Sample records for quality forecast capability

  1. Toward a US National Air Quality Forecast Capability: Current and Planned Capabilities

    EPA Science Inventory

    As mandated by Congress, NOAA is establishing a US national air quality forecast capability. This capability is being built with EPA, to provide air quality forecast information with enough accuracy and lead-time so that people can take actions to limit harmful effects of poor a...

  2. A Performance Evaluation of the National Air Quality Forecast Capability for the Summer of 2007

    EPA Science Inventory

    This paper provides a performance evaluation of the real-time, CONUS-scale National Air Quality Forecast Capability (NAQFC), developed collaboratively by the National Oceanic and Atmospheric Administration (NOAA) and Environmental Protection Agency (EPA), that supported, in part,...

  3. AIR QUALITY FORECAST DATABASE AND ANALYSIS

    EPA Science Inventory

    In 2003, NOAA and EPA signed a Memorandum of Agreement to collaborate on the design and implementation of a capability to produce daily air quality modeling forecast information for the U.S. NOAA's ETA meteorological model and EPA's Community Multiscale Air Quality (CMAQ) model ...

  4. ETA-CMAQ MODELING SYSTEM'S CAPABILITY TO PROVIDE PM 2.5 AND AEROSOL OPTICAL THICKNESS FORECAST

    EPA Science Inventory

    In 2003, NOAA and the U.S. EPA signed a Memorandum of Agreement to work together to develop a National Air Quality Forecasting (AQF) capability. To meet this goal, NOAA's National Weather Service (NWS), the Office of Atmospheric Research (OAR) and the U.S. EPA developed and eval...

  5. Ensemble Statistical Post-Processing of the National Air Quality Forecast Capability: Enhancing Ozone Forecasts in Baltimore, Maryland

    NASA Technical Reports Server (NTRS)

    Garner, Gregory G.; Thompson, Anne M.

    2013-01-01

    An ensemble statistical post-processor (ESP) is developed for the National Air Quality Forecast Capability (NAQFC) to address the unique challenges of forecasting surface ozone in Baltimore, MD. Air quality and meteorological data were collected from the eight monitors that constitute the Baltimore forecast region. These data were used to build the ESP using a moving-block bootstrap, regression tree models, and extreme-value theory. The ESP was evaluated using a 10-fold cross-validation to avoid evaluation with the same data used in the development process. Results indicate that the ESP is conditionally biased, likely due to slight overfitting while training the regression tree models. When viewed from the perspective of a decision-maker, the ESP provides a wealth of additional information previously not available through the NAQFC alone. The user is provided the freedom to tailor the forecast to the decision at hand by using decision-specific probability thresholds that define a forecast for an ozone exceedance. Taking advantage of the ESP, the user not only receives an increase in value over the NAQFC, but also receives value for An ensemble statistical post-processor (ESP) is developed for the National Air Quality Forecast Capability (NAQFC) to address the unique challenges of forecasting surface ozone in Baltimore, MD. Air quality and meteorological data were collected from the eight monitors that constitute the Baltimore forecast region. These data were used to build the ESP using a moving-block bootstrap, regression tree models, and extreme-value theory. The ESP was evaluated using a 10-fold cross-validation to avoid evaluation with the same data used in the development process. Results indicate that the ESP is conditionally biased, likely due to slight overfitting while training the regression tree models. When viewed from the perspective of a decision-maker, the ESP provides a wealth of additional information previously not available through the NAQFC alone. The user is provided the freedom to tailor the forecast to the decision at hand by using decision-specific probability thresholds that define a forecast for an ozone exceedance. Taking advantage of the ESP, the user not only receives an increase in value over the NAQFC, but also receives value for

  6. Experiment evaluates ocean models and data assimiliation in the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Willems, Robert C.; Glenn, S. M.; Crowley, M. F.; Malanotte-Rizzoli, P.; Young, R. E.; Ezer, T.; Mellor, G. L.; Arango, H. G.; Robinson, A. R.; Lai, C.-C. A.

    Using data sets of known quality as the basis for comparison, a recent experiment explored the Gulf Stream Region at 27°-47°N and 80°-50°W to assess the nowcast/forecast capability of specific ocean models and the impact of data assimilation. Scientists from five universities and the Naval Research Laboratory/Stennis Space Center participated in the Data Assimilation and Model Evaluation Experiment (DAMEÉ-GSR).DAMEÉ-GSR was based on case studies, each successively more complex, and was divided into three phases using case studies (data) from 1987 and 1988. Phase I evaluated models' forecast capability using common initial conditions and comparing model forecast fields with observational data at forecast time over a 2-week period. Phase II added data assimilation and assessed its impact on forecast capability, using the same case studies as in phase I, and phase III added a 2-month case study overlapping some periods in Phases I and II.

  7. Development and implementation of a remote-sensing and in situ data-assimilating version of CMAQ for operational PM2.5 forecasting. Part 1: MODIS aerosol optical depth (AOD) data-assimilation design and testing.

    PubMed

    McHenry, John N; Vukovich, Jeffery M; Hsu, N Christina

    2015-12-01

    This two-part paper reports on the development, implementation, and improvement of a version of the Community Multi-Scale Air Quality (CMAQ) model that assimilates real-time remotely-sensed aerosol optical depth (AOD) information and ground-based PM2.5 monitor data in routine prognostic application. The model is being used by operational air quality forecasters to help guide their daily issuance of state or local-agency-based air quality alerts (e.g. action days, health advisories). Part 1 describes the development and testing of the initial assimilation capability, which was implemented offline in partnership with NASA and the Visibility Improvement State and Tribal Association of the Southeast (VISTAS) Regional Planning Organization (RPO). In the initial effort, MODIS-derived aerosol optical depth (AOD) data are input into a variational data-assimilation scheme using both the traditional Dark Target and relatively new "Deep Blue" retrieval methods. Evaluation of the developmental offline version, reported in Part 1 here, showed sufficient promise to implement the capability within the online, prognostic operational model described in Part 2. In Part 2, the addition of real-time surface PM2.5 monitoring data to improve the assimilation and an initial evaluation of the prognostic modeling system across the continental United States (CONUS) is presented. Air quality forecasts are now routinely used to understand when air pollution may reach unhealthy levels. For the first time, an operational air quality forecast model that includes the assimilation of remotely-sensed aerosol optical depth and ground based PM2.5 observations is being used. The assimilation enables quantifiable improvements in model forecast skill, which improves confidence in the accuracy of the officially-issued forecasts. This helps air quality stakeholders be more effective in taking mitigating actions (reducing power consumption, ride-sharing, etc.) and avoiding exposures that could otherwise result in more serious air quality episodes or more deleterious health effects.

  8. Improving short-term air quality predictions over the U.S. using chemical data assimilation

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Delle Monache, L.; Alessandrini, S.; Saide, P.; Lin, H. C.; Liu, Z.; Pfister, G.; Edwards, D. P.; Baker, B.; Tang, Y.; Lee, P.; Djalalova, I.; Wilczak, J. M.

    2017-12-01

    State and local air quality forecasters across the United States use air quality forecasts from the National Air Quality Forecasting Capability (NAQFC) at the National Oceanic and Atmospheric Administration (NOAA) as one of the key tools to protect the public from adverse air pollution related health effects by dispensing timely information about air pollution episodes. This project funded by the National Aeronautics and Space Administration (NASA) aims to enhance the decision-making process by improving the accuracy of NAQFC short-term predictions of ground-level particulate matter of less than 2.5 µm in diameter (PM2.5) by exploiting NASA Earth Science Data with chemical data assimilation. The NAQFC is based on the Community Multiscale Air Quality (CMAQ) model. To improve the initialization of PM2.5 in CMAQ, we developed a new capability in the community Gridpoint Statistical Interpolation (GSI) system to assimilate Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) retrievals in CMAQ. Specifically, we developed new capabilities within GSI to read/write CMAQ data, a forward operator that calculates AOD at 550 nm from CMAQ aerosol chemical composition and an adjoint of the forward operator that translates the changes in AOD to aerosol chemical composition. A generalized background error covariance program called "GEN_BE" has been extended to calculate background error covariance using CMAQ output. The background error variances are generated using a combination of both emissions and meteorological perturbations to better capture sources of uncertainties in PM2.5 simulations. The newly developed CMAQ-GSI system is used to perform daily 24-h PM2.5 forecasts with and without data assimilation from 15 July to 14 August 2014, and the resulting forecasts are compared against AirNOW PM2.5 measurements at 550 stations across the U. S. We find that the assimilation of MODIS AOD retrievals improves initialization of the CMAQ model in terms of improved correlation coefficient and reduced bias. However, we notice a large bias in nighttime PM2.5 simulations which is primarily associated with very shallow boundary layer in the model. The developments and results will be discussed in detail during the presentation.

  9. New smoke predictions for Alaska in NOAA’s National Air Quality Forecast Capability

    NASA Astrophysics Data System (ADS)

    Davidson, P. M.; Ruminski, M.; Draxler, R.; Kondragunta, S.; Zeng, J.; Rolph, G.; Stajner, I.; Manikin, G.

    2009-12-01

    Smoke from wildfire is an important component of fine particle pollution, which is responsible for tens of thousands of premature deaths each year in the US. In Alaska, wildfire smoke is the leading cause of poor air quality in summer. Smoke forecast guidance helps air quality forecasters and the public take steps to limit exposure to airborne particulate matter. A new smoke forecast guidance tool, built by a cross-NOAA team, leverages efforts of NOAA’s partners at the USFS on wildfire emissions information, and with EPA, in coordinating with state/local air quality forecasters. Required operational deployment criteria, in categories of objective verification, subjective feedback, and production readiness, have been demonstrated in experimental testing during 2008-2009, for addition to the operational products in NOAA's National Air Quality Forecast Capability. The Alaska smoke forecast tool is an adaptation of NOAA’s smoke predictions implemented operationally for the lower 48 states (CONUS) in 2007. The tool integrates satellite information on location of wildfires with weather (North American mesoscale model) and smoke dispersion (HYSPLIT) models to produce daily predictions of smoke transport for Alaska, in binary and graphical formats. Hour-by hour predictions at 12km grid resolution of smoke at the surface and in the column are provided each day by 13 UTC, extending through midnight next day. Forecast accuracy and reliability are monitored against benchmark criteria for accuracy and reliability. While wildfire activity in the CONUS is year-round, the intense wildfire activity in AK is limited to the summer. Initial experimental testing during summer 2008 was hindered by unusually limited wildfire activity and very cloudy conditions. In contrast, heavier than average wildfire activity during summer 2009 provided a representative basis (more than 60 days of wildfire smoke) for demonstrating required prediction accuracy. A new satellite observation product was developed for routine near-real time verification of these predictions. The footprint of the predicted smoke from identified fires is verified with satellite observations of the spatial extent of smoke aerosols (5km resolution). Based on geostationary aerosol optical depth measurements that provide good time resolution of the horizontal spatial extent of the plumes, these observations do not yield quantitative concentrations of smoke particles at the surface. Predicted surface smoke concentrations are consistent with the limited number of in situ observations of total fine particle mass from all sources; however they are much higher than predicted for most CONUS fires. To assess uncertainty associated with fire emissions estimates, sensitivity analyses are in progress.

  10. Methodology for Air Quality Forecast Downscaling from Regional- to Street-Scale

    NASA Astrophysics Data System (ADS)

    Baklanov, Alexander; Nuterman, Roman; Mahura, Alexander; Amstrup, Bjarne; Hansen Saas, Bent; Havskov Sørensen, Jens; Lorenzen, Thomas; Weismann, Jakob

    2010-05-01

    The most serious air pollution events occur in cities where there is a combination of high population density and air pollution, e.g. from vehicles. The pollutants can lead to serious human health problems, including asthma, irritation of the lungs, bronchitis, pneumonia, decreased resistance to respiratory infections, and premature death. In particular air pollution is associated with increase in cardiovascular disease and lung cancer. In 2000 WHO estimated that between 2.5 % and 11 % of total annual deaths are caused by exposure to air pollution. However, European-scale air quality models are not suited for local forecasts, as their grid-cell is typically of the order of 5 to 10km and they generally lack detailed representation of urban effects. Two suites are used in the framework of the EC FP7 project MACC (Monitoring of Atmosphere Composition and Climate) to demonstrate how downscaling from the European MACC ensemble to local-scale air quality forecast will be carried out: one will illustrate capabilities for the city of Copenhagen (Denmark); the second will focus on the city of Bucharest (Romania). This work is devoted to the first suite, where methodological aspects of downscaling from regional (European/ Denmark) to urban scale (Copenhagen), and from the urban down to street scale. The first results of downscaling according to the proposed methodology are presented. The potential for downscaling of European air quality forecasts by operating urban and street-level forecast models is evaluated. This will bring a strong support for continuous improvement of the regional forecast modelling systems for air quality in Europe, and underline clear perspectives for the future regional air quality core and downstream services for end-users. At the end of the MACC project, requirements on "how-to-do" downscaling of European air-quality forecasts to the city and street levels with different approaches will be formulated.

  11. Air Quality Forecasts Using the NASA GEOS Model

    NASA Technical Reports Server (NTRS)

    Keller, Christoph A.; Knowland, K. Emma; Nielsen, Jon E.; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Follette-Cook, Melanie; Liu, Junhua; hide

    2018-01-01

    We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.

  12. AROME-Arctic: New operational NWP model for the Arctic region

    NASA Astrophysics Data System (ADS)

    Süld, Jakob; Dale, Knut S.; Myrland, Espen; Batrak, Yurii; Homleid, Mariken; Valkonen, Teresa; Seierstad, Ivar A.; Randriamampianina, Roger

    2016-04-01

    In the frame of the EU-funded project ACCESS (Arctic Climate Change, Economy and Society), MET Norway aimed 1) to describe the present monitoring and forecasting capabilities in the Arctic; and 2) to identify the key factors limiting the forecasting capabilities and to give recommendations on key areas to improve the forecasting capabilities in the Arctic. We have observed that the NWP forecast quality is lower in the Arctic than in the regions further south. Earlier research indicated that one of the factors behind this is the composition of the observing system in the Arctic, in particular the scarceness of conventional observations. To further assess possible strategies for alleviating the situation and propose scenarios for a future Arctic observing system, we have performed a set of experiments to gain a more detailed insight in the contribution of the components of the present observing system in a regional state-of-the-art non-hydrostatic NWP model using the AROME physics (Seity et al, 2011) at 2.5 km horizontal resolution - AROME-Arctic. Our observing system experiment studies showed that conventional observations (Synop, Buoys) can play an important role in correcting the surface state of the model, but prove that the present upper-air conventional (Radiosondes, Aircraft) observations in the area are too scarce to have a significant effect on forecasts. We demonstrate that satellite sounding data play an important role in improving forecast quality. This is the case with satellite temperature sounding data (AMSU-A, IASI), as well as with the satellite moisture sounding data (AMSU-B/MHS, IASI). With these sets of observations, the AROME-Arctic clearly performs better in forecasting extreme events, like for example polar lows. For more details see presentation by Randriamampianina et al. in this session. The encouraging performance of AROME-Arctic lead us to implement it with more observations and improved settings into daily runs with the objective to substitute our actual operational Arctic mesoscale HIRLAM (High Resolution Limited Area Model) NWP model. This presentation will discuss in detail the operational implementation of the AROME-Arctic model together with post-processing methods. Aimed services in the Arctic region covered by the model, such as online weather forecasting (yr.no) and tracking of polar lows (barentswatch.no), is also included.

  13. Canadian Operational Air Quality Forecasting Systems: Status, Recent Progress, and Challenges

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Davignon, Didier; Ménard, Sylvain; Munoz-Alpizar, Rodrigo; Landry, Hugo; Beaulieu, Paul-André; Gilbert, Samuel; Moran, Michael; Chen, Jack

    2017-04-01

    ECCC's Canadian Meteorological Centre Operations (CMCO) division runs a number of operational air quality (AQ)-related systems that revolve around the Regional Air Quality Deterministic Prediction System (RAQDPS). The RAQDPS generates 48-hour AQ forecasts and outputs hourly concentration fields of O3, PM2.5, NO2, and other pollutants twice daily on a North-American domain with 10-km horizontal grid spacing and 80 vertical levels. A closely related AQ forecast system with near-real-time wildfire emissions, known as FireWork, has been run by CMCO during the Canadian wildfire season (April to October) since 2014. This system became operational in June 2016. The CMCO`s operational AQ forecast systems also benefit from several support systems, such as a statistical post-processing model called UMOS-AQ that is applied to enhance forecast reliability at point locations with AQ monitors. The Regional Deterministic Air Quality Analysis (RDAQA) system has also been connected to the RAQDPS since February 2013, and hourly surface objective analyses are now available for O3, PM2.5, NO2, PM10, SO2 and, indirectly, the Canadian Air Quality Health Index. As of June 2015, another version of the RDAQA has been connected to FireWork (RDAQA-FW). For verification purposes, CMCO developed a third support system called Verification for Air QUality Models (VAQUM), which has a geospatial relational database core and which enables continuous monitoring of the AQ forecast systems' performance. Urban environments are particularly subject to AQ pollution. In order to improve the services offered, ECCC has recently been investing efforts to develop a high resolution air quality prediction capability for urban areas in Canada. In this presentation, a comprehensive description of the ECCC AQ systems will be provided, along with a discussion on AQ systems performance. Recent improvements, current challenges, and future directions of the Canadian operational AQ program will also be discussed.

  14. Multi-pollutant surface objective analyses and mapping of air quality health index over North America.

    PubMed

    Robichaud, Alain; Ménard, Richard; Zaïtseva, Yulia; Anselmo, David

    2016-01-01

    Air quality, like weather, can affect everyone, but responses differ depending on the sensitivity and health condition of a given individual. To help protect exposed populations, many countries have put in place real-time air quality nowcasting and forecasting capabilities. We present in this paper an optimal combination of air quality measurements and model outputs and show that it leads to significant improvements in the spatial representativeness of air quality. The product is referred to as multi-pollutant surface objective analyses (MPSOAs). Moreover, based on MPSOA, a geographical mapping of the Canadian Air Quality Health Index (AQHI) is also presented which provides users (policy makers, public, air quality forecasters, and epidemiologists) with a more accurate picture of the health risk anytime and anywhere in Canada and the USA. Since pollutants can also behave as passive atmospheric tracers, they provide information about transport and dispersion and, hence, reveal synoptic and regional meteorological phenomena. MPSOA could also be used to build air pollution climatology, compute local and national trends in air quality, and detect systematic biases in numerical air quality (AQ) models. Finally, initializing AQ models at regular time intervals with MPSOA can produce more accurate air quality forecasts. It is for these reasons that the Canadian Meteorological Centre (CMC) in collaboration with the Air Quality Research Division (AQRD) of Environment Canada has recently implemented MPSOA in their daily operations.

  15. On The Usage Of Fire Smoke Emissions In An Air Quality Forecasting System To Reduce Particular Matter Forecasting Error

    NASA Astrophysics Data System (ADS)

    Huang, H. C.; Pan, L.; McQueen, J.; Lee, P.; ONeill, S. M.; Ruminski, M.; Shafran, P.; DiMego, G.; Huang, J.; Stajner, I.; Upadhayay, S.; Larkin, N. K.

    2016-12-01

    Wildfires contribute to air quality problems not only towards primary emissions of particular matters (PM) but also emitted ozone precursor gases that can lead to elevated ozone concentration. Wildfires are unpredictable and can be ignited by natural causes such as lightning or accidently by human negligent behavior such as live cigarette. Although wildfire impacts on the air quality can be studied by collecting fire information after events, it is extremely difficult to predict future occurrence and behavior of wildfires for real-time air quality forecasts. Because of the time constraints of operational air quality forecasting, assumption of future day's fire behavior often have to be made based on observed fire information in the past. The United States (U.S.) NOAA/NWS built the National Air Quality Forecast Capability (NAQFC) based on the U.S. EPA CMAQ to provide air quality forecast guidance (prediction) publicly. State and local forecasters use the forecast guidance to issue air quality alerts in their area. The NAQFC fine particulates (PM2.5) prediction includes emissions from anthropogenic and biogenic sources, as well as natural sources such as dust storms and fires. The fire emission input to the NAQFC is derived from the NOAA NESDIS HMS fire and smoke detection product and the emission module of the US Forest Service BlueSky Smoke Modeling Framework. This study focuses on the error estimation of NAQFC PM2.5 predictions resulting from fire emissions. The comparisons between the NAQFC modeled PM2.5 and the EPA AirNow surface observation show that present operational NAQFC fire emissions assumption can lead to a huge error in PM2.5 prediction as fire emissions are sometimes placed at wrong location and time. This PM2.5 prediction error can be propagated from the fire source in the Northwest U.S. to downstream areas as far as the Southeast U.S. From this study, a new procedure has been identified to minimize the aforementioned error. An additional 24 hours reanalysis-run of NAQFC using same-day observed fire emission are being tested. Preliminary results have shown that this procedure greatly improves the PM2.5 predictions at both nearby and downstream areas from fire sources. The 24 hours reanalysis-run is critical and necessary especially during extreme fire events to provide better PM2.5 predictions.

  16. Air Quality Forecasts Using the NASA GEOS Model: A Unified Tool from Local to Global Scales

    NASA Technical Reports Server (NTRS)

    Knowland, E. Emma; Keller, Christoph; Nielsen, J. Eric; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Cook, Melanie; Liu, Junhua; hide

    2017-01-01

    We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (approximately 25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.

  17. Advanced, Cost-Based Indices for Forecasting the Generation of Photovoltaic Power

    NASA Astrophysics Data System (ADS)

    Bracale, Antonio; Carpinelli, Guido; Di Fazio, Annarita; Khormali, Shahab

    2014-01-01

    Distribution systems are undergoing significant changes as they evolve toward the grids of the future, which are known as smart grids (SGs). The perspective of SGs is to facilitate large-scale penetration of distributed generation using renewable energy sources (RESs), encourage the efficient use of energy, reduce systems' losses, and improve the quality of power. Photovoltaic (PV) systems have become one of the most promising RESs due to the expected cost reduction and the increased efficiency of PV panels and interfacing converters. The ability to forecast power-production information accurately and reliably is of primary importance for the appropriate management of an SG and for making decisions relative to the energy market. Several forecasting methods have been proposed, and many indices have been used to quantify the accuracy of the forecasts of PV power production. Unfortunately, the indices that have been used have deficiencies and usually do not directly account for the economic consequences of forecasting errors in the framework of liberalized electricity markets. In this paper, advanced, more accurate indices are proposed that account directly for the economic consequences of forecasting errors. The proposed indices also were compared to the most frequently used indices in order to demonstrate their different, improved capability. The comparisons were based on the results obtained using a forecasting method based on an artificial neural network. This method was chosen because it was deemed to be one of the most promising methods available due to its capability for forecasting PV power. Numerical applications also are presented that considered an actual PV plant to provide evidence of the forecasting performances of all of the indices that were considered.

  18. Seasonal Climate Forecasts and Adoption by Agriculture

    NASA Astrophysics Data System (ADS)

    Garbrecht, Jurgen; Meinke, Holger; Sivakumar, Mannava V. K.; Motha, Raymond P.; Salinger, Michael J.

    2005-06-01

    Recent advances in atmospheric and ocean sciences and a better understanding of the global climate have led to skillful climate forecasts at seasonal to interannual timescales, even in midlatitudes. These scientific advances and forecasting capabilities have opened the door to practical applications that benefit society. The benefits include the reduction of weather/climate related risks and vulnerability, increased economic opportunities, enhanced food security, mitigation of adverse climate impacts, protection of environmental quality, and so forth. Agriculture in particular can benefit substantially from accurate long-lead seasonal climate forecasts. Indeed, agricultural production very much depends on weather, climate, and water availability, and unexpected departures from anticipated climate conditions can thwart the best laid management plans. Timely climate forecasts offer means to reduce losses in drought years, increase profitability in good years, deal more effectively with climate variability, and choose from targeted risk-management strategies. In addition to benefiting farmers, forecasts can also help marketing systems and downstream users prepare for anticipated production outcomes and associated consequences.

  19. Integrating Satellite Measurements from Polar-orbiting instruments into Smoke Disperson Forecasts

    NASA Astrophysics Data System (ADS)

    Smith, N.; Pierce, R. B.; Barnet, C.; Gambacorta, A.; Davies, J. E.; Strabala, K.

    2015-12-01

    The IDEA-I (Infusion of Satellite Data into Environmental Applications-International) is a real-time system that currently generates trajectory-based forecasts of aerosol dispersion and stratospheric intrusions. Here we demonstrate new capabilities that use satellite measurements from the Joint Polar Satellite System (JPSS) Suomi-NPP (S-NPP) instruments (operational since 2012) in the generation of trajectory-based predictions of smoke dispersion from North American wildfires. Two such data products are used, namely the Visible Infrared Imaging Radiometer Suite (VIIRS) Aerosol Optical Depth (AOD) and the combined Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) NOAA-Unique CrIS-ATMS Processing System (NUCAPS) carbon monoxide (CO) retrievals. The latter is a new data product made possible by the release of full spectral-resolution CrIS measurements since December 2014. Once NUCAPS CO becomes operationally available it will be used in real-time applications such as IDEA-I along with VIIRS AOD and meteorological forecast fields to support National Weather Service (NWS) Incident Meteorologist (IMET) and air quality management decision making. By combining different measurements, the information content of the IDEA-I transport and dispersion forecast is improved within the complex terrain features that dominate the Western US and Alaska. The primary user community of smoke forecasts is the Western regions of the National Weather Service (NWS) and US Environmental Protection Agency (EPA) due to the significant impacts of wildfires in these regions. With this we demonstrate the quality of the smoke dispersion forecasts that can be achieved by integrating polar-orbiting satellite measurements with forecast models to enable on-site decision support services for fire incident management teams and other real-time air quality agencies.

  20. Comparison of Satellite Observations of Aerosol Optical Depth to Surface Monitor Fine Particle Concentration

    NASA Technical Reports Server (NTRS)

    Kleb, Mary M.; AlSaadi, Jassim A.; Neil, Doreen O.; Pierce, Robert B.; Pippin, Margartet R.; Roell, Marilee M.; Kittaka, Chieko; Szykman, James J.

    2004-01-01

    Under NASA's Earth Science Applications Program, the Infusing satellite Data into Environmental Applications (IDEA) project examined the relationship between satellite observations and surface monitors of air pollutants to facilitate a more capable and integrated observing network. This report provides a comparison of satellite aerosol optical depth to surface monitor fine particle concentration observations for the month of September 2003 at more than 300 individual locations in the continental US. During September 2003, IDEA provided prototype, near real-time data-fusion products to the Environmental Protection Agency (EPA) directed toward improving the accuracy of EPA s next-day Air Quality Index (AQI) forecasts. Researchers from NASA Langley Research Center and EPA used data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument combined with EPA ground network data to create a NASA-data-enhanced Forecast Tool. Air quality forecasters used this tool to prepare their forecasts of particle pollution, or particulate matter less than 2.5 microns in diameter (PM2.5), for the next-day AQI. The archived data provide a rich resource for further studies and analysis. The IDEA project uses data sets and models developed for tropospheric chemistry research to assist federal, state, and local agencies in making decisions concerning air quality management to protect public health.

  1. The FireWork air quality forecast system with near-real-time biomass burning emissions: Recent developments and evaluation of performance for the 2015 North American wildfire season.

    PubMed

    Pavlovic, Radenko; Chen, Jack; Anderson, Kerry; Moran, Michael D; Beaulieu, Paul-André; Davignon, Didier; Cousineau, Sophie

    2016-09-01

    Environment and Climate Change Canada's FireWork air quality (AQ) forecast system for North America with near-real-time biomass burning emissions has been running experimentally during the Canadian wildfire season since 2013. The system runs twice per day with model initializations at 00 UTC and 12 UTC, and produces numerical AQ forecast guidance with 48-hr lead time. In this work we describe the FireWork system, which incorporates near-real-time biomass burning emissions based on the Canadian Wildland Fire Information System (CWFIS) as an input to the operational Regional Air Quality Deterministic Prediction System (RAQDPS). To demonstrate the capability of the system we analyzed two forecast periods in 2015 (June 2-July 15, and August 15-31) when fire activity was high, and observed fire-smoke-impacted areas in western Canada and the western United States. Modeled PM2.5 surface concentrations were compared with surface measurements and benchmarked with results from the operational RAQDPS, which did not consider near-real-time biomass burning emissions. Model performance statistics showed that FireWork outperformed RAQDPS with improvements in forecast hourly PM2.5 across the region; the results were especially significant for stations near the path of fire plume trajectories. Although the hourly PM2.5 concentrations predicted by FireWork still displayed bias for areas with active fires for these two periods (mean bias [MB] of -7.3 µg m(-3) and 3.1 µg m(-3)), it showed better forecast skill than the RAQDPS (MB of -11.7 µg m(-3) and -5.8 µg m(-3)) and demonstrated a greater ability to capture temporal variability of episodic PM2.5 events (correlation coefficient values of 0.50 and 0.69 for FireWork compared to 0.03 and 0.11 for RAQDPS). A categorical forecast comparison based on an hourly PM2.5 threshold of 30 µg m(-3) also showed improved scores for probability of detection (POD), critical success index (CSI), and false alarm rate (FAR). Smoke from wildfires can have a large impact on regional air quality (AQ) and can expose populations to elevated pollution levels. Environment and Climate Change Canada has been producing operational air quality forecasts for all of Canada since 2009 and is now working to include near-real-time wildfire emissions (NRTWE) in its operational AQ forecasting system. An experimental forecast system named FireWork, which includes NRTWE, has been undergoing testing and evaluation since 2013. A performance analysis of FireWork forecasts for the 2015 wildfire season shows that FireWork provides significant improvements to surface PM2.5 forecasts and valuable guidance to regional forecasters and first responders.

  2. Developing Dual Polarization Applications For 45th Weather Squadron's (45 WS) New Weather Radar: A Cooperative Project With The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    Roeder, W.P.; Peterson, W.A.; Carey, L.D.; Deierling, W.; McNamara, T.M.

    2009-01-01

    A new weather radar is being acquired for use in support of America s space program at Cape Canaveral Air Force Station, NASA Kennedy Space Center, and Patrick AFB on the east coast of central Florida. This new radar includes dual polarization capability, which has not been available to 45 WS previously. The 45 WS has teamed with NSSTC with funding from NASA Marshall Spaceflight Flight Center to improve their use of this new dual polarization capability when it is implemented operationally. The project goals include developing a temperature profile adaptive scan strategy, developing training materials, and developing forecast techniques and tools using dual polarization products. The temperature profile adaptive scan strategy will provide the scan angles that provide the optimal compromise between volume scan rate, vertical resolution, phenomena detection, data quality, and reduced cone-of-silence for the 45 WS mission. The mission requirements include outstanding detection of low level boundaries for thunderstorm prediction, excellent vertical resolution in the atmosphere electrification layer between 0 C and -20 C for lightning forecasting and Lightning Launch Commit Criteria evaluation, good detection of anvil clouds for Lightning Launch Commit Criteria evaluation, reduced cone-of-silence, fast volume scans, and many samples per pulse for good data quality. The training materials will emphasize the appropriate applications most important to the 45 WS mission. These include forecasting the onset and cessation of lightning, forecasting convective winds, and hopefully the inference of electrical fields in clouds. The training materials will focus on annotated radar imagery based on products available to the 45 WS. Other examples will include time sequenced radar products without annotation to simulate radar operations. This will reinforce the forecast concepts and also allow testing of the forecasters. The new dual polarization techniques and tools will focus on the appropriate applications for the 45 WS mission. These include forecasting the onset of lightning, the cessation of lightning, convective winds, and hopefully the inference of electrical fields in clouds. This presentation will report on the results achieved so far in the project.

  3. Evaluating the Vertical Distribution of Ozone and its Relationship to Pollution Events in Air Quality Models using Satellite Data

    NASA Astrophysics Data System (ADS)

    Osterman, G. B.; Neu, J. L.; Eldering, A.; Pinder, R. W.; Tang, Y.; McQueen, J.

    2014-12-01

    Most regional scale models that are used for air quality forecasts and ozone source attribution do not adequately capture the distribution of ozone in the mid- and upper troposphere, but it is unclear how this shortcoming relates to their ability to simulate surface ozone. We combine ozone profile data from the NASA Earth Observing System (EOS) Tropospheric Emission Spectrometer (TES) and a new joint product from TES and the Ozone Monitoring Instrument along with ozonesonde measurements and EPA AirNow ground station ozone data to examine air quality events during August 2006 in the Community Multi-Scale Air Quality (CMAQ) and National Air Quality Forecast Capability (NAQFC) models. We present both aggregated statistics and case-study analyses with the goal of assessing the relationship between the models' ability to reproduce surface air quality events and their ability to capture the vertical distribution of ozone. We find that the models lack the mid-tropospheric ozone variability seen in TES and the ozonesonde data, and discuss the conditions under which this variability appears to be important for surface air quality.

  4. Application, evaluation and sensitivity analysis of the coupled WRF-CMAQ system from regional to urban scales

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science chemical transport model (CTM) capable of simulating the emission, transport and fate of numerous air pollutants. Similarly, the Weather Research and Forecasting (WRF) model is a state-of-the-science mete...

  5. Korea-United States Air Quality (KORUS-AQ) Campaign

    NASA Technical Reports Server (NTRS)

    Castellanos, Patricia; Da Silva, Arlindo; Longo-De Freitas, Karla

    2017-01-01

    The Korea-United States Air Quality (KORUS-AQ) campaign was an international cooperative field study based out of Osan Air Base, Songtan, South Korea (about 60 kilometers south of Seoul) in April-June 2016. A comprehensive suite of instruments capable of measuring atmospheric composition was deployed around the Korean peninsula on aircrafts, ships, and at ground sites in order to characterize local and transboundary pollution. The NASA Goddard Earth Observing System, version 5 (GEOS-5) forecast model was used for near real time meteorological and aerosol forecasting and flight planning during the KORUS-AQ campaign. Evaluation of GEOS-5 against observations from the campaign will help to identify inaccuracies in the models physical and chemical processes in this region within East Asia and lead to further developments of the modeling system.

  6. The FireWork air quality forecast system with near-real-time biomass burning emissions: Recent developments and evaluation of performance for the 2015 North American wildfire season

    PubMed Central

    Pavlovic, Radenko; Chen, Jack; Anderson, Kerry; Moran, Michael D.; Beaulieu, Paul-André; Davignon, Didier; Cousineau, Sophie

    2016-01-01

    ABSTRACT Environment and Climate Change Canada’s FireWork air quality (AQ) forecast system for North America with near-real-time biomass burning emissions has been running experimentally during the Canadian wildfire season since 2013. The system runs twice per day with model initializations at 00 UTC and 12 UTC, and produces numerical AQ forecast guidance with 48-hr lead time. In this work we describe the FireWork system, which incorporates near-real-time biomass burning emissions based on the Canadian Wildland Fire Information System (CWFIS) as an input to the operational Regional Air Quality Deterministic Prediction System (RAQDPS). To demonstrate the capability of the system we analyzed two forecast periods in 2015 (June 2–July 15, and August 15–31) when fire activity was high, and observed fire-smoke-impacted areas in western Canada and the western United States. Modeled PM2.5 surface concentrations were compared with surface measurements and benchmarked with results from the operational RAQDPS, which did not consider near-real-time biomass burning emissions. Model performance statistics showed that FireWork outperformed RAQDPS with improvements in forecast hourly PM2.5 across the region; the results were especially significant for stations near the path of fire plume trajectories. Although the hourly PM2.5 concentrations predicted by FireWork still displayed bias for areas with active fires for these two periods (mean bias [MB] of –7.3 µg m−3 and 3.1 µg m−3), it showed better forecast skill than the RAQDPS (MB of –11.7 µg m−3 and –5.8 µg m−3) and demonstrated a greater ability to capture temporal variability of episodic PM2.5 events (correlation coefficient values of 0.50 and 0.69 for FireWork compared to 0.03 and 0.11 for RAQDPS). A categorical forecast comparison based on an hourly PM2.5 threshold of 30 µg m−3 also showed improved scores for probability of detection (POD), critical success index (CSI), and false alarm rate (FAR). Implications: Smoke from wildfires can have a large impact on regional air quality (AQ) and can expose populations to elevated pollution levels. Environment and Climate Change Canada has been producing operational air quality forecasts for all of Canada since 2009 and is now working to include near-real-time wildfire emissions (NRTWE) in its operational AQ forecasting system. An experimental forecast system named FireWork, which includes NRTWE, has been undergoing testing and evaluation since 2013. A performance analysis of FireWork forecasts for the 2015 wildfire season shows that FireWork provides significant improvements to surface PM2.5 forecasts and valuable guidance to regional forecasters and first responders. PMID:26934496

  7. DEA-I: A Globally Configurable Open Source Software Package in Support of Air Quality Forecasts

    NASA Astrophysics Data System (ADS)

    Davies, J.; Strabala, K.; Pierce, R.; Huang, H.; Schiffer, E.

    2012-12-01

    During September 2003, a team of NASA, NOAA, and EPA researchers demonstrated a prototype for using Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth retrievals in daily air quality forecasts; this became known as IDEA (Infusing satellite Data into Environmental Applications). IDEA was part of the NASA Applied Sciences Program strategy to demonstrate practical uses of NASA-sponsored observations from space and predictions. Following its successful demonstration an export version of IDEA, known as IDEA International (IDEA-I), has now been released. IDEA-I supports the Global Earth Observation Systems of Systems (GEOSS) Group on Earth Observations (GEO) Health Societal Benefit Area (SBA) and is being developed within the framework of the GEO Earth Observations in Decision Support Call for Proposals. The vehicle for IDEA-I release is the International MODIS and AIRS (Atmospheric Infrared Sounder) Processing Package (IMAPP), developed at the Space Science and Engineering Center, University of Wisconsin-Madison (SSEC/UW-Madison). IMAPP is a NASA-funded and freely-distributed software package which allows any ground station capable of receiving direct broadcast from Terra or Aqua to produce calibrated and geolocated radiances, and a suite of environmental products, of which the IDEA-I 48-hour forward trajectory prediction of high aerosol events is now a part. IDEA-I provides a tool for linking ground-based and satellite capabilities to support international air quality forecasting activities and is to be demonstrated internationally through user training and impact evaluation via a series of IMAPP workshops. This presentation describes the IMAPP implementation of IDEA-I in terms of its simple installation and configuration, and through examples of its operation in several regions known for periodic high aerosol events.; Screen capture of the University of Wisconsin implementation of the real-time direct broadcast IDEA-I Air Quality monitoring website. This example uses Terra MODIS Aerosol Optical Depth retrievals to identify regions of high aerosol concentrations. A trajectory model is then run that provide a forecast of the horizontal and vertical movement of the aerosols over the next 48 hours.

  8. Some economic benefits of a synchronous earth observatory satellite

    NASA Technical Reports Server (NTRS)

    Battacharyya, R. K.; Greenberg, J. S.; Lowe, D. S.; Sattinger, I. J.

    1974-01-01

    An analysis was made of the economic benefits which might be derived from reduced forecasting errors made possible by data obtained from a synchronous satellite system which can collect earth observation and meteorological data continuously and on demand. User costs directly associated with achieving benefits are included. In the analysis, benefits were evaluated which might be obtained as a result of improved thunderstorm forecasting, frost warning, and grain harvest forecasting capabilities. The anticipated system capabilities were used to arrive at realistic estimates of system performance on which to base the benefit analysis. Emphasis was placed on the benefits which result from system forecasting accuracies. Benefits from improved thunderstorm forecasts are indicated for the construction, air transportation, and agricultural industries. The effects of improved frost warning capability on the citrus crop are determined. The benefits from improved grain forecasting capability are evaluated in terms of both U.S. benefits resulting from domestic grain distribution and U.S. benefits from international grain distribution.

  9. Assessing probabilistic predictions of ENSO phase and intensity from the North American Multimodel Ensemble

    NASA Astrophysics Data System (ADS)

    Tippett, Michael K.; Ranganathan, Meghana; L'Heureux, Michelle; Barnston, Anthony G.; DelSole, Timothy

    2017-05-01

    Here we examine the skill of three, five, and seven-category monthly ENSO probability forecasts (1982-2015) from single and multi-model ensemble integrations of the North American Multimodel Ensemble (NMME) project. Three-category forecasts are typical and provide probabilities for the ENSO phase (El Niño, La Niña or neutral). Additional forecast categories indicate the likelihood of ENSO conditions being weak, moderate or strong. The level of skill observed for differing numbers of forecast categories can help to determine the appropriate degree of forecast precision. However, the dependence of the skill score itself on the number of forecast categories must be taken into account. For reliable forecasts with same quality, the ranked probability skill score (RPSS) is fairly insensitive to the number of categories, while the logarithmic skill score (LSS) is an information measure and increases as categories are added. The ignorance skill score decreases to zero as forecast categories are added, regardless of skill level. For all models, forecast formats and skill scores, the northern spring predictability barrier explains much of the dependence of skill on target month and forecast lead. RPSS values for monthly ENSO forecasts show little dependence on the number of categories. However, the LSS of multimodel ensemble forecasts with five and seven categories show statistically significant advantages over the three-category forecasts for the targets and leads that are least affected by the spring predictability barrier. These findings indicate that current prediction systems are capable of providing more detailed probabilistic forecasts of ENSO phase and amplitude than are typically provided.

  10. The Simulations of Wildland Fire Smoke PM25 in the NWS Air Quality Forecasting Systems

    NASA Astrophysics Data System (ADS)

    Huang, H. C.; Pan, L.; McQueen, J.; Lee, P.; ONeill, S. M.; Ruminski, M.; Shafran, P.; Huang, J.; Stajner, I.; Upadhayay, S.; Larkin, N. K.

    2017-12-01

    The increase of wildland fire intensity and frequency in the United States (U.S.) has led to property loss, human fatality, and poor air quality due to elevated particulate matters and surface ozone concentrations. The NOAA/National Weather Service (NWS) built the National Air Quality Forecast Capability (NAQFC) based on the U.S. Environmental Protection Agency (EPA) Community Multi-scale Air Quality (CMAQ) Modeling System driven by the NCEP North American Mesoscale Forecast System meteorology to provide ozone and fine particulate matter (PM2.5) forecast guidance publicly. State and local forecasters use the NWS air quality forecast guidance to issue air quality alerts in their area. The NAQFC PM2.5 predictions include emissions from anthropogenic and biogenic sources, as well as natural sources such as dust storms and wildland fires. The wildland fire emission inputs to the NAQFC is derived from the NOAA National Environmental Satellite, Data, and Information Service Hazard Mapping System fire and smoke detection product and the emission module of the U.S. Forest Service (USFS) BlueSky Smoke Modeling Framework. Wildland fires are unpredictable and can be ignited by natural causes such as lightning or be human-caused. It is extremely difficult to predict future occurrences and behavior of wildland fires, as is the available bio-fuel to be burned for real-time air quality predictions. Assumptions of future day's wildland fire behavior often have to be made from older observed wildland fire information. The comparisons between the NAQFC modeled PM2.5 and the EPA AirNow surface observation show that large errors in PM2.5 prediction can occur if fire smoke emissions are sometimes placed at the wrong location and/or time. A configuration of NAQFC CMAQ-system to re-run previous 24 hours, during which wildland fires were observed from satellites has been included recently. This study focuses on the effort performed to minimize the error in NAQFC PM2.5 predictions resulting from incorporating fire smoke emissions into the NAQFC from a recently updated newer version of USFS BlueSky system. This study will show how new approaches has improved the PM2.5 predictions at both nearby and downstream areas from fire sources. Furthermore, Environment and Climate Change Canada (ECCC) fire emissions data are being tested.

  11. A case study: application of statistical process control tool for determining process capability and sigma level.

    PubMed

    Chopra, Vikram; Bairagi, Mukesh; Trivedi, P; Nagar, Mona

    2012-01-01

    Statistical process control is the application of statistical methods to the measurement and analysis of variation process. Various regulatory authorities such as Validation Guidance for Industry (2011), International Conference on Harmonisation ICH Q10 (2009), the Health Canada guidelines (2009), Health Science Authority, Singapore: Guidance for Product Quality Review (2008), and International Organization for Standardization ISO-9000:2005 provide regulatory support for the application of statistical process control for better process control and understanding. In this study risk assessments, normal probability distributions, control charts, and capability charts are employed for selection of critical quality attributes, determination of normal probability distribution, statistical stability, and capability of production processes, respectively. The objective of this study is to determine tablet production process quality in the form of sigma process capability. By interpreting data and graph trends, forecasting of critical quality attributes, sigma process capability, and stability of process were studied. The overall study contributes to an assessment of process at the sigma level with respect to out-of-specification attributes produced. Finally, the study will point to an area where the application of quality improvement and quality risk assessment principles for achievement of six sigma-capable processes is possible. Statistical process control is the most advantageous tool for determination of the quality of any production process. This tool is new for the pharmaceutical tablet production process. In the case of pharmaceutical tablet production processes, the quality control parameters act as quality assessment parameters. Application of risk assessment provides selection of critical quality attributes among quality control parameters. Sequential application of normality distributions, control charts, and capability analyses provides a valid statistical process control study on process. Interpretation of such a study provides information about stability, process variability, changing of trends, and quantification of process ability against defective production. Comparative evaluation of critical quality attributes by Pareto charts provides the least capable and most variable process that is liable for improvement. Statistical process control thus proves to be an important tool for six sigma-capable process development and continuous quality improvement.

  12. Development of visibility forecasting modeling framework for the Lower Fraser Valley of British Columbia using Canada's Regional Air Quality Deterministic Prediction System.

    PubMed

    So, Rita; Teakles, Andrew; Baik, Jonathan; Vingarzan, Roxanne; Jones, Keith

    2018-05-01

    Visibility degradation, one of the most noticeable indicators of poor air quality, can occur despite relatively low levels of particulate matter when the risk to human health is low. The availability of timely and reliable visibility forecasts can provide a more comprehensive understanding of the anticipated air quality conditions to better inform local jurisdictions and the public. This paper describes the development of a visibility forecasting modeling framework, which leverages the existing air quality and meteorological forecasts from Canada's operational Regional Air Quality Deterministic Prediction System (RAQDPS) for the Lower Fraser Valley of British Columbia. A baseline model (GM-IMPROVE) was constructed using the revised IMPROVE algorithm based on unprocessed forecasts from the RAQDPS. Three additional prototypes (UMOS-HYB, GM-MLR, GM-RF) were also developed and assessed for forecast performance of up to 48 hr lead time during various air quality and meteorological conditions. Forecast performance was assessed by examining their ability to provide both numerical and categorical forecasts in the form of 1-hr total extinction and Visual Air Quality Ratings (VAQR), respectively. While GM-IMPROVE generally overestimated extinction more than twofold, it had skill in forecasting the relative species contribution to visibility impairment, including ammonium sulfate and ammonium nitrate. Both statistical prototypes, GM-MLR and GM-RF, performed well in forecasting 1-hr extinction during daylight hours, with correlation coefficients (R) ranging from 0.59 to 0.77. UMOS-HYB, a prototype based on postprocessed air quality forecasts without additional statistical modeling, provided reasonable forecasts during most daylight hours. In terms of categorical forecasts, the best prototype was approximately 75 to 87% correct, when forecasting for a condensed three-category VAQR. A case study, focusing on a poor visual air quality yet low Air Quality Health Index episode, illustrated that the statistical prototypes were able to provide timely and skillful visibility forecasts with lead time up to 48 hr. This study describes the development of a visibility forecasting modeling framework, which leverages the existing air quality and meteorological forecasts from Canada's operational Regional Air Quality Deterministic Prediction System. The main applications include tourism and recreation planning, input into air quality management programs, and educational outreach. Visibility forecasts, when supplemented with the existing air quality and health based forecasts, can assist jurisdictions to anticipate the visual air quality impacts as perceived by the public, which can potentially assist in formulating the appropriate air quality bulletins and recommendations.

  13. Winter wheat quality monitoring and forecasting system based on remote sensing and environmental factors

    NASA Astrophysics Data System (ADS)

    Haiyang, Yu; Yanmei, Liu; Guijun, Yang; Xiaodong, Yang; Dong, Ren; Chenwei, Nie

    2014-03-01

    To achieve dynamic winter wheat quality monitoring and forecasting in larger scale regions, the objective of this study was to design and develop a winter wheat quality monitoring and forecasting system by using a remote sensing index and environmental factors. The winter wheat quality trend was forecasted before the harvest and quality was monitored after the harvest, respectively. The traditional quality-vegetation index from remote sensing monitoring and forecasting models were improved. Combining with latitude information, the vegetation index was used to estimate agronomy parameters which were related with winter wheat quality in the early stages for forecasting the quality trend. A combination of rainfall in May, temperature in May, illumination at later May, the soil available nitrogen content and other environmental factors established the quality monitoring model. Compared with a simple quality-vegetation index, the remote sensing monitoring and forecasting model used in this system get greatly improved accuracy. Winter wheat quality was monitored and forecasted based on the above models, and this system was completed based on WebGIS technology. Finally, in 2010 the operation process of winter wheat quality monitoring system was presented in Beijing, the monitoring and forecasting results was outputted as thematic maps.

  14. Evaluation of Day and Nighttime Lower Tropospheric Ozone from Air Quality Models using TES and Ozonesondes

    NASA Astrophysics Data System (ADS)

    Osterman, G. B.; Neu, J. L.; Eldering, A.; Pinder, R. W.; Tang, Y.; McQueen, J.

    2012-12-01

    At night, ozone can be transported long distances above the surface inversion layer without chemical destruction or deposition. As the boundary layer breaks up in the morning, this nocturnal ozone can be mixed down to the surface and rapidly increase ozone concentrations at a rate that can rival chemical ozone production. Most regional scale models that are used for air quality forecasts and ozone source attribution do not adequately capture nighttime ozone concentrations and transport. We combine ozone profile data from the NASA Earth Observing System (EOS) Tropospheric Emission Spectrometer (TES) and other sensors, ozonesonde data collected during the INTEX Ozonesonde Network Study (IONS), EPA AirNow ground station ozone data, the Community Multi-Scale Air Quality (CMAQ) model, and the National Air Quality Forecast Capability (NAQFC) model to examine air quality events during August 2006. We present both aggregated statistics and case-study analyses that assess the relationship between the models' ability to reproduce surface air quality events and their ability to capture the vertical distribution of ozone both during the day and at night. We perform the comparisons looking at the geospatial dependence in the differences between the measurements and models under different surface ozone conditions.

  15. Operational monitoring and forecasting of bathing water quality through exploiting satellite Earth observation and models: The AlgaRisk demonstration service

    NASA Astrophysics Data System (ADS)

    Shutler, J. D.; Warren, M. A.; Miller, P. I.; Barciela, R.; Mahdon, R.; Land, P. E.; Edwards, K.; Wither, A.; Jonas, P.; Murdoch, N.; Roast, S. D.; Clements, O.; Kurekin, A.

    2015-04-01

    Coastal zones and shelf-seas are important for tourism, commercial fishing and aquaculture. As a result the importance of good water quality within these regions to support life is recognised worldwide and a number of international directives for monitoring them now exist. This paper describes the AlgaRisk water quality monitoring demonstration service that was developed and operated for the UK Environment Agency in response to the microbiological monitoring needs within the revised European Union Bathing Waters Directive. The AlgaRisk approach used satellite Earth observation to provide a near-real time monitoring of microbiological water quality and a series of nested operational models (atmospheric and hydrodynamic-ecosystem) provided a forecast capability. For the period of the demonstration service (2008-2013) all monitoring and forecast datasets were processed in near-real time on a daily basis and disseminated through a dedicated web portal, with extracted data automatically emailed to agency staff. Near-real time data processing was achieved using a series of supercomputers and an Open Grid approach. The novel web portal and java-based viewer enabled users to visualise and interrogate current and historical data. The system description, the algorithms employed and example results focussing on a case study of an incidence of the harmful algal bloom Karenia mikimotoi are presented. Recommendations and the potential exploitation of web services for future water quality monitoring services are discussed.

  16. Insights on the impact of systematic model errors on data assimilation performance in changing catchments

    NASA Astrophysics Data System (ADS)

    Pathiraja, S.; Anghileri, D.; Burlando, P.; Sharma, A.; Marshall, L.; Moradkhani, H.

    2018-03-01

    The global prevalence of rapid and extensive land use change necessitates hydrologic modelling methodologies capable of handling non-stationarity. This is particularly true in the context of Hydrologic Forecasting using Data Assimilation. Data Assimilation has been shown to dramatically improve forecast skill in hydrologic and meteorological applications, although such improvements are conditional on using bias-free observations and model simulations. A hydrologic model calibrated to a particular set of land cover conditions has the potential to produce biased simulations when the catchment is disturbed. This paper sheds new light on the impacts of bias or systematic errors in hydrologic data assimilation, in the context of forecasting in catchments with changing land surface conditions and a model calibrated to pre-change conditions. We posit that in such cases, the impact of systematic model errors on assimilation or forecast quality is dependent on the inherent prediction uncertainty that persists even in pre-change conditions. Through experiments on a range of catchments, we develop a conceptual relationship between total prediction uncertainty and the impacts of land cover changes on the hydrologic regime to demonstrate how forecast quality is affected when using state estimation Data Assimilation with no modifications to account for land cover changes. This work shows that systematic model errors as a result of changing or changed catchment conditions do not always necessitate adjustments to the modelling or assimilation methodology, for instance through re-calibration of the hydrologic model, time varying model parameters or revised offline/online bias estimation.

  17. Modeling and forecasting the distribution of Vibrio vulnificus in Chesapeake Bay.

    PubMed

    Jacobs, J M; Rhodes, M; Brown, C W; Hood, R R; Leight, A; Long, W; Wood, R

    2014-11-01

    To construct statistical models to predict the presence, abundance and potential virulence of Vibrio vulnificus in surface waters of Chesapeake Bay for implementation in ecological forecasting systems. We evaluated and applied previously published qPCR assays to water samples (n = 1636) collected from Chesapeake Bay from 2007-2010 in conjunction with State water quality monitoring programmes. A variety of statistical techniques were used in concert to identify water quality parameters associated with V. vulnificus presence, abundance and virulence markers in the interest of developing strong predictive models for use in regional oceanographic modeling systems. A suite of models are provided to represent the best model fit and alternatives using environmental variables that allow them to be put to immediate use in current ecological forecasting efforts. Environmental parameters such as temperature, salinity and turbidity are capable of accurately predicting abundance and distribution of V. vulnificus in Chesapeake Bay. Forcing these empirical models with output from ocean modeling systems allows for spatially explicit forecasts for up to 48 h in the future. This study uses one of the largest data sets compiled to model Vibrio in an estuary, enhances our understanding of environmental correlates with abundance, distribution and presence of potentially virulent strains and offers a method to forecast these pathogens that may be replicated in other regions. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  18. Study of the potential health and environmental impacts from the development of liquid-dominated geothermal resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, J.M.

    1982-09-01

    This document describes seven programs to provide scientific input, understanding, and forecasting capability for hydrothermal energy areas needing resolution. The three major areas addressed are (1) the impacts on living components of the aqueous and terrestrial ecosystems, (2) the impacts on the quality of the abiotic environment itself, and (3) the techniques needed to measure releases from hydrothermal activities.

  19. Is the economic value of hydrological forecasts related to their quality? Case study of the hydropower sector.

    NASA Astrophysics Data System (ADS)

    Cassagnole, Manon; Ramos, Maria-Helena; Thirel, Guillaume; Gailhard, Joël; Garçon, Rémy

    2017-04-01

    The improvement of a forecasting system and the evaluation of the quality of its forecasts are recurrent steps in operational practice. However, the evaluation of forecast value or forecast usefulness for better decision-making is, to our knowledge, less frequent, even if it might be essential in many sectors such as hydropower and flood warning. In the hydropower sector, forecast value can be quantified by the economic gain obtained with the optimization of operations or reservoir management rules. Several hydropower operational systems use medium-range forecasts (up to 7-10 days ahead) and energy price predictions to optimize hydropower production. Hence, the operation of hydropower systems, including the management of water in reservoirs, is impacted by weather, climate and hydrologic variability as well as extreme events. In order to assess how the quality of hydrometeorological forecasts impact operations, it is essential to first understand if and how operations and management rules are sensitive to input predictions of different quality. This study investigates how 7-day ahead deterministic and ensemble streamflow forecasts of different quality might impact the economic gains of energy production. It is based on a research model developed by Irstea and EDF to investigate issues relevant to the links between quality and value of forecasts in the optimisation of energy production at the short range. Based on streamflow forecasts and pre-defined management constraints, the model defines the best hours (i.e., the hours with high energy prices) to produce electricity. To highlight the link between forecasts quality and their economic value, we built several synthetic ensemble forecasts based on observed streamflow time series. These inputs are generated in a controlled environment in order to obtain forecasts of different quality in terms of accuracy and reliability. These forecasts are used to assess the sensitivity of the decision model to forecast quality. Relationships between forecast quality and economic value are discussed. This work is part of the IMPREX project, a research project supported by the European Commission under the Horizon 2020 Framework programme, with grant No. 641811 (http://www.imprex.eu)

  20. Projected Applications of a ``Climate in a Box'' Computing System at the NASA Short-term Prediction Research and Transition (SPoRT) Center

    NASA Astrophysics Data System (ADS)

    Jedlovec, G.; Molthan, A.; Zavodsky, B.; Case, J.; Lafontaine, F.

    2010-12-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to “Climate in a Box” systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the “Climate in a Box” system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA’s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the “Climate in a Box” system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed within the NASA SPoRT Center, with benefits provided to the operational forecasting community.

  1. Projected Applications of a "Climate in a Box" Computing System at the NASA Short-Term Prediction Research and Transition (SPoRT) Center

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Molthan, Andrew L.; Zavodsky, Bradley; Case, Jonathan L.; LaFontaine, Frank J.

    2010-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to "Climate in a Box" systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the "Climate in a Box" system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the "Climate in a Box" system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed within the NASA SPoRT Center, with benefits provided to the operational forecasting community.

  2. AQA - Air Quality model for Austria - Evaluation and Developments

    NASA Astrophysics Data System (ADS)

    Hirtl, M.; Krüger, B. C.; Baumann-Stanzer, K.; Skomorowski, P.

    2009-04-01

    The regional weather forecast model ALADIN of the Central Institute for Meteorology and Geodynamics (ZAMG) is used in combination with the chemical transport model CAMx (www.camx.com) to conduct forecasts of gaseous and particulate air pollution over Europe. The forecasts which are done in cooperation with the University of Natural Resources and Applied Life Sciences in Vienna (BOKU) are supported by the regional governments since 2005 with the main interest on the prediction of tropospheric ozone. The daily ozone forecasts are evaluated for the summer 2008 with the observations of about 150 air quality stations in Austria. In 2008 the emission-model SMOKE was integrated into the modelling system to calculate the biogenic emissions. The anthropogenic emissions are based on the newest EMEP data set as well as on regional inventories for the core domain. The performance of SMOKE is shown for a summer period in 2007. In the frame of the COST-action 728 „Enhancing mesoscale meteorological modelling capabilities for air pollution and dispersion applications", multi-model ensembles are used to conduct an international model evaluation. The model calculations of meteorological- and concentration fields are compared to measurements on the ensemble platform at the Joint Research Centre (JRC) in Ispra. The results for 2 episodes in 2006 show the performance of the different models as well as of the model ensemble.

  3. Stakeholder Alignment and Changing Geospatial Information Capabilities

    NASA Astrophysics Data System (ADS)

    Winter, S.; Cutcher-Gershenfeld, J.; King, J. L.

    2015-12-01

    Changing geospatial information capabilities can have major economic and social effects on activities such as drought monitoring, weather forecasts, agricultural productivity projections, water and air quality assessments, the effects of forestry practices and so on. Whose interests are served by such changes? Two common mistakes are assuming stability in the community of stakeholders and consistency in stakeholder behavior. Stakeholder communities can reconfigure dramatically as some leave the discussion, others enter, and circumstances shift — all resulting in dynamic points of alignment and misalignment . New stakeholders can bring new interests, and existing stakeholders can change their positions. Stakeholders and their interests need to be be considered as geospatial information capabilities change, but this is easier said than done. New ways of thinking about stakeholder alignment in light of changes in capability are presented.

  4. Application of Satellite and Ozonesonde Data to the Study of Nighttime Tropospheric Ozone Impacts and Relationship to Air Quality

    NASA Astrophysics Data System (ADS)

    Osterman, G. B.; Eldering, A.; Neu, J. L.; Tang, Y.; McQueen, J.; Pinder, R. W.

    2011-12-01

    To help protect human health and ecosystems, regional-scale atmospheric chemistry models are used to forecast high ozone events and to design emission control strategies to decrease the frequency and severity of ozone events. Despite the impact that nighttime aloft ozone can have on surface ozone, regional-scale atmospheric chemistry models often do not simulate the nighttime ozone concentrations well and nor do they sufficiently capture the ozone transport patterns. Fully characterizing the importance of the nighttime ozone has been hampered by limited measurements of the vertical distribution of ozone and ozone-precursors. The main focus of this work is to begin to utilize remote sensing data sets to characterize the impact of nighttime aloft ozone to air quality events. We will describe our plans to use NASA satellite data sets, transport models and air quality models to study ozone transport, focusing primarily on nighttime ozone and provide initial results. We will use satellite and ozonesonde data to help understand how well the air quality models are simulating ozone in the lower free troposphere and attempt to characterize the impact of nighttime ozone to air quality events. Our specific objectives are: 1) Characterize nighttime aloft ozone using remote sensing data and sondes. 2) Evaluate the ability of the Community Multi-scale Air Quality (CMAQ) model and the National Air Quality Forecast Capability (NAQFC) model to capture the nighttime aloft ozone and its relationship to air quality events. 3) Analyze a set of air quality events and determine the relationship of air quality events to the nighttime aloft ozone. We will achieve our objectives by utilizing the ozone profile data from the NASA Earth Observing System (EOS) Tropospheric Emission Spectrometer (TES) and other sensors, ozonesonde data collected during the Aura mission (IONS), EPA AirNow ground station ozone data, the CMAQ continental-scale air quality model, and the National Air Quality Forecast model.

  5. The Economic Value of Air Quality Forecasting

    NASA Astrophysics Data System (ADS)

    Anderson-Sumo, Tasha

    Both long-term and daily air quality forecasts provide an essential component to human health and impact costs. According the American Lung Association, the estimated current annual cost of air pollution related illness in the United States, adjusted for inflation (3% per year), is approximately $152 billion. Many of the risks such as hospital visits and morality are associated with poor air quality days (where the Air Quality Index is greater than 100). Groups such as sensitive groups become more susceptible to the resulting conditions and more accurate forecasts would help to take more appropriate precautions. This research focuses on evaluating the utility of air quality forecasting in terms of its potential impacts by building on air quality forecasting and economical metrics. Our analysis includes data collected during the summertime ozone seasons between 2010 and 2012 from air quality models for the Washington, DC/Baltimore, MD region. The metrics that are relevant to our analysis include: (1) The number of times that a high ozone or particulate matter (PM) episode is correctly forecasted, (2) the number of times that high ozone or PM episode is forecasted when it does not occur and (3) the number of times when the air quality forecast predicts a cleaner air episode when the air was observed to have high ozone or PM. Our collection of data included available air quality model forecasts of ozone and particulate matter data from the U.S. Environmental Protection Agency (EPA)'s AIRNOW as well as observational data of ozone and particulate matter from Clean Air Partners. We evaluated the performance of the air quality forecasts with that of the observational data and found that the forecast models perform well for the Baltimore/Washington region and the time interval observed. We estimate the potential amount for the Baltimore/Washington region accrues to a savings of up to 5,905 lives and 5.9 billion dollars per year. This total assumes perfect compliance with bad air quality warning and forecast air quality forecasts. There is a difficulty presented with evaluating the economic utility of the forecasts. All may not comply and even with a low compliance rate of 5% and 72% as the average probability of detection of poor air quality days by the air quality models, we estimate that the forecasting program saves 412 lives or 412 million dollars per year for the region. The totals we found are great or greater than other typical yearly meteorological hazard programs such as tornado or hurricane forecasting and it is clear that the economic value of air quality forecasting in the Baltimore/Washington region is vital.

  6. Evaluation of a regional assimilation system coupled with the WRF-chem model

    NASA Astrophysics Data System (ADS)

    Liu, Yan-an; Gao, Wei; Huang, Hung-lung; Strabala, Kathleen; Liu, Chaoshun; Shi, Runhe

    2013-09-01

    Air quality has become a social issue that is causing great concern to humankind across the globe, but particularly in developing countries. Even though the Weather Research and Forecasting with Chemistry (WRF-Chem) model has been applied in many regions, the resolution for inputting meteorology field analysis still impacts the accuracy of forecast. This article describes the application of the CIMSS Regional Assimilation System (CRAS) in East China, and its capability to assimilate the direct broadcast (DB) satellite data for obtaining more detailed meteorological information, including cloud top pressure (CTP) and total precipitation water (TPW) from MODIS. Performance evaluation of CRAS is based on qualitative and quantitative analyses. Compared with data collected from ERA-Interim, Radiosonde, and the Tropical Rainfall Measuring Mission (TRMM) precipitation measurements using bias and Root Mean Square Error (RMSE), CRAS has a systematic error due to the impact of topography and other factors; however, the forecast accuracy of all elements in the model center area is higher at various levels. The bias computed with Radiosonde reveals that the temperature and geopotential height of CRAS are better than ERA-Interim at first guess. Moreover, the location of the 24 h accumulated precipitation forecast are highly consistent with the TRMM retrieval precipitation, which means that the performance of CRAS is excellent. In summation, the newly built Vtable can realize the function of inputting the meteorology field from CRAS output into WRF, which couples the CRAS with WRF-Chem. Therefore, this study not only provides for forecast accuracy of CRAS, but also increases the capability of running the WRF-Chem model at higher resolutions in the future.

  7. Modeling and forecasting the distribution of Vibrio vulnificus in Chesapeake Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, John M.; Rhodes, M.; Brown, C. W.

    The aim is to construct statistical models to predict the presence, abundance and potential virulence of Vibrio vulnificus in surface waters. A variety of statistical techniques were used in concert to identify water quality parameters associated with V. vulnificus presence, abundance and virulence markers in the interest of developing strong predictive models for use in regional oceanographic modeling systems. A suite of models are provided to represent the best model fit and alternatives using environmental variables that allow them to be put to immediate use in current ecological forecasting efforts. Conclusions: Environmental parameters such as temperature, salinity and turbidity aremore » capable of accurately predicting abundance and distribution of V. vulnificus in Chesapeake Bay. Forcing these empirical models with output from ocean modeling systems allows for spatially explicit forecasts for up to 48 h in the future. This study uses one of the largest data sets compiled to model Vibrio in an estuary, enhances our understanding of environmental correlates with abundance, distribution and presence of potentially virulent strains and offers a method to forecast these pathogens that may be replicated in other regions.« less

  8. Subseasonal to Seasonal Forecasting at NASA in Support of the National Earth System Prediction Capability

    NASA Astrophysics Data System (ADS)

    Considine, D. B.; Pawson, S.; Koster, R. D.; Kovach, R. M.; Vernieres, G.; Schubert, S. D.

    2016-12-01

    NASA has developed and maintains, within the Goddard Modeling and Assimilation Office (GMAO), a seasonal-to-interannual prediction activity in support of the National ESPC, based on the GEOS-5 Atmosphere-Ocean General Circulation Model (AOGCM). This system generates atmospheric, land, and ocean/ice analyses that are used to produce global forecasts. Each month, a 17-member ensemble of forecasts is made, from which various oceanic indices (e.g., El Niño, East Indian Dipole, Atlantic SST anomalies), are computed. Additionally, monthly and seasonal anomalies are computed for several variables from the atmosphere (e.g., 2-meter temperatures, precipitation, geopotential heights), land (drought indices), ocean (subsurface temperature anomalies), and sea ice. These forecasts are provided to the National Multi Model Ensemble (NMME) and the Study of Environmental Arctic Change (SEARCH) sea ice outlook. The quasi-operational nature of this system, with constant generation of products that are shared with the broader community, allows for continual assessment of the impacts of NASA observations on seasonal forecasts - a current example is the altimetry data from the JASON series of satellites. The GMAO's seasonal prediction system is currently being upgraded. Alongside typical enhancements, such as increased spatial resolution and use of more recent model versions with improved representation of physical processes, these developments are designed to enhance the use of NASA observations. One example is the use of aerosol information from NASA's EOS instruments (MODIS). A major motivation is also to include NASA's novel data types, such as soil-moisture from SMAP and other sources of oceanic information (such as salinity). This approach enables NASA to continue contributing to national seasonal forecasting efforts, while simultaneously introducing its novel observing capabilities into the seasonal system in a manner that can demonstrate their systematic impacts on the quality of the products.

  9. Helping Resource Managers Understand Hydroclimatic Variability and Forecasts: A Case Study in Research Equity

    NASA Astrophysics Data System (ADS)

    Hartmann, H. C.; Pagano, T. C.; Sorooshian, S.; Bales, R.

    2002-12-01

    Expectations for hydroclimatic research are evolving as changes in the contract between science and society require researchers to provide "usable science" that can improve resource management policies and practices. However, decision makers have a broad range of abilities to access, interpret, and apply scientific research. "High-end users" have technical capabilities and operational flexibility capable of readily exploiting new information and products. "Low-end users" have fewer resources and are less likely to change their decision making processes without clear demonstration of benefits by influential early adopters (i.e., high-end users). Should research programs aim for efficiency, targeting high-end users? Should they aim for impact, targeting decisions with high economic value or great influence (e.g., state or national agencies)? Or should they focus on equity, whereby outcomes benefit groups across a range of capabilities? In this case study, we focus on hydroclimatic variability and forecasts. Agencies and individuals responsible for resource management decisions have varying perspectives about hydroclimatic variability and opportunities for using forecasts to improve decision outcomes. Improper interpretation of forecasts is widespread and many individuals find it difficult to place forecasts in an appropriate regional historical context. In addressing these issues, we attempted to mitigate traditional inequities in the scope, communication, and accessibility of hydroclimatic research results. High-end users were important in prioritizing information needs, while low-end users were important in determining how information should be communicated. For example, high-end users expressed hesitancy to use seasonal forecasts in the absence of quantitative performance evaluations. Our subsequently developed forecast evaluation framework and research products, however, were guided by the need for a continuum of evaluation measures and interpretive materials to enable low-end users to increase their understanding of probabilistic forecasts, credibility concepts, and implications for decision making. We also developed an interactive forecast assessment tool accessible over the Internet, to support resource decisions by individuals as well as agencies. The tool provides tutorials for guiding forecast interpretation, including quizzes that allow users to test their forecast interpretation skills. Users can monitor recent and historical observations for selected regions, communicated using terminology consistent with available forecast products. The tool also allows users to evaluate forecast performance for the regions, seasons, forecast lead times, and performance criteria relevant to their specific decision making situations. Using consistent product formats, the evaluation component allows individuals to use results at the level they are capable of understanding, while offering opportunity to shift to more sophisticated criteria. Recognizing that many individuals lack Internet access, the forecast assessment webtool design also includes capabilities for customized report generation so extension agents or other trusted information intermediaries can provide material to decision makers at meetings or site visits.

  10. Research on Nonlinear Time Series Forecasting of Time-Delay NN Embedded with Bayesian Regularization

    NASA Astrophysics Data System (ADS)

    Jiang, Weijin; Xu, Yusheng; Xu, Yuhui; Wang, Jianmin

    Based on the idea of nonlinear prediction of phase space reconstruction, this paper presented a time delay BP neural network model, whose generalization capability was improved by Bayesian regularization. Furthermore, the model is applied to forecast the imp&exp trades in one industry. The results showed that the improved model has excellent generalization capabilities, which not only learned the historical curve, but efficiently predicted the trend of business. Comparing with common evaluation of forecasts, we put on a conclusion that nonlinear forecast can not only focus on data combination and precision improvement, it also can vividly reflect the nonlinear characteristic of the forecasting system. While analyzing the forecasting precision of the model, we give a model judgment by calculating the nonlinear characteristic value of the combined serial and original serial, proved that the forecasting model can reasonably 'catch' the dynamic characteristic of the nonlinear system which produced the origin serial.

  11. Metrics for the Evaluation the Utility of Air Quality Forecasting

    NASA Astrophysics Data System (ADS)

    Sumo, T. M.; Stockwell, W. R.

    2013-12-01

    Global warming is expected to lead to higher levels of air pollution and therefore the forecasting of both long-term and daily air quality is an important component for the assessment of the costs of climate change and its impact on human health. Some of the risks associated with poor air quality days (where the Air Pollution Index is greater than 100), include hospital visits and mortality. Accurate air quality forecasting has the potential to allow sensitive groups to take appropriate precautions. This research builds metrics for evaluating the utility of air quality forecasting in terms of its potential impacts. Our analysis of air quality models focuses on the Washington, DC/Baltimore, MD region over the summertime ozone seasons between 2010 and 2012. The metrics that are relevant to our analysis include: (1) The number of times that a high ozone or particulate matter (PM) episode is correctly forecasted, (2) the number of times that high ozone or PM episode is forecasted when it does not occur and (3) the number of times when the air quality forecast predicts a cleaner air episode when the air was observed to have high ozone or PM. Our evaluation of the performance of air quality forecasts include those forecasts of ozone and particulate matter and data available from the U.S. Environmental Protection Agency (EPA)'s AIRNOW. We also examined observational ozone and particulate matter data available from Clean Air Partners. Overall the forecast models perform well for our region and time interval.

  12. The Ensemble Space Weather Modeling System (eSWMS): Status, Capabilities and Challenges

    NASA Astrophysics Data System (ADS)

    Fry, C. D.; Eccles, J. V.; Reich, J. P.

    2010-12-01

    Marking a milestone in space weather forecasting, the Space Weather Modeling System (SWMS) successfully completed validation testing in advance of operational testing at Air Force Weather Agency’s primary space weather production center. This is the first coupling of stand-alone, physics-based space weather models that are currently in operations at AFWA supporting the warfighter. Significant development effort went into ensuring the component models were portable and scalable while maintaining consistent results across diverse high performance computing platforms. Coupling was accomplished under the Earth System Modeling Framework (ESMF). The coupled space weather models are the Hakamada-Akasofu-Fry version 2 (HAFv2) solar wind model and GAIM1, the ionospheric forecast component of the Global Assimilation of Ionospheric Measurements (GAIM) model. The SWMS was developed by team members from AFWA, Explorations Physics International, Inc. (EXPI) and Space Environment Corporation (SEC). The successful development of the SWMS provides new capabilities beyond enabling extended lead-time, data-driven ionospheric forecasts. These include ingesting diverse data sets at higher resolution, incorporating denser computational grids at finer time steps, and performing probability-based ensemble forecasts. Work of the SWMS development team now focuses on implementing the ensemble-based probability forecast capability by feeding multiple scenarios of 5 days of solar wind forecasts to the GAIM1 model based on the variation of the input fields to the HAFv2 model. The ensemble SWMS (eSWMS) will provide the most-likely space weather scenario with uncertainty estimates for important forecast fields. The eSWMS will allow DoD mission planners to consider the effects of space weather on their systems with more advance warning than is currently possible. The payoff is enhanced, tailored support to the warfighter with improved capabilities, such as point-to-point HF propagation forecasts, single-frequency GPS error corrections, and high cadence, high-resolution Space Situational Awareness (SSA) products. We present the current status of eSWMS, its capabilities, limitations and path of transition to operational use.

  13. Verification of Meteorological and Oceanographic Ensemble Forecasts in the U.S. Navy

    NASA Astrophysics Data System (ADS)

    Klotz, S.; Hansen, J.; Pauley, P.; Sestak, M.; Wittmann, P.; Skupniewicz, C.; Nelson, G.

    2013-12-01

    The Navy Ensemble Forecast Verification System (NEFVS) has been promoted recently to operational status at the U.S. Navy's Fleet Numerical Meteorology and Oceanography Center (FNMOC). NEFVS processes FNMOC and National Centers for Environmental Prediction (NCEP) meteorological and ocean wave ensemble forecasts, gridded forecast analyses, and innovation (observational) data output by FNMOC's data assimilation system. The NEFVS framework consists of statistical analysis routines, a variety of pre- and post-processing scripts to manage data and plot verification metrics, and a master script to control application workflow. NEFVS computes metrics that include forecast bias, mean-squared error, conditional error, conditional rank probability score, and Brier score. The system also generates reliability and Receiver Operating Characteristic diagrams. In this presentation we describe the operational framework of NEFVS and show examples of verification products computed from ensemble forecasts, meteorological observations, and forecast analyses. The construction and deployment of NEFVS addresses important operational and scientific requirements within Navy Meteorology and Oceanography. These include computational capabilities for assessing the reliability and accuracy of meteorological and ocean wave forecasts in an operational environment, for quantifying effects of changes and potential improvements to the Navy's forecast models, and for comparing the skill of forecasts from different forecast systems. NEFVS also supports the Navy's collaboration with the U.S. Air Force, NCEP, and Environment Canada in the North American Ensemble Forecast System (NAEFS) project and with the Air Force and the National Oceanic and Atmospheric Administration (NOAA) in the National Unified Operational Prediction Capability (NUOPC) program. This program is tasked with eliminating unnecessary duplication within the three agencies, accelerating the transition of new technology, such as multi-model ensemble forecasting, to U.S. Department of Defense use, and creating a superior U.S. global meteorological and oceanographic prediction capability. Forecast verification is an important component of NAEFS and NUOPC. Distribution Statement A: Approved for Public Release; distribution is unlimited

  14. Verification of Meteorological and Oceanographic Ensemble Forecasts in the U.S. Navy

    NASA Astrophysics Data System (ADS)

    Klotz, S. P.; Hansen, J.; Pauley, P.; Sestak, M.; Wittmann, P.; Skupniewicz, C.; Nelson, G.

