degree, mental development, age at diagnosis, age at onset, seizure frequency, duration, AED number; parental significant (p<0.05) affecting factors included anxiety, depression and health. On regression analysis, parental anxiety was the most important factor in explaining lower QOL in childhood epilepsy. AEDs, familial economic state, paternal career, seizure frequency were also significant factors. Parental anxiety outweighed the physical factors in determining QOL in childhood epilepsy. Recognition of this will be helpful for professionals to treat disease and improve the QOL of childhood epilepsy.

  16. Physical properties of YBa 2Cu 3O 7- δ thin films using microstrip ring resonators technique

    NASA Astrophysics Data System (ADS)

    Lai, L. S.; Zeng, H. K.; Juang, J. Y.; Wu, K. H.; Uen, T. M.; Lin, J. Y.; Gou, Y. S.

    2006-09-01

    Microstrip ring resonators with quality factor ( Q) over 10 4 at temperature 5 K, were fabricated using the double-side YBa 2Cu 3O 7- δ (YBCO) epitaxial films deposited on LaAlO 3 (LAO) substrates. By placing a narrow gap in the ring resonator, we observed that the original fundamental resonating mode (resonance frequency f = 3.61 GHz) splits into a dual-mode with different resonating frequencies ( f = 1.80 GHz and f = 5.33 GHz). These two kinds of the resonator allow us to determine the temperature and frequency dependences of the magnetic penetration depth λ( T, f) and the surface loss. Several salient features of the above findings related to the nature of low-lying excitations for high- Tc superconductivity as a function of oxygen content will be elucidated. In particular, the current models, suggested by Wen and Lee, will be examined in a quantitative manner. It allows us to give a justification of quasiparticle as Fermi-liquid in the superconducting state. In addition, an equivalent inductance circuit model is suggested to account for the occurrence of the dual-mode resonance.

  17. Automation of Data Analysis Programs Used in the Cryogenic Characterization of Superconducting Microwave Resonators

    NASA Technical Reports Server (NTRS)

    Creason, A. S.; Miranda, F. A.

    1996-01-01

    Knowledge of the microwave properties at cryogenic temperatures of components fabricated using High-Temperature-Superconductors (HTS) is useful in the design of HTS-based microwave circuits. Therefore, fast and reliable characterization techniques have been developed to study the aforementioned properties. In this paper, we discuss computer analysis techniques employed in the cryogenic characterization of HTS-based resonators. The revised data analysis process requires minimal user input. and organizes the data in a form that is easily accessible by the user for further examination. These programs retrieve data generated during the cryogenic characterization at microwave frequencies of HTS based resonators and use it to calculate parameters such as the loaded and unloaded quality factors (Q and Q(sub o), respectively), the resonant frequency (f(sub o)), and the coupling coefficient (k), which are important quantities in the evaluation of HTS resonators. While the data are also stored for further use, the programs allow the user to obtain a graphical representation of any of the measured parameters as a function of temperature soon after the completion of the cryogenic measurement cycle. Although these programs were developed to study planar HTS-based resonators operating in the reflection mode, they could also be used in the cryogenic characterization of two ports (i.e., reflection/transmission) resonators.

  18. Resonant optical transducers for in-situ gas detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, Tiziana C.; Cole, Garrett; Goddard, Lynford

    Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10.sup.-9 (change in complex refractive index). The devices are therefore highly sensitive to changes in optical properties to the device parameters and can be tunable to the absorption of the chemical species of interest. Appropriate coatings applied to the device enhance state-specific molecular detection.

  19. Resonant optical transducers for in-situ gas detection

    DOEpatents

    Bond, Tiziana C; Cole, Garrett; Goddard, Lynford

    2016-06-28

    Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10.sup.-9 (change in complex refractive index). The devices are therefore highly sensitive to changes in optical properties to the device parameters and can be tunable to the absorption of the chemical species of interest. Appropriate coatings applied to the device enhance state-specific molecular detection.

  20. Moderate plasma treatment enhances the quality of optically detected magnetic resonance signals of nitrogen-vacancy centres in nanodiamonds

    NASA Astrophysics Data System (ADS)

    Sotoma, Shingo; Igarashi, Ryuji; Shirakawa, Masahiro

    2016-05-01

    We demonstrate that a moderate plasma treatment increases the quality of optically detected magnetic resonance (ODMR) signals from negatively charged nitrogen-vacancy centres in nanodiamonds (NDs). We measured the statistics of the ODMR spectra of 50-nm-size NDs before and after plasma treatment. We then evaluated each ODMR spectrum in terms of fluorescence and ODMR intensities, line width and signal-to-noise (SN) ratio. Our results showed that plasma treatment for more than 10 min contributes to higher-quality ODMR signals, i.e. signals that are brighter, stronger, sharper and have a higher SN ratio. We showed that such signal improvement is due to alteration of the surface chemical states of the NDs by the plasma treatment. Our study contributes to the advancement of biosensing applications using ODMR of NDs.

  1. Biosensing Using Microring Resonator Interferograms

    PubMed Central

    Hsu, Shih-Hsiang; Yang, Yung-Chia; Su, Yu-Hou; Wang, Sheng-Min; Huang, Shih-An; Lin, Ching-Yu

    2014-01-01

    Optical low-coherence interferometry (OLCI) takes advantage of the variation in refractive index in silicon-wire microring resonator (MRR) effective lengths to perform glucose biosensing using MRR interferograms. The MRR quality factor (Q), proportional to the effective length, could be improved using the silicon-wire propagation loss and coupling ratio from the MRR coupler. Our study showed that multimode interference (MMI) performed well in broad band response, but the splitting ratio drifted to 75/25 due to the stress issue. The glucose sensing sensitivity demonstrated 0.00279 meter per refractive-index-unit (RIU) with a Q factor of ∼30,000 under transverse electric polarization. The 1,310 nm DFB laser was built in the OLCI system as the optical ruler achieving 655 nm characterization accuracy. The lowest sensing limitation was therefore 2 × 10−4 RIU. Moreover, the MRR effective length from the glucose sensitivity could be utilized to experimentally demonstrate the silicon wire effective refractive index with a width of 0.45 μm and height of 0.26 μm. PMID:24434876

  2. Dissimilar trend of nonlinearity in ultrasound transducers and systems at resonance and non-resonance frequencies.

    PubMed

    Ghasemi, Negareh; Zare, Firuz; Davari, Pooya; Vilathgamuwa, Mahinda; Ghosh, Arindam; Langton, Christian; Weber, Peter

    2017-02-01

    Several factors can affect performance of an ultrasound system such as quality of excitation signal and ultrasound transducer behaviour. Nonlinearity of piezoelectric ultrasound transducers is a key determinant in designing a proper driving power supply. Although, the nonlinearity of piezoelectric transducer impedance has been discussed in different literatures, the trend of the nonlinearity at different frequencies with respect to excitation voltage variations has not been clearly investigated in practice. In this paper, to demonstrate how the nonlinearity behaves, a sandwich piezoceramic transducer was excited at different frequencies. Different excitation signals were generated using a linear power amplifier and a multilevel converter within a range of 30-200V. Empirical relation was developed to express the resistance of the piezoelectric transducer as a nonlinear function of both excitation voltage and resonance frequency. The impedance measurements revealed that at higher voltage ranges, the piezoelectric transducer can be easily saturated. Also, it was shown that for the developed ultrasound system composed of two transducers (one transmitter and one receiver), the output voltage measured across receiver is a function of a voltage across the resistor in the RLC branches and is related to the resonance frequencies of the ultrasound transducer. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Yogurt, diet quality and lifestyle factors.

    PubMed

    Panahi, S; Fernandez, M A; Marette, A; Tremblay, A

    2017-05-01

    Yogurt consumption has been associated with healthy dietary patterns and lifestyles, better diet quality and healthier metabolic profiles. Studies have shown that frequent yogurt consumers do not only have higher nutrient intakes, but also an improved diet quality, which includes higher consumption of fruits and vegetables, whole grains, and dairy compared with low or non-consumers indicating better compliance with dietary guidelines. Recent epidemiological and clinical evidence suggests that yogurt contributes to better metabolic health because of its effects on the control of body weight, energy homeostasis and glycemic control. Furthermore, yogurt consumers have been shown to be more physically active (⩾ 2 h/week), smoke less, have higher education and knowledge of nutrition compared with non-consumers. Thus, yogurt consumption may be considered a signature of a healthy diet through its nutritional content, impact on metabolic health including the control of energy balance, body weight and glycemia and its relationships with healthier behaviors and lifestyle factors.

  4. Human factors systems approach to healthcare quality and patient safety

    PubMed Central

    Carayon, Pascale; Wetterneck, Tosha B.; Rivera-Rodriguez, A. Joy; Hundt, Ann Schoofs; Hoonakker, Peter; Holden, Richard; Gurses, Ayse P.

    2013-01-01

    Human factors systems approaches are critical for improving healthcare quality and patient safety. The SEIPS (Systems Engineering Initiative for Patient Safety) model of work system and patient safety is a human factors systems approach that has been successfully applied in healthcare research and practice. Several research and practical applications of the SEIPS model are described. Important implications of the SEIPS model for healthcare system and process redesign are highlighted. Principles for redesigning healthcare systems using the SEIPS model are described. Balancing the work system and encouraging the active and adaptive role of workers are key principles for improving healthcare quality and patient safety. PMID:23845724

  5. High-spectral-contrast symmetric modes in photonic crystal dual nanobeam resonators

    DOE PAGES

    Abbaslou, Siamak; Gatdula, Robert; Lu, Ming; ...

    2016-06-20

    Here, we demonstrate accurate control of mode symmetry in suspended dual-nanobeam resonators on a silicon-on-insulator chip. Each nanobeam consists of a Fabry-Perot nanocavity bounded by tapered 1-D photonic crystals. Even and odd cavity-modes are formed due to lateral evanescent coupling between the two nanobeams. The odd cavity-mode can be excited by mode-symmetry-transforming Mach-Zehnder couplers. Modal contrasts over 27 dB are measured in fabricated structures. The influence of the optical field in the middle air slot on the background transmission and quality factors is discussed. The observed peak wavelength separations of the modes at various nanobeam spacings are in good agreementmore » with simulation results. These nanobeam resonators are potentially useful in applications, such as ultrafast all-optical modulation, filtering, and switching.« less

  6. Design and optical characterization of high-Q guided-resonance modes in the slot-graphite photonic crystal lattice.

    PubMed

    Martínez, Luis Javier; Huang, Ningfeng; Ma, Jing; Lin, Chenxi; Jaquay, Eric; Povinelli, Michelle L

    2013-12-16

    A new photonic crystal structure is generated by using a regular graphite lattice as the base and adding a slot in the center of each unit cell to enhance field confinement. The theoretical Q factor in an ideal structure is over 4 × 10(5). The structure was fabricated on a silicon-on-insulator wafer and optically characterized by transmission spectroscopy. The resonance wavelength and quality factor were measured as a function of slot height. The measured trends show good agreement with simulation.

  7. Uncertainty in least-squares fits to the thermal noise spectra of nanomechanical resonators with applications to the atomic force microscope.

    PubMed

    Sader, John E; Yousefi, Morteza; Friend, James R

    2014-02-01

    Thermal noise spectra of nanomechanical resonators are used widely to characterize their physical properties. These spectra typically exhibit a Lorentzian response, with additional white noise due to extraneous processes. Least-squares fits of these measurements enable extraction of key parameters of the resonator, including its resonant frequency, quality factor, and stiffness. Here, we present general formulas for the uncertainties in these fit parameters due to sampling noise inherent in all thermal noise spectra. Good agreement with Monte Carlo simulation of synthetic data and measurements of an Atomic Force Microscope (AFM) cantilever is demonstrated. These formulas enable robust interpretation of thermal noise spectra measurements commonly performed in the AFM and adaptive control of fitting procedures with specified tolerances.

  8. Improved resonance characteristics of GaAs beam resonators by epitaxially induced strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, H.; Onomitsu, K.; Kato, K.

    2008-06-23

    Micromechanical-beam resonators were fabricated using a strained GaAs film grown on relaxed In{sub 0.1}Ga{sub 0.9}As/In{sub 0.1}Al{sub 0.9}As buffer layers. The natural frequency of the fundamental mode was increased 2.5-4 times by applying tensile strain, showing good agreement with the model calculation assuming strain of 0.35% along the beam. In addition, the Q factor of 19 000 was obtained for the best sample, which is one order of magnitude higher than that for the unstrained resonator. This technique can be widely applied for improving the performance of resonator-based micro-/nanoelectromechanical devices.

  9. Integrated optics ring-resonator chemical sensor with polymer transduction layer

    NASA Technical Reports Server (NTRS)

    Ksendzov, A.; Homer, M. L.; Manfreda, A. M.

    2004-01-01

    An integrated optics chemical sensor based on a ring resonator with an ethyl cellulose polymer coating has been demonstrated. The measured sensitivity to isopropanol in air is 50 ppm-the level immediately useful for health-related air quality monitoring. The resonator was fabricated using SiO2 and SixNy materials. The signal readout is based on tracking the wavelength of a resonance peak. The resonator layout optimisation for sensing applications is discussed.

  10. Characterization of low loss microstrip resonators as a building block for circuit QED in a 3D waveguide

    NASA Astrophysics Data System (ADS)

    Zoepfl, D.; Muppalla, P. R.; Schneider, C. M. F.; Kasemann, S.; Partel, S.; Kirchmair, G.

    2017-08-01

    Here we present the microwave characterization of microstrip resonators, made from aluminum and niobium, inside a 3D microwave waveguide. In the low temperature, low power limit internal quality factors of up to one million were reached. We found a good agreement to models predicting conductive losses and losses to two level systems for increasing temperature. The setup presented here is appealing for testing materials and structures, as it is free of wire bonds and offers a well controlled microwave environment. In combination with transmon qubits, these resonators serve as a building block for a novel circuit QED architecture inside a rectangular waveguide.

  11. Relationship factors and quality among mixed-orientation couples.

    PubMed

    Kays, Jill L; Yarhouse, Mark A; Ripley, Jennifer S

    2014-01-01

    Mixed-orientation couples are defined as a heterosexual couple in which 1 partner experiences same-sex attraction and the other does not. Despite the fact that there is a sizable number of mixed-orientation couples in the U.S. adult population, few researchers have studied this population, and thus, there is limited understanding of these relationships. The authors examined the degree to which relationship commitment, partner-focused forgivingness, and marital values were associated with relationship quality, and how these variables predicted relationship quality. The total sample (N = 265) consisted of 2 independent samples-105 sexual minorities (i.e., the spouse who experiences same-sex attraction) and 160 heterosexual spouses. The data were not dyadic. Together, commitment, partner-focused forgivingness, and marital values accounted for roughly 43% of the variance in relationship quality. Relationship commitment was found to be the largest single predictor of relationship quality, followed by partner-focused forgivingness. Research and clinical implications are discussed. This study significantly adds to the current research base by quantitatively measuring various variables in these relationships, as well as expanding our understanding of relationship quality in mixed-orientation couples and factors that may play a role.

  12. Gaussian-reflectivity mirror resonator for a high-power transverse-flow CO2 laser.

    PubMed

    Ling, Dongxiong; Chen, Junruo; Li, Junchang

    2006-05-01

    A Gaussian-reflectivity mirror resonator is proposed to achieve high-quality laser beams. To analyze the laser fields in a Gaussian-reflectivity mirror resonator, the diffraction integral equations of a Gaussian-reflectivity mirror resonator are converted to the finite-sum matrix equations. Consequently, according to the Fox-Li laser self-reproducing principle, we describe the mode fields and their losses in the proposed resonator as eigenvectors and eigenvalues of a transfer matrix. The conclusion can be drawn from the numerical results that, if a Gaussian-reflectivity mirror is adopted for a plano-concave resonator, a fundamental mode can easily be obtained from a transverse-flow CO2 laser and high-quality laser beams can be expected.

  13. Single-Mode WGM Resonators Fabricated by Diamond Turning

    NASA Technical Reports Server (NTRS)

    Grudinin, Ivan; Maleki, Lute; Savchenkov, Anatoliy; Matsko, Andrewy; Strekalov, Dmitry; Iltchenko, Vladimir

    2008-01-01

    A diamond turning process has made possible a significant advance in the art of whispering-gallery-mode (WGM) optical resonators. By use of this process, it is possible to fashion crystalline materials into WGM resonators that have ultrahigh resonance quality factors (high Q values), are compact (ranging in size from millimeters down to tens of microns), and support single electromagnetic modes. This development combines and extends the developments reported in "Few- Mode Whispering-Gallery-Mode Resonators" (NPO-41256), NASA Tech Briefs, Vol. 30, No. 1 (January 2006), page 16a and "Fabrication of Submillimeter Axisymmetric Optical Components" (NPO-42056), NASA Tech Briefs, Vol. 31, No. 5 (May 2007), page 10a. To recapitulate from the first cited prior article: A WGM resonator of this special type consists of a rod, made of a suitable transparent material, from which protrudes a thin circumferential belt of the same material. The belt is integral with the rest of the rod and acts as a circumferential waveguide. If the depth and width of the belt are made appropriately small, then the belt acts as though it were the core of a single-mode optical fiber: the belt and the rod material adjacent to it support a single, circumferentially propagating mode or family of modes. To recapitulate from the second cited prior article: A major step in the fabrication of a WGM resonator of this special type is diamond turning or computer numerically controlled machining of a rod of a suitable transparent crystalline material on an ultrahigh-precision lathe. During the rotation of a spindle in which the rod is mounted, a diamond tool is used to cut the rod. A computer program is used to control stepping motors that move the diamond tool, thereby controlling the shape cut by the tool. Because the shape can be controlled via software, it is possible to choose a shape designed to optimize a resonator spectrum, including, if desired, to limit the resonator to supporting a single mode

  14. Sociodemographic factors and the quality of prenatal care.

    PubMed Central

    Hansell, M J

    1991-01-01

    BACKGROUND: In this study, maternal sociodemographic factors are examined in relationship to the quality of prenatal health services US women receive. METHODS: Data from the 1980 National Natality Survey and 1980 Fetal Mortality Survey were used for the analysis. Indicator variables for prenatal care quality are the percentages of prenatal visits at which blood pressure and urine were tested, the performance of hemoglobin or hematocrit tests, and the presence or absence of advice regarding salt restriction and diuretics usage during pregnancy. RESULTS: Distribution of the basic examinations in prenatal care vary according to marital status, parity, education, and residence in a metropolitan or nonmetropolitan county. The advice received concerning salt and diuretics usage was also influenced by sociodemographic variables. CONCLUSIONS: The analyses reveal that prenatal care is not of even minimally acceptable quality for many women. PMID:1953875

  15. Subthreshold resonances and resonances in the R -matrix method for binary reactions and in the Trojan horse method

    NASA Astrophysics Data System (ADS)

    Mukhamedzhanov, A. M.; Shubhchintak, Bertulani, C. A.

    2017-08-01

    In this paper we discuss the R -matrix approach to treat the subthreshold resonances for the single-level and one-channel and for the single-level and two-channel cases. In particular, the expression relating the asymptotic normalization coefficient (ANC) with the observable reduced width, when the subthreshold bound state is the only channel or coupled with an open channel, which is a resonance, is formulated. Since the ANC plays a very important role in nuclear astrophysics, these relations significantly enhance the power of the derived equations. We present the relationship between the resonance width and the ANC for the general case and consider two limiting cases: wide and narrow resonances. Different equations for the astrophysical S factors in the R -matrix approach are presented. After that we discuss the Trojan horse method (THM) formalism. The developed equations are obtained using the surface-integral formalism and the generalized R -matrix approach for the three-body resonant reactions. It is shown how the Trojan horse (TH) double-differential cross section can be expressed in terms of the on-the-energy-shell astrophysical S factor for the binary subreaction. Finally, we demonstrate how the THM can be used to calculate the astrophysical S factor for the neutron generator 13C(α ,n )16O in low-mass AGB stars. At astrophysically relevant energies this astrophysical S factor is controlled by the threshold level 1 /2+,Ex=6356 keV. Here, we reanalyzed recent TH data taking into account more accurately the three-body effects and using both assumptions that the threshold level is a subthreshold bound state or it is a resonance state.

  16. Tunable band-stop plasmonic filter based on square ring resonators in a metal-insulator-metal structure

    NASA Astrophysics Data System (ADS)

    Zavvari, Mahdi; Taleb Hesami Azar, Milad; Arashmehr, Armin

    2017-11-01

    A novel high-performance plasmonic filter based on a metal-insulator-metal structure is analysed for band-rejection applications. A square ring is used in proximity to the waveguide in order to resonate with some transmitted wavelengths and drop them to prevent from propagation towards the output. The effect of the structural parameters of square ring resonator is studied deploying the finite difference time domain method and the possibility of tuning the rejected wavelength is investigated in detail. The simulation results demonstrate that the rejected wavelength has a red-shift with increase in the size of the ring's dimensions. A further study is carried out considering narrowing the bandwidth. To improve the quality factor of the proposed filter, a small ring within the resonator is introduced that considerably decreases the bandwidth of the peak with respect to its central wavelength.

  17. Investigation on dispersion in the active optical waveguide resonator

    NASA Astrophysics Data System (ADS)

    Qiu, Zihan; Gao, Yining; Xie, Wei

    2018-03-01

    Introducing active gain in the optical waveguide resonator not only compensates the loss, but also can change the dispersion relationship in the ring resonator. It is demonstrated that the group delay time is negative when the resonator is in the undercoupled condition, which also means the resonator exhibits the fast light effect. Theoretical analysis indicates that fast light effect due to anomalous dispersion, would be manipulated by the gain coefficient controlled by the input pump light power and that fast light would enhance scale factor of the optical resonant gyroscope. Resonance optical gyroscope (ROG)'s scale factor for measuring rotation rate is enhanced by anomalous dispersion with superluminal light propagation. The sensitivity of ROG could be enhanced by anomalous dispersion by coupled resonators even considering the effect of anomalous dispersion and propagation gain on broadened linewidth, and this could result in at least two orders of magnitude enhancement in sensitivity.

  18. Reaching the quantum limit of sensitivity in electron spin resonance

    DOE PAGES

    Bienfait, A.; Pla, J. J.; Kubo, Y.; ...

    2015-12-14

    The detection and characterization of paramagnetic species by electron spin resonance (ESR) spectroscopy is widely used throughout chemistry, biology and materials science, from in vivo imaging to distance measurements in spin-labelled proteins. ESR relies on the inductive detection of microwave signals emitted by the spins into a coupled microwave resonator during their Larmor precession. However, such signals can be very small, prohibiting the application of ESR at the nanoscale (for example, at the single-cell level or on individual nanoparticles). Here in this work, using a Josephson parametric microwave amplifier combined with high-quality-factor superconducting microresonators cooled at millikelvin temperatures, we improvemore » the state-of-the-art sensitivity of inductive ESR detection by nearly four orders of magnitude. We demonstrate the detection of 1,700 bismuth donor spins in silicon within a single Hahn echo with unit signal-to-noise ratio, reduced to 150 spins by averaging a single Carr-Purcell-Meiboom-Gill sequence. This unprecedented sensitivity reaches the limit set by quantum fluctuations of the electromagnetic field instead of thermal or technical noise, which constitutes a novel regime for magnetic resonance. In conclusion, the detection volume of our resonator is ~0.02nl, and our approach can be readily scaled down further to improve sensitivity, providing a new versatile toolbox for ESR at the nanoscale.« less

  19. Deconstructing racial differences: the effects of quality of education and cerebrovascular risk factors.

    PubMed

    Carvalho, Janessa O; Tommet, Doug; Crane, Paul K; Thomas, Michael L; Claxton, Amy; Habeck, Christian; Manly, Jennifer J; Romero, Heather R

    2015-07-01

    To evaluate the effects of vascular conditions and education quality on cognition over time in White and African American (AA) older adults. We investigated cross-sectional and longitudinal racial differences in executive functioning (EF) and memory composites among Whites (n = 461) and AAs (n = 118) enrolled in a cohort study. We examined whether cerebrovascular risk factors and Shipley Vocabulary scores (a proxy for education quality) accounted for racial differences. On average, AAs had lower quality of education and more cerebrovascular risk factors including hypertension, diabetes, and obesity. AAs had lower mean EF and memory at baseline, but there were no group differences in rates of decline. Cross-sectional racial differences in EF and memory persisted after controlling for vascular disease, but disappeared when controlling for Shipley Vocabulary. Quality of education appears to be more important than cerebrovascular risk factors in explaining cross-sectional differences in memory and EF performance between White and AA older adults. Further investigation is needed regarding the relative contribution of education quality and cerebrovascular risk factors to cognitive decline among ethnically/racially diverse older adults. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Contact resonances of U-shaped atomic force microscope probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezaei, E.; Turner, J. A., E-mail: jaturner@unl.edu

    Recent approaches used to characterize the elastic or viscoelastic properties of materials with nanoscale resolution have focused on the contact resonances of atomic force microscope (CR-AFM) probes. The experiments for these CR-AFM methods involve measurement of several contact resonances from which the resonant frequency and peak width are found. The contact resonance values are then compared with the noncontact values in order for the sample properties to be evaluated. The data analysis requires vibration models associated with the probe during contact in order for the beam response to be deconvolved from the measured spectra. To date, the majority of CR-AFMmore » research has used rectangular probes that have a relatively simple vibration response. Recently, U-shaped AFM probes have created much interest because they allow local sample heating. However, the vibration response of these probes is much more complex such that CR-AFM is still in its infancy. In this article, a simplified analytical model of U-shaped probes is evaluated for contact resonance applications relative to a more complex finite element (FE) computational model. The tip-sample contact is modeled using three orthogonal Kelvin-Voigt elements such that the resonant frequency and peak width of each mode are functions of the contact conditions. For the purely elastic case, the frequency results of the simple model are within 8% of the FE model for the lowest six modes over a wide range of contact stiffness values. Results for the viscoelastic contact problem for which the quality factor of the lowest six modes is compared show agreement to within 13%. These results suggest that this simple model can be used effectively to evaluate CR-AFM experimental results during AFM scanning such that quantitative mapping of viscoelastic properties may be possible using U-shaped probes.« less

  1. Q factor limitation at short wavelength (around 300 nm) in III-nitride-on-silicon photonic crystal cavities

    NASA Astrophysics Data System (ADS)

    Tabataba-Vakili, Farsane; Roland, Iannis; Tran, Thi-Mo; Checoury, Xavier; El Kurdi, Moustafa; Sauvage, Sébastien; Brimont, Christelle; Guillet, Thierry; Rennesson, Stéphanie; Duboz, Jean-Yves; Semond, Fabrice; Gayral, Bruno; Boucaud, Philippe

    2017-09-01

    III-nitride-on-silicon L3 photonic crystal cavities with resonances down to 315 nm and quality factors (Q) up to 1085 at 337 nm have been demonstrated. The reduction of the quality factor with decreasing wavelength is investigated. Besides the quantum well absorption below 340 nm, a noteworthy contribution is attributed to the residual absorption present in thin AlN layers grown on silicon, as measured by spectroscopic ellipsometry. This residual absorption ultimately limits the Q factor to around 2000 at 300 nm when no active layer is present.

  2. Design and Characterization of a Novel Bio-inspired Hair Flow Sensor Based on Resonant Sensing

    NASA Astrophysics Data System (ADS)

    Guo, X.; Yang, B.; Wang, Q. H.; Lu, C. F.; Hu, D.

    2018-03-01

    Flow sensors inspired by the natural hair sensing mechanism have great prospect in the research of micro-autonomous system and technology (MAST) for the three-dimensional structure characteristics with high spatial and quality utilization. A novel bio-inspired hair flow sensor (BHFS) based on resonant sensing with a unique asymmetric design is presented in this paper. A hair transducer and a signal detector which is constituted of a two-stage micro-leverage mechanism and two symmetrical resonators (double ended tuning fork, DETF) are adopted to realize the high sensitivity to air flow. The sensitivity of the proposed BHFS is improved significantly than the published ones due to the high sensitivity of resonators and the higher amplification factor possessed by the two-stage micro-leverage mechanism. The standard deep dry silicon on glass (DDSOG) process is chosen to fabricate the proposed BHFS. The experiment result demonstrates that the fabricated BHFS has a mechanical sensitivity of 5.26 Hz/(m/s)2 at a resonant frequency of 22 kHz with the hair height of 6 mm.

  3. Factors affecting quality of life in adults with epilepsy in Taiwan: A cross-sectional, correlational study.

    PubMed

    Chen, Hsiu-Fang; Tsai, Yun-Fang; Hsi, Mo-Song; Chen, Jui-Chen

    2016-05-01

    The purpose of this study was to assess eight factors considered important for quality of life in persons with epilepsy in order to determine which of these components affect quality of life in adults with epilepsy in Taiwan. A cross-sectional, correlational study using structured questionnaires assessed 260 patients with epilepsy purposively sampled from a medical center in Northern Taiwan. Health-related quality of life (HRQoL) was evaluated with the Quality of Life in Epilepsy-31 (QOLIE-31) questionnaire. Data also included personal and health-related characteristics, knowledge of epilepsy, efficacy in the self-management of epilepsy, and social support. Scores for the QOLIE-31 were correlated with the following factors: (1) demographic characteristics of age, gender, and income; (2) sleep quality; (3) symptoms of anxiety and depression; (4) epilepsy-specific variables: seizure frequency; types, number, and frequency of antiepileptic drugs (AEDs); and adverse events of AEDs; and (5) social support. Stepwise regression analysis showed that seven factors were predictive for quality of life: anxiety, depression, adverse events of AEDs, social support, seizure frequency of at least once in three months, household income of NT$ 40,001-100,000, and male gender. These factors accounted for 58.2% of the variance of quality of life. Our study assessed multiple factors in an examination of relationships and predictive factors for quality of life in adults with epilepsy in Taiwan. Knowledge of these contributing factors can assist health-care providers when evaluating patients with epilepsy to help target interventions for improving quality of life. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Generation of Optical Combs in a WGM Resonator from a Bichromatic Pump

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.; Yu, Nan; Matsko, Andrey B.

    2010-01-01

    lasers centered at around 1,560 nanometers. Both laser frequencies were simultaneously scanned around the selected WGMs of the same family. However, they were separated by one, two, three, or ten FSRs. This was achieved by fine-tuning each laser frequency offset until the selected resonances overlap on the oscilloscope screen. The resonator quality factor Q = 7 x 10(exp 7) was relatively low to increase the linewidth and, therefore, the duty cycle of both lasers simultaneously coupled into their WGMs. The optical spectrum analyzer (OSA) connected to the output fiber was continuously acquiring data, asynchronously with the laser scan. The instrument was set to retain the peak power values; therefore, a trace recorded for a sufficiently long period of time reflected the situation with both lasers maximally coupled to the WGMs.

  5. Diet quality is inversely related to cardiovascular risk factors in adults

    USDA-ARS?s Scientific Manuscript database

    The goal of the study was to determine if there was an association between diet quality and cardiovascular risk factors in adults. National Health and Nutrition Examination Survey 2001–2008 data were used to compare diet quality, as determined by using 2005 Healthy Eating Index-2005 scores, and card...

  6. Shape tailoring to enhance and tune the properties of graphene nanomechanical resonators

    NASA Astrophysics Data System (ADS)

    Miller, David; Alemán, Benjamín

    2017-06-01

    The shape of a nanomechanical resonator profoundly affects its mechanical properties and determines its suitability for various applications, such as ultra-sensitive mass and force detection. Despite the promise of 2D nanomechanical systems in such applications, full control over the shape of suspended 2D materials, such as graphene, has not been achieved. We present an effective, single-step method to shape pre-suspended graphene into nanomechanical resonators with arbitrary geometries leading to enhanced properties in comparison to conventional drumheads. Our technique employs focused ion beam milling and achieves feature sizes ranging from a few tens of nanometers to several microns, while obtaining near perfect yield. We compare the mechanical properties of the shaped devices to unmodified drumheads, and find that low-tension, singly-clamped graphene cantilevers display a 20 fold increase in the mechanical quality factor (Q) with a factor 100 reduction in the mechanical damping. Importantly, we achieve these results while simultaneously removing mass, which enables state-of-the-art force sensitivity for a graphene mechanical resonator at room temperature. Our approach opens up a unique, currently inaccessible regime in graphene nanomechanics, one characterized by low strain, low frequency, small mass, and high Q, and facilitates tailoring of non-linearity and damping in mechanical structures composed of graphene and other 2D crystals.

  7. Using surface lattice resonances to engineer nonlinear optical processes in metal nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Huttunen, Mikko J.; Rasekh, Payman; Boyd, Robert W.; Dolgaleva, Ksenia

    2018-05-01

    Collective responses of localized surface plasmon resonances, known as surface lattice resonances (SLRs) in metal nanoparticle arrays, can lead to high quality factors (˜100 ), large local-field enhancements, and strong light-matter interactions. SLRs have found many applications in linear optics, but little work of the influence of SLRs on nonlinear optics has been reported. Here we show how SLRs could be utilized to enhance nonlinear optical interactions. We devote special attention to the sum-frequency, difference-frequency, and third-harmonic generation processes because of their potential for the realization of novel sources of light. We also demonstrate how such arrays could be engineered to enhance higher-order nonlinear optical interactions through cascaded nonlinear processes. In particular, we demonstrate how the efficiency of third-harmonic generation could be engineered via cascaded second-order responses.

  8. Magnetic resonance conditional paramagnetic choke for suppression of imaging artifacts during magnetic resonance imaging.

    PubMed

    Wu, Kevin J; Gregory, T Stan; Boland, Brian L; Zhao, Wujun; Cheng, Rui; Mao, Leidong; Tse, Zion Tsz Ho

    2018-06-01

    Higher risk patient populations require continuous physiological monitoring and, in some cases, connected life-support systems, during magnetic resonance imaging examinations. While recently there has been a shift toward wireless technology, some of the magnetic resonance imaging devices are still connected to the outside using cabling that could interfere with the magnetic resonance imaging's radio frequency during scanning, resulting in excessive heating. We developed a passive method for radio frequency suppression on cabling that may assist in making some of these devices magnetic resonance imaging compatible. A barrel-shaped strongly paramagnetic choke was developed to suppress induced radio frequency signals which are overlaid onto physiological monitoring leads during magnetic resonance imaging. It utilized a choke placed along the signal lines, with a gadolinium solution core. The choke's magnetic susceptibility was modeled, for a given geometric design, at increasing chelate concentration levels, and measured using a vibrating sample magnetometer. Radio frequency noise suppression versus frequency was quantified with network-analyzer measurements and tested using cabling placed in the magnetic resonance imaging scanner. Temperature-elevation and image-quality reduction due to the device were measured using American Society for Testing and Materials phantoms. Prototype chokes with gadolinium solution cores exhibited increasing magnetic susceptibility, and insertion loss (S21) also showed higher attenuation as gadolinium concentration increased. Image artifacts extending <4 mm from the choke were observed during magnetic resonance imaging, which agreed well with the predicted ∼3 mm artifact from the electrochemical machining simulation. An accompanying temperature increase of <1 °C was observed in the magnetic resonance imaging phantom trial. An effective paramagnetic choke for radio frequency suppression during magnetic resonance imaging was developed

  9. Factors associated to quality of life in active elderly.

    PubMed

    Alexandre, Tiago da Silva; Cordeiro, Renata Cereda; Ramos, Luiz Roberto

    2009-08-01

    To analyze whether quality of life in active, healthy elderly individuals is influenced by functional status and sociodemographic characteristics, as well as psychological parameters. Study conducted in a sample of 120 active elderly subjects recruited from two open universities of the third age in the cities of São Paulo and São José dos Campos (Southeastern Brazil) between May 2005 and April 2006. Quality of life was measured using the abbreviated Brazilian version of the World Health Organization Quality of Live (WHOQOL-bref) questionnaire. Sociodemographic, clinical and functional variables were measured through crossculturally validated assessments by the Mini Mental State Examination, Geriatric Depression Scale, Functional Reach, One-Leg Balance Test, Timed Up and Go Test, Six-Minute Walk Test, Human Activity Profile and a complementary questionnaire. Simple descriptive analyses, Pearson's correlation coefficient, Student's t-test for non-related samples, analyses of variance, linear regression analyses and variance inflation factor were performed. The significance level for all statistical tests was set at 0.05. Linear regression analysis showed an independent correlation without colinearity between depressive symptoms measured by the Geriatric Depression Scale and four domains of the WHOQOL-bref. Not having a conjugal life implied greater perception in the social domain; developing leisure activities and having an income over five minimum wages implied greater perception in the environment domain. Functional status had no influence on the Quality of Life variable in the analysis models in active elderly. In contrast, psychological factors, as assessed by the Geriatric Depression Scale, and sociodemographic characteristics, such as marital status, income and leisure activities, had an impact on quality of life.

  10. Wavelength dependent vertical integration of nanoplasmonic circuits utilizing coupled ring resonators

    NASA Astrophysics Data System (ADS)

    Nielsen, M.; Elezzabi, A. Y.

    2013-03-01

    To become a competitor to replace CMOS-electronics for next-generation data processing, signal routing, and computing, nanoplasmonic circuits will require an analogue to electrical vias in order to enable vertical connections between device layers. Vertically stacked nanoplasmonic nanoring resonators formed of Ag/Si/Ag gap plasmon waveguides were studied as a novel 3-D coupling scheme that could be monolithically integrated on a silicon platform. The vertically coupled ring resonators were evanescently coupled to 100 nm x 100 nm Ag/Si/Ag input and output waveguides and the whole device was submerged in silicon dioxide. 3-D finite difference time domain simulations were used to examine the transmission spectra of the coupling device with varying device sizes and orientations. By having the signal coupling occur over multiple trips around the resonator, coupling efficiencies as high as 39% at telecommunication wavelengths between adjacent layers were present with planar device areas of only 1.00 μm2. As the vertical signal transfer was based on coupled ring resonators, the signal transfer was inherently wavelength dependent. Changing the device size by varying the radii of the nanorings allowed for tailoring the coupled frequency spectra. The plasmonic resonator based coupling scheme was found to have quality (Q) factors of upwards of 30 at telecommunication wavelengths. By allowing different device layers to operate on different wavelengths, this coupling scheme could to lead to parallel processing in stacked independent device layers.

  11. Optical trapping via guided resonance modes in a Slot-Suzuki-phase photonic crystal lattice.

    PubMed

    Ma, Jing; Martínez, Luis Javier; Povinelli, Michelle L

    2012-03-12

    A novel photonic crystal lattice is proposed for trapping a two-dimensional array of particles. The lattice is created by introducing a rectangular slot in each unit cell of the Suzuki-Phase lattice to enhance the light confinement of guided resonance modes. Large quality factors on the order of 10⁵ are predicted in the lattice. A significant decrease of the optical power required for optical trapping can be achieved compared to our previous design.

  12. [Associations between dormitory environment/other factors and sleep quality of medical students].

    PubMed

    Zheng, Bang; Wang, Kailu; Pan, Ziqi; Li, Man; Pan, Yuting; Liu, Ting; Xu, Dan; Lyu, Jun

    2016-03-01

    To investigate the sleep quality and related factors among medical students in China, understand the association between dormitory environment and sleep quality, and provide evidence and recommendations for sleep hygiene intervention. A total of 555 undergraduate students were selected from a medical school of an university in Beijing through stratified-cluster random-sampling to conduct a questionnaire survey by using Chinese version of Pittsburgh Sleep Quality Index (PSQI) and self-designed questionnaire. Analyses were performed by using multiple logistic regression model as well as multilevel linear regression model. The prevalence of sleep disorder was 29.1%(149/512), and 39.1%(200/512) of the students reported that the sleep quality was influenced by dormitory environment. PSQI score was negatively correlated with self-reported rating of dormitory environment (γs=-0.310, P<0.001). Logistic regression analysis showed the related factors of sleep disorder included grade, sleep regularity, self-rated health status, pressures of school work and employment, as well as dormitory environment. RESULTS of multilevel regression analysis also indicated that perception on dormitory environment (individual level) was associated with sleep quality with the dormitory level random effects under control (b=-0.619, P<0.001). The prevalence of sleep disorder was high in medical students, which was associated with multiple factors. Dormitory environment should be taken into consideration when the interventions are taken to improve the sleep quality of students.

  13. ASVCP quality assurance guidelines: control of general analytical factors in veterinary laboratories.

    PubMed

    Flatland, Bente; Freeman, Kathy P; Friedrichs, Kristen R; Vap, Linda M; Getzy, Karen M; Evans, Ellen W; Harr, Kendal E

    2010-09-01

    Owing to lack of governmental regulation of veterinary laboratory performance, veterinarians ideally should demonstrate a commitment to self-monitoring and regulation of laboratory performance from within the profession. In response to member concerns about quality management in veterinary laboratories, the American Society for Veterinary Clinical Pathology (ASVCP) formed a Quality Assurance and Laboratory Standards (QAS) committee in 1996. This committee recently published updated and peer-reviewed Quality Assurance Guidelines on the ASVCP website. The Quality Assurance Guidelines are intended for use by veterinary diagnostic laboratories and veterinary research laboratories that are not covered by the US Food and Drug Administration Good Laboratory Practice standards (Code of Federal Regulations Title 21, Chapter 58). The guidelines have been divided into 3 reports on 1) general analytic factors for veterinary laboratory performance and comparisons, 2) hematology and hemostasis, and 3) clinical chemistry, endocrine assessment, and urinalysis. This report documents recommendations for control of general analytical factors within veterinary clinical laboratories and is based on section 2.1 (Analytical Factors Important In Veterinary Clinical Pathology, General) of the newly revised ASVCP QAS Guidelines. These guidelines are not intended to be all-inclusive; rather, they provide minimum guidelines for quality assurance and quality control for veterinary laboratory testing. It is hoped that these guidelines will provide a basis for laboratories to assess their current practices, determine areas for improvement, and guide continuing professional development and education efforts. ©2010 American Society for Veterinary Clinical Pathology.

  14. On the Chaotic Vibrations of Electrostatically Actuated Arch Micro/Nano Resonators: A Parametric Study

    NASA Astrophysics Data System (ADS)

    Tajaddodianfar, Farid; Hairi Yazdi, Mohammad Reza; Pishkenari, Hossein Nejat

    Motivated by specific applications, electrostatically actuated bistable arch shaped micro-nano resonators have attracted growing attention in the research community in recent years. Nevertheless, some issues relating to their nonlinear dynamics, including the possibility of chaos, are still not well known. In this paper, we investigate the chaotic vibrations of a bistable resonator comprised of a double clamped initially curved microbeam under combined harmonic AC and static DC distributed electrostatic actuation. A reduced order equation obtained by the application of the Galerkin method to the nonlinear partial differential equation of motion, given in the framework of Euler-Bernoulli beam theory, is used for the investigation in this paper. We numerically integrate the obtained equation to study the chaotic vibrations of the proposed system. Moreover, we investigate the effects of various parameters including the arch curvature, the actuation parameters and the quality factor of the resonator, which are effective in the formation of both static and dynamic behaviors of the system. Using appropriate numerical tools, including Poincaré maps, bifurcation diagrams, Fourier spectrum and Lyapunov exponents we scrutinize the effects of various parameters on the formation of chaotic regions in the parametric space of the resonator. Results of this work provide better insight into the problem of nonlinear dynamics of the investigated family of bistable micro/nano resonators, and facilitate the design of arch resonators for applications such as filters.