    2012-12-01

    The Navy Ensemble Forecast Verification System (NEFVS) has been promoted recently to operational status at the U.S. Navy's Fleet Numerical Meteorology and Oceanography Center (FNMOC). NEFVS processes FNMOC and National Centers for Environmental Prediction (NCEP) meteorological and ocean wave ensemble forecasts, gridded forecast analyses, and innovation (observational) data output by FNMOC's data assimilation system. The NEFVS framework consists of statistical analysis routines, a variety of pre- and post-processing scripts to manage data and plot verification metrics, and a master script to control application workflow. NEFVS computes metrics that include forecast bias, mean-squared error, conditional error, conditional rank probability score, and Brier score. The system also generates reliability and Receiver Operating Characteristic diagrams. In this presentation we describe the operational framework of NEFVS and show examples of verification products computed from ensemble forecasts, meteorological observations, and forecast analyses. The construction and deployment of NEFVS addresses important operational and scientific requirements within Navy Meteorology and Oceanography (METOC). These include computational capabilities for assessing the reliability and accuracy of meteorological and ocean wave forecasts in an operational environment, for quantifying effects of changes and potential improvements to the Navy's forecast models, and for comparing the skill of forecasts from different forecast systems. NEFVS also supports the Navy's collaboration with the U.S. Air Force, NCEP, and Environment Canada in the North American Ensemble Forecast System (NAEFS) project and with the Air Force and the National Oceanic and Atmospheric Administration (NOAA) in the National Unified Operational Prediction Capability (NUOPC) program. This program is tasked with eliminating unnecessary duplication within the three agencies, accelerating the transition of new technology, such as multi-model ensemble forecasting, to U.S. Department of Defense use, and creating a superior U.S. global meteorological and oceanographic prediction capability. Forecast verification is an important component of NAEFS and NUOPC.

  15. Improving flood forecasting capability of physically based distributed hydrological model by parameter optimization

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Xu, H.

    2015-10-01

    Physically based distributed hydrological models discrete the terrain of the whole catchment into a number of grid cells at fine resolution, and assimilate different terrain data and precipitation to different cells, and are regarded to have the potential to improve the catchment hydrological processes simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters, but unfortunately, the uncertanties associated with this model parameter deriving is very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study, the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using PSO algorithm and to test its competence and to improve its performances, the second is to explore the possibility of improving physically based distributed hydrological models capability in cathcment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improverd Particle Swarm Optimization (PSO) algorithm is developed for the parameter optimization of Liuxihe model in catchment flood forecasting, the improvements include to adopt the linear decreasing inertia weight strategy to change the inertia weight, and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for Liuxihe model parameter optimization effectively, and could improve the model capability largely in catchment flood forecasting, thus proven that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological model. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for Liuxihe model catchment flood forcasting is 20 and 30, respectively.

  16. The skill of ECMWF long range Forecasting System to drive impact models for health and hydrology in Africa

    NASA Astrophysics Data System (ADS)

    Di Giuseppe, F.; Tompkins, A. M.; Lowe, R.; Dutra, E.; Wetterhall, F.

    2012-04-01

    As the quality of numerical weather prediction over the monthly to seasonal leadtimes steadily improves there is an increasing motivation to apply these fruitfully to the impacts sectors of health, water, energy and agriculture. Despite these improvements, the accuracy of fields such as temperature and precipitation that are required to drive sectoral models can still be poor. This is true globally, but particularly so in Africa, the region of focus in the present study. In the last year ECMWF has been particularly active through EU research founded projects in demonstrating the capability of its longer range forecasting system to drive impact modeling systems in this region. A first assessment on the consequences of the documented errors in ECMWF forecasting system is therefore presented here looking at two different application fields which we found particularly critical for Africa - vector-born diseases prevention and hydrological monitoring. A new malaria community model (VECTRI) has been developed at ICTP and tested for the 3 target regions participating in the QWECI project. The impacts on the mean malaria climate is assessed using the newly realized seasonal forecasting system (Sys4) with the dismissed system 3 (Sys3) which had the same model cycle of the up-to-date ECMWF re-analysis product (ERA-Interim). The predictive skill of Sys4 to be employed for malaria monitoring and forecast are also evaluated by aggregating the fields to country level. As a part of the DEWFORA projects, ECMWF is also developing a system for drought monitoring and forecasting over Africa whose main meteorological input is precipitation. Similarly to what is done for the VECTRI model, the skill of seasonal forecasts of precipitation is, in this application, translated into the capability of predicting drought while ERA-Interim is used in monitoring. On a monitoring level, the near real-time update of ERA-Interim could compensate the lack of observations in the regions. However, ERA-Interim suffers from biases and drifts that limit its application for drought monitoring purposes in some regions.

  17. Solar Eruptive Flares: from Physical Understanding to Probabilistic Forecasting

    NASA Astrophysics Data System (ADS)

    Georgoulis, M. K.

    2013-12-01

    We describe a new, emerging physical picture of the triggering of major solar eruptions. First, we discuss and aim to interpret the single distinguishing feature of tight, shear-ridden magnetic polarity inversion lines (PILs) in solar active regions, where most of these eruptions occur. Then we analyze the repercussions of this feature, that acts to form increasingly helical pre-eruption structures. Eruptions, with the CME progenitor preceding the flare, tend to release parts of the accumulated magnetic free energy and helicity that are always much smaller than the respective budgets of the source active region. These eruption-related decreases, however, are not optimal for eruption forecasting - this role is claimed by physically intuitive proxy parameters that could show increased pre-eruption sensitivity at time scales practical for prediction. Concluding, we show how reconciling this new information - jointly enabled by the exceptional resolution and quality of Hinode and cadence of SDO data - can lead to advances in understanding that outline the current state-of-the-art of our eruption-forecasting capability.

  18. THE EMERGENCE OF NUMERICAL AIR QUALITY FORECASTING MODELS AND THEIR APPLICATION

    EPA Science Inventory

    In recent years the U.S. and other nations have begun programs for short-term local through regional air quality forecasting based upon numerical three-dimensional air quality grid models. These numerical air quality forecast (NAQF) models and systems have been developed and test...

  19. Regional Precipitation Forecast with Atmospheric InfraRed Sounder (AIRS) Profile Assimilation

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    Advanced technology in hyperspectral sensors such as the Atmospheric InfraRed Sounder (AIRS; Aumann et al. 2003) on NASA's polar orbiting Aqua satellite retrieve higher vertical resolution thermodynamic profiles than their predecessors due to increased spectral resolution. Although these capabilities do not replace the robust vertical resolution provided by radiosondes, they can serve as a complement to radiosondes in both space and time. These retrieved soundings can have a significant impact on weather forecasts if properly assimilated into prediction models. Several recent studies have evaluated the performance of specific operational weather forecast models when AIRS data are included in the assimilation process. LeMarshall et al. (2006) concluded that AIRS radiances significantly improved 500 hPa anomaly correlations in medium-range forecasts of the Global Forecast System (GFS) model. McCarty et al. (2009) demonstrated similar forecast improvement in 0-48 hour forecasts in an offline version of the operational North American Mesoscale (NAM) model when AIRS radiances were assimilated at the regional scale. Reale et al. (2008) showed improvements to Northern Hemisphere 500 hPa height anomaly correlations in NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5) global system with the inclusion of partly cloudy AIRS temperature profiles. Singh et al. (2008) assimilated AIRS temperature and moisture profiles into a regional modeling system for a study of a heavy rainfall event during the summer monsoon season in Mumbai, India. This paper describes an approach to assimilate AIRS temperature and moisture profiles into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimensional variational (3DVAR) assimilation system (WRF-Var; Barker et al. 2004). Section 2 describes the AIRS instrument and how the quality indicators are used to intelligently select the highest-quality data for assimilation. Section 3 presents an overall precipitation improvement with AIRS assimilation during a 37-day case study period, and Section 4 focuses on a single case study to further investigate the meteorological impact of AIRS profiles on synoptic scale models. Finally, Section 5 provides a summary of the paper.

  20. Traffic flow forecasting for intelligent transportation systems.

    DOT National Transportation Integrated Search

    1995-01-01

    The capability to forecast traffic volume in an operational setting has been identified as a critical need for intelligent transportation systems (ITS). In particular, traffic volume forecasts will directly support proactive traffic control and accur...

  1. A Vision for the Future of Environmental Research: Creating Environmental Intelligence Centers

    NASA Astrophysics Data System (ADS)

    Barron, E. J.

    2002-12-01

    The nature of the environmental issues facing our nation demands a capability that allows us to enhance economic vitality, maintain environmental quality, and limit threats to life and property through more fundamental understanding of the Earth. It is "advanced" knowledge of how the system may respond that gives environmental information most of its power and utility. This fact is evident in the demand for new forecasting products, involving air quality, energy demand, water quality and quantity, ultraviolet radiation, and human health indexes. As we demonstrate feasibility and benefit, society is likely to demand a growing number of new operational forecast products on prediction time scales of days to decades into the future. The driving forces that govern our environment are widely recognized, involving primarily weather and climate, patterns of land use and land cover, and resource use with its associated waste products. The importance of these driving forces has been demonstrated by a decade of research on greenhouse gas emissions, ozone depletion and deforestation, and through the birth of Earth System Science. But, there are also major challenges. We find the strongest intersection between human activity, environmental stresses, system interactions and human decision-making in regional analysis coupled to larger spatial scales. In addition, most regions are influenced by multiple-stresses. Multiple, cumulative, and interactive stresses are clearly the most difficult to understand and hence the most difficult to assess and to manage. Currently, we are incapable of addressing these issues in a truly integrated fashion at global scales. The lack of an ability to combine global and regional forcing and to assess the response of the system to multiple stresses at the spatial and temporal scales of interest to humans limits our ability to assess the impacts of specific human perturbations, to assess advantages and risks, and to enhance economic and societal well being in the context of global, national and regional stewardship. These societal needs lead to a vision that uses a regional framework as a stepping-stone to a comprehensive national or global capability. The development of a comprehensive regional framework depends on a new approach to environmental research - the creation of regional Environmental Intelligence Centers. A key objective is to bring a demanding level of discipline to "forecasting" in a broad arena of environmental issues. The regional vision described above is designed to address a broad range of current and future environmental issues by creating a capability based on integrating diverse observing systems, making data readily accessible, developing an increasingly comprehensive predictive capability at the spatial and temporal scales appropriate for examining societal issues, and creating a vigorous intersection with decision-makers. With demonstrated success over a few large-scale regions of the U.S., this strategy will very likely grow into a national capability that far exceeds current capabilities.

  2. Operational skill assessment of the IBI-MFC Ocean Forecasting System within the frame of the CMEMS.

    NASA Astrophysics Data System (ADS)

    Lorente Jimenez, Pablo; Garcia-Sotillo, Marcos; Amo-Balandron, Arancha; Aznar Lecocq, Roland; Perez Gomez, Begoña; Levier, Bruno; Alvarez-Fanjul, Enrique

    2016-04-01

    Since operational ocean forecasting systems (OOFSs) are increasingly used as tools to support high-stakes decision-making for coastal management, a rigorous skill assessment of model performance becomes essential. In this context, the IBI-MFC (Iberia-Biscay-Ireland Monitoring & Forecasting Centre) has been providing daily ocean model estimates and forecasts for the IBI regional seas since 2011, first in the frame of MyOcean projects and later as part of the Copernicus Marine Environment Monitoring Service (CMEMS). A comprehensive web validation tool named NARVAL (North Atlantic Regional VALidation) has been developed to routinely monitor IBI performance and to evaluate model's veracity and prognostic capabilities. Three-dimensional comparisons are carried out on a different time basis ('online mode' - daily verifications - and 'delayed mode' - for longer time periods -) using a broad variety of in-situ (buoys, tide-gauges, ARGO-floats, drifters and gliders) and remote-sensing (satellite and HF radars) observational sources as reference fields to validate against the NEMO model solution. Product quality indicators and meaningful skill metrics are automatically computed not only averaged over the entire IBI domain but also over specific sub-regions of particular interest from a user perspective (i.e. coastal or shelf areas) in order to determine IBI spatial and temporal uncertainty levels. A complementary aspect of NARVAL web tool is the intercomparison of different CMEMS forecast model solutions in overlapping areas. Noticeable efforts are in progress in order to quantitatively assess the quality and consistency of nested system outputs by setting up specific intercomparison exercises on different temporal and spatial scales, encompassing global configurations (CMEMS Global system), regional applications (NWS and MED ones) and local high-resolution coastal models (i.e. the PdE SAMPA system in the Gibraltar Strait). NARVAL constitutes a powerful approach to increase our knowledge on the IBI-MFC forecast system and aids us to inform CMEMS end users about the provided ocean forecasting products' confidence level by routinely delivering QUality Information Documents (QUIDs). It allows the detection of strengths and weaknesses in the modeling of several key physical processes and the understanding of potential sources of discrepancies in IBI predictions. Once the numerical model shortcomings are identified, potential improvements can be achieved thanks to reliable upgrades, making evolve IBI OOFS towards more refined and advanced versions.

  3. Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Xu, H.

    2016-01-01

    Physically based distributed hydrological models (hereafter referred to as PBDHMs) divide the terrain of the whole catchment into a number of grid cells at fine resolution and assimilate different terrain data and precipitation to different cells. They are regarded to have the potential to improve the catchment hydrological process simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters. However, unfortunately the uncertainties associated with this model derivation are very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study: the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using particle swarm optimization (PSO) algorithm and to test its competence and to improve its performances; the second is to explore the possibility of improving physically based distributed hydrological model capability in catchment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with the Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improved PSO algorithm is developed for the parameter optimization of the Liuxihe model in catchment flood forecasting. The improvements include adoption of the linearly decreasing inertia weight strategy to change the inertia weight and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for the Liuxihe model parameter optimization effectively and could improve the model capability largely in catchment flood forecasting, thus proving that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological models. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for the Liuxihe model catchment flood forecasting are 20 and 30 respectively.

  4. An Integrated Modeling Framework Forecasting Ecosystem Exposure-- A Systems Approach to the Cumulative Impacts of Multiple Stressors

    NASA Astrophysics Data System (ADS)

    Johnston, J. M.

    2013-12-01

    Freshwater habitats provide fishable, swimmable and drinkable resources and are a nexus of geophysical and biological processes. These processes in turn influence the persistence and sustainability of populations, communities and ecosystems. Climate change and landuse change encompass numerous stressors of potential exposure, including the introduction of toxic contaminants, invasive species, and disease in addition to physical drivers such as temperature and hydrologic regime. A systems approach that includes the scientific and technologic basis of assessing the health of ecosystems is needed to effectively protect human health and the environment. The Integrated Environmental Modeling Framework 'iemWatersheds' has been developed as a consistent and coherent means of forecasting the cumulative impact of co-occurring stressors. The Framework consists of three facilitating technologies: Data for Environmental Modeling (D4EM) that automates the collection and standardization of input data; the Framework for Risk Assessment of Multimedia Environmental Systems (FRAMES) that manages the flow of information between linked models; and the Supercomputer for Model Uncertainty and Sensitivity Evaluation (SuperMUSE) that provides post-processing and analysis of model outputs, including uncertainty and sensitivity analysis. Five models are linked within the Framework to provide multimedia simulation capabilities for hydrology and water quality processes: the Soil Water Assessment Tool (SWAT) predicts surface water and sediment runoff and associated contaminants; the Watershed Mercury Model (WMM) predicts mercury runoff and loading to streams; the Water quality Analysis and Simulation Program (WASP) predicts water quality within the stream channel; the Habitat Suitability Index (HSI) model scores physicochemical habitat quality for individual fish species; and the Bioaccumulation and Aquatic System Simulator (BASS) predicts fish growth, population dynamics and bioaccumulation of toxic substances. The capability of the Framework to address cumulative impacts will be demonstrated for freshwater ecosystem services and mountaintop mining.

  5. Assessment of GNSS-based height data of multiple ships for measuring and forecasting great tsunamis

    NASA Astrophysics Data System (ADS)

    Inazu, Daisuke; Waseda, Takuji; Hibiya, Toshiyuki; Ohta, Yusaku

    2016-12-01

    Ship height positioning by the Global Navigation Satellite System (GNSS) was investigated for measuring and forecasting great tsunamis. We first examined GNSS height-positioning data of a navigating vessel. If we use the kinematic precise point positioning (PPP) method, tsunamis greater than 10-1 m will be detected by ship height positioning. Based on Automatic Identification System (AIS) data, we found that tens of cargo ships and tankers are usually identified to navigate over the Nankai Trough, southwest Japan. We assumed that a future Nankai Trough great earthquake tsunami will be observed by the kinematic PPP height positioning of an AIS-derived ship distribution, and examined the tsunami forecast capability of the offshore tsunami measurements based on the PPP-based ship height. A method to estimate the initial tsunami height distribution using offshore tsunami observations was used for forecasting. Tsunami forecast tests were carried out using simulated tsunami data by the PPP-based ship height of 92 cargo ships/tankers, and by currently operating deep-sea pressure and Global Positioning System (GPS) buoy observations at 71 stations over the Nankai Trough. The forecast capability using the PPP-based height of the 92 ships was shown to be comparable to or better than that using the operating offshore observatories at the 71 stations. We suppose that, immediately after the occurrence of a great earthquake, stations receiving successive ship information (AIS data) along certain areas of the coast would fail to acquire ship data due to strong ground shaking, especially near the epicenter. Such a situation would significantly deteriorate the tsunami-forecast capability using ship data. On the other hand, operational real-time analysis of seismic/geodetic data would be carried out for estimating a tsunamigenic fault model. Incorporating the seismic/geodetic fault model estimation into the tsunami forecast above possibly compensates for the deteriorated forecast capability.

  6. “Nitrogen Budgets for the Mississippi River Basin using the ...

    EPA Pesticide Factsheets

    Presentation on the results from the 3 linked models, EPIC (USDA), CMAQ and NEWS to analyze a scenario of increased corn production related to biofuels together with Clean Air Act emission reductions across the US and the resultant effect on nitrogen loading to the Gulf of Mexico from the Mississippi River Basin. This is a demonstration of a capability to connect the N cascade bringing air, land, water together. EPIC = Environmental Policy Integrated Climate model, CMAQ = Community Multiscale Air Quality model, NEWS = Nutrient Export of WaterSheds model. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air pollution problem, but also in developing emission control policies and regulations for air quality improvements.

  7. Comparison of Groundwater Level Models Based on Artificial Neural Networks and ANFIS

    PubMed Central

    Domazet, Milka; Stricevic, Ruzica; Pocuca, Vesna; Spalevic, Velibor; Pivic, Radmila; Gregoric, Enika; Domazet, Uros

    2015-01-01

    Water table forecasting plays an important role in the management of groundwater resources in agricultural regions where there are drainage systems in river valleys. The results presented in this paper pertain to an area along the left bank of the Danube River, in the Province of Vojvodina, which is the northern part of Serbia. Two soft computing techniques were used in this research: an adaptive neurofuzzy inference system (ANFIS) and an artificial neural network (ANN) model for one-month water table forecasts at several wells located at different distances from the river. The results suggest that both these techniques represent useful tools for modeling hydrological processes in agriculture, with similar computing and memory capabilities, such that they constitute an exceptionally good numerical framework for generating high-quality models. PMID:26759830

  8. Comparison of Groundwater Level Models Based on Artificial Neural Networks and ANFIS.

    PubMed

    Djurovic, Nevenka; Domazet, Milka; Stricevic, Ruzica; Pocuca, Vesna; Spalevic, Velibor; Pivic, Radmila; Gregoric, Enika; Domazet, Uros

    2015-01-01

    Water table forecasting plays an important role in the management of groundwater resources in agricultural regions where there are drainage systems in river valleys. The results presented in this paper pertain to an area along the left bank of the Danube River, in the Province of Vojvodina, which is the northern part of Serbia. Two soft computing techniques were used in this research: an adaptive neurofuzzy inference system (ANFIS) and an artificial neural network (ANN) model for one-month water table forecasts at several wells located at different distances from the river. The results suggest that both these techniques represent useful tools for modeling hydrological processes in agriculture, with similar computing and memory capabilities, such that they constitute an exceptionally good numerical framework for generating high-quality models.

  9. International MODIS and AIRS Processing Package (IMAPP) Implementation of Infusion of Satellite Data into Environmental Applications-International (IDEA-I) for Air Quality Forecasts using Suomi-NPP, Terra and Aqua Aerosol Retrievals

    NASA Astrophysics Data System (ADS)

    Davies, J. E.; Strabala, K.; Pierce, R. B.; Huang, A.

    2016-12-01

    Fine mode aerosols play a significant role in public health through their impact on respiratory and cardiovascular disease. IDEA-I (Infusion of Satellite Data into Environmental Applications-International) is a real-time system for trajectory-based forecasts of aerosol dispersion that can assist in the prediction of poor air quality events. We released a direct broadcast version of IDEA-I for aerosol trajectory forecasts in June 2012 under the International MODIS and AIRS Processing Package (IMAPP). In January 2014 we updated this application with website software to display multi-satellite products. Now we have added VIIRS aerosols from Suomi National Polar-orbiting Partnership (S-NPP). IMAPP is a NASA-funded and freely-distributed software package developed at Space Science and Engineering Center of University of Wisconsin-Madison that has over 2,300 registered users worldwide. With IMAPP, any ground station capable of receiving direct broadcast from Terra or Aqua can produce calibrated and geolocated radiances and a suite of environmental products. These products include MODIS AOD required for IDEA-I. VIIRS AOD for IDEA-I can be generated by Community Satellite Processing Package (CSPP) VIIRS EDR Version 2.0 Software for Suomi NPP. CSPP is also developed and distributed by Space Science & Engineering Center. This presentation describes our updated IMAPP implementation of IDEA-I through an example of its operation in a region known for episodic poor air quality events.

  10. AN OPERATIONAL EVALUATION OF THE ETA-CMAQ AIR QUALITY FORECAST MODEL

    EPA Science Inventory

    The National Oceanic and Atmospheric Administration (NOAA), in collaboration with the Environmental Protection Agency (EPA), are developing an Air Quality Forecasting Program that will eventually result in an operational Nationwide Air Quality Forecasting System. The initial pha...

  11. Short-term forecasting of turbidity in trunk main networks.

    PubMed

    Meyers, Gregory; Kapelan, Zoran; Keedwell, Edward

    2017-11-01

    Water discolouration is an increasingly important and expensive issue due to rising customer expectations, tighter regulatory demands and ageing Water Distribution Systems (WDSs) in the UK and abroad. This paper presents a new turbidity forecasting methodology capable of aiding operational staff and enabling proactive management strategies. The turbidity forecasting methodology developed here is completely data-driven and does not require hydraulic or water quality network model that is expensive to build and maintain. The methodology is tested and verified on a real trunk main network with observed turbidity measurement data. Results obtained show that the methodology can detect if discolouration material is mobilised, estimate if sufficient turbidity will be generated to exceed a preselected threshold and approximate how long the material will take to reach the downstream meter. Classification based forecasts of turbidity can be reliably made up to 5 h ahead although at the expense of increased false alarm rates. The methodology presented here could be used as an early warning system that can enable a multitude of cost beneficial proactive management strategies to be implemented as an alternative to expensive trunk mains cleaning programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The Use of OMPS Near Real Time Products in Volcanic Cloud Risk Mitigation and Smoke/Dust Air Quality Assessments

    NASA Astrophysics Data System (ADS)

    Seftor, C. J.; Krotkov, N. A.; McPeters, R. D.; Li, J. Y.; Durbin, P. B.

    2015-12-01

    Near real time (NRT) SO2 and aerosol index (AI) imagery from Aura's Ozone Monitoring Instrument (OMI) has proven invaluable in mitigating the risk posed to air traffic by SO2 and ash clouds from volcanic eruptions. The OMI products, generated as part of NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) NRT system and available through LANCE and both NOAA's NESDIS and ESA's Support to Aviation Control Service (SACS) portals, are used to monitor the current location of volcanic clouds and to provide input into Volcanic Ash (VA) advisory forecasts. NRT products have recently been developed using data from the Ozone Mapping and Profiler Suite onboard the Suomi NPP platform; they are currently being made available through the SACS portal and will shortly be incorporated into the LANCE NRT system. We will show examples of the use of OMPS NRT SO2 and AI imagery to monitor recent volcanic eruption events. We will also demonstrate the usefulness of OMPS AI imagery to detect and track dust storms and smoke from fires, and how this information can be used to forecast their impact on air quality in areas far removed from their source. Finally, we will show SO2 and AI imagery generated from our OMPS Direct Broadcast data to highlight the capability of our real time system.

  13. Status of Air Quality in Central California and Needs for Further Study

    NASA Astrophysics Data System (ADS)

    Tanrikulu, S.; Beaver, S.; Soong, S.; Tran, C.; Jia, Y.; Matsuoka, J.; McNider, R. T.; Biazar, A. P.; Palazoglu, A.; Lee, P.; Wang, J.; Kang, D.; Aneja, V. P.

    2012-12-01

    Ozone and PM2.5 levels frequently exceed NAAQS in central California (CC). Additional emission reductions are needed to attain and maintain the standards there. Agencies are developing cost-effective emission control strategies along with complementary incentive programs to reduce emissions when exceedances are forecasted. These approaches require accurate modeling and forecasting capabilities. A variety of models have been rigorously applied (MM5, WRF, CMAQ, CAMx) over CC. Despite the vast amount of land-based measurements from special field programs and significant effort, models have historically exhibited marginal performance. Satellite data may improve model performance by: establishing IC/BC over outlying areas of the modeling domain having unknown conditions; enabling FDDA over the Pacific Ocean to characterize important marine inflows and pollutant outflows; and filling in the gaps of the land-based monitoring network. BAAQMD, in collaboration with the NASA AQAST, plans to conduct four studies that include satellite-based data in CC air quality analysis and modeling: The first project enhances and refines weather patterns, especially aloft, impacting summer ozone formation. Surface analyses were unable to characterize the strong attenuating effect of the complex terrain to steer marine winds impinging on the continent. The dense summer clouds and fog over the Pacific Ocean form spatial patterns that can be related to the downstream air flows through polluted areas. The goal of this project is to explore, characterize, and quantify these relationships using cloud cover data. Specifically, cloud agreement statistics will be developed using satellite data and model clouds. Model skin temperature predictions will be compared to both MODIS and GOES skin temperatures. The second project evaluates and improves the initial and simulated fields of meteorological models that provide inputs to air quality models. The study will attempt to determine whether a cloud dynamical adjustment developed by UAHuntsville can improve model performance for maritime stratus and whether a moisture adjustment scheme in the Pleim-Xiu boundary layer scheme can use satellite data in place of coarse surface air temperature measurements. The goal is to improve meteorological model performance that leads to improved air quality model performance. The third project evaluates and improves forecasting skills of the National Air Quality Forecasting Model in CC by using land-based routine measurements as well as satellite data. Local forecasts are mostly based on surface meteorological and air quality measurements and weather charts provided by NWS. The goal is to improve the average accuracy in forecasting exceedances, which is around 60%. The fourth project uses satellite data for monitoring trends in fine particulate matter (PM2.5) in the San Francisco Bay Area. It evaluates the effectiveness of a rule adopted in 2008 that restricts household wood burning on days forecasted to have high PM2.5 levels. The goal is to complement current analyses based on surface data covering the largest sub-regions and population centers. The overall goal is to use satellite data to overcome limitations of land-based measurements. The outcomes will be further conceptual understanding of pollutant formation, improved regulatory model performance, and better optimized forecasting programs.

  14. Solar and Wind Forecasting | Grid Modernization | NREL

    Science.gov Websites

    and Wind Forecasting Solar and Wind Forecasting As solar and wind power become more common system operators. An aerial photo of the National Wind Technology Center's PV arrays. Capabilities value of accurate forecasting Wind power visualization to direct questions and feedback during industry

  15. An enhanced PM 2.5 air quality forecast model based on nonlinear regression and back-trajectory concentrations

    NASA Astrophysics Data System (ADS)

    Cobourn, W. Geoffrey

    2010-08-01

    An enhanced PM 2.5 air quality forecast model based on nonlinear regression (NLR) and back-trajectory concentrations has been developed for use in the Louisville, Kentucky metropolitan area. The PM 2.5 air quality forecast model is designed for use in the warm season, from May through September, when PM 2.5 air quality is more likely to be critical for human health. The enhanced PM 2.5 model consists of a basic NLR model, developed for use with an automated air quality forecast system, and an additional parameter based on upwind PM 2.5 concentration, called PM24. The PM24 parameter is designed to be determined manually, by synthesizing backward air trajectory and regional air quality information to compute 24-h back-trajectory concentrations. The PM24 parameter may be used by air quality forecasters to adjust the forecast provided by the automated forecast system. In this study of the 2007 and 2008 forecast seasons, the enhanced model performed well using forecasted meteorological data and PM24 as input. The enhanced PM 2.5 model was compared with three alternative models, including the basic NLR model, the basic NLR model with a persistence parameter added, and the NLR model with persistence and PM24. The two models that included PM24 were of comparable accuracy. The two models incorporating back-trajectory concentrations had lower mean absolute errors and higher rates of detecting unhealthy PM2.5 concentrations compared to the other models.

  16. Improving GEFS Weather Forecasts for Indian Monsoon with Statistical Downscaling

    NASA Astrophysics Data System (ADS)

    Agrawal, Ankita; Salvi, Kaustubh; Ghosh, Subimal

    2014-05-01

    Weather forecast has always been a challenging research problem, yet of a paramount importance as it serves the role of 'key input' in formulating modus operandi for immediate future. Short range rainfall forecasts influence a wide range of entities, right from agricultural industry to a common man. Accurate forecasts actually help in minimizing the possible damage by implementing pre-decided plan of action and hence it is necessary to gauge the quality of forecasts which might vary with the complexity of weather state and regional parameters. Indian Summer Monsoon Rainfall (ISMR) is one such perfect arena to check the quality of weather forecast not only because of the level of intricacy in spatial and temporal patterns associated with it, but also the amount of damage it can cause (because of poor forecasts) to the Indian economy by affecting agriculture Industry. The present study is undertaken with the rationales of assessing, the ability of Global Ensemble Forecast System (GEFS) in predicting ISMR over central India and the skill of statistical downscaling technique in adding value to the predictions by taking them closer to evidentiary target dataset. GEFS is a global numerical weather prediction system providing the forecast results of different climate variables at a fine resolution (0.5 degree and 1 degree). GEFS shows good skills in predicting different climatic variables but fails miserably over rainfall predictions for Indian summer monsoon rainfall, which is evident from a very low to negative correlation values between predicted and observed rainfall. Towards the fulfilment of second rationale, the statistical relationship is established between the reasonably well predicted climate variables (GEFS) and observed rainfall. The GEFS predictors are treated with multicollinearity and dimensionality reduction techniques, such as principal component analysis (PCA) and least absolute shrinkage and selection operator (LASSO). Statistical relationship is established between the principal components and observed rainfall over training period and predictions are obtained for testing period. The validations show high improvements in correlation coefficient between observed and predicted data (0.25 to 0.55). The results speak in favour of statistical downscaling methodology which shows the capability to reduce the gap between observed data and predictions. A detailed study is required to be carried out by applying different downscaling techniques to quantify the improvements in predictions.

  17. Evaluating the applicability of using daily forecasts from seasonal prediction systems (SPSs) for agriculture: a case study of Nepal's Terai with the NCEP CFSv2

    NASA Astrophysics Data System (ADS)

    Jha, Prakash K.; Athanasiadis, Panos; Gualdi, Silvio; Trabucco, Antonio; Mereu, Valentina; Shelia, Vakhtang; Hoogenboom, Gerrit

    2018-03-01

    Ensemble forecasts from dynamic seasonal prediction systems (SPSs) have the potential to improve decision-making for crop management to help cope with interannual weather variability. Because the reliability of crop yield predictions based on seasonal weather forecasts depends on the quality of the forecasts, it is essential to evaluate forecasts prior to agricultural applications. This study analyses the potential of Climate Forecast System version 2 (CFSv2) in predicting the Indian summer monsoon (ISM) for producing meteorological variables relevant to crop modeling. The focus area was Nepal's Terai region, and the local hindcasts were compared with weather station and reanalysis data. The results showed that the CFSv2 model accurately predicts monthly anomalies of daily maximum and minimum air temperature (Tmax and Tmin) as well as incoming total surface solar radiation (Srad). However, the daily climatologies of the respective CFSv2 hindcasts exhibit significant systematic biases compared to weather station data. The CFSv2 is less capable of predicting monthly precipitation anomalies and simulating the respective intra-seasonal variability over the growing season. Nevertheless, the observed daily climatologies of precipitation fall within the ensemble spread of the respective daily climatologies of CFSv2 hindcasts. These limitations in the CFSv2 seasonal forecasts, primarily in precipitation, restrict the potential application for predicting the interannual variability of crop yield associated with weather variability. Despite these limitations, ensemble averaging of the simulated yield using all CFSv2 members after applying bias correction may lead to satisfactory yield predictions.

  18. THE NEW ENGLAND AIR QUALITY FORECASTING PILOT PROGRAM: DEVELOPMENT OF AN EVALUATION PROTOCOL AND PERFORMANCE BENCHMARK

    EPA Science Inventory

    The National Oceanic and Atmospheric Administration recently sponsored the New England Forecasting Pilot Program to serve as a "test bed" for chemical forecasting by providing all of the elements of a National Air Quality Forecasting System, including the development and implemen...

  19. The North American Multi-Model Ensemble (NMME): Phase-1 Seasonal to Interannual Prediction, Phase-2 Toward Developing Intra-Seasonal Prediction

    NASA Technical Reports Server (NTRS)

    Kirtman, Ben P.; Min, Dughong; Infanti, Johnna M.; Kinter, James L., III; Paolino, Daniel A.; Zhang, Qin; vandenDool, Huug; Saha, Suranjana; Mendez, Malaquias Pena; Becker, Emily; hide

    2013-01-01

    The recent US National Academies report "Assessment of Intraseasonal to Interannual Climate Prediction and Predictability" was unequivocal in recommending the need for the development of a North American Multi-Model Ensemble (NMME) operational predictive capability. Indeed, this effort is required to meet the specific tailored regional prediction and decision support needs of a large community of climate information users. The multi-model ensemble approach has proven extremely effective at quantifying prediction uncertainty due to uncertainty in model formulation, and has proven to produce better prediction quality (on average) then any single model ensemble. This multi-model approach is the basis for several international collaborative prediction research efforts, an operational European system and there are numerous examples of how this multi-model ensemble approach yields superior forecasts compared to any single model. Based on two NOAA Climate Test Bed (CTB) NMME workshops (February 18, and April 8, 2011) a collaborative and coordinated implementation strategy for a NMME prediction system has been developed and is currently delivering real-time seasonal-to-interannual predictions on the NOAA Climate Prediction Center (CPC) operational schedule. The hindcast and real-time prediction data is readily available (e.g., http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/) and in graphical format from CPC (http://origin.cpc.ncep.noaa.gov/products/people/wd51yf/NMME/index.html). Moreover, the NMME forecast are already currently being used as guidance for operational forecasters. This paper describes the new NMME effort, presents an overview of the multi-model forecast quality, and the complementary skill associated with individual models.

  20. Operational air quality forecast guidance for the United States

    NASA Astrophysics Data System (ADS)

    Stajner, Ivanka; Lee, Pius; Tong, Daniel; Pan, Li; McQueen, Jeff; Huang, Jinaping; Djalalova, Irina; Wilczak, James; Huang, Ho-Chun; Wang, Jun; Stein, Ariel; Upadhayay, Sikchya

    2016-04-01

    NOAA provides operational air quality predictions for ozone and wildfire smoke over the United States (U.S.) and predictions of airborne dust over the contiguous 48 states at http://airquality.weather.gov. These predictions are produced using U.S. Environmental Protection Agency (EPA) Community Model for Air Quality (CMAQ) and NOAA's HYSPLIT model (Stein et al., 2015) with meteorological inputs from the North American Mesoscale Forecast System (NAM). The current efforts focus on improving test predictions of fine particulate matter (PM2.5) from CMAQ. Emission inputs for ozone and PM2.5 predictions include inventory information from the U.S. EPA and recently added contributions of particulate matter from intermittent wildfires and windblown dust that rely on near real-time information. Current testing includes refinement of the vertical grid structure in CMAQ and inclusion of contributions of dust transport from global sources into the U.S. domain using the NEMS Global Aerosol Capability (NGAC). The addition of wildfire smoke and dust contributions in CMAQ reduced model underestimation of PM2.5 in summertime. Wintertime overestimation of PM2.5 was reduced by suppressing emissions of soil particles when the terrain is covered by snow or ice. Nevertheless, seasonal biases and biases in the diurnal cycle of PM2.5 are still substantial. Therefore, a new bias correction procedure based on an analog ensemble approach was introduced (Djalalova et al., 2015). It virtually eliminates biases in monthly means or in the diurnal cycle, but it also reduces day-to-day variability in PM2.5 predictions. Refinements to the bias correction procedure are being developed. Upgrades for the representation of wildfire smoke emissions within the domain and from global sources are in testing. Another area of active development includes approaches to scale emission inventories for nitrogen oxides in order to reproduce recent changes observed by the AirNow surface monitoring network and by satellite instruments (Tong et al., 2015) and to use these updated emissions to improve ozone predictions (Pan et al., 2015). An overview of the impacts of these recent and ongoing efforts to improve predictions of ozone, smoke and PM2.5 will be presented. Djalalova, I. et al., 2015: PM2.5 analog forecast and Kalman filter post-processing for the Community Multiscale Air Quality (CMAQ) model. Atmospheric Environment, doi:10.1016/j.atmosenv.2015.05.057. Pan L. et al., 2014: Assessment of NOx and O3 forecasting performances in the U.S. National Air Quality Forecasting Capability before and after the 2012 major emissions updates. Atmospheric Environment, doi: 10.1016/j.atmosenv.2014.06.020. Stein, A. et al., 2015: NOAA's HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-14-00110.1. Tong, D.Q. et al., 2015: Long-term NOx trends over large cities in the United States during the great recession: Comparison of satellite retrievals, ground observations, and emission inventories. Atmospheric Environment, doi:10.1016/j.atmosenv.2015.01.035.

  1. Development of an Adaptable Display and Diagnostic System for the Evaluation of Tropical Cyclone Forecasts

    NASA Astrophysics Data System (ADS)

    Kucera, P. A.; Burek, T.; Halley-Gotway, J.

    2015-12-01

    NCAR's Joint Numerical Testbed Program (JNTP) focuses on the evaluation of experimental forecasts of tropical cyclones (TCs) with the goal of developing new research tools and diagnostic evaluation methods that can be transitioned to operations. Recent activities include the development of new TC forecast verification methods and the development of an adaptable TC display and diagnostic system. The next generation display and diagnostic system is being developed to support evaluation needs of the U.S. National Hurricane Center (NHC) and broader TC research community. The new hurricane display and diagnostic capabilities allow forecasters and research scientists to more deeply examine the performance of operational and experimental models. The system is built upon modern and flexible technology that includes OpenLayers Mapping tools that are platform independent. The forecast track and intensity along with associated observed track information are stored in an efficient MySQL database. The system provides easy-to-use interactive display system, and provides diagnostic tools to examine forecast track stratified by intensity. Consensus forecasts can be computed and displayed interactively. The system is designed to display information for both real-time and for historical TC cyclones. The display configurations are easily adaptable to meet the needs of the end-user preferences. Ongoing enhancements include improving capabilities for stratification and evaluation of historical best tracks, development and implementation of additional methods to stratify and compute consensus hurricane track and intensity forecasts, and improved graphical display tools. The display is also being enhanced to incorporate gridded forecast, satellite, and sea surface temperature fields. The presentation will provide an overview of the display and diagnostic system development and demonstration of the current capabilities.

  2. Utility of flood warning systems for emergency management

    NASA Astrophysics Data System (ADS)

    Molinari, Daniela; Ballio, Francesco; Menoni, Scira

    2010-05-01

    The presentation is focused on a simple and crucial question for warning systems: are flood and hydrological modelling and forecasting helpful to manage flood events? Indeed, it is well known that a warning process can be invalidated by inadequate forecasts so that the accuracy and robustness of the previsional model is a key issue for any flood warning procedure. However, one problem still arises at this perspective: when forecasts can be considered to be adequate? According to Murphy (1993, Wea. Forecasting 8, 281-293), forecasts hold no intrinsic value but they acquire it through their ability to influence the decisions made by their users. Moreover, we can add that forecasts value depends on the particular problem at stake showing, this way, a multifaceted nature. As a result, forecasts verification should not be seen as a universal process, instead it should be tailored to the particular context in which forecasts are implemented. This presentation focuses on warning problems in mountain regions, whereas the short time which is distinctive of flood events makes the provision of adequate forecasts particularly significant. In this context, the quality of a forecast is linked to its capability to reduce the impact of a flood by improving the correctness of the decision about issuing (or not) a warning as well as of the implementation of a proper set of actions aimed at lowering potential flood damages. The present study evaluates the performance of a real flood forecasting system from this perspective. In detail, a back analysis of past flood events and available verification tools have been implemented. The final objective was to evaluate the system ability to support appropriate decisions with respect not only to the flood characteristics but also to the peculiarities of the area at risk as well as to the uncertainty of forecasts. This meant to consider also flood damages and forecasting uncertainty among the decision variables. Last but not least, the presentation explains how the procedure implemented in the case study could support the definition of a proper warning rule.

  3. Automation of energy demand forecasting

    NASA Astrophysics Data System (ADS)

    Siddique, Sanzad

    Automation of energy demand forecasting saves time and effort by searching automatically for an appropriate model in a candidate model space without manual intervention. This thesis introduces a search-based approach that improves the performance of the model searching process for econometrics models. Further improvements in the accuracy of the energy demand forecasting are achieved by integrating nonlinear transformations within the models. This thesis introduces machine learning techniques that are capable of modeling such nonlinearity. Algorithms for learning domain knowledge from time series data using the machine learning methods are also presented. The novel search based approach and the machine learning models are tested with synthetic data as well as with natural gas and electricity demand signals. Experimental results show that the model searching technique is capable of finding an appropriate forecasting model. Further experimental results demonstrate an improved forecasting accuracy achieved by using the novel machine learning techniques introduced in this thesis. This thesis presents an analysis of how the machine learning techniques learn domain knowledge. The learned domain knowledge is used to improve the forecast accuracy.

  4. Use of Air Quality Observations by the National Air Quality Forecast Capability

    NASA Astrophysics Data System (ADS)

    Stajner, I.; McQueen, J.; Lee, P.; Stein, A. F.; Kondragunta, S.; Ruminski, M.; Tong, D.; Pan, L.; Huang, J. P.; Shafran, P.; Huang, H. C.; Dickerson, P.; Upadhayay, S.

    2015-12-01

    The National Air Quality Forecast Capability (NAQFC) operational predictions of ozone and wildfire smoke for the United States (U.S.) and predictions of airborne dust for continental U.S. are available at http://airquality.weather.gov/. NOAA National Centers for Environmental Prediction (NCEP) operational North American Mesoscale (NAM) weather predictions are combined with the Community Multiscale Air Quality (CMAQ) model to produce the ozone predictions and test fine particulate matter (PM2.5) predictions. The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model provides smoke and dust predictions. Air quality observations constrain emissions used by NAQFC predictions. NAQFC NOx emissions from mobile sources were updated using National Emissions Inventory (NEI) projections for year 2012. These updates were evaluated over large U.S. cities by comparing observed changes in OMI NO2 observations and NOx measured by surface monitors. The rate of decrease in NOx emission projections from year 2005 to year 2012 is in good agreement with the observed changes over the same period. Smoke emissions rely on the fire locations detected from satellite observations obtained from NESDIS Hazard Mapping System (HMS). Dust emissions rely on a climatology of areas with a potential for dust emissions based on MODIS Deep Blue aerosol retrievals. Verification of NAQFC predictions uses AIRNow compilation of surface measurements for ozone and PM2.5. Retrievals of smoke from GOES satellites are used for verification of smoke predictions. Retrievals of dust from MODIS are used for verification of dust predictions. In summary, observations are the basis for the emissions inputs for NAQFC, they are critical for evaluation of performance of NAQFC predictions, and furthermore they are used in real-time testing of bias correction of PM2.5 predictions, as we continue to work on improving modeling and emissions important for representation of PM2.5.

  5. Evaluation of CMAQ and CAMx Ensemble Air Quality Forecasts during the 2015 MAPS-Seoul Field Campaign

    NASA Astrophysics Data System (ADS)

    Kim, E.; Kim, S.; Bae, C.; Kim, H. C.; Kim, B. U.

    2015-12-01

    The performance of Air quality forecasts during the 2015 MAPS-Seoul Field Campaign was evaluated. An forecast system has been operated to support the campaign's daily aircraft route decisions for airborne measurements to observe long-range transporting plume. We utilized two real-time ensemble systems based on the Weather Research and Forecasting (WRF)-Sparse Matrix Operator Kernel Emissions (SMOKE)-Comprehensive Air quality Model with extensions (CAMx) modeling framework and WRF-SMOKE- Community Multi_scale Air Quality (CMAQ) framework over northeastern Asia to simulate PM10 concentrations. Global Forecast System (GFS) from National Centers for Environmental Prediction (NCEP) was used to provide meteorological inputs for the forecasts. For an additional set of retrospective simulations, ERA Interim Reanalysis from European Centre for Medium-Range Weather Forecasts (ECMWF) was also utilized to access forecast uncertainties from the meteorological data used. Model Inter-Comparison Study for Asia (MICS-Asia) and National Institute of Environment Research (NIER) Clean Air Policy Support System (CAPSS) emission inventories are used for foreign and domestic emissions, respectively. In the study, we evaluate the CMAQ and CAMx model performance during the campaign by comparing the results to the airborne and surface measurements. Contributions of foreign and domestic emissions are estimated using a brute force method. Analyses on model performance and emissions will be utilized to improve air quality forecasts for the upcoming KORUS-AQ field campaign planned in 2016.

  6. COST Action ES1206: Advanced GNSS Tropospheric Products for Monitoring Severe Weather Events and Climate (GNSS4SWEC)

    NASA Astrophysics Data System (ADS)

    Jones, Jonathan; Guerova, Guergana; Dousa, Jan; Dick, Galina; de Haan, Siebren; Pottiaux, Eric; Bock, Olivier; Pacione, Rosa

    2017-04-01

    GNSS is a well established atmospheric observing technique which can accurately sense atmospheric water vapour, the most abundant greenhouse gas, accounting for up to 70% of atmospheric warming. Water vapour is typically under-sampled in modern operational meteorological observing systems and obtaining and exploiting additional high-quality humidity observations is essential to improve weather forecasting and climate monitoring. COST Action ES1206 is a 4-year project, running from 2013 to 2017, which is coordinating the research activities and improved capabilities from concurrent developments in the GNSS, meteorological and climate communities. For the first time, the synergy of multi-GNSS constellations is used to develop new, more advanced tropospheric products, exploiting the full potential of multi-GNSS on a wide range of temporal and spatial scales - from real-time products monitoring and forecasting severe weather, to the highest quality post-processed products suitable for climate research. The Action also promotes the use of meteorological data as an input to real-time GNSS services and is stimulating the transfer of knowledge and data throughout Europe and beyond.

  7. The Copernicus Atmosphere Monitoring Service: facilitating the prediction of air quality from global to local scales

    NASA Astrophysics Data System (ADS)

    Engelen, R. J.; Peuch, V. H.

    2017-12-01

    The European Copernicus Atmosphere Monitoring Service (CAMS) operationally provides daily forecasts of global atmospheric composition and regional air quality. The global forecasting system is using ECMWF's Integrated Forecasting System (IFS), which is used for numerical weather prediction and which has been extended with modules for atmospheric chemistry, aerosols and greenhouse gases. The regional forecasts are produced by an ensemble of seven operational European air quality models that take their boundary conditions from the global system and provide an ensemble median with ensemble spread as their main output. Both the global and regional forecasting systems are feeding their output into air quality models on a variety of scales in various parts of the world. We will introduce the CAMS service chain and provide illustrations of its use in downstream applications. Both the usage of the daily forecasts and the usage of global and regional reanalyses will be addressed.

  8. Hydrodynamics and Water Quality forecasting over a Cloud Computing environment: INDIGO-DataCloud

    NASA Astrophysics Data System (ADS)

    Aguilar Gómez, Fernando; de Lucas, Jesús Marco; García, Daniel; Monteoliva, Agustín

    2017-04-01

    Algae Bloom due to eutrophication is an extended problem for water reservoirs and lakes that impacts directly in water quality. It can create a dead zone that lacks enough oxygen to support life and it can also be human harmful, so it must be controlled in water masses for supplying, bathing or other uses. Hydrodynamic and Water Quality modelling can contribute to forecast the status of the water system in order to alert authorities before an algae bloom event occurs. It can be used to predict scenarios and find solutions to reduce the harmful impact of the blooms. High resolution models need to process a big amount of data using a robust enough computing infrastructure. INDIGO-DataCloud (https://www.indigo-datacloud.eu/) is an European Commission funded project that aims at developing a data and computing platform targeting scientific communities, deployable on multiple hardware and provisioned over hybrid (private or public) e-infrastructures. The project addresses the development of solutions for different Case Studies using different Cloud-based alternatives. In the first INDIGO software release, a set of components are ready to manage the deployment of services to perform N number of Delft3D simulations (for calibrating or scenario definition) over a Cloud Computing environment, using the Docker technology: TOSCA requirement description, Docker repository, Orchestrator, AAI (Authorization, Authentication) and OneData (Distributed Storage System). Moreover, the Future Gateway portal based on Liferay, provides an user-friendly interface where the user can configure the simulations. Due to the data approach of INDIGO, the developed solutions can contribute to manage the full data life cycle of a project, thanks to different tools to manage datasets or even metadata. Furthermore, the cloud environment contributes to provide a dynamic, scalable and easy-to-use framework for non-IT experts users. This framework is potentially capable to automatize the processing of forecasting applying periodic tasks. For instance, a user can forecast every month the hydrodynamics and water quality status of a reservoir starting from a base model and supplying new data gathered from the instrumentation or observations. This interactive presentation aims to show the use of INDIGO solutions in a particular forecasting use case and to inspire others in the use of a Cloud framework for their applications.

  9. Space Weather Products at the Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Kuznetsova, M.; Pulkkinen, A.; Maddox, M.; Rastaetter, L.; Berrios, D.; MacNeice, P.

    2010-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second CCMC activity is to support Space Weather forecasting at national Space Weather Forecasting Centers. This second activity involves model evaluations, model transitions to operations, and the development of space weather forecasting tools. Owing to the pace of development in the science community, new model capabilities emerge frequently. Consequently, space weather products and tools involve not only increased validity, but often entirely new capabilities. This presentation will review the present state of space weather tools as well as point out emerging future capabilities.

  10. Evaluation of a new microphysical aerosol module in the ECMWF Integrated Forecasting System

    NASA Astrophysics Data System (ADS)

    Woodhouse, Matthew; Mann, Graham; Carslaw, Ken; Morcrette, Jean-Jacques; Schulz, Michael; Kinne, Stefan; Boucher, Olivier

    2013-04-01

    The Monitoring Atmospheric Composition and Climate II (MACC-II) project will provide a system for monitoring and predicting atmospheric composition. As part of the first phase of MACC, the GLOMAP-mode microphysical aerosol scheme (Mann et al., 2010, GMD) was incorporated within the ECMWF Integrated Forecasting System (IFS). The two-moment modal GLOMAP-mode scheme includes new particle formation, condensation, coagulation, cloud-processing, and wet and dry deposition. GLOMAP-mode is already incorporated as a module within the TOMCAT chemistry transport model and within the UK Met Office HadGEM3 general circulation model. The microphysical, process-based GLOMAP-mode scheme allows an improved representation of aerosol size and composition and can simulate aerosol evolution in the troposphere and stratosphere. The new aerosol forecasting and re-analysis system (known as IFS-GLOMAP) will also provide improved boundary conditions for regional air quality forecasts, and will benefit from assimilation of observed aerosol optical depths in near real time. Presented here is an evaluation of the performance of the IFS-GLOMAP system in comparison to in situ aerosol mass and number measurements, and remotely-sensed aerosol optical depth measurements. Future development will provide a fully-coupled chemistry-aerosol scheme, and the capability to resolve nitrate aerosol.

  11. Hybrid vs Adaptive Ensemble Kalman Filtering for Storm Surge Forecasting

    NASA Astrophysics Data System (ADS)

    Altaf, M. U.; Raboudi, N.; Gharamti, M. E.; Dawson, C.; McCabe, M. F.; Hoteit, I.

    2014-12-01

    Recent storm surge events due to Hurricanes in the Gulf of Mexico have motivated the efforts to accurately forecast water levels. Toward this goal, a parallel architecture has been implemented based on a high resolution storm surge model, ADCIRC. However the accuracy of the model notably depends on the quality and the recentness of the input data (mainly winds and bathymetry), model parameters (e.g. wind and bottom drag coefficients), and the resolution of the model grid. Given all these uncertainties in the system, the challenge is to build an efficient prediction system capable of providing accurate forecasts enough ahead of time for the authorities to evacuate the areas at risk. We have developed an ensemble-based data assimilation system to frequently assimilate available data into the ADCIRC model in order to improve the accuracy of the model. In this contribution we study and analyze the performances of different ensemble Kalman filter methodologies for efficient short-range storm surge forecasting, the aim being to produce the most accurate forecasts at the lowest possible computing time. Using Hurricane Ike meteorological data to force the ADCIRC model over a domain including the Gulf of Mexico coastline, we implement and compare the forecasts of the standard EnKF, the hybrid EnKF and an adaptive EnKF. The last two schemes have been introduced as efficient tools for enhancing the behavior of the EnKF when implemented with small ensembles by exploiting information from a static background covariance matrix. Covariance inflation and localization are implemented in all these filters. Our results suggest that both the hybrid and the adaptive approach provide significantly better forecasts than those resulting from the standard EnKF, even when implemented with much smaller ensembles.

  12. Water quality in the Schuylkill River, Pennsylvania: the potential for long-lead forecasts

    NASA Astrophysics Data System (ADS)

    Block, P. J.; Peralez, J.

    2012-12-01

    Prior analysis of pathogen levels in the Schuylkill River has led to a categorical daily forecast of water quality (denoted as red, yellow, or green flag days.) The forecast, available to the public online through the Philadelphia Water Department, is predominantly based on the local precipitation forecast. In this study, we explore the feasibility of extending the forecast to the seasonal scale by associating large-scale climate drivers with local precipitation and water quality parameter levels. This advance information is relevant for recreational activities, ecosystem health, and water treatment (energy, chemicals), as the Schuylkill provides 40% of Philadelphia's water supply. Preliminary results indicate skillful prediction of average summertime water quality parameters and characteristics, including chloride, coliform, turbidity, alkalinity, and others, using season-ahead oceanic and atmospheric variables, predominantly from the North Atlantic. Water quality parameter trends, including historic land use changes along the river, association with climatic variables, and prediction models will be presented.

  13. Parametric decadal climate forecast recalibration (DeFoReSt 1.0)

    NASA Astrophysics Data System (ADS)

    Pasternack, Alexander; Bhend, Jonas; Liniger, Mark A.; Rust, Henning W.; Müller, Wolfgang A.; Ulbrich, Uwe

    2018-01-01

    Near-term climate predictions such as decadal climate forecasts are increasingly being used to guide adaptation measures. For near-term probabilistic predictions to be useful, systematic errors of the forecasting systems have to be corrected. While methods for the calibration of probabilistic forecasts are readily available, these have to be adapted to the specifics of decadal climate forecasts including the long time horizon of decadal climate forecasts, lead-time-dependent systematic errors (drift) and the errors in the representation of long-term changes and variability. These features are compounded by small ensemble sizes to describe forecast uncertainty and a relatively short period for which typically pairs of reforecasts and observations are available to estimate calibration parameters. We introduce the Decadal Climate Forecast Recalibration Strategy (DeFoReSt), a parametric approach to recalibrate decadal ensemble forecasts that takes the above specifics into account. DeFoReSt optimizes forecast quality as measured by the continuous ranked probability score (CRPS). Using a toy model to generate synthetic forecast observation pairs, we demonstrate the positive effect on forecast quality in situations with pronounced and limited predictability. Finally, we apply DeFoReSt to decadal surface temperature forecasts from the MiKlip prototype system and find consistent, and sometimes considerable, improvements in forecast quality compared with a simple calibration of the lead-time-dependent systematic errors.

  14. Development of a High Resolution Weather Forecast Model for Mesoamerica Using the NASA Ames Code I Private Cloud Computing Environment

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Case, Jonathan; Venner, Jason; Moreno-Madrinan, Max J.; Delgado, Francisco

    2012-01-01

    Two projects at NASA Marshall Space Flight Center have collaborated to develop a high resolution weather forecast model for Mesoamerica: The NASA Short-term Prediction Research and Transition (SPoRT) Center, which integrates unique NASA satellite and weather forecast modeling capabilities into the operational weather forecasting community. NASA's SERVIR Program, which integrates satellite observations, ground-based data, and forecast models to improve disaster response in Central America, the Caribbean, Africa, and the Himalayas.

  15. VERIFICATION OF SURFACE LAYER OZONE FORECASTS IN THE NOAA/EPA AIR QUALITY FORECAST SYSTEM IN DIFFERENT REGIONS UNDER DIFFERENT SYNOPTIC SCENARIOS

    EPA Science Inventory

    An air quality forecast (AQF) system has been established at NOAA/NCEP since 2003 as a collaborative effort of NOAA and EPA. The system is based on NCEP's Eta mesoscale meteorological model and EPA's CMAQ air quality model (Davidson et al, 2004). The vision behind this system is ...

  16. Early Transition and Use of VIIRS and GOES-R Products by NWS Forecast Offices

    NASA Technical Reports Server (NTRS)

    Fuell, Kevin K.; Smith, Mathew; Jedlovec, Gary

    2012-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on the NPOESS Preparatory Project (NPP) satellite, part of the Joint Polar Satellite System (JPSS), and the ABI and GLM sensors scheduled for the GOES-R geostationary satellite will bring advanced observing capabilities to the operational weather community. The NASA Short-term Prediction Research and Transition (SPoRT) project at Marshall Space Flight Center has been facilitating the use of real-time experimental and research satellite data by NWS Weather Forecast Offices (WFOs) for a number of years to demonstrate the planned capabilities of future sensors to address particular forecast challenges through improve situational awareness and short-term weather forecasts. For the NOAA GOES-R Proving Ground (PG) activity, SPoRT is developing and disseminating selected GOES-R proxy products to collaborating WFOs and National Centers. SPoRT developed the a pseudo-Geostationary Lightning Mapper product and helped in the transition of the Algorithm Working Group (AWG) Convective Initiation (CI) proxy product for the Hazardous Weather Testbed (HWT) Spring Experiment,. Along with its partner WFOs, SPoRT is evaluating MODIS/GOES Hybrid products, which brings ABI-like data sets from existing NASA instrumentation in front of the forecaster for everyday use. The Hybrid uses near real-time MODIS imagery to demonstrate future ABI capabilities, while utilizing standard GOES imagery to provide the temporal frequency of geostationary imagery expected by operational forecasters. In addition, SPoRT is collaborating with the GOES-R hydrology AWG to transition a baseline proxy product for rainfall rate / quantitative precipitation estimate (QPE) to the OCONUS regions. For VIIRS, SPoRT is demonstrating multispectral observing capabilities and the utility of low-light channels not previously available on operational weather satellites to address a variety of weather forecast challenges. This presentation will discuss the results of transitioning these products to collaborating WFOs throughout the country.

  17. Developing air quality forecasts

    NASA Astrophysics Data System (ADS)

    Lee, Pius; Saylor, Rick; Meagher, James

    2012-05-01

    Third International Workshop on Air Quality Forecasting Research; Potomac, Maryland, 29 November to 1 December 2011 Elevated concentrations of both near-surface ozone (O3) and fine particulate matter smaller than 2.5 micrometers in diameter have been implicated in increased mortality and other human health impacts. In light of these known influences on human health, many governments around the world have instituted air quality forecasting systems to provide their citizens with advance warning of impending poor air quality so that they can take actions to limit exposure. In an effort to improve the performance of air quality forecasting systems and provide a forum for the exchange of the latest research in air quality modeling, the International Workshop on Air Quality Forecasting Research (IWAQFR) was established in 2009 and is cosponsored by the U.S. National Oceanic and Atmospheric Administration (NOAA), Environment Canada (EC), and the World Meteorological Organization (WMO). The steering committee for IWAQFR's establishment was composed of Véronique Bouchet, Mike Howe, and Craig Stoud (EC); Greg Carmichael (University of Iowa); Paula Davidson and Jim Meagher (NOAA); and Liisa Jalkanen (WMO). The most recent workshop took place in Maryland.

  18. Stochastic Forcing for High-Resolution Regional and Global Ocean and Atmosphere-Ocean Coupled Ensemble Forecast System

    NASA Astrophysics Data System (ADS)

    Rowley, C. D.; Hogan, P. J.; Martin, P.; Thoppil, P.; Wei, M.

    2017-12-01

    An extended range ensemble forecast system is being developed in the US Navy Earth System Prediction Capability (ESPC), and a global ocean ensemble generation capability to represent uncertainty in the ocean initial conditions has been developed. At extended forecast times, the uncertainty due to the model error overtakes the initial condition as the primary source of forecast uncertainty. Recently, stochastic parameterization or stochastic forcing techniques have been applied to represent the model error in research and operational atmospheric, ocean, and coupled ensemble forecasts. A simple stochastic forcing technique has been developed for application to US Navy high resolution regional and global ocean models, for use in ocean-only and coupled atmosphere-ocean-ice-wave ensemble forecast systems. Perturbation forcing is added to the tendency equations for state variables, with the forcing defined by random 3- or 4-dimensional fields with horizontal, vertical, and temporal correlations specified to characterize different possible kinds of error. Here, we demonstrate the stochastic forcing in regional and global ensemble forecasts with varying perturbation amplitudes and length and time scales, and assess the change in ensemble skill measured by a range of deterministic and probabilistic metrics.

  19. SPoRT - An End-to-End R2O Activity

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.

    2009-01-01

    Established in 2002 to demonstrate the weather and forecasting application of real-time EOS measurements, the Short-term Prediction Research and Transition (SPoRT) program has grown to be an end-to-end research to operations activity focused on the use of advanced NASA modeling and data assimilation approaches, nowcasting techniques, and unique high-resolution multispectral observational data applications from EOS satellites to improve short-term weather forecasts on a regional and local scale. SPoRT currently partners with several universities and other government agencies for access to real-time data and products, and works collaboratively with them and operational end users at 13 WFOs to develop and test the new products and capabilities in a "test-bed" mode. The test-bed simulates key aspects of the operational environment without putting constraints on the forecaster workload. Products and capabilities which show utility in the test-bed environment are then transitioned experimentally into the operational environment for further evaluation and assessment. SPoRT focuses on a suite of data and products from MODIS, AMSR-E, and AIRS on the NASA Terra and Aqua satellites, and total lightning measurements from ground-based networks. Some of the observations are assimilated into or used with various versions of the WRF model to provide supplemental forecast guidance to operational end users. SPoRT is enhancing partnerships with NOAA / NESDIS for new product development and data access to exploit the remote sensing capabilities of instruments on the NPOESS satellites to address short term weather forecasting problems. The VIIRS and CrIS instruments on the NPP and follow-on NPOESS satellites provide similar observing capabilities to the MODIS and AIRS instruments on Terra and Aqua. SPoRT will be transitioning existing and new capabilities into the AWIIPS II environment to continue the continuity of its activities.

  20. Goals of Quality in Doctoral Studies and Forecasted Outcomes

    ERIC Educational Resources Information Center

    Zelvys, Rimantas

    2007-01-01

    This article discusses the quality assurance policy of doctoral studies implemented in Lithuania and its probable outcomes are forecasted. In scientific literature the quality of education is commonly defined as a holistic phenomenon composed of the quality of initial conditions, quality of process and quality of outputs. The accomplished document…

  1. Superensemble forecasts of dengue outbreaks

    PubMed Central

    Kandula, Sasikiran; Shaman, Jeffrey

    2016-01-01

    In recent years, a number of systems capable of predicting future infectious disease incidence have been developed. As more of these systems are operationalized, it is important that the forecasts generated by these different approaches be formally reconciled so that individual forecast error and bias are reduced. Here we present a first example of such multi-system, or superensemble, forecast. We develop three distinct systems for predicting dengue, which are applied retrospectively to forecast outbreak characteristics in San Juan, Puerto Rico. We then use Bayesian averaging methods to combine the predictions from these systems and create superensemble forecasts. We demonstrate that on average, the superensemble approach produces more accurate forecasts than those made from any of the individual forecasting systems. PMID:27733698

  2. Developing the remote sensing-based early warning system for monitoring TSS concentrations in Lake Mead.

    PubMed

    Imen, Sanaz; Chang, Ni-Bin; Yang, Y Jeffrey

    2015-09-01

    Adjustment of the water treatment process to changes in water quality is a focus area for engineers and managers of water treatment plants. The desired and preferred capability depends on timely and quantitative knowledge of water quality monitoring in terms of total suspended solids (TSS) concentrations. This paper presents the development of a suite of nowcasting and forecasting methods by using high-resolution remote-sensing-based monitoring techniques on a daily basis. First, the integrated data fusion and mining (IDFM) technique was applied to develop a near real-time monitoring system for daily nowcasting of the TSS concentrations. Then a nonlinear autoregressive neural network with external input (NARXNET) model was selected and applied for forecasting analysis of the changes in TSS concentrations over time on a rolling basis onward using the IDFM technique. The implementation of such an integrated forecasting and nowcasting approach was assessed by a case study at Lake Mead hosting the water intake for Las Vegas, Nevada, in the water-stressed western U.S. Long-term monthly averaged results showed no simultaneous impact from forest fire events on accelerating the rise of TSS concentration. However, the results showed a probable impact of a decade of drought on increasing TSS concentration in the Colorado River Arm and Overton Arm. Results of the forecasting model highlight the reservoir water level as a significant parameter in predicting TSS in Lake Mead. In addition, the R-squared value of 0.98 and the root mean square error of 0.5 between the observed and predicted TSS values demonstrates the reliability and application potential of this remote sensing-based early warning system in terms of TSS projections at a drinking water intake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Challenges and potential solutions for European coastal ocean modelling

    NASA Astrophysics Data System (ADS)

    She, Jun; Stanev, Emil

    2017-04-01

    Coastal operational oceanography is a science and technological platform to integrate and transform the outcomes in marine monitoring, new knowledge generation and innovative technologies into operational information products and services in the coastal ocean. It has been identified as one of the four research priorities by EuroGOOS (She et al. 2016). Coastal modelling plays a central role in such an integration and transformation. A next generation coastal ocean forecasting system should have following features: i) being able to fully exploit benefits from future observations, ii) generate meaningful products in finer scales e.g., sub-mesoscale and in estuary-coast-sea continuum, iii) efficient parallel computing and model grid structure, iv) provide high quality forecasts as forcing to NWP and coastal climate models, v) resolving correctly inter-basin and inter-sub-basin water exchange, vi) resolving synoptic variability and predictability in marine ecosystems, e.g., for algae bloom, vi) being able to address critical and relevant issues in coastal applications, e.g., marine spatial planning, maritime safety, marine pollution protection, disaster prevention, offshore wind energy, climate change adaptation and mitigation, ICZM (integrated coastal zone management), the WFD (Water Framework Directive), and the MSFD (Marine Strategy Framework Directive), especially on habitat, eutrophication, and hydrographic condition descriptors. This presentation will address above challenges, identify limits of current models and propose correspondent research needed. The proposed roadmap will address an integrated monitoring-modelling approach and developing Unified European Coastal Ocean Models. In the coming years, a few new developments in European Sea observations can expected, e.g., more near real time delivering on profile observations made by research vessels, more shallow water Argo floats and bio-Argo floats deployed, much more high resolution sea level data from SWOT and on-going altimetry missions, contributing to resolving (sub-)mesoscale eddies, more currents measurements from ADCPs and HF radars, geostationary data for suspended sediment and diurnal observations from satellite SST products. These developments will make it possible to generate new knowledge and build up new capacities for modelling and forecasting systems, e.g., improved currents forecast, improved water skin temperature and surface winds forecast, improved modelling and forecast of (sub) mesoscale activities and drift forecast, new forecast capabilities on SPM (Suspended Particle Matter) and algae bloom. There will be much more in-situ and satellite data available for assimilation. The assimilation of sea level, chl-a, ferrybox and profile observations will greatly improves the ocean-ice-ecosystem forecast quality.

  4. Economic consequences of improved temperature forecasts: An experiment with the Florida citrus growers (control group results). Executive summary. [weather forecasting

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A demonstration experiment is being planned to show that frost and freeze prediction improvements are possible utilizing timely Synchronous Meteorological Satellite temperature measurements and that this information can affect Florida citrus grower operations and decisions so as to significantly reduce the cost for frost and freeze protection and crop losses. The design and implementation of the first phase of an economic experiment which will monitor citrus growers decisions, actions, costs and losses, and meteorological forecasts and actual weather events was carried out. The economic experiment was designed to measure the change in annual protection costs and crop losses which are the direct result of improved temperature forecasts. To estimate the benefits that may result from improved temperature forecasting capability, control and test groups were established with effective separation being accomplished temporally. The control group, utilizing current forecasting capability, was observed during the 1976-77 frost season and the results are reported. A brief overview is given of the economic experiment, the results obtained to date, and the work which still remains to be done.

  5. IMPROVING NATIONAL AIR QUALITY FORECASTS WITH SATELLITE AEROSOL OBSERVATIONS

    EPA Science Inventory

    Air quality forecasts for major US metropolitan areas have been provided to the public through a partnership between the US Environmental Protection Agency and state and local air agencies since 1997. Recent years have witnessed improvement in forecast skill and expansion of fore...

  6. The CMEMS IBI-MFC Forecasting Service in 2017: Evolution and Novelties associated to the CMEMS service release

    NASA Astrophysics Data System (ADS)

    Lorente, Pablo; Sotillo, Marcos G.; Gutknecht, Elodie; Dabrowski, Tomasz; Aouf, Lotfi; Toledano, Cristina; Amo-Baladron, Arancha; Aznar, Roland; De Pascual, Alvaro; Levier, Bruno; Bowyer, Peter; Rainaud, Romain; Alvarez-Fanjul, Enrique

    2017-04-01

    The IBI-MFC (Iberia-Biscay-Ireland Monitoring & Forecasting Centre) has been providing daily ocean model estimates and forecasts of diverse physical parameters for the IBI regional seas since 2011, first in the frame of MyOcean projects and later as part of the Copernicus Marine Environment Monitoring Service (CMEMS). By April 2017, coincident with the V3 CMEMS Service Release, the IBI-MFC will extend their near real time (NRT) forecast capabilities. Two new operational IBI forecast systems will be operationally run to generate high resolution biochemical (BIO) and wave (WAV) products on the IBI area. The IBI-NRT-BIO forecast system, based on a 1/36° NEMO-PISCES model application, is run once a week coupled with the IBI physical forecast solution and nested to the CMEMS GLOBAL-BIO solution. On the other hand, the IBI-NRT-WAV system, based on a MeteoFrance-WAM 10km resolution model application, runs twice a day using ECMWF wind forcing. Among other novelties related to the evolution of the IBI physical (PHY) solution, it is worthwhile mentioning the provision, as part of the IBI-NRT-PHY product daily updated, of three-dimensional hourly data on specific areas within the IBI domain. The delivery of these new hourly data along the whole water column has been achieved after the request from IBI users, in order to foster downscaling approaches by providing coherent open boundary conditions to any potential high-resolution coastal model nested to IBI regional solution. An extensive skill assessment of IBI-NRT forecast products has been conducted through the NARVAL (North Atlantic Regional VALidation) web tool, by means of the automatic computation of statistical metrics and quality indicators. By now, this tool has been focused on the validation of the IBI-NRT-PHY system. Nowadays, NARVAL is facing a significant upgrade to validate the aforementioned new biogeochemical and wave IBI products. To this aim, satellite derived observations of chlorophyll and significant wave height will be used, together with in-situ wave parameters measured by mooring buoys. Within this validation framework, special emphasis has been placed on the intercomparison of different forecast model solutions in overlapping areas in order to evaluate models' performances and prognostic capabilities. This common uncertainty estimates of IBI and other model solution is currently performed by NARVAL using both CMEMS forecast model sources (i.e. GLOBAL-MFC, MED-MFC and NWS-MFC) and non-CMEMS operational forecast solutions (mostly downstream application nested to the IBI solution). With respect to the IBI multi-year (MY) products, it is worth mentioning that the actual biogeochemical and physical reanalysis products will be re-run along year 2017, extending its time coverage backwards until 1992. Based on these IBI-MY products, a variety of climatic indicators related to essential oceanographic processes (i.e. western coastal upwelling or the Mediterranean Outflow Water) are currently being computed.

  7. Updating of states in operational hydrological models

    NASA Astrophysics Data System (ADS)

    Bruland, O.; Kolberg, S.; Engeland, K.; Gragne, A. S.; Liston, G.; Sand, K.; Tøfte, L.; Alfredsen, K.

    2012-04-01

    Operationally the main purpose of hydrological models is to provide runoff forecasts. The quality of the model state and the accuracy of the weather forecast together with the model quality define the runoff forecast quality. Input and model errors accumulate over time and may leave the model in a poor state. Usually model states can be related to observable conditions in the catchment. Updating of these states, knowing their relation to observable catchment conditions, influence directly the forecast quality. Norway is internationally in the forefront in hydropower scheduling both on short and long terms. The inflow forecasts are fundamental to this scheduling. Their quality directly influence the producers profit as they optimize hydropower production to market demand and at the same time minimize spill of water and maximize available hydraulic head. The quality of the inflow forecasts strongly depends on the quality of the models applied and the quality of the information they use. In this project the focus has been to improve the quality of the model states which the forecast is based upon. Runoff and snow storage are two observable quantities that reflect the model state and are used in this project for updating. Generally the methods used can be divided in three groups: The first re-estimates the forcing data in the updating period; the second alters the weights in the forecast ensemble; and the third directly changes the model states. The uncertainty related to the forcing data through the updating period is due to both uncertainty in the actual observation and to how well the gauging stations represent the catchment both in respect to temperatures and precipitation. The project looks at methodologies that automatically re-estimates the forcing data and tests the result against observed response. Model uncertainty is reflected in a joint distribution of model parameters estimated using the Dream algorithm.

  8. Bilateral preictal signature of phase-amplitude coupling in canine epilepsy.

    PubMed

    Gagliano, Laura; Bou Assi, Elie; Nguyen, Dang K; Rihana, Sandy; Sawan, Mohamad

    2018-01-01

    Seizure forecasting would improve the quality of life of patients with refractory epilepsy. Although early findings were optimistic, no single feature has been found capable of individually characterizing brain dynamics during transition to seizure. Cross-frequency phase amplitude coupling has been recently proposed as a precursor of seizure activity. This work evaluates the existence of a statistically significant difference in mean phase amplitude coupling distribution between the preictal and interictal states of seizures in dogs with bilaterally implanted intracranial electrodes. Results show a statistically significant change (p<0.05) of phase amplitude coupling during the preictal phase. This change is correlated with the position of implanted electrodes and is more significant within high-gamma frequency bands. These findings highlight the potential benefit of bilateral iEEG analysis and the feasibility of seizure forecasting based on slow modulation of high frequency amplitude. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. COST Action ES1206: Advanced GNSS Tropospheric Products forMonitoring Severe Weather Events and Climate (GNSS4SWEC)

    NASA Astrophysics Data System (ADS)

    Jones, J.; Guerova, G.; Dousa, J.; Dick, G.; Haan, de, S.; Pottiaux, E.; Bock, O.; Pacione, R.

    2016-12-01

    GNSS is now an established atmospheric observing system which can accurately sense water vapour, the mostabundant greenhouse gas, accounting for 60-70% of atmospheric warming. Water vapour observations arecurrently under-sampled and obtaining and exploiting additional high-quality humidity observations is essential tosevere weather forecasting and climate monitoring. COST Action ES1206 addresses new and improved capabilities from developments in both the GNSS andmeteorological communities to address these requirements. For the first time, the synergy of multi-GNSS(GPS, GLONASS and Galileo) will be used to develop new, advanced tropospheric products, exploiting the fullpotential of multi-GNSS water vapour estimates on a wide range of temporal and spatial scales, from real-timemonitoring and forecasting of severe weather, to climate research. In addition the Action will promote the useof meteorological data in GNSS positioning, navigation, and timing services and stimulate knowledge and datatransfer throughout Europe.

  10. An Evaluation of Real-time Air Quality Forecasts and their Urban Emissions over Eastern Texas During the Summer of 2006 Second Texas Air Quality Study Field Study

    EPA Science Inventory

    Forecasts of ozone (O3) and particulate matter (diameter less than 2.5 µm, PM2.5) from seven air quality forecast models (AQFMs) are statistically evaluated against observations collected during August and September of 2006 (49 days) through the AIRNow netwo...

  11. Evaluation of the 29-km Eta Model for Weather Support to the United States Space Program

    NASA Technical Reports Server (NTRS)

    Manobianco, John; Nutter, Paul

    1997-01-01

    The Applied Meteorology Unit (AMU) conducted a year-long evaluation of NCEP's 29-km mesoscale Eta (meso-eta) weather prediction model in order to identify added value to forecast operations in support of the United States space program. The evaluation was stratified over warm and cool seasons and considered both objective and subjective verification methodologies. Objective verification results generally indicate that meso-eta model point forecasts at selected stations exhibit minimal error growth in terms of RMS errors and are reasonably unbiased. Conversely, results from the subjective verification demonstrate that model forecasts of developing weather events such as thunderstorms, sea breezes, and cold fronts, are not always as accurate as implied by the seasonal error statistics. Sea-breeze case studies reveal that the model generates a dynamically-consistent thermally direct circulation over the Florida peninsula, although at a larger scale than observed. Thunderstorm verification reveals that the meso-eta model is capable of predicting areas of organized convection, particularly during the late afternoon hours but is not capable of forecasting individual thunderstorms. Verification of cold fronts during the cool season reveals that the model is capable of forecasting a majority of cold frontal passages through east central Florida to within +1-h of observed frontal passage.

  12. A PERFORMANCE EVALUATION OF THE ETA- CMAQ AIR QUALITY FORECAST SYSTEM FOR THE SUMMER OF 2005

    EPA Science Inventory

    This poster presents an evaluation of the Eta-CMAQ Air Quality Forecast System's experimental domain using O3 observations obtained from EPA's AIRNOW program and a suite of statistical metrics examining both discrete and categorical forecasts.

  13. Extending flood forecasting lead time in a large watershed by coupling WRF QPF with a distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Li, Ji; Chen, Yangbo; Wang, Huanyu; Qin, Jianming; Li, Jie; Chiao, Sen

    2017-03-01

    Long lead time flood forecasting is very important for large watershed flood mitigation as it provides more time for flood warning and emergency responses. The latest numerical weather forecast model could provide 1-15-day quantitative precipitation forecasting products in grid format, and by coupling this product with a distributed hydrological model could produce long lead time watershed flood forecasting products. This paper studied the feasibility of coupling the Liuxihe model with the Weather Research and Forecasting quantitative precipitation forecast (WRF QPF) for large watershed flood forecasting in southern China. The QPF of WRF products has three lead times, including 24, 48 and 72 h, with the grid resolution being 20 km  × 20 km. The Liuxihe model is set up with freely downloaded terrain property; the model parameters were previously optimized with rain gauge observed precipitation, and re-optimized with the WRF QPF. Results show that the WRF QPF has bias with the rain gauge precipitation, and a post-processing method is proposed to post-process the WRF QPF products, which improves the flood forecasting capability. With model parameter re-optimization, the model's performance improves also. This suggests that the model parameters be optimized with QPF, not the rain gauge precipitation. With the increasing of lead time, the accuracy of the WRF QPF decreases, as does the flood forecasting capability. Flood forecasting products produced by coupling the Liuxihe model with the WRF QPF provide a good reference for large watershed flood warning due to its long lead time and rational results.

  14. NSF's Perspective on Space Weather Research for Building Forecasting Capabilities

    NASA Astrophysics Data System (ADS)

    Bisi, M. M.; Pulkkinen, A. A.; Bisi, M. M.; Pulkkinen, A. A.; Webb, D. F.; Oughton, E. J.; Azeem, S. I.

    2017-12-01

    Space weather research at the National Science Foundation (NSF) is focused on scientific discovery and on deepening knowledge of the Sun-Geospace system. The process of maturation of knowledge base is a requirement for the development of improved space weather forecast models and for the accurate assessment of potential mitigation strategies. Progress in space weather forecasting requires advancing in-depth understanding of the underlying physical processes, developing better instrumentation and measurement techniques, and capturing the advancements in understanding in large-scale physics based models that span the entire chain of events from the Sun to the Earth. This presentation will provide an overview of current and planned programs pertaining to space weather research at NSF and discuss the recommendations of the Geospace Section portfolio review panel within the context of space weather forecasting capabilities.

  15. Development of Water Quality Forecasting Models Based on the SOM-ANN on TMDL Unit Watershed in Nakdong River

    NASA Astrophysics Data System (ADS)

    KIM, M.; Kim, J.; Baek, J.; Kim, C.; Shin, H.

    2013-12-01

    It has being happened as flush flood or red/green tide in various natural phenomena due to climate change and indiscreet development of river or land. Especially, water being very important to man should be protected and managed from water quality pollution, and in water resources management, real-time watershed monitoring system is being operated with the purpose of keeping watch and managing on rivers. It is especially important to monitor and forecast water quality in watershed. A study area selected Nak_K as one site among TMDL unit watershed in Nakdong River. This study is to develop a water quality forecasting model connected with making full use of observed data of 8 day interval from Nakdong River Environment Research Center. When forecasting models for each of the BOD, DO, COD, and chlorophyll-a are established considering correlation of various water quality factors, it is needed to select water quality factors showing highly considerable correlation with each water quality factor which is BOD, DO, COD, and chlorophyll-a. For analyzing the correlation of the factors (reservoir discharge, precipitation, air temperature, DO, BOD, COD, Tw, TN, TP, chlorophyll-a), in this study, self-organizing map was used and cross correlation analysis method was also used for comparing results drawn. Based on the results, each forecasting model for BOD, DO, COD, and chlorophyll-a was developed during the short period as 8, 16, 24, 32 days at 8 day interval. The each forecasting model is based on neural network with back propagation algorithm. That is, the study is connected with self-organizing map for analyzing correlation among various factors and neural network model for forecasting of water quality. It is considerably effective to manage the water quality in plenty of rivers, then, it specially is possible to monitor a variety of accidents in water quality. It will work well to protect water quality and to prevent destruction of the environment becoming more and more serious before occurring.

  16. PERFORMANCE AND DIAGNOSTIC EVALUATION OF OZONE PREDICTIONS BY THE ETA-COMMUNITY MULTISCALE AIR QUALITY FORECAST SYSTEM DURING THE 2002 NEW ENGLAND AIR QUALITY STUDY

    EPA Science Inventory

    A real-time air quality forecasting system (Eta-CMAQ model suite) has been developed by linking the NCEP Eta model to the U.S. EPA CMAQ model. This work presents results from the application of the Eta-CMAQ modeling system for forecasting O3 over the northeastern U.S d...

  17. Consequences Identification in Forecasting and Ethical Decision-making

    PubMed Central

    Stenmark, Cheryl K.; Antes, Alison L.; Thiel, Chase E.; Caughron, Jared J.; Wang, Xiaoqian; Mumford, Michael D.

    2015-01-01

    Forecasting involves predicting outcomes based on observations of the situation at hand. We examined the impact of the number and types of consequences considered on the quality of ethical decision-making. Undergraduates role-played several ethical problems in which they forecast potential outcomes and made decisions. Performance pressure (difficult demands placed on the situation) and interpersonal conflict (clashes among people in the problem situation) were manipulated within each problem scenario. The results indicated that the identification of potential consequences was positively associated with both higher quality forecasts and more ethical decisions. Neither performance pressure nor interpersonal conflict affected the quality of forecasts or decisions. Theoretical and practical implications of these findings and the use of this research approach are discussed. PMID:21460584

  18. Short-term Inundation Forecasting for Tsunamis Version 4.0 Brings Forecasting Speed, Accuracy, and Capability Improvements to NOAA's Tsunami Warning Centers

    NASA Astrophysics Data System (ADS)

    Sterling, K.; Denbo, D. W.; Eble, M. C.

    2016-12-01

    Short-term Inundation Forecasting for Tsunamis (SIFT) software was developed by NOAA's Pacific Marine Environmental Laboratory (PMEL) for use in tsunami forecasting and has been used by both U.S. Tsunami Warning Centers (TWCs) since 2012, when SIFTv3.1 was operationally accepted. Since then, advancements in research and modeling have resulted in several new features being incorporated into SIFT forecasting. Following the priorities and needs of the TWCs, upgrades to SIFT forecasting were implemented into SIFTv4.0, scheduled to become operational in October 2016. Because every minute counts in the early warning process, two major time saving features were implemented in SIFT 4.0. To increase processing speeds and generate high-resolution flooding forecasts more quickly, the tsunami propagation and inundation codes were modified to run on Graphics Processing Units (GPUs). To reduce time demand on duty scientists during an event, an automated DART inversion (or fitting) process was implemented. To increase forecasting accuracy, the forecasted amplitudes and inundations were adjusted to include dynamic tidal oscillations, thereby reducing the over-estimates of flooding common in SIFTv3.1 due to the static tide stage conservatively set at Mean High Water. Further improvements to forecasts were gained through the assimilation of additional real-time observations. Cabled array measurements from Bottom Pressure Recorders (BPRs) in the Oceans Canada NEPTUNE network are now available to SIFT for use in the inversion process. To better meet the needs of harbor masters and emergency managers, SIFTv4.0 adds a tsunami currents graphical product to the suite of disseminated forecast results. When delivered, these new features in SIFTv4.0 will improve the operational tsunami forecasting speed, accuracy, and capabilities at NOAA's Tsunami Warning Centers.

  19. Performance of stochastic approaches for forecasting river water quality.

    PubMed

    Ahmad, S; Khan, I H; Parida, B P

    2001-12-01

    This study analysed water quality data collected from the river Ganges in India from 1981 to 1990 for forecasting using stochastic models. Initially the box and whisker plots and Kendall's tau test were used to identify the trends during the study period. For detecting the possible intervention in the data the time series plots and cusum charts were used. The three approaches of stochastic modelling which account for the effect of seasonality in different ways. i.e. multiplicative autoregressive integrated moving average (ARIMA) model. deseasonalised model and Thomas-Fiering model were used to model the observed pattern in water quality. The multiplicative ARIMA model having both nonseasonal and seasonal components were, in general, identified as appropriate models. In the deseasonalised modelling approach, the lower order ARIMA models were found appropriate for the stochastic component. The set of Thomas-Fiering models were formed for each month for all water quality parameters. These models were then used to forecast the future values. The error estimates of forecasts from the three approaches were compared to identify the most suitable approach for the reliable forecast. The deseasonalised modelling approach was recommended for forecasting of water quality parameters of a river.

  20. The case for probabilistic forecasting in hydrology

    NASA Astrophysics Data System (ADS)

    Krzysztofowicz, Roman

    2001-08-01

    That forecasts should be stated in probabilistic, rather than deterministic, terms has been argued from common sense and decision-theoretic perspectives for almost a century. Yet most operational hydrological forecasting systems produce deterministic forecasts and most research in operational hydrology has been devoted to finding the 'best' estimates rather than quantifying the predictive uncertainty. This essay presents a compendium of reasons for probabilistic forecasting of hydrological variates. Probabilistic forecasts are scientifically more honest, enable risk-based warnings of floods, enable rational decision making, and offer additional economic benefits. The growing demand for information about risk and the rising capability to quantify predictive uncertainties create an unparalleled opportunity for the hydrological profession to dramatically enhance the forecasting paradigm.

  1. Daily air quality index forecasting with hybrid models: A case in China.

    PubMed

    Zhu, Suling; Lian, Xiuyuan; Liu, Haixia; Hu, Jianming; Wang, Yuanyuan; Che, Jinxing

    2017-12-01

    Air quality is closely related to quality of life. Air pollution forecasting plays a vital role in air pollution warnings and controlling. However, it is difficult to attain accurate forecasts for air pollution indexes because the original data are non-stationary and chaotic. The existing forecasting methods, such as multiple linear models, autoregressive integrated moving average (ARIMA) and support vector regression (SVR), cannot fully capture the information from series of pollution indexes. Therefore, new effective techniques need to be proposed to forecast air pollution indexes. The main purpose of this research is to develop effective forecasting models for regional air quality indexes (AQI) to address the problems above and enhance forecasting accuracy. Therefore, two hybrid models (EMD-SVR-Hybrid and EMD-IMFs-Hybrid) are proposed to forecast AQI data. The main steps of the EMD-SVR-Hybrid model are as follows: the data preprocessing technique EMD (empirical mode decomposition) is utilized to sift the original AQI data to obtain one group of smoother IMFs (intrinsic mode functions) and a noise series, where the IMFs contain the important information (level, fluctuations and others) from the original AQI series. LS-SVR is applied to forecast the sum of the IMFs, and then, S-ARIMA (seasonal ARIMA) is employed to forecast the residual sequence of LS-SVR. In addition, EMD-IMFs-Hybrid first separately forecasts the IMFs via statistical models and sums the forecasting results of the IMFs as EMD-IMFs. Then, S-ARIMA is employed to forecast the residuals of EMD-IMFs. To certify the proposed hybrid model, AQI data from June 2014 to August 2015 collected from Xingtai in China are utilized as a test case to investigate the empirical research. In terms of some of the forecasting assessment measures, the AQI forecasting results of Xingtai show that the two proposed hybrid models are superior to ARIMA, SVR, GRNN, EMD-GRNN, Wavelet-GRNN and Wavelet-SVR. Therefore, the proposed hybrid models can be used as effective and simple tools for air pollution forecasting and warning as well as for management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Applications of LANCE Data at SPoRT

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew

    2014-01-01

    Short term Prediction Research and Transition (SPoRT) Center: Mission: Apply NASA and NOAA measurement systems and unique Earth science research to improve the accuracy of short term weather prediction at the regional/local scale. Goals: Evaluate and assess the utility of NASA and NOAA Earth science data and products and unique research capabilities to address operational weather forecast problems; Provide an environment which enables the development and testing of new capabilities to improve short term weather forecasts on a regional scale; Help ensure successful transition of new capabilities to operational weather entities for the benefit of society

  3. Paradigm change in ocean studies: multi-platform observing and forecasting integrated approach in response to science and society needs

    NASA Astrophysics Data System (ADS)

    Tintoré, Joaquín

    2017-04-01

    The last 20 years of ocean research have allowed a description of the state of the large-scale ocean circulation. However, it is also well known that there is no such thing as an ocean state and that the ocean varies a wide range of spatial and temporal scales. More recently, in the last 10 years, new monitoring and modelling technologies have emerged allowing quasi real time observation and forecasting of the ocean at regional and local scales. Theses new technologies are key components of recent observing & forecasting systems being progressively implemented in many regional seas and coastal areas of the world oceans. As a result, new capabilities to characterise the ocean state and more important, its variability at small spatial and temporal scales, exists today in many cases in quasi-real time. Examples of relevance for society can be cited, among others our capabilities to detect and understand long-term climatic changes and also our capabilities to better constrain our forecasting capabilities of the coastal ocean circulation at temporal scales from sub-seasonal to inter-annual and spatial from regional to meso and submesoscale. The Mediterranean Sea is a well-known laboratory ocean where meso and submesoscale features can be ideally observed and studied as shown by the key contributions from projects such as Perseus, CMEMS, Jericonext, among others. The challenge for the next 10 years is the integration of theses technologies and multiplatform observing and forecasting systems to (a) monitor the variability at small scales mesoscale/weeks) in order (b) to resolve the sub-basin/seasonal and inter-annual variability and by this (c) establish the decadal variability, understand the associated biases and correct them. In other words, the new observing systems now allow a major change in our focus of ocean observation, now from small to large scales. Recent studies from SOCIB -www.socib.es- have shown the importance of this new small to large-scale multi-platform approach in ocean observation. Three examples from the integration capabilities of SOCIB facilities will be presented and discussed. First the quasi-continuous high frequency glider monitoring of the Ibiza Channel since 2011, an important biodiversity hot spot and a 'choke' point in the Western Mediterranean circulation, has allowed us to reveal a high frequency variability in the North-South exchanges, with very significant changes (0.8 - 0.9 Sv) occurring over periods of days to week of the same order as the previously known seasonal cycle. HF radar data and model results have also contributed more recently to better describe and understand the variability at small scales. Second, the Alborex/Perseus project multi-platform experiment (e.g., RV catamaran, 2 gliders, 25 drifters, 3 Argo type profilers & satellite data) that focused on submesoscale processes and ecosystem response and carried out in the Alborán Sea in May 2014. Glider results showed significant chlorophyll subduction in areas adjacent to the steep density front with patterns related to vertical motion. Initial dynamical interpretations will be presented. Third and final, I will discuss the key relevance of the data centre to guarantee data interoperability, quality control, availability and distribution for this new approach to ocean observation and forecasting to be really efficient in responding to key scientific state of the art priorities, enhancing technology development and responding to society needs.

  4. THE EMERGENCE OF NUMERICAL AIR QUALITY FORCASTING MODELS AND THEIR APPLICATIONS

    EPA Science Inventory

    In recent years the U.S. and other nations have begun programs for short-term local through regional air quality forecasting based upon numerical three-dimensional air quality grid models. These numerical air quality forecast (NAQF) models and systems have been developed and test...

  5. Improving wind energy forecasts using an Ensemble Kalman Filter data assimilation technique in a fully coupled hydrologic and atmospheric model

    NASA Astrophysics Data System (ADS)

    Williams, J. L.; Maxwell, R. M.; Delle Monache, L.

    2012-12-01

    Wind power is rapidly gaining prominence as a major source of renewable energy. Harnessing this promising energy source is challenging because of the chaotic nature of wind and its propensity to change speed and direction over short time scales. Accurate forecasting tools are critical to support the integration of wind energy into power grids and to maximize its impact on renewable energy portfolios. Numerous studies have shown that soil moisture distribution and land surface vegetative processes profoundly influence atmospheric boundary layer development and weather processes on local and regional scales. Using the PF.WRF model, a fully-coupled hydrologic and atmospheric model employing the ParFlow hydrologic model with the Weather Research and Forecasting model coupled via mass and energy fluxes across the land surface, we have explored the connections between the land surface and the atmosphere in terms of land surface energy flux partitioning and coupled variable fields including hydraulic conductivity, soil moisture and wind speed, and demonstrated that reductions in uncertainty in these coupled fields propagate through the hydrologic and atmospheric system. We have adapted the Data Assimilation Research Testbed (DART), an implementation of the robust Ensemble Kalman Filter data assimilation algorithm, to expand our capability to nudge forecasts produced with the PF.WRF model using observational data. Using a semi-idealized simulation domain, we examine the effects of assimilating observations of variables such as wind speed and temperature collected in the atmosphere, and land surface and subsurface observations such as soil moisture on the quality of forecast outputs. The sensitivities we find in this study will enable further studies to optimize observation collection to maximize the utility of the PF.WRF-DART forecasting system.

  6. Forecast Verification: Identification of small changes in weather forecasting skill

    NASA Astrophysics Data System (ADS)

    Weatherhead, E. C.; Jensen, T. L.

    2017-12-01

    Global and regonal weather forecasts have improved over the past seven decades most often because of small, incrmental improvements. The identificaiton and verification of forecast improvement due to proposed small changes in forecasting can be expensive and, if not carried out efficiently, can slow progress in forecasting development. This presentation will look at the skill of commonly used verification techniques and show how the ability to detect improvements can depend on the magnitude of the improvement, the number of runs used to test the improvement, the location on the Earth and the statistical techniques used. For continuous variables, such as temperture, wind and humidity, the skill of a forecast can be directly compared using a pair-wise statistical test that accommodates the natural autocorrelation and magnitude of variability. For discrete variables, such as tornado outbreaks, or icing events, the challenges is to reduce the false alarm rate while improving the rate of correctly identifying th discrete event. For both continuus and discrete verification results, proper statistical approaches can reduce the number of runs needed to identify a small improvement in forecasting skill. Verification within the Next Generation Global Prediction System is an important component to the many small decisions needed to make stat-of-the-art improvements to weather forecasting capabilities. The comparison of multiple skill scores with often conflicting results requires not only appropriate testing, but also scientific judgment to assure that the choices are appropriate not only for improvements in today's forecasting capabilities, but allow improvements that will come in the future.

  7. WRF Test on IBM BG/L:Toward High Performance Application to Regional Climate Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, H S

    The effects of climate change will mostly be felt on local to regional scales (Solomon et al., 2007). To develop better forecast skill in regional climate change, an integrated multi-scale modeling capability (i.e., a pair of global and regional climate models) becomes crucially important in understanding and preparing for the impacts of climate change on the temporal and spatial scales that are critical to California's and nation's future environmental quality and economical prosperity. Accurate knowledge of detailed local impact on the water management system from climate change requires a resolution of 1km or so. To this end, a high performancemore » computing platform at the petascale appears to be an essential tool in providing such local scale information to formulate high quality adaptation strategies for local and regional climate change. As a key component of this modeling system at LLNL, the Weather Research and Forecast (WRF) model is implemented and tested on the IBM BG/L machine. The objective of this study is to examine the scaling feature of WRF on BG/L for the optimal performance, and to assess the numerical accuracy of WRF solution on BG/L.« less

  8. Evaluating Rapid Models for High-Throughput Exposure Forecasting (SOT)

    EPA Science Inventory

    High throughput exposure screening models can provide quantitative predictions for thousands of chemicals; however these predictions must be systematically evaluated for predictive ability. Without the capability to make quantitative, albeit uncertain, forecasts of exposure, the ...

  9. 78 FR 37757 - Revisions to the California State Implementation Plan, South Coast Air Quality Management District

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... the California State Implementation Plan, South Coast Air Quality Management District AGENCY... the South Coast Air Quality Management District (SCAQMD) portion of the California State... Quality Index rather than on 1-hour ozone forecasted values; (b) forecast criteria for allowing a...

  10. Did we see the 2011 summer heat wave coming?

    NASA Astrophysics Data System (ADS)

    Luo, Lifeng; Zhang, Yan

    2012-05-01

    A series of climate extreme events affected many parts of the US during 2011, including the severe drought in Texas, the spring tornado outbreak in the southern states, and the weeklong summer heat wave in the Central Plains. Successful prediction of these events can better inform and prepare the general public to cope with these extremes. In this study, we investigate the operational capability of the new NCEP Climate Forecast System (CFSv2) in predicting the 2011 summer heat wave. We found that starting from April 2011, the operational CFSv2 forecast consistently suggested an elevated probability of extremely hot days during the forthcoming summer over the Central Plains, and as the summer was approaching the forecast became more certain about the summer heat wave in its geographic location, intensity and timing. This study demonstrates the capability of the new seasonal forecast system and its potential usefulness in decision making process.

  11. Assimilation of lightning data by nudging tropospheric water vapor and applications to numerical forecasts of convective events

    NASA Astrophysics Data System (ADS)

    Dixon, Kenneth

    A lightning data assimilation technique is developed for use with observations from the World Wide Lightning Location Network (WWLLN). The technique nudges the water vapor mixing ratio toward saturation within 10 km of a lightning observation. This technique is applied to deterministic forecasts of convective events on 29 June 2012, 17 November 2013, and 19 April 2011 as well as an ensemble forecast of the 29 June 2012 event using the Weather Research and Forecasting (WRF) model. Lightning data are assimilated over the first 3 hours of the forecasts, and the subsequent impact on forecast quality is evaluated. The nudged deterministic simulations for all events produce composite reflectivity fields that are closer to observations. For the ensemble forecasts of the 29 June 2012 event, the improvement in forecast quality from lightning assimilation is more subtle than for the deterministic forecasts, suggesting that the lightning assimilation may improve ensemble convective forecasts where conventional observations (e.g., aircraft, surface, radiosonde, satellite) are less dense or unavailable.

  12. Assessing Upper-Level Winds on Day-of-Launch

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Wheeler, Mark M.

    2012-01-01

    On the day-or-launch. the 45th Weather Squadron Launch Weather Officers (LWOS) monitor the upper-level winds for their launch customers to include NASA's Launch Services Program (LSP). During launch operations, the payload launch team sometimes asks the LWO if they expect the upper level winds to change during the countdown but the LWOs did not have the capability to quickly retrieve or display the upper-level observations and compare them to the numerical weather prediction model point forecasts. The LWOs requested the Applied Meteorology Unit (AMU) develop a capability in the form of a graphical user interface (GUI) that would allow them to plot upper-level wind speed and direction observations from the Kennedy Space Center Doppler Radar Wind Profilers and Cape Canaveral Air Force Station rawinsondes and then overlay model point forecast profiles on the observation profiles to assess the performance of these models and graphically display them to the launch team. The AMU developed an Excel-based capability for the LWOs to assess the model forecast upper-level winds and compare them to observations. They did so by creating a GUI in Excel that allows the LWOs to first initialize the models by comparing the O-hour model forecasts to the observations and then to display model forecasts in 3-hour intervals from the current time through 12 hours.

  13. A Comparison of Forecast Error Generators for Modeling Wind and Load Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ning; Diao, Ruisheng; Hafen, Ryan P.

    2013-12-18

    This paper presents four algorithms to generate random forecast error time series, including a truncated-normal distribution model, a state-space based Markov model, a seasonal autoregressive moving average (ARMA) model, and a stochastic-optimization based model. The error time series are used to create real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast time series that statistically match historically observed forecasting data sets, used for variable generation integration studies. A comparison is made using historical DA load forecast and actual load values to generate new sets of DA forecasts with similar stoical forecast error characteristics. This paper discusses and comparesmore » the capabilities of each algorithm to preserve the characteristics of the historical forecast data sets.« less

  14. Demonstrating the Operational Value of Atmospheric Infrared Sounder (AIRS) Profiles in the Pre-Convective Environment

    NASA Technical Reports Server (NTRS)

    Kozlowski, Danielle; Zavodsky, Bradley; Stano, Geoffrey; Jedlovec, Gary

    2011-01-01

    The Short-term Prediction Research and Transition (SPoRT) is a project to transition those NASA observations and research capabilities to the weather forecasting community to improve the short-term regional forecasts. This poster reviews the work to demonstrate the value to these forecasts of profiles from the Atmospheric Infrared Sounder (AIRS) instrument on board the Aqua satellite with particular assistance in predicting thunderstorm forecasts by the profiles of the pre-convective environment.

  15. A Load-Based Temperature Prediction Model for Anomaly Detection

    NASA Astrophysics Data System (ADS)

    Sobhani, Masoud

    Electric load forecasting, as a basic requirement for the decision-making in power utilities, has been improved in various aspects in the past decades. Many factors may affect the accuracy of the load forecasts, such as data quality, goodness of the underlying model and load composition. Due to the strong correlation between the input variables (e.g., weather and calendar variables) and the load, the quality of input data plays a vital role in forecasting practices. Even if the forecasting model were able to capture most of the salient features of the load, a low quality input data may result in inaccurate forecasts. Most of the data cleansing efforts in the load forecasting literature have been devoted to the load data. Few studies focused on weather data cleansing for load forecasting. This research proposes an anomaly detection method for the temperature data. The method consists of two components: a load-based temperature prediction model and a detection technique. The effectiveness of the proposed method is demonstrated through two case studies: one based on the data from the Global Energy Forecasting Competition 2014, and the other based on the data published by ISO New England. The results show that by removing the detected observations from the original input data, the final load forecast accuracy is enhanced.

  16. Neural network based short-term load forecasting using weather compensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, T.W.S.; Leung, C.T.

    This paper presents a novel technique for electric load forecasting based on neural weather compensation. The proposed method is a nonlinear generalization of Box and Jenkins approach for nonstationary time-series prediction. A weather compensation neural network is implemented for one-day ahead electric load forecasting. The weather compensation neural network can accurately predict the change of actual electric load consumption from the previous day. The results, based on Hong Kong Island historical load demand, indicate that this methodology is capable of providing a more accurate load forecast with a 0.9% reduction in forecast error.

  17. Ozone Satellite Data Synergy and Combination with Non-satellite Data in the AURORA project

    NASA Astrophysics Data System (ADS)

    Cortesi, U.; Tirelli, C.; Arola, A.; Dragani, R.; Keppens, A.; Loenen, E.; Masini, A.; Tsiakos, , C.; van der A, R.; Verberne, K.

    2017-12-01

    The geostationary satellite constellation composed of TEMPO (North America), SENTINEL-4 (Europe) and GEMS (Asia) missions is a major instance of space component in the fundamentally new paradigm aimed at integrating information on air quality from a wide variety of sources. Space-borne data on tropospheric composition from new generation satellites have a growing impact in this context because of their unprecedented quantity and quality, while merging with non-satellite measurements and other types of auxiliary data via state-of-the-art modelling capabilities remains essential to fit the purpose of highly accurate information made readily available at high temporal and spatial resolution, both in analysis and forecast mode. Proper and effective implementation of this paradigm poses severe challenges to science, technology and applications that must be addressed in a closely interconnected manner to pave the way to high quality products and innovative services. Novel ideas and tools built on these three pillars are currently under investigation in the AURORA (Advanced Ultraviolet Radiation and Ozone Retrieval for Applications) Horizon 2020 project of the European Commission. The primary goal of the project is the proof of concept of a synergistic approach to the exploitation of Sentinel-4 and -5 Ozone measurements in the UV, Visible and Thermal Infrared based on the combination of an innovative data fusion method and assimilation models. The scientific objective shares the same level of priority with the technological effort to realize a prototype data processor capable to manage the full data processing chain and with the development of two downstream applications for demonstration purposes. The presentation offers a first insight in mid-term results of the project, which is mostly based on the use of synthetic data from the atmospheric Sentinels. Specific focus is given to the role of satellite data synergy in integrated systems for air quality monitoring, in particular when testing the impact of TEMPO and GEMS Ozone data in AURORA. As a further element relevant for the integration of multiple data sources, we describe the AIR-Portal application, which is going to combine AURORA partial columns of tropospheric ozone with other source of information for air quality analysis and forecast in metropolitan areas.

  18. Improving of local ozone forecasting by integrated models.

    PubMed

    Gradišar, Dejan; Grašič, Boštjan; Božnar, Marija Zlata; Mlakar, Primož; Kocijan, Juš

    2016-09-01

    This paper discuss the problem of forecasting the maximum ozone concentrations in urban microlocations, where reliable alerting of the local population when thresholds have been surpassed is necessary. To improve the forecast, the methodology of integrated models is proposed. The model is based on multilayer perceptron neural networks that use as inputs all available information from QualeAria air-quality model, WRF numerical weather prediction model and onsite measurements of meteorology and air pollution. While air-quality and meteorological models cover large geographical 3-dimensional space, their local resolution is often not satisfactory. On the other hand, empirical methods have the advantage of good local forecasts. In this paper, integrated models are used for improved 1-day-ahead forecasting of the maximum hourly value of ozone within each day for representative locations in Slovenia. The WRF meteorological model is used for forecasting meteorological variables and the QualeAria air-quality model for gas concentrations. Their predictions, together with measurements from ground stations, are used as inputs to a neural network. The model validation results show that integrated models noticeably improve ozone forecasts and provide better alert systems.

  19. Comprehensive Flood Plain Studies Using Spatial Data Management Techniques.

    DTIC Science & Technology

    1978-06-01

    Hydrologic Engineer- ing Center computer programs that forecast urban storm water quality and dynamic in- stream water quality response to waste...determination. Water Quality The water quality analysis planned for the pilot study includes urban storm water quality forecasting and in-streamn...analysis is performed under the direction of Tony Thomas. Chief, Research Branch, by Jess Abbott for storm water quality analysis, R. G. Willey for

  20. Forecasting disease risk for increased epidemic preparedness in public health

    NASA Technical Reports Server (NTRS)

    Myers, M. F.; Rogers, D. J.; Cox, J.; Flahault, A.; Hay, S. I.

    2000-01-01

    Emerging infectious diseases pose a growing threat to human populations. Many of the world's epidemic diseases (particularly those transmitted by intermediate hosts) are known to be highly sensitive to long-term changes in climate and short-term fluctuations in the weather. The application of environmental data to the study of disease offers the capability to demonstrate vector-environment relationships and potentially forecast the risk of disease outbreaks or epidemics. Accurate disease forecasting models would markedly improve epidemic prevention and control capabilities. This chapter examines the potential for epidemic forecasting and discusses the issues associated with the development of global networks for surveillance and prediction. Existing global systems for epidemic preparedness focus on disease surveillance using either expert knowledge or statistical modelling of disease activity and thresholds to identify times and areas of risk. Predictive health information systems would use monitored environmental variables, linked to a disease system, to be observed and provide prior information of outbreaks. The components and varieties of forecasting systems are discussed with selected examples, along with issues relating to further development.

  1. Forecasting Disease Risk for Increased Epidemic Preparedness in Public Health

    PubMed Central

    Myers, M.F.; Rogers, D.J.; Cox, J.; Flahault, A.; Hay, S.I.

    2011-01-01

    Emerging infectious diseases pose a growing threat to human populations. Many of the world’s epidemic diseases (particularly those transmitted by intermediate hosts) are known to be highly sensitive to long-term changes in climate and short-term fluctuations in the weather. The application of environmental data to the study of disease offers the capability to demonstrate vector–environment relationships and potentially forecast the risk of disease outbreaks or epidemics. Accurate disease forecasting models would markedly improve epidemic prevention and control capabilities. This chapter examines the potential for epidemic forecasting and discusses the issues associated with the development of global networks for surveillance and prediction. Existing global systems for epidemic preparedness focus on disease surveillance using either expert knowledge or statistical modelling of disease activity and thresholds to identify times and areas of risk. Predictive health information systems would use monitored environmental variables, linked to a disease system, to be observed and provide prior information of outbreaks. The components and varieties of forecasting systems are discussed with selected examples, along with issues relating to further development. PMID:10997211

  2. National Centers for Environmental Prediction

    Science.gov Websites

    Products Operational Forecast Graphics Experimental Forecast Graphics Verification and Diagnostics Model PARALLEL/EXPERIMENTAL MODEL FORECAST GRAPHICS OPERATIONAL VERIFICATION / DIAGNOSTICS PARALLEL VERIFICATION Developmental Air Quality Forecasts and Verification Back to Table of Contents 2. PARALLEL/EXPERIMENTAL GRAPHICS

  3. National Centers for Environmental Prediction

    Science.gov Websites

    Operational Forecast Graphics Experimental Forecast Graphics Verification and Diagnostics Model Configuration /EXPERIMENTAL MODEL FORECAST GRAPHICS OPERATIONAL VERIFICATION / DIAGNOSTICS PARALLEL VERIFICATION / DIAGNOSTICS Developmental Air Quality Forecasts and Verification Back to Table of Contents 2. PARALLEL/EXPERIMENTAL GRAPHICS

  4. APPLICATION OF BIAS AND ADJUSTMENT TECHNIQUES TO THE ETA-CMAQ AIR QUALITY FORECAST

    EPA Science Inventory

    The current air quality forecast system, based on linking NOAA's Eta meteorological model with EPA's Community Multiscale Air Quality (CMAQ) model, consistently overpredicts surface ozone concentrations, but simulates its day-to-day variability quite well. The ability of bias cor...

  5. Strategies in Forecasting Outcomes in Ethical Decision-making: Identifying and Analyzing the Causes of the Problem

    PubMed Central

    Beeler, Cheryl K.; Antes, Alison L.; Wang, Xiaoqian; Caughron, Jared J.; Thiel, Chase E.; Mumford, Michael D.

    2010-01-01

    This study examined the role of key causal analysis strategies in forecasting and ethical decision-making. Undergraduate participants took on the role of the key actor in several ethical problems and were asked to identify and analyze the causes, forecast potential outcomes, and make a decision about each problem. Time pressure and analytic mindset were manipulated while participants worked through these problems. The results indicated that forecast quality was associated with decision ethicality, and the identification of the critical causes of the problem was associated with both higher quality forecasts and higher ethicality of decisions. Neither time pressure nor analytic mindset impacted forecasts or ethicality of decisions. Theoretical and practical implications of these findings are discussed. PMID:20352056

  6. Projected Applications of a "Weather in a Box" Computing System at the NASA Short-Term Prediction Research and Transition (SPoRT) Center

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Molthan, Andrew; Zavodsky, Bradley T.; Case, Jonathan L.; LaFontaine, Frank J.; Srikishen, Jayanthi

    2010-01-01

    The NASA Short-term Prediction Research and Transition Center (SPoRT)'s new "Weather in a Box" resources will provide weather research and forecast modeling capabilities for real-time application. Model output will provide additional forecast guidance and research into the impacts of new NASA satellite data sets and software capabilities. By combining several research tools and satellite products, SPoRT can generate model guidance that is strongly influenced by unique NASA contributions.

  7. Preliminary Cost Benefit Assessment of Systems for Detection of Hazardous Weather. Volume I,

    DTIC Science & Technology

    1981-07-01

    not be sufficient for adequate stream flow forecasting , it has important potential for real - time flash flood warning. This was illustrated by the 1977...provide a finer spatial resolution of the gridded data. See Table 9. 42 The results of a demonstration of the real - time capabilities of a radar-man system ...detailed real time measurement capabilities and scope for quantitative forecasting is most likely to provide the degree of lead time required if maximum

  8. International Collaboration in the field of GNSS-Meteorology and Climate Monitoring

    NASA Astrophysics Data System (ADS)

    Jones, J.; Guerova, G.; Dousa, J.; Bock, O.; Elgered, G.; Vedel, H.; Pottiaux, E.; de Haan, S.; Pacione, R.; Dick, G.; Wang, J.; Gutman, S. I.; Wickert, J.; Rannat, K.; Liu, G.; Braun, J. J.; Shoji, Y.

    2012-12-01

    International collaboration in the field of GNSS-meteorology and climate monitoring is essential, as severe weather and climate change have no respect for national boundaries. The use of Global Navigation Satellite Systems (GNSS) for meteorological purposes is an established atmospheric observing technique, which can accurately sense water vapour, the most abundant greenhouse gas, accounting for 60-70% of atmospheric warming. Severe weather forecasting is challenging, in part due to the high temporal and spatial variation of atmospheric water vapour. Water vapour is currently under-sampled and obtaining and exploiting more high-quality humidity observations is essential to severe weather forecasting and climate monitoring. A proposed EU COST Action (http://www.cost.eu) will address new and improved capabilities from concurrent developments in both GNSS and atmospheric communities to improve (short-range) weather forecasts and climate projections. For the first time, the synergy of the three GNSS systems, GPS, GLONASS and Galileo, will be used to develop new, advanced tropospheric products, stimulating the full potential exploitation of multi-GNSS water vapour estimates on a wide range of temporal and spatial scales, from real-time severe weather monitoring and forecasting to climate research. The Action will work in close collaboration with the Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN), GNSS Precipitable Water Task Team (TT). GRUAN is a global reference observing network, designed to meet climate requirements and to fill a major void in the current global observing system. GRUAN observations will provide long-term, high-quality data to determine climatic trends and to constrain and validate data from space-based remote sensors. Ground-based GNSS PW was identified as a Priority 1 measurement for GRUAN, and the GNSS-PW TT's goal is to develop explicit guidance on hardware, software and data management practices to obtain GNSS PW measurements of consistent quality at all GRUAN sites. The GRUAN GNSS-PW TT and the proposed COST Action will look to expand the international framework already in place with the European E-GVAP programme to facilitate global collaboration to facilitate knowledge and data exchange.

  9. EMISSIONS PROCESSING FOR THE ETA/ CMAQ AIR QUALITY FORECAST SYSTEM

    EPA Science Inventory

    NOAA and EPA have created an Air Quality Forecast (AQF) system. This AQF system links an adaptation of the EPA's Community Multiscale Air Quality Model with the 12 kilometer ETA model running operationally at NOAA's National Center for Environmental Predication (NCEP). One of the...

  10. COMPUTATIONAL ASPECTS OF THE AIR QUALITY FORECASTING VERSION OF CMAQ (CMAQ-F)

    EPA Science Inventory

    The air quality forecast version of the Community Modeling Air Quality (CMAQ) model (CMAQ-F) was developed from the public release version of CMAQ (available from http://www.cmascenter.org), and is running operationally at the National Weather Service's National Centers for Envir...

  11. Development of a method for comprehensive water quality forecasting and its application in Miyun reservoir of Beijing, China.

    PubMed

    Zhang, Lei; Zou, Zhihong; Shan, Wei

    2017-06-01

    Water quality forecasting is an essential part of water resource management. Spatiotemporal variations of water quality and their inherent constraints make it very complex. This study explored a data-based method for short-term water quality forecasting. Prediction of water quality indicators including dissolved oxygen, chemical oxygen demand by KMnO 4 and ammonia nitrogen using support vector machine was taken as inputs of the particle swarm algorithm based optimal wavelet neural network to forecast the whole status index of water quality. Gubeikou monitoring section of Miyun reservoir in Beijing, China was taken as the study case to examine effectiveness of this approach. The experiment results also revealed that the proposed model has advantages of stability and time reduction in comparison with other data-driven models including traditional BP neural network model, wavelet neural network model and Gradient Boosting Decision Tree model. It can be used as an effective approach to perform short-term comprehensive water quality prediction. Copyright © 2016. Published by Elsevier B.V.

  12. Spire's 3U CubeSat GNSS-RO Constellation for Meteorological and Space Weather Applications

    NASA Astrophysics Data System (ADS)

    Nguyen, V.; Duly, T.; Ector, D.; Irisov, V.; Nogues-Correig, O.; Tan, L.; Yuasa, T.

    2017-12-01

    Spire Global, Inc., is a leading player in the nanosatellite sector and the first commercial company to provide GNSS radio occultation measurements to support meteorological and space weather forecasting. Each Spire satellite is equipped with a state-of-the-art, in-house designed software receiver, which is capable of open-loop tracking of occulted GNSS signals. By utilizing this receiver on a low-earth orbiting, 3U satellite constellation platform, Spire is able to provide high-quality profile measurements of the lower atmosphere as well as ionospheric total electron content and scintillation data at unprecedented low cost, coverage, and latency. In this talk, we provide an overview of the current capabilities of Spire's satellite constellation and radio occultation processing system. Recent results describing the state of the lower atmosphere and ionosphere will be presented and briefly discussed. Finally, we focus on Spire's future capabilities, and the potential impacts on both the meteorological and space weather scientific communities.

  13. THE EMISSION PROCESSING SYSTEM FOR THE ETA/CMAQ AIR QUALITY FORECAST SYSTEM

    EPA Science Inventory

    NOAA and EPA have created an Air Quality Forecast (AQF) system. This AQF system links an adaptation of the EPA's Community Multiscale Air Quality Model with the 12 kilometer ETA model running operationally at NOAA's National Center for Environmental Predication (NCEP). One of th...

  14. APPLICATION AND EVALUATION OF CMAQ IN THE UNITED STATES: AIR QUALITY FORECASTING AND RETROSPECTIVE MODELING

    EPA Science Inventory

    Presentation slides provide background on model evaluation techniques. Also included in the presentation is an operational evaluation of 2001 Community Multiscale Air Quality (CMAQ) annual simulation, and an evaluation of PM2.5 for the CMAQ air quality forecast (AQF) ...

  15. FORECASTING AIR QUALITY OVER THE UNITED STATES

    EPA Science Inventory

    Increased awareness of national air quality issues on the part of the media and the general public have recently led to more demand for short-term (1-2 day) air quality forecasts for use in assessing potential health impacts (e.g., on children, the elderly, and asthmatics) and po...

  16. Delivery of Forecasted Atmospheric Ozone and Dust for the New Mexico Environmental Public Health Tracking System - An Open Source Geospatial Solution

    NASA Astrophysics Data System (ADS)

    Hudspeth, W. B.; Sanchez-Silva, R.; Cavner, J. A.

    2010-12-01

    New Mexico's Environmental Public Health Tracking System (EPHTS), funded by the Centers for Disease Control (CDC) Environmental Public Health Tracking Network (EPHTN), aims to improve health awareness and services by linking health effects data with levels and frequency of environmental exposure. As a public health decision-support system, EPHTS systems include: state-of-the-art statistical analysis tools; geospatial visualization tools; data discovery, extraction, and delivery tools; and environmental/public health linkage information. As part of its mandate, EPHTS issues public health advisories and forecasts of environmental conditions that have consequences for human health. Through a NASA-funded partnership between the University of New Mexico and the University of Arizona, NASA Earth Science results are fused into two existing models (the Dust Regional Atmospheric Model (DREAM) and the Community Multiscale Air Quality (CMAQ) model) in order to improve forecasts of atmospheric dust, ozone, and aerosols. The results and products derived from the outputs of these models are made available to an Open Source mapping component of the New Mexico EPHTS. In particular, these products are integrated into a Django content management system using GeoDjango, GeoAlchemy, and other OGC-compliant geospatial libraries written in the Python and C++ programming languages. Capabilities of the resultant mapping system include indicator-based thematic mapping, data delivery, and analytical capabilities. DREAM and CMAQ outputs can be inspected, via REST calls, through temporal and spatial subsetting of the atmospheric concentration data across analytical units employed by the public health community. This paper describes details of the architecture and integration of NASA Earth Science into the EPHTS decision-support system.

  17. Assessment of reservoir system variable forecasts

    NASA Astrophysics Data System (ADS)

    Kistenmacher, Martin; Georgakakos, Aris P.

    2015-05-01

    Forecast ensembles are a convenient means to model water resources uncertainties and to inform planning and management processes. For multipurpose reservoir systems, forecast types include (i) forecasts of upcoming inflows and (ii) forecasts of system variables and outputs such as reservoir levels, releases, flood damage risks, hydropower production, water supply withdrawals, water quality conditions, navigation opportunities, and environmental flows, among others. Forecasts of system variables and outputs are conditional on forecasted inflows as well as on specific management policies and can provide useful information for decision-making processes. Unlike inflow forecasts (in ensemble or other forms), which have been the subject of many previous studies, reservoir system variable and output forecasts are not formally assessed in water resources management theory or practice. This article addresses this gap and develops methods to rectify potential reservoir system forecast inconsistencies and improve the quality of management-relevant information provided to stakeholders and managers. The overarching conclusion is that system variable and output forecast consistency is critical for robust reservoir management and needs to be routinely assessed for any management model used to inform planning and management processes. The above are demonstrated through an application from the Sacramento-American-San Joaquin reservoir system in northern California.

  18. Towards water vapor assimilation into mesoscale models for improved precipitation forecast

    NASA Astrophysics Data System (ADS)

    Demoz, B.; Whiteman, D.; Venable, D.; Joseph, E.

    2006-05-01

    Atmospheric water vapor plays a primary role in the life cycle of clouds, precipitation and is crucial in understanding many aspects of the water cycle. It is very important to short-range mesoscale and storm-scale weather prediction. Specifically, accurate characterization of water vapor at low levels is a necessary condition for quantitative precipitation forecast (QPF), the initiation of convection and various thermodynamic and microphysical processes in mesoscale severe weather systems. However, quantification of its variability (both temporal and spatial) and integration of high quality and high frequency water vapor profiles into mesoscale models have been challenging. We report on a conceptual proposal that attempts to 1) define approporiate lidar-based data and instrumentation required for mesoscale data assimilation and 2) a possible federated network of ground-based lidars that may be capable of acquiring such high resolution water vapor data sets and 3) a possible frame work of assimilation of the data into a mesoscale model.

  19. Evaluating ammonia (NH3) predictions in the NOAA National Air Quality Forecast Capability (NAQFC) using in-situ aircraft and satellite measurements from the CalNex2010 campaign

    NASA Astrophysics Data System (ADS)

    Bray, Casey D.; Battye, William; Aneja, Viney P.; Tong, Daniel; Lee, Pius; Tang, Youhua; Nowak, John B.

    2017-08-01

    Atmospheric ammonia (NH3) is not only a major precursor gas for fine particulate matter (PM2.5), but it also negatively impacts the environment through eutrophication and acidification. As the need for agriculture, the largest contributing source of NH3, increases, NH3 emissions will also increase. Therefore, it is crucial to accurately predict ammonia concentrations. The objective of this study is to determine how well the U.S. National Oceanic and Atmospheric Administration (NOAA) National Air Quality Forecast Capability (NAQFC) system predicts ammonia concentrations using their Community Multiscale Air Quality (CMAQ) model (v4.6). Model predictions of atmospheric ammonia are compared against measurements taken during the NOAA California Nexus (CalNex) field campaign that took place between May and July of 2010. Additionally, the model predictions were also compared against ammonia measurements obtained from the Tropospheric Emission Spectrometer (TES) on the Aura satellite. The results of this study showed that the CMAQ model tended to under predict concentrations of NH3. When comparing the CMAQ model with the CalNex measurements, the model under predicted NH3 by a factor of 2.4 (NMB = -58%). However, the ratio of the median measured NH3 concentration to the median of the modeled NH3 concentration was 0.8. When compared with the TES measurements, the model under predicted concentrations of NH3 by a factor of 4.5 (NMB = -77%), with a ratio of the median retrieved NH3 concentration to the median of the modeled NH3 concentration of 3.1. Because the model was the least accurate over agricultural regions, it is likely that the major source of error lies within the agricultural emissions in the National Emissions Inventory. In addition to this, the lack of the use of bidirectional exchange of NH3 in the model could also contribute to the observed bias.

  20. Hurricane Intensity Forecasts with a Global Mesoscale Model on the NASA Columbia Supercomputer

    NASA Technical Reports Server (NTRS)

    Shen, Bo-Wen; Tao, Wei-Kuo; Atlas, Robert

    2006-01-01

    It is known that General Circulation Models (GCMs) have insufficient resolution to accurately simulate hurricane near-eye structure and intensity. The increasing capabilities of high-end computers (e.g., the NASA Columbia Supercomputer) have changed this. In 2004, the finite-volume General Circulation Model at a 1/4 degree resolution, doubling the resolution used by most of operational NWP center at that time, was implemented and run to obtain promising landfall predictions for major hurricanes (e.g., Charley, Frances, Ivan, and Jeanne). In 2005, we have successfully implemented the 1/8 degree version, and demonstrated its performance on intensity forecasts with hurricane Katrina (2005). It is found that the 1/8 degree model is capable of simulating the radius of maximum wind and near-eye wind structure, and thereby promising intensity forecasts. In this study, we will further evaluate the model s performance on intensity forecasts of hurricanes Ivan, Jeanne, Karl in 2004. Suggestions for further model development will be made in the end.

  1. “Fine-Scale Application of the coupled WRF-CMAQ System to ...

    EPA Pesticide Factsheets

    The DISCOVER-AQ project (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality), is a joint collaboration between NASA, U.S. EPA and a number of other local organizations with the goal of characterizing air quality in urban areas using satellite, aircraft, vertical profiler and ground based measurements (http://discover-aq.larc.nasa.gov). In July 2011, the DISCOVER-AQ project conducted intensive air quality measurements in the Baltimore, MD and Washington, D.C. area in the eastern U.S. To take advantage of these unique data, the Community Multiscale Air Quality (CMAQ) model, coupled with the Weather Research and Forecasting (WRF) model is used to simulate the meteorology and air quality in the same region using 12-km, 4-km and 1-km horizontal grid spacings. The goal of the modeling exercise is to demonstrate the capability of the coupled WRF-CMAQ modeling system to simulate air quality at fine grid spacings in an urban area. Development of new data assimilation techniques and the use of higher resolution input data for the WRF model have been implemented to improve the meteorological results, particularly at the 4-km and 1-km grid resolutions. In addition, a number of updates to the CMAQ model were made to enhance the capability of the modeling system to accurately represent the magnitude and spatial distribution of pollutants at fine model resolutions. Data collected during the 2011 DISCOVER-AQ campa

  2. “Application and evaluation of the two-way coupled WRF ...

    EPA Pesticide Factsheets

    The DISCOVER-AQ project (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality), is a joint collaboration between NASA, U.S. EPA and a number of other local organizations with the goal of characterizing air quality in urban areas using satellite, aircraft, vertical profiler and ground based measurements (http://discover-aq.larc.nasa.gov). In July 2011, the DISCOVER-AQ project conducted intensive air quality measurements in the Baltimore, MD and Washington, D.C. area in the eastern U.S. To take advantage of these unique data, the Community Multiscale Air Quality (CMAQ) model, coupled with the Weather Research and Forecasting (WRF) model is used to simulate the meteorology and air quality in the same region using 12-km, 4-km and 1-km horizontal grid spacings. The goal of the modeling exercise is to demonstrate the capability of the coupled WRF-CMAQ modeling system to simulate air quality at fine grid spacings in an urban area. Development of new data assimilation techniques and the use of higher resolution input data for the WRF model have been implemented to improve the meteorological results, particularly at the 4-km and 1-km grid resolutions. In addition, a number of updates to the CMAQ model were made to enhance the capability of the modeling system to accurately represent the magnitude and spatial distribution of pollutants at fine model resolutions. Data collected during the 2011 DISCOVER-AQ campa

  3. Unidata Workshop: Demonstrating Democratization of Numerical Weather Prediction Capabilities Using Linked Environments for Atmospheric Discovery (LEAD) Capabilities

    NASA Astrophysics Data System (ADS)

    Baltzer, T.; Wilson, A.; Marru, S.; Rossi, A.; Christi, M.; Hampton, S.; Gannon, D.; Alameda, J.; Ramamurthy, M.; Droegemeier, K.

    2006-12-01

    On July 13th 2006 during the triannual Unidata Workshop, members of the Unidata community got their first experience with capabilities being developed under the Linked Environments for Atmospheric Discovery (LEAD) project (see: http://lead.ou.edu). The key LEAD goal demonstrated during the workshop was that of "Democratization," that is, providing capabilities that typically have a high barrier to entry to the larger meteorological community. At the workshop, participants worked with software that demonstrated the specific concepts of: 1) Lowering the barrier to entry by making it easy for users to: - Experiment using meteorological tools - Create meteorological forecasts - Perform mesoscale modeling and forecasting - Access data (source and product) - Make use of large scale cyberinfrastructure (E.g. TeraGrid) 2) Giving users the freedom from technological issues such as: - Hassle-free access to supercomputing resources - Hassle-free execution of forecast models and related tools - Data format independence This talk will overview the capabilities presented to the Unidata workshop participants as well as capabilities developed since the workshop. There will also be a lessons-learned section. This overview will be accomplished with a live demonstration of some of the capabilities. Capabilities that will be discussed and demonstrated have applicability across many disciplines e.g. discovering, acquiring and using data and orchestrating of complex workflow. Acknowledgement: The LEAD project involves the work of nearly 100 individuals whose dedication has resulted in the capabilities that will be shown here. The authors would like to recognize all of them, but in particular we'd like to recognize: John Caron, Rich Clark, Ethan Davis, Charles Hart, Yuan Ho, Scott Jenson, Rob Kambic, Brian Kelly, Ning Liu, Jeff McWhirter, Don Murray, Beth Plale, Rahul Ramachandran, Yogesh Simmhan, Kevin Thomas, Nithya Vijayakumar, Yunheng Wang, Dan Weber, and Bob Wilhelmson.

  4. Enhanced road weather forecasting : Clarus regional demonstrations.

    DOT National Transportation Integrated Search

    2011-01-01

    The quality of road weather forecasts has major impacts on users of surface transportation systems and managers of those systems. Improving the quality involves the ability to provide accurate, route-specific road weather information (e.g., timing an...

  5. Road weather forecast quality analysis : project summary

    DOT National Transportation Integrated Search

    2006-03-01

    The purpose of this research is to enhance the use of KDOTs Roadway Weather : Information System by improving the weather forecasts themselves and raising the level of : confidence in these forecasts.

  6. Evaluation of Pollen Apps Forecasts: The Need for Quality Control in an eHealth Service.

    PubMed

    Bastl, Katharina; Berger, Uwe; Kmenta, Maximilian

    2017-05-08

    Pollen forecasts are highly valuable for allergen avoidance and thus raising the quality of life of persons concerned by pollen allergies. They are considered as valuable free services for the public. Careful scientific evaluation of pollen forecasts in terms of accurateness and reliability has not been available till date. The aim of this study was to analyze 9 mobile apps, which deliver pollen information and pollen forecasts, with a focus on their accurateness regarding the prediction of the pollen load in the grass pollen season 2016 to assess their usefulness for pollen allergy sufferers. The following number of apps was evaluated for each location: 3 apps for Vienna (Austria), 4 apps for Berlin (Germany), and 1 app each for Basel (Switzerland) and London (United Kingdom). All mobile apps were freely available. Today's grass pollen forecast was compared throughout the defined grass pollen season at each respective location with measured grass pollen concentrations. Hit rates were calculated for the exact performance and for a tolerance in a range of ±2 and ±4 pollen per cubic meter. In general, for most apps, hit rates score around 50% (6 apps). It was found that 1 app showed better results, whereas 3 apps performed less well. Hit rates increased when calculated with tolerances for most apps. In contrast, the forecast for the "readiness to flower" for grasses was performed at a sufficiently accurate level, although only two apps provided such a forecast. The last of those forecasts coincided with the first moderate grass pollen load on the predicted day or 3 days after and performed even from about a month before well within the range of 3 days. Advertisement was present in 3 of the 9 analyzed apps, whereas an imprint mentioning institutions with experience in pollen forecasting was present in only three other apps. The quality of pollen forecasts is in need of improvement, and quality control for pollen forecasts is recommended to avoid potential harm to pollen allergy sufferers due to inadequate forecasts. The inclusion of information on reliability of provided forecasts and a similar handling regarding probabilistic weather forecasts should be considered. ©Katharina Bastl, Uwe Berger, Maximilian Kmenta. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 08.05.2017.

  7. Evaluation of Pollen Apps Forecasts: The Need for Quality Control in an eHealth Service

    PubMed Central

    Berger, Uwe; Kmenta, Maximilian

    2017-01-01

    Background Pollen forecasts are highly valuable for allergen avoidance and thus raising the quality of life of persons concerned by pollen allergies. They are considered as valuable free services for the public. Careful scientific evaluation of pollen forecasts in terms of accurateness and reliability has not been available till date. Objective The aim of this study was to analyze 9 mobile apps, which deliver pollen information and pollen forecasts, with a focus on their accurateness regarding the prediction of the pollen load in the grass pollen season 2016 to assess their usefulness for pollen allergy sufferers. Methods The following number of apps was evaluated for each location: 3 apps for Vienna (Austria), 4 apps for Berlin (Germany), and 1 app each for Basel (Switzerland) and London (United Kingdom). All mobile apps were freely available. Today’s grass pollen forecast was compared throughout the defined grass pollen season at each respective location with measured grass pollen concentrations. Hit rates were calculated for the exact performance and for a tolerance in a range of ±2 and ±4 pollen per cubic meter. Results In general, for most apps, hit rates score around 50% (6 apps). It was found that 1 app showed better results, whereas 3 apps performed less well. Hit rates increased when calculated with tolerances for most apps. In contrast, the forecast for the “readiness to flower” for grasses was performed at a sufficiently accurate level, although only two apps provided such a forecast. The last of those forecasts coincided with the first moderate grass pollen load on the predicted day or 3 days after and performed even from about a month before well within the range of 3 days. Advertisement was present in 3 of the 9 analyzed apps, whereas an imprint mentioning institutions with experience in pollen forecasting was present in only three other apps. Conclusions The quality of pollen forecasts is in need of improvement, and quality control for pollen forecasts is recommended to avoid potential harm to pollen allergy sufferers due to inadequate forecasts. The inclusion of information on reliability of provided forecasts and a similar handling regarding probabilistic weather forecasts should be considered. PMID:28483740

  8. Human-model hybrid Korean air quality forecasting system.

    PubMed

    Chang, Lim-Seok; Cho, Ara; Park, Hyunju; Nam, Kipyo; Kim, Deokrae; Hong, Ji-Hyoung; Song, Chang-Keun

    2016-09-01

    The Korean national air quality forecasting system, consisting of the Weather Research and Forecasting, the Sparse Matrix Operator Kernel Emissions, and the Community Modeling and Analysis (CMAQ), commenced from August 31, 2013 with target pollutants of particulate matters (PM) and ozone. Factors contributing to PM forecasting accuracy include CMAQ inputs of meteorological field and emissions, forecasters' capacity, and inherent CMAQ limit. Four numerical experiments were conducted including two global meteorological inputs from the Global Forecast System (GFS) and the Unified Model (UM), two emissions from the Model Intercomparison Study Asia (MICS-Asia) and the Intercontinental Chemical Transport Experiment (INTEX-B) for the Northeast Asia with Clear Air Policy Support System (CAPSS) for South Korea, and data assimilation of the Monitoring Atmospheric Composition and Climate (MACC). Significant PM underpredictions by using both emissions were found for PM mass and major components (sulfate and organic carbon). CMAQ predicts PM2.5 much better than PM10 (NMB of PM2.5: -20~-25%, PM10: -43~-47%). Forecasters' error usually occurred at the next day of high PM event. Once CMAQ fails to predict high PM event the day before, forecasters are likely to dismiss the model predictions on the next day which turns out to be true. The best combination of CMAQ inputs is the set of UM global meteorological field, MICS-Asia and CAPSS 2010 emissions with the NMB of -12.3%, the RMSE of 16.6μ/m(3) and the R(2) of 0.68. By using MACC data as an initial and boundary condition, the performance skill of CMAQ would be improved, especially in the case of undefined coarse emission. A variety of methods such as ensemble and data assimilation are considered to improve further the accuracy of air quality forecasting, especially for high PM events to be comparable to for all cases. The growing utilization of the air quality forecast induced the public strongly to demand that the accuracy of the national forecasting be improved. In this study, we investigated the problems in the current forecasting as well as various alternatives to solve the problems. Such efforts to improve the accuracy of the forecast are expected to contribute to the protection of public health by increasing the availability of the forecast system.

  9. On using scatterometer and altimeter data to improve storm surge forecasting in the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Bajo, Marco; Umgiesser, Georg; De Biasio, Francesco; Vignudelli, Stefano; Zecchetto, Stefano

    2017-04-01

    Satellite data are seldom used in storm surge forecasting. Among the most important issues related to the storm surge forecasting are the quality of the model wind forcing and the initial condition of the sea surface elevation. In this work, focused on storm surge forecasting in the Adriatic Sea, satellite scatterometer wind data are used to correct the wind speed and direction biases of the ECMWF global atmospheric model by tuning the spatial fields, as an alternative to data assimilation. The capability of such an unbiased wind is tested against that of a high resolution wind, produced by a regional non-hydrostatic model. On the other hand, altimeter Total Water Level Envelope (TWLE) data, which provide the sea level elevation, are used to improve the accuracy of the initial state of the model simulations. This is done by assimilating into a storm surge model the TWLE obtained by the altimeter observations along ground tracks, after subtraction of the tidal components. In order to test the methodology, eleven storm surge events recorded in Venice, from 2008 to 2012, have been simulated using different configurations of forcing wind and altimeter data assimilation. Results show that the relative error on the estimation of the maximum surge peak, averaged over the cases considered, decreases from 13% to 7% using both the unbiased wind and the altimeter data assimilation, while forcing the hydrodynamic model with the high resolution wind (no tuning), the altimeter data assimilation reduces the error from 9% to 6%.

  10. Evaluating the Impact of Atmospheric Infrared Sounder (AIRS) Data On Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Kozlowski, Danielle; Zavodsky, Bradley

    2011-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service (NWS) offices. SPoRT provides real-time NASA products and capabilities to its partners to address specific operational forecast challenges. The mission of SPoRT is to transition observations and research capabilities into operations to help improve short-term weather forecasts on a regional scale. Two areas of focus are data assimilation and modeling, which can to help accomplish SPoRT's programmatic goals of transitioning NASA data to operational users. Forecasting convective weather is one challenge that faces operational forecasters. Current numerical weather prediction (NWP) models that operational forecasters use struggle to properly forecast location, timing, intensity and/or mode of convection. Given the proper atmospheric conditions, convection can lead to severe weather. SPoRT's partners in the National Oceanic and Atmospheric Administration (NOAA) have a mission to protect the life and property of American citizens. This mission has been tested as recently as this 2011 severe weather season, which has seen more than 300 fatalities and injuries and total damages exceeding $10 billion. In fact, during the three day period from 25-27 April, 1,265 storms reports (362 tornado reports) were collected making this three day period one of most active in American history. To address the forecast challenge of convective weather, SPoRT produces a real-time NWP model called the SPoRT Weather Research and Forecasting (SPoRT-WRF), which incorporates unique NASA data sets. One of the NASA assets used in this unique model configuration is retrieved profiles from the Atmospheric Infrared Sounder (AIRS).The goal of this project is to determine the impact that these AIRS profiles have on the SPoRT-WRF forecasts by comparing to a current operational model and a control SPoRT-WRF model that does not contain AIRS profiles.

  11. Urban flood early warning systems: approaches to hydrometeorological forecasting and communicating risk

    NASA Astrophysics Data System (ADS)

    Cranston, Michael; Speight, Linda; Maxey, Richard; Tavendale, Amy; Buchanan, Peter

    2015-04-01

    One of the main challenges for the flood forecasting community remains the provision of reliable early warnings of surface (or pluvial) flooding. The Scottish Flood Forecasting Service has been developing approaches for forecasting the risk of surface water flooding including capitalising on the latest developments in quantitative precipitation forecasting from the Met Office. A probabilistic Heavy Rainfall Alert decision support tool helps operational forecasters assess the likelihood of surface water flooding against regional rainfall depth-duration estimates from MOGREPS-UK linked to historical short-duration flooding in Scotland. The surface water flood risk is communicated through the daily Flood Guidance Statement to emergency responders. A more recent development is an innovative risk-based hydrometeorological approach that links 24-hour ensemble rainfall forecasts through a hydrological model (Grid-to-Grid) to a library of impact assessments (Speight et al., 2015). The early warning tool - FEWS Glasgow - presents the risk of flooding to people, property and transport across a 1km grid over the city of Glasgow with a lead time of 24 hours. Communication of the risk was presented in a bespoke surface water flood forecast product designed based on emergency responder requirements and trialled during the 2014 Commonwealth Games in Glasgow. The development of new approaches to surface water flood forecasting are leading to improved methods of communicating the risk and better performance in early warning with a reduction in false alarm rates with summer flood guidance in 2014 (67%) compared to 2013 (81%) - although verification of instances of surface water flooding remains difficult. However the introduction of more demanding hydrometeorological capabilities with associated greater levels of uncertainty does lead to an increased demand on operational flood forecasting skills and resources. Speight, L., Cole, S.J., Moore, R.J., Pierce, C., Wright, B., Golding, B., Cranston, M., Tavendale, A., Ghimire, S., and Dhondia, J. (2015) Developing surface water flood forecasting capabilities in Scotland: an operational pilot for the 2014 Commonwealth Games in Glasgow. Journal of Flood Risk Management, In Press.

  12. Real-Time Bias-Adjusted O3 and PM2.5 Air Quality Index Forecasts and their Performance Evaluations over the Continental United States

    EPA Science Inventory

    The National Air Quality Forecast Capacity (NAQFC) system, which links NOAA's North American Mesoscale (NAM) meteorological model with EPA's Community Multiscale Air Quality (CMAQ) model, provided operational ozone (O3) and experimental fine particular matter (PM2...

  13. Evaluation of Air Force and Navy Demand Forecasting Systems

    DTIC Science & Technology

    1994-01-01

    forecasting approach, the Air Force Material Command is questioning the adoption of the Navy’s Statistical Demand Forecasting System ( Gitman , 1994). The...Recoverable Item Process in the Requirements Data Bank System is to manage reparable spare parts ( Gitman , 1994). Although RDB will have the capability of...D062) ( Gitman , 1994). Since a comparison is made to address Air Force concerns, this research only limits its analysis to the range of Air Force

  14. Measuring and forecasting great tsunamis by GNSS-based vertical positioning of multiple ships

    NASA Astrophysics Data System (ADS)

    Inazu, D.; Waseda, T.; Hibiya, T.; Ohta, Y.

    2016-12-01

    Vertical ship positioning by the Global Navigation Satellite System (GNSS) was investigated for measuring and forecasting great tsunamis. We first examined existing GNSS vertical position data of a navigating vessel. The result indicated that by using the kinematic Precise Point Positioning (PPP) method, tsunamis greater than 10^-1 m can be detected from the vertical position of the ship. Based on Automatic Identification System (AIS) data, tens of cargo ships and tankers are regularly identified navigating over the Nankai Trough, southwest of Japan. We then assumed that a future Nankai Trough great earthquake tsunami will be observed by ships at locations based on AIS data. The tsunami forecast capability by these virtual offshore tsunami measurements was examined. A conventional Green's function based inversion was used to determine the initial tsunami height distribution. Tsunami forecast tests over the Nankai Trough were carried out using simulated tsunami data of the vertical positions of multiple cargo ships/tankers on a certain day, and of the currently operating observations by deep-sea pressure gauges and Global Positioning System (GPS) buoys. The forecast capability of ship-based tsunami height measurements alone was shown to be comparable to or better than that using the existing offshore observations.

  15. Evaluating the impact of AMDAR data quality control in China on the short-range convection forecasts using the WRF model

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Jiang, Qin; Zhang, Lei

    2016-04-01

    A quality control system for the Aircraft Meteorological Data Relay (AMDAR) data has been implemented in China. This system is an extension to the AMDAR quality control system used at the US National Centers for Environmental Prediction. We present a study in which the characteristics of each AMDAR data quality type were examined and the impact of the AMDAR data quality system on short-range convective weather forecasts using the WRF model was investigated. The main results obtained from this study are as follows. (1) The hourly rejection rate of AMDAR data during 2014 was 5.79%, and most of the rejections happened in Near Duplicate Check. (2) There was a significant diurnal variation for both quantity and quality of AMDAR data. Duplicated reports increased with the increase of data quantity, while suspicious and disorderly reports decreased with the increase of data quantity. (3) The characteristics of the data quality were different in each model layer, with the quality problems occurring mainly at the surface as well as at the height where the power or the flight mode of the aircraft underwent adjustment. (4) Assimilating the AMDAR data improved the forecast accuracy, particularly over the region where strong convection occurred. (5) Significant improvements made by assimilating AMDAR data were found after six hours into the model forecast. The conclusion from this study is that the newly implemented AMDAR data quality system can help improve the accuracy of short-range convection forecasts using the WRF model.

  16. Using DSG to Build the Capability of Space Weather Forecasting in Deep Space

    NASA Astrophysics Data System (ADS)

    DeLuca, E. E.; Golub, L.; Korreck, K.; Savage, S.; McKenzie, D. D.; Rachmeler, L.; Winebarger, A.; Martens, P.

    2018-02-01

    The prospect of astronaut missions to deep space and off the Sun-Earth line raises new challenges for space weather awareness and forecasting. We need to identify the requirements and pathways that will allow us to protect human life and equipment.

  17. Evaluation and economic value of winter weather forecasts

    NASA Astrophysics Data System (ADS)

    Snyder, Derrick W.

    State and local highway agencies spend millions of dollars each year to deploy winter operation teams to plow snow and de-ice roadways. Accurate and timely weather forecast information is critical for effective decision making. Students from Purdue University partnered with the Indiana Department of Transportation to create an experimental winter weather forecast service for the 2012-2013 winter season in Indiana to assist in achieving these goals. One forecast product, an hourly timeline of winter weather hazards produced daily, was evaluated for quality and economic value. Verification of the forecasts was performed with data from the Rapid Refresh numerical weather model. Two objective verification criteria were developed to evaluate the performance of the timeline forecasts. Using both criteria, the timeline forecasts had issues with reliability and discrimination, systematically over-forecasting the amount of winter weather that was observed while also missing significant winter weather events. Despite these quality issues, the forecasts still showed significant, but varied, economic value compared to climatology. Economic value of the forecasts was estimated to be 29.5 million or 4.1 million, depending on the verification criteria used. Limitations of this valuation system are discussed and a framework is developed for more thorough studies in the future.

  18. Transition, Training, and Assessment of Multispectral Composite Imagery in Support of the NWS Aviation Forecast Mission

    NASA Technical Reports Server (NTRS)

    Fuell, Kevin; Jedlovec, Gary; Leroy, Anita; Schultz, Lori

    2015-01-01

    The NASA/Short-term Prediction, Research, and Transition (SPoRT) Program works closely with NOAA/NWS weather forecasters to transition unique satellite data and capabilities into operations in order to assist with nowcasting and short-term forecasting issues. Several multispectral composite imagery (i.e. RGB) products were introduced to users in the early 2000s to support hydrometeorology and aviation challenges as well as incident support. These activities lead to SPoRT collaboration with the GOES-R Proving Ground efforts where instruments such as MODIS (Aqua, Terra) and S-NPP/VIIRS imagers began to be used as near-realtime proxies to future capabilities of the Advanced Baseline Imager (ABI). One of the composite imagery products introduced to users was the Night-time Microphysics RGB, originally developed by EUMETSAT. SPoRT worked to transition this imagery to NWS users, provide region-specific training, and assess the impact of the imagery to aviation forecast needs. This presentation discusses the method used to interact with users to address specific aviation forecast challenges, including training activities undertaken to prepare for a product assessment. Users who assessed the multispectral imagery ranged from southern U.S. inland and coastal NWS weather forecast offices (WFOs), to those in the Rocky Mountain Front Range region and West Coast, as well as highlatitude forecasters of Alaska. These user-based assessments were documented and shared with the satellite community to support product developers and the broad users of new generation satellite data.

  19. Air Quality Modeling Using the NASA GEOS-5 Multispecies Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Keller, Christoph A.; Pawson, Steven; Wargan, Krzysztof; Weir, Brad

    2018-01-01

    The NASA Goddard Earth Observing System (GEOS) data assimilation system (DAS) has been expanded to include chemically reactive tropospheric trace gases including ozone (O3), nitrogen dioxide (NO2), and carbon monoxide (CO). This system combines model analyses from the GEOS-5 model with detailed atmospheric chemistry and observations from MLS (O3), OMI (O3 and NO2), and MOPITT (CO). We show results from a variety of assimilation test experiments, highlighting the improvements in the representation of model species concentrations by up to 50% compared to an assimilation-free control experiment. Taking into account the rapid chemical cycling of NO2 when applying the assimilation increments greatly improves assimilation skills for NO2 and provides large benefits for model concentrations near the surface. Analysis of the geospatial distribution of the assimilation increments suggest that the free-running model overestimates biomass burning emissions but underestimates lightning NOx emissions by 5-20%. We discuss the capability of the chemical data assimilation system to improve atmospheric composition forecasts through improved initial value and boundary condition inputs, particularly during air pollution events. We find that the current assimilation system meaningfully improves short-term forecasts (1-3 day). For longer-term forecasts more emphasis on updating the emissions instead of initial concentration fields is needed.

  20. How Clean is your Local Air? Here's an app for that

    NASA Astrophysics Data System (ADS)

    Maskey, M.; Yang, E.; Christopher, S. A.; Keiser, K.; Nair, U. S.; Graves, S. J.

    2011-12-01

    Air quality is a vital element of our environment. Accurate and localized air quality information is critical for characterizing environmental impacts at the local and regional levels. Advances in location-aware handheld devices and air quality modeling have enabled a group of UAHuntsville scientists to develop a mobile app, LocalAQI, that informs users of current conditions and forecasts of up to twenty-four hours, of air quality indices. The air quality index is based on Community Multiscale Air Quality Modeling System (CMAQ). UAHuntsville scientists have used satellite remote sensing products as inputs to CMAQ, resulting in forecast guidance for particulate matter air quality. The CMAQ output is processed to compute a standardized air quality index. Currently, the air quality index is available for the eastern half of the United States. LocalAQI consists of two main views: air quality index view and map view. The air quality index view displays current air quality for the zip code of a location of interest. Air quality index value is translated into a color-coded advisory system. In addition, users are able to cycle through available hourly forecasts for a location. This location-aware app defaults to the current air quality of user's location. The map view displays color-coded air quality information for the eastern US with an ability to animate through the available forecasts. The app is developed using a cross-platform native application development tool, appcelerator; hence LocalAQI is available for iOS and Android-based phones and pads.

  1. WRF-Chem Model Simulations of Arizona Dust Storms

    NASA Astrophysics Data System (ADS)

    Mohebbi, A.; Chang, H. I.; Hondula, D.

    2017-12-01

    The online Weather Research and Forecasting model with coupled chemistry module (WRF-Chem) is applied to simulate the transport, deposition and emission of the dust aerosols in an intense dust outbreak event that took place on July 5th, 2011 over Arizona. Goddard Chemistry Aerosol Radiation and Transport (GOCART), Air Force Weather Agency (AFWA), and University of Cologne (UoC) parameterization schemes for dust emission were evaluated. The model was found to simulate well the synoptic meteorological conditions also widely documented in previous studies. The chemistry module performance in reproducing the atmospheric desert dust load was evaluated using the horizontal field of the Aerosol Optical Depth (AOD) from Moderate Resolution Imaging Spectro (MODIS) radiometer Terra/Aqua and Aerosol Robotic Network (AERONET) satellites employing standard Dark Target (DT) and Deep Blue (DB) algorithms. To assess the temporal variability of the dust storm, Particulate Matter mass concentration data (PM10 and PM2.5) from Arizona Department of Environmental Quality (AZDEQ) ground-based air quality stations were used. The promising performance of WRF-Chem indicate that the model is capable of simulating the right timing and loading of a dust event in the planetary-boundary-layer (PBL) which can be used to forecast approaching severe dust events and to communicate an effective early warning.

  2. Development of IDEA product for GOES-R aerosol data

    NASA Astrophysics Data System (ADS)

    Zhang, Hai; Hoff, Raymond M.; Kondragunta, Shobha

    2009-08-01

    The NOAA GOES-R Advanced Baseline Imager (ABI) will have nearly the same capabilities as NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) to generate multi-wavelength retrievals of aerosol optical depth (AOD) with high temporal and spatial resolution, which can be used as a surrogate of surface particulate measurements such as PM2.5 (particulate matter with diameter less than 2.5 μm). To prepare for the launch of GOES-R and its application in the air quality forecasting, we have transferred and enhanced the Infusing satellite Data into Environmental Applications (IDEA) product from University of Wisconsin to NOAA NESDIS. IDEA was created through a NASA/EPA/NOAA cooperative effort. The enhanced IDEA product provides near-real-time imagery of AOD derived from multiple satellite sensors including MODIS Terra, MODIS Aqua, GOES EAST and GOES WEST imager. Air quality forecast guidance is produced through a trajectory model initiated at locations with high AOD retrievals and/or high aerosol index (AI) from OMI (Ozone Monitoring Instrument). The product is currently running at http://www.star.nesdis.noaa.gov/smcd/spb/aq/. The IDEA system will be tested using the GOES-R ABI proxy dataset, and will be ready to operate with GOES-R aerosol data when GOES-R is launched.

  3. The improvements of the ships of opportunity program in MFS-TEP

    NASA Astrophysics Data System (ADS)

    Manzella, G. M. R.; Reseghetti, F.; Coppini, G.; Borghini, M.; Cruzado, A.; Galli, C.; Gertman, I.; Gervais, T.; Hayes, D.; Millot, C.; Murashkovsky, A.; Özsoy, E.; Tziavos, C.; Velasquez, Z.; Zodiatis, G.

    2007-05-01

    The Ships Of Opportunity Program in the Mediterranean Sea was established at the end of 1999, in the framework of the Mediterranean Forecasting System - Pilot Project (MFS-PP). Many improvements have been made in data collection, transmission and management. Calibration of selected XBTs and a comparison of XBTs vs. CTDs during some research cruises have assured the quality of the data. Transmission now allows receiving data in full resolution by using GSM or satellite telecommunication services; management is offering access to high quality data and view services. The effects of technological and methodological improvements in the observing system are assessed in terms of capability to represent the most important circulation features. The improved methodologies have been tested during the Mediterranean Forecasting System - Toward Environmental Prediction (MFS-TEP) - Targeted Operational Period (MFS-TOP), lasting from September 2004 to February 2005. In spite of the short period of measurements, several important aspects of the Mediterranean Sea circulation have been verified, such as eddies and gyres in the various sub-basins, and dense water formation processes in some of them (vertical homogeneous profiles of about 13°C down to ~800 m in the Provençal, and of about 14.9°C down to ~300 m in the Levantine have allowed defining an index of dense water formation).

  4. The improvements of the Ships Of Opportunity Program in MFSTEP

    NASA Astrophysics Data System (ADS)

    Manzella, G. M. R.; Reseghetti, F.; Coppini, G.; Borghini, M.; Crusado, A.; Galli, C.; Gertman, I.; Gervais, T.; Hayes, D.; Millot, C.; Özsoy, E.; Tziavos, C.; Velasquez, Z.; Zodiatis, G.

    2006-10-01

    The Ships Of Opportunity Program in the Mediterranean Sea was established at the end of 1999, in the framework of the Mediterranean Forecasting System - Pilot Project (MFS-PP). Many improvements have been made in data collection, transmission and management. Calibration of selected XBTs and a comparison of XBTs vs. CTDs during some research cruises have assured the quality of the data. Transmission now allows receiving data in full resolution by using GSM or satellite telecommunication services; management is offering access to high quality data and view services. The effects of technological and methodological improvements in the observing system are assessed in terms of capability to represent the most important circulation features. The improved methodologies have been tested during the Mediterranean Forecasting System - Toward Environmental Prediction (MFS-TEP) - Targeted Operational Period (MFS-TOP), lasting from September 2004 to February 2005. In spite of the short period of measurements, several important aspects of the Mediterranean Sea circulation have been verified, such as eddies and gyres in the various sub-basins, and dense water formation processes in some of them (vertical homogeneous profiles of about 13°C down to ~800 m in the Provencal, and of about 14.9°C down to ~300 m in the Levantine have allowed defining an index of dense water formation).