  15. Remarkable influence of slack on the vibration of a single-walled carbon nanotube resonator

    NASA Astrophysics Data System (ADS)

    Ning, Zhiyuan; Fu, Mengqi; Wu, Gongtao; Qiu, Chenguang; Shu, Jiapei; Guo, Yao; Wei, Xianlong; Gao, Song; Chen, Qing

    2016-04-01

    We for the first time quantitatively investigate experimentally the remarkable influence of slack on the vibration of a single-walled carbon nanotube (SWCNT) resonator with a changeable channel length fabricated in situ inside a scanning electron microscope, compare the experimental results with the theoretical predictions calculated from the measured geometric and mechanical parameters of the same SWCNT, and find the following novel points. We demonstrate experimentally that as the slack s is increased from about zero to 1.8%, the detected vibration transforms from single-mode to multimode vibration, and the gate-tuning ability gradually attenuates for all the vibration modes. The quadratic tuning coefficient α decreases linearly with when the gate voltage Vdcg is small and the nanotube resonator operates in the beam regime. The linear tuning coefficient γ decreases linearly with when Vdcg has an intermediate value and the nanotube resonator operates in the catenary regime. The calculated α and γ fit the experimental values of the even in-plane mode reasonably well. As the slack is increased, the quality factor Q of the resonator linearly goes up, but the increase is far less steep than that predicted by the previous theoretical study. Our results are important to understand and design resonators based on CNT and other nanomaterials.

  16. Uncertainty in least-squares fits to the thermal noise spectra of nanomechanical resonators with applications to the atomic force microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sader, John E., E-mail: jsader@unimelb.edu.au; Yousefi, Morteza; Friend, James R.

    2014-02-15

    Thermal noise spectra of nanomechanical resonators are used widely to characterize their physical properties. These spectra typically exhibit a Lorentzian response, with additional white noise due to extraneous processes. Least-squares fits of these measurements enable extraction of key parameters of the resonator, including its resonant frequency, quality factor, and stiffness. Here, we present general formulas for the uncertainties in these fit parameters due to sampling noise inherent in all thermal noise spectra. Good agreement with Monte Carlo simulation of synthetic data and measurements of an Atomic Force Microscope (AFM) cantilever is demonstrated. These formulas enable robust interpretation of thermal noisemore » spectra measurements commonly performed in the AFM and adaptive control of fitting procedures with specified tolerances.« less

  17. Kramers-Kronig based quality factor for shear wave propagation in soft tissue

    PubMed Central

    Urban, M W; Greenleaf, J F

    2009-01-01

    Shear wave propagation techniques have been introduced for measuring the viscoelastic material properties of tissue, but assessing the accuracy of these measurements is difficult for in vivo measurements in tissue. We propose using the Kramers-Kronig relationships to assess the consistency and quality of the measurements of shear wave attenuation and phase velocity. In ex vivo skeletal muscle we measured the wave attenuation at different frequencies, and then applied finite bandwidth Kramers-Kronig equations to predict the phase velocities. We compared these predictions with the measured phase velocities and assessed the mean square error (MSE) as a quality factor. An algorithm was derived for computing a quality factor using the Kramers-Kronig relationships. PMID:19759409

  18. Functional cardiac magnetic resonance microscopy

    NASA Astrophysics Data System (ADS)

    Brau, Anja Christina Sophie

    2003-07-01

    The study of small animal models of human cardiovascular disease is critical to our understanding of the origin, progression, and treatment of this pervasive disease. Complete analysis of disease pathophysiology in these animal models requires measuring structural and functional changes at the level of the whole heart---a task for which an appropriate non-invasive imaging method is needed. The purpose of this work was thus to develop an imaging technique to support in vivo characterization of cardiac structure and function in rat and mouse models of cardiovascular disease. Whereas clinical cardiac magnetic resonance imaging (MRI) provides accurate assessment of the human heart, the extension of cardiac MRI from humans to rodents presents several formidable scaling challenges. Acquiring images of the mouse heart with organ definition and fluidity of contraction comparable to that achieved in humans requires an increase in spatial resolution by a factor of 3000 and an increase in temporal resolution by a factor of ten. No single technical innovation can meet the demanding imaging requirements imposed by the small animal. A functional cardiac magnetic resonance microscopy technique was developed by integrating improvements in physiological control, imaging hardware, biological synchronization of imaging, and pulse sequence design to achieve high-quality images of the murine heart with high spatial and temporal resolution. The specific methods and results from three different sets of imaging experiments are presented: (1) 2D functional imaging in the rat with spatial resolution of 175 mum2 x 1 mm and temporal resolution of 10 ms; (2) 3D functional imaging in the rat with spatial resolution of 100 mum 2 x 500 mum and temporal resolution of 30 ms; and (3) 2D functional imaging in the mouse with spatial resolution down to 100 mum2 x 1 mm and temporal resolution of 10 ms. The cardiac microscopy technique presented here represents a novel collection of technologies capable

  19. Miniaturization of metamaterial electrical resonators at the terahertz spectrum

    NASA Astrophysics Data System (ADS)

    Karamanos, Theodosios D.; Kantartzis, Nikolaos V.

    2014-05-01

    An efficient methodology for the modification of electrical resonators in order to be readily applicable at the terahertz regime is developed in this paper. To this aim, the proposed miniaturization technique starts from the conventional resonator which, without any change, exhibits the lowest possible electrical resonance for minimum dimensions. Subsequently, a set of interdigital capacitors is embedded in the original structure to increase capaci- tance, while their impact on the main resonance is investigated through computational simulations. Furthermore, to augment the inductance of the initial resonator, and, hence reduce the resonance frequency, the concept of spiral inductor elements is introduced. Again, results for the featured configuration with the additional elements are numerically obtained and all effects due to their presence are carefully examined. Finally, the new alterations are combined together and their in influence on the resonance position and quality is thoroughly studied.

  20. A hybrid filter to mitigate harmonics caused by nonlinear load and resonance caused by power factor correction capacitor

    NASA Astrophysics Data System (ADS)

    Adan, N. F.; Soomro, D. M.

    2017-01-01

    Power factor correction capacitor (PFCC) is commonly installed in industrial applications for power factor correction (PFC). With the expanding use of non-linear equipment such as ASDs, power converters, etc., power factor (PF) improvement has become difficult due to the presence of harmonics. The resulting capacitive impedance of the PFCC may form a resonant circuit with the source inductive reactance at a certain frequency, which is likely to coincide with one of the harmonic frequency of the load. This condition will trigger large oscillatory currents and voltages that may stress the insulation and cause subsequent damage to the PFCC and equipment connected to the power system (PS). Besides, high PF cannot be achieved due to power distortion. This paper presents the design of a three-phase hybrid filter consisting of a single tuned passive filter (STPF) and shunt active power filter (SAPF) to mitigate harmonics and resonance in the PS through simulation using PSCAD/EMTDC software. SAPF was developed using p-q theory. The hybrid filter has resulted in significant improvement on both total harmonic distortion for voltage (THDV) and total demand distortion for current (TDDI) with maximum values of 2.93% and 9.84% respectively which were within the recommended IEEE 519-2014 standard limits. Regarding PF improvement, the combined filters have achieved PF close to desired PF at 0.95 for firing angle, α values up to 40°.

  1. Personal and macro-systemic factors as predictors of quality of life in chronic schizophrenia.

    PubMed

    Fontanil-Gómez, Yolanda; Alcedo Rodríguez, María A; Gutiérrez López, María I

    2017-05-01

    The goal of this research was to establish possible predictive factors for both subjective and externally assessed quality of life in people with chronic schizophrenia. Sixty-eight people with schizophrenia took part in the study and were assessed using the World Health Organisation Quality of Life Assessment - Brief Version (WHOQOL-BREF), the Quality of Life Scale (QLS), the Positive and Negative Syndrome Scale for Schizophrenia (PANSS), the Global Assessment of Functioning (GAF), the Social Functioning Scale (SFS) tests. Correlations and multiple regression analysis were conducted to determine possible predictors of quality of life. The residential environment (rural/urban), diagnosis, age at onset of disorder, global functioning and social functioning explained 68% of the total variance based on proxies’ assessment quality of life. Living arrangements and social functioning emerged as predictor variables for subjective quality of life, explaining a 47.3% of the total variance. Socio-cultural factors, such as social integration or the quality of interpersonal relationships, have more influence on these peoples’ physical and psychological health than certain personal factors, such as psychopathology. It is therefore advisable to pay attention to the environment and macro-systemic variables when developing intervention plans to improve their quality of life.

  2. Temperature and density evolution during decay in a 2.45 GHz hydrogen electron cyclotron resonance plasma: off-resonant and resonant cases.

    PubMed

    Cortázar, O D; Megía-Macías, A; Vizcaíno-de-Julián, A

    2013-09-01

    Time resolved electron temperature and density measurements during the decay stage in a hydrogen electron cyclotron resonance (ECR) plasma are presented for a resonance and off-resonance magnetic field configurations. The measurements are conducted on a ECR plasma generator excited at 2.45 GHz denominated test-bench for ion-sources plasma studies at ESS Bilbao. The plasma parameters evolution is studied by Langmuir probe diagnostic with synchronized sample technique developed for repetitive pulsed plasmas with a temporal resolution of 200 ns in typical decay processes of about 40 μs. An afterglow transient is clearly observed in the reflected microwave power signal from the plasma. Simultaneously, the electron temperature evolution shows rebounding peaks that may be related to the interplay between density drop and microwave coupling with deep impact on the Electron Energy Distribution Function. The correlation of such structures with the plasma absorbed power and the coupling quality is also reported.

  3. Factors controlling reservoir quality in tertiary sandstones and their significance to geopressured geothermal production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loucks, R.G.; Richmann, D.L.; Milliken, K.L.

    1981-01-01

    Variable intensity of diagenesis is the factor primarily responsible for contrasting regional reservoir quality of Tertiary sandstones from the upper and lower Texas coast. Detailed comparison of Frio sandstone from the Chocolate Bayou/Danbury Dome area, Brazoria County, and Vicksburg sandstones from the McAllen Ranch Field area, Hidalgo County, reveals that extent of diagenetic modification is most strongly influenced by (1) detrital mineralogy and (2) regional geothermal gradients. The regional reservoir quality of Frio sandstones from Brazoria County is far better than that characterizing Vicksburg sandstones from Hidalgo County, especially at depths suitable for geopressured geothermal energy production. However, in predictingmore » reservoir quality on a site-specific basis, locally variable factors such as relative proportions for porosity types, pore geometry as related to permeability, and local depositional environment must also be considered. Even in an area of regionally favorable reservoir quality, such local factors can significantly affect reservoir quality and, hence, the geothermal production potential of a specific sandstone unit.« less

  4. Factors associated with the quality of life of nursing home residents in Hong Kong.

    PubMed

    Lai, C K Y; Leung, D D M; Kwong, E W Y; Lee, R L P

    2015-03-01

    The quality of life of nursing home residents has increasingly become an important dimension when evaluating care in a nursing home. Not a lot is known about the quality of life of nursing home residents in Hong Kong. To investigate factors associated with the quality of life of nursing home residents to inform care management policies and service delivery. This study reports data from 125 nursing home residents. The Hong Kong Chinese version of the World Health Organization's Quality of Life-Brief version was used. Other measures used include the Mini-Mental State Examination, the Mini-Nutritional Assessment, the Geriatric Depression Scale, the Modified STRATIFY Falls Prediction Tool and the Modified Barthel Index. A univariate analysis and a multiple regression analysis were then performed to identify the influencing factors. The participants reported a moderate level of quality of life, with the exception in the domain of social relationships. A univariate analysis found some associations between demographic and clinical characteristics and quality of life. A multiple regression analysis indicated that pain, being younger (65-74 years), having son(s) or daughter(s), and cognitive impairment were negatively associated factors. The smallness of the sample from a single study site limits the generalizability of the findings. This study provides information that has hitherto been lacking on the quality of life and associated factors among local nursing home residents in Hong Kong. The preliminary findings can help healthcare staff to identify those at risk of suffering from a low quality of life and to design appropriate care interventions to improve the quality of life of such residents. Adequate pain relief, family connectedness and special attention to the needs of those with cognitive impairment are important considerations in ensuring a better quality of life for older people in long-term residential care. © 2014 International Council of Nurses.

  5. Non-invasive assessment of leaf water status using a dual-mode microwave resonator.

    PubMed

    Dadshani, Said; Kurakin, Andriy; Amanov, Shukhrat; Hein, Benedikt; Rongen, Heinz; Cranstone, Steve; Blievernicht, Ulrich; Menzel, Elmar; Léon, Jens; Klein, Norbert; Ballvora, Agim

    2015-01-01

    The water status in plant leaves is a good indicator for the water status in the whole plant revealing stress if the water supply is reduced. The analysis of dynamic aspects of water availability in plant tissues provides useful information for the understanding of the mechanistic basis of drought stress tolerance, which may lead to improved plant breeding and management practices. The determination of the water content in plant tissues during plant development has been a challenge and is currently feasible based on destructive analysis only. We present here the application of a non-invasive quantitative method to determine the volumetric water content of leaves and the ionic conductivity of the leaf juice from non-invasive microwave measurements at two different frequencies by one sensor device. A semi-open microwave cavity loaded with a ceramic dielectric resonator and a metallic lumped-element capacitor- and inductor structure was employed for non-invasive microwave measurements at 150 MHz and 2.4 Gigahertz on potato, maize, canola and wheat leaves. Three leaves detached from each plant were chosen, representing three developmental stages being representative for tissue of various age. Clear correlations between the leaf- induced resonance frequency shifts and changes of the inverse resonator quality factor at 2.4 GHz to the gravimetrically determined drying status of the leaves were found. Moreover, the ionic conductivity of Maize leaves, as determined from the ratio of the inverse quality factor and frequency shift at 150 MHz by use of cavity perturbation theory, was found to be in good agreement with direct measurements on plant juice. In conjunction with a compact battery- powered circuit board- microwave electronic module and a user-friendly software interface, this method enables rapid in-vivo water amount assessment of plants by a handheld device for potential use in the field.

  6. Factors influencing on retro-odontoid soft-tissue thickness: analysis by magnetic resonance imaging.

    PubMed

    Tojo, Shinjiro; Kawakami, Reina; Yonenaga, Takenori; Hayashi, Daichi; Fukuda, Kunihiko

    2013-03-01

    A retrospective, consecutive case series. To analyze the relationship between retro-odontoid soft-tissue thickness and patients' age, sex, and degenerative changes of cervical spine and to investigate the effect these factors have on retro-odontoid soft-tissue thickness. Thickening of the soft tissue posterior to the odontoid process can form a retro-odontoid pseudotumor causing symptoms of spinal cord compression. Rheumatoid arthritis and long-term dialysis have been reported as possible causes for this. However, there have been reports of retro-odontoid pseudotumors without coexisting diseases. Findings from a total of 503 cases of cervical spine magnetic resonance images were reviewed, and retro-odontoid soft-tissue thickness was measured. The values were matched for age, sex, presence of degenerative changes, rheumatoid arthritis, and dialysis and were analyzed for significance. Retro-odontoid soft tissue thickened with age, and this was also seen in male patients and patients with degenerative changes. Significant increase in thickness was also observed in patients undergoing dialysis and further increased with prolonged dialysis. There was no significant association with presence of rheumatoid arthritis. There is association between age, sex, degenerative cervical spine changes, and dialysis with retro-odontoid soft-tissue thickness. With dialysis, retro-odontoid soft-tissue thickness increases with increasing duration. Thus, reviewing magnetic resonance image from daily practice indicates that cervical spine degeneration is associated with the development of retro-odontoid pseudotumors.

  7. Simulation of Electrostatic Actuation in Interdigitated Comb Drive MEMS Resonator for Energy Harvester Applications

    NASA Astrophysics Data System (ADS)

    Sathya, S.; Pavithra, M.; Muruganand, S.

    2016-09-01

    This paper presents an actuation mechanism based on the interdigitated comb drive MEMS resonator. The important role of that device is to establish MEMS resonators for the second order systems. Comb drive model is one of the basic model which uses the principle of electrostatic and force can be generated for the capacitive sensors. This work is done by overlapping movable and fixed comb fingers which produces an energy. The specific range of the polyimide material properties of young's modulus of 3.1GPa and density of 1300 Kg/m3. Results are shown in the structural domain performance of a lateral motion which corresponds to the applying voltage between the interdigitated comb fingers. It has laterally driven about 40pm with driving voltage. Also the resonance frequency 24Hz and 15Hz with high quality factors are depending on the spring length 260pm and 360pm and structure thickness of 2μm and 5 μm. Here Finite element method (FEM) is used to simulate the various physics scenario and it is designed as two dimensional structure multiphysics domain. The prototype of comb drive MEMS resonator has been suitable for energy harvesting system applications.

  8. Bennett lesions in baseball players detected by magnetic resonance imaging: assessment of association factors.

    PubMed

    Park, Jin-Young; Noh, Young-Min; Chung, Seok-Won; Moon, Sung-Gyn; Ha, Dae-Ho; Lee, Ki-Sun; Chung, Seok Won

    2016-05-01

    The purpose of this study was to evaluate the characteristics of Bennett lesions in baseball players compared with those without a Bennett lesion and to identify other possible factors associated with Bennett lesions on magnetic resonance imaging (MRI). We investigated 388 male baseball players with a career >1 year. Demographic factors and a routine physical examination, including glenohumeral internal rotation difference, scapular dyskinesis, and various pathologic changes, were reviewed on MRI to identify relative factors for Bennett lesions. Of the 388 patients evaluated, 125 (32.2%) were diagnosed with Bennett lesions of the shoulder. No significant differences were observed between the groups in demographic factors, physical examination results, visual analog scale score, American Shoulder and Elbow Surgeons score, or prevalence of concomitant diseases. However, players with Bennett lesions had played baseball longer than those without the lesions (P < .001). An association was found between Bennett lesions and the length of time that a patient with a Bennett lesion had played baseball. The prevalence of pathologic lesions detected on MRI and the physical examination results were not different between players with and without Bennett lesions. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  9. Integrated ultra-low-loss resonator on a chip

    NASA Astrophysics Data System (ADS)

    Poon, Joyce K. S.

    2018-05-01

    Exquisitely low-loss optical resonators have thus far remained discrete. Monolithic integration of waveguides with silica resonators that have Q factors >100 million charts a path toward incorporating these devices in photonic circuits.

  10. As-Grown Gallium Nitride Nanowire Electromechanical Resonators

    NASA Astrophysics Data System (ADS)

    Montague, Joshua R.

    Technological development in recent years has led to a ubiquity of micro- and nano-scale electromechanical devices. Sensors for monitoring temperature, pressure, mass, etc., are now found in nearly all electronic devices at both the industrial and consumer levels. As has been true for integrated circuit electronics, these electromechanical devices have continued to be scaled down in size. For many nanometer-scale structures with large surface-to-volume ratio, dissipation (energy loss) becomes prohibitively large causing a decreasing sensitivity with decreasing sensor size. In this work, gallium nitride (GaN) nanowires are investigated as singly-clamped (cantilever) mechanical resonators with typical mechanical quality factors, Q (equal to the ratio of resonance frequency to peak full-width-at-half-maximum-power) and resonance frequencies, respectively, at or above 30,000, and near 1 MHz. These Q values---in vacuum at room temperature---indicate very low levels of dissipation; they are essentially the same as those for bulk quartz crystal resonators that form the basis of simple clocks and mass sensors. The GaN nanowires have lengths and diameters, respectively, of approximately 15 micrometers and hundreds of nanometers. As-grown GaN nanowire Q values are larger than other similarly-sized, bottom-up, cantilever resonators and this property makes them very attractive for use as resonant sensors. We demonstrate the capability of detecting sub-monolayer levels of atomic layer deposited (ALD) films, and the robust nature of the GaN nanowires structure that allows for their 'reuse' after removal of such layers. In addition to electron microscope-based measurement techniques, we demonstrate the successful capacitive detection of a single nanowire using microwave homodyne reflectometry. This technique is then extended to allow for simultaneous measurements of large ensembles of GaN nanowires on a single sample, providing statistical information about the distribution of

  11. Factors associated with high-quality/low-cost hospital performance.

    PubMed

    Jiang, H Joanna; Friedman, Bernard; Begun, James W

    2006-01-01

    This study explores organizational and market characteristics associated with superior hospital performance in both quality and cost of care, using the Healthcare Cost and Utilization Project State Inpatient Databases for ten states in 1997 and 2001. After controlling for a variety of patient factors, we found that for-profit ownership, hospital competition, and the number of HMOs were positively associated with the likelihood of attaining high-quality/low-cost performance. Furthermore, we examined interactions between organizational and market characteristics and identified a number of significant interactions. For example, the positive likelihood associated with for-profit hospitals diminished in markets with high HMO penetration.

  12. Microwave Oscillators Based on Nonlinear WGM Resonators

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Matsko, Andrey; Savchenkov, Anatoliy; Strekalov, Dmitry

    2006-01-01

    Optical oscillators that exploit resonantly enhanced four-wave mixing in nonlinear whispering-gallery-mode (WGM) resonators are under investigation for potential utility as low-power, ultra-miniature sources of stable, spectrally pure microwave signals. There are numerous potential uses for such oscillators in radar systems, communication systems, and scientific instrumentation. The resonator in an oscillator of this type is made of a crystalline material that exhibits cubic Kerr nonlinearity, which supports the four-photon parametric process also known as four-wave mixing. The oscillator can be characterized as all-optical in the sense that the entire process of generation of the microwave signal takes place within the WGM resonator. The resonantly enhanced four-wave mixing yields coherent, phase-modulated optical signals at frequencies governed by the resonator structure. The frequency of the phase-modulation signal, which is in the microwave range, equals the difference between the frequencies of the optical signals; hence, this frequency is also governed by the resonator structure. Hence, further, the microwave signal is stable and can be used as a reference signal. The figure schematically depicts the apparatus used in a proof-of-principle experiment. Linearly polarized pump light was generated by an yttrium aluminum garnet laser at a wavelength of 1.32 microns. By use of a 90:10 fiber-optic splitter and optical fibers, some of the laser light was sent into a delay line and some was transmitted to one face of glass coupling prism, that, in turn, coupled the laser light into a crystalline CaF2 WGM disk resonator that had a resonance quality factor (Q) of 6x10(exp 9). The output light of the resonator was collected via another face of the coupling prism and a single-mode optical fiber, which transmitted the light to a 50:50 fiber-optic splitter. One output of this splitter was sent to a slow photodiode to obtain a DC signal for locking the laser to a particular

  13. Mass perturbation techniques for tuning and decoupling of a Disk Resonator Gyroscope

    NASA Astrophysics Data System (ADS)

    Schwartz, David

    Axisymmetric microelectromechanical (MEM) vibratory rate gyroscopes are designed so that the two Coriolis-coupled modes exploited for rate sensing possess equal modal frequencies and so that the central post which attaches the resonator to the sensor case is a nodal point of the these two modes. The former quality maximizes the signal-to-noise ratio of the sensor, while the latter quality eliminates any coupling of linear acceleration to the modes of interest, which, if present, creates spurious rate signals in response to linear vibration of the sensor case. When the gyro resonators are fabricated, however, small mass and stiffness asymmetries cause the frequencies of the two modes to deviate from each other and couple these modes to linear acceleration. In a resonator post-fabrication step, these effects can be reduced by altering the mass distribution of the resonator. In this dissertation, a scale model of the axisymmetric resonator of the Disk Resonator Gyroscope (DRG) is used to develop and test methods that successfully reduce frequency detuning (Part I) and linear acceleration coupling (Part II) through guided mass perturbations.