  5. Development and Application of Advanced Weather Prediction Technologies for the Wind Energy Industry (Invited)

    NASA Astrophysics Data System (ADS)

    Mahoney, W. P.; Wiener, G.; Liu, Y.; Myers, W.; Johnson, D.

    2010-12-01

    Wind energy decision makers are required to make critical judgments on a daily basis with regard to energy generation, distribution, demand, storage, and integration. Accurate knowledge of the present and future state of the atmosphere is vital in making these decisions. As wind energy portfolios expand, this forecast problem is taking on new urgency because wind forecast inaccuracies frequently lead to substantial economic losses and constrain the national expansion of renewable energy. Improved weather prediction and precise spatial analysis of small-scale weather events are crucial for renewable energy management. In early 2009, the National Center for Atmospheric Research (NCAR) began a collaborative project with Xcel Energy Services, Inc. to perform research and develop technologies to improve Xcel Energy's ability to increase the amount of wind energy in their generation portfolio. The agreement and scope of work was designed to provide highly detailed, localized wind energy forecasts to enable Xcel Energy to more efficiently integrate electricity generated from wind into the power grid. The wind prediction technologies are designed to help Xcel Energy operators make critical decisions about powering down traditional coal and natural gas-powered plants when sufficient wind energy is predicted. The wind prediction technologies have been designed to cover Xcel Energy wind resources spanning a region from Wisconsin to New Mexico. The goal of the project is not only to improve Xcel Energy’s wind energy prediction capabilities, but also to make technological advancements in wind and wind energy prediction, expand our knowledge of boundary layer meteorology, and share the results across the renewable energy industry. To generate wind energy forecasts, NCAR is incorporating observations of current atmospheric conditions from a variety of sources including satellites, aircraft, weather radars, ground-based weather stations, wind profilers, and even wind sensors on individual wind turbines. The information is utilized by several technologies including: a) the Weather Research and Forecasting (WRF) model, which generates finely detailed simulations of future atmospheric conditions, b) the Real-Time Four-Dimensional Data Assimilation System (RTFDDA), which performs continuous data assimilation providing the WRF model with continuous updates of the initial atmospheric state, 3) the Dynamic Integrated Forecast System (DICast®), which statistically optimizes the forecasts using all predictors, and 4) a suite of wind-to-power algorithms that convert wind speed to power for a wide range of wind farms with varying real-time data availability capabilities. In addition to these core wind energy prediction capabilities, NCAR implemented a high-resolution (10 km grid increment) 30-member ensemble RTFDDA prediction system that provides information on the expected range of wind power over a 72-hour forecast period covering Xcel Energy’s service areas. This talk will include descriptions of these capabilities and report on several topics including initial results of next-day forecasts and nowcasts of wind energy ramp events, influence of local observations on forecast skill, and overall lessons learned to date.

  6. Conjunctively optimizing flash flood control and water quality in urban water reservoirs by model predictive control and dynamic emulation

    NASA Astrophysics Data System (ADS)

    Galelli, Stefano; Goedbloed, Albert; Schmitter, Petra; Castelletti, Andrea

    2014-05-01

    Urban water reservoirs are a viable adaptation option to account for increasing drinking water demand of urbanized areas as they allow storage and re-use of water that is normally lost. In addition, the direct availability of freshwater reduces pumping costs and diversifies the portfolios of drinking water supply. Yet, these benefits have an associated twofold cost. Firstly, the presence of large, impervious areas increases the hydraulic efficiency of urban catchments, with short time of concentration, increased runoff rates, losses of infiltration and baseflow, and higher risk of flash floods. Secondly, the high concentration of nutrients and sediments characterizing urban discharges is likely to cause water quality problems. In this study we propose a new control scheme combining Model Predictive Control (MPC), hydro-meteorological forecasts and dynamic model emulation to design real-time operating policies that conjunctively optimize water quantity and quality targets. The main advantage of this scheme stands in its capability of exploiting real-time hydro-meteorological forecasts, which are crucial in such fast-varying systems. In addition, the reduced computational requests of the MPC scheme allows coupling it with dynamic emulators of water quality processes. The approach is demonstrated on Marina Reservoir, a multi-purpose reservoir located in the heart of Singapore and characterized by a large, highly urbanized catchment with a short (i.e. approximately one hour) time of concentration. Results show that the MPC scheme, coupled with a water quality emulator, provides a good compromise between different operating objectives, namely flood risk reduction, drinking water supply and salinity control. Finally, the scheme is used to assess the effect of source control measures (e.g. green roofs) aimed at restoring the natural hydrological regime of Marina Reservoir catchment.

  7. Long range forecasts of the Northern Hemisphere anomalies with antecedent sea surface temperature patterns

    NASA Technical Reports Server (NTRS)

    Kung, Ernest C.

    1994-01-01

    The contract research has been conducted in the following three major areas: analysis of numerical simulations and parallel observations of atmospheric blocking, diagnosis of the lower boundary heating and the response of the atmospheric circulation, and comprehensive assessment of long-range forecasting with numerical and regression methods. The essential scientific and developmental purpose of this contract research is to extend our capability of numerical weather forecasting by the comprehensive general circulation model. The systematic work as listed above is thus geared to developing a technological basis for future NASA long-range forecasting.

  8. AN OPERATIONAL EVALUATION OF THE ETA - CMAQ AIR QUALITY FORECAST MODEL

    EPA Science Inventory

    The National Oceanic and Atmospheric Administration (NOAA), in partnership with the United States Environmental Protection Agency (EPA), are developing an operational, nationwide Air Quality Forecasting (AQF) system. An experimental phase of this program, which couples NOAA's Et...

  9. Wheat productivity estimates using LANDSAT data. [Michigan

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F.; Colwell, J. (Principal Investigator); Rice, D. P.

    1977-01-01

    The author has identified the following significant results. An initial demonstration was made of the capability to make direct production forecasts for winter wheat using early season LANDSAT data. The approach offers the potential to make production forecasts quickly and simply, possibly avoiding some of the complexities of alternate procedures.

  10. The development of a model and decision support system to use in forecasting truck freight flow in the continental United States

    DOT National Transportation Integrated Search

    2001-01-01

    This research develops a regression-based model for forecasting truck borne freight in the continental United States. This model is capable of predicting freight commodity flow information via trucks to assist transportation planners who wish to unde...

  11. Ensemble and Bias-Correction Techniques for Air-Quality Model Forecasts of Surface O3 and PM2.5 during the TEXAQS-II Experiment of 2006

    EPA Science Inventory

    Several air quality forecasting ensembles were created from seven models, running in real-time during the 2006 Texas Air Quality (TEXAQS-II) experiment. These multi-model ensembles incorporated a diverse set of meteorological models, chemical mechanisms, and emission inventories...

  12. Intercomparison of air quality data using principal component analysis, and forecasting of PM₁₀ and PM₂.₅ concentrations using artificial neural networks, in Thessaloniki and Helsinki.

    PubMed

    Voukantsis, Dimitris; Karatzas, Kostas; Kukkonen, Jaakko; Räsänen, Teemu; Karppinen, Ari; Kolehmainen, Mikko

    2011-03-01

    In this paper we propose a methodology consisting of specific computational intelligence methods, i.e. principal component analysis and artificial neural networks, in order to inter-compare air quality and meteorological data, and to forecast the concentration levels for environmental parameters of interest (air pollutants). We demonstrate these methods to data monitored in the urban areas of Thessaloniki and Helsinki in Greece and Finland, respectively. For this purpose, we applied the principal component analysis method in order to inter-compare the patterns of air pollution in the two selected cities. Then, we proceeded with the development of air quality forecasting models for both studied areas. On this basis, we formulated and employed a novel hybrid scheme in the selection process of input variables for the forecasting models, involving a combination of linear regression and artificial neural networks (multi-layer perceptron) models. The latter ones were used for the forecasting of the daily mean concentrations of PM₁₀ and PM₂.₅ for the next day. Results demonstrated an index of agreement between measured and modelled daily averaged PM₁₀ concentrations, between 0.80 and 0.85, while the kappa index for the forecasting of the daily averaged PM₁₀ concentrations reached 60% for both cities. Compared with previous corresponding studies, these statistical parameters indicate an improved performance of air quality parameters forecasting. It was also found that the performance of the models for the forecasting of the daily mean concentrations of PM₁₀ was not substantially different for both cities, despite the major differences of the two urban environments under consideration. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Comparison of Filtering Methods for the Modeling and Retrospective Forecasting of Influenza Epidemics

    PubMed Central

    Yang, Wan; Karspeck, Alicia; Shaman, Jeffrey

    2014-01-01

    A variety of filtering methods enable the recursive estimation of system state variables and inference of model parameters. These methods have found application in a range of disciplines and settings, including engineering design and forecasting, and, over the last two decades, have been applied to infectious disease epidemiology. For any system of interest, the ideal filter depends on the nonlinearity and complexity of the model to which it is applied, the quality and abundance of observations being entrained, and the ultimate application (e.g. forecast, parameter estimation, etc.). Here, we compare the performance of six state-of-the-art filter methods when used to model and forecast influenza activity. Three particle filters—a basic particle filter (PF) with resampling and regularization, maximum likelihood estimation via iterated filtering (MIF), and particle Markov chain Monte Carlo (pMCMC)—and three ensemble filters—the ensemble Kalman filter (EnKF), the ensemble adjustment Kalman filter (EAKF), and the rank histogram filter (RHF)—were used in conjunction with a humidity-forced susceptible-infectious-recovered-susceptible (SIRS) model and weekly estimates of influenza incidence. The modeling frameworks, first validated with synthetic influenza epidemic data, were then applied to fit and retrospectively forecast the historical incidence time series of seven influenza epidemics during 2003–2012, for 115 cities in the United States. Results suggest that when using the SIRS model the ensemble filters and the basic PF are more capable of faithfully recreating historical influenza incidence time series, while the MIF and pMCMC do not perform as well for multimodal outbreaks. For forecast of the week with the highest influenza activity, the accuracies of the six model-filter frameworks are comparable; the three particle filters perform slightly better predicting peaks 1–5 weeks in the future; the ensemble filters are more accurate predicting peaks in the past. PMID:24762780

  14. Selection and Classification Using a Forecast Applicant Pool.

    ERIC Educational Resources Information Center

    Hendrix, William H.

    The document presents a forecast model of the future Air Force applicant pool. By forecasting applicants' quality (means and standard deviations of aptitude scores) and quantity (total number of applicants), a potential enlistee could be compared to the forecasted pool. The data used to develop the model consisted of means, standard deviation, and…

  15. Forecasting daily source air quality using multivariate statistical analysis and radial basis function networks.

    PubMed

    Sun, Gang; Hoff, Steven J; Zelle, Brian C; Nelson, Minda A

    2008-12-01

    It is vital to forecast gas and particle matter concentrations and emission rates (GPCER) from livestock production facilities to assess the impact of airborne pollutants on human health, ecological environment, and global warming. Modeling source air quality is a complex process because of abundant nonlinear interactions between GPCER and other factors. The objective of this study was to introduce statistical methods and radial basis function (RBF) neural network to predict daily source air quality in Iowa swine deep-pit finishing buildings. The results show that four variables (outdoor and indoor temperature, animal units, and ventilation rates) were identified as relative important model inputs using statistical methods. It can be further demonstrated that only two factors, the environment factor and the animal factor, were capable of explaining more than 94% of the total variability after performing principal component analysis. The introduction of fewer uncorrelated variables to the neural network would result in the reduction of the model structure complexity, minimize computation cost, and eliminate model overfitting problems. The obtained results of RBF network prediction were in good agreement with the actual measurements, with values of the correlation coefficient between 0.741 and 0.995 and very low values of systemic performance indexes for all the models. The good results indicated the RBF network could be trained to model these highly nonlinear relationships. Thus, the RBF neural network technology combined with multivariate statistical methods is a promising tool for air pollutant emissions modeling.

  16. The SPoRT-WRF: Evaluating the Impact of NASA Datasets on Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Case, Jonathan; Kozlowski, Danielle; Molthan, Andrew

    2012-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting entities, including a number of National Weather Service offices. SPoRT transitions real-time NASA products and capabilities to its partners to address specific operational forecast challenges. One challenge that forecasters face is applying convection-allowing numerical models to predict mesoscale convective weather. In order to address this specific forecast challenge, SPoRT produces real-time mesoscale model forecasts using the Weather Research and Forecasting (WRF) model that includes unique NASA products and capabilities. Currently, the SPoRT configuration of the WRF model (SPoRT-WRF) incorporates the 4-km Land Information System (LIS) land surface data, 1-km SPoRT sea surface temperature analysis and 1-km Moderate resolution Imaging Spectroradiometer (MODIS) greenness vegetation fraction (GVF) analysis, and retrieved thermodynamic profiles from the Atmospheric Infrared Sounder (AIRS). The LIS, SST, and GVF data are all integrated into the SPoRT-WRF through adjustments to the initial and boundary conditions, and the AIRS data are assimilated into a 9-hour SPoRT WRF forecast each day at 0900 UTC. This study dissects the overall impact of the NASA datasets and the individual surface and atmospheric component datasets on daily mesoscale forecasts. A case study covering the super tornado outbreak across the Ce ntral and Southeastern United States during 25-27 April 2011 is examined. Three different forecasts are analyzed including the SPoRT-WRF (NASA surface and atmospheric data), the SPoRT WRF without AIRS (NASA surface data only), and the operational National Severe Storms Laboratory (NSSL) WRF (control with no NASA data). The forecasts are compared qualitatively by examining simulated versus observed radar reflectivity. Differences between the simulated reflectivity are further investigated using convective parameters along with model soundings to determine the impacts of the various NASA datasets. Additionally, quantitative evaluation of select meteorological parameters is performed using the Meteorological Evaluation Tools model verification package to compare forecasts to in situ surface and upper air observations.

  17. Moving beyond the cost-loss ratio: economic assessment of streamflow forecasts for a risk-averse decision maker

    NASA Astrophysics Data System (ADS)

    Matte, Simon; Boucher, Marie-Amélie; Boucher, Vincent; Fortier Filion, Thomas-Charles

    2017-06-01

    A large effort has been made over the past 10 years to promote the operational use of probabilistic or ensemble streamflow forecasts. Numerous studies have shown that ensemble forecasts are of higher quality than deterministic ones. Many studies also conclude that decisions based on ensemble rather than deterministic forecasts lead to better decisions in the context of flood mitigation. Hence, it is believed that ensemble forecasts possess a greater economic and social value for both decision makers and the general population. However, the vast majority of, if not all, existing hydro-economic studies rely on a cost-loss ratio framework that assumes a risk-neutral decision maker. To overcome this important flaw, this study borrows from economics and evaluates the economic value of early warning flood systems using the well-known Constant Absolute Risk Aversion (CARA) utility function, which explicitly accounts for the level of risk aversion of the decision maker. This new framework allows for the full exploitation of the information related to a forecasts' uncertainty, making it especially suited for the economic assessment of ensemble or probabilistic forecasts. Rather than comparing deterministic and ensemble forecasts, this study focuses on comparing different types of ensemble forecasts. There are multiple ways of assessing and representing forecast uncertainty. Consequently, there exist many different means of building an ensemble forecasting system for future streamflow. One such possibility is to dress deterministic forecasts using the statistics of past error forecasts. Such dressing methods are popular among operational agencies because of their simplicity and intuitiveness. Another approach is the use of ensemble meteorological forecasts for precipitation and temperature, which are then provided as inputs to one or many hydrological model(s). In this study, three concurrent ensemble streamflow forecasting systems are compared: simple statistically dressed deterministic forecasts, forecasts based on meteorological ensembles, and a variant of the latter that also includes an estimation of state variable uncertainty. This comparison takes place for the Montmorency River, a small flood-prone watershed in southern central Quebec, Canada. The assessment of forecasts is performed for lead times of 1 to 5 days, both in terms of forecasts' quality (relative to the corresponding record of observations) and in terms of economic value, using the new proposed framework based on the CARA utility function. It is found that the economic value of a forecast for a risk-averse decision maker is closely linked to the forecast reliability in predicting the upper tail of the streamflow distribution. Hence, post-processing forecasts to avoid over-forecasting could help improve both the quality and the value of forecasts.

  18. New Developments in Wildfire Pollution Forecasting at the Canadian Meteorological Centre

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Chen, Jack; Munoz-Alpizar, Rodrigo; Davignon, Didier; Beaulieu, Paul-Andre; Landry, Hugo; Menard, Sylvain; Gravel, Sylvie; Moran, Michael

    2017-04-01

    Environment and Climate Change Canada's air quality forecast system with near-real-time wildfire emissions, named FireWork, was developed in 2012 and has been run by the Canadian Meteorological Centre Operations division (CMCO) since 2013. In June 2016 this system was upgraded to operational status and wildfire smoke forecasts for North America are now available to the general public. FireWork's ability to model the transport and diffusion of wildfire smoke plumes has proved to be valuable to regional air quality forecasters and emergency first responders. Some of the most challenging issues with wildfire pollution modelling concern the production of wildfire emission estimates and near-source dispersion within the air quality model. As a consequence, FireWork is undergoing constant development. During the massive Fort McMurray wildfire event in western Canada in May 2016, for example, different wildfire emissions processing approaches and wildfire emissions injection and dispersion schemes were tested within the air quality model. Work on various FireWork components will continue in order to deliver a new operational version of the forecasting system for the 2017 wildfire season. Some of the proposed improvements will be shown in this presentation along with current and planned FireWork post-processing products.

  19. The capability of radial basis function to forecast the volume fractions of the annular three-phase flow of gas-oil-water.

    PubMed

    Roshani, G H; Karami, A; Salehizadeh, A; Nazemi, E

    2017-11-01

    The problem of how to precisely measure the volume fractions of oil-gas-water mixtures in a pipeline remains as one of the main challenges in the petroleum industry. This paper reports the capability of Radial Basis Function (RBF) in forecasting the volume fractions in a gas-oil-water multiphase system. Indeed, in the present research, the volume fractions in the annular three-phase flow are measured based on a dual energy metering system including the 152 Eu and 137 Cs and one NaI detector, and then modeled by a RBF model. Since the summation of volume fractions are constant (equal to 100%), therefore it is enough for the RBF model to forecast only two volume fractions. In this investigation, three RBF models are employed. The first model is used to forecast the oil and water volume fractions. The next one is utilized to forecast the water and gas volume fractions, and the last one to forecast the gas and oil volume fractions. In the next stage, the numerical data obtained from MCNP-X code must be introduced to the RBF models. Then, the average errors of these three models are calculated and compared. The model which has the least error is picked up as the best predictive model. Based on the results, the best RBF model, forecasts the oil and water volume fractions with the mean relative error of less than 0.5%, which indicates that the RBF model introduced in this study ensures an effective enough mechanism to forecast the results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Replacement Beef Cow Valuation under Data Availability Constraints

    PubMed Central

    Hagerman, Amy D.; Thompson, Jada M.; Ham, Charlotte; Johnson, Kamina K.

    2017-01-01

    Economists are often tasked with estimating the benefits or costs associated with livestock production losses; however, lack of available data or absence of consistent reporting can reduce the accuracy of these valuations. This work looks at three potential estimation techniques for determining the value for replacement beef cows with varying types of market data to proxy constrained data availability and discusses the potential margin of error for each technique. Oklahoma bred replacement cows are valued using hedonic pricing based on Oklahoma bred cow data—a best case scenario—vector error correction modeling (VECM) based on national cow sales data and cost of production (COP) based on just a representative enterprise budget and very limited sales data. Each method was then used to perform a within-sample forecast of 2016 January to December, and forecasts are compared with the 2016 monthly observed market prices in Oklahoma using the mean absolute percent error (MAPE). Hedonic pricing methods tend to overvalue for within-sample forecasting but performed best, as measured by MAPE for high quality cows. The VECM tended to undervalue cows but performed best for younger animals. COP performed well, compared with the more data intensive methods. Examining each method individually across eight representative replacement beef female types, the VECM forecast resulted in a MAPE under 10% for 33% of forecasted months, followed by hedonic pricing at 24% of the forecasted months and COP at 14% of the forecasted months for average quality beef females. For high quality females, the hedonic pricing method worked best producing a MAPE under 10% in 36% of the forecasted months followed by the COP method at 21% of months and the VECM at 14% of the forecasted months. These results suggested that livestock valuation method selection was not one-size-fits-all and may need to vary based not only on the data available but also on the characteristics (e.g., quality or age) of the livestock being valued. PMID:29164141

  1. An alternative possibility to equatorial plasma bubble forecasting through mathematical modeling and Digisonde data

    NASA Astrophysics Data System (ADS)

    Sousasantos, J.; Kherani, E. A.; Sobral, J. H. A.

    2017-02-01

    Equatorial plasma bubbles (EPBs), or large-scale plasma depleted regions, are one of the subjects of great interest in space weather research since such phenomena have been extensively reported to cause strong degrading effects on transionospheric radio propagation at low latitudes, especially over the Brazilian region, where satellite communication interruptions by the EPBs have been, frequently, registered. One of the most difficult tasks for this field of scientific research is the forecasting of such plasma-depleted structures. This forecasting capability would be of significant help for users of positioning/navigation systems operating in the low-latitude/equatorial region all over the world. Recently, some efforts have been made trying to assess and improve the capability of predicting the EPB events. The purpose of this paper is to present an alternative approach to EPB prediction by means of the use of mathematical numerical simulation associated with ionospheric vertical drift, obtained through Digisonde data, focusing on telling beforehand whether ionospheric plasma instability processes will evolve or not into EPB structures. Modulations in the ionospheric vertical motion induced by gravity waves prior to the prereversal enhancement occurrence were used as input in the numerical model. A comparison between the numerical results and the observed EPB phenomena through CCD all-sky image data reveals a considerable coherence and supports the hypothesis of a capability of short-term forecasting.

  2. Developing reservoir monthly inflow forecasts using artificial intelligence and climate phenomenon information

    NASA Astrophysics Data System (ADS)

    Yang, Tiantian; Asanjan, Ata Akbari; Welles, Edwin; Gao, Xiaogang; Sorooshian, Soroosh; Liu, Xiaomang

    2017-04-01

    Reservoirs are fundamental human-built infrastructures that collect, store, and deliver fresh surface water in a timely manner for many purposes. Efficient reservoir operation requires policy makers and operators to understand how reservoir inflows are changing under different hydrological and climatic conditions to enable forecast-informed operations. Over the last decade, the uses of Artificial Intelligence and Data Mining [AI & DM] techniques in assisting reservoir streamflow subseasonal to seasonal forecasts have been increasing. In this study, Random Forest [RF), Artificial Neural Network (ANN), and Support Vector Regression (SVR) are employed and compared with respect to their capabilities for predicting 1 month-ahead reservoir inflows for two headwater reservoirs in USA and China. Both current and lagged hydrological information and 17 known climate phenomenon indices, i.e., PDO and ENSO, etc., are selected as predictors for simulating reservoir inflows. Results show (1) three methods are capable of providing monthly reservoir inflows with satisfactory statistics; (2) the results obtained by Random Forest have the best statistical performances compared with the other two methods; (3) another advantage of Random Forest algorithm is its capability of interpreting raw model inputs; (4) climate phenomenon indices are useful in assisting monthly or seasonal forecasts of reservoir inflow; and (5) different climate conditions are autocorrelated with up to several months, and the climatic information and their lags are cross correlated with local hydrological conditions in our case studies.

  3. California motor vehicle stock, travel and fuel forecast.

    DOT National Transportation Integrated Search

    2009-06-01

    This is the twenty-fourth in a series of reports that forecasts Vehicle Miles of Travel (VMT) in California. This report is intended for transportation planning, travel forecasting, air quality modeling, and fuel tax revenue projection. : This report...

  4. NCEP Air Quality Forecast(AQF) Graphics

    Science.gov Websites

    NAM-CMAQ Experimental Run predictions 00 03 06 09 12 15 18 21 24 27 30 33 36 39 42 45 48 Select experimental bias correction predictions NAM vs Nest forecasts Change Variable Type: Hourly CMAQ Forecasts

  5. SPoRT: Transitioning NASA and NOAA Experimental Data to the Operational Weather Community

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.

    2013-01-01

    Established in 2002 to demonstrate the weather and forecasting application of real-time EOS measurements, the NASA Short-term Prediction Research and Transition (SPoRT) program has grown to be an end-to-end research to operations activity focused on the use of advanced NASA modeling and data assimilation approaches, nowcasting techniques, and unique high-resolution multispectral data from EOS satellites to improve short-term weather forecasts on a regional and local scale. With the ever-broadening application of real-time high resolution satellite data from current EOS, Suomi NPP, and planned JPSS and GOES-R sensors to weather forecast problems, significant challenges arise in the acquisition, delivery, and integration of the new capabilities into the decision making process of the operational weather community. For polar orbiting sensors such as MODIS, AIRS, VIIRS, and CRiS, the use of direct broadcast ground stations is key to the real-time delivery of the data and derived products in a timely fashion. With the ABI on the geostationary GOES-R satellite, the data volumes will likely increase by a factor of 5-10 from current data streams. However, the high data volume and limited bandwidth of end user facilities presents a formidable obstacle to timely access to the data. This challenge can be addressed through the use of subsetting techniques, innovative web services, and the judicious selection of data formats. Many of these approaches have been implemented by SPoRT for the delivery of real-time products to NWS forecast offices and other weather entities. Once available in decision support systems like AWIPS II, these new data and products must be integrated into existing and new displays that allow for the integration of the data with existing operational products in these systems. SPoRT is leading the way in demonstrating this enhanced capability. This paper will highlight the ways SPoRT is overcoming many of the challenges presented by the enormous data volumes of current and future satellite systems to get unique high quality research data into the operational weather environment.

  6. Challenges in Transitioning Research Data to Operations: The SPoRT Paradigm

    NASA Technical Reports Server (NTRS)

    Jedloved, Gary J.; Smith, Matt; McGrath, Kevin

    2010-01-01

    Established in 2002 to demonstrate the weather and forecasting application of real-time EOS measurements, the NASA Short-term Prediction Research and Transition (SPoRT) program has grown to be an end-to-end research to operations activity focused on the use of advanced NASA modeling and data assimilation approaches, nowcasting techniques, and unique high-resolution multispectral data from EOS satellites to improve short-term weather forecasts on a regional and local scale. With the ever-broadening application of real-time high resolution satellite data from current EOS and planned NPP, JPSS, and GOES-R sensors to weather forecast problems, significant challenges arise in the acquisition, delivery, and integration of the new capabilities into the decision making process of the operational weather community. For polar orbiting sensors such as MODIS, AIRS, VIIRS, and CRiS, the use of direct broadcast ground stations is key to the real-time delivery of the data and derived products in a timely fashion. With the ABI on the geostationary GOES-R satellite, the data volume will likely increase by a factor of 5- 10 from current data streams. However, the high data volume and limited bandwidth of end user facilities presents a formidable obstacle to timely access to the data. This challenge can be addressed through the use of subsetting techniques, innovative web services, and the judicious selection of data formats. Many of these approaches have been implemented by SPoRT for the delivery of real-time products to NWS forecast offices and other weather entities. Once available in decision support systems like AWIPS II, these new data and products must be integrated into existing and new displays that allow for the integration of the data with existing operational products in these systems. SPoRT is leading the way in demonstrating this enhanced capability. This paper will highlight the ways SPoRT is overcoming many of the challenges presented by the enormous data volumes of current and future satellite systems to get unique high quality research data into the operational weather environment.

  7. Toward Improved Land Surface Initialization in Support of Regional WRF Forecasts at the Kenya Meteorological Service (KMS)

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Mungai, John; Sakwa, Vincent; Kabuchanga, Eric; Zavodsky, Bradley T.; Limaye, Ashutosh S.

    2014-01-01

    SPoRT/SERVIR/RCMRD/KMS Collaboration: Builds off strengths of each organization. SPoRT: Transition of satellite, modeling and verification capabilities; SERVIR-Africa/RCMRD: International capacity-building expertise; KMS: Operational organization with regional weather forecasting expertise in East Africa. Hypothesis: Improved land-surface initialization over Eastern Africa can lead to better temperature, moisture, and ultimately precipitation forecasts in NWP models. KMS currently initializes Weather Research and Forecasting (WRF) model with NCEP/Global Forecast System (GFS) model 0.5-deg initial / boundary condition data. LIS will provide much higher-resolution land-surface data at a scale more representative to regional WRF configuration. Future implementation of real-time NESDIS/VIIRS vegetation fraction to further improve land surface representativeness.

  8. Collaborative Initiative toward Developing River Forecasting in South America

    NASA Astrophysics Data System (ADS)

    Cabrera, R.

    2015-12-01

    In the United States, river floods have been discussed as early as 1884. Following a disastrous flooding in 1903, Congress passed legislation and river and flood services became a separate division within the U.S. Weather Bureau. The first River Forecast Center started in 1946 and today the whole country is served by thirteen River Forecast Centers. News from Latin American and Caribbean Countries often report of devastating flooding. However, river forecast services are not fully developed yet. This presentation suggests the utilization of a multinational collaborative approach toward the development of river forecasts in order to mitigate flooding in South America. The benefit of an international strategy resides in the strength created by a team of professionals with different capabilities and expertise.

  9. The value of information as applied to the Landsat Follow-on benefit-cost analysis

    NASA Technical Reports Server (NTRS)

    Wood, D. B.

    1978-01-01

    An econometric model was run to compare the current forecasting system with a hypothetical (Landsat Follow-on) space-based system. The baseline current system was a hybrid of USDA SRS domestic forecasts and the best known foreign data. The space-based system improved upon the present Landsat by the higher spatial resolution capability of the thematic mapper. This satellite system is a major improvement for foreign forecasts but no better than SRS for domestic forecasts. The benefit analysis was concentrated on the use of Landsat Follow-on to forecast world wheat production. Results showed that it was possible to quantify the value of satellite information and that there are significant benefits in more timely and accurate crop condition information.

  10. PLAM - a meteorological pollution index for air quality and its applications in fog-haze forecasts in north China

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Wang, J.; Gong, S.; Zhang, X.; Wang, H.; Wang, Y.; Wang, J.; Li, D.; Guo, J.

    2015-03-01

    Using surface meteorological observation and high resolution emission data, this paper discusses the application of PLAM/h Index (Parameter Linking Air-quality to Meteorological conditions/haze) in the prediction of large-scale low visibility and fog-haze events. Based on the two-dimensional probability density function diagnosis model for emissions, the study extends the diagnosis and prediction of the meteorological pollution index PLAM to the regional visibility fog-haze intensity. The results show that combining the influence of regular meteorological conditions and emission factors together in the PLAM/h parameterization scheme is very effective in improving the diagnostic identification ability of the fog-haze weather in North China. The correlation coefficients for four seasons (spring, summer, autumn and winter) between PLAM/h and visibility observation are 0.76, 0.80, 0.96 and 0.86 respectively and all their significance levels exceed 0.001, showing the ability of PLAM/h to predict the seasonal changes and differences of fog-haze weather in the North China region. The high-value correlation zones are respectively located in Jing-Jin-Ji (Beijing, Tianjin, Hebei), Bohai Bay rim and the southern Hebei-northern Henan, indicating that the PLAM/h index has relations with the distribution of frequent heavy fog-haze weather in North China and the distribution of emission high-value zone. Comparatively analyzing the heavy fog-haze events and large-scale fine weather processes in winter and summer, it is found that PLAM/h index 24 h forecast is highly correlated to the visibility observation. Therefore, PLAM/h index has better capability of doing identification, analysis and forecasting.

  11. PLAM - a meteorological pollution index for air quality and its applications in fog-haze forecasts in North China

    NASA Astrophysics Data System (ADS)

    Yang, Y. Q.; Wang, J. Z.; Gong, S. L.; Zhang, X. Y.; Wang, H.; Wang, Y. Q.; Wang, J.; Li, D.; Guo, J. P.

    2016-02-01

    Using surface meteorological observation and high-resolution emission data, this paper discusses the application of the PLAM/h index (Parameter Linking Air-quality to Meteorological conditions/haze) in the prediction of large-scale low visibility and fog-haze events. Based on the two-dimensional probability density function diagnosis model for emissions, the study extends the diagnosis and prediction of the meteorological pollution index PLAM to the regional visibility fog-haze intensity. The results show that combining the influence of regular meteorological conditions and emission factors together in the PLAM/h parameterization scheme is very effective in improving the diagnostic identification ability of the fog-haze weather in North China. The determination coefficients for four seasons (spring, summer, autumn, and winter) between PLAM/h and visibility observation are 0.76, 0.80, 0.96, and 0.86, respectively, and all of their significance levels exceed 0.001, showing the ability of PLAM/h to predict the seasonal changes and differences of fog-haze weather in the North China region. The high-value correlation zones are located in Jing-Jin-Ji (Beijing, Tianjin, Hebei), Bohai Bay rim, and southern Hebei-northern Henan, indicating that the PLAM/h index is related to the distribution of frequent heavy fog-haze weather in North China and the distribution of emission high-value zone. Through comparative analysis of the heavy fog-haze events and large-scale clear-weather processes in winter and summer, it is found that PLAM/h index 24 h forecast is highly correlated with the visibility observation. Therefore, the PLAM/h index has good capability in identification, analysis, and forecasting.

  12. A plan for the economic assessment of the benefits of improved meteorological forecasts

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, R.; Greenberg, J.

    1975-01-01

    Benefit-cost relationships for the development of meteorological satellites are outlined. The weather forecast capabilities of the various weather satellites (Tiros, SEOS, Nimbus) are discussed, and the development of additional satellite systems is examined. A rational approach is development that leads to the establishment of the economic benefits which may result from the utilization of meteorological satellite data. The economic and social impacts of improved weather forecasting for industries and resources management are discussed, and significant weather sensitive industries are listed.

  13. Earth Remote Sensing for Weather Forecasting and Disaster Applications

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Bell, Jordan; Case, Jonathan; Cole, Tony; Elmer, Nicholas; McGrath, Kevin; Schultz, Lori; Zavodsky, Brad

    2016-01-01

    NASA's constellation of current missions provide several opportunities to apply satellite remote sensing observations to weather forecasting and disaster response applications. Examples include: Using NASA's Terra and Aqua MODIS, and the NASA/NOAA Suomi-NPP VIIRS missions to prepare weather forecasters for capabilities of GOES-R; Incorporating other NASA remote sensing assets for improving aspects of numerical weather prediction; Using NASA, NOAA, and international partner resources (e.g. ESA/Sentinel Series); and commercial platforms (high-res, or UAV) to support disaster mapping.

  14. Time series forecasting using ERNN and QR based on Bayesian model averaging

    NASA Astrophysics Data System (ADS)

    Pwasong, Augustine; Sathasivam, Saratha

    2017-08-01

    The Bayesian model averaging technique is a multi-model combination technique. The technique was employed to amalgamate the Elman recurrent neural network (ERNN) technique with the quadratic regression (QR) technique. The amalgamation produced a hybrid technique known as the hybrid ERNN-QR technique. The potentials of forecasting with the hybrid technique are compared with the forecasting capabilities of individual techniques of ERNN and QR. The outcome revealed that the hybrid technique is superior to the individual techniques in the mean square error sense.

  15. Systems and Techniques for Identifying and Avoiding Ice

    NASA Technical Reports Server (NTRS)

    Hansman, R. John

    1995-01-01

    In-flight icing is one of the most difficult aviation weather hazards facing general aviation. Because most aircraft in the general aviation category are not certified for flight into known icing conditions, techniques for identifying and avoiding in-flight ice are important to maintain safety while increasing the utility and dispatch capability which is part of the AGATE vision. This report summarizes a brief study effort which: (1) Reviewed current ice identification, forecasting, and avoidance techniques; (2) Assessed feasibility of improved forecasting and ice avoidance procedures; and (3) Identified key issues for the development of improved capability with regard to in-flight icing.

  16. National Severe Storms Forecast Center

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The principal mission of the National Severe Storms Forecast Center (NSSFC) is to maintain a continuous watch of weather developments that are capable of producing severe local storms, including tornadoes, and to prepare and issue messages designated as either Weather Outlooks or Tornado or Severe Thunderstorm Watches for dissemination to the public and aviation services. In addition to its assigned responsibility at the national level, the NSSFC is involved in a number of programs at the regional and local levels. Subsequent subsections and paragraphs describe the NSSFC, its users, inputs, outputs, interfaces, capabilities, workload, problem areas, and future plans in more detail.

  17. Forecasting Hourly Water Demands With Seasonal Autoregressive Models for Real-Time Application

    NASA Astrophysics Data System (ADS)

    Chen, Jinduan; Boccelli, Dominic L.

    2018-02-01

    Consumer water demands are not typically measured at temporal or spatial scales adequate to support real-time decision making, and recent approaches for estimating unobserved demands using observed hydraulic measurements are generally not capable of forecasting demands and uncertainty information. While time series modeling has shown promise for representing total system demands, these models have generally not been evaluated at spatial scales appropriate for representative real-time modeling. This study investigates the use of a double-seasonal time series model to capture daily and weekly autocorrelations to both total system demands and regional aggregated demands at a scale that would capture demand variability across a distribution system. Emphasis was placed on the ability to forecast demands and quantify uncertainties with results compared to traditional time series pattern-based demand models as well as nonseasonal and single-seasonal time series models. Additional research included the implementation of an adaptive-parameter estimation scheme to update the time series model when unobserved changes occurred in the system. For two case studies, results showed that (1) for the smaller-scale aggregated water demands, the log-transformed time series model resulted in improved forecasts, (2) the double-seasonal model outperformed other models in terms of forecasting errors, and (3) the adaptive adjustment of parameters during forecasting improved the accuracy of the generated prediction intervals. These results illustrate the capabilities of time series modeling to forecast both water demands and uncertainty estimates at spatial scales commensurate for real-time modeling applications and provide a foundation for developing a real-time integrated demand-hydraulic model.

  18. Satellite Data of Atmospheric Pollution for U.S. Air Quality Applications: Examples of Applications, Summary of Data End-user Resources, Answers to Faqs, and Common Mistakes to Avoid

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan Neal; Prados, Ana; Lamsal, Lok N.; Liu, Yang; Streets, David G.; Gupta, Pawan; Hilsenrath, Ernest; Kahn, Ralph A.; Nielsen, J. Eric; Beyersdorf, Andreas J.; hide

    2014-01-01

    Satellite data of atmospheric pollutants are becoming more widely used in the decision-making and environmental management activities of public, private sector and non-profit organizations. They are employed for estimating emissions, tracking pollutant plumes, supporting air quality forecasting activities, providing evidence for "exceptional event" declarations, monitoring regional long-term trends, and evaluating air quality model output. However, many air quality managers are not taking full advantage of the data for these applications nor has the full potential of satellite data for air quality applications been realized. A key barrier is the inherent difficulties associated with accessing, processing, and properly interpreting observational data. A degree of technical skill is required on the part of the data end-user, which is often problematic for air quality agencies with limited resources. Therefore, we 1) review the primary uses of satellite data for air quality applications, 2) provide some background information on satellite capabilities for measuring pollutants, 3) discuss the many resources available to the end-user for accessing, processing, and visualizing the data, and 4) provide answers to common questions in plain language.

  19. Satellite Data of Atmospheric Pollution for U.S. Air Quality Applications: Examples of Applications, Summary of Data End-User Resources, Answers to FAQs, and Common Mistakes to Avoid

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan; Prados, Ana I.; Lamsal, Lok; Liu, Yang; Streets, David G.; Gupta, Pawan; Hilsenrath, Ernest; Kahn, Ralph A.; Nielsen, J. Eric; Beyersdorf, Andreas J.; hide

    2014-01-01

    Satellite data of atmospheric pollutants are becoming more widely used in the decision-making and environmental management activities of public, private sector and non-profit organizations. They are employed for estimating emissions, tracking pollutant plumes, supporting air quality forecasting activities, providing evidence for "exceptional event" declarations, monitoring regional long-term trends, and evaluating air quality model output. However, many air quality managers are not taking full advantage of the data for these applications nor has the full potential of satellite data for air quality applications been realized. A key barrier is the inherent difficulties associated with accessing, processing, and properly interpreting observational data. A degree of technical skill is required on the part of the data end-user, which is often problematic for air quality agencies with limited resources. Therefore, we 1) review the primary uses of satellite data for air quality applications, 2) provide some background information on satellite capabilities for measuring pollutants, 3) discuss the many resources available to the end-user for accessing, processing, and visualizing the data, and 4) provide answers to common questions in plain language.

  20. Forecasting land cover change impacts on drinking water treatment costs in Minneapolis, Minnesota

    EPA Science Inventory

    Source protection is a critical aspect of drinking water treatment. The benefits of protecting source water quality in reducing drinking water treatment costs are clear. However, forecasting the impacts of environmental change on source water quality and its potential to influenc...

  1. Beyond Climate and Weather Science: Expanding the Forecasting Family to Serve Societal Needs

    NASA Astrophysics Data System (ADS)

    Barron, E. J.

    2009-05-01

    The ability to "anticipate" the future is what makes information from the Earth sciences valuable to society - whether it is the prediction of severe weather or the future availability of water resources in response to climate change. An improved ability to anticipate or forecast has the potential to serve society by simultaneously improving our ability to (1) promote economic vitality, (2) enable environmental stewardship, (3) protect life and property, as well as (4) improve our fundamental knowledge of the earth system. The potential is enormous, yet many appear ready to move quickly toward specific mitigation and adaptation strategies assuming that the science is settled. Five important weakness must be addressed first: (1) the formation of a true "climate services" function and capability, (2) the deliberate investment in expanding the family of forecasting elements to incorporate a broader array of environmental factors and impacts, (3) the investment in the sciences that connect climate to society, (4) a deliberate focus on the problems associated with scale, in particular the difference between the scale of predictive models and the scale associated with societal decisions, and (5) the evolution from climate services and model predictions to the equivalent of "environmental intelligence centers." The objective is to bring the discipline of forecasting to a broader array of environmental challenges. Assessments of the potential impacts of global climate change on societal sectors such as water, human health, and agriculture provide good examples of this challenge. We have the potential to move from a largely reactive mode in addressing adverse health outcomes, for example, to one in which the ties between climate, land cover, infectious disease vectors, and human health are used to forecast and predict adverse human health conditions. The potential exists for a revolution in forecasting, that entrains a much broader set of societal needs and solutions. The argument is made that (for example) the current capabilities in the prediction of environmental health is similar to the capabilities (and potential) of weather forecasting in the 1960's.

  2. SPoRT's Participation in the GOES-R Proving Ground Activity

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary; Fuell, Kevin; Smith, Matthew; Stano, Geoffrey; Molthan, Andrew

    2011-01-01

    The next generation geostationary satellite, GOES-R, will carry two new instruments with unique atmospheric and surface observing capabilities, the Advanced Baseline Imager (ABI) and the Geostationary Lightning Mapper (GLM), to study short-term weather processes. The ABI will bring enhanced multispectral observing capabilities with frequent refresh rates for regional and full disk coverage to geostationary orbit to address many existing and new forecast challenges. The GLM will, for the first time, provide the continuous monitoring of total lightning flashes over a hemispherical region from space. NOAA established the GOES-R Proving Ground activity several years ago to demonstrate the new capabilities of these instruments and to prepare forecasters for their day one use. Proving Ground partners work closely with algorithm developers and the end user community to develop and transition proxy data sets representing GOES-R observing capabilities. This close collaboration helps to maximize refine algorithms leading to the delivery of a product that effectively address a forecast challenge. The NASA Short-term Prediction Research and Transition (SPoRT) program has been a participant in the NOAA GOES-R Proving Ground activity by developing and disseminating selected GOES-R proxy products to collaborating WFOs and National Centers. Established in 2002 to demonstrate the weather and forecasting application of real-time EOS measurements, the SPoRT program has grown to be an end-to-end research to operations activity focused on the use of advanced NASA modeling and data assimilation approaches, nowcasting techniques, and unique high-resolution multispectral data from EOS satellites to improve short-term weather forecasts on a regional and local scale. Participation in the Proving Ground activities extends SPoRT s activities and taps its experience and expertise in diagnostic weather analysis, short-term weather forecasting, and the transition of research and experimental data to operational decision support systems like NAWIPS, AWIPS, AWIPS2, and Google Earth. Recent SPoRT Proving Ground activities supporting the development and use of a pseudo GLM total lightning product and the transition of the AWG s Convective Initiation (CI) product, both of which were available in AWIPS and AWIPS II environments, by forecasters during the Hazardous Weather Testbed (HWT) Spring Experiment. SPoRT is also providing a suite of SEVIRI and MODIS RGB image products, and a high resolution composite SST product to several National Centers for use in there ongoing demonstration activities. Additionally, SPoRT has involved numerous WFOs in the evaluation of a GOES-MODIS hybrid product which brings ABI-like data sets in front of the forecaster for everyday use. An overview of this activity will be presented at the conference.

  3. SPoRT's Participation in the GOES-R Proving Ground Activity

    NASA Astrophysics Data System (ADS)

    Jedlovec, G.; Fuell, K.; Smith, M. R.; Stano, G. T.; Molthan, A.

    2011-12-01

    The next generation geostationary satellite, GOES-R, will carry two new instruments with unique atmospheric and surface observing capabilities, the Advanced Baseline Imager (ABI) and the Geostationary Lightning Mapper (GLM), to study short-term weather processes. The ABI will bring enhanced multispectral observing capabilities with frequent refresh rates for regional and full disk coverage to geostationary orbit to address many existing and new forecast challenges. The GLM will, for the first time, provide the continuous monitoring of total lightning flashes over a hemispherical region from space. NOAA established the GOES-R Proving Ground activity several years ago to demonstrate the new capabilities of these instruments and to prepare forecasters for their day one use. Proving Ground partners work closely with algorithm developers and the end user community to develop and transition proxy data sets representing GOES-R observing capabilities. This close collaboration helps to maximize refine algorithms leading to the delivery of a product that effectively address a forecast challenge. The NASA Short-term Prediction Research and Transition (SPoRT) program has been a participant in the NOAA GOES-R Proving Ground activity by developing and disseminating selected GOES-R proxy products to collaborating WFOs and National Centers. Established in 2002 to demonstrate the weather and forecasting application of real-time EOS measurements, the SPoRT program has grown to be an end-to-end research to operations activity focused on the use of advanced NASA modeling and data assimilation approaches, nowcasting techniques, and unique high-resolution multispectral data from EOS satellites to improve short-term weather forecasts on a regional and local scale. Participation in the Proving Ground activities extends SPoRT's activities and taps its experience and expertise in diagnostic weather analysis, short-term weather forecasting, and the transition of research and experimental data to operational decision support systems like NAWIPS, AWIPS, AWIPS2, and Google Earth. Recent SPoRT Proving Ground activities supporting the development and use of a pseudo GLM total lightning product and the transition of the AWG's Convective Initiation (CI) product, both of which were available in AWIPS and AWIPS II environments, by forecasters during the Hazardous Weather Testbed (HWT) Spring Experiment. SPoRT is also providing a suite of SEVIRI and MODIS RGB image products, and a high resolution composite SST product to several National Centers for use in there ongoing demonstration activities. Additionally, SPoRT has involved numerous WFOs in the evaluation of a GOES-MODIS hybrid product which brings ABI-like data sets in front of the forecaster for everyday use. An overview of this activity will be presented at the conference.

  4. Evaluation of the synoptic and mesoscale predictive capabilities of a mesoscale atmospheric simulation system

    NASA Technical Reports Server (NTRS)

    Koch, S. E.; Skillman, W. C.; Kocin, P. J.; Wetzel, P. J.; Brill, K.; Keyser, D. A.; Mccumber, M. C.

    1983-01-01

    The overall performance characteristics of a limited area, hydrostatic, fine (52 km) mesh, primitive equation, numerical weather prediction model are determined in anticipation of satellite data assimilations with the model. The synoptic and mesoscale predictive capabilities of version 2.0 of this model, the Mesoscale Atmospheric Simulation System (MASS 2.0), were evaluated. The two part study is based on a sample of approximately thirty 12h and 24h forecasts of atmospheric flow patterns during spring and early summer. The synoptic scale evaluation results benchmark the performance of MASS 2.0 against that of an operational, synoptic scale weather prediction model, the Limited area Fine Mesh (LFM). The large sample allows for the calculation of statistically significant measures of forecast accuracy and the determination of systematic model errors. The synoptic scale benchmark is required before unsmoothed mesoscale forecast fields can be seriously considered.

  5. DEVELOPMENT OF NEAR-SHORE HYDRODYNAMIC MODELS FOR BEACH CLOSURE FORECASTING IN THE GREAT LAKES

    EPA Science Inventory

    Water quality managers and other planning and decision entities are increasingly calling for up-to-the-minute data on present water quality conditions or forecasts of these data that can be used to adjust or respond to quickly developing activities with environmental implications...

  6. PREMAQ: A NEW PRE-PROCESSOR TO CMAQ FOR AIR-QUALITY FORECASTING

    EPA Science Inventory

    A new pre-processor to CMAQ (PREMAQ) has been developed as part of the national air-quality forecasting system. PREMAQ combines the functionality of MCIP and parts of SMOKE in a single real-time processor. PREMAQ was specifically designed to link NCEP's Eta model with CMAQ, and...

  7. ASSESSMENT OF ETA-CMAQ FORECASTS OF PARTICULATE MATTER DISTRIBUTIONS THROUGH COMPARISONS WITH SURFACE NETWORK AND SPECIALIZED MEASUREMENTS

    EPA Science Inventory

    An air-quality forecasting (AQF) system based on the National Weather Service (NWS) National Centers for Environmental Prediction's (NCEP's) Eta model and the U.S. EPA's Community Multiscale Air Quality (CMAQ) Modeling System is used to simulate the distributions of tropospheric ...

  8. The Cloud-Aerosol Transport System (CATS): A New Lidar for Aerosol and Cloud Profiling from the International Space Station

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; McGill, Mathew J.; Yorks. John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.

    2012-01-01

    Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064,532,355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time (NRT) data capability ofthe ISS will enable CATS to support operational applications such as aerosol and air quality forecasting and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a summary of the science objectives and simulated data. Input from the ICAP community is desired to help plan our NRT mission goals and interactions with ICAP forecasters.

  9. CALIPSO Satellite Lidar Identification Of Elevated Dust Over Australia Compared With Air Quality Model PM60 Forecasts

    NASA Technical Reports Server (NTRS)

    Young, Stuart A.; Vaughan, Mark; Omar, Ali; Liu, Zhaoyan; Lee, Sunhee; Hu, Youngxiang; Cope, Martin

    2008-01-01

    Global measurements of the vertical distribution of clouds and aerosols have been recorded by the lidar on board the CALIPSO (Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations) satellite since June 2006. Such extensive, height-resolved measurements provide a rare and valuable opportunity for developing, testing and validating various atmospheric models, including global climate, numerical weather prediction, chemical transport and air quality models. Here we report on the initial results of an investigation into the performance of the Australian Air Quality Forecast System (AAQFS) model in forecasting the distribution of elevated dust over the Australian region. The model forecasts of PM60 dust distribution are compared with the CALIPSO lidar Vertical Feature Mask (VFM) data product. The VFM classifies contiguous atmospheric regions of enhanced backscatter as either cloud or aerosols. Aerosols are further classified into six subtypes. By comparing forecast PM60 concentration profiles to the spatial distribution of dust reported in the CALIPSO VFM, we can assess the model s ability to predict the occurrence and the vertical and horizontal extents of dust events within the study area.

  10. The Mauna Kea Weather Center: Custom Atmospheric Forecasting Support for Mauna Kea

    NASA Astrophysics Data System (ADS)

    Businger, Steven

    2011-03-01

    The success of operations at Mauna Kea Observatories is strongly influenced by weather conditions. The Mauna Kea Weather Center, an interdisciplinary research program, was established in 1999 to develop and provide custom weather support for Mauna Kea Observatories. The operational forecasting goals of the program are to facilitate the best possible use of favorable atmospheric conditions for scientific benefit and to ensure operational safety. During persistent clear periods, astronomical observing quality varies substantially due to changes in the vertical profiles of temperature, wind, moisture, and turbulence. Cloud and storm systems occasionally cause adverse or even hazardous conditions. A dedicated, daily, real-time mesoscale numerical modeling effort provides crucial forecast guidance in both cases. Several key atmospheric variables are forecast with sufficient skill to be of operational and scientific benefit to the telescopes on Mauna Kea. Summit temperature forecasts allow mirrors to be set to the ambient temperature to reduce image distortion. Precipitable water forecasts allow infrared observations to be prioritized according to atmospheric opacity. Forecasts of adverse and hazardous conditions protect the safety of personnel and allow for scheduling of maintenance when observing is impaired by cloud. The research component of the project continues to improve the accuracy and content of the forecasts. In particular, case studies have resulted in operational forecasts of astronomical observing quality, or seeing.

  11. Development of the GEM-MACH-FireWork System: An Air Quality Model with On-line Wildfire Emissions within the Canadian Operational Air Quality Forecast System

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Chen, Jack; Beaulieu, Paul-Andre; Anselmp, David; Gravel, Sylvie; Moran, Mike; Menard, Sylvain; Davignon, Didier

    2014-05-01

    A wildfire emissions processing system has been developed to incorporate near-real-time emissions from wildfires and large prescribed burns into Environment Canada's real-time GEM-MACH air quality (AQ) forecast system. Since the GEM-MACH forecast domain covers Canada and most of the U.S.A., including Alaska, fire location information is needed for both of these large countries. During AQ model runs, emissions from individual fire sources are injected into elevated model layers based on plume-rise calculations and then transport and chemistry calculations are performed. This "on the fly" approach to the insertion of the fire emissions provides flexibility and efficiency since on-line meteorology is used and computational overhead in emissions pre-processing is reduced. GEM-MACH-FireWork, an experimental wildfire version of GEM-MACH, was run in real-time mode for the summers of 2012 and 2013 in parallel with the normal operational version. 48-hour forecasts were generated every 12 hours (at 00 and 12 UTC). Noticeable improvements in the AQ forecasts for PM2.5 were seen in numerous regions where fire activity was high. Case studies evaluating model performance for specific regions and computed objective scores will be included in this presentation. Using the lessons learned from the last two summers, Environment Canada will continue to work towards the goal of incorporating near-real-time intermittent wildfire emissions into the operational air quality forecast system.

  12. Forecasting PM10 in metropolitan areas: Efficacy of neural networks.

    PubMed

    Fernando, H J S; Mammarella, M C; Grandoni, G; Fedele, P; Di Marco, R; Dimitrova, R; Hyde, P

    2012-04-01

    Deterministic photochemical air quality models are commonly used for regulatory management and planning of urban airsheds. These models are complex, computer intensive, and hence are prohibitively expensive for routine air quality predictions. Stochastic methods are becoming increasingly popular as an alternative, which relegate decision making to artificial intelligence based on Neural Networks that are made of artificial neurons or 'nodes' capable of 'learning through training' via historic data. A Neural Network was used to predict particulate matter concentration at a regulatory monitoring site in Phoenix, Arizona; its development, efficacy as a predictive tool and performance vis-à-vis a commonly used regulatory photochemical model are described in this paper. It is concluded that Neural Networks are much easier, quicker and economical to implement without compromising the accuracy of predictions. Neural Networks can be used to develop rapid air quality warning systems based on a network of automated monitoring stations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method.

    PubMed

    Yang, Jun-He; Cheng, Ching-Hsue; Chan, Chia-Pan

    2017-01-01

    Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir's water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir's water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.

  14. Utilizing Operational and Improved Remote Sensing Measurements to Assess Air Quality Monitoring Model Forecasts

    NASA Astrophysics Data System (ADS)

    Gan, Chuen-Meei

    Air quality model forecasts from Weather Research and Forecast (WRF) and Community Multiscale Air Quality (CMAQ) are often used to support air quality applications such as regulatory issues and scientific inquiries on atmospheric science processes. In urban environments, these models become more complex due to the inherent complexity of the land surface coupling and the enhanced pollutants emissions. This makes it very difficult to diagnose the model, if the surface parameter forecasts such as PM2.5 (particulate matter with aerodynamic diameter less than 2.5 microm) are not accurate. For this reason, getting accurate boundary layer dynamic forecasts is as essential as quantifying realistic pollutants emissions. In this thesis, we explore the usefulness of vertical sounding measurements on assessing meteorological and air quality forecast models. In particular, we focus on assessing the WRF model (12km x 12km) coupled with the CMAQ model for the urban New York City (NYC) area using multiple vertical profiling and column integrated remote sensing measurements. This assessment is helpful in probing the root causes for WRF-CMAQ overestimates of surface PM2.5 occurring both predawn and post-sunset in the NYC area during the summer. In particular, we find that the significant underestimates in the WRF PBL height forecast is a key factor in explaining this anomaly. On the other hand, the model predictions of the PBL height during daytime when convective heating dominates were found to be highly correlated to lidar derived PBL height with minimal bias. Additional topics covered in this thesis include mathematical method using direct Mie scattering approach to convert aerosol microphysical properties from CMAQ into optical parameters making direct comparisons with lidar and multispectral radiometers feasible. Finally, we explore some tentative ideas on combining visible (VIS) and mid-infrared (MIR) sensors to better separate aerosols into fine and coarse modes.

  15. The Implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for Global Dust Forecasting at NOAA NCEP

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Hsuan; Da Silva, Arlindo M.; Wang, Jun; Moorthi, Shrinivas; Chin, Mian; Colarco, Peter; Tang, Youhua; Bhattacharjee, Partha S.; Chen, Shen-Po; Chuang, Hui-Ya; hide

    2016-01-01

    The NOAA National Centers for Environmental Prediction (NCEP) implemented the NOAA Environmental Modeling System (NEMS) Global Forecast System (GFS) Aerosol Component (NGAC) for global dust forecasting in collaboration with NASA Goddard Space Flight Center (GSFC). NGAC Version 1.0 has been providing 5-day dust forecasts at 1deg x 1deg resolution on a global scale, once per day at 00:00 Coordinated Universal Time (UTC), since September 2012. This is the first global system capable of interactive atmosphere aerosol forecasting at NCEP. The implementation of NGAC V1.0 reflects an effective and efficient transitioning of NASA research advances to NCEP operations, paving the way for NCEP to provide global aerosol products serving a wide range of stakeholders, as well as to allow the effects of aerosols on weather forecasts and climate prediction to be considered.

  16. Using Science Data and Models for Space Weather Forecasting - Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Pulkkinen, Antti; Zheng, Yihua; Maddox, Marlo; Berrios, David; Taktakishvili, Sandro; Kuznetsova, Masha; Chulaki, Anna; Lee, Hyesook; Mullinix, Rick; hide

    2012-01-01

    Space research, and, consequently, space weather forecasting are immature disciplines. Scientific knowledge is accumulated frequently, which changes our understanding or how solar eruptions occur, and of how they impact targets near or on the Earth, or targets throughout the heliosphere. Along with continuous progress in understanding, space research and forecasting models are advancing rapidly in capability, often providing substantially increases in space weather value over time scales of less than a year. Furthermore, the majority of space environment information available today is, particularly in the solar and heliospheric domains, derived from research missions. An optimal forecasting environment needs to be flexible enough to benefit from this rapid development, and flexible enough to adapt to evolving data sources, many of which may also stem from non-US entities. This presentation will analyze the experiences obtained by developing and operating both a forecasting service for NASA, and an experimental forecasting system for Geomagnetically Induced Currents.

  17. Earthquake forecasting during the complex Amatrice-Norcia seismic sequence

    PubMed Central

    Marzocchi, Warner; Taroni, Matteo; Falcone, Giuseppe

    2017-01-01

    Earthquake forecasting is the ultimate challenge for seismologists, because it condenses the scientific knowledge about the earthquake occurrence process, and it is an essential component of any sound risk mitigation planning. It is commonly assumed that, in the short term, trustworthy earthquake forecasts are possible only for typical aftershock sequences, where the largest shock is followed by many smaller earthquakes that decay with time according to the Omori power law. We show that the current Italian operational earthquake forecasting system issued statistically reliable and skillful space-time-magnitude forecasts of the largest earthquakes during the complex 2016–2017 Amatrice-Norcia sequence, which is characterized by several bursts of seismicity and a significant deviation from the Omori law. This capability to deliver statistically reliable forecasts is an essential component of any program to assist public decision-makers and citizens in the challenging risk management of complex seismic sequences. PMID:28924610

  18. Earthquake forecasting during the complex Amatrice-Norcia seismic sequence.

    PubMed

    Marzocchi, Warner; Taroni, Matteo; Falcone, Giuseppe

    2017-09-01

    Earthquake forecasting is the ultimate challenge for seismologists, because it condenses the scientific knowledge about the earthquake occurrence process, and it is an essential component of any sound risk mitigation planning. It is commonly assumed that, in the short term, trustworthy earthquake forecasts are possible only for typical aftershock sequences, where the largest shock is followed by many smaller earthquakes that decay with time according to the Omori power law. We show that the current Italian operational earthquake forecasting system issued statistically reliable and skillful space-time-magnitude forecasts of the largest earthquakes during the complex 2016-2017 Amatrice-Norcia sequence, which is characterized by several bursts of seismicity and a significant deviation from the Omori law. This capability to deliver statistically reliable forecasts is an essential component of any program to assist public decision-makers and citizens in the challenging risk management of complex seismic sequences.

  19. Experimental Forecasts of Wildfire Pollution at the Canadian Meteorological Centre

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Beaulieu, Paul-Andre; Chen, Jack; Landry, Hugo; Cousineau, Sophie; Moran, Michael

    2016-04-01

    Environment and Climate Change Canada's Canadian Meteorological Centre Operations division (CMCO) has been running an experimental North American air quality forecast system with near-real-time wildfire emissions since 2014. This system, named FireWork, also takes anthropogenic and other natural emission sources into account. FireWork 48-hour forecasts are provided to CMCO forecasters and external partners in Canada and the U.S. twice daily during the wildfire season. This system has proven to be very useful in capturing short- and long-range smoke transport from wildfires over North America. Several upgrades to the FireWork system have been made since 2014 to accommodate the needs of operational AQ forecasters and to improve system performance. In this talk we will present performance statistics and some case studies for the 2014 and 2015 wildfire seasons. We will also describe current limitations of the FireWork system and ongoing and future work planned for this air quality forecast system.

  20. Multiple Sensitivity Testing for Regional Air Quality Model in summer 2014

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Lee, P.; Pan, L.; Tong, D.; Kim, H. C.; Huang, M.; Wang, J.; McQueen, J.; Lu, C. H.; Artz, R. S.

    2015-12-01

    The NOAA Air Resources laboratory leads to improve the performance of the U.S. Air Quality Forecasting Capability (NAQFC). It is operational in NOAA National Centers for Environmental Prediction (NCEP) which focuses on predicting surface ozone and PM2.5. In order to improve its performance, we tested several approaches, including NOAA Environmental Modeling System Global Aerosol Component (NGAC) simulation derived ozone and aerosol lateral boundary conditions (LBC), bi-direction NH3 emission and HMS(Hazard Mapping System)-BlueSky emission with the latest U.S. EPA Community Multi-scale Air Quality model (CMAQ) version and the U.S EPA National Emission Inventory (NEI)-2011 anthropogenic emissions. The operational NAQFC uses static profiles for its lateral boundary condition (LBC), which does not impose severe issue for near-surface air quality prediction. However, its degraded performance for the upper layer (e.g. above 3km) is evident when comparing with aircraft measured ozone. NCEP's Global Forecast System (GFS) has tracer O3 prediction treated as 3-D prognostic variable (Moorthi and Iredell, 1998) after being initialized with Solar Backscatter Ultra Violet-2 (SBUV-2) satellite data. We applied that ozone LBC to the CMAQ's upper layers and yield more reasonable O3 prediction than that with static LBC comparing with the aircraft data in Discover-AQ Colorado campaign. NGAC's aerosol LBC also improved the PM2.5 prediction with more realistic background aerosols. The bi-direction NH3 emission used in CMAQ also help reduce the NH3 and nitrate under-prediction issue. During summer 2014, strong wildfires occurred in northwestern USA, and we used the US Forest Service's BlueSky fire emission with HMS fire counts to drive CMAQ and tested the difference of day-1 and day-2 fire emission estimation. Other related issues were also discussed.

  1. Analysis and verification of a prediction model of solar energetic proton events

    NASA Astrophysics Data System (ADS)

    Wang, J.; Zhong, Q.

    2017-12-01

    The solar energetic particle event can cause severe radiation damages near Earth. The alerts and summary products of the solar energetic proton events were provided by the Space Environment Prediction Center (SEPC) according to the flux of the greater than 10 MeV protons taken by GOES satellite in geosynchronous orbit. The start of a solar energetic proton event is defined as the time when the flux of the greater than 10 MeV protons equals or exceeds 10 proton flux units (pfu). In this study, a model was developed to predict the solar energetic proton events, provide the warning for the solar energetic proton events at least minutes in advance, based on both the soft X-ray flux and integral proton flux taken by GOES. The quality of the forecast model was measured against verifications of accuracy, reliability, discrimination capability, and forecast skills. The peak flux and rise time of the solar energetic proton events in the six channels, >1MeV, >5 MeV, >10 MeV, >30 MeV, >50 MeV, >100 MeV, were also simulated and analyzed.

  2. Intercomparison of different operational oceanographic forecast products in the CMEMS IBI area

    NASA Astrophysics Data System (ADS)

    Lorente, Pablo; Sotillo, Marcos G.; Dabrowski, Tomasz; Amo-Baladrón, Arancha; Aznar, Roland; De Pascual, Alvaro; Levier, Bruno; Bowyer, Peter; Cossarini, Gianpiero; Salon, Stefano; Tonani, Marina; Alvarez-Fanjul, Enrique

    2017-04-01

    The development of skill assessment software packages and dedicated web applications is a relatively novel theme in operational oceanography. Within the CMEMS IBI-MFC, the quality of IBI (Iberia-Biscay-Ireland) forecast products is assessed by means of NARVAL (North Atlantic Regional VALidation) web-based tool. The validation of IBI against independent in situ and remote-sensing measurements is routinely conducted to evaluate model's veracity and prognostic capabilities. Noticeable efforts are in progress to define meaningful skill scores and statistical metrics to quantitatively assess the quality and reliability of the IBI model solution. Likewise, the IBI-MFC compares the IBI forecast products with other model solutions by setting up specific intercomparison exercises on overlapping areas at diverse timescales. In this context, NARVAL web tool already includes a specific module to evaluate strengths and weaknesses of IBI versus other CMEMS operational ocean forecasting systems (OOFSs). In particular, the IBI physical ocean solution is compared against the CMEMS MED and NWS OOFSs. These CMEMS regional services delivered for the Mediterranean and the North West Shelves include data assimilation schemes in their respective operational chains and generate analogous ocean forecast products to the IBI ones. A number of physical parameters (i.e. sea surface temperature, salinity and current velocities) are evaluated through NARVAL on a daily basis in the overlapping areas existing between these three regional systems. NARVAL is currently being updated in order to extend this intercomparison of ocean model parameters to the biogeochemical solutions provided by the aforementioned OOFSs. More specifically, the simulated chlorophyll concentration is evaluated over several subregions of particular concern by using as benchmark the CMEMS satellite-derived observational products. In addition to this IBI comparison against other regional CMEMS products on overlapping areas, a specific intercomparison between the CMEMS GLOBAL solution and the IBI (regional application dynamically embedded in the former) is conducted in order to check its consistency and ability to outperform the parent model solution. Particular emphasis is placed on the comparison of time-series at specified locations (class-2 metrics). The standardized validation methodology presented here is particularly useful and could encompass the intercomparison of the regional application (IBI) and other nested higher resolution models at coastal/shelf scales to quantify the added value of downscaling in local downstream approaches.

  3. The Art and Science of Long-Range Space Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Wilson, Robert M.

    2006-01-01

    Long-range space weather forecasts are akin to seasonal forecasts of terrestrial weather. We don t expect to forecast individual events but we do hope to forecast the underlying level of activity important for satellite operations and mission pl&g. Forecasting space weather conditions years or decades into the future has traditionally been based on empirical models of the solar cycle. Models for the shape of the cycle as a function of its amplitude become reliable once the amplitude is well determined - usually two to three years after minimum. Forecasting the amplitude of a cycle well before that time has been more of an art than a science - usually based on cycle statistics and trends. Recent developments in dynamo theory -the theory explaining the generation of the Sun s magnetic field and the solar activity cycle - have now produced models with predictive capabilities. Testing these models with historical sunspot cycle data indicates that these predictions may be highly reliable one, or even two, cycles into the future.

  4. Development of WRF-ROI system by incorporating eigen-decomposition

    NASA Astrophysics Data System (ADS)

    Kim, S.; Noh, N.; Song, H.; Lim, G.

    2011-12-01

    This study presents the development of WRF-ROI system, which is the implementation of Retrospective Optimal Interpolation (ROI) to the Weather Research and Forecasting model (WRF). ROI is a new data assimilation algorithm introduced by Song et al. (2009) and Song and Lim (2009). The formulation of ROI is similar with that of Optimal Interpolation (OI), but ROI iteratively assimilates an observation set at a post analysis time into a prior analysis, possibly providing the high quality reanalysis data. ROI method assimilates the data at post analysis time using perturbation method (Errico and Raeder, 1999) without adjoint model. In previous study, ROI method is applied to Lorenz 40-variable model (Lorenz, 1996) to validate the algorithm and to investigate the capability. It is therefore required to apply this ROI method into a more realistic and complicated model framework such as WRF. In this research, the reduced-rank formulation of ROI is used instead of a reduced-resolution method. The computational costs can be reduced due to the eigen-decomposition of background error covariance in the reduced-rank method. When single profile of observations is assimilated in the WRF-ROI system by incorporating eigen-decomposition, the analysis error tends to be reduced if compared with the background error. The difference between forecast errors with assimilation and without assimilation is obviously increased as time passed, which means the improvement of forecast error by assimilation.

  5. A quality assessment of the MARS crop yield forecasting system for the European Union

    NASA Astrophysics Data System (ADS)

    van der Velde, Marijn; Bareuth, Bettina

    2015-04-01

    Timely information on crop production forecasts can become of increasing importance as commodity markets are more and more interconnected. Impacts across large crop production areas due to (e.g.) extreme weather and pest outbreaks can create ripple effects that may affect food prices and availability elsewhere. The MARS Unit (Monitoring Agricultural ResourceS), DG Joint Research Centre, European Commission, has been providing forecasts of European crop production levels since 1993. The operational crop production forecasting is carried out with the MARS Crop Yield Forecasting System (M-CYFS). The M-CYFS is used to monitor crop growth development, evaluate short-term effects of anomalous meteorological events, and provide monthly forecasts of crop yield at national and European Union level. The crop production forecasts are published in the so-called MARS bulletins. Forecasting crop yield over large areas in the operational context requires quality benchmarks. Here we present an analysis of the accuracy and skill of past crop yield forecasts of the main crops (e.g. soft wheat, grain maize), throughout the growing season, and specifically for the final forecast before harvest. Two simple benchmarks to assess the skill of the forecasts were defined as comparing the forecasts to 1) a forecast equal to the average yield and 2) a forecast using a linear trend established through the crop yield time-series. These reveal a variability in performance as a function of crop and Member State. In terms of production, the yield forecasts of 67% of the EU-28 soft wheat production and 80% of the EU-28 maize production have been forecast superior to both benchmarks during the 1993-2013 period. In a changing and increasingly variable climate crop yield forecasts can become increasingly valuable - provided they are used wisely. We end our presentation by discussing research activities that could contribute to this goal.

  6. A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine.

    PubMed

    Wang, Deyun; Wei, Shuai; Luo, Hongyuan; Yue, Chenqiang; Grunder, Olivier

    2017-02-15

    The randomness, non-stationarity and irregularity of air quality index (AQI) series bring the difficulty of AQI forecasting. To enhance forecast accuracy, a novel hybrid forecasting model combining two-phase decomposition technique and extreme learning machine (ELM) optimized by differential evolution (DE) algorithm is developed for AQI forecasting in this paper. In phase I, the complementary ensemble empirical mode decomposition (CEEMD) is utilized to decompose the AQI series into a set of intrinsic mode functions (IMFs) with different frequencies; in phase II, in order to further handle the high frequency IMFs which will increase the forecast difficulty, variational mode decomposition (VMD) is employed to decompose the high frequency IMFs into a number of variational modes (VMs). Then, the ELM model optimized by DE algorithm is applied to forecast all the IMFs and VMs. Finally, the forecast value of each high frequency IMF is obtained through adding up the forecast results of all corresponding VMs, and the forecast series of AQI is obtained by aggregating the forecast results of all IMFs. To verify and validate the proposed model, two daily AQI series from July 1, 2014 to June 30, 2016 collected from Beijing and Shanghai located in China are taken as the test cases to conduct the empirical study. The experimental results show that the proposed hybrid model based on two-phase decomposition technique is remarkably superior to all other considered models for its higher forecast accuracy. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Implementation of Real-Time Bias-Adjusted O3 and PM2.5 Air Quality Forecasts and their Performance Evaluations during 2008 over the Continental United States

    EPA Science Inventory

    The National Oceanic and Atmospheric Administration (NOAA), in partnership with the United States Environmental Protection Agency (EPA), is operationally implementing an Air Quality Forecast (AQF) system. This program, which couples NOAA's North American Mesoscale (NAM) weather p...

  8. Bill spurs efforts to improve forecasting of inland flooding from tropical storms

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Newly-enacted U.S. legislation to reduce the threat of inland flooding from tropical storms could provide a "laser beam" focus to dealing with this natural hazard, according to Rep. Bob Etheridge (D-N.C.), the chief sponsor of the bill.The Tropical Cyclone Inland Forecasting Improvement and Warning System Development Act, (PL. 107-253), signed into law on 29 October, authorizes the National Oceanic and Atmospheric Administration's U.S. Weather Research Program (USWRP) to improve the capability to accurately forecast inland flooding from tropical storms through research and modeling.

  9. Using Sensor Web Processes and Protocols to Assimilate Satellite Data into a Forecast Model

    NASA Technical Reports Server (NTRS)

    Goodman, H. Michael; Conover, Helen; Zavodsky, Bradley; Maskey, Manil; Jedlovec, Gary; Regner, Kathryn; Li, Xiang; Lu, Jessica; Botts, Mike; Berthiau, Gregoire

    2008-01-01

    The goal of the Sensor Management Applied Research Technologies (SMART) On-Demand Modeling project is to develop and demonstrate the readiness of the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) capabilities to integrate both space-based Earth observations and forecast model output into new data acquisition and assimilation strategies. The project is developing sensor web-enabled processing plans to assimilate Atmospheric Infrared Sounding (AIRS) satellite temperature and moisture retrievals into a regional Weather Research and Forecast (WRF) model over the southeastern United States.

  10. Impact of improved information on the structure of world grain trade. [wheat

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The benefits to be derived by the United States from improvements in global grain crop forecasting capability are discussed. The improvements in forecasting accuracy, which are a result of the use of satellite technology in conjunction with existing ground based estimating procedures are described. The degree of forecasting accuracy to be obtained from satellite technology is also examined. Specific emphasis is placed on wheat production in seven countries/regions: the United States; Canada; Argentina; Australia; Western Europe; the USSR; and all other countries in a group.

  11. Verification of National Weather Service spot forecasts using surface observations

    NASA Astrophysics Data System (ADS)

    Lammers, Matthew Robert

    Software has been developed to evaluate National Weather Service spot forecasts issued to support prescribed burns and early-stage wildfires. Fire management officials request spot forecasts from National Weather Service Weather Forecast Offices to provide detailed guidance as to atmospheric conditions in the vicinity of planned prescribed burns as well as wildfires that do not have incident meteorologists on site. This open source software with online display capabilities is used to examine an extensive set of spot forecasts of maximum temperature, minimum relative humidity, and maximum wind speed from April 2009 through November 2013 nationwide. The forecast values are compared to the closest available surface observations at stations installed primarily for fire weather and aviation applications. The accuracy of the spot forecasts is compared to those available from the National Digital Forecast Database (NDFD). Spot forecasts for selected prescribed burns and wildfires are used to illustrate issues associated with the verification procedures. Cumulative statistics for National Weather Service County Warning Areas and for the nation are presented. Basic error and accuracy metrics for all available spot forecasts and the entire nation indicate that the skill of the spot forecasts is higher than that available from the NDFD, with the greatest improvement for maximum temperature and the least improvement for maximum wind speed.

  12. An algorithm of Saxena-Easo on fuzzy time series forecasting

    NASA Astrophysics Data System (ADS)

    Ramadhani, L. C.; Anggraeni, D.; Kamsyakawuni, A.; Hadi, A. F.

    2018-04-01

    This paper presents a forecast model of Saxena-Easo fuzzy time series prediction to study the prediction of Indonesia inflation rate in 1970-2016. We use MATLAB software to compute this method. The algorithm of Saxena-Easo fuzzy time series doesn’t need stationarity like conventional forecasting method, capable of dealing with the value of time series which are linguistic and has the advantage of reducing the calculation, time and simplifying the calculation process. Generally it’s focus on percentage change as the universe discourse, interval partition and defuzzification. The result indicate that between the actual data and the forecast data are close enough with Root Mean Square Error (RMSE) = 1.5289.

  13. Extending the Community Multiscale Air Quality (CMAQ) Modeling System to Hemispheric Scales: Overview of Process Considerations and Initial Applications

    PubMed Central

    Mathur, Rohit; Xing, Jia; Gilliam, Robert; Sarwar, Golam; Hogrefe, Christian; Pleim, Jonathan; Pouliot, George; Roselle, Shawn; Spero, Tanya L.; Wong, David C.; Young, Jeffrey

    2018-01-01

    The Community Multiscale Air Quality (CMAQ) modeling system is extended to simulate ozone, particulate matter, and related precursor distributions throughout the Northern Hemisphere. Modelled processes were examined and enhanced to suitably represent the extended space and time scales for such applications. Hemispheric scale simulations with CMAQ and the Weather Research and Forecasting (WRF) model are performed for multiple years. Model capabilities for a range of applications including episodic long-range pollutant transport, long-term trends in air pollution across the Northern Hemisphere, and air pollution-climate interactions are evaluated through detailed comparison with available surface, aloft, and remotely sensed observations. The expansion of CMAQ to simulate the hemispheric scales provides a framework to examine interactions between atmospheric processes occurring at various spatial and temporal scales with physical, chemical, and dynamical consistency. PMID:29681922

  14. The Good, the Bad, and the Ugly: Numerical Prediction for Hurricane Juan (2003)

    NASA Astrophysics Data System (ADS)

    Gyakum, J.; McTaggart-Cowan, R.