  14. A leakage-free resonance sparse decomposition technique for bearing fault detection in gearboxes

    NASA Astrophysics Data System (ADS)

    Osman, Shazali; Wang, Wilson

    2018-03-01

    Most of rotating machinery deficiencies are related to defects in rolling element bearings. Reliable bearing fault detection still remains a challenging task, especially for bearings in gearboxes as bearing-defect-related features are nonstationary and modulated by gear mesh vibration. A new leakage-free resonance sparse decomposition (LRSD) technique is proposed in this paper for early bearing fault detection of gearboxes. In the proposed LRSD technique, a leakage-free filter is suggested to remove strong gear mesh and shaft running signatures. A kurtosis and cosine distance measure is suggested to select appropriate redundancy r and quality factor Q. The signal residual is processed by signal sparse decomposition for highpass and lowpass resonance analysis to extract representative features for bearing fault detection. The effectiveness of the proposed technique is verified by a succession of experimental tests corresponding to different gearbox and bearing conditions.

  15. Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope

    PubMed Central

    Nitzan, Sarah H.; Zega, Valentina; Li, Mo; Ahn, Chae H.; Corigliano, Alberto; Kenny, Thomas W.; Horsley, David A.

    2015-01-01

    Parametric amplification, resulting from intentionally varying a parameter in a resonator at twice its resonant frequency, has been successfully employed to increase the sensitivity of many micro- and nano-scale sensors. Here, we introduce the concept of self-induced parametric amplification, which arises naturally from nonlinear elastic coupling between the degenerate vibration modes in a micromechanical disk-resonator, and is not externally applied. The device functions as a gyroscope wherein angular rotation is detected from Coriolis coupling of elastic vibration energy from a driven vibration mode into a second degenerate sensing mode. While nonlinear elasticity in silicon resonators is extremely weak, in this high quality-factor device, ppm-level nonlinear elastic effects result in an order-of-magnitude increase in the observed sensitivity to Coriolis force relative to linear theory. Perfect degeneracy of the primary and secondary vibration modes is achieved through electrostatic frequency tuning, which also enables the phase and frequency of the parametric coupling to be varied, and we show that the resulting phase and frequency dependence of the amplification follow the theory of parametric resonance. We expect that this phenomenon will be useful for both fundamental studies of dynamic systems with low dissipation and for increasing signal-to-noise ratio in practical applications such as gyroscopes. PMID:25762243

  16. Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope.

    PubMed

    Nitzan, Sarah H; Zega, Valentina; Li, Mo; Ahn, Chae H; Corigliano, Alberto; Kenny, Thomas W; Horsley, David A

    2015-03-12

    Parametric amplification, resulting from intentionally varying a parameter in a resonator at twice its resonant frequency, has been successfully employed to increase the sensitivity of many micro- and nano-scale sensors. Here, we introduce the concept of self-induced parametric amplification, which arises naturally from nonlinear elastic coupling between the degenerate vibration modes in a micromechanical disk-resonator, and is not externally applied. The device functions as a gyroscope wherein angular rotation is detected from Coriolis coupling of elastic vibration energy from a driven vibration mode into a second degenerate sensing mode. While nonlinear elasticity in silicon resonators is extremely weak, in this high quality-factor device, ppm-level nonlinear elastic effects result in an order-of-magnitude increase in the observed sensitivity to Coriolis force relative to linear theory. Perfect degeneracy of the primary and secondary vibration modes is achieved through electrostatic frequency tuning, which also enables the phase and frequency of the parametric coupling to be varied, and we show that the resulting phase and frequency dependence of the amplification follow the theory of parametric resonance. We expect that this phenomenon will be useful for both fundamental studies of dynamic systems with low dissipation and for increasing signal-to-noise ratio in practical applications such as gyroscopes.

  17. Multiturn split-conductor transmission-line resonator

    NASA Astrophysics Data System (ADS)

    Haziza, Nathalie; Bittoun, Jacques; Kan, Siew

    1997-05-01

    A split-conductor parallel-plate transmission line resonator is a simple structure made from bending a strip of double-face copper-clad printed-circuit board into a loop with alternate electrical discontinuities (gaps) on opposite sides. Its natural resonant frequency (Fn) is determined by the transmission line characteristic impedance, the loop diameter or strip length, and the number (Ng) of gaps. It is easy to design high frequency resonators simply by increasing Ng. We propose here a single-gap multiturn resonator for low frequency operation as well as a simplified expression for the determination of Fn. A design procedure of this type of resonator is outlined and illustrative examples with parallel-plate as well as ordinary 50 Ω coaxial transmission lines are given. Also, for a given cable length, numerical calculation shows that the minimum resonator frequency can be attained with a form factor of the order of 2.

  18. Study of motivational factors in doctors in respect of healthcare quality improvement.

    PubMed

    Smiianov, Vladyslav A; Smiianova, Olga I; Gruzieva, Tetiana S; Vygivska, Liudmyla; Rudenko, Lesia A

    The article presents the results of a survey among doctors with different certification categories and experience who work at inpatient and outpatient departments of Sumy healthcare institutions, in respect of the main factors that motivate them to provide quality healthcare. The aim of the study is to identify the factors that may be used as motivators to improve healthcare quality in terms of medical staff in order to ensure system construction of motivational component of healthcare quality management ("incentive picture"). We conducted a survey among physicians working at inpatient and outpatient departments. A total of 167 respondents were interviewed. The obtained results were processed using OCA-program. We have found an association between the salary level and certification category of a physician. Despite heavy workload, most doctors were willing to work harder and better for some additional payment. Even though financial satisfaction was low, most doctors did not agree to change their profession for a more payable one. The study revealed that, in doctors' opinion, the introduction of incentive system in healthcare institutions was necessary to provide quality healthcare. Regardless of length of service and workplace, two of the main motivational factors for doctors were moral satisfaction from work and respect of people.

  19. Asymmetric resonance response analysis of a thermally excited silicon microcantilever for mass-sensitive nanoparticle detection

    NASA Astrophysics Data System (ADS)

    Bertke, Maik; Hamdana, Gerry; Wu, Wenze; Wasisto, Hutomo Suryo; Peiner, Erwin

    2017-06-01

    The asymmetric resonance responses of a thermally actuated silicon microcantilever of a portable, cantilever-based nanoparticle detector (Cantor) is analysed. For airborne nanoparticle concentration measurements, the cantilever is excited in its first in-plane bending mode by an integrated p-type heating actuator. The mass-sensitive nanoparticle (NP) detection is based on the resonance frequency (f0) shifting due to the deposition of NPs. A homemade phase-locked loop (PLL) circuit is developed for tracking of f0. For deflection sensing the cantilever contains an integrated piezo-resistive Wheatstone bridge (WB). A new fitting function based on the Fano resonance is proposed for analysing the asymmetric resonance curves including a method for calculating the quality factor Q from the fitting parameters. To obtain a better understanding, we introduce an electrical equivalent circuit diagram (ECD) comprising a series resonant circuit (SRC) for the cantilever resonator and voltage sources for the parasitics, which enables us to simulate the asymmetric resonance response and discuss the possible causes. Furthermore, we compare the frequency response of the on-chip thermal excitation with an external excitation using an in-plane piezo actuator revealing parasitic heating of the WB as the origin of the asymmetry. Moreover, we are able to model the phase component of the sensor output using the ECD. Knowing and understanding the phase response is crucial to the design of the PLL and thus the next generation of Cantor.

  20. A Squeeze-film Damping Model for the Circular Torsion Micro-resonators

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Li, Pu

    2017-07-01

    In recent years, MEMS devices are widely used in many industries. The prediction of squeeze-film damping is very important for the research of high quality factor resonators. In the past, there have been many analytical models predicting the squeeze-film damping of the torsion micro-resonators. However, for the circular torsion micro-plate, the works over it is very rare. The only model presented by Xia et al[7] using the method of eigenfunction expansions. In this paper, The Bessel series solution is used to solve the Reynolds equation under the assumption of the incompressible gas of the gap, the pressure distribution of the gas between two micro-plates is obtained. Then the analytical expression for the damping constant of the device is derived. The result of the present model matches very well with the finite element method (FEM) solutions and the result of Xia’s model, so the present models’ accuracy is able to be validated.

  1. Winter wheat quality monitoring and forecasting system based on remote sensing and environmental factors

    NASA Astrophysics Data System (ADS)

    Haiyang, Yu; Yanmei, Liu; Guijun, Yang; Xiaodong, Yang; Dong, Ren; Chenwei, Nie

    2014-03-01

    To achieve dynamic winter wheat quality monitoring and forecasting in larger scale regions, the objective of this study was to design and develop a winter wheat quality monitoring and forecasting system by using a remote sensing index and environmental factors. The winter wheat quality trend was forecasted before the harvest and quality was monitored after the harvest, respectively. The traditional quality-vegetation index from remote sensing monitoring and forecasting models were improved. Combining with latitude information, the vegetation index was used to estimate agronomy parameters which were related with winter wheat quality in the early stages for forecasting the quality trend. A combination of rainfall in May, temperature in May, illumination at later May, the soil available nitrogen content and other environmental factors established the quality monitoring model. Compared with a simple quality-vegetation index, the remote sensing monitoring and forecasting model used in this system get greatly improved accuracy. Winter wheat quality was monitored and forecasted based on the above models, and this system was completed based on WebGIS technology. Finally, in 2010 the operation process of winter wheat quality monitoring system was presented in Beijing, the monitoring and forecasting results was outputted as thematic maps.

  2. [Factors affecting the quality of cardiopulmonary resuscitation in inpatient units: perception of nurses].

    PubMed

    Citolino, Clairton Marcos Filho; Santos, Eduesley Santana; Silva, Rita de Cassia Gengo E; Nogueira, Lilia de Souza

    2015-12-01

    To identify, in the perception of nurses, the factors that affect the quality of cardiopulmonary resuscitation (CPR) in adult inpatient units, and investigate the influence of both work shifts and professional experience length of time in the perception of these factors. A descriptive, exploratory study conducted at a hospital specialized in cardiology and pneumology with the application of a questionnaire to 49 nurses working in inpatient units. The majority of nurses reported that the high number of professionals in the scenario (75.5%), the lack of harmony (77.6%) or stress of any member of staff (67.3%), lack of material and/or equipment failure (57.1%), lack of familiarity with the emergency trolleys (98.0%) and presence of family members at the beginning of the cardiopulmonary arrest assistance (57.1%) are factors that adversely affect the quality of care provided during CPR. Professional experience length of time and the shift of nurses did not influence the perception of these factors. The identification of factors that affect the quality of CPR in the perception of nurses serves as parameter to implement improvements and training of the staff working in inpatient units.

  3. Factors related to quality of life among older adults in Bangladesh: A cross sectional survey.

    PubMed

    Uddin, Mohammad Abbas; Soivong, Pratum; Lasuka, Duangruedee; Juntasopeepun, Phanida

    2017-12-01

    This cross-sectional design study aimed to describe quality of life and examine factors related to quality of life among older adults in Bangladesh. Convenience sampling was used to recruit 280 older adults from ten villages in two southern districts. The results demonstrate that the majority of the participants reported an overall moderate score of quality of life. Moreover, participants' sleep problems, depression, religiosity, and activities of daily living were negatively correlated with quality of life whereas social support and health service availability were positively correlated with quality of life. Implementing intervention programs upon the significant related factors to improve older adults' quality of life is recommended. © 2017 John Wiley & Sons Australia, Ltd.

  4. Design of a fused phantom for quantitative evaluation of brain metabolites and enhanced quality assurance testing for magnetic resonance imaging and spectroscopy.

    PubMed

    Song, Kyu-Ho; Kim, Sang-Young; Lee, Do-Wan; Jung, Jin-Young; Lee, Jung-Hoon; Baek, Hyeon-Man; Choe, Bo-Young

    2015-11-30

    Magnetic resonance imaging and spectroscopy (MRI-MRS) is a useful tool for the identification and evaluation of chemical changes in anatomical regions. Quality assurance (QA) is performed in either images or spectra using QA phantom. Therefore, consistent and uniform technical MRI-MRS QA is crucial. Here we developed an MRI-MRS fused phantom along with the inserts for metabolite quantification to simultaneously optimize QA parameters for both MRI and MRS. T1- and T2-weighted images were obtained and MRS was performed with point-resolved spectroscopy. Using the fused phantom, the results of measuring MRI factors were: geometric distortion, <2% and ± 2 mm; image intensity uniformity, 83.09 ± 1.33%; percent-signal ghosting, 0.025 ± 0.004; low-contrast object detectability, 27.85 ± 0.80. In addition, the signal-to-noise ratio of N-acetyl-aspartate was consistently high (42.00 ± 5.66). In previous studies, MR phantoms could not obtain information from both images and spectra in the MR scanner simultaneously. Here we designed and developed a phantom for accurate and consistent QA within the acceptance range. It is important to take into account variations in the QA value using the MRI-MRS phantom, when comparing to other clinical or research MR scanners. The MRI-MRS QA factors obtained simultaneously using the phantom can facilitate evaluation of both images and spectra, and provide guidelines for obtaining MRI and MRS QA factors simultaneously. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Exploring on the Sensitivity Changes of the LC Resonance Magnetic Sensors Affected by Superposed Ringing Signals.

    PubMed

    Lin, Tingting; Zhou, Kun; Yu, Sijia; Wang, Pengfei; Wan, Ling; Zhao, Jing

    2018-04-25

    LC resonance magnetic sensors are widely used in low-field nuclear magnetic resonance (LF-NMR) and surface nuclear magnetic resonance (SNMR) due to their high sensitivity, low cost and simple design. In magnetically shielded rooms, LC resonance magnetic sensors can exhibit sensitivities at the fT/√Hz level in the kHz range. However, since the equivalent magnetic field noise of this type of sensor is greatly affected by the environment, weak signals are often submerged in practical applications, resulting in relatively low signal-to-noise ratios (SNRs). To determine why noise increases in unshielded environments, we analysed the noise levels of an LC resonance magnetic sensor ( L ≠ 0) and a Hall sensor ( L ≈ 0) in different environments. The experiments and simulations indicated that the superposed ringing of the LC resonance magnetic sensors led to the observed increase in white noise level caused by environmental interference. Nevertheless, ringing is an inherent characteristic of LC resonance magnetic sensors. It cannot be eliminated when environmental interference exists. In response to this problem, we proposed a method that uses matching resistors with various values to adjust the quality factor Q of the LC resonance magnetic sensor in different measurement environments to obtain the best sensitivity. The LF-NMR experiment in the laboratory showed that the SNR is improved significantly when the LC resonance magnetic sensor with the best sensitivity is selected for signal acquisition in the light of the test environment. (When the matching resistance is 10 kΩ, the SNR is 3.46 times that of 510 Ω). This study improves LC resonance magnetic sensors for nuclear magnetic resonance (NMR) detection in a variety of environments.

  6. High-field open versus short-bore magnetic resonance imaging of the spine: a randomized controlled comparison of image quality.

    PubMed

    Enders, Judith; Rief, Matthias; Zimmermann, Elke; Asbach, Patrick; Diederichs, Gerd; Wetz, Christoph; Siebert, Eberhard; Wagner, Moritz; Hamm, Bernd; Dewey, Marc

    2013-01-01

    The purpose of the present study was to compare the image quality of spinal magnetic resonance (MR) imaging performed on a high-field horizontal open versus a short-bore MR scanner in a randomized controlled study setup. Altogether, 93 (80% women, mean age 53) consecutive patients underwent spine imaging after random assignement to a 1-T horizontal open MR scanner with a vertical magnetic field or a 1.5-T short-bore MR scanner. This patient subset was part of a larger cohort. Image quality was assessed by determining qualitative parameters, signal-to-noise (SNR) and contrast-to-noise ratios (CNR), and quantitative contour sharpness. The image quality parameters were higher for short-bore MR imaging. Regarding all sequences, the relative differences were 39% for the mean overall qualitative image quality, 53% for the mean SNR values, and 34-37% for the quantitative contour sharpness (P<0.0001). The CNR values were also higher for images obtained with the short-bore MR scanner. No sequence was of very poor (nondiagnostic) image quality. Scanning times were significantly longer for examinations performed on the open MR scanner (mean: 32±22 min versus 20±9 min; P<0.0001). In this randomized controlled comparison of spinal MR imaging with an open versus a short-bore scanner, short-bore MR imaging revealed considerably higher image quality with shorter scanning times. ClinicalTrials.gov NCT00715806.

  7. High-Field Open versus Short-Bore Magnetic Resonance Imaging of the Spine: A Randomized Controlled Comparison of Image Quality

    PubMed Central

    Zimmermann, Elke; Asbach, Patrick; Diederichs, Gerd; Wetz, Christoph; Siebert, Eberhard; Wagner, Moritz; Hamm, Bernd; Dewey, Marc

    2013-01-01

    Background The purpose of the present study was to compare the image quality of spinal magnetic resonance (MR) imaging performed on a high-field horizontal open versus a short-bore MR scanner in a randomized controlled study setup. Methods Altogether, 93 (80% women, mean age 53) consecutive patients underwent spine imaging after random assignement to a 1-T horizontal open MR scanner with a vertical magnetic field or a 1.5-T short-bore MR scanner. This patient subset was part of a larger cohort. Image quality was assessed by determining qualitative parameters, signal-to-noise (SNR) and contrast-to-noise ratios (CNR), and quantitative contour sharpness. Results The image quality parameters were higher for short-bore MR imaging. Regarding all sequences, the relative differences were 39% for the mean overall qualitative image quality, 53% for the mean SNR values, and 34–37% for the quantitative contour sharpness (P<0.0001). The CNR values were also higher for images obtained with the short-bore MR scanner. No sequence was of very poor (nondiagnostic) image quality. Scanning times were significantly longer for examinations performed on the open MR scanner (mean: 32±22 min versus 20±9 min; P<0.0001). Conclusions In this randomized controlled comparison of spinal MR imaging with an open versus a short-bore scanner, short-bore MR imaging revealed considerably higher image quality with shorter scanning times. Trial Registration ClinicalTrials.gov NCT00715806 PMID:24391767

  8. Switchable and tunable film bulk acoustic resonator fabricated using barium strontium titanate active layer and Ta{sub 2}O{sub 5}/SiO{sub 2} acoustic reflector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sbrockey, N. M., E-mail: sbrockey@structuredmaterials.com; Tompa, G. S.; Kalkur, T. S.

    2016-08-01

    A solidly mounted acoustic resonator was fabricated using a Ba{sub 0.60}Sr{sub 0.40}TiO{sub 3} (BST) film deposited by metal organic chemical vapor deposition. The device was acoustically isolated from the substrate using a Bragg reflector consisting of three pairs of Ta{sub 2}O{sub 5}/SiO{sub 2} layers deposited by chemical solution deposition. Transmission electron microscopy verified that the Bragg reflector was not affected by the high temperatures and oxidizing conditions necessary to process high quality BST films. Electrical characterization of the resonator demonstrated a quality factor (Q) of 320 and an electromechanical coupling coefficient (K{sub t}{sup 2}) of 7.0% at 11 V.

  9. Association between socioeconomic factors and sleep quality in an urban population-based sample in Germany.

    PubMed

    Anders, Markus P; Breckenkamp, Jürgen; Blettner, Maria; Schlehofer, Brigitte; Berg-Beckhoff, Gabriele

    2014-12-01

    Good sleep quality is essential for recovery. The risk factors of sleep disorders have been extensively investigated, but there is sparse information on the association of socioeconomic factors with a person's sleep quality. The aim of the present analysis is to investigate this association, taking particularly the effect of health confounders into consideration. The data were extracted from the cross-sectional QUEBEB Study. In total, the study sample consisted of 3281 participants (1817 women and 1464 men, aged 16-72 years). Here socioeconomic status (SES) was collected from the baseline survey taken in 2004. Sleep quality for the same participants was measured with in-depth personal interviews in 2006 using the Pittsburgh Sleep Quality Index, together with other relevant characteristics (e.g. anxiety, depression and health status). Multiple logistic regression analyses were performed. People living in an urban environment with a high or medium SES have a greater probability of good sleep quality (odds ratio 1.65, 95% confidence interval 1.27-2.14; odds ratio 1.40, 95% confidence interval 1.16-1.69) than persons with a low SES. Anxiety and depression, but also health status, are also associated with sleep quality and can influence in part the socioeconomic levels seen in sleep quality. SES and sleep quality are associated. However, there are important additional determinants that influence the level of association between SES and sleep quality. Several factors, such as anxiety, depression and health status, are associated with poorer sleep quality, but at the same time, these factors occur more often within lower social classes. © The Author 2013. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  10. Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting.