    2004-05-01

    The range of accuracy of the numerical weather prediction (NWP) guidance for the landfall of Hurricane Juan (2003), from nearly perfect to nearly useless, motivates a study of the NWP forecast errors on 28-29 September 2003 in the eastern North Atlantic. Although the forecasts issued over the period were of very high quality, this is primarily because of the diligence of the forecasters, and not related to the reliability of the numerical predictions provided to them by the North American operational centers and the research community. A bifurcation in the forecast fields from various centers and institutes occurred beginning with the 0000 UTC run of 28 September, and continuing until landfall just after 0000 UTC on 29 September. The GFS (NCEP), Eta (NCEP), GEM (Canadian Meteorological Centre; CMC), and MC2 (McGill) forecast models all showed an extremely weak (minimum SLP above 1000 hPa) remnant vortex moving north-northwestward into the Gulf of Maine and merging with a diabatically-developed surface low offshore. The GFS uses a vortex-relocation scheme, the Eta a vortex bogus, and the GEM and MC2 are run on CMC analyses that contain no enhanced vortex. The UK Met Office operational, the GFDL, and the NOGAPS (US Navy) forecast models all ran a small-scale hurricane-like vortex directly into Nova Scotia and verified very well for this case. The UKMO model uses synthetic observations to enhance structures in poorly-forecasted areas during the analysis cycle and both the GFDL and NOGAPS model use advanced idealized vortex bogusing in their initial conditions. The quality of the McGill MC2 forecast is found to be significantly enhanced using a bogusing technique similar to that used in the initialization of the successful forecast models. A verification of the improved forecast is presented along with a discussion of the need for operational quality control of the background fields in the analysis cycle and for proper representation of strong, small-scale tropical vortices.

  15. Impact of chemical lateral boundary conditions in a regional air quality forecast model on surface ozone predictions during stratospheric intrusions

    NASA Astrophysics Data System (ADS)

    Pendlebury, Diane; Gravel, Sylvie; Moran, Michael D.; Lupu, Alexandru

    2018-02-01

    A regional air quality forecast model, GEM-MACH, is used to examine the conditions under which a limited-area air quality model can accurately forecast near-surface ozone concentrations during stratospheric intrusions. Periods in 2010 and 2014 with known stratospheric intrusions over North America were modelled using four different ozone lateral boundary conditions obtained from a seasonal climatology, a dynamically-interpolated monthly climatology, global air quality forecasts, and global air quality reanalyses. It is shown that the mean bias and correlation in surface ozone over the course of a season can be improved by using time-varying ozone lateral boundary conditions, particularly through the correct assignment of stratospheric vs. tropospheric ozone along the western lateral boundary (for North America). Part of the improvement in surface ozone forecasts results from improvements in the characterization of near-surface ozone along the lateral boundaries that then directly impact surface locations near the boundaries. However, there is an additional benefit from the correct characterization of the location of the tropopause along the western lateral boundary such that the model can correctly simulate stratospheric intrusions and their associated exchange of ozone from stratosphere to troposphere. Over a three-month period in spring 2010, the mean bias was seen to improve by as much as 5 ppbv and the correlation by 0.1 depending on location, and on the form of the chemical lateral boundary condition.

  16. Studies regarding the quality of numerical weather forecasts of the WRF model integrated at high-resolutions for the Romanian territory

    DOE PAGES

    Iriza, Amalia; Dumitrache, Rodica C.; Lupascu, Aurelia; ...

    2016-01-01

    Our paper aims to evaluate the quality of high-resolution weather forecasts from the Weather Research and Forecasting (WRF) numerical weather prediction model. The lateral and boundary conditions were obtained from the numerical output of the Consortium for Small-scale Modeling (COSMO) model at 7 km horizontal resolution. Furthermore, the WRF model was run for January and July 2013 at two horizontal resolutions (3 and 1 km). The numerical forecasts of the WRF model were evaluated using different statistical scores for 2 m temperature and 10 m wind speed. Our results showed a tendency of the WRF model to overestimate the valuesmore » of the analyzed parameters in comparison to observations.« less

  17. Studies regarding the quality of numerical weather forecasts of the WRF model integrated at high-resolutions for the Romanian territory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iriza, Amalia; Dumitrache, Rodica C.; Lupascu, Aurelia

    Our paper aims to evaluate the quality of high-resolution weather forecasts from the Weather Research and Forecasting (WRF) numerical weather prediction model. The lateral and boundary conditions were obtained from the numerical output of the Consortium for Small-scale Modeling (COSMO) model at 7 km horizontal resolution. Furthermore, the WRF model was run for January and July 2013 at two horizontal resolutions (3 and 1 km). The numerical forecasts of the WRF model were evaluated using different statistical scores for 2 m temperature and 10 m wind speed. Our results showed a tendency of the WRF model to overestimate the valuesmore » of the analyzed parameters in comparison to observations.« less

  18. Fast and optimized methodology to generate road traffic emission inventories and their uncertainties

    NASA Astrophysics Data System (ADS)

    Blond, N.; Ho, B. Q.; Clappier, A.

    2012-04-01

    Road traffic emissions are one of the main sources of air pollution in the cities. They are also the main sources of uncertainties in the air quality numerical models used to forecast and define abatement strategies. Until now, the available models for generating road traffic emission always required a big effort, money and time. This inhibits decisions to preserve air quality, especially in developing countries where road traffic emissions are changing very fast. In this research, we developed a new model designed to fast produce road traffic emission inventories. This model, called EMISENS, combines the well-known top-down and bottom-up approaches to force them to be coherent. A Monte Carlo methodology is included for computing emission uncertainties and the uncertainty rate due to each input parameters. This paper presents the EMISENS model and a demonstration of its capabilities through an application over Strasbourg region (Alsace), France. Same input data as collected for Circul'air model (using bottom-up approach) which has been applied for many years to forecast and study air pollution by the Alsatian air quality agency, ASPA, are used to evaluate the impact of several simplifications that a user could operate . These experiments give the possibility to review older methodologies and evaluate EMISENS results when few input data are available to produce emission inventories, as in developing countries and assumptions need to be done. We show that same average fraction of mileage driven with a cold engine can be used for all the cells of the study domain and one emission factor could replace both cold and hot emission factors.

  19. Improving Water Management Decision Support Tools Using NASA Satellite and Modeling Data

    NASA Astrophysics Data System (ADS)

    Toll, D. L.; Arsenault, K.; Nigro, J.; Pinheiro, A.; Engman, E. T.; Triggs, J.; Cosgrove, B.; Alonge, C.; Boyle, D.; Allen, R.; Townsend, P.; Ni-Meister, W.

    2006-05-01

    One of twelve Applications of National priority within NASA's Applied Science Program, the Water Management Program Element addresses concerns and decision making related to water availability, water forecast and water quality. The goal of the Water Management Program Element is to encourage water management organizations to use NASA Earth science data, models products, technology and other capabilities in their decision support tools for problem solving. The Water Management Program Element partners with Federal agencies, academia, private firms, and may include international organizations. This paper further describes the Water Management Program with the objective of informing the applications community of the potential opportunities for using NASA science products for problem solving. We will illustrate some ongoing and application Water Management projects evaluating and benchmarking NASA data with partnering federal agencies and their decision support tools: 1) Environmental Protection Agency for water quality; 2) Bureau of Reclamation for water supply, demand and forecast; and 3) NOAA National Weather Service for improved weather prediction. Examples of the types of NASA contributions to the these agency decision support tools include: 1) satellite observations within models assist to estimate water storage, i.e., snow water equivalent, soil moisture, aquifer volumes, or reservoir storages; 2) model derived products, i.e., evapotranspiration, precipitation, runoff, ground water recharge, and other 4-dimensional data assimilation products; 3) improve water quality, assessments by using improved inputs from NASA models (precipitation, evaporation) and satellite observations (e.g., temperature, turbidity, land cover) to nonpoint source models; and 4) water (i.e., precipitation) and temperature predictions from days to decades over local, regional and global scales.

  20. Improved Forecasting of Next Day Ozone Concentrations in the Eastern U.S.

    EPA Science Inventory

    There is an urgent need to provide accurate air quality information and forecasts to the general public. A hierarchical space-time model is used to forecast next day spatial patterns of daily maximum 8-hr ozone concentrations. The model combines ozone monitoring data and gridded...

  1. International Cooperative for Aerosol Prediction Workshop on Aerosol Forecast Verification

    NASA Technical Reports Server (NTRS)

    Benedetti, Angela; Reid, Jeffrey S.; Colarco, Peter R.

    2011-01-01

    The purpose of this workshop was to reinforce the working partnership between centers who are actively involved in global aerosol forecasting, and to discuss issues related to forecast verification. Participants included representatives from operational centers with global aerosol forecasting requirements, a panel of experts on Numerical Weather Prediction and Air Quality forecast verification, data providers, and several observers from the research community. The presentations centered on a review of current NWP and AQ practices with subsequent discussion focused on the challenges in defining appropriate verification measures for the next generation of aerosol forecast systems.

  2. Workshop Summary: International Cooperative for Aerosol Prediction Workshop On Aerosol Forecast Verification

    NASA Technical Reports Server (NTRS)

    Benedetti, Angela; Reid, Jeffrey S.; Colarco, Peter R.

    2011-01-01

    The purpose of this workshop was to reinforce the working partnership between centers who are actively involved in global aerosol forecasting, and to discuss issues related to forecast verification. Participants included representatives from operational centers with global aerosol forecasting requirements, a panel of experts on Numerical Weather Prediction and Air Quality forecast verification, data providers, and several observers from the research community. The presentations centered on a review of current NWP and AQ practices with subsequent discussion focused on the challenges in defining appropriate verification measures for the next generation of aerosol forecast systems.

  3. Modeling AWSoM CMEs with EEGGL: A New Approach for Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Jin, M.; Manchester, W.; van der Holst, B.; Sokolov, I.; Toth, G.; Vourlidas, A.; de Koning, C. A.; Gombosi, T. I.

    2015-12-01

    The major source of destructive space weather is coronal mass ejections (CMEs). However, our understanding of CMEs and their propagation in the heliosphere is limited by the insufficient observations. Therefore, the development of first-principals numerical models plays a vital role in both theoretical investigation and providing space weather forecasts. Here, we present results of the simulation of CME propagation from the Sun to 1AU by combining the analytical Gibson & Low (GL) flux rope model with the state-of-art solar wind model AWSoM. We also provide an approach for transferring this research model to a space weather forecasting tool by demonstrating how the free parameters of the GL flux rope can be prescribed based on remote observations via the new Eruptive Event Generator by Gibson-Low (EEGGL) toolkit. This capability allows us to predict the long-term evolution of the CME in interplanetary space. We perform proof-of-concept case studies to show the capability of the model to capture physical processes that determine CME evolution while also reproducing many observed features both in the corona and at 1 AU. We discuss the potential and limitations of this model as a future space weather forecasting tool.

  4. Solar Storm GIC Forecasting: Solar Shield Extension Development of the End-User Forecasting System Requirements

    NASA Technical Reports Server (NTRS)

    Pulkkinen, A.; Mahmood, S.; Ngwira, C.; Balch, C.; Lordan, R.; Fugate, D.; Jacobs, W.; Honkonen, I.

    2015-01-01

    A NASA Goddard Space Flight Center Heliophysics Science Division-led team that includes NOAA Space Weather Prediction Center, the Catholic University of America, Electric Power Research Institute (EPRI), and Electric Research and Management, Inc., recently partnered with the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) to better understand the impact of Geomagnetically Induced Currents (GIC) on the electric power industry. This effort builds on a previous NASA-sponsored Applied Sciences Program for predicting GIC, known as Solar Shield. The focus of the new DHS S&T funded effort is to revise and extend the existing Solar Shield system to enhance its forecasting capability and provide tailored, timely, actionable information for electric utility decision makers. To enhance the forecasting capabilities of the new Solar Shield, a key undertaking is to extend the prediction system coverage across Contiguous United States (CONUS), as the previous version was only applicable to high latitudes. The team also leverages the latest enhancements in space weather modeling capacity residing at Community Coordinated Modeling Center to increase the Technological Readiness Level, or Applications Readiness Level of the system http://www.nasa.gov/sites/default/files/files/ExpandedARLDefinitions4813.pdf.

  5. Blending forest fire smoke forecasts with observed data can improve their utility for public health applications

    NASA Astrophysics Data System (ADS)

    Yuchi, Weiran; Yao, Jiayun; McLean, Kathleen E.; Stull, Roland; Pavlovic, Radenko; Davignon, Didier; Moran, Michael D.; Henderson, Sarah B.

    2016-11-01

    Fine particulate matter (PM2.5) generated by forest fires has been associated with a wide range of adverse health outcomes, including exacerbation of respiratory diseases and increased risk of mortality. Due to the unpredictable nature of forest fires, it is challenging for public health authorities to reliably evaluate the magnitude and duration of potential exposures before they occur. Smoke forecasting tools are a promising development from the public health perspective, but their widespread adoption is limited by their inherent uncertainties. Observed measurements from air quality monitoring networks and remote sensing platforms are more reliable, but they are inherently retrospective. It would be ideal to reduce the uncertainty in smoke forecasts by integrating any available observations. This study takes spatially resolved PM2.5 estimates from an empirical model that integrates air quality measurements with satellite data, and averages them with PM2.5 predictions from two smoke forecasting systems. Two different indicators of population respiratory health are then used to evaluate whether the blending improved the utility of the smoke forecasts. Among a total of six models, including two single forecasts and four blended forecasts, the blended estimates always performed better than the forecast values alone. Integrating measured observations into smoke forecasts could improve public health preparedness for smoke events, which are becoming more frequent and intense as the climate changes.

  6. The Impact of Assimilation of GPM Clear Sky Radiance on HWRF Hurricane Track and Intensity Forecasts

    NASA Astrophysics Data System (ADS)

    Yu, C. L.; Pu, Z.

    2016-12-01

    The impact of GPM microwave imager (GMI) clear sky radiances on hurricane forecasting is examined by ingesting GMI level 1C recalibrated brightness temperature into the NCEP Gridpoint Statistical Interpolation (GSI)- based ensemble-variational hybrid data assimilation system for the operational Hurricane Weather Research and Forecast (HWRF) system. The GMI clear sky radiances are compared with the Community Radiative Transfer Model (CRTM) simulated radiances to closely study the quality of the radiance observations. The quality check result indicates the presence of bias in various channels. A static bias correction scheme, in which the appropriate bias correction coefficients for GMI data is evaluated by applying regression method on a sufficiently large sample of data representative to the observational bias in the regions of concern, is used to correct the observational bias in GMI clear sky radiances. Forecast results with and without assimilation of GMI radiance are compared using hurricane cases from recent hurricane seasons (e.g., Hurricane Joaquin in 2015). Diagnoses of data assimilation results show that the bias correction coefficients obtained from the regression method can correct the inherent biases in GMI radiance data, significantly reducing observational residuals. The removal of biases also allows more data to pass GSI quality control and hence to be assimilated into the model. Forecast results for hurricane Joaquin demonstrates that the quality of analysis from the data assimilation is sensitive to the bias correction, with positive impacts on the hurricane track forecast when systematic biases are removed from the radiance data. Details will be presented at the symposium.

  7. Global Impacts and Regional Actions: Preparing for the 1997-98 El Niño.

    NASA Astrophysics Data System (ADS)

    Buizer, James L.; Foster, Josh; Lund, David

    2000-09-01

    It has been estimated that severe El Niño-related flooding and droughts in Africa, Latin America, North America, and Southeast Asia resulted in more than 22 000 lives lost and in excess of $36 billion in damages during 1997-98. As one of the most severe events this century, the 1997-98 El Niño was unique not only in terms of physical magnitude, but also in terms of human response. This response was made possible by recent advances in climate-observing and forecasting systems, creation and dissemination of forecast information by institutions such as the International Research Institute for Climate Prediction and NOAA's Climate Prediction Center, and individuals in climate-sensitive sectors willing to act on forecast information by incorporating it into their decision-making. The supporting link between the forecasts and their practical application was a product of efforts by several national and international organizations, and a primary focus of the United States National Oceanic and Atmospheric Administration Office of Global Programs (NOAA/OGP).NOAA/OGP over the last decade has supported pilot projects in Latin America, the Caribbean, the South Pacific, Southeast Asia, and Africa to improve transfer of forecast information to climate sensitive sectors, study linkages between climate and human health, and distribute climate information products in certain areas. Working with domestic and international partners, NOAA/OGP helped organize a total of 11 Climate Outlook Fora around the world during the 1997-98 El Niño. At each Outlook Forum, climatologists and meteorologists created regional, consensus-based, seasonal precipitation forecasts and representatives from climate-sensitive sectors discussed options for applying forecast information. Additional ongoing activities during 1997-98 included research programs focused on the social and economic impacts of climate change and the regional manifestations of global-scale climate variations and their effect on decision-making in climate-sensitive sectors in the United States.The overall intent of NOAA/OGP's activities was to make experimental forecast information broadly available to potential users, and to foster a learning process on how seasonal-to-interannual forecasts could be applied in sectors susceptible to climate variability. This process allowed users to explore the capabilities and limitations of climate forecasts currently available, and forecast producers to receive feedback on the utility of their products. Through activities in which NOAA/OGP and its partners were involved, it became clear that further application of forecast information will be aided by improved forecast accuracy and detail, creation of common validation techniques, continued training in forecast generation and application, alternate methods for presenting forecast information, and a systematic strategy for creation and dissemination of forecast products.The overall intent of NOAA/OGP's activities was to make experimental forecast information broadly available to potential users, and to foster a learning process on how seasonal-to-interannual forecasts could be applied in sectors susceptible to climate variability. This process allowed users to explore the capabilities and limitations of climate forecasts currently available, and forecast producers to receive feedback on the utility of their products. Through activities in which NOAA/OGP and its partners were involved, it became clear that further application of forecast information will be aided by improved forecast accuracy and detail, creation of common validation techniques, continued training in forecast generation and application, alternate methods for presenting forecast information, and a systematic strategy for creation and dissemination of forecast products.

  8. TBEST model enhancements : parcel level demographic data capabilities and exploration of enhanced trip attraction capabilities.

    DOT National Transportation Integrated Search

    2011-09-01

    "FDOT, in pursuit of its role to assist in providing public transportation services in Florida, has made a substantial : research investment in a travel demand forecasting tool for public transportation known as Transit Boardings : Estimation and Sim...

  9. The implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for global dust forecasting at NOAA/NCEP

    PubMed Central

    Lu, Cheng-Hsuan; da Silva, Arlindo; Wang, Jun; Moorthi, Shrinivas; Chin, Mian; Colarco, Peter; Tang, Youhua; Bhattacharjee, Partha S.; Chen, Shen-Po; Chuang, Hui-Ya; Juang, Hann-Ming Henry; McQueen, Jeffery; Iredell, Mark

    2018-01-01

    The NOAA National Centers for Environmental Prediction (NCEP) implemented NEMS GFS Aerosol Component (NGAC) for global dust forecasting in collaboration with NASA Goddard Space Flight Center (GSFC). NGAC Version 1.0 has been providing 5 day dust forecasts at 1°×1° resolution on a global scale, once per day at 00:00 Coordinated Universal Time (UTC), since September 2012. This is the first global system capable of interactive atmosphere aerosol forecasting at NCEP. The implementation of NGAC V1.0 reflects an effective and efficient transitioning of NASA research advances to NCEP operations, paving the way for NCEP to provide global aerosol products serving a wide range of stakeholders as well as to allow the effects of aerosols on weather forecasts and climate prediction to be considered. PMID:29652411

  10. The implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for global dust forecasting at NOAA/NCEP.

    PubMed

    Lu, Cheng-Hsuan; da Silva, Arlindo; Wang, Jun; Moorthi, Shrinivas; Chin, Mian; Colarco, Peter; Tang, Youhua; Bhattacharjee, Partha S; Chen, Shen-Po; Chuang, Hui-Ya; Juang, Hann-Ming Henry; McQueen, Jeffery; Iredell, Mark

    2016-01-01

    The NOAA National Centers for Environmental Prediction (NCEP) implemented NEMS GFS Aerosol Component (NGAC) for global dust forecasting in collaboration with NASA Goddard Space Flight Center (GSFC). NGAC Version 1.0 has been providing 5 day dust forecasts at 1°×1° resolution on a global scale, once per day at 00:00 Coordinated Universal Time (UTC), since September 2012. This is the first global system capable of interactive atmosphere aerosol forecasting at NCEP. The implementation of NGAC V1.0 reflects an effective and efficient transitioning of NASA research advances to NCEP operations, paving the way for NCEP to provide global aerosol products serving a wide range of stakeholders as well as to allow the effects of aerosols on weather forecasts and climate prediction to be considered.

  11. Two-step forecast of geomagnetic storm using coronal mass ejection and solar wind condition

    PubMed Central

    Kim, R-S; Moon, Y-J; Gopalswamy, N; Park, Y-D; Kim, Y-H

    2014-01-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz ≤ −5 nT or Ey ≥ 3 mV/m for t≥ 2 h for moderate storms with minimum Dst less than −50 nT) and a Dst model developed by Temerin and Li (2002, 2006) (TL model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90%) than the forecasts based on the TL model (87%). However, the latter produces better forecasts for 24 nonstorm events (88%), while the former correctly forecasts only 71% of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80%) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (∩), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81%) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (∪), all geomagnetic storms are correctly forecasted. PMID:26213515

  12. Two-step forecast of geomagnetic storm using coronal mass ejection and solar wind condition.

    PubMed

    Kim, R-S; Moon, Y-J; Gopalswamy, N; Park, Y-D; Kim, Y-H

    2014-04-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study ( B z  ≤ -5 nT or E y  ≥ 3 mV/m for t ≥ 2 h for moderate storms with minimum Dst less than -50 nT) and a Dst model developed by Temerin and Li (2002, 2006) (TL model). Using 55 CME- Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90%) than the forecasts based on the TL model (87%). However, the latter produces better forecasts for 24 nonstorm events (88%), while the former correctly forecasts only 71% of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80%) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (∩), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81%) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (∪), all geomagnetic storms are correctly forecasted.

  13. Introducing an operational method to forecast long-term regional drought based on the application of artificial intelligence capabilities

    NASA Astrophysics Data System (ADS)

    Kousari, Mohammad Reza; Hosseini, Mitra Esmaeilzadeh; Ahani, Hossein; Hakimelahi, Hemila

    2017-01-01

    An effective forecast of the drought definitely gives lots of advantages in regard to the management of water resources being used in agriculture, industry, and households consumption. To introduce such a model applying simple data inputs, in this study a regional drought forecast method on the basis of artificial intelligence capabilities (artificial neural networks) and Standardized Precipitation Index (SPI in 3, 6, 9, 12, 18, and 24 monthly series) has been presented in Fars Province of Iran. The precipitation data of 41 rain gauge stations were applied for computing SPI values. Besides, weather signals including Multivariate ENSO Index (MEI), North Atlantic Oscillation (NAO), Southern Oscillation Index (SOI), NINO1+2, anomaly NINO1+2, NINO3, anomaly NINO3, NINO4, anomaly NINO4, NINO3.4, and anomaly NINO3.4 were also used as the predictor variables for SPI time series forecast the next 12 months. Frequent testing and validating steps were considered to obtain the best artificial neural networks (ANNs) models. The forecasted values were mapped in verification sector then they were compared with the observed maps at the same dates. Results showed considerable spatial and temporal relationships even among the maps of different SPI time series. Also, the first 6 months forecasted maps showed an average of 73 % agreements with the observed ones. The most important finding and the strong point of this study was the fact that although drought forecast in each station and time series was completely independent, the relationships between spatial and temporal predictions remained. This strong point mainly referred to frequent testing and validating steps in order to explore the best drought forecast models from plenty of produced ANNs models. Finally, wherever the precipitation data are available, the practical application of the presented method is possible.

  14. ADAPTATION AND APPLICATION OF THE COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODELING SYSTEM FOR REAL-TIME AIR QUALITY FORECASTING DURING THE SUMMER OF 2004

    EPA Science Inventory

    The ability to forecast local and regional air pollution events is challenging since the processes governing the production and sustenance of atmospheric pollutants are complex and often non-linear. Comprehensive atmospheric models, by representing in as much detail as possible t...

  15. INTEGRATION OF SATELLITE, MODELED, AND GROUND BASED AEROSOL DATA FOR USE IN AIR QUALITY AND PUBLIC HEALTH APPLICATIONS ( AGU-BALTIMORE )

    EPA Science Inventory

    Within the next several years NOAA and EPA will begin to issue PM2.5 air quality forecasts over the entire domain of the eastern United States, eventually extending to national coverage. These forecasts will provide continuous estimated values of particulate matter on ...

  16. Communicating weather forecast uncertainty: Do individual differences matter?

    PubMed

    Grounds, Margaret A; Joslyn, Susan L

    2018-03-01

    Research suggests that people make better weather-related decisions when they are given numeric probabilities for critical outcomes (Joslyn & Leclerc, 2012, 2013). However, it is unclear whether all users can take advantage of probabilistic forecasts to the same extent. The research reported here assessed key cognitive and demographic factors to determine their relationship to the use of probabilistic forecasts to improve decision quality. In two studies, participants decided between spending resources to prevent icy conditions on roadways or risk a larger penalty when freezing temperatures occurred. Several forecast formats were tested, including a control condition with the night-time low temperature alone and experimental conditions that also included the probability of freezing and advice based on expected value. All but those with extremely low numeracy scores made better decisions with probabilistic forecasts. Importantly, no groups made worse decisions when probabilities were included. Moreover, numeracy was the best predictor of decision quality, regardless of forecast format, suggesting that the advantage may extend beyond understanding the forecast to general decision strategy issues. This research adds to a growing body of evidence that numerical uncertainty estimates may be an effective way to communicate weather danger to general public end users. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. Comparative assessment of several post-processing methods for correcting evapotranspiration forecasts derived from TIGGE datasets.

    NASA Astrophysics Data System (ADS)

    Tian, D.; Medina, H.

    2017-12-01

    Post-processing of medium range reference evapotranspiration (ETo) forecasts based on numerical weather prediction (NWP) models has the potential of improving the quality and utility of these forecasts. This work compares the performance of several post-processing methods for correcting ETo forecasts over the continental U.S. generated from The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) database using data from Europe (EC), the United Kingdom (MO), and the United States (NCEP). The pondered post-processing techniques are: simple bias correction, the use of multimodels, the Ensemble Model Output Statistics (EMOS, Gneitting et al., 2005) and the Bayesian Model Averaging (BMA, Raftery et al., 2005). ETo estimates based on quality-controlled U.S. Regional Climate Reference Network measurements, and computed with the FAO 56 Penman Monteith equation, are adopted as baseline. EMOS and BMA are generally the most efficient post-processing techniques of the ETo forecasts. Nevertheless, the simple bias correction of the best model is commonly much more rewarding than using multimodel raw forecasts. Our results demonstrate the potential of different forecasting and post-processing frameworks in operational evapotranspiration and irrigation advisory systems at national scale.

  18. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley T.; Jedlovee, Gary J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimension variational (3DVAR) analysis component (WRF-Var). Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in both clear and partly cloudy regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts due to instability added in the forecast soundings by the AIRS profiles. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  19. Efforts in assimilating Indian satellite data in the NGFS and monitoring of their quality

    NASA Astrophysics Data System (ADS)

    Prasad, V. S.; Singh, Sanjeev Kumar

    2016-05-01

    Megha-Tropiques (MT) is an Indo-French Joint Satellite Mission, launched on 12 October 2011. MT-SAPHIR is a sounding instrument with 6 channels near the absorption band of water vapor at 183 GHz, for studying the water cycle and energy exchanges in the tropics. The main objective of this mission is to understand the life cycle of convective systems that influence the tropical weather and climate and their role in associated energy and moisture budget of the atmosphere in tropical regions. India also has a prestigious space programme and has launched the INSAT-3D satellite on 26 July 2013 which has an atmospheric sounder for the first time along with improved VHRR imager. NCMRWF (National Centre for Medium Range Weather Forecasting) is regularly receiving these new datasets and also making changes to its Global Data Assimilation Forecasting (GDAF) system from time-to-time to assimilate these new datasets. A well planned strategy involving various steps such as monitoring of data quality, development of observation operator and quality control procedures, and finally then studying its impact on forecasts is developed to include new observations in global data analysis system. By employing this strategy observations having positive impact on forecast quality such as MT-SAPHIR, and INSAT-3D Clear Sky Radiance (CSR) products are identified and being assimilated in the Global Data Assimilation and Forecasting (GDAF) system.

  20. Transforming Atmospheric and Remotely-Sensed Information to Hydrologic Predictability in South Asia

    NASA Astrophysics Data System (ADS)

    Hopson, T. M.; Riddle, E. E.; Broman, D.; Brakenridge, G. R.; Birkett, C. M.; Kettner, A.; Sampson, K. M.; Boehnert, J.; Priya, S.; Collins, D. C.; Rostkier-Edelstein, D.; Young, W.; Singh, D.; Islam, A. S.

    2017-12-01

    South Asia is a flashpoint for natural disasters with profound societal impacts for the region and globally. Although close to 40% of the world's population depends on the Greater Himalaya's great rivers, $20 Billion of GDP is affected by river floods each year. The frequent occurrence of floods, combined with large and rapidly growing populations with high levels of poverty, make South Asia highly susceptible to humanitarian disasters. The challenges of mitigating such devastating disasters are exacerbated by the limited availability of real-time rain and stream gauge measuring stations and transboundary data sharing, and by constrained institutional commitments to overcome these challenges. To overcome such limitations, India and the World Bank have committed resources to the National Hydrology Project III, with the development objective to improve the extent, quality, and accessibility of water resources information and to strengthen the capacity of targeted water resources management institutions in India. The availability and application of remote sensing products and weather forecasts from ensemble prediction systems (EPS) have transformed river forecasting capability over the last decade, and is of interest to India. In this talk, we review the potential predictability of river flow contributed by some of the freely-available remotely-sensed and weather forecasting products within the framework of the physics of water migration through a watershed. Our specific geographical context is the Ganges, Brahmaputra, and Meghna river basin and a newly-available set of stream gauge measurements located over the region. We focus on satellite rainfall estimation, river height and width estimation, and EPS weather forecasts. For the later, we utilize the THORPEX-TIGGE dataset of global forecasts, and discuss how atmospheric predictability, as measured by an EPS, is transformed into hydrometeorological predictability. We provide an overview of the strengths and weaknesses of each of these data sets to the river flow prediction problem, generalizing their utility across spatial- and temporal-scales, and highlight the benefits of joint utilization and multi-modeling to minimize uncertainty and enhance operational robustness.

  1. A Maple package for improved global mapping forecast

    NASA Astrophysics Data System (ADS)

    Carli, H.; Duarte, L. G. S.; da Mota, L. A. C. P.

    2014-03-01

    We present a Maple implementation of the well known global approach to time series analysis and some further developments designed to improve the computational efficiency of the forecasting capabilities of the approach. This global approach can be summarized as being a reconstruction of the phase space, based on a time ordered series of data obtained from the system. After that, using the reconstructed vectors, a portion of this space is used to produce a mapping, a polynomial fitting, through a minimization procedure, that represents the system and can be employed to forecast further entries for the series. In the present implementation, we introduce a set of commands, tools, in order to perform all these tasks. For example, the command VecTS deals mainly with the reconstruction of the vector in the phase space. The command GfiTS deals with producing the minimization and the fitting. ForecasTS uses all these and produces the prediction of the next entries. For the non-standard algorithms, we here present two commands: IforecasTS and NiforecasTS that, respectively deal with the one-step and the N-step forecasting. Finally, we introduce two further tools to aid the forecasting. The commands GfiTS and AnalysTS, basically, perform an analysis of the behavior of each portion of a series regarding the settings used on the commands just mentioned above. Catalogue identifier: AERW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERW_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3001 No. of bytes in distributed program, including test data, etc.: 95018 Distribution format: tar.gz Programming language: Maple 14. Computer: Any capable of running Maple Operating system: Any capable of running Maple. Tested on Windows ME, Windows XP, Windows 7. RAM: 128 MB Classification: 4.3, 4.9, 5 Nature of problem: Time series analysis and improving forecast capability. Solution method: The method of solution is partially based on a result published in [1]. Restrictions: If the time series that is being analyzed presents a great amount of noise or if the dynamical system behind the time series is of high dimensionality (Dim≫3), then the method may not work well. Unusual features: Our implementation can, in the cases where the dynamics behind the time series is given by a system of low dimensionality, greatly improve the forecast. Running time: This depends strongly on the command that is being used. References: [1] Barbosa, L.M.C.R., Duarte, L.G.S., Linhares, C.A. and da Mota, L.A.C.P., Improving the global fitting method on nonlinear time series analysis, Phys. Rev. E 74, 026702 (2006).

  2. Combination of synoptical-analogous and dynamical methods to increase skill score of monthly air temperature forecasts over Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Khan, Valentina; Tscepelev, Valery; Vilfand, Roman; Kulikova, Irina; Kruglova, Ekaterina; Tischenko, Vladimir

    2016-04-01

    Long-range forecasts at monthly-seasonal time scale are in great demand of socio-economic sectors for exploiting climate-related risks and opportunities. At the same time, the quality of long-range forecasts is not fully responding to user application necessities. Different approaches, including combination of different prognostic models, are used in forecast centers to increase the prediction skill for specific regions and globally. In the present study, two forecasting methods are considered which are exploited in operational practice of Hydrometeorological Center of Russia. One of them is synoptical-analogous method of forecasting of surface air temperature at monthly scale. Another one is dynamical system based on the global semi-Lagrangian model SL-AV, developed in collaboration of Institute of Numerical Mathematics and Hydrometeorological Centre of Russia. The seasonal version of this model has been used to issue global and regional forecasts at monthly-seasonal time scales. This study presents results of the evaluation of surface air temperature forecasts generated with using above mentioned synoptical-statistical and dynamical models, and their combination to potentially increase skill score over Northern Eurasia. The test sample of operational forecasts is encompassing period from 2010 through 2015. The seasonal and interannual variability of skill scores of these methods has been discussed. It was noticed that the quality of all forecasts is highly dependent on the inertia of macro-circulation processes. The skill scores of forecasts are decreasing during significant alterations of synoptical fields for both dynamical and empirical schemes. Procedure of combination of forecasts from different methods, in some cases, has demonstrated its effectiveness. For this study the support has been provided by Grant of Russian Science Foundation (№14-37-00053).

  3. Research and Application of an Air Quality Early Warning System Based on a Modified Least Squares Support Vector Machine and a Cloud Model.

    PubMed

    Wang, Jianzhou; Niu, Tong; Wang, Rui

    2017-03-02

    The worsening atmospheric pollution increases the necessity of air quality early warning systems (EWSs). Despite the fact that a massive amount of investigation about EWS in theory and practicality has been conducted by numerous researchers, studies concerning the quantification of uncertain information and comprehensive evaluation are still lacking, which impedes further development in the area. In this paper, firstly a comprehensive warning system is proposed, which consists of two vital indispensable modules, namely effective forecasting and scientific evaluation, respectively. For the forecasting module, a novel hybrid model combining the theory of data preprocessing and numerical optimization is first developed to implement effective forecasting for air pollutant concentration. Especially, in order to further enhance the accuracy and robustness of the warning system, interval forecasting is implemented to quantify the uncertainties generated by forecasts, which can provide significant risk signals by using point forecasting for decision-makers. For the evaluation module, a cloud model, based on probability and fuzzy set theory, is developed to perform comprehensive evaluations of air quality, which can realize the transformation between qualitative concept and quantitative data. To verify the effectiveness and efficiency of the warning system, extensive simulations based on air pollutants data from Dalian in China were effectively implemented, which illustrate that the warning system is not only remarkably high-performance, but also widely applicable.

  4. Research and Application of an Air Quality Early Warning System Based on a Modified Least Squares Support Vector Machine and a Cloud Model

    PubMed Central

    Wang, Jianzhou; Niu, Tong; Wang, Rui

    2017-01-01

    The worsening atmospheric pollution increases the necessity of air quality early warning systems (EWSs). Despite the fact that a massive amount of investigation about EWS in theory and practicality has been conducted by numerous researchers, studies concerning the quantification of uncertain information and comprehensive evaluation are still lacking, which impedes further development in the area. In this paper, firstly a comprehensive warning system is proposed, which consists of two vital indispensable modules, namely effective forecasting and scientific evaluation, respectively. For the forecasting module, a novel hybrid model combining the theory of data preprocessing and numerical optimization is first developed to implement effective forecasting for air pollutant concentration. Especially, in order to further enhance the accuracy and robustness of the warning system, interval forecasting is implemented to quantify the uncertainties generated by forecasts, which can provide significant risk signals by using point forecasting for decision-makers. For the evaluation module, a cloud model, based on probability and fuzzy set theory, is developed to perform comprehensive evaluations of air quality, which can realize the transformation between qualitative concept and quantitative data. To verify the effectiveness and efficiency of the warning system, extensive simulations based on air pollutants data from Dalian in China were effectively implemented, which illustrate that the warning system is not only remarkably high-performance, but also widely applicable. PMID:28257122

  5. Short-term Temperature Prediction Using Adaptive Computing on Dynamic Scales

    NASA Astrophysics Data System (ADS)

    Hu, W.; Cervone, G.; Jha, S.; Balasubramanian, V.; Turilli, M.

    2017-12-01

    When predicting temperature, there are specific places and times when high accuracy predictions are harder. For example, not all the sub-regions in the domain require the same amount of computing resources to generate an accurate prediction. Plateau areas might require less computing resources than mountainous areas because of the steeper gradient of temperature change in the latter. However, it is difficult to estimate beforehand the optimal allocation of computational resources because several parameters play a role in determining the accuracy of the forecasts, in addition to orography. The allocation of resources to perform simulations can become a bottleneck because it requires human intervention to stop jobs or start new ones. The goal of this project is to design and develop a dynamic approach to generate short-term temperature predictions that can automatically determines the required computing resources and the geographic scales of the predictions based on the spatial and temporal uncertainties. The predictions and the prediction quality metrics are computed using a numeric weather prediction model, Analog Ensemble (AnEn), and the parallelization on high performance computing systems is accomplished using Ensemble Toolkit, one component of the RADICAL-Cybertools family of tools. RADICAL-Cybertools decouple the science needs from the computational capabilities by building an intermediate layer to run general ensemble patterns, regardless of the science. In this research, we show how the ensemble toolkit allows generating high resolution temperature forecasts at different spatial and temporal resolution. The AnEn algorithm is run using NAM analysis and forecasts data for the continental United States for a period of 2 years. AnEn results show that temperature forecasts perform well according to different probabilistic and deterministic statistical tests.

  6. An integrated weather and sea-state forecasting system for the Arabian Peninsula (WASSF)

    NASA Astrophysics Data System (ADS)

    Kallos, George; Galanis, George; Spyrou, Christos; Mitsakou, Christina; Solomos, Stavros; Bartsotas, Nikolaos; Kalogrei, Christina; Athanaselis, Ioannis; Sofianos, Sarantis; Vervatis, Vassios; Axaopoulos, Panagiotis; Papapostolou, Alexandros; Qahtani, Jumaan Al; Alaa, Elyas; Alexiou, Ioannis; Beard, Daniel

    2013-04-01

    Nowadays, large industrial conglomerates such as the Saudi ARAMCO, require a series of weather and sea state forecasting products that cannot be found in state meteorological offices or even commercial data providers. The two major objectives of the system is prevention and mitigation of environmental problems and of course early warning of local conditions associated with extreme weather events. The management and operations part is related to early warning of weather and sea-state events that affect operations of various facilities. The environmental part is related to air quality and especially the desert dust levels in the atmosphere. The components of the integrated system include: (i) a weather and desert dust prediction system with forecasting horizon of 5 days, (ii) a wave analysis and prediction component for Red Sea and Arabian Gulf, (iii) an ocean circulation and tidal analysis and prediction of both Red Sea and Arabian Gulf and (iv) an Aviation part specializing in the vertical structure of the atmosphere and extreme events that affect air transport and other operations. Specialized data sets required for on/offshore operations are provided ate regular basis. State of the art modeling components are integrated to a unique system that distributes the produced analysis and forecasts to each department. The weather and dust prediction system is SKIRON/Dust, the wave analysis and prediction system is based on WAM cycle 4 model from ECMWF, the ocean circulation model is MICOM while the tidal analysis and prediction is a development of the Ocean Physics and Modeling Group of University of Athens, incorporating the Tidal Model Driver. A nowcasting subsystem is included. An interactive system based on Google Maps gives the capability to extract and display the necessary information for any location of the Arabian Peninsula, the Red Sea and Arabian Gulf.

  7. Artificial intelligence approach with the use of artificial neural networks for the creation of a forecasting model of Plasmopara viticola infection.

    PubMed

    Bugliosi, R; Spera, G; La Torre, A; Campoli, L; Scaglione, M

    2006-01-01

    Most of the forecasting models of Plasmopara viticola infections are based upon empiric correlations between meteorological/environmental data and pathogen outbreak. These models generally overestimate the risk of infections and induce to treat the vineyard even if it should be not necessary. In rare cases they underrate the risk of infection leaving the pathogen to breakout. Starting from these considerations we have decided to approach the problem from another point of view utilizing Artificial Intelligence techniques for data elaboration and analysis. Meanwhile the same data have been studied with a more classic approach with statistical tools to verify the impact of a large data collection on the standard data analysis methods. A network of RTUs (Remote Terminal Units) distributed all over the Italian national territory transmits 12 environmental parameters every 15 minutes via radio or via GPRS to a centralized Data Base. Other pedologic data is collected directly from the field and sent via Internet to the centralized data base utilizing Personal Digital Assistants (PDAs) running a specific software. Data is stored after having been preprocessed, to guarantee the quality of the information. The subsequent analysis has been realized mostly with Artificial Neural Networks (ANNs). Collecting and analizing data in this way will probably bring us to the possibility of preventing Plasmospara viticola infection starting from the environmental conditions in this very complex context. The aim of this work is to forecast the infection avoiding the ineffective use of the plant protection products in agriculture. Applying different analysis models we will try to find the best ANN capable of forecasting with an high level of affordability.

  8. Empowering Geoscience with Improved Data Assimilation Using the Data Assimilation Research Testbed "Manhattan" Release.

    NASA Astrophysics Data System (ADS)

    Raeder, K.; Hoar, T. J.; Anderson, J. L.; Collins, N.; Hendricks, J.; Kershaw, H.; Ha, S.; Snyder, C.; Skamarock, W. C.; Mizzi, A. P.; Liu, H.; Liu, J.; Pedatella, N. M.; Karspeck, A. R.; Karol, S. I.; Bitz, C. M.; Zhang, Y.

    2017-12-01

    The capabilities of the Data Assimilation Research Testbed (DART) at NCAR have been significantly expanded with the recent "Manhattan" release. DART is an ensemble Kalman filter based suite of tools, which enables researchers to use data assimilation (DA) without first becoming DA experts. Highlights: significant improvement in efficient ensemble DA for very large models on thousands of processors, direct read and write of model state files in parallel, more control of the DA output for finer-grained analysis, new model interfaces which are useful to a variety of geophysical researchers, new observation forward operators and the ability to use precomputed forward operators from the forecast model. The new model interfaces and example applications include the following: MPAS-A; Model for Prediction Across Scales - Atmosphere is a global, nonhydrostatic, variable-resolution mesh atmospheric model, which facilitates multi-scale analysis and forecasting. The absence of distinct subdomains eliminates problems associated with subdomain boundaries. It demonstrates the ability to consistently produce higher-quality analyses than coarse, uniform meshes do. WRF-Chem; Weather Research and Forecasting + (MOZART) Chemistry model assimilates observations from FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment). WACCM-X; Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension assimilates observations of electron density to investigate sudden stratospheric warming. CESM (weakly) coupled assimilation; NCAR's Community Earth System Model is used for assimilation of atmospheric and oceanic observations into their respective components using coupled atmosphere+land+ocean+sea+ice forecasts. CESM2.0; Assimilation in the atmospheric component (CAM, WACCM) of the newly released version is supported. This version contains new and extensively updated components and software environment. CICE; Los Alamos sea ice model (in CESM) is used to assimilate multivariate sea ice concentration observations to constrain the model's ice thickness, concentration, and parameters.

  9. EVALUATION OF SEVERAL PM 2.5 FORECAST MODELS USING DATA COLLECTED DURING THE ICARTT/NEAQS 2004 FIELD STUDY

    EPA Science Inventory

    Real-time forecasts of PM2.5 aerosol mass from seven air-quality forecast models (AQFMs) are statistically evaluated against observations collected in the northeastern U.S. and southeastern Canada from two surface networks and aircraft data during the summer of 2004 IC...

  10. ASSESSMENT OF AN ENSEMBLE OF SEVEN REAL-TIME OZONE FORECASTS OVER EASTERN NORTH AMERICA DURING THE SUMMER OF 2004

    EPA Science Inventory

    The real-time forecasts of ozone (O3) from seven air quality forecast models (AQFMs) are statistically evaluated against observations collected during July and August of 2004 (53 days) through the Aerometric Information Retrieval Now (AIRNow) network at roughly 340 mon...

  11. Urban air quality forecasting based on multi-dimensional collaborative Support Vector Regression (SVR): A case study of Beijing-Tianjin-Shijiazhuang

    PubMed Central

    Liu, Bing-Chun; Binaykia, Arihant; Chang, Pei-Chann; Tiwari, Manoj Kumar; Tsao, Cheng-Chin

    2017-01-01

    Today, China is facing a very serious issue of Air Pollution due to its dreadful impact on the human health as well as the environment. The urban cities in China are the most affected due to their rapid industrial and economic growth. Therefore, it is of extreme importance to come up with new, better and more reliable forecasting models to accurately predict the air quality. This paper selected Beijing, Tianjin and Shijiazhuang as three cities from the Jingjinji Region for the study to come up with a new model of collaborative forecasting using Support Vector Regression (SVR) for Urban Air Quality Index (AQI) prediction in China. The present study is aimed to improve the forecasting results by minimizing the prediction error of present machine learning algorithms by taking into account multiple city multi-dimensional air quality information and weather conditions as input. The results show that there is a decrease in MAPE in case of multiple city multi-dimensional regression when there is a strong interaction and correlation of the air quality characteristic attributes with AQI. Also, the geographical location is found to play a significant role in Beijing, Tianjin and Shijiazhuang AQI prediction. PMID:28708836

  12. Toward an integrated storm surge application: ESA Storm Surge project

    NASA Astrophysics Data System (ADS)

    Lee, Boram; Donlon, Craig; Arino, Olivier

    2010-05-01

    Storm surges and their associated coastal inundation are major coastal marine hazards, both in tropical and extra-tropical areas. As sea level rises due to climate change, the impact of storm surges and associated extreme flooding may increase in low-lying countries and harbour cities. Of the 33 world cities predicted to have at least 8 million people by 2015, at least 21 of them are coastal including 8 of the 10 largest. They are highly vulnerable to coastal hazards including storm surges. Coastal inundation forecasting and warning systems depend on the crosscutting cooperation of different scientific disciplines and user communities. An integrated approach to storm surge, wave, sea-level and flood forecasting offers an optimal strategy for building improved operational forecasts and warnings capability for coastal inundation. The Earth Observation (EO) information from satellites has demonstrated high potential to enhanced coastal hazard monitoring, analysis, and forecasting; the GOCE geoid data can help calculating accurate positions of tide gauge stations within the GLOSS network. ASAR images has demonstrated usefulness in analysing hydrological situation in coastal zones with timely manner, when hazardous events occur. Wind speed and direction, which is the key parameters for storm surge forecasting and hindcasting, can be derived by using scatterometer data. The current issue is, although great deal of useful EO information and application tools exist, that sufficient user information on EO data availability is missing and that easy access supported by user applications and documentation is highly required. Clear documentation on the user requirements in support of improved storm surge forecasting and risk assessment is also needed at the present. The paper primarily addresses the requirements for data, models/technologies, and operational skills, based on the results from the recent Scientific and Technical Symposium on Storm Surges (www.surgesymposium.org, organized by the WMO-IOC Joint technical Commission for Oceanography and Marine Meteorology, JCOMM) and following activities, that have been supported by the Intergovernmental Oceanographic Commission (IOC) of UNESCO through JCOMM. The paper also reviews the capabilities of storm surge models, and current status in using Earth Observation (EO) information for advancing storm surge application tools, and further, for improving operational forecasts and warning capability for coastal inundation. In this context, the plans and expected results of the ESA Storm Surge Project (2010-2011) will be introduced.

  13. Vertical distribution of Saharan dust over Rome (Italy): Comparison between 3-year model predictions and lidar soundings

    NASA Astrophysics Data System (ADS)

    Kishcha, P.; Barnaba, F.; Gobbi, G. P.; Alpert, P.; Shtivelman, A.; Krichak, S. O.; Joseph, J. H.

    2005-03-01

    Mineral dust particles loaded into the atmosphere from the Sahara desert represent one major factor affecting the Earth's radiative budget. Regular model-based forecasts of 3-D dust fields can be used in order to determine the dust radiative effect in climate models, in spite of the large gaps in observations of dust vertical profiles. In this study, dust forecasts by the Tel Aviv University (TAU) dust prediction system were compared to lidar observations to better evaluate the model's capabilities. The TAU dust model was initially developed at the University of Athens and later modified at Tel Aviv University. Dust forecasts are initialized with the aid of the Total Ozone Mapping Spectrometer aerosol index (TOMS AI) measurements. The lidar soundings employed were collected at the outskirts of Rome, Italy (41.84°N, 12.64°E) during the high-dust activity season from March to June of the years 2001, 2002, and 2003. The lidar vertical profiles collected in the presence of dust were used for obtaining statistically significant reference parameters of dust layers over Rome and for model versus lidar comparison. The Barnaba and Gobbi (2001) approach was used in the current study to derive height-resolved dust volumes from lidar measurements of backscatter. Close inspection of the juxtaposed vertical profiles, obtained from lidar and model data near Rome, indicates that the majority (67%) of the cases under investigation can be classified as good or acceptable forecasts of the dust vertical distribution. A more quantitative comparison shows that the model predictions are mainly accurate in the middle part of dust layers. This is supported by high correlation (0.85) between lidar and model data for forecast dust volumes greater than the threshold of 1 × 10-12 cm3/cm3. In general, however, the model tends to underestimate the lidar-derived dust volume profiles. The effect of clouds in the TOMS detection of AI is supposed to be the main factor responsible for this effect. Moreover, some model assumptions on dust sources and particle size and the accuracy of model-simulated meteorological parameters are also likely to affect the dust forecast quality.

  14. Toward Improved Land Surface Initialization in Support of Regional WRF Forecasts at the Kenya Meteorological Department

    NASA Technical Reports Server (NTRS)

    Case. Jonathan; Mungai, John; Sakwa, Vincent; Kabuchanga, Eric; Zavodsky, Bradley T.; Limaye, Ashutosh S.

    2014-01-01

    Flooding and drought are two key forecasting challenges for the Kenya Meteorological Department (KMD). Atmospheric processes leading to excessive precipitation and/or prolonged drought can be quite sensitive to the state of the land surface, which interacts with the boundary layer of the atmosphere providing a source of heat and moisture. The development and evolution of precipitation systems are affected by heat and moisture fluxes from the land surface within weakly-sheared environments, such as in the tropics and sub-tropics. These heat and moisture fluxes during the day can be strongly influenced by land cover, vegetation, and soil moisture content. Therefore, it is important to represent the land surface state as accurately as possible in numerical weather prediction models. Enhanced regional modeling capabilities have the potential to improve forecast guidance in support of daily operations and high-end events over east Africa. KMD currently runs a configuration of the Weather Research and Forecasting (WRF) model in real time to support its daily forecasting operations, invoking the Nonhydrostatic Mesoscale Model (NMM) dynamical core. They make use of the National Oceanic and Atmospheric Administration / National Weather Service Science and Training Resource Center's Environmental Modeling System (EMS) to manage and produce the WRF-NMM model runs on a 7-km regional grid over eastern Africa. Two organizations at the National Aeronautics and Space Administration Marshall Space Flight Center in Huntsville, AL, SERVIR and the Short-term Prediction Research and Transition (SPoRT) Center, have established a working partnership with KMD for enhancing its regional modeling capabilities. To accomplish this goal, SPoRT and SERVIR will provide experimental land surface initialization datasets and model verification capabilities to KMD. To produce a land-surface initialization more consistent with the resolution of the KMD-WRF runs, the NASA Land Information System (LIS) will be run at a comparable resolution to provide real-time, daily soil initialization data in place of interpolated Global Forecast System soil moisture and temperature data. Additionally, real-time green vegetation fraction data from the Visible Infrared Imaging Radiometer Suite will be incorporated into the KMD-WRF runs, once it becomes publicly available from the National Environmental Satellite Data and Information Service. Finally, model verification capabilities will be transitioned to KMD using the Model Evaluation Tools (MET) package, in order to quantify possible improvements in simulated temperature, moisture and precipitation resulting from the experimental land surface initialization. The transition of these MET tools will enable KMD to monitor model forecast accuracy in near real time. This presentation will highlight preliminary verification results of WRF runs over east Africa using the LIS land surface initialization.

  15. Forecasting relative impacts of land use on anadromous fish habitat to guide conservation planning.

    PubMed

    Lohse, Kathleen A; Newburn, David A; Opperman, Jeff J; Merenlender, Adina M

    2008-03-01

    Land use change can adversely affect water quality and freshwater ecosystems, yet our ability to predict how systems will respond to different land uses, particularly rural-residential development, is limited by data availability and our understanding of biophysical thresholds. In this study, we use spatially explicit parcel-level data to examine the influence of land use (including urban, rural-residential, and vineyard) on salmon spawning substrate quality in tributaries of the Russian River in California. We develop a land use change model to forecast the probability of losses in high-quality spawning habitat and recommend priority areas for incentive-based land conservation efforts. Ordinal logistic regression results indicate that all three land use types were negatively associated with spawning substrate quality, with urban development having the largest marginal impact. For two reasons, however, forecasted rural-residential and vineyard development have much larger influences on decreasing spawning substrate quality relative to urban development. First, the land use change model estimates 10 times greater land use conversion to both rural-residential and vineyard compared to urban. Second, forecasted urban development is concentrated in the most developed watersheds, which already have poor spawning substrate quality, such that the marginal response to future urban development is less significant. To meet the goals of protecting salmonid spawning habitat and optimizing investments in salmon recovery, we suggest investing in watersheds where future rural-residential development and vineyards threaten high-quality fish habitat, rather than the most developed watersheds, where land values are higher.

  16. U.S. National / Naval Ice Center (NIC) Support to Naval and Maritime Operations

    DTIC Science & Technology

    2011-06-20

    States and Canadian governments. • International Arctic Buoy Programme ( IABP )  Global participants working together to maintain a network of... Modeling Surface Observations Satellite Air Recon Data Fusion Derived Data Automation Direct Data Dissemination TODAY’S CHALLENGES...and AUVs • Improve modeling and forecasting capabilities (OTSR/WEAX) • More trained ice analysts, ice pilots, and Arctic marine weather forecasters

  17. Solar power satellite system definition study. Volume 1, phase 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A systems definition study of the solar satellite system (SPS) is presented. The technical feasibility of solar power satellites based on forecasts of technical capability in the various applicable technologies is assessed. The performance, cost, operational characteristics, reliability, and the suitability of SPS's as power generators for typical commercial electricity grids are discussed. The uncertainties inherent in the system characteristics forecasts are assessed.

  18. Weather Research and Forecasting Model with Vertical Nesting Capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-08-01

    The Weather Research and Forecasting (WRF) model with vertical nesting capability is an extension of the WRF model, which is available in the public domain, from www.wrf-model.org. The new code modifies the nesting procedure, which passes lateral boundary conditions between computational domains in the WRF model. Previously, the same vertical grid was required on all domains, while the new code allows different vertical grids to be used on concurrently run domains. This new functionality improves WRF's ability to produce high-resolution simulations of the atmosphere by allowing a wider range of scales to be efficiently resolved and more accurate lateral boundarymore » conditions to be provided through the nesting procedure.« less

  19. Functional and performance requirements of the next NOAA-Kasas City computer system

    NASA Technical Reports Server (NTRS)

    Mosher, F. R.

    1985-01-01

    The development of the Advanced Weather Interactive Processing System for the 1990's (AWIPS-90) will result in more timely and accurate forecasts with improved cost effectiveness. As part of the AWIPS-90 initiative, the National Meteorological Center (NMC), the National Severe Storms Forecast Center (NSSFC), and the National Hurricane Center (NHC) are to receive upgrades of interactive processing systems. This National Center Upgrade program will support the specialized inter-center communications, data acquisition, and processing needs of these centers. The missions, current capabilities and general functional requirements for the upgrade to the NSSFC are addressed. System capabilities are discussed along with the requirements for the upgraded system.

  20. Transition to Operations Plans for GPM Datasets

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Jedlovec, Gary; Case, Jonathan; Leroy, Anita; Molthan, Andrew; Bell, Jordan; Fuell, Kevin; Stano, Geoffrey

    2013-01-01

    Founded in 2002 at the National Space Science Technology Center at Marshall Space Flight Center in Huntsville, AL. Focused on transitioning unique NASA and NOAA observations and research capabilities to the operational weather community to improve short-term weather forecasts on a regional and local scale. NASA directed funding; NOAA funding from Proving Grounds (PG). Demonstrate capabilities experimental products to weather applications and societal benefit to prepare forecasters for the use of data from next generation of operational satellites. Objective of this poster is to highlight SPoRT's research to operations (R2O) paradigm and provide examples of work done by the team with legacy instruments relevant to GPM in order to promote collaborations with groups developing GPM products.

  1. Impact of rheology on probabilistic forecasts of sea ice trajectories: application for search and rescue operations in the Arctic

    NASA Astrophysics Data System (ADS)

    Rabatel, Matthias; Rampal, Pierre; Carrassi, Alberto; Bertino, Laurent; Jones, Christopher K. R. T.

    2018-03-01

    We present a sensitivity analysis and discuss the probabilistic forecast capabilities of the novel sea ice model neXtSIM used in hindcast mode. The study pertains to the response of the model to the uncertainty on winds using probabilistic forecasts of ice trajectories. neXtSIM is a continuous Lagrangian numerical model that uses an elasto-brittle rheology to simulate the ice response to external forces. The sensitivity analysis is based on a Monte Carlo sampling of 12 members. The response of the model to the uncertainties is evaluated in terms of simulated ice drift distances from their initial positions, and from the mean position of the ensemble, over the mid-term forecast horizon of 10 days. The simulated ice drift is decomposed into advective and diffusive parts that are characterised separately both spatially and temporally and compared to what is obtained with a free-drift model, that is, when the ice rheology does not play any role in the modelled physics of the ice. The seasonal variability of the model sensitivity is presented and shows the role of the ice compactness and rheology in the ice drift response at both local and regional scales in the Arctic. Indeed, the ice drift simulated by neXtSIM in summer is close to the one obtained with the free-drift model, while the more compact and solid ice pack shows a significantly different mechanical and drift behaviour in winter. For the winter period analysed in this study, we also show that, in contrast to the free-drift model, neXtSIM reproduces the sea ice Lagrangian diffusion regimes as found from observed trajectories. The forecast capability of neXtSIM is also evaluated using a large set of real buoy's trajectories and compared to the capability of the free-drift model. We found that neXtSIM performs significantly better in simulating sea ice drift, both in terms of forecast error and as a tool to assist search and rescue operations, although the sources of uncertainties assumed for the present experiment are not sufficient for complete coverage of the observed IABP positions.

  2. Assessing the Value of Enhancing AirNow Data with NASA Satellite Data

    NASA Astrophysics Data System (ADS)

    Pasch, A. N.; Burke, B.; Huang, S.; Dye, T.; Dawes, S. S.; DeWinter, J. L.; Zahn, P. H.; Haderman, M.; Szykman, J.; White, J. E.; Dickerson, P.; van Donkelaar, A.; Martin, R.

    2013-12-01

    We will describe the methodology and findings from a study that addressed how satellite-enhanced air quality information provided through the U.S. Environmental Protection Agency's (EPA) AirNow Satellite Data Processor (ASDP) program could contribute to greater socioeconomic benefits. This study was funded by the National Aeronautics and Space Administration (NASA) and conducted, in partnership with the EPA, by the Center for Technology in Government at the University at Albany (CTG) and Sonoma Technology, Inc. (STI). AirNow is the national repository of real-time air quality data and forecasts for the United States. While mainly a public outreach and awareness tool, AirNow relies on the same network of ground-based air quality monitors that is used by federal, state, local, and tribal governments throughout the United States. Extensive as the monitoring network is, considerable gaps exist in certain parts of the United States. Even areas with monitors considered adequate for regulatory purposes can lack information needed to resolve localized air quality issues or give forecasters sufficient confidence about the potential air quality impact of specific events. Monitors are expensive to deploy and maintain; thus, EPA is seeking other ways to improve coverage and detail. Satellite-estimated data can provide information for many places where ground monitors do not exist, and supplement ground monitors, providing additional information for use in analysis and forecasting. ASDP uses satellite-derived estimates for fine-particle pollution (PM2.5) and provides coverage for a small window of time during the day. As satellite capabilities improve in terms of different types of sensors and increased coverage throughout the day, the ASDP program is prepared to extend its scope to additional pollutants and provide greater enhancements to the ground-based networks. In this study, CTG assessed the socioeconomic benefits of air quality data at a community level through three case studies in the Denver, Atlanta, and Kansas City regions by interviewing people at EPA regional offices, state environmental and public health agencies, local public health authorities, regional planning and non-profit outreach organizations, and universities. The interviews focused on the existing uses of air quality information and the potential value of incorporating NASA satellite-enhanced AirNow data to support and enhance the missions of the organizations interviewed. STI analyzed the economic benefit of using satellite data to fill in gaps in the current air quality monitoring network used to provide information to the public. This presentation will discuss how the findings can be used to improve estimation of the socioeconomic benefits derived from Earth observation science in policy and management decisions.

  3. The SPoRT-WRF: Evaluating the Impact of NASA Datasets on Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Kozlowski, Danielle; Case, Jonathan; Molthan, Andrew

    2012-01-01

    Short-term Prediction Research and Transition (SPoRT) seeks to improve short-term, regional weather forecasts using unique NASA products and capabilities SPoRT has developed a unique, real-time configuration of the NASA Unified Weather Research and Forecasting (WRF)WRF (ARW) that integrates all SPoRT modeling research data: (1) 2-km SPoRT Sea Surface Temperature (SST) Composite, (2) 3-km LIS with 1-km Greenness Vegetation Fraction (GVFs) (3) 45-km AIRS retrieved profiles. Transitioned this real-time forecast to NOAA's Hazardous Weather Testbed (HWT) as deterministic model at Experimental Forecast Program (EFP). Feedback from forecasters/participants and internal evaluation of SPoRT-WRF shows a cool, dry bias that appears to suppress convection likely related to methodology for assimilation of AIRS profiles Version 2 of the SPoRT-WRF will premier at the 2012 EFP and include NASA physics, cycling data assimilation methodology, better coverage of precipitation forcing, and new GVFs

  4. OAST system technology planning

    NASA Technical Reports Server (NTRS)

    Sadin, S. R.

    1978-01-01

    The NASA Office of Aeronautics and Space Technology developed a planning model for space technology consisting of a space systems technology model, technology forecasts and technology surveys. The technology model describes candidate space missions through the year 2000 and identifies their technology requirements. The technology surveys and technology forecasts provide, respectively, data on the current status and estimates of the projected status of relevant technologies. These tools are used to further the understanding of the activities and resources required to ensure the timely development of technological capabilities. Technology forecasting in the areas of information systems, spacecraft systems, transportation systems, and power systems are discussed.

  5. Short-Term Distribution System State Forecast Based on Optimal Synchrophasor Sensor Placement and Extreme Learning Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Zhang, Yingchen

    This paper proposes an approach for distribution system state forecasting, which aims to provide an accurate and high speed state forecasting with an optimal synchrophasor sensor placement (OSSP) based state estimator and an extreme learning machine (ELM) based forecaster. Specifically, considering the sensor installation cost and measurement error, an OSSP algorithm is proposed to reduce the number of synchrophasor sensor and keep the whole distribution system numerically and topologically observable. Then, the weighted least square (WLS) based system state estimator is used to produce the training data for the proposed forecaster. Traditionally, the artificial neural network (ANN) and support vectormore » regression (SVR) are widely used in forecasting due to their nonlinear modeling capabilities. However, the ANN contains heavy computation load and the best parameters for SVR are difficult to obtain. In this paper, the ELM, which overcomes these drawbacks, is used to forecast the future system states with the historical system states. The proposed approach is effective and accurate based on the testing results.« less

  6. Benchmark analysis of forecasted seasonal temperature over different climatic areas

    NASA Astrophysics Data System (ADS)

    Giunta, G.; Salerno, R.; Ceppi, A.; Ercolani, G.; Mancini, M.

    2015-12-01

    From a long-term perspective, an improvement of seasonal forecasting, which is often exclusively based on climatology, could provide a new capability for the management of energy resources in a time scale of just a few months. This paper regards a benchmark analysis in relation to long-term temperature forecasts over Italy in the year 2010, comparing the eni-kassandra meteo forecast (e-kmf®) model, the Climate Forecast System-National Centers for Environmental Prediction (CFS-NCEP) model, and the climatological reference (based on 25-year data) with observations. Statistical indexes are used to understand the reliability of the prediction of 2-m monthly air temperatures with a perspective of 12 weeks ahead. The results show how the best performance is achieved by the e-kmf® system which improves the reliability for long-term forecasts compared to climatology and the CFS-NCEP model. By using the reliable high-performance forecast system, it is possible to optimize the natural gas portfolio and management operations, thereby obtaining a competitive advantage in the European energy market.

  7. Vegetation Exposure to Ozone over the Continental United States: Assessment of Exposure Indices by the Eta-CMAQ Air Quality Forecast Model

    EPA Science Inventory

    This study presents the first evaluation of the performance of the Eta-CMAQ air quality forecast model to predict a variety of widely used seasonal mean and cumulative O3 exposure indices associated with vegetation using the U.S. AIRNow O3 observations.

  8. OPERATIONAL AND DIAGNOSTIC EVALUATION OF THE OZONE FORECASTS BY THE ETA-CMAQ MODEL SUITE DURING THE 2002 NEW ENGLAND AIR QUALITY STUDY (NEAQS)

    EPA Science Inventory

    Ozone (O3), a secondary pollutant, is created in part by emissions from anthropogenic and biogenic sources. It is necessary for local air quality agencies to accurately forecast ozone concentrations to warn the public of unhealthy air and to encourage people to volunta...

  9. A MODIS direct broadcast algorithm for mapping wildfire burned area in the western United States

    Treesearch

    S. P. Urbanski; J. M. Salmon; B. L. Nordgren; W. M. Hao

    2009-01-01

    Improved wildland fire emission inventory methods are needed to support air quality forecasting and guide the development of air shed management strategies. Air quality forecasting requires dynamic fire emission estimates that are generated in a timely manner to support real-time operations. In the regulatory and planning realm, emission inventories are essential for...

  10. An Airborne Conflict Resolution Approach Using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Mondoloni, Stephane; Conway, Sheila

    2001-01-01

    An airborne conflict resolution approach is presented that is capable of providing flight plans forecast to be conflict-free with both area and traffic hazards. This approach is capable of meeting constraints on the flight plan such as required times of arrival (RTA) at a fix. The conflict resolution algorithm is based upon a genetic algorithm, and can thus seek conflict-free flight plans meeting broader flight planning objectives such as minimum time, fuel or total cost. The method has been applied to conflicts occurring 6 to 25 minutes in the future in climb, cruise and descent phases of flight. The conflict resolution approach separates the detection, trajectory generation and flight rules function from the resolution algorithm. The method is capable of supporting pilot-constructed resolutions, cooperative and non-cooperative maneuvers, and also providing conflict resolution on trajectories forecast by an onboard FMC.

  11. Verification of temperature, precipitation, and streamflow forecasts from the NOAA/NWS Hydrologic Ensemble Forecast Service (HEFS): 1. Experimental design and forcing verification

    NASA Astrophysics Data System (ADS)

    Brown, James D.; Wu, Limin; He, Minxue; Regonda, Satish; Lee, Haksu; Seo, Dong-Jun

    2014-11-01

    Retrospective forecasts of precipitation, temperature, and streamflow were generated with the Hydrologic Ensemble Forecast Service (HEFS) of the U.S. National Weather Service (NWS) for a 20-year period between 1979 and 1999. The hindcasts were produced for two basins in each of four River Forecast Centers (RFCs), namely the Arkansas-Red Basin RFC, the Colorado Basin RFC, the California-Nevada RFC, and the Middle Atlantic RFC. Precipitation and temperature forecasts were produced with the HEFS Meteorological Ensemble Forecast Processor (MEFP). Inputs to the MEFP comprised ;raw; precipitation and temperature forecasts from the frozen (circa 1997) version of the NWS Global Forecast System (GFS) and a climatological ensemble, which involved resampling historical observations in a moving window around the forecast valid date (;resampled climatology;). In both cases, the forecast horizon was 1-14 days. This paper outlines the hindcasting and verification strategy, and then focuses on the quality of the temperature and precipitation forecasts from the MEFP. A companion paper focuses on the quality of the streamflow forecasts from the HEFS. In general, the precipitation forecasts are more skillful than resampled climatology during the first week, but comprise little or no skill during the second week. In contrast, the temperature forecasts improve upon resampled climatology at all forecast lead times. However, there are notable differences among RFCs and for different seasons, aggregation periods and magnitudes of the observed and forecast variables, both for precipitation and temperature. For example, the MEFP-GFS precipitation forecasts show the highest correlations and greatest skill in the California Nevada RFC, particularly during the wet season (November-April). While generally reliable, the MEFP forecasts typically underestimate the largest observed precipitation amounts (a Type-II conditional bias). As a statistical technique, the MEFP cannot detect, and thus appropriately correct for, conditions that are undetected by the GFS. The calibration of the MEFP to provide reliable and skillful forecasts of a range of precipitation amounts (not only large amounts) is a secondary factor responsible for these Type-II conditional biases. Interpretation of the verification results leads to guidance on the expected performance and limitations of the MEFP, together with recommendations on future enhancements.

  12. Air quality real-time forecast before and during the G-20 ...

    EPA Pesticide Factsheets

    The 2016 G-20 Hangzhou summit, the eleventh annual meeting of the G-20 heads of government, will be held during September 3-5, 2016 in Hangzhou, China. For a successful summit, it is important to ensure good air quality. To achieve this goal, governments of Hangzhou and its surrounding provinces will enforce a series of emission reductions, such as a forced closure of major highly-polluting industries and also limiting car and construction emissions in the cities and surroundings during the 2016 G-20 Hangzhou summit. Air quality forecast systems consisting of the two-way coupled WRF-CMAQ and online-coupled WRF-Chem have been applied to forecast air quality in Hangzhou regularly. This study will present the results of real-time forecasts of air quality over eastern China using 12-km grid spacing and for Hangzhou area using 4-km grid spacing with these two modeling systems using emission inventories for base and 2016 G-20 scenarios before and during the 2016 G-20 Hangzhou summit. Evaluations of models’ performance for both cases for PM2.5, PM10, O3, SO2, NO2, CO, air quality index (AQI), and aerosol optical depth (AOD) are carried out by comparing them with observations obtained from satellites, such as MODIS, and surface monitoring networks. The effects of the emission reduction efforts on expected air quality improvements during the2016 G-20 Hangzhou summit will be studied in depth. This study provides insights on how air quality will be improved by a plan

  13. The Impact of Atmospheric InfraRed Sounder (AIRS) Profiles on Short-term Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William

    2007-01-01

    The Atmospheric Infrared Sounder (AIRS), together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced spacebased atmospheric sounding systems. The combined AlRS/AMSU system provides radiance measurements used to retrieve temperature profiles with an accuracy of 1 K over 1 km layers under both clear and partly cloudy conditions, while the accuracy of the derived humidity profiles is 15% in 2 km layers. Critical to the successful use of AIRS profiles for weather and climate studies is the use of profile quality indicators and error estimates provided with each profile Aside form monitoring changes in Earth's climate, one of the objectives of AIRS is to provide sounding information of sufficient accuracy such that the assimilation of the new observations, especially in data sparse region, will lead to an improvement in weather forecasts. The purpose of this paper is to describe a procedure to optimally assimilate highresolution AIRS profile data in a regional analysis/forecast model. The paper will focus on the impact of AIRS profiles on a rapidly developing east coast storm and will also discuss preliminary results for a 30-day forecast period, simulating a quasi-operation environment. Temperature and moisture profiles were obtained from the prototype version 5.0 EOS science team retrieval algorithm which includes explicit error information for each profile. The error profile information was used to select the highest quality temperature and moisture data for every profile location and pressure level for assimilation into the ARPS Data Analysis System (ADAS). The AIRS-enhanced analyses were used as initial fields for the Weather Research and Forecast (WRF) system used by the SPORT project for regional weather forecast studies. The ADASWRF system will be run on CONUS domain with an emphasis on the east coast. The preliminary assessment of the impact of the AIRS profiles will focus on quality control issues associated with AIRS, intelligent use of the quality indicators, and forecast verification.

  14. Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks.

    PubMed

    Vlachas, Pantelis R; Byeon, Wonmin; Wan, Zhong Y; Sapsis, Themistoklis P; Koumoutsakos, Petros

    2018-05-01

    We introduce a data-driven forecasting method for high-dimensional chaotic systems using long short-term memory (LSTM) recurrent neural networks. The proposed LSTM neural networks perform inference of high-dimensional dynamical systems in their reduced order space and are shown to be an effective set of nonlinear approximators of their attractor. We demonstrate the forecasting performance of the LSTM and compare it with Gaussian processes (GPs) in time series obtained from the Lorenz 96 system, the Kuramoto-Sivashinsky equation and a prototype climate model. The LSTM networks outperform the GPs in short-term forecasting accuracy in all applications considered. A hybrid architecture, extending the LSTM with a mean stochastic model (MSM-LSTM), is proposed to ensure convergence to the invariant measure. This novel hybrid method is fully data-driven and extends the forecasting capabilities of LSTM networks.

  15. Will sea ice thickness initialisation improve Arctic seasonal-to-interannual forecast skill?

    NASA Astrophysics Data System (ADS)

    Day, J. J.; Hawkins, E.; Tietsche, S.

    2014-12-01

    A number of recent studies have suggested that Arctic sea ice thickness is an important predictor of Arctic sea ice extent. However, coupled forecast systems do not currently use sea ice thickness observations in their initialization and are therefore missing a potentially important source of additional skill. A set of ensemble potential predictability experiments, with a global climate model, initialized with and without knowledge of the sea ice thickness initial state, have been run to investigate this. These experiments show that accurate knowledge of the sea ice thickness field is crucially important for sea ice concentration and extent forecasts up to eight months ahead. Perturbing sea ice thickness also has a significant impact on the forecast error in the 2m temperature and surface pressure fields a few months ahead. These results show that advancing capabilities to observe and assimilate sea ice thickness into coupled forecast systems could significantly increase skill.

  16. Will Arctic sea ice thickness initialization improve seasonal forecast skill?

    NASA Astrophysics Data System (ADS)

    Day, J. J.; Hawkins, E.; Tietsche, S.

    2014-11-01

    Arctic sea ice thickness is thought to be an important predictor of Arctic sea ice extent. However, coupled seasonal forecast systems do not generally use sea ice thickness observations in their initialization and are therefore missing a potentially important source of additional skill. To investigate how large this source is, a set of ensemble potential predictability experiments with a global climate model, initialized with and without knowledge of the sea ice thickness initial state, have been run. These experiments show that accurate knowledge of the sea ice thickness field is crucially important for sea ice concentration and extent forecasts up to 8 months ahead, especially in summer. Perturbing sea ice thickness also has a significant impact on the forecast error in Arctic 2 m temperature a few months ahead. These results suggest that advancing capabilities to observe and assimilate sea ice thickness into coupled forecast systems could significantly increase skill.

  17. Oregon Washington Coastal Ocean Forecast System: Real-time Modeling and Data Assimilation

    NASA Astrophysics Data System (ADS)

    Erofeeva, S.; Kurapov, A. L.; Pasmans, I.

    2016-02-01

    Three-day forecasts of ocean currents, temperature and salinity along the Oregon and Washington coasts are produced daily by a numerical ROMS-based ocean circulation model. NAM is used to derive atmospheric forcing for the model. Fresh water discharge from Columbia River, Fraser River, and small rivers in Puget Sound are included. The forecast is constrained by open boundary conditions derived from the global Navy HYCOM model and once in 3 days assimilation of recent data, including HF radar surface currents, sea surface temperature from the GOES satellite, and SSH from several satellite altimetry missions. 4-dimensional variational data assimilation is implemented in 3-day time windows using the tangent linear and adjoint codes developed at OSU. The system is semi-autonomous - all the data, including NAM and HYCOM fields are automatically updated, and daily operational forecast is automatically initiated. The pre-assimilation data quality control and post-assimilation forecast quality control require the operator's involvement. The daily forecast and 60 days of hindcast fields are available for public on opendap. As part of the system model validation plots to various satellites and SEAGLIDER are also automatically updated and available on the web (http://ingria.coas.oregonstate.edu/rtdavow/). Lessons learned in this pilot real-time coastal ocean forecasting project help develop and test metrics for forecast skill assessment for the West Coast Operational Forecast System (WCOFS), currently at testing and development phase at the National Oceanic and Atmospheric Administration (NOAA).

  18. Impact of Ozone Radiative Feedbacks on Global Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Ivanova, I.; de Grandpré, J.; Rochon, Y. J.; Sitwell, M.