    PubMed

    Naffouti, Meher; David, Thomas; Benkouider, Abdelmalek; Favre, Luc; Ronda, Antoine; Berbezier, Isabelle; Bidault, Sebastien; Bonod, Nicolas; Abbarchi, Marco

    2016-02-07

    We report the fabrication of Si-based dielectric Mie resonators via a low cost process based on solid-state dewetting of ultra-thin amorphous Si on SiO2. We investigate the dewetting dynamics of a few nanometer sized layers annealed at high temperature to form submicrometric Si-particles. Morphological and structural characterization reveal the polycrystalline nature of the semiconductor matrix as well as rather irregular morphologies of the dewetted islands. Optical dark field imaging and spectroscopy measurements of the single islands reveal pronounced resonant scattering at visible frequencies. The linewidth of the low-order modes can be ∼20 nm in full width at half maximum, leading to a quality factor Q exceeding 25. These values reach the state-of-the-art ones obtained for monocrystalline Mie resonators. The simplicity of the dewetting process and its cost-effectiveness opens the route to exploiting it over large scales for applications in silicon-based photonics.

  11. Studies of the Coherent Half-Integer Resonance

    NASA Astrophysics Data System (ADS)

    Cousineau, Sarah; Holmes, Jeff; Galambos, John; Macek, Robert; Fedotov, Alexei; Wei, Jie

    2002-12-01

    We present studies of space-charge-induced beam profile broadening at high intensities in the Proton Storage Ring (PSR) at Los Alamos National Laboratory. Previous work has associated the observed broadening in the vertical direction with the coherent half integer resonance [1]. Here, we study the effect of the space charge environment on this resonance; specifically, we investigate the strength of the resonance versus beam intensity, longitudinal bunching factor, transverse lattice tune, and two different beam injection scenarios. For each case, detailed particle-in-cell simulations are combined with experimental results to elucidate the behavior and sensitivity of the beam resonance response.

  12. Plasmon resonance hybridization in self-assembled copper nanoparticle clusters: efficient and precise localization of surface plasmon resonance (LSPR) sensing based on Fano resonances.

    PubMed

    Ahmadivand, Arash; Pala, Nezih

    2015-01-01

    In this work, we have investigated the hybridization of plasmon resonance modes in completely copper (Cu)-based subwavelength nanoparticle clusters from simple symmetric dimers to complex asymmetric self-assembled structures. The quality of apparent bonding and antibonding plasmon resonance modes for all of the clusters has been studied, and we examined the spectral response of each one of the proposed configurations numerically using the finite-difference time domain (FDTD) method. The effect of the geometric sizes of nanoparticles used and substrate refractive index on the cross-sectional profiles of each of the studied structures has been calculated and drawn. We proved that Fano-like resonance can be formed in Cu-based heptamer clusters as in analogous noble metallic particles (e.g., Au and Ag) by determining the coupling strength and interference between sub-radiant and super-radiant resonance modes. Employing certain Cu nanodiscs in designing an octamer structure, we measured the quality of the Fano dip formation along the scattering diagram. Accurate tuning of the geometric sizes for the Cu-based octamer yields an opportunity to observe isotropic, deep, and narrow Fano minima along the scattering profile that are in comparable condition with the response of other plasmonic metallic substances. Immersing investigated final Cu-based octamer in various liquids with different refractive indices, we determined the sensing accuracy of the cluster based on the performance of the Fano dip. Plotting a linear diagram of plasmon energy differences over the refractive index variations as a figure of merit (FoM), which we have quantified as 13.25. With this method, the precision of the completely Cu-based octamer is verified numerically using the FDTD tool. This study paves the way toward the use of Cu as an efficient, low-cost, and complementary metal-oxide semiconductor (CMOS)-compatible plasmonic material with optical properties that are similar to analogous plasmonic

  13. Remarkable influence of slack on the vibration of a single-walled carbon nanotube resonator.

    PubMed

    Ning, Zhiyuan; Fu, Mengqi; Wu, Gongtao; Qiu, Chenguang; Shu, Jiapei; Guo, Yao; Wei, Xianlong; Gao, Song; Chen, Qing

    2016-04-28

    We for the first time quantitatively investigate experimentally the remarkable influence of slack on the vibration of a single-walled carbon nanotube (SWCNT) resonator with a changeable channel length fabricated in situ inside a scanning electron microscope, compare the experimental results with the theoretical predictions calculated from the measured geometric and mechanical parameters of the same SWCNT, and find the following novel points. We demonstrate experimentally that as the slack s is increased from about zero to 1.8%, the detected vibration transforms from single-mode to multimode vibration, and the gate-tuning ability gradually attenuates for all the vibration modes. The quadratic tuning coefficient α decreases linearly with 1/√s when the gate voltage V(g)dc is small and the nanotube resonator operates in the beam regime. The linear tuning coefficient γ decreases linearly with 1/ (4√S) when V(g)dc has an intermediate value and the nanotube resonator operates in the catenary regime. The calculated α and γ fit the experimental values of the even in-plane mode reasonably well. As the slack is increased, the quality factor Q of the resonator linearly goes up, but the increase is far less steep than that predicted by the previous theoretical study. Our results are important to understand and design resonators based on CNT and other nanomaterials.

  14. Higher-order vibrational mode frequency tuning utilizing fishbone-shaped microelectromechanical systems resonator

    NASA Astrophysics Data System (ADS)

    Suzuki, Naoya; Tanigawa, Hiroshi; Suzuki, Kenichiro

    2013-04-01

    Resonators based on microelectromechanical systems (MEMS) have received considerable attention for their applications for wireless equipment. The requirements for this application include small size, high frequency, wide bandwidth and high portability. However, few MEMS resonators with wide-frequency tuning have been reported. A fishbone-shaped resonator has a resonant frequency with a maximum response that can be changed according to the location and number of several exciting electrodes. Therefore, it can be expected to provide wide-frequency tuning. The resonator has three types of electrostatic forces that can be generated to deform a main beam. We evaluate the vibrational modes caused by each exciting electrodes by comparing simulated results with measured ones. We then successfully demonstrate the frequency tuning of the first to fifth resonant modes by using the algorithm we propose here. The resulting frequency tuning covers 178 to 1746 kHz. In addition, we investigate the suppression of the anchor loss to enhance the Q-factor. An experiment shows that tapered-shaped anchors provide a higher Q-factor than rectangular-shaped anchors. The Q-factor of the resonators supported by suspension beams is also discussed. Because the suspension beams cause complicated vibrational modes for higher frequencies, the enhancement of the Q-factor for high vibrational modes cannot be obtained here. At present, the tapered-anchor resonators are thought to be most suitable for frequency tuning applications.

  15. Quality of working life of nurses and its related factors.

    PubMed

    Moradi, Tayebeh; Maghaminejad, Farzaneh; Azizi-Fini, Ismail

    2014-06-01

    Nurses as the largest group of health care providers should enjoy a satisfactory quality of working life to be able to provide quality care to their patients. Therefore, attention should be paid to the nurses' working life. This study aimed to investigate the quality of nurses' working life in Kashans' hospitals during 2012. This cross-sectional study was conducted on 200 nurses during 2012. The data-gathering instrument consisted of two parts. The first part consisted of questions on demographic information and the second part was the Walton's quality of work life questionnaire. Data were analyzed using the SPSS software. For statistical analysis T test and one way ANOVA were used. The results of the study showed that 60% of nurses reported that they had moderate level of quality of working life while 37.1% and 2% had undesirable and good quality of working life, respectively. Nurses with associate degrees reported a better quality of working life than others. A significant relationship was found between variables such as education level, work experience, and type of hospital with quality of working life score (P < 0.05). No significant differences were observed between quality of working life score of nurses with employment status (P = 0.061), salary (P = 0.052), age, gender and marital status (P > 0.05). Nurses' quality of work life was at the moderate level. As quality of work life has an important impact on attracting and retaining employees, it is necessary to pay more attention to the nurses' quality of work life and its affecting factors.

  16. [Factors Influencing Quality of Life of Alcoholics Anonymous Members in Korea].

    PubMed

    Yoo, Jae Soon; Lee, Jongeun; Park, Woo Young

    2016-04-01

    The purpose of this study was to determine quality of life (QOL) related factors in Alcoholics Anonymous (AA) members based on PRECEDE Model. A cross sectional survey was conducted with participants (N =203) from AA meeting in 11 alcohol counsel centers all over South Korea. Data were collected using a specially designed questionnaire based on the PRECEDE model and including QOL, epidemiological factors (including depression and perceived health status), behavioral factors (continuous abstinence and physical health status and practice), predisposing factors (abstinence self-efficacy and self-esteem), reinforcing factors (social capital and family functioning), and enabling factors. Data were analyzed using t-test, one way ANOVA, Tukey HSD test and hierarchical multiple regression analysis with SPSS (ver. 21.0). Of the educational diagnostic variables, self-esteem (β=.23), family functioning (β=.12), abstinence self-efficacy (β=.12) and social capital (β=.11) were strong influential factors in AA members' QOL. In addition, epidemiological diagnostic variables such as depression (β=-.44) and perceived health status (β=.35) were the main factors in QOL. Also, physical health status and practice (β=.106), one of behavioral diagnostic variables was a beneficial factor in QOL. Hierarchical multiple regression analysis showed the determinant variables accounted for 44.0% of the variation in QOL (F=25.76, p<.001). The finding of the study can be used as a framework for planning interventions in order to promote the quality of life of AA members. It is necessary to develop nursing intervention strategies for strengthening educational and epidemiological diagnostic variables in order to improve AA members' QOL.

  17. Miniature Trace Gas Detector Based on Microfabricated Optical Resonators

    NASA Technical Reports Server (NTRS)

    Aveline, David C.; Yu, Nan; Thompson, Robert J.; Strekalov, Dmitry V.

    2013-01-01

    While a variety of techniques exist to monitor trace gases, methods relying on absorption of laser light are the most commonly used in terrestrial applications. Cavity-enhanced absorption techniques typically use high-reflectivity mirrors to form a resonant cavity, inside of which a sample gas can be analyzed. The effective absorption length is augmented by the cavity's high quality factor, or Q, because the light reflects many times between the mirrors. The sensitivity of such mirror-based sensors scales with size, generally making them somewhat bulky in volume. Also, specialized coatings for the high-reflectivity mirrors have limited bandwidth (typically just a few nanometers), and the delicate mirror surfaces can easily be degraded by dust or chemical films. As a highly sensitive and compact alternative, JPL is developing a novel trace gas sensor based on a monolithic optical resonator structure that has been modified such that a gas sample can be directly injected into the cavity. This device concept combines ultra-high Q optical whispering gallery mode resonators (WGMR) with microfabrication technology used in the semiconductor industry. For direct access to the optical mode inside a resonator, material can be precisely milled from its perimeter, creating an open gap within the WGMR. Within this open notch, the full optical mode of the resonator can be accessed. While this modification may limit the obtainable Q, calculations show that the reduction is not significant enough to outweigh its utility for trace gas detection. The notch can be milled from the high- Q crystalline WGMR with a focused ion beam (FIB) instrument with resolution much finer than an optical wavelength, thereby minimizing scattering losses and preserving the optical quality. Initial experimental demonstrations have shown that these opened cavities still support high-Q whispering gallery modes. This technology could provide ultrasensitive detection of a variety of molecular species in an

  18. Identifying and responding to factors that can affect egg quality and appearance

    USDA-ARS?s Scientific Manuscript database

    Many factors can influence egg quality and appearance. These factors will vary depending upon the housing environment, genetics, drugs, feed ingredients, or chemicals used in agriculture. As egg production methods become more varied—for example, changing from cage to free range—and as layer strains ...

  19. Factors Determining Quality of Care in Family Planning Services in Africa: A Systematic Review of Mixed Evidence

    PubMed Central

    Tessema, Gizachew Assefa; Streak Gomersall, Judith; Mahmood, Mohammad Afzal; Laurence, Caroline O.

    2016-01-01

    Background Improving use of family planning services is key to improving maternal health in Africa, and provision of quality of care in family planning services is critical to support higher levels of contraceptive uptake. The objective of this systematic review was to synthesize the available evidence on factors determining the quality of care in family planning services in Africa. Methods Quantitative and qualitative studies undertaken in Africa, published in English, in grey and commercial literature, between 1990 and 2015 were considered. Methodological quality of included studies was assessed using standardized tools. Findings from the quantitative studies were summarized using narrative and tables. Client satisfaction was used to assess the quality of care in family planning services in the quantitative component of the review. Meta-aggregation was used to synthesize the qualitative study findings. Results From 4334 records, 11 studies (eight quantitative, three qualitative) met the review eligibility criteria. The review found that quality of care was influenced by client, provider and facility factors, and structural and process aspects of the facilities. Client’s waiting time, provider competency, provision/prescription of injectable methods, maintaining privacy and confidentiality were the most commonly identified process factors. The quality of stock inventory was the most commonly identified structural factor. The quality of care was also positively associated with privately-owned facilities. The qualitative synthesis revealed additional factors including access related factors such as ‘pre-requisites to be fulfilled by the clients and cost of services, provider workload, and providers’ behaviour. Conclusion There is limited evidence on factors determining quality of care in family planning services in Africa that shows quality of care is influenced by multiple factors. The evidence suggests that lowering access barriers and avoiding unnecessary

  20. Ultra-compact channel drop filter based on photonic crystal nanobeam cavities utilizing a resonant tunneling effect.

    PubMed

    Ge, Xiaochen; Shi, Yaocheng; He, Sailing

    2014-12-15

    The design, fabrication, and characterization of a compact photonic crystal nanobeam drop filter based on the tunneling effect of the degenerate modes are presented. The degeneracy was achieved by tuning the coupling distance between the nanobeam and input/output waveguides. The tunneling effect of degenerate resonances with different symmetries has been verified experimentally. Channel drop filters with an extinction ratio larger than 10 dB and a quality factor of ∼5000 have been experimentally demonstrated.

  1. An exploration of quality of life and related factors among female flight attendants.

    PubMed

    Chung, Chi-Ti; Chung, Ue-Lin

    2009-09-01

    Quality of life is currently an important issue in the medical industry. Many studies have found that shift work affects health and life quality. However, data on quality of life related to female flight attendants are lacking. The purpose of this study was to explore quality of life and related factors such as demographic data, work status, fatigue, sleep quality, and family function as they relate to female flight attendants working on international routes. The study used a cross-sectional research design. A purposive sample of 207 participants was recruited from the Aviation Medical Center. The questionnaire distributed to participants incorporated the Multidimensional Assessment of Fatigue, the Chinese version of the Pittsburgh Sleep Quality Index, the Family Apgar Index, and the Taiwanese version of the WHOQOL-BREF. The mean score for holistic quality of life among participants was 54.49 (SD = 6.48), which ranks at a high-intermediate level. The physical health domain earned the highest mean score and the psychological domain earned the lowest. Results of hierarchical multiple regression analysis using the enter method showed that eight predictors, including religion, drug use, employment status, job stress, job passion, fatigue, sleep quality, and family function, explained 34.2% of variance in holistic quality of life. After controlling for demographics, analysis showed that three variables--fatigue, sleep quality, and family function--accounted for 21.3% of variance in holistic quality of life. Healthcare providers should consider fatigue, sleep quality, and family function factors when planning related health promotion and disease prevention programs for female flight attendants in the future.

  2. Resonant Acoustic Determination of Complex Elastic Moduli

    NASA Technical Reports Server (NTRS)

    Brown, David A.; Garrett, Steven L.

    1991-01-01

    A simple, inexpensive, yet accurate method for measuring the dynamic complex modulus of elasticity is described. Using a 'free-free' bar selectively excited in three independent vibrational modes, the shear modulus is obtained by measuring the frequency of the torsional resonant mode and the Young's modulus is determined from measurement of either the longitudinal or flexural mode. The damping properties are obtained by measuring the quality factor (Q) for each mode. The Q is inversely proportional to the loss tangent. The viscoelastic behavior of the sample can be obtained by tracking a particular resonant mode (and thus a particular modulus) using a phase locked loop (PLL) and by changing the temperature of the sample. The change in the damping properties is obtained by measuring the in-phase amplitude of the PLL which is proportional to the Q of the material. The real and imaginary parts or the complex modulus can be obtained continuously as a function of parameters such as temperature, pressure, or humidity. For homogeneous and isotropic samples only two independent moduli are needed in order to characterize the complete set of elastic constants, thus, values can be obtained for the dynamic Poisson's ratio, bulk modulus, Lame constants, etc.

  3. Optimal dielectric and cavity configurations for improving the efficiency of electron paramagnetic resonance probes

    NASA Astrophysics Data System (ADS)

    Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.

    2014-08-01

    An electron paramagnetic resonance (EPR) spectrometer’s lambda efficiency parameter (Λ) is one of the most important parameters that govern its sensitivity. It is studied for an EPR probe consisting of a dielectric resonator (DR) in a cavity (CV). Expressions for Λ are derived in terms of the probe’s individual DR and CV components, Λ1 and Λ2 respectively. Two important cases are considered. In the first, a probe consisting of a CV is improved by incorporating a DR. The sensitivity enhancement depends on the relative rather than the absolute values of the individual components. This renders the analysis general. The optimal configuration occurs when the CV and DR modes are nearly degenerate. This configuration guarantees that the probe can be easily coupled to the microwave bridge while maintaining a large Λ. It is shown that for a lossy CV with a small quality factor Q2, one chooses a DR that has the highest filling factor, η1, regardless of its Λ1 and Q1. On the other hand, if the CV has a large Q2, the optimum DR is the one which has the highest Λ1. This is regardless of its η1 and relative dielectric constant, ɛr. When the quality factors of both the CV and DR are comparable, the lambda efficiency is reduced by a factor of √{2}. Thus the signal intensity for an unsaturated sample is cut in half. The second case is the design of an optimum shield to house a DR. Besides preventing radiation leakage, it is shown that for a high loss DR, the shield can actually boost Λ above the DR value. This can also be very helpful for relatively low efficiency dielectrics as well as lossy samples, such as polar liquids.

  4. Silicon photonic resonator sensors and devices

    NASA Astrophysics Data System (ADS)

    Chrostowski, Lukas; Grist, Samantha; Flueckiger, Jonas; Shi, Wei; Wang, Xu; Ouellet, Eric; Yun, Han; Webb, Mitch; Nie, Ben; Liang, Zhen; Cheung, Karen C.; Schmidt, Shon A.; Ratner, Daniel M.; Jaeger, Nicolas A. F.

    2012-02-01

    Silicon photonic resonators, implemented using silicon-on-insulator substrates, are promising for numerous applications. The most commonly studied resonators are ring/racetrack resonators. We have fabricated these and other resonators including disk resonators, waveguide-grating resonators, ring resonator reflectors, contra-directional grating-coupler ring resonators, and racetrack-based multiplexer/demultiplexers. While numerous resonators have been demonstrated for sensing purposes, it remains unclear as to which structures provide the highest sensitivity and best limit of detection; for example, disc resonators and slot-waveguide-based ring resonators have been conjectured to provide an improved limit of detection. Here, we compare various resonators in terms of sensor metrics for label-free bio-sensing in a micro-fluidic environment. We have integrated resonator arrays with PDMS micro-fluidics for real-time detection of biomolecules in experiments such as antigen-antibody binding reaction experiments using Human Factor IX proteins. Numerous resonators are fabricated on the same wafer and experimentally compared. We identify that, while evanescent-field sensors all operate on the principle that the analyte's refractive index shifts the resonant frequency, there are important differences between implementations that lie in the relationship between the optical field overlap with the analyte and the relative contributions of the various loss mechanisms. The chips were fabricated in the context of the CMC-UBC Silicon Nanophotonics Fabrication course and workshop. This yearlong, design-based, graduate training program is offered to students from across Canada and, over the last four years, has attracted participants from nearly every Canadian university involved in photonics research. The course takes students through a full design cycle of a photonic circuit, including theory, modelling, design, and experimentation.

  5. RF-MEMS Load Sensors with Enhanced Q-factor and Sensitivity in a Suspended Architecture.

    PubMed

    Melik, Rohat; Unal, Emre; Perkgoz, Nihan Kosku; Puttlitz, Christian; Demir, Hilmi Volkan

    2011-03-01

    In this paper, we present and demonstrate RF-MEMS load sensors designed and fabricated in a suspended architecture that increases their quality-factor (Q-factor), accompanied with an increased resonance frequency shift under load. The suspended architecture is obtained by removing silicon under the sensor. We compare two sensors that consist of 195 μm × 195 μm resonators, where all of the resonator features are of equal dimensions, but one's substrate is partially removed (suspended architecture) and the other's is not (planar architecture). The single suspended device has a resonance of 15.18 GHz with 102.06 Q-factor whereas the single planar device has the resonance at 15.01 GHz and an associated Q-factor of 93.81. For the single planar device, we measured a resonance frequency shift of 430 MHz with 3920 N of applied load, while we achieved a 780 MHz frequency shift in the single suspended device. In the planar triplet configuration (with three devices placed side by side on the same chip, with the two outmost ones serving as the receiver and the transmitter), we observed a 220 MHz frequency shift with 3920 N of applied load while we obtained a 340 MHz frequency shift in the suspended triplet device with 3920 N load applied. Thus, the single planar device exhibited a sensitivity level of 0.1097 MHz/N while the single suspended device led to an improved sensitivity of 0.1990 MHz/N. Similarly, with the planar triplet device having a sensitivity of 0.0561 MHz/N, the suspended triplet device yielded an enhanced sensitivity of 0.0867 MHz/N.