    2017-12-01

    A coupled Chemical Data Assimilation system for ozone is being developed at Environment and Climate Change Canada (ECCC) with the goals to improve the forecasting of UV index and the forecasting of air quality with the Global Environmental Multi-scale (GEM) Model for Air quality and Chemistry (MACH). Furthermore, this system provides an opportunity to evaluate the benefit of ozone assimilation for improving weather forecasting with the ECCC Global Deterministic Prediction System (GDPS) for Numerical Weather Prediction (NWP). The present UV index forecasting system uses a statistical approach for evaluating the impact of ozone in clear-sky and cloudy conditions, and the use of real-time ozone analysis and ozone forecasts is highly desirable. Improving air quality forecasting with GEM-MACH further necessitates the development of integrated dynamical-chemical assimilation system. Upon its completion, real-time ozone analysis and ozone forecasts will also be available for piloting the regional air quality system, and for the computation of ozone heating rates, in replacement of the monthly mean ozone distribution currently used in the GDPS. Experiments with ozone radiative feedbacks were run with the GDPS at 25km resolution and 84 levels with a lid at 0.1 hPa and were initialized with ozone analysis that has assimilated total ozone column from OMI, OMPS, and GOME satellite instruments. The results show that the use of prognostic ozone for the computation of the heating/cooling rates has a significant impact on the temperature distribution throughout the stratosphere and upper troposphere regions. The impact of ozone assimilation is especially significant in the tropopause region, where ozone heating in the infrared wavelengths is important and ozone lifetime is relatively long. The implementation of the ozone radiative feedback in the GDPS requires addressing various issues related to model biases (temperature and humidity) and biases in equilibrium state (ozone mixing ratio, air temperature and overhead column ozone) used for the calculation of the linearized photochemical production and loss of ozone. Furthermore the radiative budget in the tropopause region is strongly affected by water vapor cooling, which impact requires further evaluation for the use in chemically coupled operational NWP systems.

  19. Impact of AIRS Thermodynamic Profile on Regional Weather Forecast

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovee, Gary

    2010-01-01

    Prudent assimilation of AIRS thermodynamic profiles and quality indicators can improve initial conditions for regional weather models. AIRS-enhanced analysis has warmer and moister PBL. Forecasts with AIRS profiles are generally closer to NAM analyses than CNTL. Assimilation of AIRS leads to an overall QPF improvement in 6-h accumulated precipitation forecasts. Including AIRS profiles in assimilation process enhances the moist instability and produces stronger updrafts and a better precipitation forecast than the CNTL run.

  20. Quality Assessment of the Cobel-Isba Numerical Forecast System of Fog and Low Clouds

    NASA Astrophysics Data System (ADS)

    Bergot, Thierry

    2007-06-01

    Short-term forecasting of fog is a difficult issue which can have a large societal impact. Fog appears in the surface boundary layer and is driven by the interactions between land surface and the lower layers of the atmosphere. These interactions are still not well parameterized in current operational NWP models, and a new methodology based on local observations, an adaptive assimilation scheme and a local numerical model is tested. The proposed numerical forecast method of foggy conditions has been run during three years at Paris-CdG international airport. This test over a long-time period allows an in-depth evaluation of the forecast quality. This study demonstrates that detailed 1-D models, including detailed physical parameterizations and high vertical resolution, can reasonably represent the major features of the life cycle of fog (onset, development and dissipation) up to +6 h. The error on the forecast onset and burn-off time is typically 1 h. The major weakness of the methodology is related to the evolution of low clouds (stratus lowering). Even if the occurrence of fog is well forecasted, the value of the horizontal visibility is only crudely forecasted. Improvements in the microphysical parameterization and in the translation algorithm converting NWP prognostic variables into a corresponding horizontal visibility seems necessary to accurately forecast the value of the visibility.

  1. A novel hybrid forecasting model for PM₁₀ and SO₂ daily concentrations.

    PubMed

    Wang, Ping; Liu, Yong; Qin, Zuodong; Zhang, Guisheng

    2015-02-01

    Air-quality forecasting in urban areas is difficult because of the uncertainties in describing both the emission and meteorological fields. The use of incomplete information in the training phase restricts practical air-quality forecasting. In this paper, we propose a hybrid artificial neural network and a hybrid support vector machine, which effectively enhance the forecasting accuracy of an artificial neural network (ANN) and support vector machine (SVM) by revising the error term of the traditional methods. The hybrid methodology can be described in two stages. First, we applied the ANN or SVM forecasting system with historical data and exogenous parameters, such as meteorological variables. Then, the forecasting target was revised by the Taylor expansion forecasting model using the residual information of the error term in the previous stage. The innovation involved in this approach is that it sufficiently and validly utilizes the useful residual information on an incomplete input variable condition. The proposed method was evaluated by experiments using a 2-year dataset of daily PM₁₀ (particles with a diameter of 10 μm or less) concentrations and SO₂ (sulfur dioxide) concentrations from four air pollution monitoring stations located in Taiyuan, China. The theoretical analysis and experimental results demonstrated that the forecasting accuracy of the proposed model is very promising. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Users Guide for the Anvil Threat Corridor Forecast Tool V1.7.0 for AWIPS

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2007-01-01

    The Applied Meteorology Unit (AMU) originally developed the Anvil Threat Sector Tool for the Meteorological Interactive Data Display System (MIDDS) and delivered the capability in three phases beginning with a feasibility study in 2000 and delivering the operational final product in December 2003. This tool is currently used operationally by the 45th Weather Squadron (45 WS) Launch Weather Officers (LWO) and Spaceflight Meteorology Group (SMG) forecasters. Phase I of the task established the technical feasibility of developing an objective, observations-based tool for short-range anvil forecasting. The AMU was subsequently tasked to develop short-term anvil forecasting tools to improve predictions of the threat of triggered lightning to space launch and landing vehicles. Under the Phase II effort, the AMU developed a nowcasting anvil threat sector tool, which provided the user with a threat sector based on the most current radiosonde upper wind data from a co-located or upstream station. The Phase II Anvil Threat Sector Tool computes the average wind speed and direction in the layer between 300 and 150 mb from the latest radiosonde for a user-designated station. The following threat sector properties are consistent with the propagation and lifetime characteristics of thunderstorm anvil clouds observed over Florida and its coastal waters (Short et al. 2002): a) 20 n mi standoff circle, b) 30 degree sector width, c) Orientation given by 300 to 150 mb average wind direction, d) 1-, 2-, and 3- hour arcs in upwind direction, and e) Arc distances given by 300 to 150 mb average wind speed. Figure 1 is an example of the MIDDS Anvil Threat Sector tool overlaid on a visible satellite image at 2132 UTC 13 May 2001. Space Launch Complex 39A was selected as the center point and the Anvil Threat Sector was determined from upper-level wind data at 1500 UTC in the preconvective environment. Narrow thunderstorm anvil clouds extend from central Florida to the space launch and landing facilities at the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) and beyond. The anvil clouds were generated around 1930 UTC (1430 EDT) by thunderstorm activity over central Florida and transported 90 n mi east-northeastward within 2 hours, as diagnosed by the anvil forecast tool. Phase III, delivered in February 2003, built upon the results of Phase II by enhancing the Anvil Threat Sector Tool with the capability to use national model forecast winds for depiction of potential anvil lengths and orientations over the KSC/CCAFS area with lead times from 3 through 168 hours (7 days). In September 2003, AMU customers requested the capability to use data from the KSC 50 MHz Doppler Radar Wind Profiler (DRWP) in the Anvil Threat Sector Tool and this capability was delivered by the AMU in December 2003. In March 2005, the AMU was tasked to migrate the MIDDS Anvil Threat Sector Tool capabilities onto the Advanced Weather Interactive Processing System (AWIPS) as the Anvil Threat Corridor Forecast Tool.

  3. Uncertainty quantification and reliability assessment in operational oil spill forecast modeling system.

    PubMed

    Hou, Xianlong; Hodges, Ben R; Feng, Dongyu; Liu, Qixiao

    2017-03-15

    As oil transport increasing in the Texas bays, greater risks of ship collisions will become a challenge, yielding oil spill accidents as a consequence. To minimize the ecological damage and optimize rapid response, emergency managers need to be informed with how fast and where oil will spread as soon as possible after a spill. The state-of-the-art operational oil spill forecast modeling system improves the oil spill response into a new stage. However uncertainty due to predicted data inputs often elicits compromise on the reliability of the forecast result, leading to misdirection in contingency planning. Thus understanding the forecast uncertainty and reliability become significant. In this paper, Monte Carlo simulation is implemented to provide parameters to generate forecast probability maps. The oil spill forecast uncertainty is thus quantified by comparing the forecast probability map and the associated hindcast simulation. A HyosPy-based simple statistic model is developed to assess the reliability of an oil spill forecast in term of belief degree. The technologies developed in this study create a prototype for uncertainty and reliability analysis in numerical oil spill forecast modeling system, providing emergency managers to improve the capability of real time operational oil spill response and impact assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Using a Software Tool in Forecasting: a Case Study of Sales Forecasting Taking into Account Data Uncertainty

    NASA Astrophysics Data System (ADS)

    Fabianová, Jana; Kačmáry, Peter; Molnár, Vieroslav; Michalik, Peter

    2016-10-01

    Forecasting is one of the logistics activities and a sales forecast is the starting point for the elaboration of business plans. Forecast accuracy affects the business outcomes and ultimately may significantly affect the economic stability of the company. The accuracy of the prediction depends on the suitability of the use of forecasting methods, experience, quality of input data, time period and other factors. The input data are usually not deterministic but they are often of random nature. They are affected by uncertainties of the market environment, and many other factors. Taking into account the input data uncertainty, the forecast error can by reduced. This article deals with the use of the software tool for incorporating data uncertainty into forecasting. Proposals are presented of a forecasting approach and simulation of the impact of uncertain input parameters to the target forecasted value by this case study model. The statistical analysis and risk analysis of the forecast results is carried out including sensitivity analysis and variables impact analysis.

  5. eWaterCycle visualisation. combining the strength of NetCDF and Web Map Service: ncWMS

    NASA Astrophysics Data System (ADS)

    Hut, R.; van Meersbergen, M.; Drost, N.; Van De Giesen, N.

    2016-12-01

    As a result of the eWatercycle global hydrological forecast we have created Cesium-ncWMS, a web application based on ncWMS and Cesium. ncWMS is a server side application capable of reading any NetCDF file written using the Climate and Forecasting (CF) conventions, and making the data available as a Web Map Service(WMS). ncWMS automatically determines available variables in a file, and creates maps colored according to map data and a user selected color scale. Cesium is a Javascript 3D virtual Globe library. It uses WebGL for rendering, which makes it very fast, and it is capable of displaying a wide variety of data types such as vectors, 3D models, and 2D maps. The forecast results are automatically uploaded to our web server running ncWMS. In turn, the web application can be used to change the settings for color maps and displayed data. The server uses the settings provided by the web application, together with the data in NetCDF to provide WMS image tiles, time series data and legend graphics to the Cesium-NcWMS web application. The user can simultaneously zoom in to the very high resolution forecast results anywhere on the world, and get time series data for any point on the globe. The Cesium-ncWMS visualisation combines a global overview with local relevant information in any browser. See the visualisation live at forecast.ewatercycle.org

  6. The Geostationary Lighting Mapper (GLM) for GOES-R: A New Operational Capability to Improve Storm Forecasts and Warnings

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, R.; Koshak, William J.; Petersen, W. A.; Carey, L.; Mah, D.

    2010-01-01

    The next generation Geostationary Operational Environmental Satellite (GOES-R) series is a follow on to the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved spectral (3x), spatial (4x), and temporal (5x) resolution for the Advanced Baseline Imager (ABI). The GLM, an optical transient detector and imager operating in the near-IR at 777.4 nm will map all (in-cloud and cloud-to-ground) lighting flashes continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions, from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data are being provided in an experimental mode to selected National Weather Service (NWS) national centers and forecast offices via the GOES-R Proving Ground to help improve our understanding of the application of these data in operational settings and facilitate Day-1 user readiness for this new capability.

  7. Advances in air quality prediction with the use of integrated systems

    NASA Astrophysics Data System (ADS)

    Dragani, R.; Benedetti, A.; Engelen, R. J.; Peuch, V. H.

    2017-12-01

    Recent years have seen the rise of global operational atmospheric composition forecasting systems for several applications including climate monitoring, provision of boundary conditions for regional air quality forecasting, energy sector applications, to mention a few. Typically, global forecasts are provided in the medium-range up to five days ahead and are initialized with an analysis based on satellite data. In this work we present the latest advances in data assimilation using the ECMWF's 4D-Var system extended to atmospheric composition which is currently operational under the Copernicus Atmosphere Monitoring Service of the European Commission. The service is based on acquisition of all relevant data available in near-real-time, the processing of these datasets in the assimilation and the subsequent dissemination of global forecasts at ECMWF. The global forecasts are used by the CAMS regional models as boundary conditions for the European forecasts based on a multi-model ensemble. The global forecasts are also used to provide boundary conditions for other parts of the world (e.g., China) and are freely available to all interested entities. Some of the regional models also perform assimilation of satellite and ground-based observations. All products are assessed, validated and made publicly available on https://atmosphere.copernicus.eu/.

  8. Calibration and combination of monthly near-surface temperature and precipitation predictions over Europe

    NASA Astrophysics Data System (ADS)

    Rodrigues, Luis R. L.; Doblas-Reyes, Francisco J.; Coelho, Caio A. S.

    2018-02-01

    A Bayesian method known as the Forecast Assimilation (FA) was used to calibrate and combine monthly near-surface temperature and precipitation outputs from seasonal dynamical forecast systems. The simple multimodel (SMM), a method that combines predictions with equal weights, was used as a benchmark. This research focuses on Europe and adjacent regions for predictions initialized in May and November, covering the boreal summer and winter months. The forecast quality of the FA and SMM as well as the single seasonal dynamical forecast systems was assessed using deterministic and probabilistic measures. A non-parametric bootstrap method was used to account for the sampling uncertainty of the forecast quality measures. We show that the FA performs as well as or better than the SMM in regions where the dynamical forecast systems were able to represent the main modes of climate covariability. An illustration with the near-surface temperature over North Atlantic, the Mediterranean Sea and Middle-East in summer months associated with the well predicted first mode of climate covariability is offered. However, the main modes of climate covariability are not well represented in most situations discussed in this study as the seasonal dynamical forecast systems have limited skill when predicting the European climate. In these situations, the SMM performs better more often.

  9. Programmatic Perspectives on Using `Rapid Prototyping Capability' for Water Management Applications Using NASA Products

    NASA Astrophysics Data System (ADS)

    Toll, D.; Friedl, L.; Entin, J.; Engman, E.

    2006-12-01

    The NASA Water Management Program addresses concerns and decision making related to water availability, water forecast and water quality. The goal of the Water Management Program Element is to encourage water management organizations to use NASA Earth science data, models products, technology and other capabilities in their decision support tools (DSTs) for problem solving. The goal of the NASA Rapid Prototyping Capability (RPC) is to speed the evaluation of these NASA products and technologies to improve current and future DSTs by reducing the time to access, configure, and assess the effectiveness of NASA products and technologies. The NASA Water Management Program Element partners with Federal agencies, academia, private firms, and may include international organizations. Currently, the NASA Water Management Program oversees eight application projects. However, water management is a very broad descriptor of a much larger number of activities that are carried out to insure safe and plentiful water supply for humans, industry and agriculture, promote environmental stewardship, and mitigate disaster such as floods and droughts. The goal of this presentation is to summarize how the RPC may further enhance the effectiveness of using NASA products for water management applications.

  10. Earth Observations and the Role of UAVs: A Capabilities Assessment. Version 1.1

    NASA Technical Reports Server (NTRS)

    Cox, Timothy H.; Somers, Ivan; Fratello, David J.

    2006-01-01

    This document provides an assessment of the civil UAV missions and technologies and is intended to parallel the Office of the Secretary of Defense UAV Roadmap. The intent of this document is four-fold: 1. Determine and document desired future missions of Earth observation UAVs based on user-defined needs 2. Determine and document the technologies necessary to support those missions 3. Discuss the present state of the platform capabilities and required technologies, identifying those in progress, those planned, and those for which no current plans exist 4. Provide the foundations for development of a comprehensive civil UAV roadmap to complement the Department of Defense (DoD) effort (http://www.acq.osd.mil/uas/). Two aspects of the President's Management Agenda (refer to the document located at: www.whitehouse.gov/omb/budget/fy2002/mgmt.pdf ) are supported by this undertaking. First, it is one that will engage multiple Agencies in the effort as stakeholders and benefactors of the systems. In that sense, the market will be driven by the user requirements and applications. The second aspect is one of supporting economic development in the commercial sector. Market forecasts for the civil use of UAVs have indicated an infant market stage at present with a sustained forecasted growth. There is some difficulty in quantifying the value of the market since the typical estimate excludes system components other than the aerial platforms. Section 2.4 addresses the civil UAV market forecast and lists several independent forecasts. One conclusion that can be drawn from these forecasts is that all show a sustained growth for the duration of each long-term forecast.

  11. Advances in Monitoring, Modelling and Forecasting Volcanic Ash Plumes over the Past 5 Years and the Impact on Preparedness from the London VAAC Perspective

    NASA Astrophysics Data System (ADS)

    Lee, D. S.; Lisk, I.

    2015-12-01

    Hosted and run by the Met Office, the London VAAC (Volcanic Ash Advisory Centre) is responsible for issuing advisories on the location and likely dispersion of ash clouds originating from volcanoes in the North East Atlantic, primarily from Iceland. These advisories and additional guidance products are used by the civil aviation community to make decisions on airspace flight management. London VAAC has specialist forecasters who use a combination of volcano source data, satellite-based, ground-based and aircraft observations, weather forecast models and dispersion models. Since the eruption of the Icelandic volcano Eyjafjallajökull in 2010, which resulted in the decision by many northern European countries to impose significant restrictions on the use of their airspace, London VAAC has been active in further developing its volcanic ash monitoring, modelling and forecasting capabilities, collaborating with research organisations, industry, other VAACs, Meteorological Services and the Volcano Observatory in Iceland. It has been necessary to advance operational capabilities to address evolving requirements, including for more quantitative assessments of volcanic ash in the atmosphere. Here we summarise advances in monitoring, modelling and forecasting of volcanic ash plumes over the past 5 years from the London VAAC perspective, and the realization of science into operations. We also highlight the importance of collaborative activities, such as the 'VAAC Best Practice' Workshop, where information is exchanged between all nine VAACs worldwide on the operational practices in monitoring and forecasting volcanic ash, with the aim of working toward a more harmonized service for decision makers in the aviation community. We conclude on an evaluation of how better we are prepared for the next significant ash-rich Icelandic eruption, and the challenges still remaining.

  12. Forecasting asthma-related hospital admissions in London using negative binomial models.

    PubMed

    Soyiri, Ireneous N; Reidpath, Daniel D; Sarran, Christophe

    2013-05-01

    Health forecasting can improve health service provision and individual patient outcomes. Environmental factors are known to impact chronic respiratory conditions such as asthma, but little is known about the extent to which these factors can be used for forecasting. Using weather, air quality and hospital asthma admissions, in London (2005-2006), two related negative binomial models were developed and compared with a naive seasonal model. In the first approach, predictive forecasting models were fitted with 7-day averages of each potential predictor, and then a subsequent multivariable model is constructed. In the second strategy, an exhaustive search of the best fitting models between possible combinations of lags (0-14 days) of all the environmental effects on asthma admission was conducted. Three models were considered: a base model (seasonal effects), contrasted with a 7-day average model and a selected lags model (weather and air quality effects). Season is the best predictor of asthma admissions. The 7-day average and seasonal models were trivial to implement. The selected lags model was computationally intensive, but of no real value over much more easily implemented models. Seasonal factors can predict daily hospital asthma admissions in London, and there is a little evidence that additional weather and air quality information would add to forecast accuracy.

  13. Improvement of PM concentration predictability using WRF-CMAQ-DLM coupled system and its applications

    NASA Astrophysics Data System (ADS)

    Lee, Soon Hwan; Kim, Ji Sun; Lee, Kang Yeol; Shon, Keon Tae

    2017-04-01

    Air quality due to increasing Particulate Matter(PM) in Korea in Asia is getting worse. At present, the PM forecast is announced based on the PM concentration predicted from the air quality prediction numerical model. However, forecast accuracy is not as high as expected due to various uncertainties for PM physical and chemical characteristics. The purpose of this study was to develop a numerical-statistically ensemble models to improve the accuracy of prediction of PM10 concentration. Numerical models used in this study are the three dimensional atmospheric model Weather Research and Forecasting(WRF) and the community multiscale air quality model (CMAQ). The target areas for the PM forecast are Seoul, Busan, Daegu, and Daejeon metropolitan areas in Korea. The data used in the model development are PM concentration and CMAQ predictions and the data period is 3 months (March 1 - May 31, 2014). The dynamic-statistical technics for reducing the systematic error of the CMAQ predictions was applied to the dynamic linear model(DLM) based on the Baysian Kalman filter technic. As a result of applying the metrics generated from the dynamic linear model to the forecasting of PM concentrations accuracy was improved. Especially, at the high PM concentration where the damage is relatively large, excellent improvement results are shown.

  14. iFLOOD: A Real Time Flood Forecast System for Total Water Modeling in the National Capital Region

    NASA Astrophysics Data System (ADS)

    Sumi, S. J.; Ferreira, C.

    2017-12-01

    Extreme flood events are the costliest natural hazards impacting the US and frequently cause extensive damages to infrastructure, disruption to economy and loss of lives. In 2016, Hurricane Matthew brought severe damage to South Carolina and demonstrated the importance of accurate flood hazard predictions that requires the integration of riverine and coastal model forecasts for total water prediction in coastal and tidal areas. The National Weather Service (NWS) and the National Ocean Service (NOS) provide flood forecasts for almost the entire US, still there are service-gap areas in tidal regions where no official flood forecast is available. The National capital region is vulnerable to multi-flood hazards including high flows from annual inland precipitation events and surge driven coastal inundation along the tidal Potomac River. Predicting flood levels on such tidal areas in river-estuarine zone is extremely challenging. The main objective of this study is to develop the next generation of flood forecast systems capable of providing accurate and timely information to support emergency management and response in areas impacted by multi-flood hazards. This forecast system is capable of simulating flood levels in the Potomac and Anacostia River incorporating the effects of riverine flooding from the upstream basins, urban storm water and tidal oscillations from the Chesapeake Bay. Flood forecast models developed so far have been using riverine data to simulate water levels for Potomac River. Therefore, the idea is to use forecasted storm surge data from a coastal model as boundary condition of this system. Final output of this validated model will capture the water behavior in river-estuary transition zone far better than the one with riverine data only. The challenge for this iFLOOD forecast system is to understand the complex dynamics of multi-flood hazards caused by storm surges, riverine flow, tidal oscillation and urban storm water. Automated system simulations will help to develop a seamless integration with the boundary systems in the service-gap area with new insights into our scientific understanding of such complex systems. A visualization system is being developed to allow stake holders and the community to have access to the flood forecasting for their region with sufficient lead time.

  15. The Automation of Nowcast Model Assessment Processes

    DTIC Science & Technology

    2016-09-01

    that will automate real-time WRE-N model simulations, collect and quality control check weather observations for assimilation and verification, and...domains centered near White Sands Missile Range, New Mexico, where the Meteorological Sensor Array (MSA) will be located. The MSA will provide...observations and performing quality -control checks for the pre-forecast data assimilation period. 2. Run the WRE-N model to generate model forecast data

  16. Biological Invasions: A Challenge In Ecological Forecasting

    NASA Technical Reports Server (NTRS)

    Schnase, J. L.; Smith, J. A.; Stohlgren, T. J.; Graves, S.; Trees, C.; Rood, Richard (Technical Monitor)

    2002-01-01

    The spread of invasive species is one of the most daunting environmental, economic, and human-health problems facing the United States and the World today. It is one of several grand challenge environmental problems being considered by NASA's Earth Science Vision for 2025. The invasive species problem is complex and presents many challenges. Developing an invasive species predictive capability could significantly advance the science and technology of ecological forecasting.

  17. Improving Aerosol and Visibility Forecasting Capabilities Using Current and Future Generations of Satellite Observations

    DTIC Science & Technology

    2012-09-30

    improving forecast performance over cloudy regions using the Ozone Monitoring Instrument (OMI) Aerosol Index; and 2) preparing for the post-MODIS...meteorological fields, the International Geosphere-Biosphere Programme (IGBP) SW and LW surface characteristics, and an ozone climatology are used as...The primary impact of CALIOP assimilation on the model is the redistribution of mass toward the boundary layer from the free troposphere . For high

  18. NOAA Propagation Database Value in Tsunami Forecast Guidance

    NASA Astrophysics Data System (ADS)

    Eble, M. C.; Wright, L. M.

    2016-02-01

    The National Oceanic and Atmospheric Administration (NOAA) Center for Tsunami Research (NCTR) has developed a tsunami forecasting capability that combines a graphical user interface with data ingestion and numerical models to produce estimates of tsunami wave arrival times, amplitudes, current or water flow rates, and flooding at specific coastal communities. The capability integrates several key components: deep-ocean observations of tsunamis in real-time, a basin-wide pre-computed propagation database of water level and flow velocities based on potential pre-defined seismic unit sources, an inversion or fitting algorithm to refine the tsunami source based on the observations during an event, and tsunami forecast models. As tsunami waves propagate across the ocean, observations from the deep ocean are automatically ingested into the application in real-time to better define the source of the tsunami itself. Since passage of tsunami waves over a deep ocean reporting site is not immediate, we explore the value of the NOAA propagation database in providing placeholder forecasts in advance of deep ocean observations. The propagation database consists of water elevations and flow velocities pre-computed for 50 x 100 [km] unit sources in a continuous series along all known ocean subduction zones. The 2011 Japan Tohoku tsunami is presented as the case study

  19. Rain-induced spring wheat harvest losses

    NASA Technical Reports Server (NTRS)

    Bauer, A.; Black, A. L. (Principal Investigator)

    1983-01-01

    When rain or a combination of rain and high humidity delay wheat harvest, losses can occur in grain yield and/or grain quality. Yield losses can result from shattering, from reduction in test weight, and in the case of windrowed grain, from rooting of sprouting grain at the soil: windrow contact. Losses in grain quality can result from reduction in test weight and from sprouting. Sprouting causes a degradation of grain proteins and starches, hence flour quality is reduced, and the grain price deteriorates to the value of feed grain. Although losses in grain yield and quality are rain-induced, these losses do not necessarily occur because a standing or windrowed crop is wetted by rain. Spike water concentration in hard red spring wheat must be increased to about 45-49% before sprouting is initiated in grain that has overcome dormancy. The time required to overcome this dormancy after the cultivar has dried to 12 to 14% water concentration differs with hard red spring cultivars. The effect of rain on threshing-ready standing and windrowed hard red spring wheat grain yeild and quality was evaluated. A goal was to develop the capability to forecast the extent of expected loss of grain yield and quality from specific climatic events that delay threshing.

  20. Evaluating the Impact of Aerosols on Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Freitas, Saulo; Silva, Arlindo; Benedetti, Angela; Grell, Georg; Members, Wgne; Zarzur, Mauricio

    2015-04-01

    The Working Group on Numerical Experimentation (WMO, http://www.wmo.int/pages/about/sec/rescrosscut/resdept_wgne.html) has organized an exercise to evaluate the impact of aerosols on NWP. This exercise will involve regional and global models currently used for weather forecast by the operational centers worldwide and aims at addressing the following questions: a) How important are aerosols for predicting the physical system (NWP, seasonal, climate) as distinct from predicting the aerosols themselves? b) How important is atmospheric model quality for air quality forecasting? c) What are the current capabilities of NWP models to simulate aerosol impacts on weather prediction? Toward this goal we have selected 3 strong or persistent events of aerosol pollution worldwide that could be fairly represented in current NWP models and that allowed for an evaluation of the aerosol impact on weather prediction. The selected events includes a strong dust storm that blew off the coast of Libya and over the Mediterranean, an extremely severe episode of air pollution in Beijing and surrounding areas, and an extreme case of biomass burning smoke in Brazil. The experimental design calls for simulations with and without explicitly accounting for aerosol feedbacks in the cloud and radiation parameterizations. In this presentation we will summarize the results of this study focusing on the evaluation of model performance in terms of its ability to faithfully simulate aerosol optical depth, and the assessment of the aerosol impact on the predictions of near surface wind, temperature, humidity, rainfall and the surface energy budget.

  1. Comparison of CMAQ Modeling Study with Discover-AQ 2014 Aircraft Measurements over Colorado

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Pan, L.; Lee, P.; Tong, D.; Kim, H. C.; Artz, R. S.

    2014-12-01

    NASA and NCAR jointly led a recent multiple platform-based (space, air and ground) measurement intensive to study air quality and to validate satellite data. The Discover-AQ/FRAPPE field experiment took place along the Colorado Front Range in July and August, 2014. The air quality modeling team of the NOAA Air Resources Laboratory was one of the three teams that provided real-time air quality forecasting for the campaign. The U.S. EPA Community Multi-scale Air Quality (CMAQ) Model was used with emission inventories based on the data set used by the NOAA National Air Quality Forecasting Capacity (NAQFC). By analyzing the forecast results calculated using aircraft measurements, it was found that CO emissions tended to be overestimated, while ethane emissions were underestimated. Biogenic VOCs were also underpredicted. Due to their relatively high altitude, ozone concentrations in Denver and the surrounding areas are affected by both local emissions and transported ozone. The modeled ozone was highly dependent on the meteorological predictions over this region. The complex terrain over the Rocky Mountains also contributed to the model uncertainty. This study discussed the causes of model biases, the forecast performance under different meteorology, and results from using different model grid resolutions. Several data assimilation techniques were further tested to improve the "post-analysis" performance of the modeling system for the period.

  2. Shared investment projects and forecasting errors: setting framework conditions for coordination and sequencing data quality activities.

    PubMed

    Leitner, Stephan; Brauneis, Alexander; Rausch, Alexandra

    2015-01-01

    In this paper, we investigate the impact of inaccurate forecasting on the coordination of distributed investment decisions. In particular, by setting up a computational multi-agent model of a stylized firm, we investigate the case of investment opportunities that are mutually carried out by organizational departments. The forecasts of concern pertain to the initial amount of money necessary to launch and operate an investment opportunity, to the expected intertemporal distribution of cash flows, and the departments' efficiency in operating the investment opportunity at hand. We propose a budget allocation mechanism for coordinating such distributed decisions The paper provides guidance on how to set framework conditions, in terms of the number of investment opportunities considered in one round of funding and the number of departments operating one investment opportunity, so that the coordination mechanism is highly robust to forecasting errors. Furthermore, we show that-in some setups-a certain extent of misforecasting is desirable from the firm's point of view as it supports the achievement of the corporate objective of value maximization. We then address the question of how to improve forecasting quality in the best possible way, and provide policy advice on how to sequence activities for improving forecasting quality so that the robustness of the coordination mechanism to errors increases in the best possible way. At the same time, we show that wrong decisions regarding the sequencing can lead to a decrease in robustness. Finally, we conduct a comprehensive sensitivity analysis and prove that-in particular for relatively good forecasters-most of our results are robust to changes in setting the parameters of our multi-agent simulation model.

  3. Development of On-line Wildfire Emissions for the Operational Canadian Air Quality Forecast System

    NASA Astrophysics Data System (ADS)

    Pavlovic, R.; Menard, S.; Chen, J.; Anselmo, D.; Paul-Andre, B.; Gravel, S.; Moran, M. D.; Davignon, D.

    2013-12-01

    An emissions processing system has been developed to incorporate near-real-time emissions from wildfires and large prescribed burns into Environment Canada's real-time GEM-MACH air quality (AQ) forecast system. Since the GEM-MACH forecast domain covers Canada and most of the USA, including Alaska, fire location information is needed for both of these large countries. Near-real-time satellite data are obtained and processed separately for the two countries for organizational reasons. Fire location and fuel consumption data for Canada are provided by the Canadian Forest Service's Canadian Wild Fire Information System (CWFIS) while fire location and emissions data for the U.S. are provided by the SMARTFIRE (Satellite Mapping Automated Reanalysis Tool for Fire Incident Reconciliation) system via the on-line BlueSky Gateway. During AQ model runs, emissions from individual fire sources are injected into elevated model layers based on plume-rise calculations and then transport and chemistry calculations are performed. This 'on the fly' approach to the insertion of emissions provides greater flexibility since on-line meteorology is used and reduces computational overhead in emission pre-processing. An experimental wildfire version of GEM-MACH was run in real-time mode for the summers of 2012 and 2013. 48-hour forecasts were generated every 12 hours (at 00 and 12 UTC). Noticeable improvements in the AQ forecasts for PM2.5 were seen in numerous regions where fire activity was high. Case studies evaluating model performance for specific regions, computed objective scores, and subjective evaluations by AQ forecasters will be included in this presentation. Using the lessons learned from the last two summers, Environment Canada will continue to work towards the goal of incorporating near-real-time intermittent wildfire emissions within the operational air quality forecast system.

  4. Evaluating the Contribution of NASA Remotely-Sensed Data Sets on a Convection-Allowing Forecast Model

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley T.; Case, Jonathan L.; Molthan, Andrew L.

    2012-01-01

    The Short-term Prediction Research and Transition (SPoRT) Center is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service forecast offices. SPoRT provides real-time NASA products and capabilities to help its partners address specific operational forecast challenges. One challenge that forecasters face is using guidance from local and regional deterministic numerical models configured at convection-allowing resolution to help assess a variety of mesoscale/convective-scale phenomena such as sea-breezes, local wind circulations, and mesoscale convective weather potential on a given day. While guidance from convection-allowing models has proven valuable in many circumstances, the potential exists for model improvements by incorporating more representative land-water surface datasets, and by assimilating retrieved temperature and moisture profiles from hyper-spectral sounders. In order to help increase the accuracy of deterministic convection-allowing models, SPoRT produces real-time, 4-km CONUS forecasts using a configuration of the Weather Research and Forecasting (WRF) model (hereafter SPoRT-WRF) that includes unique NASA products and capabilities including 4-km resolution soil initialization data from the Land Information System (LIS), 2-km resolution SPoRT SST composites over oceans and large water bodies, high-resolution real-time Green Vegetation Fraction (GVF) composites derived from the Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and retrieved temperature and moisture profiles from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI). NCAR's Model Evaluation Tools (MET) verification package is used to generate statistics of model performance compared to in situ observations and rainfall analyses for three months during the summer of 2012 (June-August). Detailed analyses of specific severe weather outbreaks during the summer will be presented to assess the potential added-value of the SPoRT datasets and data assimilation methodology compared to a WRF configuration without the unique datasets and data assimilation.

  5. JPSS Proving Ground Activities with NASA's Short-term Prediction Research and Transition (SPoRT) Center

    NASA Astrophysics Data System (ADS)

    Schultz, L. A.; Smith, M. R.; Fuell, K.; Stano, G. T.; LeRoy, A.; Berndt, E.

    2015-12-01

    Instruments aboard the Joint Polar Satellite System (JPSS) series of satellites will provide imagery and other data sets relevant to operational weather forecasts. To prepare current and future weather forecasters in application of these data sets, Proving Ground activities have been established that demonstrate future JPSS capabilities through use of similar sensors aboard NASA's Terra and Aqua satellites, and the S-NPP mission. As part of these efforts, NASA's Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, Alabama partners with near real-time providers of S-NPP products (e.g., NASA, UW/CIMSS, UAF/GINA, etc.) to demonstrate future capabilities of JPSS. This includes training materials and product distribution of multi-spectral false color composites of the visible, near-infrared, and infrared bands of MODIS and VIIRS. These are designed to highlight phenomena of interest to help forecasters digest the multispectral data provided by the VIIRS sensor. In addition, forecasters have been trained on the use of the VIIRS day-night band, which provides imagery of moonlit clouds, surface, and lights emitted by human activities. Hyperspectral information from the S-NPP/CrIS instrument provides thermodynamic profiles that aid in the detection of extremely cold air aloft, helping to map specific aviation hazards at high latitudes. Hyperspectral data also support the estimation of ozone concentration, which can highlight the presence of much drier stratospheric air, and map its interaction with mid-latitude or tropical cyclones to improve predictions of their strengthening or decay. Proving Ground activities are reviewed, including training materials and methods that have been provided to forecasters, and forecaster feedback on these products that has been acquired through formal, detailed assessment of their applicability to a given forecast threat or task. Future opportunities for collaborations around the delivery of training are proposed, along with other applications of multispectral data and derived, more quantitative products.

  6. Post LANDSAT D Advanced Concept Evaluation (PLACE). [with emphasis on mission planning, technological forecasting, and user requirements

    NASA Technical Reports Server (NTRS)

    1977-01-01

    An outline is given of the mission objectives and requirements, system elements, system concepts, technology requirements and forecasting, and priority analysis for LANDSAT D. User requirements and mission analysis and technological forecasting are emphasized. Mission areas considered include agriculture, range management, forestry, geology, land use, water resources, environmental quality, and disaster assessment.

  7. Local Air Quality Conditions and Forecasts

    MedlinePlus

    ... Monitor Location Archived Maps by Region Canada Air Quality Air Quality on Google Earth Links A-Z About AirNow AirNow International Air Quality Action Days / Alerts AirCompare Air Quality Index (AQI) ...

  8. Evaluation of Wind Power Forecasts from the Vermont Weather Analytics Center and Identification of Improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Optis, Michael; Scott, George N.; Draxl, Caroline

    The goal of this analysis was to assess the wind power forecast accuracy of the Vermont Weather Analytics Center (VTWAC) forecast system and to identify potential improvements to the forecasts. Based on the analysis at Georgia Mountain, the following recommendations for improving forecast performance were made: 1. Resolve the significant negative forecast bias in February-March 2017 (50% underprediction on average) 2. Improve the ability of the forecast model to capture the strong diurnal cycle of wind power 3. Add ability for forecast model to assess internal wake loss, particularly at sites where strong diurnal shifts in wind direction are present.more » Data availability and quality limited the robustness of this forecast assessment. A more thorough analysis would be possible given a longer period of record for the data (at least one full year), detailed supervisory control and data acquisition data for each wind plant, and more detailed information on the forecast system input data and methodologies.« less

  9. Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J.; Hodge, B. M.; Florita, A.

    2013-10-01

    Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The resultsmore » show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.« less

  10. Suggested hurricane operational scenario for GOES I-M

    NASA Technical Reports Server (NTRS)

    Menzel, W. P.; Merrill, R. T.; Shenk, W. E.

    1987-01-01

    Improvements in tropical cyclone forecasts require optimum use of remote sensing capabilities, because conventional data sources cannot provide the necessary spatial and temporal data density over tropical and subtropical oceanic regions. In 1989, the first of a series of geostationary weather satellites, GOES 1-M, will be launched with the capability for simultaneous imaging and sounding. Careful scheduling of the GOES 1-M will enable measurements of both the wind and mass fields over the entire tropical cyclone activity area. The document briefly describes the GOES 1-M imager and sounder, surveys the data needs for hurricane forecasting, discusses how geostationary satellite observations help to meet them, and proposes a GOES 1-M schedule of observations and hurricane relevant derived products.

  11. Diagnostic Evaluation of Nmme Precipitation and Temperature Forecasts for the Continental United States

    NASA Astrophysics Data System (ADS)

    Karlovits, G. S.; Villarini, G.; Bradley, A.; Vecchi, G. A.

    2014-12-01

    Forecasts of seasonal precipitation and temperature can provide information in advance of potentially costly disruptions caused by flood and drought conditions. The consequences of these adverse hydrometeorological conditions may be mitigated through informed planning and response, given useful and skillful forecasts of these conditions. However, the potential value and applicability of these forecasts is unavoidably linked to their forecast quality. In this work we evaluate the skill of four global circulation models (GCMs) part of the North American Multi-Model Ensemble (NMME) project in forecasting seasonal precipitation and temperature over the continental United States. The GCMs we consider are the Geophysical Fluid Dynamics Laboratory (GFDL)-CM2.1, NASA Global Modeling and Assimilation Office (NASA-GMAO)-GEOS-5, The Center for Ocean-Land-Atmosphere Studies - Rosenstiel School of Marine & Atmospheric Science (COLA-RSMAS)-CCSM3, Canadian Centre for Climate Modeling and Analysis (CCCma) - CanCM4. These models are available at a resolution of 1-degree and monthly, with a minimum forecast lead time of nine months, up to one year. These model ensembles are compared against gridded monthly temperature and precipitation data created by the PRISM Climate Group, which represent the reference observation dataset in this work. Aspects of forecast quality are quantified using a diagnostic skill score decomposition that allows the evaluation of the potential skill and conditional and unconditional biases associated with these forecasts. The evaluation of the decomposed GCM forecast skill over the continental United States, by season and by lead time allows for a better understanding of the utility of these models for flood and drought predictions. Moreover, it also represents a diagnostic tool that could provide model developers feedback about strengths and weaknesses of their models.

  12. Using Satellite-Based Earth Science Data in a Public Health Decision-Support System to Track and Forecast Pollen Events

    NASA Astrophysics Data System (ADS)

    Hudspeth, W. B.; Budge, A.

    2013-12-01

    There is widespread recognition within the public health community that ongoing changes in climate are expected to increasingly pose threats to human health. Environmentally induced health risks to populations with respiratory illnesses are a growing concern globally. Of particular concern are dust and smoke events carrying PM2.5 and PM10 particle sizes, ozone, and pollen. There is considerable interest in documenting the precise linkages between changing patterns in the climate and how these shifts impact the prevalence of respiratory illnesses. The establishment of these linkages can drive the development of early warning and forecasting systems to alert health care professionals of impending air-quality events. As a component of a larger NASA-funded project on Integration of Airborne Dust Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems, the Earth Data Analysis Center (EDAC) at the University of New Mexico, is developing web-based visualization and analysis services for forecasting pollen concentration data. This decision-support system, New Mexico's Environmental Public Health Tracking System (NMEPHTS), funded by the Centers for Disease Control (CDC) Environmental Public Health Tracking Network (EPHTN), aims to improve health awareness and services by linking health effects data with levels and frequency of environmental exposure. The forecast of atmospheric events with high pollen concentrations has employed a modified version of the DREAM (Dust Regional Atmospheric Model, a verified model for atmospheric dust transport modeling. In this application, PREAM (Pollen Regional Atmospheric Model) models pollen emission using a MODIS-derived phenology of Juniperus spp. communities. Model outputs are verified and validated with ground-based records of pollen release timing and quantities. Outputs of the PREAM model are post-processed and archived in EDAC's Geographic Storage, Transformation, and Retrieval Engine (GStore) database. The GStore geospatial services platform provides general purpose web services based upon the REST service model, and is capable of data discovery, access, and publication functions, metadata delivery functions, data transformation, and auto-generated OGC services for those data products that can support those services. These services are in turn ingested by New Mexico's EPHTN where end users in the public health community can then assess environmental-pubic health data associations. Advances in web mapping and related technologies open new doors for data providers and users that can deliver data and information in near-real time. In the public health community these technologies are being used to enhance disease and syndromic surveillance systems, visualize environmentally-related events such as pollen and dust events, and to provide focused mapping and analysis capabilities on the desktop. Here we present the current results of the project, and will focus on the challenges encountered in providing reliable and accurate forecast of pollen concentrations, as well as the experience of integrating output results and services into end user applications that can provide timely and meaningful alerts and forecasts.

  13. Impact of atmosphere and land surface initial conditions on seasonal forecast of global surface temperature

    NASA Astrophysics Data System (ADS)

    Materia, Stefano; Borrelli, Andrea; Bellucci, Alessio; Alessandri, Andrea; Di Pietro, Pierluigi; Athanasiadis, Panagiotis; Navarra, Antonio; Gualdi, Silvio

    2014-05-01

    The impact of land surface and atmosphere initialization on the forecast skill of a seasonal prediction system is investigated, and an effort to disentangle the role played by the individual components to the global predictability is done, via a hierarchy of seasonal forecast experiments performed under different initialization strategies. A realistic atmospheric initial state allows an improved equilibrium between the ocean and overlying atmosphere, mitigating the coupling shock and possibly increasing the model predictive skill in the ocean. In fact, in a few regions characterized by strong air-sea coupling, the atmosphere initial condition affects the forecast skill for several months. In particular, the ENSO region, the eastern tropical Atlantic and the North Pacific benefit significantly from the atmosphere initialization. On mainland, the impact of atmospheric initial conditions is detected in the early phase of the forecast, while the quality of land surface initialization affects the forecast skill in the following lead seasons. The winter forecast in the high latitude plains of Siberia and Canada benefit from the snow initialization, while the impact of soil moisture initial state is particularly effective in the Mediterranean region, in central Asia and Australia. However, initialization through land surface reanalysis does not systematically guarantee an enhancement of the predictive skill: the quality of the forecast is sometimes higher for the non-constrained model. Overall, the introduction of a realistic initialization of land surface and atmosphere substantially increases skill and accuracy. However, further developments in the operating procedure for land surface initialization are required for more accurate seasonal forecasts.

  14. PM2.5 forecasting using SVR with PSOGSA algorithm based on CEEMD, GRNN and GCA considering meteorological factors

    NASA Astrophysics Data System (ADS)

    Zhu, Suling; Lian, Xiuyuan; Wei, Lin; Che, Jinxing; Shen, Xiping; Yang, Ling; Qiu, Xuanlin; Liu, Xiaoning; Gao, Wenlong; Ren, Xiaowei; Li, Juansheng

    2018-06-01

    The PM2.5 is the culprit of air pollution, and it leads to respiratory system disease when the fine particles are inhaled. Therefore, it is increasingly significant to develop an effective model for PM2.5 forecasting and warnings that informs people to foresee the air quality. People can reduce outdoor activities and take preventive measures if they know the air quality is bad ahead of time. In addition, reliable forecasting results can remind the relevant departments to control and reduce pollutants discharge. According to our knowledge, the current hybrid forecasting techniques of PM2.5 do not take the meteorological factors into consideration. Actually, meteorological factors affect the concentrations of air pollution, but it is unclear whether meteorological factors are helpful for improving the PM2.5 forecasting results or not. This paper proposes a hybrid model called CEEMD-PSOGSA-SVR-GRNN, based on complementary ensemble empirical mode decomposition (CEEMD), particle swarm optimization and gravitational search algorithm (PSOGSA), support vector regression (SVR), generalized regression neural network (GRNN) and grey correlation analysis (GCA), for the daily PM2.5 concentrations forecasting. The main steps of proposed model are described as follows: the original PM2.5 data decomposition with CEEMD, optimal SVR selection with PSOGCA, meteorological factors selection with GCA, residual revision by GRNN and forecasting results analysis. Three cities (Chongqing, Harbin and Jinan) in China with different characteristics of climate, terrain and pollution sources are selected to verify the effectiveness of proposed model, and CEEMD-PSOGSA-SVR*, EEMD-PSOGSA-SVR, PSOGSA-SVR, CEEMD-PSO-SVR, CEEMD-GSA-SVR, CEEMD-GWO-SVR are considered to be compared models. The experimental results show that the hybrid CEEMD-PSOGSA-SVR-GRNN model outperforms other six compared models. Therefore, the proposed CEEMD-PSOGSA-SVR-GRNN model can be used to develop air quality forecasting and warnings.

  15. International Virtual Observatory System for Water Resources Information

    NASA Astrophysics Data System (ADS)

    Leinenweber, Lewis; Bermudez, Luis

    2013-04-01

    Sharing, accessing, and integrating hydrologic and climatic data have been identified as a critical need for some time. The current state of data portals, standards, technologies, activities, and expertise can be leverage to develop an initial operational capability for a virtual observatory system. This system will allow to link observations data with stream networks and models, and to solve semantic inconsistencies among communities. Prototyping a virtual observatory system is an inter-disciplinary, inter-agency and international endeavor. The Open Geospatial Consortium (OGC) within the OGC Interoperability Program provides the process and expertise to run such collaborative effort. The OGC serves as a global forum for the collaboration of developers and users of spatial data products and services, and to advance the development of international standards for geospatial interoperability. The project coordinated by OGC that is advancing an international virtual observatory system for water resources information is called Climatology-Hydrology Information Sharing Pilot, Phase 1 (CHISP-1). It includes observations and forecasts in the U.S. and Canada levering current networks and capabilities. It is designed to support the following use cases: 1) Hydrologic modeling for historical and near-future stream flow and groundwater conditions. Requires the integration of trans-boundary stream flow and groundwater well data, as well as national river networks (US NHD and Canada NHN) from multiple agencies. Emphasis will be on time series data and real-time flood monitoring. 2) Modeling and assessment of nutrient load into the lakes. Requires accessing water-quality data from multiple agencies and integrating with stream flow information for calculating loads. Emphasis on discrete sampled water quality observations, linking those to specific NHD stream reaches and catchments, and additional metadata for sampled data. The key objectives of these use cases are: 1) To link observations data to the stream network, enabling queries of conditions upstream from a given location to return all relevant gages and well locations. This is currently not practical with the data sources available. 2) To bridge differences in semantics across information models and processes used by the various data producers, to improve the hydrologic and water quality modeling capabilities. Other expected benefits to be derived from this project include: - Leverage a large body of existing data holdings and related activities of multiple agencies in the US and Canada. - Influence data and metadata standards used internationally for web-based information sharing, through multiple agency cooperation and OGC standards setting process. - Reduction of procurement risk through partnership-based development of an initial operating capability verses the cost for building a fully operational system using a traditional "waterfall approach". - Identification and clarification of what is possible, and of the key technical and non-technical barriers to continued progress in sharing and integrating hydrologic and climatic information. - Promote understanding and strengthen ties within the hydro-climatic community. This is anticipated to be the first phase of a multi-phase project, with future work on forecasting the hydrologic consequences of extreme weather events, and enabling more sophisticated water quality modeling.

  16. Applications of subseasonal-to-seasonal (S2S) predictions

    NASA Astrophysics Data System (ADS)

    White, Christopher; Lamb, Rob; Carlsen, Henrik; Robertson, Andrew; Klein, Richard; Lazo, Jeffrey; Kumar, Arun; Vitart, Frederic; Coughlan de Perez, Erin; Ray, Andrea; Murray, Virginia; Graham, Richard; Buontempo, Carlo

    2017-04-01

    While long-range seasonal outlooks have been operational for many years, until recently the extended-range timescale - referred to as 'subseasonal-to-seasonal' (S2S) and which sits between the medium- to long-range forecasting timescales - has received relatively little attention. The S2S timescale has long been seen as a 'predictability desert', yet a new generation of S2S predictions are starting to bridge the gap between weather forecasts and longer-range prediction. Decisions in a range of sectors are made in this extended-range lead time, therefore there is a strong demand for this new generation of predictions. At least ten international weather centres now have some capability for issuing experimental or operational S2S predictions, including the European Centre for Medium-Range Weather Forecasting (ECMWF) and the National Oceanic and Atmospheric Administration (NOAA) that now have operational S2S outputs. International efforts are now underway to identify key sources of predictability, improve forecast skill and operationalise aspects of S2S forecasts, however challenges remain in advancing this new frontier. If S2S predictions are to be utilised effectively, it is important that along with science advances, we learn how to develop, communicate and apply these forecasts appropriately. In this study, we present the potential of the emerging operational S2S forecasts to the wider weather and climate applications community by undertaking the first comprehensive review of sectoral applications of S2S predictions, including public health, disaster preparedness, water management, energy and agriculture. We explore the value of applications-relevant S2S predictions, and highlight the opportunities and challenges facing their uptake. We show how social sciences can be integrated with S2S development - from communication to decision-making and valuation of forecasts - to enhance the benefits of 'climate services' approaches for extended-range forecasting. We highlight the availability of data repositories of near real-time S2S forecasts and hindcasts, including the WWRP-WCRP (http://apps.ecmwf.int/datasets/data/s2s) and North American Multimodel Ensemble (NMME; http://www.cpc.ncep.noaa.gov/products/NMME/data.html) repositories, and discuss how they are promoting the use (and aiding the development) of S2S predictions. While S2S forecasting is at a relatively early stage of development, we conclude that it presents a significant new window of opportunity that can be explored for application-ready capabilities that could allow many sectors the opportunity to systematically plan on a new time horizon.

  17. Forecasting Influenza Epidemics in Hong Kong.

    PubMed

    Yang, Wan; Cowling, Benjamin J; Lau, Eric H Y; Shaman, Jeffrey

    2015-07-01

    Recent advances in mathematical modeling and inference methodologies have enabled development of systems capable of forecasting seasonal influenza epidemics in temperate regions in real-time. However, in subtropical and tropical regions, influenza epidemics can occur throughout the year, making routine forecast of influenza more challenging. Here we develop and report forecast systems that are able to predict irregular non-seasonal influenza epidemics, using either the ensemble adjustment Kalman filter or a modified particle filter in conjunction with a susceptible-infected-recovered (SIR) model. We applied these model-filter systems to retrospectively forecast influenza epidemics in Hong Kong from January 1998 to December 2013, including the 2009 pandemic. The forecast systems were able to forecast both the peak timing and peak magnitude for 44 epidemics in 16 years caused by individual influenza strains (i.e., seasonal influenza A(H1N1), pandemic A(H1N1), A(H3N2), and B), as well as 19 aggregate epidemics caused by one or more of these influenza strains. Average forecast accuracies were 37% (for both peak timing and magnitude) at 1-3 week leads, and 51% (peak timing) and 50% (peak magnitude) at 0 lead. Forecast accuracy increased as the spread of a given forecast ensemble decreased; the forecast accuracy for peak timing (peak magnitude) increased up to 43% (45%) for H1N1, 93% (89%) for H3N2, and 53% (68%) for influenza B at 1-3 week leads. These findings suggest that accurate forecasts can be made at least 3 weeks in advance for subtropical and tropical regions.

  18. Forecasting Influenza Epidemics in Hong Kong

    PubMed Central

    Yang, Wan; Cowling, Benjamin J.; Lau, Eric H. Y.; Shaman, Jeffrey

    2015-01-01

    Recent advances in mathematical modeling and inference methodologies have enabled development of systems capable of forecasting seasonal influenza epidemics in temperate regions in real-time. However, in subtropical and tropical regions, influenza epidemics can occur throughout the year, making routine forecast of influenza more challenging. Here we develop and report forecast systems that are able to predict irregular non-seasonal influenza epidemics, using either the ensemble adjustment Kalman filter or a modified particle filter in conjunction with a susceptible-infected-recovered (SIR) model. We applied these model-filter systems to retrospectively forecast influenza epidemics in Hong Kong from January 1998 to December 2013, including the 2009 pandemic. The forecast systems were able to forecast both the peak timing and peak magnitude for 44 epidemics in 16 years caused by individual influenza strains (i.e., seasonal influenza A(H1N1), pandemic A(H1N1), A(H3N2), and B), as well as 19 aggregate epidemics caused by one or more of these influenza strains. Average forecast accuracies were 37% (for both peak timing and magnitude) at 1-3 week leads, and 51% (peak timing) and 50% (peak magnitude) at 0 lead. Forecast accuracy increased as the spread of a given forecast ensemble decreased; the forecast accuracy for peak timing (peak magnitude) increased up to 43% (45%) for H1N1, 93% (89%) for H3N2, and 53% (68%) for influenza B at 1-3 week leads. These findings suggest that accurate forecasts can be made at least 3 weeks in advance for subtropical and tropical regions. PMID:26226185

  19. A state of the art regarding urban air quality prediction models

    NASA Astrophysics Data System (ADS)

    Croitoru, Cristiana; Nastase, Ilinca

    2018-02-01

    Urban pollution represents an increasing risk to residents of urban regions, particularly in large, over-industrialized cities knowing that the traffic is responsible for more than 25% of air gaseous pollutants and dust particles. Air quality modelling plays an important role in addressing air pollution control and management approaches by providing guidelines for better and more efficient air quality forecasting, along with smart monitoring sensor networks. The advances in technology regarding simulations, forecasting and monitoring are part of the new smart cities which offers a healthy environment for their occupants.

  20. Scientific assessment of accuracy, skill and reliability of ocean probabilistic forecast products.

    NASA Astrophysics Data System (ADS)

    Wei, M.; Rowley, C. D.; Barron, C. N.; Hogan, P. J.

    2016-02-01

    As ocean operational centers are increasingly adopting and generating probabilistic forecast products for their customers with valuable forecast uncertainties, how to assess and measure these complicated probabilistic forecast products objectively is challenging. The first challenge is how to deal with the huge amount of the data from the ensemble forecasts. The second one is how to describe the scientific quality of probabilistic products. In fact, probabilistic forecast accuracy, skills, reliability, resolutions are different attributes of a forecast system. We briefly introduce some of the fundamental metrics such as the Reliability Diagram, Reliability, Resolution, Brier Score (BS), Brier Skill Score (BSS), Ranked Probability Score (RPS), Ranked Probability Skill Score (RPSS), Continuous Ranked Probability Score (CRPS), and Continuous Ranked Probability Skill Score (CRPSS). The values and significance of these metrics are demonstrated for the forecasts from the US Navy's regional ensemble system with different ensemble members. The advantages and differences of these metrics are studied and clarified.

  1. How is the weather? Forecasting inpatient glycemic control

    PubMed Central

    Saulnier, George E; Castro, Janna C; Cook, Curtiss B; Thompson, Bithika M

    2017-01-01

    Aim: Apply methods of damped trend analysis to forecast inpatient glycemic control. Method: Observed and calculated point-of-care blood glucose data trends were determined over 62 weeks. Mean absolute percent error was used to calculate differences between observed and forecasted values. Comparisons were drawn between model results and linear regression forecasting. Results: The forecasted mean glucose trends observed during the first 24 and 48 weeks of projections compared favorably to the results provided by linear regression forecasting. However, in some scenarios, the damped trend method changed inferences compared with linear regression. In all scenarios, mean absolute percent error values remained below the 10% accepted by demand industries. Conclusion: Results indicate that forecasting methods historically applied within demand industries can project future inpatient glycemic control. Additional study is needed to determine if forecasting is useful in the analyses of other glucometric parameters and, if so, how to apply the techniques to quality improvement. PMID:29134125

  2. Forecasting forecast skill

    NASA Technical Reports Server (NTRS)

    Kalnay, Eugenia; Dalcher, Amnon

    1987-01-01

    It is shown that it is possible to predict the skill of numerical weather forecasts - a quantity which is variable from day to day and region to region. This has been accomplished using as predictor the dispersion (measured by the average correlation) between members of an ensemble of forecasts started from five different analyses. The analyses had been previously derived for satellite-data-impact studies and included, in the Northern Hemisphere, moderate perturbations associated with the use of different observing systems. When the Northern Hemisphere was used as a verification region, the prediction of skill was rather poor. This is due to the fact that such a large area usually contains regions with excellent forecasts as well as regions with poor forecasts, and does not allow for discrimination between them. However, when regional verifications were used, the ensemble forecast dispersion provided a very good prediction of the quality of the individual forecasts.

  3. Transition of Suomi National Polar-Orbiting Partnership (S-NPP) Data Products for Operational Weather Forecasting Applications

    NASA Technical Reports Server (NTRS)

    Smith, Matthew R.; Molthan, Andrew L.; Fuell, Kevin K.; Jedlovec, Gary J.

    2012-01-01

    SPoRT is a team of NASA/NOAA scientists focused on demonstrating the utility of NASA and future NOAA data and derived products on improving short-term weather forecasts. Work collaboratively with a suite of unique products and selected WFOs in an end-to-end transition activity. Stable funding from NASA and NOAA. Recognized by the science community as the "go to" place for transitioning experimental and research data to the operational weather community. Endorsed by NWS ESSD/SSD chiefs. Proven paradigm for transitioning satellite observations and modeling capabilities to operations (R2O). SPoRT s transition of NASA satellite instruments provides unique or higher resolution data products to complement the baseline suite of geostationary data available to forecasters. SPoRT s partnership with NWS WFOs provides them with unique imagery to support disaster response and local forecast challenges. SPoRT has years of proven experience in developing and transitioning research products to the operational weather community. SPoRT has begun work with CONUS and OCONUS WFOs to determine the best products for maximum benefit to forecasters. VIIRS has already proven to be another extremely powerful tool, enhancing forecasters ability to handle difficult forecasting situations.

  4. A synoptic view of the Third Uniform California Earthquake Rupture Forecast (UCERF3)

    USGS Publications Warehouse

    Field, Edward; Jordan, Thomas H.; Page, Morgan T.; Milner, Kevin R.; Shaw, Bruce E.; Dawson, Timothy E.; Biasi, Glenn; Parsons, Thomas E.; Hardebeck, Jeanne L.; Michael, Andrew J.; Weldon, Ray; Powers, Peter; Johnson, Kaj M.; Zeng, Yuehua; Bird, Peter; Felzer, Karen; van der Elst, Nicholas; Madden, Christopher; Arrowsmith, Ramon; Werner, Maximillan J.; Thatcher, Wayne R.

    2017-01-01

    Probabilistic forecasting of earthquake‐producing fault ruptures informs all major decisions aimed at reducing seismic risk and improving earthquake resilience. Earthquake forecasting models rely on two scales of hazard evolution: long‐term (decades to centuries) probabilities of fault rupture, constrained by stress renewal statistics, and short‐term (hours to years) probabilities of distributed seismicity, constrained by earthquake‐clustering statistics. Comprehensive datasets on both hazard scales have been integrated into the Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3). UCERF3 is the first model to provide self‐consistent rupture probabilities over forecasting intervals from less than an hour to more than a century, and it is the first capable of evaluating the short‐term hazards that result from multievent sequences of complex faulting. This article gives an overview of UCERF3, illustrates the short‐term probabilities with aftershock scenarios, and draws some valuable scientific conclusions from the modeling results. In particular, seismic, geologic, and geodetic data, when combined in the UCERF3 framework, reject two types of fault‐based models: long‐term forecasts constrained to have local Gutenberg–Richter scaling, and short‐term forecasts that lack stress relaxation by elastic rebound.

  5. The 1/12 deg Global HYCOM Nowcast/Forecast System

    DTIC Science & Technology

    2010-01-13

    DATE (DD-MM-YYYY) 13-01-2010 REPORT TYPE Conference Proceeding 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE The 1/12° Global HYCOM...advaneed global ocean nowcasting/forecasting system has been of long-time US Navy interest. Such a system will provide the capability to depict (nowcast...73-8677-A8-5 Classification X U Sponsor ONR approval obtained yes 4. AUTHOR Title of Paper or Presentation The MM degree Global

  6. AIR QUALITY FORECAST VERIFICATION USING SATELLITE DATA

    EPA Science Inventory

    NOAA 's operational geostationary satellite retrievals of aerosol optical depths (AODs) were used to verify National Weather Service (NWS) experimental (research mode) particulate matter (PM2.5) forecast guidance issued during the summer 2004 International Consortium for Atmosp...

  7. Evaluation and Quality Control for the Copernicus Seasonal Forecast Systems

    NASA Astrophysics Data System (ADS)

    Manubens, N.; Hunter, A.; Bedia, J.; Bretonnière, P. A.; Bhend, J.; Doblas-Reyes, F. J.

    2017-12-01

    The EU funded Copernicus Climate Change Service (C3S) will provide authoritative information about past, current and future climate for a wide range of users, from climate scientists to stakeholders from a wide range of sectors including insurance, energy or transport. It has been recognized that providing information about the products' quality and provenance is paramount to establish trust in the service and allow users to make best use of the available information. This presentation outlines the work being conducted within the Quality Assurance for Multi-model Seasonal Forecast Products project (QA4Seas). The aim of QA4Seas is to develop a strategy for the evaluation and quality control (EQC) of the multi-model seasonal forecasts provided by C3S. First, we present the set of guidelines the data providers must comply with, ensuring the data is fully traceable and harmonized across data sets. Second, we discuss the ongoing work on defining a provenance and metadata model that is able to encode such information, and that can be extended to describe the steps followed to obtain the final verification products such as maps and time series of forecast quality measures. The metadata model is based on the Resource Description Framework W3C standard, being thus extensible and reusable. It benefits from widely adopted vocabularies to describe data provenance and workflows, as well as from expert consensus and community-support for the development of the verification and downscaling specific ontologies. Third, we describe the open source software being developed to generate fully reproducible and certifiable seasonal forecast products, which also attaches provenance and metadata information to the verification measures and enables the user to visually inspect the quality of the C3S products. QA4Seas is seeking collaboration with similar initiatives, as well as extending the discussion to interested parties outside the C3S community to share experiences and establish global common guidelines or best practices regarding data provenance.

  8. Forecasting the magnitude and onset of El Niño based on climate network

    NASA Astrophysics Data System (ADS)

    Meng, Jun; Fan, Jingfang; Ashkenazy, Yosef; Bunde, Armin; Havlin, Shlomo

    2018-04-01

    El Niño is probably the most influential climate phenomenon on inter-annual time scales. It affects the global climate system and is associated with natural disasters; it has serious consequences in many aspects of human life. However, the forecasting of the onset and in particular the magnitude of El Niño are still not accurate enough, at least more than half a year ahead. Here, we introduce a new forecasting index based on climate network links representing the similarity of low frequency temporal temperature anomaly variations between different sites in the Niño 3.4 region. We find that significant upward trends in our index forecast the onset of El Niño approximately 1 year ahead, and the highest peak since the end of last El Niño in our index forecasts the magnitude of the following event. We study the forecasting capability of the proposed index on several datasets, including, ERA-Interim, NCEP Reanalysis I, PCMDI-AMIP 1.1.3 and ERSST.v5.

  9. The Ability of Analysts' Recommendations to Predict Optimistic and Pessimistic Forecasts

    PubMed Central

    Biglari, Vahid; Alfan, Ervina Binti; Ahmad, Rubi Binti; Hajian, Najmeh

    2013-01-01

    Previous researches show that buy (growth) companies conduct income increasing earnings management in order to meet forecasts and generate positive forecast Errors (FEs). This behavior however, is not inherent in sell (non-growth) companies. Using the aforementioned background, this research hypothesizes that since sell companies are pressured to avoid income increasing earnings management, they are capable, and in fact more inclined, to pursue income decreasing Forecast Management (FM) with the purpose of generating positive FEs. Using a sample of 6553 firm-years of companies that are listed in the NYSE between the years 2005–2010, the study determines that sell companies conduct income decreasing FM to generate positive FEs. However, the frequency of positive FEs of sell companies does not exceed that of buy companies. Using the efficiency perspective, the study suggests that even though buy and sell companies have immense motivation in avoiding negative FEs, they exploit different but efficient strategies, respectively, in order to meet forecasts. Furthermore, the findings illuminated the complexities behind informative and opportunistic forecasts that falls under the efficiency versus opportunistic theories in literature. PMID:24146741

  10. The ability of analysts' recommendations to predict optimistic and pessimistic forecasts.

    PubMed

    Biglari, Vahid; Alfan, Ervina Binti; Ahmad, Rubi Binti; Hajian, Najmeh

    2013-01-01

    Previous researches show that buy (growth) companies conduct income increasing earnings management in order to meet forecasts and generate positive forecast Errors (FEs). This behavior however, is not inherent in sell (non-growth) companies. Using the aforementioned background, this research hypothesizes that since sell companies are pressured to avoid income increasing earnings management, they are capable, and in fact more inclined, to pursue income decreasing Forecast Management (FM) with the purpose of generating positive FEs. Using a sample of 6553 firm-years of companies that are listed in the NYSE between the years 2005-2010, the study determines that sell companies conduct income decreasing FM to generate positive FEs. However, the frequency of positive FEs of sell companies does not exceed that of buy companies. Using the efficiency perspective, the study suggests that even though buy and sell companies have immense motivation in avoiding negative FEs, they exploit different but efficient strategies, respectively, in order to meet forecasts. Furthermore, the findings illuminated the complexities behind informative and opportunistic forecasts that falls under the efficiency versus opportunistic theories in literature.

  11. Regional Air Quality forecAST (RAQAST) Over the U.S

    NASA Astrophysics Data System (ADS)

    Yoshida, Y.; Choi, Y.; Zeng, T.; Wang, Y.

    2005-12-01

    A regional chemistry and transport modeling system is used to provide 48-hour forecast of the concentrations of ozone and its precursors over the United States. Meteorological forecast is conducted using the NCAR/Penn State MM5 model. The regional chemistry and transport model simulates the sources, transport, chemistry, and deposition of 24 chemical tracers. The lateral and upper boundary conditions of trace gas concentrations are specified using the monthly mean output from the global GEOS-CHEM model. The initial and boundary conditions for meteorological fields are taken from the NOAA AVN forecast. The forecast has been operational since August, 2003. Model simulations are evaluated using surface, aircraft, and satellite measurements in the A'hindcast' mode. The next step is an automated forecast evaluation system.

  12. Integration of Satellite, Modeled, and Ground Based Aerosol Data for use in Air Quality and Public Health Applications

    NASA Astrophysics Data System (ADS)

    Garcia, V.; Kondragunta, S.; Holland, D.; Dimmick, F.; Boothe, V.; Szykman, J.; Chu, A.; Kittaka, C.; Al-Saadi, J.; Engel-Cox, J.; Hoff, R.; Wayland, R.; Rao, S.; Remer, L.

    2006-05-01

    Advancements in remote sensing over the past decade have been recognized by governments around the world and led to the development of the international Global Earth Observation System of Systems 10-Year Implementation Plan. The plan for the U.S. contribution to GEOSS has been put forth in The Strategic Plan for the U.S. Integrated Earth Observation System (IEOS) developed under IWGEO-CENR. The approach for the development of the U.S. IEOS is to focus on specific societal benefits that can be achieved by integrating the nation's Earth observation capabilities. One such challenge is our ability to understand the impact of poor air quality on human health and well being. Historically, the air monitoring networks put in place for the Nations air quality programs provided the only aerosol air quality data on an ongoing and systematic basis at national levels. However, scientific advances in the remote sensing of aerosols from space have improved dramatically. The MODIS sensor and GOES Imager aboard NASA and NOAA satellites, respectively, provide synoptic-scale measurements of aerosol optical depth (AOD) which have been demonstrated to correlate with high levels of PM10 and PM2.5 at the surface. The MODIS sensor has been shown to be capable of a 1 km x 1 km (at nadir) AOD product, while the GOES Imager can provide AOD at 4 km x 4 km every 30 minutes. Within the next several years NOAA and EPA will begin to issue PM2.5 air quality forecasts over the entire domain of the eastern United States, eventually extending to national coverage. These forecasts will provide continuous estimated values of PM2.5 on a daily basis. A multi-agency collaborative project among government and academia is underway to improve the spatial prediction of fine particulate matter through the integration of multi-sensor and multi-platform aerosol observations (MODIS and GOES), numerical model output, and air monitoring data. By giving more weight to monitoring data in monitored areas and relying on adjusted model output and satellite data in non-monitored areas, a Bayesian hierarchical space-time model will be used to improve the accuracy of prediction and associated prediction errors. The improved spatial predictions will be tested as estimates of exposure for input to modeling relationships between air quality and asthma/other respiratory diseases through CDC under the Environmental Public Health Tracking Network. We will also focus on the use of the predictive spatial maps within the EPA AIRNow program which provides near real-time spatial maps of daily average PM2.5 concentrations across the US. We will present the overall project plan and preliminary results with emphasis on how GEOSS framework is facilitating this effort.

  13. Operational hydrological forecasting in Bavaria. Part II: Ensemble forecasting

    NASA Astrophysics Data System (ADS)

    Ehret, U.; Vogelbacher, A.; Moritz, K.; Laurent, S.; Meyer, I.; Haag, I.

    2009-04-01

    In part I of this study, the operational flood forecasting system in Bavaria and an approach to identify and quantify forecast uncertainty was introduced. The approach is split into the calculation of an empirical 'overall error' from archived forecasts and the calculation of an empirical 'model error' based on hydrometeorological forecast tests, where rainfall observations were used instead of forecasts. The 'model error' can especially in upstream catchments where forecast uncertainty is strongly dependent on the current predictability of the atrmosphere be superimposed on the spread of a hydrometeorological ensemble forecast. In Bavaria, two meteorological ensemble prediction systems are currently tested for operational use: the 16-member COSMO-LEPS forecast and a poor man's ensemble composed of DWD GME, DWD Cosmo-EU, NCEP GFS, Aladin-Austria, MeteoSwiss Cosmo-7. The determination of the overall forecast uncertainty is dependent on the catchment characteristics: 1. Upstream catchment with high influence of weather forecast a) A hydrological ensemble forecast is calculated using each of the meteorological forecast members as forcing. b) Corresponding to the characteristics of the meteorological ensemble forecast, each resulting forecast hydrograph can be regarded as equally likely. c) The 'model error' distribution, with parameters dependent on hydrological case and lead time, is added to each forecast timestep of each ensemble member d) For each forecast timestep, the overall (i.e. over all 'model error' distribution of each ensemble member) error distribution is calculated e) From this distribution, the uncertainty range on a desired level (here: the 10% and 90% percentile) is extracted and drawn as forecast envelope. f) As the mean or median of an ensemble forecast does not necessarily exhibit meteorologically sound temporal evolution, a single hydrological forecast termed 'lead forecast' is chosen and shown in addition to the uncertainty bounds. This can be either an intermediate forecast between the extremes of the ensemble spread or a manually selected forecast based on a meteorologists advice. 2. Downstream catchments with low influence of weather forecast In downstream catchments with strong human impact on discharge (e.g. by reservoir operation) and large influence of upstream gauge observation quality on forecast quality, the 'overall error' may in most cases be larger than the combination of the 'model error' and an ensemble spread. Therefore, the overall forecast uncertainty bounds are calculated differently: a) A hydrological ensemble forecast is calculated using each of the meteorological forecast members as forcing. Here, additionally the corresponding inflow hydrograph from all upstream catchments must be used. b) As for an upstream catchment, the uncertainty range is determined by combination of 'model error' and the ensemble member forecasts c) In addition, the 'overall error' is superimposed on the 'lead forecast'. For reasons of consistency, the lead forecast must be based on the same meteorological forecast in the downstream and all upstream catchments. d) From the resulting two uncertainty ranges (one from the ensemble forecast and 'model error', one from the 'lead forecast' and 'overall error'), the envelope is taken as the most prudent uncertainty range. In sum, the uncertainty associated with each forecast run is calculated and communicated to the public in the form of 10% and 90% percentiles. As in part I of this study, the methodology as well as the useful- or uselessness of the resulting uncertainty ranges will be presented and discussed by typical examples.

  14. Evaluating ammonia (NH3) predictions in the NOAA National Air Quality Forecast Capability (NAQFC) using in situ aircraft, ground-level, and satellite measurements from the DISCOVER-AQ Colorado campaign

    NASA Astrophysics Data System (ADS)

    Battye, William H.; Bray, Casey D.; Aneja, Viney P.; Tong, Daniel; Lee, Pius; Tang, Youhua

    2016-09-01

    The U.S. National Oceanic and Atmospheric Administration (NOAA) is responsible for forecasting elevated levels of air pollution within the National Air Quality Forecast Capability (NAQFC). The current research uses measurements gathered in the DISCOVER-AQ Colorado field campaign and the concurrent Front Range Air Pollution and Photochemistry Experiment (FRAPPE) to test performance of the NAQFC CMAQ modeling framework for predicting NH3. The DISCOVER-AQ and FRAPPE field campaigns were carried out in July and August 2014 in Northeast Colorado. Model predictions are compared with measurements of NH3 gas concentrations and the NH4+ component of fine particulate matter concentrations measured directly by the aircraft in flight. We also compare CMAQ predictions with NH3 measurements from ground-based monitors within the DISCOVER-AQ Colorado geographic domain, and from the Tropospheric Emission Spectrometer (TES) on the Aura satellite. In situ aircraft measurements carried out in July and August of 2014 suggest that the NAQFC CMAQ model underestimated the NH3 concentration in Northeastern Colorado by a factor of ∼2.7 (NMB = -63%). Ground-level monitors also produced a similar result. Average satellite-retrieved NH3 levels also exceeded model predictions by a factor of 1.5-4.2 (NMB = -33 to -76%). The underestimation of NH3 was not accompanied by an underestimation of particulate NH4+, which is further controlled by factors including acid availability, removal rate, and gas-particle partition. The average measured concentration of NH4+ was close to the average predication (NMB = +18%). Seasonal patterns measured at an AMoN site in the region suggest that the underestimation of NH3 is not due to the seasonal allocation of emissions, but to the overall annual emissions estimate. The underestimation of NH3 varied across the study domain, with the largest differences occurring in a region of intensive agriculture near Greeley, Colorado, and in the vicinity of Denver. The NAQFC modeling framework did not include a recently developed bidirectional flux algorithm for NH3, which has shown to considerably improve NH3 modeling in agricultural regions. The bidirectional flux algorithm, however, is not expected to obtain the magnitude of this increase sufficient to overcome the underestimation of NH3 found in this study. Our results suggest that further improvement of the emission inventories and modeling approaches are required to reduce the bias in NAQFC NH3 modeling predictions.

  15. A New Multivariate Approach in Generating Ensemble Meteorological Forcings for Hydrological Forecasting

    NASA Astrophysics Data System (ADS)

    Khajehei, Sepideh; Moradkhani, Hamid

    2015-04-01

    Producing reliable and accurate hydrologic ensemble forecasts are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model structure, and model parameters. Producing reliable and skillful precipitation ensemble forecasts is one approach to reduce the total uncertainty in hydrological applications. Currently, National Weather Prediction (NWP) models are developing ensemble forecasts for various temporal ranges. It is proven that raw products from NWP models are biased in mean and spread. Given the above state, there is a need for methods that are able to generate reliable ensemble forecasts for hydrological applications. One of the common techniques is to apply statistical procedures in order to generate ensemble forecast from NWP-generated single-value forecasts. The procedure is based on the bivariate probability distribution between the observation and single-value precipitation forecast. However, one of the assumptions of the current method is fitting Gaussian distribution to the marginal distributions of observed and modeled climate variable. Here, we have described and evaluated a Bayesian approach based on Copula functions to develop an ensemble precipitation forecast from the conditional distribution of single-value precipitation forecasts. Copula functions are known as the multivariate joint distribution of univariate marginal distributions, which are presented as an alternative procedure in capturing the uncertainties related to meteorological forcing. Copulas are capable of modeling the joint distribution of two variables with any level of correlation and dependency. This study is conducted over a sub-basin in the Columbia River Basin in USA using the monthly precipitation forecasts from Climate Forecast System (CFS) with 0.5x0.5 Deg. spatial resolution to reproduce the observations. The verification is conducted on a different period and the superiority of the procedure is compared with Ensemble Pre-Processor approach currently used by National Weather Service River Forecast Centers in USA.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakafuji, Dora; Gouveia, Lauren

    This project supports development of the next generation, integrated energy management infrastructure (EMS) able to incorporate advance visualization of behind-the-meter distributed resource information and probabilistic renewable energy generation forecasts to inform real-time operational decisions. The project involves end-users and active feedback from an Utility Advisory Team (UAT) to help inform how information can be used to enhance operational functions (e.g. unit commitment, load forecasting, Automatic Generation Control (AGC) reserve monitoring, ramp alerts) within two major EMS platforms. Objectives include: Engaging utility operations personnel to develop user input on displays, set expectations, test and review; Developing ease of use and timelinessmore » metrics for measuring enhancements; Developing prototype integrated capabilities within two operational EMS environments; Demonstrating an integrated decision analysis platform with real-time wind and solar forecasting information and timely distributed resource information; Seamlessly integrating new 4-dimensional information into operations without increasing workload and complexities; Developing sufficient analytics to inform and confidently transform and adopt new operating practices and procedures; Disseminating project lessons learned through industry sponsored workshops and conferences;Building on collaborative utility-vendor partnership and industry capabilities« less

  17. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Precipitation Forecasting

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles in clear and cloudy regions with accuracy which approaches that of radiosondes. The purpose of this paper is to describe an approach to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research WRF (ARW) model using WRF-Var. Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in clear and partly cloudy regions, and uncontaminated portions of retrievals above clouds in overcast regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts resulting from improved thermodynamic fields. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  18. A coupled human-natural system to assess the operational value of weather and climate services for agriculture

    NASA Astrophysics Data System (ADS)

    Li, Yu; Giuliani, Matteo; Castelletti, Andrea

    2017-09-01

    Recent advances in weather and climate (W&C) services are showing increasing forecast skills over seasonal and longer timescales, potentially providing valuable support in informing decisions in a variety of economic sectors. Quantifying this value, however, might not be straightforward as better forecast quality does not necessarily imply better decisions by the end users, especially when forecasts do not reach their final users, when providers are not trusted, or when forecasts are not appropriately understood. In this study, we contribute an assessment framework to evaluate the operational value of W&C services for informing agricultural practices by complementing traditional forecast quality assessments with a coupled human-natural system behavioural model which reproduces farmers' decisions. This allows a more critical assessment of the forecast value mediated by the end users' perspective, including farmers' risk attitudes and behavioural factors. The application to an agricultural area in northern Italy shows that the quality of state-of-the-art W&C services is still limited in predicting the weather and the crop yield of the incoming agricultural season, with ECMWF annual products simulated by the IFS/HOPE model resulting in the most skillful product in the study area. However, we also show that the accuracy of estimating crop yield and the probability of making optimal decisions are not necessarily linearly correlated, with the overall assessment procedure being strongly impacted by the behavioural attitudes of farmers, which can produce rank reversals in the quantification of the W&C services operational value depending on the different perceptions of risk and uncertainty.

  19. A Comparison of Forecast Error Generators for Modeling Wind and Load Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ning; Diao, Ruisheng; Hafen, Ryan P.

    2013-07-25

    This paper presents four algorithms to generate random forecast error time series. The performance of four algorithms is compared. The error time series are used to create real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast time series that statistically match historically observed forecasting data sets used in power grid operation to study the net load balancing need in variable generation integration studies. The four algorithms are truncated-normal distribution models, state-space based Markov models, seasonal autoregressive moving average (ARMA) models, and a stochastic-optimization based approach. The comparison is made using historical DA load forecast and actual load valuesmore » to generate new sets of DA forecasts with similar stoical forecast error characteristics (i.e., mean, standard deviation, autocorrelation, and cross-correlation). The results show that all methods generate satisfactory results. One method may preserve one or two required statistical characteristics better the other methods, but may not preserve other statistical characteristics as well compared with the other methods. Because the wind and load forecast error generators are used in wind integration studies to produce wind and load forecasts time series for stochastic planning processes, it is sometimes critical to use multiple methods to generate the error time series to obtain a statistically robust result. Therefore, this paper discusses and compares the capabilities of each algorithm to preserve the characteristics of the historical forecast data sets.« less

  20. A stochastic HMM-based forecasting model for fuzzy time series.

    PubMed

    Li, Sheng-Tun; Cheng, Yi-Chung

    2010-10-01

    Recently, fuzzy time series have attracted more academic attention than traditional time series due to their capability of dealing with the uncertainty and vagueness inherent in the data collected. The formulation of fuzzy relations is one of the key issues affecting forecasting results. Most of the present works adopt IF-THEN rules for relationship representation, which leads to higher computational overhead and rule redundancy. Sullivan and Woodall proposed a Markov-based formulation and a forecasting model to reduce computational overhead; however, its applicability is limited to handling one-factor problems. In this paper, we propose a novel forecasting model based on the hidden Markov model by enhancing Sullivan and Woodall's work to allow handling of two-factor forecasting problems. Moreover, in order to make the nature of conjecture and randomness of forecasting more realistic, the Monte Carlo method is adopted to estimate the outcome. To test the effectiveness of the resulting stochastic model, we conduct two experiments and compare the results with those from other models. The first experiment consists of forecasting the daily average temperature and cloud density in Taipei, Taiwan, and the second experiment is based on the Taiwan Weighted Stock Index by forecasting the exchange rate of the New Taiwan dollar against the U.S. dollar. In addition to improving forecasting accuracy, the proposed model adheres to the central limit theorem, and thus, the result statistically approximates to the real mean of the target value being forecast.

  1. Data Assimilation and Regional Forecasts Using Atmospheric InfraRed Sounder (AIRS) Profiles

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley; Jedlovec, Gary

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to optimally assimilate AIRS thermodynamic profiles--obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm-into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses will be used to conduct a month-long series of regional forecasts over the continental U.S. The long-tern1 impact of AIRS profiles on forecast will be assessed against verifying radiosonde and stage IV precipitation data.

  2. Data Assimilation and Regional Forecasts using Atmospheric InfraRed Sounder (AIRS) Profiles

    NASA Technical Reports Server (NTRS)

    Zabodsky, Brad; Chou, Shih-Hung; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which, together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radionsondes. The purpose of this poster is to describe a procedure to optimally assimilate AIRS thermodynamic profiles, obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm, into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The poster focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses are used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impact of AIRS profiles on forecast will be assessed against NAM analyses and stage IV precipitation data.

  3. Forecasting the quality of water-suppressed 1 H MR spectra based on a single-shot water scan.

    PubMed

    Kyathanahally, Sreenath P; Kreis, Roland

    2017-08-01

    To investigate whether an initial non-water-suppressed acquisition that provides information about the signal-to-noise ratio (SNR) and linewidth is enough to forecast the maximally achievable final spectral quality and thus inform the operator whether the foreseen number of averages and achieved field homogeneity is adequate. A large range of spectra with varying SNR and linewidth was simulated and fitted with popular fitting programs to determine the dependence of fitting errors on linewidth and SNR. A tool to forecast variance based on a single acquisition was developed and its performance evaluated on simulated and in vivo data obtained at 3 Tesla from various brain regions and acquisition settings. A strong correlation to real uncertainties in estimated metabolite contents was found for the forecast values and the Cramer-Rao lower bounds obtained from the water-suppressed spectra. It appears to be possible to forecast the best-case errors associated with specific metabolites to be found in model fits of water-suppressed spectra based on a single water scan. Thus, nonspecialist operators will be able to judge ahead of time whether the planned acquisition can possibly be of sufficient quality to answer the targeted clinical question or whether it needs more averages or improved shimming. Magn Reson Med 78:441-451, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  4. Proceedings of the First National Workshop on the Global Weather Experiment: Current Achievements and Future Directions, volume 2, part 1

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Topics covered include: data systems and quality; analysis and assimilation techniques; impacts on forecasts; tropical forecasts; analysis intercomparisons; improvements in predictability; and heat sources and sinks.

  5. 75 FR 69036 - Notice of Data Availability Regarding Potential Changes to Required Ozone Monitoring Seasons for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... is specifically considering how these more recent data could impact changes to the current and... reporting to the public, ozone forecasting programs, and the verification of real-time air quality forecast...

  6. Aggregate Resource Inventory and Needs Forecast Study : Final Report

    DOT National Transportation Integrated Search

    2002-09-01

    This study identified and inventoried ODOT-owned and leased aggregate sites throughout the state, assessing the : quality and estimated quantity of material. In addition, an aggregate needs forecast was prepared, projecting that : 60,801,320 Mg of ag...

  7. Eta-CMAQ Air Quality Forecasts for O3 and Related Species Using Three Different Photochemical Mechanisms (CB4, CB05, SAPRC-99): Comparisons with Measurements During the 2004 ICARTT Study

    EPA Science Inventory

    In this study, we compare the CB4, CB05 and SAPRC-99 mechanisms by examining the impact of these different chemical mechanisms on the Eta-CMAQ air quality forecast model simulations for O3 and its related precursors over the eastern US through comparisons with the inte...

  8. Impact of assimilating GOES imager clear-sky radiance with a rapid refresh assimilation system for convection-permitting forecast over Mexico

    NASA Astrophysics Data System (ADS)

    Yang, Chun; Liu, Zhiquan; Gao, Feng; Childs, Peter P.; Min, Jinzhong

    2017-05-01

    The Geostationary Operational Environmental Satellite (GOES) imager data could provide a continuous image of the evolutionary pattern of severe weather phenomena with its high spatial and temporal resolution. The capability to assimilate the GOES imager radiances has been developed within the Weather Research and Forecasting model's data assimilation system. Compared to the benchmark experiment with no GOES imager data, the impact of assimilating GOES imager radiances on the analysis and forecast of convective process over Mexico in 7-10 March 2016 was assessed through analysis/forecast cycling experiments using rapid refresh assimilation system with hybrid-3DEnVar scheme. With GOES imager radiance assimilation, better analyses were obtained in terms of the humidity, temperature, and simulated water vapor channel brightness temperature distribution. Positive forecast impacts from assimilating GOES imager radiance were seen when verified against the Tropospheric Airborne Meteorological Data Reporting observation, GOES imager observation, and Mexico station precipitation data.

  9. Forecast Modelling via Variations in Binary Image-Encoded Information Exploited by Deep Learning Neural Networks.

    PubMed

    Liu, Da; Xu, Ming; Niu, Dongxiao; Wang, Shoukai; Liang, Sai

    2016-01-01

    Traditional forecasting models fit a function approximation from dependent invariables to independent variables. However, they usually get into trouble when date are presented in various formats, such as text, voice and image. This study proposes a novel image-encoded forecasting method that input and output binary digital two-dimensional (2D) images are transformed from decimal data. Omitting any data analysis or cleansing steps for simplicity, all raw variables were selected and converted to binary digital images as the input of a deep learning model, convolutional neural network (CNN). Using shared weights, pooling and multiple-layer back-propagation techniques, the CNN was adopted to locate the nexus among variations in local binary digital images. Due to the computing capability that was originally developed for binary digital bitmap manipulation, this model has significant potential for forecasting with vast volume of data. The model was validated by a power loads predicting dataset from the Global Energy Forecasting Competition 2012.

  10. Appendix I1-2 to Wind HUI Initiative 1: Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Zack; Deborah Hanley; Dora Nakafuji

    This report is an appendix to the Hawaii WindHUI efforts to dev elop and operationalize short-term wind forecasting and wind ramp event forecasting capabilities. The report summarizes the WindNET field campaign deployment experiences and challenges. As part of the WindNET project on the Big Island of Hawaii, AWS Truepower (AWST) conducted a field campaign to assess the viability of deploying a network of monitoring systems to aid in local wind energy forecasting. The data provided at these monitoring locations, which were strategically placed around the Big Island of Hawaii based upon results from the Oahu Wind Integration and Transmission Studymore » (OWITS) observational targeting study (Figure 1), provided predictive indicators for improving wind forecasts and developing responsive strategies for managing real-time, wind-related system events. The goal of the field campaign was to make measurements from a network of remote monitoring devices to improve 1- to 3-hour look ahead forecasts for wind facilities.« less

  11. Forecast Modelling via Variations in Binary Image-Encoded Information Exploited by Deep Learning Neural Networks

    PubMed Central

    Xu, Ming; Niu, Dongxiao; Wang, Shoukai; Liang, Sai

    2016-01-01

    Traditional forecasting models fit a function approximation from dependent invariables to independent variables. However, they usually get into trouble when date are presented in various formats, such as text, voice and image. This study proposes a novel image-encoded forecasting method that input and output binary digital two-dimensional (2D) images are transformed from decimal data. Omitting any data analysis or cleansing steps for simplicity, all raw variables were selected and converted to binary digital images as the input of a deep learning model, convolutional neural network (CNN). Using shared weights, pooling and multiple-layer back-propagation techniques, the CNN was adopted to locate the nexus among variations in local binary digital images. Due to the computing capability that was originally developed for binary digital bitmap manipulation, this model has significant potential for forecasting with vast volume of data. The model was validated by a power loads predicting dataset from the Global Energy Forecasting Competition 2012. PMID:27281032

  12. NOAA's National Air Quality Prediction and Development of Aerosol and Atmospheric Composition Prediction Components for NGGPS

    NASA Astrophysics Data System (ADS)

    Stajner, I.; McQueen, J.; Lee, P.; Stein, A. F.; Wilczak, J. M.; Upadhayay, S.; daSilva, A.; Lu, C. H.; Grell, G. A.; Pierce, R. B.

    2017-12-01

    NOAA's operational air quality predictions of ozone, fine particulate matter (PM2.5) and wildfire smoke over the United States and airborne dust over the contiguous 48 states are distributed at http://airquality.weather.gov. The National Air Quality Forecast Capability (NAQFC) providing these predictions was updated in June 2017. Ozone and PM2.5 predictions are now produced using the system linking the Community Multiscale Air Quality model (CMAQ) version 5.0.2 with meteorological inputs from the North American Mesoscale Forecast System (NAM) version 4. Predictions of PM2.5 include intermittent dust emissions and wildfire emissions from an updated version of BlueSky system. For the latter, the CMAQ system is initialized by rerunning it over the previous 24 hours to include wildfire emissions at the time when they were observed from the satellites. Post processing to reduce the bias in PM2.5 prediction was updated using the Kalman filter analog (KFAN) technique. Dust related aerosol species at the CMAQ domain lateral boundaries now come from the NEMS Global Aerosol Component (NGAC) v2 predictions. Further development of NAQFC includes testing of CMAQ predictions to 72 hours, Canadian fire emissions data from Environment and Climate Change Canada (ECCC) and the KFAN technique to reduce bias in ozone predictions. NOAA is developing the Next Generation Global Predictions System (NGGPS) with an aerosol and gaseous atmospheric composition component to improve and integrate aerosol and ozone predictions and evaluate their impacts on physics, data assimilation and weather prediction. Efforts are underway to improve cloud microphysics, investigate aerosol effects and include representations of atmospheric composition of varying complexity into NGGPS: from the operational ozone parameterization, GOCART aerosols, with simplified ozone chemistry, to CMAQ chemistry with aerosol modules. We will present progress on community building, planning and development of NGGPS.

  13. Air quality early-warning system for cities in China

    NASA Astrophysics Data System (ADS)

    Xu, Yunzhen; Yang, Wendong; Wang, Jianzhou

    2017-01-01

    Air pollution has become a serious issue in many developing countries, especially in China, and could generate adverse effects on human beings. Air quality early-warning systems play an increasingly significant role in regulatory plans that reduce and control emissions of air pollutants and inform the public in advance when harmful air pollution is foreseen. However, building a robust early-warning system that will improve the ability of early-warning is not only a challenge but also a critical issue for the entire society. Relevant research is still poor in China and cannot always satisfy the growing requirements of regulatory planning, despite the issue's significance. Therefore, in this paper, a hybrid air quality early-warning system was successfully developed, composed of forecasting and evaluation. First, a hybrid forecasting model was proposed as an important part of this system based on the theory of "decomposition and ensemble" and combined with the advanced data processing technique, support vector machine, the latest bio-inspired optimization algorithm and the leave-one-out strategy for deciding weights. Afterwards, to intensify the research, fuzzy evaluation was performed, which also plays an indispensable role in the early-warning system. The forecasting model and fuzzy evaluation approaches are complementary. Case studies using daily air pollution concentrations of six air pollutants from three cities in China (i.e., Taiyuan, Harbin and Chongqing) are used as examples to evaluate the efficiency and effectiveness of the developed air quality early-warning system. Experimental results demonstrate that both the accuracy and the effectiveness of the developed system are greatly superior for air quality early warning. Furthermore, the application of forecasting and evaluation enables the informative and effective quantification of future air quality, offering a significant advantage, and can be employed to develop rapid air quality early-warning systems.

  14. Evaluation and intercomparison of air quality forecasts over Korea during the KORUS-AQ campaign

    NASA Astrophysics Data System (ADS)

    Lee, Seungun; Park, Rokjin J.; Kim, Soontae; Song, Chul H.; Kim, Cheol-Hee; Woo, Jung-Hun

    2017-04-01

    We evaluate and intercompare ozone and aerosol simulations over Korea during the KORUS-AQ campaign, which was conducted in May-June 2016. Four global and regional air quality models participated in the campaign and provided daily air quality forecasts over Korea to guide aircraft flight paths for detecting air pollution events over Korean peninsula and its nearby oceans. We first evaluate the model performance by comparing simulated and observed hourly surface ozone and PM2.5 concentrations at ground sites in Korea and find that the models successfully capture intermittent air pollution events and reproduce the daily variation of ozone and PM2.5 concentrations. However, significant underestimates of peak ozone concentrations in the afternoon are also found in most models. Among chemical constituents of PM2.5, the models typically overestimate observed nitrate aerosol concentrations and underestimate organic aerosol concentrations, although the observed mass concentrations of PM2.5 are seemingly reproduced by the models. In particular, all models used the same anthropogenic emission inventory (KU-CREATE) for daily air quality forecast, but they show a considerable discrepancy for ozone and aerosols. Compared to individual model results, the ensemble mean of all models shows the best performance with correlation coefficients of 0.73 for ozone and 0.57 for PM2.5. We here investigate contributing factors to the discrepancy, which will serve as a guidance to improve the performance of the air quality forecast.

  15. USA Nutrient managment forecasting via the "Fertilizer Forecaster": linking surface runnof, nutrient application and ecohydrology.

    NASA Astrophysics Data System (ADS)

    Drohan, Patrick; Buda, Anthony; Kleinman, Peter; Miller, Douglas; Lin, Henry; Beegle, Douglas; Knight, Paul

    2017-04-01

    USA and state nutrient management planning offers strategic guidance that strives to educate farmers and those involved in nutrient management to make wise management decisions. A goal of such programs is to manage hotspots of water quality degradation that threaten human and ecosystem health, water and food security. The guidance provided by nutrient management plans does not provide the day-to-day support necessary to make operational decisions, particularly when and where to apply nutrients over the short term. These short-term decisions on when and where to apply nutrients often make the difference between whether the nutrients impact water quality or are efficiently utilized by crops. Infiltrating rainfall events occurring shortly after broadcast nutrient applications are beneficial, given they will wash soluble nutrients into the soil where they are used by crops. Rainfall events that generate runoff shortly after nutrients are broadcast may wash off applied nutrients, and produce substantial nutrient losses from that site. We are developing a model and data based support tool for nutrient management, the Fertilizer Forecaster, which identifies the relative probability of runoff or infiltrating events in Pennsylvania (PA) landscapes in order to improve water quality. This tool will support field specific decisions by farmers and land managers on when and where to apply fertilizers and manures over 24, 48 and 72 hour periods. Our objectives are to: (1) monitor agricultural hillslopes in watersheds representing four of the five Physiographic Provinces of the Chesapeake Bay basin; (2) validate a high resolution mapping model that identifies soils prone to runoff; (3) develop an empirically based approach to relate state-of-the-art weather forecast variables to site-specific rainfall infiltration or runoff occurrence; (4) test the empirical forecasting model against alternative approaches to forecasting runoff occurrence; and (5) recruit farmers from the four watersheds to use web-based forecast maps in daily manure and fertilizer application decisions. Data from on-farm trials is being used to assess farmer fertilizer, manure, and tillage management decisions before and after use of the Fertilizer Forecaster. This data will help us understand not only the effectiveness of the tool, but also characteristics of farmers with the greatest potential to benefit from such a tool. Feedback from on-farm trials will be used to refine a final tool for field deployment. We hope that the Fertilizer Forecaster will serve as the basis for state (USA-PA), regional (Chesapeake Bay), and national changes in nutrient management planning. This Fertilizer Forecaster is an innovative management practice that is designed to enhance the services of aquatic ecosystems by improving water quality and enhance the services of terrestrial ecosystems by increasing the efficiency of nutrient use by targeted crops.

  16. Simple statistical bias correction techniques greatly improve moderate resolution air quality forecast at station level

    NASA Astrophysics Data System (ADS)

    Curci, Gabriele; Falasca, Serena

    2017-04-01

    Deterministic air quality forecast is routinely carried out at many local Environmental Agencies in Europe and throughout the world by means of eulerian chemistry-transport models. The skill of these models in predicting the ground-level concentrations of relevant pollutants (ozone, nitrogen dioxide, particulate matter) a few days ahead has greatly improved in recent years, but it is not yet always compliant with the required quality level for decision making (e.g. the European Commission has set a maximum uncertainty of 50% on daily values of relevant pollutants). Post-processing of deterministic model output is thus still regarded as a useful tool to make the forecast more reliable. In this work, we test several bias correction techniques applied to a long-term dataset of air quality forecasts over Europe and Italy. We used the WRF-CHIMERE modelling system, which provides operational experimental chemical weather forecast at CETEMPS (http://pumpkin.aquila.infn.it/forechem/), to simulate the years 2008-2012 at low resolution over Europe (0.5° x 0.5°) and moderate resolution over Italy (0.15° x 0.15°). We compared the simulated dataset with available observation from the European Environmental Agency database (AirBase) and characterized model skill and compliance with EU legislation using the Delta tool from FAIRMODE project (http://fairmode.jrc.ec.europa.eu/). The bias correction techniques adopted are, in order of complexity: (1) application of multiplicative factors calculated as the ratio of model-to-observed concentrations averaged over the previous days; (2) correction of the statistical distribution of model forecasts, in order to make it similar to that of the observations; (3) development and application of Model Output Statistics (MOS) regression equations. We illustrate differences and advantages/disadvantages of the three approaches. All the methods are relatively easy to implement for other modelling systems.

  17. The Betting Odds Rating System: Using soccer forecasts to forecast soccer.

    PubMed

    Wunderlich, Fabian; Memmert, Daniel

    2018-01-01

    Betting odds are frequently found to outperform mathematical models in sports related forecasting tasks, however the factors contributing to betting odds are not fully traceable and in contrast to rating-based forecasts no straightforward measure of team-specific quality is deducible from the betting odds. The present study investigates the approach of combining the methods of mathematical models and the information included in betting odds. A soccer forecasting model based on the well-known ELO rating system and taking advantage of betting odds as a source of information is presented. Data from almost 15.000 soccer matches (seasons 2007/2008 until 2016/2017) are used, including both domestic matches (English Premier League, German Bundesliga, Spanish Primera Division and Italian Serie A) and international matches (UEFA Champions League, UEFA Europe League). The novel betting odds based ELO model is shown to outperform classic ELO models, thus demonstrating that betting odds prior to a match contain more relevant information than the result of the match itself. It is shown how the novel model can help to gain valuable insights into the quality of soccer teams and its development over time, thus having a practical benefit in performance analysis. Moreover, it is argued that network based approaches might help in further improving rating and forecasting methods.

  18. The Betting Odds Rating System: Using soccer forecasts to forecast soccer

    PubMed Central

    Memmert, Daniel

    2018-01-01

    Betting odds are frequently found to outperform mathematical models in sports related forecasting tasks, however the factors contributing to betting odds are not fully traceable and in contrast to rating-based forecasts no straightforward measure of team-specific quality is deducible from the betting odds. The present study investigates the approach of combining the methods of mathematical models and the information included in betting odds. A soccer forecasting model based on the well-known ELO rating system and taking advantage of betting odds as a source of information is presented. Data from almost 15.000 soccer matches (seasons 2007/2008 until 2016/2017) are used, including both domestic matches (English Premier League, German Bundesliga, Spanish Primera Division and Italian Serie A) and international matches (UEFA Champions League, UEFA Europe League). The novel betting odds based ELO model is shown to outperform classic ELO models, thus demonstrating that betting odds prior to a match contain more relevant information than the result of the match itself. It is shown how the novel model can help to gain valuable insights into the quality of soccer teams and its development over time, thus having a practical benefit in performance analysis. Moreover, it is argued that network based approaches might help in further improving rating and forecasting methods. PMID:29870554

  19. Estimating the Value of Improved Distributed Photovoltaic Adoption Forecasts for Utility Resource Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagnon, Pieter; Barbose, Galen L.; Stoll, Brady

    Misforecasting the adoption of customer-owned distributed photovoltaics (DPV) can have operational and financial implications for utilities; forecasting capabilities can be improved, but generally at a cost. This paper informs this decision-space by using a suite of models to explore the capacity expansion and operation of the Western Interconnection over a 15-year period across a wide range of DPV growth rates and misforecast severities. The system costs under a misforecast are compared against the costs under a perfect forecast, to quantify the costs of misforecasting. Using a simplified probabilistic method applied to these modeling results, an analyst can make a first-ordermore » estimate of the financial benefit of improving a utility’s forecasting capabilities, and thus be better informed about whether to make such an investment. For example, under our base assumptions, a utility with 10 TWh per year of retail electric sales who initially estimates that DPV growth could range from 2% to 7.5% of total generation over the next 15 years could expect total present-value savings of approximately $4 million if they could reduce the severity of misforecasting to within ±25%. Utility resource planners can compare those savings against the costs needed to achieve that level of precision, to guide their decision on whether to make an investment in tools or resources.« less

  20. Solar particle event predictions for manned Mars missions

    NASA Technical Reports Server (NTRS)

    Heckman, Gary

    1986-01-01

    Manned space missions to Mars require consideration of the effects of high radiation doses produced by solar particle events (SPE). Without some provision for protection, the radiation doses from such events can exceed standards for maximum exposure and may be life threatening. Several alternative ways of providing protection require a capability for predicting SPE in time to take some protective actions. The SPE may occur at any time during the eleven year solar cycle so that two year missions cannot be scheduled to insure avoiding them although they are less likely to occur at solar minimum. The present forecasts are sufficiently accurate to use for setting alert modes but are not accurate enough to make yes/no decisions that have major mission operational impacts. Forecasts made for one to two year periods can only be done as probabilistic forecasts where there is a chance of SPE occurring. These are current capabilities but are not likely to change significantly by the year 2000 with the exception of some improvement in the one to ten day forecasts. The effects of SPE are concentrated in solar longitudes near where their parent solar flares occur, which will require a manned Mars mission to carry its own small solar telescope to monitor the development of potentially dangerous solar activity. The preferred telescope complement includes a solar X-ray imager, a hydrogen-alpha scanner, and a solar magnetograph.

  1. Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Limaye, Ashutosh S.; Srikishen, Jayanthi

    2011-01-01

    Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula s "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA s National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA s SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT s experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by geostationary satellite observations processed on virtual machines powered by Nebula.

  2. Adaptive use of research aircraft data sets for hurricane forecasts

    NASA Astrophysics Data System (ADS)

    Biswas, M. K.; Krishnamurti, T. N.

    2008-02-01

    This study uses an adaptive observational strategy for hurricane forecasting. It shows the impacts of Lidar Atmospheric Sensing Experiment (LASE) and dropsonde data sets from Convection and Moisture Experiment (CAMEX) field campaigns on hurricane track and intensity forecasts. The following cases are used in this study: Bonnie, Danielle and Georges of 1998 and Erin, Gabrielle and Humberto of 2001. A single model run for each storm is carried out using the Florida State University Global Spectral Model (FSUGSM) with the European Center for Medium Range Weather Forecasts (ECMWF) analysis as initial conditions, in addition to 50 other model runs where the analysis is randomly perturbed for each storm. The centers of maximum variance of the DLM heights are located from the forecast error variance fields at the 84-hr forecast. Back correlations are then performed using the centers of these maximum variances and the fields at the 36-hr forecast. The regions having the highest correlations in the vicinity of the hurricanes are indicative of regions from where the error growth emanates and suggests the need for additional observations. Data sets are next assimilated in those areas that contain high correlations. Forecasts are computed using the new initial conditions for the storm cases, and track and intensity skills are then examined with respect to the control forecast. The adaptive strategy is capable of identifying sensitive areas where additional observations can help in reducing the hurricane track forecast errors. A reduction of position error by approximately 52% for day 3 of forecast (averaged over 7 storm cases) over the control runs is observed. The intensity forecast shows only a slight positive impact due to the model’s coarse resolution.

  3. Urban Air Quality Modelling with AURORA: Prague and Bratislava

    NASA Astrophysics Data System (ADS)

    Veldeman, N.; Viaene, P.; De Ridder, K.; Peelaerts, W.; Lauwaet, D.; Muhammad, N.; Blyth, L.

    2012-04-01

    The European Commission, in its strategy to protect the health of the European citizens, states that in order to assess the impact of air pollution on public health, information on long-term exposure to air pollution should be available. Currently, indicators of air quality are often being generated using measured pollutant concentrations. While air quality monitoring stations data provide accurate time series information at specific locations, air quality models have the advantage of being able to assess the spatial variability of air quality (for different resolutions) and predict air quality in the future based on different scenarios. When running such air quality models at a high spatial and temporal resolution, one can simulate the actual situation as closely as possible, allowing for a detailed assessment of the risk of exposure to citizens from different pollutants. AURORA (Air quality modelling in Urban Regions using an Optimal Resolution Approach), a prognostic 3-dimensional Eulerian chemistry-transport model, is designed to simulate urban- to regional-scale atmospheric pollutant concentration and exposure fields. The AURORA model also allows to calculate the impact of changes in land use (e.g. planting of trees) or of emission reduction scenario's on air quality. AURORA is currently being applied within the ESA atmospheric GMES service, PASODOBLE (http://www.myair-eu.org), that delivers information on air quality, greenhouse gases, stratospheric ozone, … At present there are two operational AURORA services within PASODOBLE. Within the "Air quality forecast service" VITO delivers daily air quality forecasts for Belgium at a resolution of 5 km and for the major Belgian cities: Brussels, Ghent, Antwerp, Liege and Charleroi. Furthermore forecast services are provided for Prague, Czech Republic and Bratislava, Slovakia, both at a resolution of 1 km. The "Urban/regional air quality assessment service" provides urban- and regional-scale maps (hourly resolution) for air pollution and human exposure statistics for an entire year. So far we concentrated on Brussels, Belgium and the Rotterdam harbour area, The Netherlands. In this contribution we focus on the operational forecast services. Reference Lefebvre W. et al. (2011) Validation of the MIMOSA-AURORA-IFDM model chain for policy support: Modeling concentrations of elemental carbon in Flanders, Atmospheric Environment 45, 6705-6713

  4. Short-term electric power demand forecasting based on economic-electricity transmission model

    NASA Astrophysics Data System (ADS)

    Li, Wenfeng; Bai, Hongkun; Liu, Wei; Liu, Yongmin; Wang, Yubin Mao; Wang, Jiangbo; He, Dandan

    2018-04-01

    Short-term electricity demand forecasting is the basic work to ensure safe operation of the power system. In this paper, a practical economic electricity transmission model (EETM) is built. With the intelligent adaptive modeling capabilities of Prognoz Platform 7.2, the econometric model consists of three industrial added value and income levels is firstly built, the electricity demand transmission model is also built. By multiple regression, moving averages and seasonal decomposition, the problem of multiple correlations between variables is effectively overcome in EETM. The validity of EETM is proved by comparison with the actual value of Henan Province. Finally, EETM model is used to forecast the electricity consumption of the 1-4 quarter of 2018.

  5. Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoff, Thomas Hoff; Kankiewicz, Adam

    Four major research objectives were completed over the course of this study. Three of the objectives were to evaluate three, new, state-of-the-art solar irradiance forecasting models. The fourth objective was to improve the California Independent System Operator’s (ISO) load forecasts by integrating behind-the-meter (BTM) PV forecasts. The three, new, state-of-the-art solar irradiance forecasting models included: the infrared (IR) satellite-based cloud motion vector (CMV) model; the WRF-SolarCA model and variants; and the Optimized Deep Machine Learning (ODML)-training model. The first two forecasting models targeted known weaknesses in current operational solar forecasts. They were benchmarked against existing operational numerical weather prediction (NWP)more » forecasts, visible satellite CMV forecasts, and measured PV plant power production. IR CMV, WRF-SolarCA, and ODML-training forecasting models all improved the forecast to a significant degree. Improvements varied depending on time of day, cloudiness index, and geographic location. The fourth objective was to demonstrate that the California ISO’s load forecasts could be improved by integrating BTM PV forecasts. This objective represented the project’s most exciting and applicable gains. Operational BTM forecasts consisting of 200,000+ individual rooftop PV forecasts were delivered into the California ISO’s real-time automated load forecasting (ALFS) environment. They were then evaluated side-by-side with operational load forecasts with no BTM-treatment. Overall, ALFS-BTM day-ahead (DA) forecasts performed better than baseline ALFS forecasts when compared to actual load data. Specifically, ALFS-BTM DA forecasts were observed to have the largest reduction of error during the afternoon on cloudy days. Shorter term 30 minute-ahead ALFS-BTM forecasts were shown to have less error under all sky conditions, especially during the morning time periods when traditional load forecasts often experience their largest uncertainties. This work culminated in a GO decision being made by the California ISO to include zonal BTM forecasts into its operational load forecasting system. The California ISO’s Manager of Short Term Forecasting, Jim Blatchford, summarized the research performed in this project with the following quote: “The behind-the-meter (BTM) California ISO region forecasting research performed by Clean Power Research and sponsored by the Department of Energy’s SUNRISE program was an opportunity to verify value and demonstrate improved load forecast capability. In 2016, the California ISO will be incorporating the BTM forecast into the Hour Ahead and Day Ahead load models to look for improvements in the overall load forecast accuracy as BTM PV capacity continues to grow.”« less

  6. Distributed HUC-based modeling with SUMMA for ensemble streamflow forecasting over large regional domains.

    NASA Astrophysics Data System (ADS)

    Saharia, M.; Wood, A.; Clark, M. P.; Bennett, A.; Nijssen, B.; Clark, E.; Newman, A. J.

    2017-12-01

    Most operational streamflow forecasting systems rely on a forecaster-in-the-loop approach in which some parts of the forecast workflow require an experienced human forecaster. But this approach faces challenges surrounding process reproducibility, hindcasting capability, and extension to large domains. The operational hydrologic community is increasingly moving towards `over-the-loop' (completely automated) large-domain simulations yet recent developments indicate a widespread lack of community knowledge about the strengths and weaknesses of such systems for forecasting. A realistic representation of land surface hydrologic processes is a critical element for improving forecasts, but often comes at the substantial cost of forecast system agility and efficiency. While popular grid-based models support the distributed representation of land surface processes, intermediate-scale Hydrologic Unit Code (HUC)-based modeling could provide a more efficient and process-aligned spatial discretization, reducing the need for tradeoffs between model complexity and critical forecasting requirements such as ensemble methods and comprehensive model calibration. The National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the USACE to implement, assess, and demonstrate real-time, over-the-loop distributed streamflow forecasting for several large western US river basins and regions. In this presentation, we present early results from short to medium range hydrologic and streamflow forecasts for the Pacific Northwest (PNW). We employ a real-time 1/16th degree daily ensemble model forcings as well as downscaled Global Ensemble Forecasting System (GEFS) meteorological forecasts. These datasets drive an intermediate-scale configuration of the Structure for Unifying Multiple Modeling Alternatives (SUMMA) model, which represents the PNW using over 11,700 HUCs. The system produces not only streamflow forecasts (using the MizuRoute channel routing tool) but also distributed model states such as soil moisture and snow water equivalent. We also describe challenges in distributed model-based forecasting, including the application and early results of real-time hydrologic data assimilation.

  7. Comparative Study of Standards for Grid-Connected Wind Power Plant in China and the U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Wenzhong; Tian, Tian; Muljadi, Eduard

    2015-10-06

    The rapid deployment of wind power has made grid integration and operational issues focal points in industry discussions and research. Compliance with grid connection standards for wind power plants (WPP) is crucial to ensuring the safe and stable operation of the electric power grid. The standards for grid-connected WPPs in China and the United States are compared in this paper to facilitate further improvements to the standards and enhance the development of wind power equipment. Detailed analyses in power quality, low-voltage ride-through capability, active power control, reactive power control, voltage control, and wind power forecasting are provided to enhance themore » understanding of grid codes in the two largest markets of wind power.« less

  8. Self-Organizing Maps-based ocean currents forecasting system.

    PubMed

    Vilibić, Ivica; Šepić, Jadranka; Mihanović, Hrvoje; Kalinić, Hrvoje; Cosoli, Simone; Janeković, Ivica; Žagar, Nedjeljka; Jesenko, Blaž; Tudor, Martina; Dadić, Vlado; Ivanković, Damir

    2016-03-16

    An ocean surface currents forecasting system, based on a Self-Organizing Maps (SOM) neural network algorithm, high-frequency (HF) ocean radar measurements and numerical weather prediction (NWP) products, has been developed for a coastal area of the northern Adriatic and compared with operational ROMS-derived surface currents. The two systems differ significantly in architecture and algorithms, being based on either unsupervised learning techniques or ocean physics. To compare performance of the two methods, their forecasting skills were tested on independent datasets. The SOM-based forecasting system has a slightly better forecasting skill, especially during strong wind conditions, with potential for further improvement when data sets of higher quality and longer duration are used for training.

  9. Self-Organizing Maps-based ocean currents forecasting system

    PubMed Central

    Vilibić, Ivica; Šepić, Jadranka; Mihanović, Hrvoje; Kalinić, Hrvoje; Cosoli, Simone; Janeković, Ivica; Žagar, Nedjeljka; Jesenko, Blaž; Tudor, Martina; Dadić, Vlado; Ivanković, Damir

    2016-01-01

    An ocean surface currents forecasting system, based on a Self-Organizing Maps (SOM) neural network algorithm, high-frequency (HF) ocean radar measurements and numerical weather prediction (NWP) products, has been developed for a coastal area of the northern Adriatic and compared with operational ROMS-derived surface currents. The two systems differ significantly in architecture and algorithms, being based on either unsupervised learning techniques or ocean physics. To compare performance of the two methods, their forecasting skills were tested on independent datasets. The SOM-based forecasting system has a slightly better forecasting skill, especially during strong wind conditions, with potential for further improvement when data sets of higher quality and longer duration are used for training. PMID:26979129

  10. Probabilistic Predictions of PM2.5 Using a Novel Ensemble Design for the NAQFC

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Lee, J. A.; Delle Monache, L.; Alessandrini, S.; Lee, P.

    2017-12-01

    Poor air quality (AQ) in the U.S. is estimated to cause about 60,000 premature deaths with costs of 100B-150B annually. To reduce such losses, the National AQ Forecasting Capability (NAQFC) at the National Oceanic and Atmospheric Administration (NOAA) produces forecasts of ozone, particulate matter less than 2.5 mm in diameter (PM2.5), and other pollutants so that advance notice and warning can be issued to help individuals and communities limit the exposure and reduce air pollution-caused health problems. The current NAQFC, based on the U.S. Environmental Protection Agency Community Multi-scale AQ (CMAQ) modeling system, provides only deterministic AQ forecasts and does not quantify the uncertainty associated with the predictions, which could be large due to the chaotic nature of atmosphere and nonlinearity in atmospheric chemistry. This project aims to take NAQFC a step further in the direction of probabilistic AQ prediction by exploring and quantifying the potential value of ensemble predictions of PM2.5, and perturbing three key aspects of PM2.5 modeling: the meteorology, emissions, and CMAQ secondary organic aerosol formulation. This presentation focuses on the impact of meteorological variability, which is represented by three members of NOAA's Short-Range Ensemble Forecast (SREF) system that were down-selected by hierarchical cluster analysis. These three SREF members provide the physics configurations and initial/boundary conditions for the Weather Research and Forecasting (WRF) model runs that generate required output variables for driving CMAQ that are missing in operational SREF output. We conducted WRF runs for Jan, Apr, Jul, and Oct 2016 to capture seasonal changes in meteorology. Estimated emissions of trace gases and aerosols via the Sparse Matrix Operator Kernel (SMOKE) system were developed using the WRF output. WRF and SMOKE output drive a 3-member CMAQ mini-ensemble of once-daily, 48-h PM2.5 forecasts for the same four months. The CMAQ mini-ensemble is evaluated against both observations and the current operational deterministic NAQFC products, and analyzed to assess the impact of meteorological biases on PM2.5 variability. Quantification of the PM2.5 prediction uncertainty will prove a key factor to support cost-effective decision-making while protecting public health.

  11. Weather Prediction Improvement Using Advanced Satellite Technology

    NASA Technical Reports Server (NTRS)

    Einaudi, Franco; Uccellini, L.; Purdom, J.; Rogers, D.; Gelaro, R.; Dodge, J.; Atlas, R.; Lord, S.

    2001-01-01

    We discuss in this paper some of the problems that exist today in the fall utilization of satellite data to improve weather forecasts and we propose specific recommendations to solve them. This discussion can be viewed as an aspect of the general debate on how best to organize the transition from research to operational satellites and how to evaluate the impact of a research instrument on numerical weather predictions. A method for providing this transition is offered by the National Polar-Orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP). This mission will bridge the time between the present NOAA and Department of Defense (DOD) polar orbiting missions and the initiation of the converged NPOESS series and will evaluate some of the Earth Observing System (EOS) instruments as appropriate for operational missions. Thus, this mission can be viewed as an effort to meet the operational requirements of NOAA and DOD and the research requirements of NASA. More generally, however, it can be said that the process of going from the conception of new, more advanced instruments to their operational implementation and full utilization by the weather forecast communities is not optimal. Instruments developed for research purposes may have insufficient funding to explore their potential operational capabilities. Furthermore, instrument development programs designed for operational satellites typically have insufficient funding for assimilation algorithms needed to transform the satellite observations into data that can be used by sophisticated global weather forecast models. As a result, years often go by before satellite data are efficiently used for operational forecasts. NASA and NOAA each have unique expertise in the design of satellite instruments, their use for basic and applied research and their utilization in weather and climate research. At a time of limited resources, the two agencies must combine their efforts to work toward common goals of full utilization of satellite data. This is a challenge that requires the assimilation of myriad new data into increasingly sophisticated numerical forecast models that run on increasingly sophisticated computer systems. In section II, we briefly outline the impact of satellite data on the quality of the National Centers for Environmental Prediction (NCEP) forecasts. In section III, we describe the present status of the utilization of satellite data in NCEP models and the challenges that lie ahead. In section IV, we propose solutions whose goals are summarized in section V.

  12. Road Weather and Connected Vehicles

    NASA Astrophysics Data System (ADS)

    Pisano, P.; Boyce, B. C.

    2015-12-01

    On average, there are over 5.8 M vehicle crashes each year of which 23% are weather-related. Weather-related crashes are defined as those crashes that occur in adverse weather or on slick pavement. The vast majority of weather-related crashes happen on wet pavement (74%) and during rainfall (46%). Connected vehicle technologies hold the promise to transform road-weather management by providing improved road weather data in real time with greater temporal and geographic accuracy. This will dramatically expand the amount of data that can be used to assess, forecast, and address the impacts that weather has on roads, vehicles, and travelers. The use of vehicle-based measurements of the road and surrounding atmosphere with other, more traditional weather data sources, and create road and atmospheric hazard products for a variety of users. The broad availability of road weather data from mobile sources will vastly improve the ability to detect and forecast weather and road conditions, and will provide the capability to manage road-weather response on specific roadway links. The RWMP is currently demonstrating how weather, road conditions, and related vehicle data can be used for decision making through an innovative Integrated Mobile Observations project. FHWA is partnering with 3 DOTs (MN, MI, & NV) to pilot these applications. One is a mobile alerts application called the Motorists Advisories and Warnings (MAW) and a maintenance decision support application. These applications blend traditional weather information (e.g., radar, surface stations) with mobile vehicle data (e.g., temperature, brake status, wiper status) to determine current weather conditions. These weather conditions, and other road-travel-relevant information, are provided to users via web and phone applications. The MAW provides nowcasts and short-term forecasts out to 24 hours while the EMDSS application can provide forecasts up to 72 hours in advance. The three DOTs have placed readers and external road weather sensors on their maintenance fleet vehicles to collect vehicular and meteorological data. Data from all three states is sent to a processing system called the Pikalert® Vehicle Data Translator (VDT) that quality checks and uses the data to infer current and forecasted weather conditions.

  13. Solar Atmosphere to Earth's Surface: Long Lead Time dB/dt Predictions with the Space Weather Modeling Framework

    NASA Astrophysics Data System (ADS)

    Welling, D. T.; Manchester, W.; Savani, N.; Sokolov, I.; van der Holst, B.; Jin, M.; Toth, G.; Liemohn, M. W.; Gombosi, T. I.

    2017-12-01

    The future of space weather prediction depends on the community's ability to predict L1 values from observations of the solar atmosphere, which can yield hours of lead time. While both empirical and physics-based L1 forecast methods exist, it is not yet known if this nascent capability can translate to skilled dB/dt forecasts at the Earth's surface. This paper shows results for the first forecast-quality, solar-atmosphere-to-Earth's-surface dB/dt predictions. Two methods are used to predict solar wind and IMF conditions at L1 for several real-world coronal mass ejection events. The first method is an empirical and observationally based system to estimate the plasma characteristics. The magnetic field predictions are based on the Bz4Cast system which assumes that the CME has a cylindrical flux rope geometry locally around Earth's trajectory. The remaining plasma parameters of density, temperature and velocity are estimated from white-light coronagraphs via a variety of triangulation methods and forward based modelling. The second is a first-principles-based approach that combines the Eruptive Event Generator using Gibson-Low configuration (EEGGL) model with the Alfven Wave Solar Model (AWSoM). EEGGL specifies parameters for the Gibson-Low flux rope such that it erupts, driving a CME in the coronal model that reproduces coronagraph observations and propagates to 1AU. The resulting solar wind predictions are used to drive the operational Space Weather Modeling Framework (SWMF) for geospace. Following the configuration used by NOAA's Space Weather Prediction Center, this setup couples the BATS-R-US global magnetohydromagnetic model to the Rice Convection Model (RCM) ring current model and a height-integrated ionosphere electrodynamics model. The long lead time predictions of dB/dt are compared to model results that are driven by L1 solar wind observations. Both are compared to real-world observations from surface magnetometers at a variety of geomagnetic latitudes. Metrics are calculated to examine how the simulated solar wind drivers impact forecast skill. These results illustrate the current state of long-lead-time forecasting and the promise of this technology for operational use.

  14. Current Usage and Future Prospects of Multispectral (RGB) Satellite Imagery in Support of NWS Forecast Offices and National Centers

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Fuell, Kevin K.; Knaff, John; Lee, Thomas

    2012-01-01

    Current and future satellite sensors provide remotely sensed quantities from a variety of wavelengths ranging from the visible to the passive microwave, from both geostationary and low-Earth orbits. The NASA Short-term Prediction Research and Transition (SPoRT) Center has a long history of providing multispectral imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA s Terra and Aqua satellites in support of NWS forecast office activities. Products from MODIS have recently been extended to include a broader suite of multispectral imagery similar to those developed by EUMETSAT, based upon the spectral channel s available from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard METEOSAT-9. This broader suite includes products that discriminate between air mass types associated with synoptic-scale features, assists in the identification of dust, and improves upon paired channel difference detection of fog and low cloud events. Similarly, researchers at NOAA/NESDIS and CIRA have developed air mass discrimination capabilities using channels available from the current GOES Sounders. Other applications of multispectral composites include combinations of high and low frequency, horizontal and vertically polarized passive microwave brightness temperatures to discriminate tropical cyclone structures and other synoptic-scale features. Many of these capabilities have been transitioned for evaluation and operational use at NWS Weather Forecast Offices and National Centers through collaborations with SPoRT and CIRA. Future instruments will continue the availability of these products and also expand upon current capabilities. The Advanced Baseline Imager (ABI) on GOES-R will improve the spectral, spatial, and temporal resolution of our current geostationary capabilities, and the recent launch of the Suomi National Polar-Orbiting Partnership (S-NPP) carries instruments such as the Visible Infrared Imager Radiometer Suite (VIIRS), the Cross-track Infrared Sounder (CrIS), and the Advanced Technology Microwave Sounder (ATMS), which have unrivaled spectral and spatial resolution, as precursors to the JPSS era (i.e., the next generation of polar orbiting satellites). At the same time, new image manipulation and display capabilities are available within AWIPS II, the next generation of the NWS forecaster decision support system. This presentation will present a review of SPoRT, CIRA, and NRL collaborations regarding multispectral satellite imagery and articulate an integrated and collaborative path forward with Raytheon AWIPS II development staff for integrating current and future capabilities that support new satellite instrumentation and the AWIPS II decision support system.

  15. Assessing the Value of Frost Forecasts to Orchardists: A Dynamic Decision-Making Approach.

    NASA Astrophysics Data System (ADS)

    Katz, Richard W.; Murphy, Allan H.; Winkler, Robert L.

    1982-04-01

    The methodology of decision analysis is used to investigate the economic value of frost (i.e., minimum temperature) forecasts to orchardists. First, the fruit-frost situation and previous studies of the value of minimum temperature forecasts in this context are described. Then, after a brief overview of decision analysis, a decision-making model for the fruit-frost problem is presented. The model involves identifying the relevant actions and events (or outcomes), specifying the effect of taking protective action, and describing the relationships among temperature, bud loss, and yield loss. A bivariate normal distribution is used to model the relationship between forecast and observed temperatures, thereby characterizing the quality of different types of information. Since the orchardist wants to minimize expenses (or maximize payoffs) over the entire frost-protection season and since current actions and outcomes at any point in the season are related to both previous and future actions and outcomes, the decision-making problem is inherently dynamic in nature. As a result, a class of dynamic models known as Markov decision processes is considered. A computational technique called dynamic programming is used in conjunction with these models to determine the optimal actions and to estimate the value of meteorological information.Some results concerning the value of frost forecasts to orchardists in the Yakima Valley of central Washington are presented for the cases of red delicious apples, bartlett pears, and elberta peaches. Estimates of the parameter values in the Markov decision process are obtained from relevant physical and economic data. Twenty years of National Weather Service forecast and observed temperatures for the Yakima key station are used to estimate the quality of different types of information, including perfect forecasts, current forecasts, and climatological information. The orchardist's optimal actions over the frost-protection season and the expected expenses associated with the use of such information are determined using a dynamic programming algorithm. The value of meteorological information is defined as the difference between the expected expense for the information of interest and the expected expense for climatological information. Over the entire frost-protection season, the value estimates (in 1977 dollars) for current forecasts were $808 per acre for red delicious apples, $492 per acre for bartlett pears, and $270 per acre for elberta peaches. These amounts account for 66, 63, and 47%, respectively, of the economic value associated with decisions based on perfect forecasts. Varying the quality of the minimum temperature forecasts reveals that the relationship between the accuracy and value of such forecasts is nonlinear and that improvements in current forecasts would not be as significant in terms of economic value as were comparable improvements in the past.Several possible extensions of this study of the value of frost forecasts to orchardists are briefly described. Finally, the application of the dynamic model formulated in this paper to other decision-making problems involving the use of meteorological information is mentioned.

  16. Improving Public Health DSSs by Including Saharan Dust Forecasts Through Incorporation of NASA's GOCART Model Results

    NASA Technical Reports Server (NTRS)

    Berglund, Judith

    2007-01-01

    Approximately 2-3 billion metric tons of soil dust are estimated to be transported in the Earth's atmosphere each year. Global transport of desert dust is believed to play an important role in many geochemical, climatological, and environmental processes. This dust carries minerals and nutrients, but it has also been shown to carry pollutants and viable microorganisms capable of harming human, animal, plant, and ecosystem health. Saharan dust, which impacts the eastern United States (especially Florida and the southeast) and U.S. Territories in the Caribbean primarily during the summer months, has been linked to increases in respiratory illnesses in this region and has been shown to carry other human, animal, and plant pathogens. For these reasons, this candidate solution recommends integrating Saharan dust distribution and concentration forecasts from the NASA GOCART global dust cycle model into a public health DSS (decision support system), such as the CDC's (Centers for Disease Control and Prevention's) EPHTN (Environmental Public Health Tracking Network), for the eastern United States and Caribbean for early warning purposes regarding potential increases in respiratory illnesses or asthma attacks, potential disease outbreaks, or bioterrorism. This candidate solution pertains to the Public Health National Application but also has direct connections to Air Quality and Homeland Security. In addition, the GOCART model currently uses the NASA MODIS aerosol product as an input and uses meteorological forecasts from the NASA GEOS-DAS (Goddard Earth Observing System Data Assimilation System) GEOS-4 AGCM. In the future, VIIRS aerosol products and perhaps CALIOP aerosol products could be assimilated into the GOCART model to improve the results.

  17. Forecasting approaches to the Mekong River

    NASA Astrophysics Data System (ADS)

    Plate, E. J.

    2009-04-01

    Hydrologists distinguish between flood forecasts, which are concerned with events of the immediate future, and flood predictions, which are concerned with events that are possible, but whose date of occurrence is not determined. Although in principle both involve the determination of runoff from rainfall, the analytical approaches differ because of different objectives. The differences between the two approaches will be discussed, starting with an analysis of the forecasting process. The Mekong River in south-east Asia is used as an example. Prediction is defined as forecast for a hypothetical event, such as the 100-year flood, which is usually sufficiently specified by its magnitude and its probability of occurrence. It forms the basis for designing flood protection structures and risk management activities. The method for determining these quantities is hydrological modeling combined with extreme value statistics, today usually applied both to rainfall events and to observed river discharges. A rainfall-runoff model converts extreme rainfall events into extreme discharges, which at certain gage points along a river are calibrated against observed discharges. The quality of the model output is assessed against the mean value by means of the Nash-Sutcliffe quality criterion. The result of this procedure is a design hydrograph (or a family of design hydrographs) which are used as inputs into a hydraulic model, which converts the hydrograph into design water levels according to the hydraulic situation of the location. The accuracy of making a prediction in this sense is not particularly high: hydrologists know that the 100-year flood is a statistical quantity which can be estimated only within comparatively wide error bounds, and the hydraulics of a river site, in particular under conditions of heavy sediment loads has many uncertainties. Safety margins, such as additional freeboards are arranged to compensate for the uncertainty of the prediction. Forecasts, on the other hand, have as objective to obtain an accurate hydrograph of the near future. The method by means of which this is done is not as important as the accuracy of the forecast. A mathematical rainfall-runoff model is not necessarily a good forecast model. It has to be very carefully designed, and in many cases statistical models are found to give better results than mathematical models. Forecasters have the advantage of knowing the course of the hydrographs up to the point in time where forecasts have to be made. Therefore, models can be calibrated on line against the hydrograph of the immediate past. To assess the quality of a forecast, the quality criterion should not be based on the mean value, as does the Nash-Sutcliffe criterion, but should be based on the best forecast given the information up to the forecast time. Without any additional information, the best forecast when only the present day value is known is to assume a no-change scenario, i.e. to assume that the present value does not change in the immediate future. For the Mekong there exists a forecasting system which is based on a rainfall-runoff model operated by the Mekong River Commission. This model is found not to be adequate for forecasting for periods longer than one or two days ahead. Improvements are sought through two approaches: a strictly deterministic rainfall-runoff model, and a strictly statistical model based on regression with upstream stations. The two approaches are com-pared, and suggestions are made how to best combine the advantages of both approaches. This requires that due consideration is given to critical hydraulic conditions of the river at and in between the gauging stations. Critical situations occur in two ways: when the river overtops, in which case the rainfall-runoff model is incomplete unless overflow losses are considered, and at the confluence with tributaries. Of particular importance is the role of the large Tonle Sap Lake, which dampens the hydrograph downstream of Phnom Penh. The effect of these components of river hydraulics on forecasting accuracy will be assessed.

  18. Ozone - Current Air Quality Index

    MedlinePlus

    GO! Local Air Quality Conditions Zip Code: State : My Current Location Current AQI Forecast AQI Loop More Maps AQI: Good (0 - 50) ... resources for Hawaii residents and visitors more announcements Air Quality Basics Air Quality Index | Ozone | Particle Pollution | Smoke ...

  19. Air Quality Applications Based on Space Observations: The Role of the 11 Years OMI Data Record and the Potentials for TROPOMI

    NASA Astrophysics Data System (ADS)

    Levelt, P.; Veefkind, J. P.; Kleipool, Q.; Eskes, H.; A, R. V. D.; Mijling, B.; Tamminen, J.; Joiner, J.; Bhartia, P. K.

    2015-12-01

    In the last three decades the capabilities of measuring the atmospheric composition from space did grow tremendously with ESA's ENVISAT and NASA's Eos-Aura satellite programmes. The potential to operationally monitor the atmospheric composition, like the meteorological community is doing for the physical parameters, is now within reach. At the same time, the importance for society of operational environmental monitoring, related to the ozone layer, air quality and climate change, became apparent. The Ozone Monitoring Instrument (OMI), launched on board of NASA's EOS-Aura spacecraft in on July 15, 2004, provides unique contributions to air quality monitoring from Space. The combination of urban scale resolution (13 x 24 km2 in nadir) and daily global coverage proved to be key features for the air quality community. The OMI data is currently used for improving the air quality forecasts, for inverting high-resolution emission maps, for UV forecast and for volcanic plume warning systems for aviation. Due to its 11 year continuous operation OMI now provides the longest NO2 record from space, which is essential to understand the changes in emissions globally. In 2016 Tropospheric Monitoring Instrument (TROPOMI), will be launched on board ESA's Sentinel 5 Precursor satellite. TROPOMI will have a spatial resolution of 7x7 km2 in nadir; a more than 6 times improvement over OMI. The high spatial resolution serves two goals: (1) emissions sources can be detected with even better accuracy and (2) the number of cloud-free ground pixels will increase substantially. TROPOMI also adds additional spectral bands that allow for better cloud corrections, as well as the retrieval of carbon monoxide and methane. TROPOMI will be an important satellite mission for the Copernicus atmosphere service. TROPOMI will play a key role in the Air Quality Constellation, being the polar instruments that can link the 3 GEO UVN instruments, Sentinel 4, TEMPO and GEMS. Thus, TROPOMI can serve as a travelling standard that allows intercomparison of the calibration of the geostationary instruments. An overview of air quality applications, emission inversions and trend analyses will be presented, based on the 11 years of OMI data. An outlook will be presented on the potentials of TROPOMI, including its role in the Air Quality Constellation.

  20. Experiments with a three-dimensional statistical objective analysis scheme using FGGE data

    NASA Technical Reports Server (NTRS)

    Baker, Wayman E.; Bloom, Stephen C.; Woollen, John S.; Nestler, Mark S.; Brin, Eugenia

    1987-01-01

    A three-dimensional (3D), multivariate, statistical objective analysis scheme (referred to as optimum interpolation or OI) has been developed for use in numerical weather prediction studies with the FGGE data. Some novel aspects of the present scheme include: (1) a multivariate surface analysis over the oceans, which employs an Ekman balance instead of the usual geostrophic relationship, to model the pressure-wind error cross correlations, and (2) the capability to use an error correlation function which is geographically dependent. A series of 4-day data assimilation experiments are conducted to examine the importance of some of the key features of the OI in terms of their effects on forecast skill, as well as to compare the forecast skill using the OI with that utilizing a successive correction method (SCM) of analysis developed earlier. For the three cases examined, the forecast skill is found to be rather insensitive to varying the error correlation function geographically. However, significant differences are noted between forecasts from a two-dimensional (2D) version of the OI and those from the 3D OI, with the 3D OI forecasts exhibiting better forecast skill. The 3D OI forecasts are also more accurate than those from the SCM initial conditions. The 3D OI with the multivariate oceanic surface analysis was found to produce forecasts which were slightly more accurate, on the average, than a univariate version.

  1. A national-scale seasonal hydrological forecast system: development and evaluation over Britain

    NASA Astrophysics Data System (ADS)

    Bell, Victoria A.; Davies, Helen N.; Kay, Alison L.; Brookshaw, Anca; Scaife, Adam A.

    2017-09-01

    Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better) rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (hindcasts) from the GloSea5 model (1996 to 2009) are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean) rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region). Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 %) in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows), whereas for the 3-month ahead lead time, GloSea5 forecasts account for ˜ 70 % of the forecast skill (mostly in areas of high rainfall to the north and west) and only 30 % of the skill arises from hydrological memory (typically groundwater-dominated areas). Given the high spatial heterogeneity in typical patterns of UK rainfall and evaporation, future development of skilful spatially distributed seasonal forecasts could lead to substantial improvements in seasonal flow forecast capability, potentially benefitting practitioners interested in predicting hydrological extremes, not only in the UK but also across Europe.

  2. Nonlinear time series modeling and forecasting the seismic data of the Hindu Kush region

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Yousaf; Mittnik, Stefan

    2018-01-01

    In this study, we extended the application of linear and nonlinear time models in the field of earthquake seismology and examined the out-of-sample forecast accuracy of linear Autoregressive (AR), Autoregressive Conditional Duration (ACD), Self-Exciting Threshold Autoregressive (SETAR), Threshold Autoregressive (TAR), Logistic Smooth Transition Autoregressive (LSTAR), Additive Autoregressive (AAR), and Artificial Neural Network (ANN) models for seismic data of the Hindu Kush region. We also extended the previous studies by using Vector Autoregressive (VAR) and Threshold Vector Autoregressive (TVAR) models and compared their forecasting accuracy with linear AR model. Unlike previous studies that typically consider the threshold model specifications by using internal threshold variable, we specified these models with external transition variables and compared their out-of-sample forecasting performance with the linear benchmark AR model. The modeling results show that time series models used in the present study are capable of capturing the dynamic structure present in the seismic data. The point forecast results indicate that the AR model generally outperforms the nonlinear models. However, in some cases, threshold models with external threshold variables specification produce more accurate forecasts, indicating that specification of threshold time series models is of crucial importance. For raw seismic data, the ACD model does not show an improved out-of-sample forecasting performance over the linear AR model. The results indicate that the AR model is the best forecasting device to model and forecast the raw seismic data of the Hindu Kush region.

  3. Evaluation of radar and automatic weather station data assimilation for a heavy rainfall event in southern China

    NASA Astrophysics Data System (ADS)

    Hou, Tuanjie; Kong, Fanyou; Chen, Xunlai; Lei, Hengchi; Hu, Zhaoxia

    2015-07-01

    To improve the accuracy of short-term (0-12 h) forecasts of severe weather in southern China, a real-time storm-scale forecasting system, the Hourly Assimilation and Prediction System (HAPS), has been implemented in Shenzhen, China. The forecasting system is characterized by combining the Advanced Research Weather Research and Forecasting (WRF-ARW) model and the Advanced Regional Prediction System (ARPS) three-dimensional variational data assimilation (3DVAR) package. It is capable of assimilating radar reflectivity and radial velocity data from multiple Doppler radars as well as surface automatic weather station (AWS) data. Experiments are designed to evaluate the impacts of data assimilation on quantitative precipitation forecasting (QPF) by studying a heavy rainfall event in southern China. The forecasts from these experiments are verified against radar, surface, and precipitation observations. Comparison of echo structure and accumulated precipitation suggests that radar data assimilation is useful in improving the short-term forecast by capturing the location and orientation of the band of accumulated rainfall. The assimilation of radar data improves the short-term precipitation forecast skill by up to 9 hours by producing more convection. The slight but generally positive impact that surface AWS data has on the forecast of near-surface variables can last up to 6-9 hours. The assimilation of AWS observations alone has some benefit for improving the Fractions Skill Score (FSS) and bias scores; when radar data are assimilated, the additional AWS data may increase the degree of rainfall overprediction.

  4. The NRL relocatable ocean/acoustic ensemble forecast system

    NASA Astrophysics Data System (ADS)

    Rowley, C.; Martin, P.; Cummings, J.; Jacobs, G.; Coelho, E.; Bishop, C.; Hong, X.; Peggion, G.; Fabre, J.

    2009-04-01

    A globally relocatable regional ocean nowcast/forecast system has been developed to support rapid implementation of new regional forecast domains. The system is in operational use at the Naval Oceanographic Office for a growing number of regional and coastal implementations. The new system is the basis for an ocean acoustic ensemble forecast and adaptive sampling capability. We present an overview of the forecast system and the ocean ensemble and adaptive sampling methods. The forecast system consists of core ocean data analysis and forecast modules, software for domain configuration, surface and boundary condition forcing processing, and job control, and global databases for ocean climatology, bathymetry, tides, and river locations and transports. The analysis component is the Navy Coupled Ocean Data Assimilation (NCODA) system, a 3D multivariate optimum interpolation system that produces simultaneous analyses of temperature, salinity, geopotential, and vector velocity using remotely-sensed SST, SSH, and sea ice concentration, plus in situ observations of temperature, salinity, and currents from ships, buoys, XBTs, CTDs, profiling floats, and autonomous gliders. The forecast component is the Navy Coastal Ocean Model (NCOM). The system supports one-way nesting and multiple assimilation methods. The ensemble system uses the ensemble transform technique with error variance estimates from the NCODA analysis to represent initial condition error. Perturbed surface forcing or an atmospheric ensemble is used to represent errors in surface forcing. The ensemble transform Kalman filter is used to assess the impact of adaptive observations on future analysis and forecast uncertainty for both ocean and acoustic properties.

  5. Improving the nowcasting of precipitation in an Alpine region with an enhanced radar echo tracking algorithm

    NASA Astrophysics Data System (ADS)

    Mecklenburg, S.; Joss, J.; Schmid, W.

    2000-12-01

    Nowcasting for hydrological applications is discussed. The tracking algorithm extrapolates radar images in space and time. It originates from the pattern recognition techniques TREC (Tracking Radar Echoes by Correlation, Rinehart and Garvey, J. Appl. Meteor., 34 (1995) 1286) and COTREC (Continuity of TREC vectors, Li et al., Nature, 273 (1978) 287). To evaluate the quality of the extrapolation, a parameter scheme is introduced, able to distinguish between errors in the position and the intensity of the predicted precipitation. The parameters for the position are the absolute error, the relative error and the error of the forecasted direction. The parameters for the intensity are the ratio of the medians and the variations of the rain rate (ratio of two quantiles) between the actual and the forecasted image. To judge the overall quality of the forecast, the correlation coefficient between the forecasted and the actual radar image has been used. To improve the forecast, three aspects have been investigated: (a) Common meteorological attributes of convective cells, derived from a hail statistics, have been determined to optimize the parameters of the tracking algorithm. Using (a), the forecast procedure modifications (b) and (c) have been applied. (b) Small-scale features have been removed by using larger tracking areas and by applying a spatial and temporal smoothing, since problems with the tracking algorithm are mainly caused by small-scale/short-term variations of the echo pattern or because of limitations caused by the radar technique itself (erroneous vectors caused by clutter or shielding). (c) The searching area and the number of searched boxes have been restricted. This limits false detections, which is especially useful in stratiform precipitation and for stationary echoes. Whereas a larger scale and the removal of small-scale features improve the forecasted position for the convective precipitation, the forecast of the stratiform event is not influenced, but limiting the search area leads to a slightly better forecast. The forecast of the intensity is successful for both precipitation events. Forecasting the variation of the rain rate calls for further investigation. Applying COTREC improves the forecast of the convective precipitation, especially for extrapolation times exceeding 30 min.

  6. The Role of Model and Initial Condition Error in Numerical Weather Forecasting Investigated with an Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, Nikki C.; Errico, Ronald M.

    2013-01-01

    A series of experiments that explore the roles of model and initial condition error in numerical weather prediction are performed using an observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA/GMAO). The use of an OSSE allows the analysis and forecast errors to be explicitly calculated, and different hypothetical observing networks can be tested with ease. In these experiments, both a full global OSSE framework and an 'identical twin' OSSE setup are utilized to compare the behavior of the data assimilation system and evolution of forecast skill with and without model error. The initial condition error is manipulated by varying the distribution and quality of the observing network and the magnitude of observation errors. The results show that model error has a strong impact on both the quality of the analysis field and the evolution of forecast skill, including both systematic and unsystematic model error components. With a realistic observing network, the analysis state retains a significant quantity of error due to systematic model error. If errors of the analysis state are minimized, model error acts to rapidly degrade forecast skill during the first 24-48 hours of forward integration. In the presence of model error, the impact of observation errors on forecast skill is small, but in the absence of model error, observation errors cause a substantial degradation of the skill of medium range forecasts.

  7. The forecasting research of early warning systems for atmospheric pollutants: A case in Yangtze River Delta region

    NASA Astrophysics Data System (ADS)

    Song, Yiliao; Qin, Shanshan; Qu, Jiansheng; Liu, Feng

    2015-10-01

    The issue of air quality regarding PM pollution levels in China is a focus of public attention. To address that issue, to date, a series of studies is in progress, including PM monitoring programs, PM source apportionment, and the enactment of new ambient air quality index standards. However, related research concerning computer modeling for PM future trends estimation is rare, despite its significance to forecasting and early warning systems. Thereby, a study regarding deterministic and interval forecasts of PM is performed. In this study, data on hourly and 12 h-averaged air pollutants are applied to forecast PM concentrations within the Yangtze River Delta (YRD) region of China. The characteristics of PM emissions have been primarily examined and analyzed using different distribution functions. To improve the distribution fitting that is crucial for estimating PM levels, an artificial intelligence algorithm is incorporated to select the optimal parameters. Following that step, an ANF model is used to conduct deterministic forecasts of PM. With the identified distributions and deterministic forecasts, different levels of PM intervals are estimated. The results indicate that the lognormal or gamma distributions are highly representative of the recorded PM data with a goodness-of-fit R2 of approximately 0.998. Furthermore, the results of the evaluation metrics (MSE, MAPE and CP, AW) also show high accuracy within the deterministic and interval forecasts of PM, indicating that this method enables the informative and effective quantification of future PM trends.

  8. "Going the Extra Mile in Downscaling: Why Downscaling is not ...

    EPA Pesticide Factsheets

    This presentation provides an example of doing additional work for preprocessing global climate model data for use in regional climate modeling simulations with the Weather Research and Forecasting (WRF) model. In this presentation, results from 15 months of downscaling the Community Earth System Model (CESM) were shown, both using the out-of-the-box downscaling of CESM and also with a modification to setting the inland lake temperatures. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air pollution problem, but also in developing emission control policies and regulations for air quality improvements.

  9. Department of Defense Space Science and Technology Strategy 2015

    DTIC Science & Technology

    2015-01-01

    solar cells at 34% efficiency enabling higher power spacecraft capability. These solar cells developed by the Air Force Research Laboratory (AFRL...Reduce size, weight, power , cost, and improve thermal management for SATCOM terminals  Support intelligence surveillance and reconnaissance (ISR...Improve understanding and awareness of the Earth-to-Sun environment  Improve space environment forecast capabilities and tools to predict operational

  10. Shared Investment Projects and Forecasting Errors: Setting Framework Conditions for Coordination and Sequencing Data Quality Activities

    PubMed Central

    Leitner, Stephan; Brauneis, Alexander; Rausch, Alexandra

    2015-01-01

    In this paper, we investigate the impact of inaccurate forecasting on the coordination of distributed investment decisions. In particular, by setting up a computational multi-agent model of a stylized firm, we investigate the case of investment opportunities that are mutually carried out by organizational departments. The forecasts of concern pertain to the initial amount of money necessary to launch and operate an investment opportunity, to the expected intertemporal distribution of cash flows, and the departments’ efficiency in operating the investment opportunity at hand. We propose a budget allocation mechanism for coordinating such distributed decisions The paper provides guidance on how to set framework conditions, in terms of the number of investment opportunities considered in one round of funding and the number of departments operating one investment opportunity, so that the coordination mechanism is highly robust to forecasting errors. Furthermore, we show that—in some setups—a certain extent of misforecasting is desirable from the firm’s point of view as it supports the achievement of the corporate objective of value maximization. We then address the question of how to improve forecasting quality in the best possible way, and provide policy advice on how to sequence activities for improving forecasting quality so that the robustness of the coordination mechanism to errors increases in the best possible way. At the same time, we show that wrong decisions regarding the sequencing can lead to a decrease in robustness. Finally, we conduct a comprehensive sensitivity analysis and prove that—in particular for relatively good forecasters—most of our results are robust to changes in setting the parameters of our multi-agent simulation model. PMID:25803736

  11. STEREO as a "Planetary Hazards" Mission

    NASA Technical Reports Server (NTRS)

    Guhathakurta, M.; Thompson, B. J.

    2014-01-01

    NASA's twin STEREO probes, launched in 2006, have advanced the art and science of space weather forecasting more than any other spacecraft or solar observatory. By surrounding the Sun, they provide previously-impossible early warnings of threats approaching Earth as they develop on the solar far side. They have also revealed the 3D shape and inner structure of CMEs-massive solar storms that can trigger geomagnetic storms when they collide with Earth. This improves the ability of forecasters to anticipate the timing and severity of such events. Moreover, the unique capability of STEREO to track CMEs in three dimensions allows forecasters to make predictions for other planets, giving rise to the possibility of interplanetary space weather forecasting too. STEREO is one of those rare missions for which "planetary hazards" refers to more than one world. The STEREO probes also hold promise for the study of comets and potentially hazardous asteroids.

  12. Wavelet regression model in forecasting crude oil price

    NASA Astrophysics Data System (ADS)

    Hamid, Mohd Helmie; Shabri, Ani

    2017-05-01

    This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.

  13. Applied Meteorology Unit (AMU) Quarterly Report First Quarter FY-14

    NASA Technical Reports Server (NTRS)

    Bauman, William Henry; Crawford, Winifred C.; Shafer, Jaclyn A.; Watson, Leela R.; Huddleston, Lisa L.; Decker, Ryan K.

    2014-01-01

    NASA's LSP and other programs at Vandenberg Air Force Base (VAFB) use wind forecasts issued by the 30th Operational Support Squadron (30 OSS) to determine if they need to limit activities or protect property such as a launch vehicle due to the occurrence of warning level winds at VAFB in California. The 30 OSS tasked the AMU to provide a wind forecasting capability to improve wind warning forecasts and enhance the safety of their customers' operations. This would allow 30 OSS forecasters to evaluate pressure gradient thresholds between pairs of regional observing stations to help determine the onset and duration of warning category winds. Development of such a tool will require that solid relationships exist between wind speed and the pressure gradient of one or more station pairs. As part of this task, the AMU will also create a statistical climatology of meteorological observations from the VAFB wind towers.

  14. NCEP Air Quality Forecast(AQF) Graphics

    Science.gov Websites

    Forecasts CMAQ PM Bias Corr. Forecasts Change Plot Type: Comparison plots Difference plots Year: 2018 2017 2016 2015 Month: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Day: 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Select Cycle: 06Z 12Z Select Region

  15. Why do electricity policy and competitive markets fail to use advanced PV systems to improve distribution power quality?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHenry, Mark P.; Johnson, Jay; Hightower, Mike

    The increasing pressure for network operators to meet distribution network power quality standards with increasing peak loads, renewable energy targets, and advances in automated distributed power electronics and communications is forcing policy-makers to understand new means to distribute costs and benefits within electricity markets. Discussions surrounding how distributed generation (DG) exhibits active voltage regulation and power factor/reactive power control and other power quality capabilities are complicated by uncertainties of baseline local distribution network power quality and to whom and how costs and benefits of improved electricity infrastructure will be allocated. DG providing ancillary services that dynamically respond to the networkmore » characteristics could lead to major network improvements. With proper market structures renewable energy systems could greatly improve power quality on distribution systems with nearly no additional cost to the grid operators. Renewable DG does have variability challenges, though this issue can be overcome with energy storage, forecasting, and advanced inverter functionality. This paper presents real data from a large-scale grid-connected PV array with large-scale storage and explores effective mitigation measures for PV system variability. As a result, we discuss useful inverter technical knowledge for policy-makers to mitigate ongoing inflation of electricity network tariff components by new DG interconnection requirements or electricity markets which value power quality and control.« less

  16. Why do electricity policy and competitive markets fail to use advanced PV systems to improve distribution power quality?

    DOE PAGES

    McHenry, Mark P.; Johnson, Jay; Hightower, Mike

    2016-01-01

    The increasing pressure for network operators to meet distribution network power quality standards with increasing peak loads, renewable energy targets, and advances in automated distributed power electronics and communications is forcing policy-makers to understand new means to distribute costs and benefits within electricity markets. Discussions surrounding how distributed generation (DG) exhibits active voltage regulation and power factor/reactive power control and other power quality capabilities are complicated by uncertainties of baseline local distribution network power quality and to whom and how costs and benefits of improved electricity infrastructure will be allocated. DG providing ancillary services that dynamically respond to the networkmore » characteristics could lead to major network improvements. With proper market structures renewable energy systems could greatly improve power quality on distribution systems with nearly no additional cost to the grid operators. Renewable DG does have variability challenges, though this issue can be overcome with energy storage, forecasting, and advanced inverter functionality. This paper presents real data from a large-scale grid-connected PV array with large-scale storage and explores effective mitigation measures for PV system variability. As a result, we discuss useful inverter technical knowledge for policy-makers to mitigate ongoing inflation of electricity network tariff components by new DG interconnection requirements or electricity markets which value power quality and control.« less

  17. A water balance approach to enhance national (GB) Daily Landslide Hazard Assessments

    NASA Astrophysics Data System (ADS)

    Dijkstra, Tom; Reeves, Helen; Freeborough, Katy; Dashwood, Claire; Pennington, Catherine; Jordan, Hannah; Hobbs, Peter; Richardson, Jennifer; Banks, Vanessa; Cole, Steven; Wells, Steven; Moore, Robert

    2017-04-01

    The British Geological Survey (BGS) is a member of the Natural Hazards Partnership (NHP) and delivers a national (GB) daily landslide hazard assessment (DLHA). The DLHA is based largely on 'expert' driven evaluations of the likelihood of landslides in response to antecedent ground conditions, adverse weather and reported landslide events. It concentrates on shallow translational slides and debris flows - events that most frequently have societal consequences by disrupting transport infrastructure and affecting buildings. Considerable experience with the issuing of DLHAs has been gained since 2012. However, it remains very difficult to appropriately assess changing ground conditions throughout GB even when good quality precipitation forecasts are available. Soil moisture sensors are available, but the network is sparse and not yet capable of covering GB to the detail required to underpin the forecasts. Therefore, we developed an approach where temporal and spatial variations in soil moisture can be obtained from a water balance model, representing processes in the near-surface and configured on a relatively coarse grid of 1 km2. Model outputs are not intended to be relevant to the slope scale. The assumption is that the likelihood of landslides being triggered by rainfall is dependent upon the soil moisture conditions of the near-surface, in combination with how much rain is forecast to occur for the following day. These variables form the basis for establishing thresholds to guide the issuing of DLHA and early warnings. The main aim is to obtain an insight into regional patterns of change and threshold exceedance. The BGS water balance model is still in its infancy and it requires substantial work to fine-tune and validate it. To test the performance of the BGS model we focused on an analysis of Scottish landslides (2004-2015) comprising translational slides and debris flows where the BGS model is conditionally evaluated against the Grid-to-Grid (G2G) Model. G2G is a physical-conceptual distributed hydrological model developed by the Centre for Ecology & Hydrology, also an NHP member. G2G is especially suited to simulate river flows over ungauged areas and has the capability to forecast fluvial river flows at any location across a gridded model domain. This is achieved by using spatial datasets on landscape properties - terrain, land-cover, soil and geology - in combination with gridded time-series of rainfall to shape a rainfall pattern into a river flow response over the model domain. G2G is operational on a 1 km2 grid over the GB and outputs soil moisture estimates that take some account of terrain slope in its water balance calculation. This research is part of an evolutionary process where capabilities of establishing the likelihood of landslides will develop as datasets are becoming increasingly detailed (and accessible) and the representation of hydrogeological and geotechnical processes continues to develop.