  6. Factors contributing to poor sleep quality as perceived by heart transplant recipients in Taiwan.

    PubMed

    Tseng, P H; Shih, F Jong; Yang, F C; Shih, F Jin; Wang, S S

    2014-04-01

    The aims of this project were to explore the factors contributing to poor sleep quality at 1 to 3 years after heart transplantation (post-HT), and to explore economic problems and social support for HT recipients (HTRs). This study used a cross-sectional retrospective triangulation approach combining qualitative and quantitative research method designs. Quantitative data included data from the visual analog scale and the Taiwanese version of the World Health Organization Quality of Life questionnaire. Qualitative data were derived from questions that explored physiological, psychological, and economic factors contributing to poor sleep quality postprocedure for HTRs. Sixty-four subjects (81% male, 19% female) participated in this research. Their ages ranged from 20 to 70 (M = 46.88 ± 12.12) years old. Their post-HT timeframe ranged from 1 to 4.10 years; 33% received preoperative extracorporeal membrane oxygenation support. Sleeping disturbances were reported by 72.7% of subjects after HT. Poor sleeping quality at 2 to 3 years post-HT (P = .028) was a complaint, and was worse than at 1 to 2 years post-HT (P = .008). Six physiological (62.5%) and 3 psychological (37.5%) contributing factors were further identified in qualitative interviews. Physiological factors were the major causes affecting their sleep quality 2 to 3 years after HT, whereas psychological factors arose from various family roles, responsibilities, and economic-related pressures. Medical teams should find the causes that lead to sleep disturbances and use the findings to improve HTR sleep quality. When the family financial status is affected, these teams should offer assistance and suggestions for patients who are unable to work due to post-HT physical decline. Establishing and providing good family support systems or patient support groups may allow patients to obtain physical, psychological, and spiritual comfort. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Review of journal of cardiovascular magnetic resonance 2010

    PubMed Central

    2011-01-01

    There were 75 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2010, which is a 34% increase in the number of articles since 2009. The quality of the submissions continues to increase, and the editors were delighted with the recent announcement of the JCMR Impact Factor of 4.33 which showed a 90% increase since last year. Our acceptance rate is approximately 30%, but has been falling as the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. Last year for the first time, the Editors summarized the papers for the readership into broad areas of interest or theme, which we felt would be useful to practitioners of cardiovascular magnetic resonance (CMR) so that you could review areas of interest from the previous year in a single article in relation to each other and other recent JCMR articles [1]. This experiment proved very popular with a very high rate of downloading, and therefore we intend to continue this review annually. The papers are presented in themes and comparison is drawn with previously published JCMR papers to identify the continuity of thought and publication in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality manuscripts to JCMR for publication. PMID:21914185

  8. Piloting Vertical Flight Aircraft: A Conference on Flying Qualities and Human Factors

    NASA Technical Reports Server (NTRS)

    Blanken, Christopher L. (Editor); Whalley, Matthew S. (Editor)

    1993-01-01

    This document contains papers from a specialists' meeting entitled 'Piloting Vertical Flight Aircraft: A Conference on Flying Qualities and Human Factors.' Vertical flight aircraft, including helicopters and a variety of Vertical Takeoff and Landing (VTOL) concepts, place unique requirements on human perception, control, and performance for the conduct of their design missions. The intent of this conference was to examine, for these vehicles, advances in: (1) design of flight control systems for ADS-33C standards; (2) assessment of human factors influences of cockpit displays and operational procedures; (3) development of VTOL design and operational criteria; and (4) development of theoretical methods or models for predicting pilot/vehicle performance and mission suitability. A secondary goal of the conference was to provide an initial venue for enhanced interaction between human factors and handling qualities specialists.

  9. Factors that Impact Quality of E-Teaching/Learning Technologies in Higher Education

    ERIC Educational Resources Information Center

    Daukilas, Sigitas; Kaciniene, Irma; Vaisnoriene, Daiva; Vascila, Vytautas

    2008-01-01

    The article analyzes and assesses factors that have impact upon the quality of eTeaching/learning technologies in higher education; it is on their basis that the concept of eTeaching/learning quality is denied. Research data about the students' motives in choosing various teaching/learning technologies for the development of their competence are…

  10. High quality factor GaAs microcavity with buried bullseye defects

    NASA Astrophysics Data System (ADS)

    Winkler, K.; Gregersen, N.; Häyrynen, T.; Bradel, B.; Schade, A.; Emmerling, M.; Kamp, M.; Höfling, S.; Schneider, C.

    2018-05-01

    The development of high quality factor solid-state microcavities with low mode volumes has paved the way towards on-chip cavity quantum electrodynamics experiments and the development of high-performance nanophotonic devices. Here, we report on the implementation of a new kind of solid-state vertical microcavity, which allows for confinement of the electromagnetic field in the lateral direction without deep etching. The confinement originates from a local elongation of the cavity layer imprinted in a shallow etch and epitaxial overgrowth technique. We show that it is possible to improve the quality factor of such microcavities by a specific in-plane bullseye geometry consisting of a set of concentric rings with subwavelength dimensions. This design results in a smooth effective lateral photonic potential and therefore in a reduction of lateral scattering losses, which makes it highly appealing for experiments in the framework of exciton-polariton physics demanding tight spatial confinement.

  11. Temporal and spatial distribution characteristics and influencing factors of air quality index in Xuchang

    NASA Astrophysics Data System (ADS)

    Wang, Zhenghua; Tian, Zhihui

    2018-01-01

    In recent years, the problem of air pollution becomes more and more serious. Based on the geographic and seasonal climatic characteristics of Xuchang City, this paper studies the temporal and spatial distribution characteristics of air quality index. The results show that: from the time point of view, air quality index shows seasonal difference. Air quality index is highest in winter and is lowest in summer. From the space point of view, there are differences between the north and the south to a certain extent. Changge City, Yuzhou city and central Xuchang county is higher than the southeast of Xiangcheng county and Yanling county. The spatial and temporal variation characteristics of air quality index in Xuchang are influenced by natural factors and human activities, and the economic development and population are the important factors affecting the urban air quality.

  12. Renal magnetic resonance angiography at 3.0 Tesla using a 32-element phased-array coil system and parallel imaging in 2 directions.

    PubMed

    Fenchel, Michael; Nael, Kambiz; Deshpande, Vibhas S; Finn, J Paul; Kramer, Ulrich; Miller, Stephan; Ruehm, Stefan; Laub, Gerhard

    2006-09-01

    The aim of the present study was to assess the feasibility of renal magnetic resonance angiography at 3.0 T using a phased-array coil system with 32-coil elements. Specifically, high parallel imaging factors were used for an increased spatial resolution and anatomic coverage of the whole abdomen. Signal-to-noise values and the g-factor distribution of the 32 element coil were examined in phantom studies for the magnetic resonance angiography (MRA) sequence. Eleven volunteers (6 men, median age of 30.0 years) were examined on a 3.0-T MR scanner (Magnetom Trio, Siemens Medical Solutions, Malvern, PA) using a 32-element phased-array coil (prototype from In vivo Corp.). Contrast-enhanced 3D-MRA (TR 2.95 milliseconds, TE 1.12 milliseconds, flip angle 25-30 degrees , bandwidth 650 Hz/pixel) was acquired with integrated generalized autocalibrating partially parallel acquisition (GRAPPA), in both phase- and slice-encoding direction. Images were assessed by 2 independent observers with regard to image quality, noise and presence of artifacts. Signal-to-noise levels of 22.2 +/- 22.0 and 57.9 +/- 49.0 were measured with (GRAPPAx6) and without parallel-imaging, respectively. The mean g-factor of the 32-element coil for GRAPPA with an acceleration of 3 and 2 in the phase-encoding and slice-encoding direction, respectively, was 1.61. High image quality was found in 9 of 11 volunteers (2.6 +/- 0.8) with good overall interobserver agreement (k = 0.87). Relatively low image quality with higher noise levels were encountered in 2 volunteers. MRA at 3.0 T using a 32-element phased-array coil is feasible in healthy volunteers. High diagnostic image quality and extended anatomic coverage could be achieved with application of high parallel imaging factors.

  13. Factors influencing the perceived quality of clinical supervision of occupational therapists in a large Australian state.

    PubMed

    Martin, Priya; Kumar, Saravana; Lizarondo, Lucylynn; Tyack, Zephanie

    2016-10-01

    Clinical supervision is important for effective health service delivery, professional development and practice. Despite its importance there is a lack of evidence regarding the factors that improve its quality. This study aimed to investigate the factors that influence the quality of clinical supervision of occupational therapists employed in a large public sector health service covering mental health, paediatrics, adult physical and other practice areas. A mixed method, sequential explanatory study design was used consisting of two phases. This article reports the quantitative phase (Phase One) which involved administration of the Manchester Clinical Supervision Scale (MCSS-26) to 207 occupational therapists. Frequency of supervision sessions, choice of supervisor and the type of supervision were found to be the predictor variables with a positive and significant influence on the quality of clinical supervision. Factors such as age, length of supervision and the area of practice were found to be the predictor variables with a negative and significant influence on the quality of clinical supervision. Factors that influence the perceived quality of clinical supervision among occupational therapists have been identified. High quality clinical supervision is an important component of clinical governance and has been shown to be beneficial to practitioners, patients and the organisation. Information on factors that make clinical supervision effective identified in this study can be added to existing supervision training and practices to improve the quality of clinical supervision. © 2016 Occupational Therapy Australia.

  14. Factors influencing nurse-assessed quality nursing care: A cross-sectional study in hospitals.

    PubMed

    Liu, Ying; Aungsuroch, Yupin

    2018-04-01

    To propose a hypothesized theoretical model and apply it to examine the structural relationships among work environment, patient-to-nurse ratio, job satisfaction, burnout, intention to leave and quality nursing care. Improving quality nursing care is a first consideration in nursing management globally. A better understanding of factors influencing quality nursing care can help hospital administrators implement effective programmes to improve quality of services. Although certain bivariate correlations have been found between selected factors and quality nursing care in different study models, no studies have examined the relationships among work environment, patient-to-nurse ratio, job satisfaction, burnout, intention to leave and quality nursing care in a more comprehensive theoretical model. A cross-sectional survey. The questionnaires were collected from 510 Chinese nurses in four Chinese tertiary hospitals in January 2015. The validity and internal consistency reliability of research instruments were evaluated. Structural equation modelling was used to test a theoretical model. The findings revealed that the data supported the theoretical model. Work environment had a large total effect size on quality nursing care. Burnout largely and directly influenced quality nursing care, which was followed by work environment and patient-to-nurse ratio. Job satisfaction indirectly affected quality nursing care through burnout. This study shows how work environment past burnout and job satisfaction influences quality nursing care. Apart from nurses' work conditions of work environment and patient-to-nurse ratio, hospital administrators should pay more attention to nurse outcomes of job satisfaction and burnout when designing intervention programmes to improve quality nursing care. © 2017 John Wiley & Sons Ltd.

  15. Transversely coupled Fabry-Perot resonators with Bragg grating reflectors.

    PubMed

    Saber, Md Ghulam; Wang, Yun; El-Fiky, Eslam; Patel, David; Shahriar, Kh Arif; Alam, Md Samiul; Jacques, Maxime; Xing, Zhenping; Xu, Luhua; Abadía, Nicolás; Plant, David V

    2018-01-01

    We design and demonstrate Fabry-Perot resonators with transverse coupling using Bragg gratings as reflectors on the silicon-on-insulator (SOI) platform. The effects of tailoring the cavity length and the coupling coefficient of the directional coupler on the spectral characteristics of the device are studied. The fabricated resonators achieved an extinction ratio (ER) of 37.28 dB and a Q-factor of 3356 with an effective cavity length of 110 μm, and an ER of 8.69 dB and a Q-factor of 23642 with a 943 μm effective cavity length. The resonator structure presented here has the highest reported ER on SOI and provides additional degrees of freedom compared to an all-pass ring resonator to tune the spectral characteristics.

  16. Factors Affecting Quality of Laboratory Services in Public and Private Health Facilities in Addis Ababa, Ethiopia.

    PubMed

    Mesfin, Eyob Abera; Taye, Binyam; Belay, Getachew; Ashenafi, Aytenew; Girma, Veronica

    2017-10-01

    Quality laboratory service is an essential component of health care system but in Sub-Saharan Africa such as Ethiopia, laboratories quality system remains weak due to several factors and it needs more attention to strengthen its capacity and quality system. A cross sectional study was conducted using a questionnaire to assess factors affecting the quality of laboratory service at private and public health institutions in Addis Ababa. A total of 213 laboratory professionals participated in the study and 131 (61.5%) participants had bachelor degree. Majority, 133 (62.4%), of the professionals did not attend any work related training. Seventy five (35.2%) respondents believed that their laboratories did not provide quality laboratory services and the major reported factors affecting provision of quality services were shortage of resources (64.3%), poor management support (57.3%), poor equipment quality (53.4%), high workload (41.1%), lack of equipment calibration (38.3%) and lack of knowledge (23.3%). Moreover logistic regression analysis showed that provision of quality laboratory service was significantly associated with result verification (AOR=9.21, 95% CI=2.26, 37.48), internal quality control (AOR= 6.11, 95% CI=2.11, 17.70), turnaround time (AOR=5.11, 95% CI=1.94, 13.46), shortage of equipment (AOR=7.76, 95% CI=2.55, 23.66), communication with clinicians (AOR=3.24, 95% CI=1.25, 8.41) and lack of job description (AOR=3.67, 95% CI=1.319, 10.22). In conclusion, the major factors that affecting the quality of laboratory service were associated with poor human resource management, poor resources provision, poor management commitment, ineffective communication system and lack of well-established quality management system.

  17. High-quality electromagnetically-induced absorption resonances in a buffer-gas-filled vapour cell

    NASA Astrophysics Data System (ADS)

    Brazhnikov, D. V.; Ignatovich, S. M.; Vishnyakov, V. I.; Skvortsov, M. N.; Andreeva, Ch; Entin, V. M.; Ryabtsev, I. I.

    2018-02-01

    Magneto-optical subnatural-linewidth resonances of electromagnetically-induced absorption (EIA) in an alkali vapour cell have been experimentally studied. The observation configuration includes using two counter-propagating pumps and probe light waves with mutually orthogonal linear polarizations, exciting an open optical transition in the 87Rb D 1 line in the presence of argon buffer gas. The EIA signals registered in a probe-wave transmission reach an unprecedented contrast of about 135% with respect to the wide ‘Doppler’ absorption pedestal and 29% with respect to the level of background transmission signal. These contrast values correspond to a relatively small resonance full width at half maximum of about 7.2 mG (5.2 kHz). The width of the narrowest EIA resonance observed is about 2.1 mG (1.5 kHz). To our knowledge, such a large relative contrast at the kHz-width is the record result for EIA resonances. In general, the work has experimentally proved that the magneto-optical scheme used has very good prospects for various quantum technologies (quantum sensors of weak magnetic fields, optical switches and other photonic elements).

  18. Application of factor analysis to the water quality in reservoirs

    NASA Astrophysics Data System (ADS)

    Silva, Eliana Costa e.; Lopes, Isabel Cristina; Correia, Aldina; Gonçalves, A. Manuela

    2017-06-01

    In this work we present a Factor Analysis of chemical and environmental variables of the water column and hydro-morphological features of several Portuguese reservoirs. The objective is to reduce the initial number of variables, keeping their common characteristics. Using the Factor Analysis, the environmental variables measured in the epilimnion and in the hypolimnion, together with the hydromorphological characteristics of the dams were reduced from 63 variables to only 13 factors, which explained a total of 83.348% of the variance in the original data. After performing rotation using the Varimax method, the relations between the factors and the original variables got clearer and more explainable, which provided a Factor Analysis model for these environmental variables using 13 varifactors: Water quality and distance to the source, Hypolimnion chemical composition, Sulfite-reducing bacteria and nutrients, Coliforms and faecal streptococci, Reservoir depth, Temperature, Location, among other factors.

  19. Ferromagnetic linewidth measurements employing electrodynamic model of the magnetic plasmon resonance

    NASA Astrophysics Data System (ADS)

    Krupka, Jerzy; Aleshkevych, Pavlo; Salski, Bartlomiej; Kopyt, Pawel

    2018-02-01

    The mode of uniform precession, or Kittel mode, in a magnetized ferromagnetic sphere, has recently been proven to be the magnetic plasmon resonance. In this paper we show how to apply the electrodynamic model of the magnetic plasmon resonance for accurate measurements of the ferromagnetic resonance linewidth ΔH. Two measurement methods are presented. The first one employs Q-factor measurements of the magnetic plasmon resonance coupled to the resonance of an empty metallic cavity. Such coupled modes are known as magnon-polariton modes, i.e. hybridized modes between the collective spin excitation and the cavity excitation. The second one employs direct Q-factor measurements of the magnetic plasmon resonance in a filter setup with two orthogonal semi-loops used for coupling. Q-factor measurements are performed employing a vector network analyser. The methods presented in this paper allow one to extend the measurement range of the ferromagnetic resonance linewidth ΔH well beyond the limits of the commonly used measurement standards in terms of the size of the samples and the lowest measurable linewidths. Samples that can be measured with the newly proposed methods may have larger size as compared to the size of samples that were used in the standard methods restricted by the limits of perturbation theory.

  20. Fast and high resolution thermal detector based on an aluminum nitride piezoelectric microelectromechanical resonator with an integrated suspended heat absorbing element

    NASA Astrophysics Data System (ADS)

    Hui, Yu; Rinaldi, Matteo

    2013-03-01

    This letter presents a miniaturized, fast, and high resolution thermal detector, in which a heat absorbing element and a temperature sensitive microelectromechanical system (MEMS) resonator are perfectly overlapped but separated by a microscale air gap. This unique design guarantees efficient and fast (˜10s μs) heat transfer from the absorbing element to the temperature sensitive device and enables high resolution thermal power detection (˜nW), thanks to the low noise performance of the high quality factor (Q = 2305) MEMS resonant thermal detector. A device prototype was fabricated, and its detection capabilities were experimentally characterized. A thermal power as low as 150 nW was experimentally measured, and a noise equivalent power of 6.5 nW/Hz1/2 was extracted. A device thermal time constant of only 350 μs was measured (smallest ever reported for MEMS resonant thermal detectors), indicating the great potential of the proposed technology for the implementation of ultra-fast and high resolution un-cooled resonant thermal detectors.

  1. Sensitivities Kernels of Seismic Traveltimes and Amplitudes for Quality Factor and Boundary Topography

    NASA Astrophysics Data System (ADS)

    Hsieh, M.; Zhao, L.; Ma, K.

    2010-12-01

    Finite-frequency approach enables seismic tomography to fully utilize the spatial and temporal distributions of the seismic wavefield to improve resolution. In achieving this goal, one of the most important tasks is to compute efficiently and accurately the (Fréchet) sensitivity kernels of finite-frequency seismic observables such as traveltime and amplitude to the perturbations of model parameters. In scattering-integral approach, the Fréchet kernels are expressed in terms of the strain Green tensors (SGTs), and a pre-established SGT database is necessary to achieve practical efficiency for a three-dimensional reference model in which the SGTs must be calculated numerically. Methods for computing Fréchet kernels for seismic velocities have long been established. In this study, we develop algorithms based on the finite-difference method for calculating Fréchet kernels for the quality factor Qμ and seismic boundary topography. Kernels for the quality factor can be obtained in a way similar to those for seismic velocities with the help of the Hilbert transform. The effects of seismic velocities and quality factor on either traveltime or amplitude are coupled. Kernels for boundary topography involve spatial gradient of the SGTs and they also exhibit interesting finite-frequency characteristics. Examples of quality factor and boundary topography kernels will be shown for a realistic model for the Taiwan region with three-dimensional velocity variation as well as surface and Moho discontinuity topography.

  2. Off-resonance NOVEL

    NASA Astrophysics Data System (ADS)

    Jain, Sheetal K.; Mathies, Guinevere; Griffin, Robert G.

    2017-10-01

    Dynamic nuclear polarization (DNP) is theoretically able to enhance the signal in nuclear magnetic resonance (NMR) experiments by a factor γe/γn, where γ 's are the gyromagnetic ratios of an electron and a nuclear spin. However, DNP enhancements currently achieved in high-field, high-resolution biomolecular magic-angle spinning NMR are well below this limit because the continuous-wave DNP mechanisms employed in these experiments scale as ω0-n where n ˜ 1-2. In pulsed DNP methods, such as nuclear orientation via electron spin-locking (NOVEL), the DNP efficiency is independent of the strength of the main magnetic field. Hence, these methods represent a viable alternative approach for enhancing nuclear signals. At 0.35 T, the NOVEL scheme was demonstrated to be efficient in samples doped with stable radicals, generating 1H NMR enhancements of ˜430. However, an impediment in the implementation of NOVEL at high fields is the requirement of sufficient microwave power to fulfill the on-resonance matching condition, ω0I = ω1S, where ω0I and ω1S are the nuclear Larmor and electron Rabi frequencies, respectively. Here, we exploit a generalized matching condition, which states that the effective Rabi frequency, ω1S e f f, matches ω0I. By using this generalized off-resonance matching condition, we generate 1H NMR signal enhancement factors of 266 (˜70% of the on-resonance NOVEL enhancement) with ω1S/2π = 5 MHz. We investigate experimentally the conditions for optimal transfer of polarization from electrons to 1H both for the NOVEL mechanism and the solid-effect mechanism and provide a unified theoretical description for these two historically distinct forms of DNP.

  3. Photon hopping and nanowire based hybrid plasmonic waveguide and ring-resonator

    PubMed Central

    Gu, Zhiyuan; Liu, Shuai; Sun, Shang; Wang, Kaiyang; Lyu, Quan; Xiao, Shumin; Song, Qinghai

    2015-01-01

    Nanowire based hybrid plasmonic structure plays an important role in achieving nanodevices, especially for the wide band-gap materials. However, the conventional schemes of nanowire based devices such as nano-resonators are usually isolated from the integrated nano-network and have extremely low quality (Q) factors. Here we demonstrate the transmission of waves across a gap in hybrid plasmonic waveguide, which is termed as “photon hopping”. Based on the photon hopping, we show that the emissions from nanodevices can be efficiently collected and conducted by additional nanowires. The collection ratio can be higher than 50% for a wide range of separation distance, transverse shift, and tilt. Moreover, we have also explored the possibility of improving performances of individual devices by nano-manipulating the nanowire to a pseudo-ring. Our calculations show that both Q factor and Purcell factor have been increased by more than an order of magnitude. We believe that our researches will be essential to forming nanolasers and the following nano-networks.

  4. Demonstration of an ultrasensitive refractive-index plasmonic sensor by enabling its quadrupole resonance in phase interrogation.

    PubMed

    Lee, Hsin-Cheng; Li, Chung-Tien; Chen, How-Foo; Yen, Ta-Jen

    2015-11-15

    We present an ultrasensitive plasmonic sensing system by introducing a nanostructured X-shaped plasmonic sensor (XPS) and measuring its localized optical properties in phase interrogation. Our tailored XPS exhibits two major resonant modes of a low-order dipole and a high-order quadrupole, between which the quadrupole resonance allows an ultrahigh sensitivity, due to its higher quality factor. Furthermore, we design an in-house common-path phase-interrogation system, in contrast to conventional wavelength-interrogation methods, to achieve greater sensing capability. The experimental measurement shows that the sensing resolution of the XPS reaches 1.15×10(-6) RIU, not only two orders of magnitude greater than the result of the controlled extinction measurement (i.e., 9.90×10(-5) RIU), but also superior than current reported plasmonic sensors.

  5. Strain coupling between nitrogen vacancy centers and the mechanical motion of a diamond optomechanical crystal resonator

    NASA Astrophysics Data System (ADS)

    Cady, J. V.; Lee, K. W.; Ovartchaiyapong, P.; Bleszynski Jayich, A. C.

    Several experiments have recently demonstrated coupling between nitrogen vacancy (NV) centers in diamond and mechanical resonators via crystal strain. In the strong coupling regime, such devices could realize applications critical to emerging quantum technologies, including phonon-mediated spin-spin interactions and mechanical cooling with the NV center1. An outstanding challenge for these devices is generating higher strain coupling in high frequency devices while maintaining the excellent coherence properties of the NV center and high mechanical quality factors. As a step toward these objectives, we demonstrate single-crystal diamond optomechanical crystal resonators with embedded NV centers. These devices host highly-confined GHz-scale mechanical modes that are isolated from mechanical clamping losses and generate strain profiles that allow for large strain coupling to NV centers far from noise-inducing surfaces.

  6. A Latin-cross-shaped integrated resonant cantilever with second torsion-mode resonance for ultra-resoluble bio-mass sensing

    NASA Astrophysics Data System (ADS)

    Xia, Xiaoyuan; Zhang, Zhixiang; Li, Xinxin

    2008-03-01

    Second torsion-mode resonance is proposed for microcantilever biosensors for ultra-high mass-weighing sensitivity and resolution. By increasing both the resonant frequency and Q-factor, the higher mode torsional resonance is favorable for improving the mass-sensing performance. For the first time, a Latin-cross-shaped second-mode resonant cantilever is constructed and optimally designed for both signal-readout and resonance-exciting elements. The cantilever sensor is fabricated by using silicon micromachining techniques. The transverse piezoresistive sensing element and the specific-shaped resonance-exciting loop are successfully integrated in the cantilever. Alpha-fetoprotein (AFP) antibody-antigen specific binding is implemented for the sensing experiment. The proposed cantilever sensor is designed with significantly superior sensitivity to the previously reported first torsion-mode one. After analysis with an Allan variance algorithm, which can be easily embedded in the sensing system, the Latin-cross-shaped second torsion-mode resonant cantilever is evaluated with ultra-high mass resolution. Therefore, the high-performance integrated micro-sensor is promising for on-the-spot bio-molecule detection.

  7. Panels with low-Q-factor resonators with theoretically infinite sound-proofing ability at a single frequency

    NASA Astrophysics Data System (ADS)

    Lazarev, L. A.

    2015-07-01

    An infinite panel with two types of resonators regularly installed on it is theoretically considered. Each resonator is an air-filled cavity hermetically closed by a plate, which executes piston vibrations. The plate and air inside the cavity play the roles of mass and elasticity, respectively. Every other resonator is reversed. At a certain ratio between the parameters of the resonators at the tuning frequency of the entire system, the acoustic-pressure force that directly affects the panel can be fully compensated by the action forces of the resonators. In this case, the sound-proofing ability (transmission loss) tends to infinity. The presented calculations show that a complete transmission-loss effect can be achieved even with low- Q resonators.

  8. Factors Associated with Quality of Life among Hemodialysis Patients in Malaysia

    PubMed Central

    Md. Yusop, Nor Baizura; Yoke Mun, Chan; Shariff, Zalilah Mohd; Beng Huat, Choo

    2013-01-01

    Although hemodialysis treatment has greatly increased the life expectancy of end stage renal disease patients, low quality of life among hemodialysis patients is frequently reported. This cross-sectional study aimed to determine the relationship between medical history, hemodialysis treatment and nutritional status with the mental and physical components of quality of life in hemodialysis patients. Respondents (n=90) were recruited from Hospital Kuala Lumpur and dialysis centres of the National Kidney Foundation of Malaysia. Data obtained included socio-demography, medical history, hemodialysis treatment and nutritional status. Mental and physical quality of life were measured using the Mental Composite Summary (MCS) and Physical Composite Summary (PCS) of the Short-Form Health Survey 36-items, a generic core of the Kidney Disease Quality of Life Short Form. Two summary measures and total SF-36 was scored as 0–100, with a higher score indicating better quality of life. Approximately 26 (30%) of respondents achieved the body mass index (24 kg/m2) and more than 80% (n=77) achieved serum albumin level (>35.0 mg/dL) recommended for hemodialysis patients. The majority of respondents did not meet the energy (n=72, 80%) and protein (n=68,75%) recommendations. The total score of SF-36 was 54.1±19.2, while the score for the mental and physical components were 45.0±8.6 and 39.6±8.6, respectively. Factors associated with a higher MCS score were absence of diabetes mellitus (p=0.000) and lower serum calcium (p=0.004), while higher blood flow (p=0.000), higher serum creatinine (p=0.000) and lower protein intake (p=0.006) were associated with a higher PCS score. To improve the overall quality of life of hemodialysis patients, a multidisciplinary intervention that includes medical, dietetic and psychosocial strategies that address factors associated with mental and physical quality of life are warranted to reduce further health complications and to improve quality of life

  9. Coupling two spin qubits with a high-impedance resonator

    NASA Astrophysics Data System (ADS)

    Harvey, S. P.; Bøttcher, C. G. L.; Orona, L. A.; Bartlett, S. D.; Doherty, A. C.; Yacoby, A.

    2018-06-01

    Fast, high-fidelity single and two-qubit gates are essential to building a viable quantum information processor, but achieving both in the same system has proved challenging for spin qubits. We propose and analyze an approach to perform a long-distance two-qubit controlled phase (CPHASE) gate between two singlet-triplet qubits using an electromagnetic resonator to mediate their interaction. The qubits couple longitudinally to the resonator, and by driving the qubits near the resonator's frequency, they can be made to acquire a state-dependent geometric phase that leads to a CPHASE gate independent of the initial state of the resonator. Using high impedance resonators enables gate times of order 10 ns while maintaining long coherence times. Simulations show average gate fidelities of over 96% using currently achievable experimental parameters and over 99% using state-of-the-art resonator technology. After optimizing the gate fidelity in terms of parameters tuneable in situ, we find it takes a simple power-law form in terms of the resonator's impedance and quality and the qubits' noise bath.

  10. On the potential impact of the newly proposed quality factors on space radiation protection

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.; Cucinotta, Francis A.

    1987-01-01

    The recently proposed changes in the defined quality factor hold great potential for easing some of the protection requirements from electrons and protons in the near-Earth environment. At the same time, the high Linear Energy Transfer (LET) components play an even more important role which must be further evaluated. Several recommendations are made which need to be addressed before these new quality factors can be implemented into space radiation potection practice.

  11. Ultralow-threshold Raman lasing with CaF2 resonators.

    PubMed

    Grudinin, Ivan S; Maleki, Lute

    2007-01-15

    We demonstrate efficient Raman lasing with CaF2 whispering-gallery-mode resonators. Continuous-wave emission threshold is shown to be possible below 1 microW with a 5mm cavity, which is to our knowledge orders of magnitude lower than in any other Raman source. Low-threshold lasing is made possible by the ultrahigh optical quality factor of the cavity, of the order of Q=5x10(10). Stokes components of up to the fifth order were observed at a pump power of 160 microW, and up to the eighth order at 1 mW. A lasing threshold of 15 microW was also observed in a 100 microm CaF2 microcavity. Potential applications are discussed.

  12. Factors Affecting the Quality of Tooth Enamel for In Vivo EPR-Based Retrospective Biodosimetry

    PubMed Central

    Desmet, Céline M.; Levêque, Philippe; Gallez, Bernard

    2016-01-01

    In vivo electron paramagnetic resonance biodosimetry on tooth enamel is likely to be an important technology for triage of overexposed individuals after a major radiological incident. The accuracy and robustness of the technique relies on various properties of the enamel such as the geometry of the tooth, the presence of restorations, whitening treatments or exposition to sunlight. Those factors are reviewed, and their influence on dosimetry specifically for triage purposes is discussed. PMID:27473693

  13. Quality-of-life factors in adolescent inflammatory bowel disease.

    PubMed

    MacPhee, M; Hoffenberg, E J; Feranchak, A

    1998-02-01

    Little is known about the specific psychosocial factors that influence quality of life in adolescents with newly diagnosed inflammatory bowel disease (IBD). We adapted a model by Garrett and Drossman to assess adolescent adjustment to recent-onset IBD. Thirty adolescent-parent pairs completed a set of standardized questionnaires. The inclusion criteria were adolescents 12-18 years of age with Crohn's disease or ulcerative colitis of < 5 years' duration. Adolescents' health-related quality-of-life scores significantly correlated with satisfaction and degree of closeness with their social support members, such as parents. An unexpected finding was that the adolescents included more extended family than peers in their social support networks. Also of note was that parental coping styles rather than adolescent coping styles significantly correlated with adolescents' quality-of-life health scores. Severity of illness did not correlate with adolescent quality-of-life health scores. There was significant agreement between adolescent and parental quality-of-life health scores and stressful event ratings. Adolescents with recent-onset IBD rely more on family members than their peers for emotional support, and they depend more on their parents' coping skills than their own. These findings may indicate lags in normal adolescent development. Adolescents and parents do communicate and share concerns with each other. Support programs for adolescents with IBD should reinforce existing coping skills and parent-adolescent communication while promoting normative development.

  14. A proposed U.S./China theoretical/experimental collaborative effort on baryon resonance extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P.L. Cole

    2009-12-01

    In this paper we discuss the reasons for our work towards establishing a new collaboration between Jefferson Lab (JLab) and the Institute of High Energy Physics (IHEP) in Beijing. We seek to combine experimentalists and theorists into a dedicated group focused on better understanding the current and future data from JLab and from the Beijing Electron Positron Collider (BEPC). Recent JLab results on the extraction of single- and double-polarization observables in both the 1{pi}- and 2{pi}-channel show their high sensitivity to small production amplitudes and therefore their importance for the extraction of resonance parameters. The Beijing Electron Spectrometer (BES) atmore » the BEPC has collected high statistics data on J/{Psi} production. Its decay into baryon-antibaryon channels offers a unique and complementary way of probing nucleon resonances. The CEBAF Large Acceptance Spectrometer, CLAS, has access to N* form factors at high Q{sup 2}, which is advantageous for the study of dynamical properties of nucleon resonances, while the low-background BES results will be able to provide guidance for the search for less-dominant excited states at JLab. Moreover, with the recently approved experimental proposal Nucleon Resonance Studies with CLAS12 and the high-quality data streaming from BES-III and CLAS, the time has come for forging a new Trans-Pacific collaboration of theorists and experimentalists on NSTAR physics.« less

  15. High-resolution T2-weighted abdominal magnetic resonance imaging using respiratory triggering: impact of butylscopolamine on image quality.

    PubMed

    Wagner, M; Klessen, C; Rief, M; Elgeti, T; Taupitz, M; Hamm, B; Asbach, P

    2008-05-01

    Respiratory triggering allows the acquisition of high-resolution magnetic resonance (MR) images of the upper abdomen. However, the depiction of organs close to the gastrointestinal tract can be considerably impaired by ghosting artifacts and blurring caused by bowel peristalsis. To evaluate the effect of gastrointestinal motion suppression by intramuscular butylscopolamine administration on the image quality of a respiratory-triggered T2-weighted turbo spin-echo (T2w TSE) sequence of the upper abdomen. Images of 46 patients were retrospectively analyzed. Twenty-four patients had received intramuscular injection of 40 mg butylscopolamine immediately before MR imaging. Fourteen of the 24 patients in the butylscopolamine group underwent repeat imaging after a mean of 29 min. Quantitative analysis of the ghosting artifacts was done by measuring signal intensities in regions of interest placed in air anterior to the patient. In addition, image quality was assessed qualitatively by two radiologists by consensus. Spasmolytic medication with butylscopolamine reduced ghosting artifacts and significantly improved image quality of the respiratory-triggered T2w TSE sequence. The most pronounced effect of butylscopolamine administration on image quality was found for the pancreas and the left hepatic lobe. The rate of examinations with excellent or good depiction of the pancreas and the left hepatic lobe in the group without premedication and in the butylscopolamine group was 55% vs. 96% (pancreatic head), 35% vs. 88% (pancreatic body), 43% vs. 96% (pancreatic tail), and 45% vs. 83% (left hepatic lobe), respectively. Regarding the duration of the effect of intramuscular butylscopolamine, repeat imaging after a mean of 29 min did not result in a significant deterioration of image quality. Intramuscular butylscopolamine administration significantly improves image quality of respiratory-triggered T2-weighted abdominal MR imaging by persistent reduction of peristaltic artifacts. MR

  16. Factors Affecting Quality of Laboratory Services in Public and Private Health Facilities in Addis Ababa, Ethiopia

    PubMed Central

    Taye, Binyam; Belay, Getachew; Ashenafi, Aytenew; Girma, Veronica

    2017-01-01

    Background Quality laboratory service is an essential component of health care system but in Sub-Saharan Africa such as Ethiopia, laboratories quality system remains weak due to several factors and it needs more attention to strengthen its capacity and quality system. Methodology A cross sectional study was conducted using a questionnaire to assess factors affecting the quality of laboratory service at private and public health institutions in Addis Ababa. Results A total of 213 laboratory professionals participated in the study and 131 (61.5%) participants had bachelor degree. Majority, 133 (62.4%), of the professionals did not attend any work related training. Seventy five (35.2%) respondents believed that their laboratories did not provide quality laboratory services and the major reported factors affecting provision of quality services were shortage of resources (64.3%), poor management support (57.3%), poor equipment quality (53.4%), high workload (41.1%), lack of equipment calibration (38.3%) and lack of knowledge (23.3%). Moreover logistic regression analysis showed that provision of quality laboratory service was significantly associated with result verification (AOR=9.21, 95% CI=2.26, 37.48), internal quality control (AOR= 6.11, 95% CI=2.11, 17.70), turnaround time (AOR=5.11, 95% CI=1.94, 13.46), shortage of equipment (AOR=7.76, 95% CI=2.55, 23.66), communication with clinicians (AOR=3.24, 95% CI=1.25, 8.41) and lack of job description (AOR=3.67, 95% CI=1.319, 10.22). Conclusion In conclusion, the major factors that affecting the quality of laboratory service were associated with poor human resource management, poor resources provision, poor management commitment, ineffective communication system and lack of well-established quality management system. PMID:29075171

  17. Magnetic resonance for laryngeal cancer.

    PubMed

    Maroldi, Roberto; Ravanelli, Marco; Farina, Davide

    2014-04-01

    This review summarizes the most recent experiences on the integration of magnetic resonance in assessing the local extent of laryngeal cancer and detecting submucosal recurrences. Advances in magnetic resonance have been characterized by the development of technical solutions that shorten the acquisition time, thereby reducing motion artifacts, and increase the spatial resolution. Phased-array surface coils, directly applied to the neck, enable the use of parallel-imaging techniques, which greatly reduce the acquisition time, and amplify the signal intensity, being closer to the larynx. One of the most important drawbacks of this technique is the small field-of-view, restricting the imaged area to the larynx. Furthermore, diffusion-weighted imaging (DWI) has increased the set of magnetic resonance sequences. Differently from computed tomography (CT), which has only two variables (precontrast/postcontrast), magnetic resonance is based on a multiparameter analysis (T2-weighting and T1-weighting, DWI, and postcontrast acquisition). This multiparameter approach amplifies the contrast resolution. It has, also, permitted to differentiate scar tissue (after laser resection) from submucosal recurrent disease. In addition, DWI sequences have the potential of a more precise discrimination of peritumoral edema from neoplastic tissue, which may lead to improve the assessment of paraglottic space invasion. Magnetic resonance of the larynx is technically challenging. The use of surface coils and motion-reducing techniques is critical to achieve adequate image quality. The intrinsic high-contrast resolution is further increased by the integration of information from different sequences. When CT has not been conclusive, magnetic resonance is indicated in the pretreatment local assessment and in the suspicion of submucosal recurrence.

  18. A phononic crystal strip based on silicon for support tether applications in silicon-based MEMS resonators and effects of temperature and dopant on its band gap characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ha, Thi Dep, E-mail: hathidep@yahoo.com; Faculty of Electronic Technology, Industrial University of Ho Chi Minh City, Hochiminh City; Bao, JingFu, E-mail: baojingfu@uestc.edu.cn

    Phononic crystals (PnCs) and n-type doped silicon technique have been widely employed in silicon-based MEMS resonators to obtain high quality factor (Q) as well as temperature-induced frequency stability. For the PnCs, their band gaps play an important role in the acoustic wave propagation. Also, the temperature and dopant doped into silicon can cause the change in its material properties such as elastic constants, Young’s modulus. Therefore, in order to design the simultaneous high Q and frequency stability silicon-based MEMS resonators by two these techniques, a careful design should study effects of temperature and dopant on the band gap characteristics tomore » examine the acoustic wave propagation in the PnC. Based on these, this paper presents (1) a proposed silicon-based PnC strip structure for support tether applications in low frequency silicon-based MEMS resonators, (2) influences of temperature and dopant on band gap characteristics of the PnC strips. The simulation results show that the largest band gap can achieve up to 33.56 at 57.59 MHz and increase 1280.13 % (also increase 131.89 % for ratio of the widest gaps) compared with the counterpart without hole. The band gap properties of the PnC strips is insignificantly effected by temperature and electron doping concentration. Also, the quality factor of two designed length extensional mode MEMS resonators with proposed PnC strip based support tethers is up to 1084.59% and 43846.36% over the same resonators with PnC strip without hole and circled corners, respectively. This theoretical study uses the finite element analysis in COMSOL Multiphysics and MATLAB softwares as simulation tools. This findings provides a background in combination of PnC and dopant techniques for high performance silicon-based MEMS resonators as well as PnC-based MEMS devices.« less

  19. Confirmatory factor analysis of the Chinese version of the Pediatric Quality-of-Life Inventory Cancer Module.

    PubMed

    Li, Ho Cheung William; Williams, Phoebe D; Williams, Arthur R; Chung, Joyce O K; Chiu, Sau Ying; Lopez, Violeta

    2013-01-01

    Before the Chinese version of the Pediatric Quality-of-Life Inventory Cancer Module can be used to assess the multidimensional construct of quality of life among Hong Kong Chinese pediatric patients with cancer, its psychometric properties need to be further empirically tested. The objectives of the study were to establish the construct validity, including hypothesis testing and a confirmatory factor analysis of factor structure, of the Chinese version of the Pediatric Quality-of-Life Inventory Cancer Module. A cross-sectional study was used; 200 children hospitalized with cancer (9- to 16-year-olds) were recruited. Participants were asked to respond to the Chinese version of the Cancer Module, Therapy-Related Symptom Checklist, and Rosenberg's Self-esteem Scale. The results showed that there was a strong positive correlation between children's self-esteem and quality of life (r = 0.50) and a strong negative correlation between children's therapy-related symptoms and quality of life (r = -0.65). Confirmatory factor analysis indicated that there were 7 factors underlying the Chinese version of the Cancer Module. The study added further evidence of the construct validity of the Chinese version of the Cancer Module, patient version. The Cancer Module can be used to assess and evaluate psychological interventions directed toward promoting the quality of life of children hospitalized with cancer.

  20. Electromagnetic analysis of the slotted-tube resonator with a circular cross section for MRI applications.

    PubMed

    Benabdallah, Nadia; Benahmed, Nasreddine; Benyoucef, Boumediene; Bouhmidi, Rachid; Khelif, M'Hamed

    2007-08-21

    In this paper we present electromagnetic (EM) analysis of the unloaded slotted-tube resonator (STR) with a circular cross section, using the finite element method (FEM) and method of moments (MoM) in two dimensions. This analysis allows the determination of the primary parameters: [L] and [C] matrices, optimization of the field homogeneity, and simulates the frequency response of S(11) at the RF port of the designed STR. The optimum configuration is presented, taking into account the effect of the thickness of the STR and the effect of the RF shield. As an application, we present the design results of a MRI probe using the STR and operating at 500 MHz (proton imaging at 11.74 T). The resonator has -69.37 dB minimum reflection and an unloaded quality factor (Q(o)) > 500 at 500 MHz.

  1. Design of a terahertz parametric oscillator based on a resonant cavity in a terahertz waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, K., E-mail: k-saito@material.tohoku.ac.jp; Oyama, Y.; Tanabe, T.

    We demonstrate ns-pulsed pumping of terahertz (THz) parametric oscillations in a quasi-triply resonant cavity in a THz waveguide. The THz waves, down converted through parametric interactions between the pump and signal waves at telecom frequencies, are confined to a GaP single mode ridge waveguide. By combining the THz waveguide with a quasi-triply resonant cavity, the nonlinear interactions can be enhanced. A low threshold pump intensity for parametric oscillations can be achieved in the cavity waveguide. The THz output power can be maximized by optimizing the quality factors of the cavity so that an optical to THz photon conversion efficiency, η{submore » p}, of 0.35, which is near the quantum-limit level, can be attained. The proposed THz optical parametric oscillator can be utilized as an efficient and monochromatic THz source.« less

  2. Importance of resonance interference effects in multigroup self-shielding calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stachowski, R.E.; Protsik, R.

    1995-12-31

    The impact of the resonance interference method (RIF) on multigroup neutron cross sections is significant for major isotopes in the fuel, indicating the importance of resonance interference in the computation of gadolinia burnout and plutonium buildup. The self-shielding factor method with the RIF method effectively eliminates shortcomings in multigroup resonance calculations.

  3. Identification and assessment of potential water quality impact factors for drinking-water reservoirs.

    PubMed

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-06-10

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources.

  4. Factors affecting quality of life in Hungarian adults with epilepsy: A comparison of four psychiatric instruments.

    PubMed

    Kováts, Daniella; Császár, Noémi; Haller, József; Juhos, Vera; Sallay, Viola; Békés, Judit; Kelemen, Anna; Fabó, Dániel; Rásonyi, György; Folyovich, András; Kurimay, Tamás

    2017-09-01

    We investigated the impact of 19 factors on life quality in Hungarian patients with epilepsy. Wellbeing was evaluated by several inventories to investigate the impact of factors in more detail. A cross-sectional study was performed in 170 patients. Wellbeing was evaluated with the WHO-5 Well-being Index (WHOQOL-5), Diener Satisfaction with Life Scale (SwLS), and the Quality of Life in Epilepsy-31 Questionnaire (Qolie-31). We investigated their association with demographic characteristics, general health status, epilepsy, and its treatment. The impact of these factors on illness perception (Illness Perception Questionnaire, IPQ) was also studied. The four measures correlated highly significantly. In addition, the predictive power of factors was comparable with the four inventories as evaluated by Multiple Regression. Factors explained 52%, 41%, 63% and 46% in the variance of WHOQOL-5, SwLS, Qolie-31, and IPQ scores, respectively. However, associations with particular factors were instrument-specific. The WHOQOL-5 was associated with factors indicative of general health. SwLS scores were associated with health-related and several demographic factors. Neither showed associations with epilepsy-related factors. All four categories of factors were associated with Qolie-31 and IPQ scores. Factors had an additive impact on IPQ, but not on Qolie-31. Our findings reveal interactions between the method of life quality assessment and the factors that are identified as influencing life quality. This appears to be the first study that analyses the factors that influence illness perception in epilepsy patients, and suggests that the IPQ may become a valuable tool in epilepsy research. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Integrated polymer micro-ring resonators for optical sensing applications

    NASA Astrophysics Data System (ADS)

    Girault, Pauline; Lorrain, Nathalie; Poffo, Luiz; Guendouz, Mohammed; Lemaitre, Jonathan; Carré, Christiane; Gadonna, Michel; Bosc, Dominique; Vignaud, Guillaume

    2015-03-01

    Micro-resonators (MR) have become a key element for integrated optical sensors due to their integration capability and their easy fabrication with low cost polymer materials. Nowadays, there is a growing need on MRs as highly sensitive and selective functions especially in the areas of food and health. The context of this work is to implement and study integrated micro-ring resonators devoted to sensing applications. They are fabricated by processing SU8 polymer as core layer and PMATRIFE polymer as lower cladding layer. The refractive index of the polymers and of the waveguide structure as a function of the wavelength is presented. Using these results, a theoretical study of the coupling between ring and straight waveguides has been undertaken in order to define the MR design. Sub-micronic gaps of 0.5 μm to 1 μm between the ring and the straight waveguides have been successfully achieved with UV (i-lines) photolithography. Different superstrates such as air, water, and aqueous solutions with glucose at different concentrations have been studied. First results show a good normalized transmission contrast of 0.98, a resonator quality factor around 1.5 × 104 corresponding to a coupling ratio of 14.7%, and ring propagation losses around 5 dB/cm. Preliminary sensing experiments have been performed for different concentrations of glucose; a sensitivity of 115 ± 8 nm/RIU at 1550 nm has been obtained with this couple of polymers.

  6. [Influence of stress factors and socio-demographic characteristics on the sleep quality of nursing students].

    PubMed

    Benavente, Sonia Betzabeth Ticona; Silva, Rodrigo Marques da; Higashi, Aline Baraldi; Guido, Laura de Azevedo; Costa, Ana Lucia Siqueira

    2014-06-01

    To analyze the influence of stress factors and socio-demographic characteristics on the sleep quality of nursing students. An analytical cross-sectional and quantitative study, conducted with 151 nursing students in São Paulo between March and April of 2012. A form for socio-demographic characteristics, the Instrument to Evaluate Stress in Nursing Students and the Pittsburgh Sleep Index were applied. High levels of stress was predominant for Time Management (27.8%) and Professional Training (30.5%) and low sleep quality (78.8%). The Professional Communication, Professional Training and Theoretical Activity are positively correlated to sleep quality. Work activity, academic year and time for daily studies contributed to a low quality of sleep. Few stress factors from the academic environment and some socio-demographic characteristics contributed to the reduction of sleep quality in students.

  7. Correlation Between Resonance Frequency Analysis and Bone Quality Assessments at Dental Implant Recipient Sites.

    PubMed

    Fu, Min-Wen; Fu, Earl; Lin, Fu-Gong; Chang, Wei-Jeng; Hsieh, Yao-Dung; Shen, E-Chin

    To evaluate whether primary implant stability could be used to predict bone quality, the association between the implant stability quotient (ISQ) value and the bone type at the implant site was evaluated. Ninety-five implant sites in 50 patients were included. Bone type (categorized by Lekholm and Zarb) at the implant site was initially assessed using presurgical dental radiography. During the preparation of the implant site, a bone core specimen was carefully obtained. The bone type was assessed by tactile sensation during the drilling operation, according to the Misch criteria. The primary stability of the inserted implant was evaluated by resonance frequency analysis (RFA). The ISQ value was recorded. The bone core specimen was then examined by stereomicroscopy or microcomputed tomography (micro-CT), and the bone type was determined by the surface characteristics of the specimen, based on Lekholm and Zarb classification. Agreement between the bone quality assessed by the four methods (ie, presurgical radiography, tactile sensation, stereomicroscopy, and micro-CT) was tested by Cohen's kappa statistics, whereas the association between the ISQ value and the bone type was evaluated by the generalized linear regression model. The mean ISQ score was 72.6, and the score was significantly influenced by the maxillary or mandibular arch (P = .001). The bone type at the implant sites varied according to the assessment method. However, a significant influence of the arch was repeatedly noted when using radiography or tactile sensation. Among the four bone-quality assessment methods, a weak agreement existed only between stereomicroscopy and micro-CT, especially in the maxilla (κ = 0.469). A negative association between the ISQ value and the bone type assessed by stereomicroscopy or by micro-CT was significant in the maxilla, but not in the mandible, after adjustments for sex, age, and right/left side (P = .013 and P = .027 for stereomicroscopy and micro-CT, respectively

  8. Taste phenotype associates with cardiovascular disease risk factors via diet quality in multivariate modeling.

    PubMed

    Sharafi, Mastaneh; Rawal, Shristi; Fernandez, Maria Luz; Huedo-Medina, Tania B; Duffy, Valerie B

    2018-05-08

    Sensations from foods and beverages drive dietary choices, which in turn, affect risk of diet-related diseases. Perception of these sensation varies with environmental and genetic influences. This observational study aimed to examine associations between chemosensory phenotype, diet and cardiovascular disease (CVD) risk. Reportedly healthy women (n = 110, average age 45 ± 9 years) participated in laboratory-based measures of chemosensory phenotype (taste and smell function, propylthiouracil (PROP) bitterness) and CVD risk factors (waist circumference, blood pressure, serum lipids). Diet variables included preference and intake of sweet/high-fat foods, dietary restraint, and diet quality based on reported preference (Healthy Eating Preference Index-HEPI) and intake (Healthy Eating Index-HEI). We found that females who reported high preference yet low consumption of sweet/high-fat foods had the highest dietary restraint and depressed quinine taste function. PROP nontasters were more likely to report lower diet quality; PROP supertasters more likely to consume but not like a healthy diet. Multivariate structural models were fitted to identify predictors of CVD risk factors. Reliable latent taste (quinine taste function, PROP tasting) and smell (odor intensity) variables were identified, with taste explaining more variance in the CVD risk factors. Lower bitter taste perception was associated with elevated risk. In multivariate models, the HEPI completely mediated the taste-adiposity and taste-HDL associations and partially mediated the taste-triglyceride or taste-systolic blood pressure associations. The taste-LDL pathway was significant and direct. The HEI could not replace HEPI in adequate models. However, using a latent diet quality variable with HEPI and HEI, increased the strength of association between diet quality and adiposity or CVD risk factors. In conclusion, bitter taste phenotype was associated with CVD risk factors via diet quality

  9. Resonances and bound states in the continuum on periodic arrays of slightly noncircular cylinders

    NASA Astrophysics Data System (ADS)

    Hu, Zhen; Lu, Ya Yan

    2018-02-01

    Optical bound states in the continuum (BICs), especially those on periodic structures, have interesting properties and potentially important applications. Existing theoretical and numerical studies for optical BICs are mostly for idealized structures with simple and perfect geometric features, such as circular holes, rectangular cylinders and spheres. Since small distortions are always present in actual fabricated structures, we perform a high accuracy numerical study for BICs and resonances on a simple periodic structure with small distortions, i.e., periodic arrays of slightly noncircular cylinders. Our numerical results confirm that symmetries are important not only for the so-called symmetry-protected BICs, but also for the majority of propagating BICs which do not have a symmetry mismatch with the outgoing radiation waves. Typically, the BICs continue to exist if the small distortions keep the relevant symmetries, and they become resonant modes with finite quality factors if the small distortions break a required symmetry.

  10. Para-hydrogen raser delivers sub-millihertz resolution in nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Suefke, Martin; Lehmkuhl, Sören; Liebisch, Alexander; Blümich, Bernhard; Appelt, Stephan

    2017-06-01

    The precision of nuclear magnetic resonance spectroscopy (NMR) is limited by the signal-to-noise ratio, the measurement time Tm and the linewidth Δν = 1/(πT2). Overcoming the T 2 limit is possible if the nuclear spins of a molecule emit continuous radio waves. Lasers and masers are self-organized systems which emit coherent radiation in the optical and micro-wave regime. Both are based on creating a population inversion of specific energy states. Here we show continuous oscillations of proton spins of organic molecules in the radiofrequency regime (raser). We achieve this by coupling a population inversion created through signal amplification by reversible exchange (SABRE) to a high-quality-factor resonator. For the case of 15N labelled molecules, we observe multi-mode raser activity, which reports different spin quantum states. The corresponding 1H-15N J-coupled NMR spectra exhibit unprecedented sub-millihertz resolution and can be explained assuming two-spin ordered quantum states. Our findings demonstrate a substantial improvement in the frequency resolution of NMR.

  11. Positive effect on patient experience of video information given prior to cardiovascular magnetic resonance imaging: A clinical trial.

    PubMed

    Ahlander, Britt-Marie; Engvall, Jan; Maret, Eva; Ericsson, Elisabeth

    2018-03-01

    To evaluate the effect of video information given before cardiovascular magnetic resonance imaging on patient anxiety and to compare patient experiences of cardiovascular magnetic resonance imaging versus myocardial perfusion scintigraphy. To evaluate whether additional information has an impact on motion artefacts. Cardiovascular magnetic resonance imaging and myocardial perfusion scintigraphy are technically advanced methods for the evaluation of heart diseases. Although cardiovascular magnetic resonance imaging is considered to be painless, patients may experience anxiety due to the closed environment. A prospective randomised intervention study, not registered. The sample (n = 148) consisted of 97 patients referred for cardiovascular magnetic resonance imaging, randomised to receive either video information in addition to standard text-information (CMR-video/n = 49) or standard text-information alone (CMR-standard/n = 48). A third group undergoing myocardial perfusion scintigraphy (n = 51) was compared with the cardiovascular magnetic resonance imaging-standard group. Anxiety was evaluated before, immediately after the procedure and 1 week later. Five questionnaires were used: Cardiac Anxiety Questionnaire, State-Trait Anxiety Inventory, Hospital Anxiety and Depression scale, MRI Fear Survey Schedule and the MRI-Anxiety Questionnaire. Motion artefacts were evaluated by three observers, blinded to the information given. Data were collected between April 2015-April 2016. The study followed the CONSORT guidelines. The CMR-video group scored lower (better) than the cardiovascular magnetic resonance imaging-standard group in the factor Relaxation (p = .039) but not in the factor Anxiety. Anxiety levels were lower during scintigraphic examinations compared to the CMR-standard group (p < .001). No difference was found regarding motion artefacts between CMR-video and CMR-standard. Patient ability to relax during cardiovascular magnetic resonance imaging

  12. Atomic layer MoS2-graphene van der Waals heterostructure nanomechanical resonators.

    PubMed

    Ye, Fan; Lee, Jaesung; Feng, Philip X-L

    2017-11-30

    Heterostructures play significant roles in modern semiconductor devices and micro/nanosystems in a plethora of applications in electronics, optoelectronics, and transducers. While state-of-the-art heterostructures often involve stacks of crystalline epi-layers each down to a few nanometers thick, the intriguing limit would be hetero-atomic-layer structures. Here we report the first experimental demonstration of freestanding van der Waals heterostructures and their functional nanomechanical devices. By stacking single-layer (1L) MoS 2 on top of suspended single-, bi-, tri- and four-layer (1L to 4L) graphene sheets, we realize an array of MoS 2 -graphene heterostructures with varying thickness and size. These heterostructures all exhibit robust nanomechanical resonances in the very high frequency (VHF) band (up to ∼100 MHz). We observe that fundamental-mode resonance frequencies of the heterostructure devices fall between the values of graphene and MoS 2 devices. Quality (Q) factors of heterostructure resonators are lower than those of graphene but comparable to those of MoS 2 devices, suggesting interface damping related to interlayer interactions in the van der Waals heterostructures. This study validates suspended atomic layer heterostructures as an effective device platform and provides opportunities for exploiting mechanically coupled effects and interlayer interactions in such devices.

  13. Control of critical coupling in a coiled coaxial cable resonator.

    PubMed

    Huang, Jie; Wei, Tao; Wang, Tao; Fan, Jun; Xiao, Hai

    2014-05-01

    This paper reports a coiled coaxial cable resonator fabricated by cutting a slot in a spring-like coiled coaxial cable to produce a periodic perturbation. Electromagnetic coupling between two neighboring slots was observed. By manipulating the number of slots, critical coupling of the coiled coaxial cable resonator can be well controlled. An ultrahigh signal-to-noise ratio (over 50 dB) at the resonant frequency band was experimentally achieved from a coiled coaxial cable resonator with 38 turns. A theoretic model is developed to understand the device physics. The proposed device can be potentially used as a high quality and flexibly designed band-stop filter or a sensor in structural health monitoring.

  14. Dielectric micro-resonator-based opto-mechanical systems for sensing applications

    NASA Astrophysics Data System (ADS)

    Ali, Amir Roushdy

    In recent years, whispering gallery mode (WGM), or morphology dependent optical resonances (MDR) of dielectric micro-resonators have attracted interest with proposed applications in a wide range of areas due to the high optical quality factors, Q, they can exhibit (reaching ~ 10. 9 for silica spheres). Micro-resonator WGMs have been used in applications that include those in spectroscopy, micro-cavity laser technology, optical communications (switching, filtering and multiplexing), sensors technologies and even chemical and biological sensing. The WGM of these dielectric micro-resonators are highly sensitive to morphological changes (such as the size, shape, or refractive index) of the resonance cavity and hence, can be tuned by causing a minute change in the physical condition of the surrounding. In this dissertation, we have been creating opto-mechanical systems, which at their most basic, are extraordinarily sensitive sensors. One of the ultimate goals of this dissertation is to develop sensors capable of detecting the extremely small electric field changes. To improve the performance of the sensors, we couple a polymer cantilever beam to a dielectric micro-resonator. The eventual use of such ultra sensitive electric filed sensors could include neural-machine interfaces for advanced prosthetics devices. The work presented here includes a basic analysis and experimental investigations of the electric field sensitivity and range of micro-resonators of several different materials and geometries followed by the electric field sensor design, testing, and characterization. Also, the effects of angular velocity on the WGM shifts of spherical micro-resonators are also investigated. The elastic deformation that is induced on a spinning resonator due to the centrifugal force may lead to a sufficient shift in the optical resonances and therefore interfering with its desirable operational sensor design. Furthermore, this principle could be used for the development of

  15. Influence of the finite linewidth of the laser radiation spectrum on the shape of the coherent population trapping resonance line in an optically dense medium with a buffer gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barantsev, K. A., E-mail: kostmann@yandex.ru; Popov, E. N.; Litvinov, A. N., E-mail: andrey.litvinov@mail.ru

    2015-11-15

    The theory of coherent population trapping resonance is developed for the finite linewidth of the laser radiation spectrum in an optically dense medium of Λ atoms in a cell with a buffer gas. Equations are derived for the atomic density matrix and laser emission spectrum transfer in a cell with working and buffer gases at a finite temperature. The dependence of the quality factor of coherent population trapping resonance on the linewidth of the laser radiation spectrum is studied by measuring transmitted radiation and fluorescence signals.

  16. Tunable Supermode Dielectric Resonators for Axion Dark-Matter Haloscopes

    NASA Astrophysics Data System (ADS)

    McAllister, Ben T.; Flower, Graeme; Tobar, Lucas E.; Tobar, Michael E.

    2018-01-01

    We present frequency-tuning mechanisms for dielectric resonators, which undergo "supermode" interactions as they tune. The tunable schemes are based on dielectric materials strategically placed inside traditional cylindrical resonant cavities, necessarily operating in transverse-magnetic modes for use in axion haloscopes. The first technique is based on multiple dielectric disks with radii smaller than that of the cavity. The second scheme relies on hollow dielectric cylinders similar to a Bragg resonator, but with a different location and dimension. Specifically, we engineer a significant increase in form factor for the TM030 mode utilizing a variation of a distributed Bragg reflector resonator. Additionally, we demonstrate an application of traditional distributed Bragg reflectors in TM modes which may be applied to a haloscope. Theoretical and experimental results are presented showing an increase in Q factor and tunability due to the supermode effect. The TM030 ring-resonator mode offers a between 1 and 2-order-of-magnitude improvement in axion sensitivity over current conventional cavity systems and will be employed in the forthcoming ORGAN experiment.

  17. Factors Influencing Practical Training Quality in Iranian Agricultural Higher Education

    ERIC Educational Resources Information Center

    Mojarradi, Gholamreza; Karamidehkordi, Esmail

    2016-01-01

    This paper presents an analysis of the factors influencing the practical training quality of agricultural higher education programmes from the senior students' perspective. The study was conducted in two public universities located in the north-west of Iran using a cross-sectional survey and structured interviews with a randomised sample of 254…

  18. Lifestyle and semen quality: role of modifiable risk factors.

    PubMed

    Jurewicz, Joanna; Radwan, Michał; Sobala, Wojciech; Ligocka, Danuta; Radwan, Paweł; Bochenek, Michał; Hanke, Wojciech

    2014-02-01

    The relationship between exposure to lifestyle factors and adverse effects on human reproductive health is debated in the scientific literature and these controversies have increased public and regulatory attention. The aim of the study was to examine the association between modifiable lifestyle factors and main semen parameters, sperm morphology, and sperm chromatin structure. The study population consisted of 344 men who were attending an infertility clinic for diagnostic purposes with normal semen concentration of 20-300 M/ml or with slight oligozoospermia (semen total concentration of 15-20 M/ml) [WHO 1999]. Participants were interviewed and provided semen samples. The interview included questions about demographics, socio-economic status, medical history, lifestyle factors (consumption of alcohol, tobacco, coffee intake, cell phone and sauna usage), and physical activity. The results of the study suggest that lifestyle factors may affect semen quality. A negative association was found between increased body mass index (BMI) and semen volume (p = 0.03). Leisure time activity was positively associated with sperm concentration (p = 0.04) and coffee drinking with the percentage of motile sperm cells, and the percentage of sperm head and neck abnormalities (p = 0.01, p = 0.05, and p = 0.03, respectively). Drinking red wine 1-3 times per week was negatively related to sperm neck abnormalities (p = 0.01). Additionally, using a cell phone more than 10 years decreased the percentage of motile sperm cells (p = 0.02). Men who wore boxer shorts had a lower percentage of sperm neck abnormalities (p = 0.002) and percentage of sperm with DNA damage (p = 0.02). These findings may have important implications for semen quality and lifestyle.

  19. Change in Quality of Life after Rehabilitation: Prognostic Factors for Visually Impaired Adults

    ERIC Educational Resources Information Center

    Langelaan, Maaike; de Boer, Michiel R.; van Nispen, Ruth M. A.; Wouters, Bill; Moll, Annette C.; van Rens, Ger H. M. B.

    2009-01-01

    The overall aim of rehabilitation for visually impaired adults is to improve the quality of life and (societal) participation. The objectives of this study were to obtain the short-term and long-term outcome of a comprehensive rehabilitation programme on quality of life for visually impaired adults, and prognostic baseline factors responsible for…

  20. Research on local resonance and Bragg scattering coexistence in phononic crystal

    NASA Astrophysics Data System (ADS)

    Dong, Yake; Yao, Hong; Du, Jun; Zhao, Jingbo; Jiang, Jiulong

    2017-04-01

    Based on the finite element method (FEM), characteristics of the local resonance band gap and the Bragg scattering band gap of two periodically-distributed vibrator structures are studied. Conditions of original anti-resonance generation are theoretically derived. The original anti-resonance effect leads to localization of vibration. Factors which influence original anti-resonance band gap are analyzed. The band gap width and the mass ratio between two vibrators are closely correlated to each other. Results show that the original anti-resonance band gap has few influencing factors. In the locally resonant structure, the Bragg scattering band gap is found. The mass density of the elastic medium and the elasticity modulus have an important impact on the Bragg band gap. The coexistence of the two mechanisms makes the band gap larger. The band gap covered 90% of the low frequencies below 2000 Hz. All in all, the research could provide references for studying the low-frequency and broad band gap of phononic crystal.