  18. The impact of communicating information about air pollution events on public health.

    PubMed

    McLaren, J; Williams, I D

    2015-12-15

    Short-term exposure to air pollution has been associated with exacerbation of asthma and chronic obstructive pulmonary disease (COPD). This study investigated the relationship between emergency hospital admissions for asthma, COPD and episodes of poor air quality in an English city (Southampton) from 2008-2013. The city's council provides a forecasting service for poor air quality to individuals with respiratory disease to reduce preventable admissions to hospital and this has been evaluated. Trends in nitrogen dioxide, ozone and particulate matter concentrations were related to hospital admissions data using regression analysis. The impacts of air quality on emergency admissions were quantified using the relative risks associated with each pollutant. Seasonal and weekly trends were apparent for both air pollution and hospital admissions, although there was a weak relationship between the two. The air quality forecasting service proved ineffective at reducing hospital admissions. Improvements to the health forecasting service are necessary to protect the health of susceptible individuals, as there is likely to be an increasing need for such services in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Evaluation of ensemble forecast uncertainty using a new proper score: application to medium-range and seasonal forecasts

    NASA Astrophysics Data System (ADS)

    Christensen, Hannah; Moroz, Irene; Palmer, Tim

    2015-04-01

    Forecast verification is important across scientific disciplines as it provides a framework for evaluating the performance of a forecasting system. In the atmospheric sciences, probabilistic skill scores are often used for verification as they provide a way of unambiguously ranking the performance of different probabilistic forecasts. In order to be useful, a skill score must be proper -- it must encourage honesty in the forecaster, and reward forecasts which are reliable and which have good resolution. A new score, the Error-spread Score (ES), is proposed which is particularly suitable for evaluation of ensemble forecasts. It is formulated with respect to the moments of the forecast. The ES is confirmed to be a proper score, and is therefore sensitive to both resolution and reliability. The ES is tested on forecasts made using the Lorenz '96 system, and found to be useful for summarising the skill of the forecasts. The European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble prediction system (EPS) is evaluated using the ES. Its performance is compared to a perfect statistical probabilistic forecast -- the ECMWF high resolution deterministic forecast dressed with the observed error distribution. This generates a forecast that is perfectly reliable if considered over all time, but which does not vary from day to day with the predictability of the atmospheric flow. The ES distinguishes between the dynamically reliable EPS forecasts and the statically reliable dressed deterministic forecasts. Other skill scores are tested and found to be comparatively insensitive to this desirable forecast quality. The ES is used to evaluate seasonal range ensemble forecasts made with the ECMWF System 4. The ensemble forecasts are found to be skilful when compared with climatological or persistence forecasts, though this skill is dependent on region and time of year.

  20. Unorganized machines for seasonal streamflow series forecasting.

    PubMed

    Siqueira, Hugo; Boccato, Levy; Attux, Romis; Lyra, Christiano

    2014-05-01

    Modern unorganized machines--extreme learning machines and echo state networks--provide an elegant balance between processing capability and mathematical simplicity, circumventing the difficulties associated with the conventional training approaches of feedforward/recurrent neural networks (FNNs/RNNs). This work performs a detailed investigation of the applicability of unorganized architectures to the problem of seasonal streamflow series forecasting, considering scenarios associated with four Brazilian hydroelectric plants and four distinct prediction horizons. Experimental results indicate the pertinence of these models to the focused task.

  1. Hyperspectral Remote Sensing of the Coastal Ocean: Adaptive Sampling and Forecasting of In situ Optical Properties

    DTIC Science & Technology

    2003-09-30

    We are developing an integrated rapid environmental assessment capability that will be used to feed an ocean nowcast/forecast system. The goal is to develop a capacity for predicting the dynamics in inherent optical properties in coastal waters. This is being accomplished by developing an integrated observation system that is being coupled to a data assimilative hydrodynamic bio-optical ecosystem model. The system was used adaptively to calibrate hyperspectral remote sensing sensors in optically complex nearshore coastal waters.

  2. Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AlRS data. Version 5 contains accurate case-by-case error estimates for most derived products, which are also used for quality control. We have conducted forecast impact experiments assimilating AlRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the NASA FVGCM. Assimilation of quality controlled temperature profiles resulted in significantly improved forecast skill in both the Northern Hemisphere and Southern Hemisphere Extra-Tropics, compared to that obtained from analyses obtained when all data used operationally by NCEP except for AlRS data is assimilated. Experiments using different Quality Control thresholds for assimilation of AlRS temperature retrievals showed that a medium quality control threshold performed better than a tighter threshold, which provided better overall sounding accuracy; or a looser threshold, which provided better spatial coverage of accepted soundings. We are conducting more experiments to further optimize this balance of spatial coverage and sounding accuracy from the data assimilation perspective. In all cases, temperature soundings were assimilated well below cloud level in partially cloudy cases. The positive impact of assimilating AlRS derived atmospheric temperatures all but vanished when only AIRS stratospheric temperatures were assimilated. Forecast skill resulting from assimilation of AlRS radiances uncontaminated by clouds, instead of AlRS temperature soundings, was only slightly better than that resulting from assimilation of only stratospheric AlRS temperatures. This reduction in forecast skill is most likely the result of significant loss of tropospheric information when only AIRS radiances unaffected by clouds are used in the data assimilation process.

  3. Use of High-resolution WRF Simulations to Forecast Lightning Threat

    NASA Technical Reports Server (NTRS)

    McCaul, William E.; LaCasse, K.; Goodman, S. J.

    2006-01-01

    Recent observational studies have confirmed the existence of a robust statistical relationship between lightning flash rates and the amount of large precipitating ice hydrometeors in storms. This relationship is exploited, in conjunction with the capabilities of recent forecast models such as WRF, to forecast the threat of lightning from convective storms using the output fields from the model forecasts. The simulated vertical flux of graupel at -15C is used in this study as a proxy for charge separation processes and their associated lightning risk. Six-h simulations are conducted for a number of case studies for which three-dimensional lightning validation data from the North Alabama Lightning Mapping Array are available. Experiments indicate that initialization of the WRF model on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity and reflectivity fields, and METAR and ACARS data yield the most realistic simulations. An array of subjective and objective statistical metrics are employed to document the utility of the WRF forecasts. The simulation results are also compared to other more traditional means of forecasting convective storms, such as those based on inspection of the convective available potential energy field.

  4. High-Resolution WRF Forecasts of Lightning Threat

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; McCaul, E. W., Jr.; LaCasse, K.

    2007-01-01

    Tropical Rainfall Measuring Mission (TRMM)lightning and precipitation observations have confirmed the existence of a robust relationship between lightning flash rates and the amount of large precipitating ice hydrometeors in storms. This relationship is exploited, in conjunction with the capabilities of the Weather Research and Forecast (WRF) model, to forecast the threat of lightning from convective storms using the output fields from the model forecasts. The simulated vertical flux of graupel at -15C is used in this study as a proxy for charge separation processes and their associated lightning risk. Initial experiments using 6-h simulations are conducted for a number of case studies for which three-dimensional lightning validation data from the North Alabama Lightning Mapping Array are available. The WRF has been initialized on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity and reflectivity fields, and METAR and ACARS data. An array of subjective and objective statistical metrics is employed to document the utility of the WRF forecasts. The simulation results are also compared to other more traditional means of forecasting convective storms, such as those based on inspection of the convective available potential energy field.

  5. Establishing NWP capabilities in African Small Island States (SIDs)

    NASA Astrophysics Data System (ADS)

    Rögnvaldsson, Ólafur

    2017-04-01

    Íslenskar orkurannsóknir (ÍSOR), in collaboration with Belgingur Ltd. and the United Nations Economic Commission for Africa (UNECA) signed a Letter of Agreement in 2015 regarding collaboration in the "Establishing Operational Capacity for Building, Deploying and Using Numerical Weather and Seasonal Prediction Systems in Small Island States in Africa (SIDs)" project. The specific objectives of the collaboration were the following: - Build capacity of National Meteorological and Hydrology Services (NMHS) staff on the use of the WRF atmospheric model for weather and seasonal forecasting, interpretation of model results, and the use of observations to verify and improve model simulations. - Establish a platform for integrating short to medium range weather forecasts, as well as seasonal forecasts, into already existing infrastructure at NMHS and Regional Climate Centres. - Improve understanding of existing model results and forecast verification, for improving decision-making on the time scale of days to weeks. To meet these challenges the operational Weather On Demand (WOD) forecasting system, developed by Belgingur, is being installed in a number of SIDs countries (Cabo Verde, Guinea-Bissau, and Seychelles), as well as being deployed for the Pan-Africa region, with forecasts being disseminated to collaborating NMHSs.

  6. Evaluation of TIGGE Ensemble Forecasts of Precipitation in Distinct Climate Regions in Iran

    NASA Astrophysics Data System (ADS)

    Aminyavari, Saleh; Saghafian, Bahram; Delavar, Majid

    2018-04-01

    The application of numerical weather prediction (NWP) products is increasing dramatically. Existing reports indicate that ensemble predictions have better skill than deterministic forecasts. In this study, numerical ensemble precipitation forecasts in the TIGGE database were evaluated using deterministic, dichotomous (yes/no), and probabilistic techniques over Iran for the period 2008-16. Thirteen rain gauges spread over eight homogeneous precipitation regimes were selected for evaluation. The Inverse Distance Weighting and Kriging methods were adopted for interpolation of the prediction values, downscaled to the stations at lead times of one to three days. To enhance the forecast quality, NWP values were post-processed via Bayesian Model Averaging. The results showed that ECMWF had better scores than other products. However, products of all centers underestimated precipitation in high precipitation regions while overestimating precipitation in other regions. This points to a systematic bias in forecasts and demands application of bias correction techniques. Based on dichotomous evaluation, NCEP did better at most stations, although all centers overpredicted the number of precipitation events. Compared to those of ECMWF and NCEP, UKMO yielded higher scores in mountainous regions, but performed poorly at other selected stations. Furthermore, the evaluations showed that all centers had better skill in wet than in dry seasons. The quality of post-processed predictions was better than those of the raw predictions. In conclusion, the accuracy of the NWP predictions made by the selected centers could be classified as medium over Iran, while post-processing of predictions is recommended to improve the quality.

  7. NASA Space Technology Draft Roadmap Area 13: Ground and Launch Systems Processing

    NASA Technical Reports Server (NTRS)

    Clements, Greg

    2011-01-01

    This slide presentation reviews the technology development roadmap for the area of ground and launch systems processing. The scope of this technology area includes: (1) Assembly, integration, and processing of the launch vehicle, spacecraft, and payload hardware (2) Supply chain management (3) Transportation of hardware to the launch site (4) Transportation to and operations at the launch pad (5) Launch processing infrastructure and its ability to support future operations (6) Range, personnel, and facility safety capabilities (7) Launch and landing weather (8) Environmental impact mitigations for ground and launch operations (9) Launch control center operations and infrastructure (10) Mission integration and planning (11) Mission training for both ground and flight crew personnel (12) Mission control center operations and infrastructure (13) Telemetry and command processing and archiving (14) Recovery operations for flight crews, flight hardware, and returned samples. This technology roadmap also identifies ground, launch and mission technologies that will: (1) Dramatically transform future space operations, with significant improvement in life-cycle costs (2) Improve the quality of life on earth, while exploring in co-existence with the environment (3) Increase reliability and mission availability using low/zero maintenance materials and systems, comprehensive capabilities to ascertain and forecast system health/configuration, data integration, and the use of advanced/expert software systems (4) Enhance methods to assess safety and mission risk posture, which would allow for timely and better decision making. Several key technologies are identified, with a couple of slides devoted to one of these technologies (i.e., corrosion detection and prevention). Development of these technologies can enhance life on earth and have a major impact on how we can access space, eventually making routine commercial space access and improve building and manufacturing, and weather forecasting for example for the effect of these process improvements on our daily lives.

  8. The quality and value of seasonal precipitation forecasts for an early warning of large-scale droughts and floods in West Africa

    NASA Astrophysics Data System (ADS)

    Bliefernicht, Jan; Seidel, Jochen; Salack, Seyni; Waongo, Moussa; Laux, Patrick; Kunstmann, Harald

    2017-04-01

    Seasonal precipitation forecasts are a crucial source of information for an early warning of hydro-meteorological extremes in West Africa. However, the current seasonal forecasting system used by the West African weather services in the framework of the West African Climate Outlook forum (PRESAO) is limited to probabilistic precipitation forecasts of 1-month lead time. To improve this provision, we use an ensemble-based quantile-quantile transformation for bias correction of precipitation forecasts provided by a global seasonal ensemble prediction system, the Climate Forecast System Version 2 (CFS2). The statistical technique eliminates systematic differences between global forecasts and observations with the potential to preserve the signal from the model. The technique has also the advantage that it can be easily implemented at national weather services with low capacities. The statistical technique is used to generate probabilistic forecasts of monthly and seasonal precipitation amount and other precipitation indices useful for an early warning of large-scale drought and floods in West Africa. The evaluation of the statistical technique is done using CFS hindcasts (1982 to 2009) in a cross-validation mode to determine the performance of the precipitation forecasts for several lead times focusing on drought and flood events depicted over the Volta and Niger basins. In addition, operational forecasts provided by PRESAO are analyzed from 1998 to 2015. The precipitation forecasts are compared to low-skill reference forecasts generated from gridded observations (i.e. GPCC, CHIRPS) and a novel in-situ gauge database from national observation networks (see Poster EGU2017-10271). The forecasts are evaluated using state-of-the-art verification techniques to determine specific quality attributes of probabilistic forecasts such as reliability, accuracy and skill. In addition, cost-loss approaches are used to determine the value of probabilistic forecasts for multiple users in warning situations. The outcomes of the hindcasts experiment for the Volta basin illustrate that the statistical technique can clearly improve the CFS precipitation forecasts with the potential to provide skillful and valuable early precipitation warnings for large-scale drought and flood situations several months in ahead. In this presentation we give a detailed overview about the ensemble-based quantile-quantile-transformation, its validation and verification and the possibilities of this technique to complement PRESAO. We also highlight the performance of this technique for extremes such as the Sahel drought in the 80ties and in comparison to the various reference data sets (e.g. CFS2, PRESAO, observational data sets) used in this study.

  9. From Research to Operations: Transitioning Noaa's Lake Erie Harmful Algal Bloom Forecast System

    NASA Astrophysics Data System (ADS)

    Kavanaugh, K. E.; Stumpf, R. P.

    2016-02-01

    A key priority of NOAA's Harmful Algal Bloom Operational Forecast System (HAB-OFS) is to leverage the Ecological Forecasting Roadmap to systematically transition to operations scientifically mature HAB forecasts in regions of the country where there is a strong user need identified and an operational framework can be supported. While in the demonstration phase, the Lake Erie HAB forecast has proven its utility. Over the next two years, NOAA will be transitioning the Lake Erie HAB forecast to operations with an initial operating capability established in the HAB OFS' operational infrastructure by the 2016 bloom season. Blooms of cyanobacteria are a recurring problem in Lake Erie, and the dominant bloom forming species, Microcystis aeruginosa, produces a toxin called microcystin that is poisonous to humans, livestock and pets. Once the toxins have contaminated the source water used for drinking water, it is costly for public water suppliers to remove them. As part of the Lake Erie HAB forecast demonstration, NOAA has provided information regarding the cyanobacterial blooms in a biweekly Experimental HAB Bulletin, which includes information about the current and forecasted distribution, toxicity, potential for vertical mixing or scum formation, mixing of the water column, and predictions of bloom decline. Coastal resource managers, public water suppliers and public health officials use the Experimental HAB Bulletins to respond to and mitigate the impacts of cyanobacterial blooms. The transition to operations will benefit stakeholders through ensuring that future Lake Erie HAB forecast products are sustained, systematic, reliable, and robust. Once operational, the forecasts will continue to be assessed and improvements will be made based on the results of emerging scientific research. In addition, the lessons learned from the Lake Erie transition will be used to streamline the process for future HAB forecasts presently in development.

  10. NCEP Air Quality Forecast(AQF) Verification. NOAA/NWS/NCEP/EMC

    Science.gov Websites

    Southwest Desert All regions PROD All regions PARA Select averaged hour: 8 hr sfc average 1 hr sfc average Select forecast four: Diurnal period 01-24 hr by day 25-48 hr by day Select statistic type: BIAS RMSE

  11. The main pillar: Assessment of space weather observational asset performance supporting nowcasting, forecasting, and research to operations.

    PubMed

    Posner, A; Hesse, M; St Cyr, O C

    2014-04-01

    Space weather forecasting critically depends upon availability of timely and reliable observational data. It is therefore particularly important to understand how existing and newly planned observational assets perform during periods of severe space weather. Extreme space weather creates challenging conditions under which instrumentation and spacecraft may be impeded or in which parameters reach values that are outside the nominal observational range. This paper analyzes existing and upcoming observational capabilities for forecasting, and discusses how the findings may impact space weather research and its transition to operations. A single limitation to the assessment is lack of information provided to us on radiation monitor performance, which caused us not to fully assess (i.e., not assess short term) radiation storm forecasting. The assessment finds that at least two widely spaced coronagraphs including L4 would provide reliability for Earth-bound CMEs. Furthermore, all magnetic field measurements assessed fully meet requirements. However, with current or even with near term new assets in place, in the worst-case scenario there could be a near-complete lack of key near-real-time solar wind plasma data of severe disturbances heading toward and impacting Earth's magnetosphere. Models that attempt to simulate the effects of these disturbances in near real time or with archival data require solar wind plasma observations as input. Moreover, the study finds that near-future observational assets will be less capable of advancing the understanding of extreme geomagnetic disturbances at Earth, which might make the resulting space weather models unsuitable for transition to operations. Manuscript assesses current and near-future space weather assetsCurrent assets unreliable for forecasting of severe geomagnetic stormsNear-future assets will not improve the situation.

  12. Ensemble streamflow assimilation with the National Water Model.

    NASA Astrophysics Data System (ADS)

    Rafieeinasab, A.; McCreight, J. L.; Noh, S.; Seo, D. J.; Gochis, D.

    2017-12-01

    Through case studies of flooding across the US, we compare the performance of the National Water Model (NWM) data assimilation (DA) scheme to that of a newly implemented ensemble Kalman filter approach. The NOAA National Water Model (NWM) is an operational implementation of the community WRF-Hydro modeling system. As of August 2016, the NWM forecasts of distributed hydrologic states and fluxes (including soil moisture, snowpack, ET, and ponded water) over the contiguous United States have been publicly disseminated by the National Center for Environmental Prediction (NCEP) . It also provides streamflow forecasts at more than 2.7 million river reaches up to 30 days in advance. The NWM employs a nudging scheme to assimilate more than 6,000 USGS streamflow observations and provide initial conditions for its forecasts. A problem with nudging is how the forecasts relax quickly to open-loop bias in the forecast. This has been partially addressed by an experimental bias correction approach which was found to have issues with phase errors during flooding events. In this work, we present an ensemble streamflow data assimilation approach combining new channel-only capabilities of the NWM and HydroDART (a coupling of the offline WRF-Hydro model and NCAR's Data Assimilation Research Testbed; DART). Our approach focuses on the single model state of discharge and incorporates error distributions on channel-influxes (overland and groundwater) in the assimilation via an ensemble Kalman filter (EnKF). In order to avoid filter degeneracy associated with a limited number of ensemble at large scale, DART's covariance inflation (Anderson, 2009) and localization capabilities are implemented and evaluated. The current NWM data assimilation scheme is compared to preliminary results from the EnKF application for several flooding case studies across the US.

  13. The main pillar: Assessment of space weather observational asset performance supporting nowcasting, forecasting, and research to operations

    PubMed Central

    Posner, A; Hesse, M; St Cyr, O C

    2014-01-01

    Space weather forecasting critically depends upon availability of timely and reliable observational data. It is therefore particularly important to understand how existing and newly planned observational assets perform during periods of severe space weather. Extreme space weather creates challenging conditions under which instrumentation and spacecraft may be impeded or in which parameters reach values that are outside the nominal observational range. This paper analyzes existing and upcoming observational capabilities for forecasting, and discusses how the findings may impact space weather research and its transition to operations. A single limitation to the assessment is lack of information provided to us on radiation monitor performance, which caused us not to fully assess (i.e., not assess short term) radiation storm forecasting. The assessment finds that at least two widely spaced coronagraphs including L4 would provide reliability for Earth-bound CMEs. Furthermore, all magnetic field measurements assessed fully meet requirements. However, with current or even with near term new assets in place, in the worst-case scenario there could be a near-complete lack of key near-real-time solar wind plasma data of severe disturbances heading toward and impacting Earth's magnetosphere. Models that attempt to simulate the effects of these disturbances in near real time or with archival data require solar wind plasma observations as input. Moreover, the study finds that near-future observational assets will be less capable of advancing the understanding of extreme geomagnetic disturbances at Earth, which might make the resulting space weather models unsuitable for transition to operations. Key Points Manuscript assesses current and near-future space weather assets Current assets unreliable for forecasting of severe geomagnetic storms Near-future assets will not improve the situation PMID:26213516

  14. The Influence of Observation Errors on Analysis Error and Forecast Skill Investigated with an Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, N. C.; Errico, R. M.; Tai, K.-S.

    2013-01-01

    The Global Modeling and Assimilation Office (GMAO) observing system simulation experiment (OSSE) framework is used to explore the response of analysis error and forecast skill to observation quality. In an OSSE, synthetic observations may be created that have much smaller error than real observations, and precisely quantified error may be applied to these synthetic observations. Three experiments are performed in which synthetic observations with magnitudes of applied observation error that vary from zero to twice the estimated realistic error are ingested into the Goddard Earth Observing System Model (GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation for a one-month period representing July. The analysis increment and observation innovation are strongly impacted by observation error, with much larger variances for increased observation error. The analysis quality is degraded by increased observation error, but the change in root-mean-square error of the analysis state is small relative to the total analysis error. Surprisingly, in the 120 hour forecast increased observation error only yields a slight decline in forecast skill in the extratropics, and no discernable degradation of forecast skill in the tropics.

  15. From Many to Many More: Instant Interoperability Through the Integrated Ocean Observing System Data Assembly Center

    NASA Astrophysics Data System (ADS)

    Burnett, W.; Bouchard, R.; Hervey, R.; Crout, R.; Luke, R.

    2008-12-01

    As the Integrated Ocean Observing System (IOOS) Data Assembly Center (DAC), NOAA's National Data Buoy Center (NDBC) collects data from many ocean observing systems, quality controls the data, and distributes them nationally and internationally. The DAC capabilities provide instant interoperability of any ocean observatory with the national and international agencies responsible for critical forecasts and warnings and with the national media. This interoperability is an important milestone in an observing system's designation as an operational system. Data collection begins with NDBC's own observing systems - Meteorological and Oceanographic Buoys and Coastal Stations, the Tropical Atmosphere Ocean Array, and the NOAA tsunameter network. Leveraging the data management functions that support NDBC systems, the DAC can support data partners including ocean observations from IOOS Regional Observing Systems, the meteorological observations from the National Water Level Observing Network, meteorological and oceanographic observations from the National Estuarine Research Reserve System, Integrated Coral Observing Network, merchant ship observations from the Voluntary Observing Ship program, and ocean current measurements from oil and gas platforms in the Gulf of Mexico and from Coastal HF Radars. The DAC monitors and quality controls IOOS Partner data alerting the data provider to outages and quality discrepancies. After performing automated and manual quality control procedures, the DAC prepares the observations for distribution. The primary means of data distribution is in standard World Meteorological Organization alphanumeric coded messages distributed via the Global Telecommunications System, NOAAPort, and Family of Services. Observing systems provide their data via ftp to an NDBC server using a simple XML. The DAC also posts data in real-time to the NDBC webpages in columnar text format and data plots that maritime interests (e.g., surfing, fishing, boating) widely use. The webpage text feeds the Dial-A-Buoy capability that reads the latest data from webpages and the latest NWS forecast for the station to a user via telephone. The DAC also operates a DODS/OPenDAP server to provide data in netCDF. Recently the DAC implemented the NOAA IOOS Data Integration Framework, which facilitates the exchange of data between IOOS Regional Observing Systems by standardizing data exchange formats and incorporating needed metadata for the correct application of the data. The DAC has become an OceanSITES Global Data Assembly Center - part of the Initial Global Observing System for Climate. Supported by the NOAA IOOS Program, the DAC provides round-the-clock monitoring, quality control, and data distribution to ensure that its IOOS Partners can conduct operations that meet the NOAA definition of: Sustained, systematic, reliable, and robust mission activities with an institutional commitment to deliver appropriate, cost-effective products and services.

  16. Improving Forecast Skill by Assimilation of Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2009-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of cloud cleared radiances R(sub i). This approach allows for the generation of accurate values of R(sub i) and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel error estimates for R(sub i). These error estimates are used for Quality Control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of Quality Control using the NASA GEOS-5 data assimilation system. Assimilation of Quality Controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done operationally by ECMWF and NCEP. Forecast resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.

  17. Verification of Ensemble Forecasts for the New York City Operations Support Tool

    NASA Astrophysics Data System (ADS)

    Day, G.; Schaake, J. C.; Thiemann, M.; Draijer, S.; Wang, L.

    2012-12-01

    The New York City water supply system operated by the Department of Environmental Protection (DEP) serves nine million people. It covers 2,000 square miles of portions of the Catskill, Delaware, and Croton watersheds, and it includes nineteen reservoirs and three controlled lakes. DEP is developing an Operations Support Tool (OST) to support its water supply operations and planning activities. OST includes historical and real-time data, a model of the water supply system complete with operating rules, and lake water quality models developed to evaluate alternatives for managing turbidity in the New York City Catskill reservoirs. OST will enable DEP to manage turbidity in its unfiltered system while satisfying its primary objective of meeting the City's water supply needs, in addition to considering secondary objectives of maintaining ecological flows, supporting fishery and recreation releases, and mitigating downstream flood peaks. The current version of OST relies on statistical forecasts of flows in the system based on recent observed flows. To improve short-term decision making, plans are being made to transition to National Weather Service (NWS) ensemble forecasts based on hydrologic models that account for short-term weather forecast skill, longer-term climate information, as well as the hydrologic state of the watersheds and recent observed flows. To ensure that the ensemble forecasts are unbiased and that the ensemble spread reflects the actual uncertainty of the forecasts, a statistical model has been developed to post-process the NWS ensemble forecasts to account for hydrologic model error as well as any inherent bias and uncertainty in initial model states, meteorological data and forecasts. The post-processor is designed to produce adjusted ensemble forecasts that are consistent with the DEP historical flow sequences that were used to develop the system operating rules. A set of historical hindcasts that is representative of the real-time ensemble forecasts is needed to verify that the post-processed forecasts are unbiased, statistically reliable, and preserve the skill inherent in the "raw" NWS ensemble forecasts. A verification procedure and set of metrics will be presented that provide an objective assessment of ensemble forecasts. The procedure will be applied to both raw ensemble hindcasts and to post-processed ensemble hindcasts. The verification metrics will be used to validate proper functioning of the post-processor and to provide a benchmark for comparison of different types of forecasts. For example, current NWS ensemble forecasts are based on climatology, using each historical year to generate a forecast trace. The NWS Hydrologic Ensemble Forecast System (HEFS) under development will utilize output from both the National Oceanic Atmospheric Administration (NOAA) Global Ensemble Forecast System (GEFS) and the Climate Forecast System (CFS). Incorporating short-term meteorological forecasts and longer-term climate forecast information should provide sharper, more accurate forecasts. Hindcasts from HEFS will enable New York City to generate verification results to validate the new forecasts and further fine-tune system operating rules. Project verification results will be presented for different watersheds across a range of seasons, lead times, and flow levels to assess the quality of the current ensemble forecasts.

  18. Ten years of OMI observations: scientific highlights and impacts on the new generation of UV/VIS satellite instrumentation

    NASA Astrophysics Data System (ADS)

    Levelt, Pieternel; Veefkind, Pepijn; Bhartia, Pawan; Joiner, Joanna; Tamminen, Johanna; OMI Science Team

    2014-05-01

    On July 15, 2004 Ozone Monitoring Instrument (OMI) was successfully launched from the Vandenberg military air force basis in California, USA, on NASA's EOS-Aura spacecraft. OMI is the first of a new generation of UV/VIS nadir solar backscatter imaging spectrometers, which provides nearly global coverage in one day with an unprecedented spatial resolution of 13 x 24 km2. OMI measures solar irradiance and Earth radiances in the wavelength range of 270 to 500 nm with a spectral resolution of about 0.5 nm. OMI is designed and built by the Netherlands and Finland and is also a third party mission of ESA. The major step that was made in the OMI instrument compared to its predecessors is the use of 2-dimensional detector arrays (CCDs) in a highly innovative small optical design. These innovations enable the combination of a high spatial resolution and a good spectral resolution with daily global coverage. OMI measures a range of trace gases (O3, NO2, SO2, HCHO, BrO, OClO, H2O), clouds and aerosols. Albeit OMI is already 5 years over its design lifetime, the instrument is still fully operational. The successor of OMI is TROPOMI (TROPOspheric Monitoring Instrument) on the Copernicus Sentinel-5 precursor mission, planned for launch in 2015. OMI's unique capabilities rely in measuring tropospheric trace gases with a small footprint and daily global coverage. The unprecedented spatial resolution of the instrument revealed for the first time tropospheric pollution maps on a daily basis with urban scale resolution leading to improved air quality forecasts. The OMI measurements also improve our understanding of air quality and the interaction between air quality and climate change by combining measurements of air pollutants and aerosols. In recent years the data are also used for obtaining high-resolution global emission maps using inverse modelling or related techniques, challenging the bottom-up inventories based emission maps. In addition to scientific research, OMI also contributes to several operational services, including volcanic plume warning systems for aviation, UV forecasts and the air quality forecasts. In this invited talk an overview will be given of unique findings and new scientific results based on OMI data over the last 10 years and which unique OMI instrument features are recurring in the new generation of UV/VIS satellite instrumentation in Europe, USA and Asia.

  19. Intermittent Demand Forecasting in a Tertiary Pediatric Intensive Care Unit.

    PubMed

    Cheng, Chen-Yang; Chiang, Kuo-Liang; Chen, Meng-Yin

    2016-10-01

    Forecasts of the demand for medical supplies both directly and indirectly affect the operating costs and the quality of the care provided by health care institutions. Specifically, overestimating demand induces an inventory surplus, whereas underestimating demand possibly compromises patient safety. Uncertainty in forecasting the consumption of medical supplies generates intermittent demand events. The intermittent demand patterns for medical supplies are generally classified as lumpy, erratic, smooth, and slow-moving demand. This study was conducted with the purpose of advancing a tertiary pediatric intensive care unit's efforts to achieve a high level of accuracy in its forecasting of the demand for medical supplies. On this point, several demand forecasting methods were compared in terms of the forecast accuracy of each. The results confirm that applying Croston's method combined with a single exponential smoothing method yields the most accurate results for forecasting lumpy, erratic, and slow-moving demand, whereas the Simple Moving Average (SMA) method is the most suitable for forecasting smooth demand. In addition, when the classification of demand consumption patterns were combined with the demand forecasting models, the forecasting errors were minimized, indicating that this classification framework can play a role in improving patient safety and reducing inventory management costs in health care institutions.

  20. NOAA's National Air Quality Predictions and Development of Aerosol and Atmospheric Composition Prediction Components for the Next Generation Global Prediction System

    NASA Astrophysics Data System (ADS)

    Stajner, I.; Hou, Y. T.; McQueen, J.; Lee, P.; Stein, A. F.; Tong, D.; Pan, L.; Huang, J.; Huang, H. C.; Upadhayay, S.

    2016-12-01

    NOAA provides operational air quality predictions using the National Air Quality Forecast Capability (NAQFC): ozone and wildfire smoke for the United States and airborne dust for the contiguous 48 states at http://airquality.weather.gov. NOAA's predictions of fine particulate matter (PM2.5) became publicly available in February 2016. Ozone and PM2.5 predictions are produced using a system that operationally links the Community Multiscale Air Quality (CMAQ) model with meteorological inputs from the North American mesoscale forecast Model (NAM). Smoke and dust predictions are provided using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Current NAQFC focus is on updating CMAQ to version 5.0.2, improving PM2.5 predictions, and updating emissions estimates, especially for NOx using recently observed trends. Wildfire smoke emissions from a newer version of the USFS BlueSky system are being included in a new configuration of the NAQFC NAM-CMAQ system, which is re-run for the previous 24 hours when the wildfires were observed from satellites, to better represent wildfire emissions prior to initiating predictions for the next 48 hours. In addition, NOAA is developing the Next Generation Global Prediction System (NGGPS) to represent the earth system for extended weather prediction. NGGPS will include a representation of atmospheric dynamics, physics, aerosols and atmospheric composition as well as coupling with ocean, wave, ice and land components. NGGPS is being developed with a broad community involvement, including community developed components and academic research to develop and test potential improvements for potentially inclusion in NGGPS. Several investigators at NOAA's research laboratories and in academia are working to improve the aerosol and gaseous chemistry representation for NGGPS, to develop and evaluate the representation of atmospheric composition, and to establish and improve the coupling with radiation and microphysics. Additional efforts may include the improved use of predicted atmospheric composition in assimilation of observations and the linkage of full global atmospheric composition predictions with national air quality predictions.

  1. Imagining life with an ostomy: Does a video intervention improve quality-of-life predictions for a medical condition that may elicit disgust?☆

    PubMed Central

    Angott, Andrea M.; Comerford, David A.; Ubel, Peter A.

    2014-01-01

    Objective To test a video intervention as a way to improve predictions of mood and quality-of-life with an emotionally evocative medical condition. Such predictions are typically inaccurate, which can be consequential for decision making. Method In Part 1, people presently or formerly living with ostomies predicted how watching a video depicting a person changing his ostomy pouch would affect mood and quality-of-life forecasts for life with an ostomy. In Part 2, participants from the general public read a description about life with an ostomy; half also watched a video depicting a person changing his ostomy pouch. Participants’ quality-of-life and mood forecasts for life with an ostomy were assessed. Results Contrary to our expectations, and the expectations of people presently or formerly living with ostomies, the video did not reduce mood or quality-of-life estimates, even among participants high in trait disgust sensitivity. Among low-disgust participants, watching the video increased quality-of-life predictions for ostomy. Conclusion Video interventions may improve mood and quality-of-life forecasts for medical conditions, including those that may elicit disgust, such as ostomy. Practice implications Video interventions focusing on patients’ experience of illness continue to show promise as components of decision aids, even for emotionally charged health states such as ostomy. PMID:23177398

  2. Seasonal Water Balance Forecasts for Drought Early Warning in Ethiopia

    NASA Astrophysics Data System (ADS)

    Spirig, Christoph; Bhend, Jonas; Liniger, Mark

    2016-04-01

    Droughts severely impact Ethiopian agricultural production. Successful early warning for drought conditions in the upcoming harvest season therefore contributes to better managing food shortages arising from adverse climatic conditions. So far, however, meteorological seasonal forecasts have not been used in Ethiopia's national food security early warning system (i.e. the LEAP platform). Here we analyse the forecast quality of seasonal forecasts of total rainfall and of the meteorological water balance as a proxy for plant available water. We analyse forecast skill of June to September rainfall and water balance from dynamical seasonal forecast systems, the ECMWF System4 and EC-EARTH global forecasting systems. Rainfall forecasts outperform forecasts assuming a stationary climate mainly in north-eastern Ethiopia - an area that is particularly vulnerable to droughts. Forecasts of the water balance index seem to be even more skilful and thus more useful than pure rainfall forecasts. The results vary though for different lead times and skill measures employed. We further explore the potential added value of dynamically downscaling the forecasts through several dynamical regional climate models made available through the EU FP7 project EUPORIAS. Preliminary results suggest that dynamically downscaled seasonal forecasts are not significantly better compared with seasonal forecasts from the global models. We conclude that seasonal forecasts of a simple climate index such as the water balance have the potential to benefit drought early warning in Ethiopia, both due to its positive predictive skill and higher usefulness than seasonal mean quantities.

  3. Bridging the Gap Between NASA Earth Observations and Decision Makers Through the NASA Develop National Program

    NASA Astrophysics Data System (ADS)

    Remillard, C. M.; Madden, M.; Favors, J.; Childs-Gleason, L.; Ross, K. W.; Rogers, L.; Ruiz, M. L.

    2016-06-01

    The NASA DEVELOP National Program bridges the gap between NASA Earth Science and society by building capacity in both participants and partner organizations that collaborate to conduct projects. These rapid feasibility projects highlight the capabilities of satellite and aerial Earth observations. Immersion of decision and policy makers in these feasibility projects increases awareness of the capabilities of Earth observations and contributes to the tools and resources available to support enhanced decision making. This paper will present the DEVELOP model, best practices, and two case studies, the Colombia Ecological Forecasting project and the Miami-Dade County Ecological Forecasting project, that showcase the successful adoption of tools and methods for decision making. Through over 90 projects each year, DEVELOP is always striving for the innovative, practical, and beneficial use of NASA Earth science data.

  4. Towards the Next Generation of Space Environment Prediction Capabilities.

    NASA Astrophysics Data System (ADS)

    Kuznetsova, M. M.

    2015-12-01

    Since its establishment more than 15 years ago, the Community Coordinated Modeling Center (CCMC, http://ccmc.gsfc.nasa.gov) is serving as an assess point to expanding collection of state-of-the-art space environment models and frameworks as well as a hub for collaborative development of next generation space weather forecasting systems. In partnership with model developers and international research and operational communities the CCMC integrates new data streams and models from diverse sources into end-to-end space weather impacts predictive systems, identifies week links in data-model & model-model coupling and leads community efforts to fill those gaps. The presentation will highlight latest developments, progress in CCMC-led community-wide projects on testing, prototyping, and validation of models, forecasting techniques and procedures and outline ideas on accelerating implementation of new capabilities in space weather operations.

  5. Strategies and Innovative Approaches for the Future of Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Hoeksema, J. T.

    2012-12-01

    The real and potential impacts of space weather have been well documented, yet neither the required research and operations programs, nor the data, modeling and analysis infrastructure necessary to develop and sustain a reliable space weather forecasting capability for a society are in place. The recently published decadal survey "Solar and Space Physics: A Science for a Technological Society" presents a vision for the coming decade and calls for a renewed national commitment to a comprehensive program in space weather and climatology. New resources are imperative. Particularly in the current fiscal environment, implementing a responsible strategy to address these needs will require broad participation across agencies and innovative approaches to make the most of existing resources, capitalize on current knowledge, span gaps in capabilities and observations, and focus resources on overcoming immediate roadblocks.

  6. Evaluation of streamflow forecast for the National Water Model of U.S. National Weather Service

    NASA Astrophysics Data System (ADS)

    Rafieeinasab, A.; McCreight, J. L.; Dugger, A. L.; Gochis, D.; Karsten, L. R.; Zhang, Y.; Cosgrove, B.; Liu, Y.

    2016-12-01

    The National Water Model (NWM), an implementation of the community WRF-Hydro modeling system, is an operational hydrologic forecasting model for the contiguous United States. The model forecasts distributed hydrologic states and fluxes, including soil moisture, snowpack, ET, and ponded water. In particular, the NWM provides streamflow forecasts at more than 2.7 million river reaches for three forecast ranges: short (15 hr), medium (10 days), and long (30 days). In this study, we verify short and medium range streamflow forecasts in the context of the verification of their respective quantitative precipitation forecasts/forcing (QPF), the High Resolution Rapid Refresh (HRRR) and the Global Forecast System (GFS). The streamflow evaluation is performed for summer of 2016 at more than 6,000 USGS gauges. Both individual forecasts and forecast lead times are examined. Selected case studies of extreme events aim to provide insight into the quality of the NWM streamflow forecasts. A goal of this comparison is to address how much streamflow bias originates from precipitation forcing bias. To this end, precipitation verification is performed over the contributing areas above (and between assimilated) USGS gauge locations. Precipitation verification is based on the aggregated, blended StageIV/StageII data as the "reference truth". We summarize the skill of the streamflow forecasts, their skill relative to the QPF, and make recommendations for improving NWM forecast skill.

  7. A FAST BAYESIAN METHOD FOR UPDATING AND FORECASTING HOURLY OZONE LEVELS

    EPA Science Inventory

    A Bayesian hierarchical space-time model is proposed by combining information from real-time ambient AIRNow air monitoring data, and output from a computer simulation model known as the Community Multi-scale Air Quality (Eta-CMAQ) forecast model. A model validation analysis shows...

  8. OceanNOMADS: Real-time and retrospective access to operational U.S. ocean prediction products

    NASA Astrophysics Data System (ADS)

    Harding, J. M.; Cross, S. L.; Bub, F.; Ji, M.

    2011-12-01

    The National Oceanic and Atmospheric Administration (NOAA) National Operational Model Archive and Distribution System (NOMADS) provides both real-time and archived atmospheric model output from servers at the National Centers for Environmental Prediction (NCEP) and National Climatic Data Center (NCDC) respectively (http://nomads.ncep.noaa.gov/txt_descriptions/marRutledge-1.pdf). The NOAA National Ocean Data Center (NODC) with NCEP is developing a complementary capability called OceanNOMADS for operational ocean prediction models. An NCEP ftp server currently provides real-time ocean forecast output (http://www.opc.ncep.noaa.gov/newNCOM/NCOM_currents.shtml) with retrospective access through NODC. A joint effort between the Northern Gulf Institute (NGI; a NOAA Cooperative Institute) and the NOAA National Coastal Data Development Center (NCDDC; a division of NODC) created the developmental version of the retrospective OceanNOMADS capability (http://www.northerngulfinstitute.org/edac/ocean_nomads.php) under the NGI Ecosystem Data Assembly Center (EDAC) project (http://www.northerngulfinstitute.org/edac/). Complementary funding support for the developmental OceanNOMADS from U.S. Integrated Ocean Observing System (IOOS) through the Southeastern University Research Association (SURA) Model Testbed (http://testbed.sura.org/) this past year provided NODC the analogue that facilitated the creation of an NCDDC production version of OceanNOMADS (http://www.ncddc.noaa.gov/ocean-nomads/). Access tool development and storage of initial archival data sets occur on the NGI/NCDDC developmental servers with transition to NODC/NCCDC production servers as the model archives mature and operational space and distribution capability grow. Navy operational global ocean forecast subsets for U.S waters comprise the initial ocean prediction fields resident on the NCDDC production server. The NGI/NCDDC developmental server currently includes the Naval Research Laboratory Inter-America Seas Nowcast/Forecast System over the Gulf of Mexico from 2004-Mar 2011, the operational Naval Oceanographic Office (NAVOCEANO) regional USEast ocean nowcast/forecast system from early 2009 to present, and the NAVOCEANO operational regional AMSEAS (Gulf of Mexico/Caribbean) ocean nowcast/forecast system from its inception 25 June 2010 to present. AMSEAS provided one of the real-time ocean forecast products accessed by NOAA's Office of Response and Restoration from the NGI/NCDDC developmental OceanNOMADS during the Deep Water Horizon oil spill last year. The developmental server also includes archived, real-time Navy coastal forecast products off coastal Japan in support of U.S./Japanese joint efforts following the 2011 tsunami. Real-time NAVOCEANO output from regional prediction systems off Southern California and around Hawaii, currently available on the NCEP ftp server, are scheduled for archival on the developmental OceanNOMADS by late 2011 along with the next generation Navy/NOAA global ocean prediction output. Accession and archival of additional regions is planned as server capacities increase.

  9. Unstructured Grid Adaptation: Status, Potential Impacts, and Recommended Investments Toward CFD Vision 2030

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Krakos, Joshua A.; Michal, Todd; Loseille, Adrien; Alonso, Juan J.

    2016-01-01

    Unstructured grid adaptation is a powerful tool to control discretization error for Computational Fluid Dynamics (CFD). It has enabled key increases in the accuracy, automation, and capacity of some fluid simulation applications. Slotnick et al. provides a number of case studies in the CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences to illustrate the current state of CFD capability and capacity. The authors forecast the potential impact of emerging High Performance Computing (HPC) environments forecast in the year 2030 and identify that mesh generation and adaptivity continue to be significant bottlenecks in the CFD work flow. These bottlenecks may persist because very little government investment has been targeted in these areas. To motivate investment, the impacts of improved grid adaptation technologies are identified. The CFD Vision 2030 Study roadmap and anticipated capabilities in complementary disciplines are quoted to provide context for the progress made in grid adaptation in the past fifteen years, current status, and a forecast for the next fifteen years with recommended investments. These investments are specific to mesh adaptation and impact other aspects of the CFD process. Finally, a strategy is identified to diffuse grid adaptation technology into production CFD work flows.

  10. Report of the Panel on Computer and Information Technology

    NASA Technical Reports Server (NTRS)

    Lundstrom, Stephen F.; Larsen, Ronald L.

    1984-01-01

    Aircraft have become more and more dependent on computers (information processing) for improved performance and safety. It is clear that this activity will grow, since information processing technology has advanced by a factor of 10 every 5 years for the past 35 years and will continue to do so. Breakthroughs in device technology, from vacuum tubes through transistors to integrated circuits, contribute to this rapid pace. This progress is nearly matched by similar, though not as dramatic, advances in numerical software and algorithms. Progress has not been easy. Many technical and nontechnical challenges were surmounted. The outlook is for continued growth in capability but will require surmounting new challenges. The technology forecast presented in this report has been developed by extrapolating current trends and assessing the possibilities of several high-risk research topics. In the process, critical problem areas that require research and development emphasis have been identified. The outlook assumes a positive perspective; the projected capabilities are possible by the year 2000, and adequate resources will be made available to achieve them. Computer and information technology forecasts and the potential impacts of this technology on aeronautics are identified. Critical issues and technical challenges underlying the achievement of forecasted performance and benefits are addressed.

  11. Two-Step Forecast of Geomagnetic Storm Using Coronal Mass Ejection and Solar Wind Condition

    NASA Technical Reports Server (NTRS)

    Kim, R.-S.; Moon, Y.-J.; Gopalswamy, N.; Park, Y.-D.; Kim, Y.-H.

    2014-01-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz = -5 nT or Ey = 3 mV/m for t = 2 h for moderate storms with minimum Dst less than -50 nT) (i.e. Magnetic Field Magnitude, B (sub z) less than or equal to -5 nanoTeslas or duskward Electrical Field, E (sub y) greater than or equal to 3 millivolts per meter for time greater than or equal to 2 hours for moderate storms with Minimum Disturbance Storm Time, Dst less than -50 nanoTeslas) and a Dst model developed by Temerin and Li (2002, 2006) (TL [i.e. Temerin Li] model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90 percent) than the forecasts based on the TL model (87 percent). However, the latter produces better forecasts for 24 nonstorm events (88 percent), while the former correctly forecasts only 71 percent of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80 percent) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (n, i.e. cap operator - the intersection set that is comprised of all the elements that are common to both), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81 percent) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (?, i.e. cup operator - the union set that is comprised of all the elements of either or both), all geomagnetic storms are correctly forecasted.

  12. Future directions of meteorology related to air-quality research.

    PubMed

    Seaman, Nelson L

    2003-06-01

    Meteorology is one of the major factors contributing to air-pollution episodes. More accurate representation of meteorological fields has been possible in recent years through the use of remote sensing systems, high-speed computers and fine-mesh meteorological models. Over the next 5-20 years, better meteorological inputs for air quality studies will depend on making better use of a wealth of new remotely sensed observations in more advanced data assimilation systems. However, for fine mesh models to be successful, parameterizations used to represent physical processes must be redesigned to be more precise and better adapted for the scales at which they will be applied. Candidates for significant overhaul include schemes to represent turbulence, deep convection, shallow clouds, and land-surface processes. Improvements in the meteorological observing systems, data assimilation and modeling, coupled with advancements in air-chemistry modeling, will soon lead to operational forecasting of air quality in the US. Predictive capabilities can be expected to grow rapidly over the next decade. This will open the way for a number of valuable new services and strategies, including better warnings of unhealthy atmospheric conditions, event-dependent emissions restrictions, and now casting support for homeland security in the event of toxic releases into the atmosphere.

  13. Development, Application, and Transition of Aerosol and Trace Gas Products Derived from Next-Generation Satellite Observations to Operations

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Naeger, Aaron; Zavodsky, Bradley; McGrath, Kevin; LaFontaine, Frank

    2016-01-01

    NASA Short-term Prediction Research and Transition (SPoRT) Center has a history of successfully transitioning unique observations and research capabilities to the operational weather community to improve short-term forecasts. SPoRTstrives to bridge the gap between research and operations by maintaining interactive partnerships with end users to develop products that match specific forecast challenges, provide training, and assess the products in the operational environment. This presentation focuses on recent product development, application, and transition of aerosol and trace gas products to operations for specific forecasting applications. Recent activities relating to the SPoRT ozone products, aerosol optical depth composite product, sulfur dioxide, and aerosol index products are discussed.

  14. Applicability of internet search index for asthma admission forecast using machine learning.

    PubMed

    Luo, Li; Liao, Chengcheng; Zhang, Fengyi; Zhang, Wei; Li, Chunyang; Qiu, Zhixin; Huang, Debin

    2018-04-15

    This study aimed to determine whether a search index could provide insight into trends in asthma admission in China. An Internet search index is a powerful tool to monitor and predict epidemic outbreaks. However, whether using an internet search index can significantly improve asthma admissions forecasts remains unknown. The long-term goal is to develop a surveillance system to help early detection and interventions for asthma and to avoid asthma health care resource shortages in advance. In this study, we used a search index combined with air pollution data, weather data, and historical admissions data to forecast asthma admissions using machine learning. Results demonstrated that the best area under the curve in the test set that can be achieved is 0.832, using all predictors mentioned earlier. A search index is a powerful predictor in asthma admissions forecast, and a recent search index can reflect current asthma admissions with a lag-effect to a certain extent. The addition of a real-time, easily accessible search index improves forecasting capabilities and demonstrates the predictive potential of search index. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Nonlinear problems in data-assimilation : Can synchronization help?

    NASA Astrophysics Data System (ADS)

    Tribbia, J. J.; Duane, G. S.

    2009-12-01

    Over the past several years, operational weather centers have initiated ensemble prediction and assimilation techniques to estimate the error covariance of forecasts in the short and the medium range. The ensemble techniques used are based on linear methods. The theory This technique s been shown to be a useful indicator of skill in the linear range where forecast errors are small relative to climatological variance. While this advance has been impressive, there are still ad hoc aspects of its use in practice, like the need for covariance inflation which are troubling. Furthermore, to be of utility in the nonlinear range an ensemble assimilation and prediction method must be capable of giving probabilistic information for the situation where a probability density forecast becomes multi-modal. A prototypical, simplest example of such a situation is the planetary-wave regime transition where the pdf is bimodal. Our recent research show how the inconsistencies and extensions of linear methodology can be consistently treated using the paradigm of synchronization which views the problems of assimilation and forecasting as that of optimizing the forecast model state with respect to the future evolution of the atmosphere.

  16. Japan’s Defense Policy: Forecast and Implications.

    DTIC Science & Technology

    1979-12-21

    aggressive and extreme military values. While the military was developing high self - esteem , many Japanese were critical of the conduct of servicemen... effective defense capabilities progressively within the limits necessary for our self -defense, with due regard to the national resources and the...Cabinet recognized that actual capabilities of the Self -Defense Forces were short of the ultimate goal of "dealing effectively with conventional aggression

  17. Cloud-Based Numerical Weather Prediction for Near Real-Time Forecasting and Disaster Response

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Case, Jonathan; Venner, Jason; Schroeder, Richard; Checchi, Milton; Zavodsky, Bradley; O'Brien, Raymond

    2015-01-01

    Cloud computing capabilities have rapidly expanded within the private sector, offering new opportunities for meteorological applications. Collaborations between NASA Marshall, NASA Ames, and contractor partners led to evaluations of private (NASA) and public (Amazon) resources for executing short-term NWP systems. Activities helped the Marshall team further understand cloud capabilities, and benchmark use of cloud resources for NWP and other applications

  18. Weather and climate

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Recommendations for using space observations of weather and climate to aid in solving earth based problems are given. Special attention was given to: (1) extending useful forecasting capability of space systems, (2) reducing social, economic, and human losses caused by weather, (3) development of space system capability to manage and control air pollutant concentrations, and (4) establish mechanisms for the national examination of deliberate and inadvertent means for modifying weather and climate.

  19. Using additional external inputs to forecast water quality with an artificial neural network for contamination event detection in source water

    NASA Astrophysics Data System (ADS)

    Schmidt, F.; Liu, S.

    2016-12-01

    Source water quality plays an important role for the safety of drinking water and early detection of its contamination is vital to taking appropriate countermeasures. However, compared to drinking water, it is more difficult to detect contamination events because its environment is less controlled and numerous natural causes contribute to a high variability of the background values. In this project, Artificial Neural Networks (ANNs) and a Contamination Event Detection Process (CED Process) were used to identify events in river water. The ANN models the response of basic water quality sensors obtained in laboratory experiments in an off-line learning stage and continuously forecasts future values of the time line in an on-line forecasting step. During this second stage, the CED Process compares the forecast to the measured value and classifies it as regular background or event value, which modifies the ANN's continuous learning and influences its forecasts. In addition to this basic setup, external information is fed to the CED Process: A so-called Operator Input (OI) is provided to inform about unusual water quality levels that are unrelated to the presence of contamination, for example due to cooling water discharge from a nearby power plant. This study's primary goal is to evaluate how well the OI fits into the design of the combined forecasting ANN and CED Process and to understand its effects on the online forecasting stage. To test this, data from laboratory experiments conducted previously at the School of Environment, Tsinghua University, have been used to perform simulations highlighting features and drawbacks of this method. Applying the OI has been shown to have a positive influence on the ANN's ability to handle a sudden change in background values, which is unrelated to contamination. However, it might also mask the presence of an event, an issue that underlines the necessity to have several instances of the algorithm run in parallel. Other difficulties addressed in this study include the source and the format of the OI. This project tries to add to the ongoing research into algorithms for CED. It provides ideas for how results from the binary classification of time series could be evaluated in a more realistic fashion and shows what the advantages and limitations of such a method would be.

  20. Improving Regional Forecast by Assimilating Atmospheric InfraRed Sounder (AIRS) Profiles into WRF Model

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and produce improved forecasts. One such source comes from the Atmospheric InfraRed Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The purpose of this paper is to describe a procedure to optimally assimilate high resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background type, and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics. The AIRS thermodynamic profiles are derived from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators were used to select the highest quality temperature and moisture data for each profile location and pressure level. The analyses were then used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impacts of AIRS profiles on forecast were assessed against verifying NAM analyses and stage IV precipitation data.

  1. Improved Space-Time Forecasting of next Day Ozone Concentrations in the Eastern U.S.

    EPA Science Inventory

    There is an urgent need to provide accurate air quality information and forecasts to the general public and environmental health decision-makers. This paper develops a hierarchical space-time model for daily 8-hour maximum ozone concentration (O3) data covering much of the easter...

  2. National Centers for Environmental Prediction

    Science.gov Websites

    Reference List Table of Contents NCEP OPERATIONAL MODEL FORECAST GRAPHICS PARALLEL/EXPERIMENTAL MODEL Developmental Air Quality Forecasts and Verification Back to Table of Contents 2. PARALLEL/EXPERIMENTAL GRAPHICS VERIFICATION (GRID VS.OBS) WEB PAGE (NCEP EXPERIMENTAL PAGE, INTERNAL USE ONLY) Interactive web page tool for

  3. How can we deal with ANN in flood forecasting? As a simulation model or updating kernel!

    NASA Astrophysics Data System (ADS)

    Hassan Saddagh, Mohammad; Javad Abedini, Mohammad

    2010-05-01

    Flood forecasting and early warning, as a non-structural measure for flood control, is often considered to be the most effective and suitable alternative to mitigate the damage and human loss caused by flood. Forecast results which are output of hydrologic, hydraulic and/or black box models should secure accuracy of flood values and timing, especially for long lead time. The application of the artificial neural network (ANN) in flood forecasting has received extensive attentions in recent years due to its capability to capture the dynamics inherent in complex processes including flood. However, results obtained from executing plain ANN as simulation model demonstrate dramatic reduction in performance indices as lead time increases. This paper is intended to monitor the performance indices as it relates to flood forecasting and early warning using two different methodologies. While the first method employs a multilayer neural network trained using back-propagation scheme to forecast output hydrograph of a hypothetical river for various forecast lead time up to 6.0 hr, the second method uses 1D hydrodynamic MIKE11 model as forecasting model and multilayer neural network as updating kernel to monitor and assess the performance indices compared to ANN alone in light of increase in lead time. Results presented in both graphical and tabular format indicate superiority of MIKE11 coupled with ANN as updating kernel compared to ANN as simulation model alone. While plain ANN produces more accurate results for short lead time, the errors increase expeditiously for longer lead time. The second methodology provides more accurate and reliable results for longer forecast lead time.

  4. Use of High-Resolution WRF Simulations to Forecast Lightning Threat

    NASA Technical Reports Server (NTRS)

    McCaul, E. W., Jr.; LaCasse, K.; Goodman, S. J.; Cecil, D. J.

    2008-01-01

    Recent observational studies have confirmed the existence of a robust statistical relationship between lightning flash rates and the amount of large precipitating ice hydrometeors aloft in storms. This relationship is exploited, in conjunction with the capabilities of cloud-resolving forecast models such as WRF, to forecast explicitly the threat of lightning from convective storms using selected output fields from the model forecasts. The simulated vertical flux of graupel at -15C and the shape of the simulated reflectivity profile are tested in this study as proxies for charge separation processes and their associated lightning risk. Our lightning forecast method differs from others in that it is entirely based on high-resolution simulation output, without reliance on any climatological data. short [6-8 h) simulations are conducted for a number of case studies for which three-dmmensional lightning validation data from the North Alabama Lightning Mapping Array are available. Experiments indicate that initialization of the WRF model on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity fields, and METAR and ACARS data y&eld satisfactory simulations. __nalyses of the lightning threat fields suggests that both the graupel flux and reflectivity profile approaches, when properly calibrated, can yield reasonable lightning threat forecasts, although an ensemble approach is probably desirable in order to reduce the tendency for misplacement of modeled storms to hurt the accuracy of the forecasts. Our lightning threat forecasts are also compared to other more traditional means of forecasting thunderstorms, such as those based on inspection of the convective available potential energy field.

  5. AIRS Impact on Analysis and Forecast of an Extreme Rainfall Event (Indus River Valley 2010) with a Global Data Assimilation and Forecast System

    NASA Technical Reports Server (NTRS)

    Reale, O.; Lau, W. K.; Susskind, J.; Rosenberg, R.

    2011-01-01

    A set of data assimilation and forecast experiments are performed with the NASA Global data assimilation and forecast system GEOS-5, to compare the impact of different approaches towards assimilation of Advanced Infrared Spectrometer (AIRS) data on the precipitation analysis and forecast skill. The event chosen is an extreme rainfall episode which occurred in late July 11 2010 in Pakistan, causing massive floods along the Indus River Valley. Results show that the assimilation of quality-controlled AIRS temperature retrievals obtained under partly cloudy conditions produce better precipitation analyses, and substantially better 7-day forecasts, than assimilation of clear-sky radiances. The improvement of precipitation forecast skill up to 7 day is very significant in the tropics, and is caused by an improved representation, attributed to cloudy retrieval assimilation, of two contributing mechanisms: the low-level moisture advection, and the concentration of moisture over the area in the days preceding the precipitation peak.

  6. Forecasting volcanic eruptions and other material failure phenomena: An evaluation of the failure forecast method

    NASA Astrophysics Data System (ADS)

    Bell, Andrew F.; Naylor, Mark; Heap, Michael J.; Main, Ian G.

    2011-08-01

    Power-law accelerations in the mean rate of strain, earthquakes and other precursors have been widely reported prior to material failure phenomena, including volcanic eruptions, landslides and laboratory deformation experiments, as predicted by several theoretical models. The Failure Forecast Method (FFM), which linearizes the power-law trend, has been routinely used to forecast the failure time in retrospective analyses; however, its performance has never been formally evaluated. Here we use synthetic and real data, recorded in laboratory brittle creep experiments and at volcanoes, to show that the assumptions of the FFM are inconsistent with the error structure of the data, leading to biased and imprecise forecasts. We show that a Generalized Linear Model method provides higher-quality forecasts that converge more accurately to the eventual failure time, accounting for the appropriate error distributions. This approach should be employed in place of the FFM to provide reliable quantitative forecasts and estimate their associated uncertainties.

  7. A systematic review of studies on forecasting the dynamics of influenza outbreaks

    PubMed Central

    Nsoesie, Elaine O; Brownstein, John S; Ramakrishnan, Naren; Marathe, Madhav V

    2014-01-01

    Forecasting the dynamics of influenza outbreaks could be useful for decision-making regarding the allocation of public health resources. Reliable forecasts could also aid in the selection and implementation of interventions to reduce morbidity and mortality due to influenza illness. This paper reviews methods for influenza forecasting proposed during previous influenza outbreaks and those evaluated in hindsight. We discuss the various approaches, in addition to the variability in measures of accuracy and precision of predicted measures. PubMed and Google Scholar searches for articles on influenza forecasting retrieved sixteen studies that matched the study criteria. We focused on studies that aimed at forecasting influenza outbreaks at the local, regional, national, or global level. The selected studies spanned a wide range of regions including USA, Sweden, Hong Kong, Japan, Singapore, United Kingdom, Canada, France, and Cuba. The methods were also applied to forecast a single measure or multiple measures. Typical measures predicted included peak timing, peak height, daily/weekly case counts, and outbreak magnitude. Due to differences in measures used to assess accuracy, a single estimate of predictive error for each of the measures was difficult to obtain. However, collectively, the results suggest that these diverse approaches to influenza forecasting are capable of capturing specific outbreak measures with some degree of accuracy given reliable data and correct disease assumptions. Nonetheless, several of these approaches need to be evaluated and their performance quantified in real-time predictions. PMID:24373466

  8. A systematic review of studies on forecasting the dynamics of influenza outbreaks.

    PubMed

    Nsoesie, Elaine O; Brownstein, John S; Ramakrishnan, Naren; Marathe, Madhav V

    2014-05-01

    Forecasting the dynamics of influenza outbreaks could be useful for decision-making regarding the allocation of public health resources. Reliable forecasts could also aid in the selection and implementation of interventions to reduce morbidity and mortality due to influenza illness. This paper reviews methods for influenza forecasting proposed during previous influenza outbreaks and those evaluated in hindsight. We discuss the various approaches, in addition to the variability in measures of accuracy and precision of predicted measures. PubMed and Google Scholar searches for articles on influenza forecasting retrieved sixteen studies that matched the study criteria. We focused on studies that aimed at forecasting influenza outbreaks at the local, regional, national, or global level. The selected studies spanned a wide range of regions including USA, Sweden, Hong Kong, Japan, Singapore, United Kingdom, Canada, France, and Cuba. The methods were also applied to forecast a single measure or multiple measures. Typical measures predicted included peak timing, peak height, daily/weekly case counts, and outbreak magnitude. Due to differences in measures used to assess accuracy, a single estimate of predictive error for each of the measures was difficult to obtain. However, collectively, the results suggest that these diverse approaches to influenza forecasting are capable of capturing specific outbreak measures with some degree of accuracy given reliable data and correct disease assumptions. Nonetheless, several of these approaches need to be evaluated and their performance quantified in real-time predictions. © 2013 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  9. Development and Application of Hyperspectral Infrared Ozone Retrieval Products for Operational Meteorology

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary

    2015-01-01

    Cyclogenesis is a key forecast challenge at operational forecasting centers such as WPC and OPC, so these centers have a particular interest in unique products that can identify key storm features. In some cases, explosively developing extratropical cyclones can produce hurricane force, non-convective winds along the East Coast and north Atlantic as well as the Pacific Ocean, with the potential to cause significant damage to life and property. Therefore, anticipating cyclogenesis for these types of storms is crucial for furthering the NOAA goal of a "Weather Ready Nation". Over the last few years, multispectral imagery (i.e. RGB) products have gained popularity among forecasters. The GOES-R satellite champion at WPC/OPC has regularly evaluated the Air Mass RGB products from GOES Sounder, MODIS, and SEVIRI to aid in forecasting cyclogenesis as part of ongoing collaborations with SPoRT within the framework of the GOES-R Proving Ground. WPC/OPC has used these products to identify regions of stratospheric air associated with tropopause folds that can lead to cyclogenesis and hurricane force winds. RGB products combine multiple channels or channel differences into multi-color imagery in which different colors represent a particular cloud or air mass type. Initial interaction and feedback from forecasters evaluating the legacy Air Mass RGBs revealed some uncertainty regarding what physical processes the qualitative RGB products represent and color interpretation. To enhance forecaster confidence and interpretation of the Air Mass RGB, NASA SPoRT has transitioned a total column ozone product from AIRS retrievals to the WPC/OPC. The use of legacy AIRS demonstrates future JPSS capabilities possible with CrIS or OMPS. Since stratospheric air can be identified by anomalous potential vorticity and warm, dry, ozone-rich air, hyperspectral infrared sounder ozone products can be used in conjunction with the Air Mass RGB for identifying the role of stratospheric air in explosive cyclogenesis and hurricane force wind events. Currently, forecasters at WPC/OPC are evaluating the Air Mass RGB imagery in conjunction with the AIRS total column ozone to aid forecasting cyclogenesis and high wind forecasts. One of the limitations of the total ozone product is that it is difficult for forecasters to determine whether elevated ozone concentrations are related to stratospheric air or climatologically high values of ozone in certain regions. To address this limitation, SPoRT created an AIRS ozone anomaly product which calculates the percent of normal ozone based on a global stratospheric ozone mean climatology. With the knowledge that ozone values 125 percent of normal and greater typically represent stratospheric air; the anomaly product can be used with the total column ozone product to confirm regions of stratospheric air on the Air Mass RGB. This presentation describes the generation of these products along with forecaster feedback concerning the use of the AIRS ozone products in conjunction with the Air Mass RGB product for the unique forecast challenges WPC/OPC face. Additionally examples of CrIS ozone and anomaly products will be shown to further demonstrate the utility and capability of JPSS in forecasting unique events.

  10. Demonstration of AIRS Total Ozone Products to Operations to Enhance User Readiness

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary

    2014-01-01

    Cyclogenesis is a key forecast challenge at operational forecasting centers such as WPC and OPC, so these centers have a particular interest in unique products that can identify key storm features. In some cases, explosively developing extratropical cyclones can produce hurricane force, non-convective winds along the East Coast and north Atlantic as well as the Pacific Ocean, with the potential to cause significant damage to life and property. Therefore, anticipating cyclogenesis for these types of storms is crucial for furthering the NOAA goal of a "Weather Ready Nation". Over the last few years, multispectral imagery (i.e. RGB) products have gained popularity among forecasters. The GOES-R satellite champion at WPC/OPC has regularly evaluated the Air Mass RGB products from GOES Sounder, MODIS, and SEVIRI to aid in forecasting cyclogenesis as part of ongoing collaborations with SPoRT within the framework of the GOES-R Proving Ground. WPC/OPC has used these products to identify regions of stratospheric air associated with tropopause folds that can lead to cyclogenesis and hurricane force winds. RGB products combine multiple channels or channel differences into multi-color imagery in which different colors represent a particular cloud or air mass type. Initial interaction and feedback from forecasters evaluating the legacy Air Mass RGBs revealed some uncertainty regarding what physical processes the qualitative RGB products represent and color interpretation. To enhance forecaster confidence and interpretation of the Air Mass RGB, NASA SPoRT has transitioned a total column ozone product from AIRS retrievals to the WPC/OPC. The use of legacy AIRS demonstrates future JPSS capabilities possible with CrIS or OMPS. Since stratospheric air can be identified by anomalous potential vorticity and warm, dry, ozone-rich air, hyperspectral infrared sounder ozone products can be used in conjunction with the Air Mass RGB for identifying the role of stratospheric air in explosive cyclogenesis and hurricane force wind events. Currently, forecasters at WPC/OPC are evaluating the Air Mass RGB imagery in conjunction with the AIRS total column ozone to aid forecasting cyclogenesis and high wind forecasts. One of the limitations of the total ozone product is that it is difficult for forecasters to determine whether elevated ozone concentrations are related to stratospheric air or climatologically high values of ozone in certain regions. To address this limitation, SPoRT created an AIRS ozone anomaly product which calculates the percent of normal ozone based on a global stratospheric ozone mean climatology. With the knowledge that ozone values 125 percent of normal and greater typically represent stratospheric air; the anomaly product can be used with the total column ozone product to confirm regions of stratospheric air on the Air Mass RGB. This presentation describes the generation of these products along with forecaster feedback concerning the use of the AIRS ozone products in conjunction with the Air Mass RGB product for the unique forecast challenges WPC/OPC face. Additionally examples of CrIS ozone and anomaly products will be shown to further demonstrate the utility and capability of JPSS in forecasting unique events.

  11. Forecasting the Emergency Department Patients Flow.

    PubMed

    Afilal, Mohamed; Yalaoui, Farouk; Dugardin, Frédéric; Amodeo, Lionel; Laplanche, David; Blua, Philippe

    2016-07-01

    Emergency department (ED) have become the patient's main point of entrance in modern hospitals causing it frequent overcrowding, thus hospital managers are increasingly paying attention to the ED in order to provide better quality service for patients. One of the key elements for a good management strategy is demand forecasting. In this case, forecasting patients flow, which will help decision makers to optimize human (doctors, nurses…) and material(beds, boxs…) resources allocation. The main interest of this research is forecasting daily attendance at an emergency department. The study was conducted on the Emergency Department of Troyes city hospital center, France, in which we propose a new practical ED patients classification that consolidate the CCMU and GEMSA categories into one category and innovative time-series based models to forecast long and short term daily attendance. The models we developed for this case study shows very good performances (up to 91,24 % for the annual Total flow forecast) and robustness to epidemic periods.

  12. Willingness-to-pay for a probabilistic flood forecast: a risk-based decision-making game

    NASA Astrophysics Data System (ADS)

    Arnal, Louise; Ramos, Maria-Helena; Coughlan de Perez, Erin; Cloke, Hannah Louise; Stephens, Elisabeth; Wetterhall, Fredrik; van Andel, Schalk Jan; Pappenberger, Florian

    2016-08-01

    Probabilistic hydro-meteorological forecasts have over the last decades been used more frequently to communicate forecast uncertainty. This uncertainty is twofold, as it constitutes both an added value and a challenge for the forecaster and the user of the forecasts. Many authors have demonstrated the added (economic) value of probabilistic over deterministic forecasts across the water sector (e.g. flood protection, hydroelectric power management and navigation). However, the richness of the information is also a source of challenges for operational uses, due partially to the difficulty in transforming the probability of occurrence of an event into a binary decision. This paper presents the results of a risk-based decision-making game on the topic of flood protection mitigation, called "How much are you prepared to pay for a forecast?". The game was played at several workshops in 2015, which were attended by operational forecasters and academics working in the field of hydro-meteorology. The aim of this game was to better understand the role of probabilistic forecasts in decision-making processes and their perceived value by decision-makers. Based on the participants' willingness-to-pay for a forecast, the results of the game show that the value (or the usefulness) of a forecast depends on several factors, including the way users perceive the quality of their forecasts and link it to the perception of their own performances as decision-makers.

  13. Post-processing method for wind speed ensemble forecast using wind speed and direction

    NASA Astrophysics Data System (ADS)

    Sofie Eide, Siri; Bjørnar Bremnes, John; Steinsland, Ingelin

    2017-04-01

    Statistical methods are widely applied to enhance the quality of both deterministic and ensemble NWP forecasts. In many situations, like wind speed forecasting, most of the predictive information is contained in one variable in the NWP models. However, in statistical calibration of deterministic forecasts it is often seen that including more variables can further improve forecast skill. For ensembles this is rarely taken advantage of, mainly due to that it is generally not straightforward how to include multiple variables. In this study, it is demonstrated how multiple variables can be included in Bayesian model averaging (BMA) by using a flexible regression method for estimating the conditional means. The method is applied to wind speed forecasting at 204 Norwegian stations based on wind speed and direction forecasts from the ECMWF ensemble system. At about 85 % of the sites the ensemble forecasts were improved in terms of CRPS by adding wind direction as predictor compared to only using wind speed. On average the improvements were about 5 %, but mainly for moderate to strong wind situations. For weak wind speeds adding wind direction had more or less neutral impact.

  14. How accurate are the weather forecasts for Bierun (southern Poland)?

    NASA Astrophysics Data System (ADS)

    Gawor, J.

    2012-04-01

    Weather forecast accuracy has increased in recent times mainly thanks to significant development of numerical weather prediction models. Despite the improvements, the forecasts should be verified to control their quality. The evaluation of forecast accuracy can also be an interesting learning activity for students. It joins natural curiosity about everyday weather and scientific process skills: problem solving, database technologies, graph construction and graphical analysis. The examination of the weather forecasts has been taken by a group of 14-year-old students from Bierun (southern Poland). They participate in the GLOBE program to develop inquiry-based investigations of the local environment. For the atmospheric research the automatic weather station is used. The observed data were compared with corresponding forecasts produced by two numerical weather prediction models, i.e. COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System) developed by Naval Research Laboratory Monterey, USA; it runs operationally at the Interdisciplinary Centre for Mathematical and Computational Modelling in Warsaw, Poland and COSMO (The Consortium for Small-scale Modelling) used by the Polish Institute of Meteorology and Water Management. The analysed data included air temperature, precipitation, wind speed, wind chill and sea level pressure. The prediction periods from 0 to 24 hours (Day 1) and from 24 to 48 hours (Day 2) were considered. The verification statistics that are commonly used in meteorology have been applied: mean error, also known as bias, for continuous data and a 2x2 contingency table to get the hit rate and false alarm ratio for a few precipitation thresholds. The results of the aforementioned activity became an interesting basis for discussion. The most important topics are: 1) to what extent can we rely on the weather forecasts? 2) How accurate are the forecasts for two considered time ranges? 3) Which precipitation threshold is the most predictable? 4) Why are some weather elements easier to verify than others? 5) What factors may contribute to the quality of the weather forecast?

  15. Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin

    PubMed Central

    Stewart, Devoun R; Saunders, Emily; Perea, Roberto A; Fitzgerald, Rosa; Campbell, David E; Stockwell, William R

    2017-01-01

    Proposed emission control strategies for reducing ozone and particulate matter are evaluated better when air quality and health effects models are used together. The Community Multiscale Air Quality (CMAQ) model is the US Environmental Protection Agency’s model for determining public policy and forecasting air quality. CMAQ was used to forecast air quality changes due to several emission control strategies that could be implemented between 2008 and 2030 for the South Coast Air Basin that includes Los Angeles. The Environmental Benefits Mapping and Analysis Program—Community Edition (BenMAP-CE) was used to estimate health and economic impacts of the different emission control strategies based on CMAQ simulations. BenMAP-CE is a computer program based on epidemiologic studies that link human health and air quality. This modeling approach is better for determining optimum public policy than approaches that only examine concentration changes. PMID:29162976

  16. Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin.

    PubMed

    Stewart, Devoun R; Saunders, Emily; Perea, Roberto A; Fitzgerald, Rosa; Campbell, David E; Stockwell, William R

    2017-01-01

    Proposed emission control strategies for reducing ozone and particulate matter are evaluated better when air quality and health effects models are used together. The Community Multiscale Air Quality (CMAQ) model is the US Environmental Protection Agency's model for determining public policy and forecasting air quality. CMAQ was used to forecast air quality changes due to several emission control strategies that could be implemented between 2008 and 2030 for the South Coast Air Basin that includes Los Angeles. The Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) was used to estimate health and economic impacts of the different emission control strategies based on CMAQ simulations. BenMAP-CE is a computer program based on epidemiologic studies that link human health and air quality. This modeling approach is better for determining optimum public policy than approaches that only examine concentration changes.

  17. Assimilation of Quality Controlled AIRS Temperature Profiles using the NCEP GFS

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste; Iredell, Lena; Rosenberg, Robert

    2013-01-01

    We have previously conducted a number of data assimilation experiments using AIRS Version-5 quality controlled temperature profiles as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The data assimilation and forecast system we used was the Goddard Earth Observing System Model , Version-5 (GEOS-5) Data Assimilation System (DAS), which represents a combination of the NASA GEOS-5 forecast model with the National Centers for Environmental Prediction (NCEP) operational Grid Point Statistical Interpolation (GSI) global analysis scheme. All analyses and forecasts were run at a 0.5deg x 0.625deg spatial resolution. Data assimilation experiments were conducted in four different seasons, each in a different year. Three different sets of data assimilation experiments were run during each time period: Control; AIRS T(p); and AIRS Radiance. In the "Control" analysis, all the data used operationally by NCEP was assimilated, but no AIRS data was assimilated. Radiances from the Aqua AMSU-A instrument were also assimilated operationally by NCEP and are included in the "Control". The AIRS Radiance assimilation adds AIRS observed radiance observations for a select set of channels to the data set being assimilated, as done operationally by NCEP. In the AIRS T(p) assimilation, all information used in the Control was assimilated as well as Quality Controlled AIRS Version-5 temperature profiles, i.e., AIRS T(p) information was substituted for AIRS radiance information. The AIRS Version-5 temperature profiles were presented to the GSI analysis as rawinsonde profiles, assimilated down to a case-by-case appropriate pressure level p(sub best) determined using the Quality Control procedure. Version-5 also determines case-by-case, level-by-level error estimates of the temperature profiles, which were used as the uncertainty of each temperature measurement. These experiments using GEOS-5 have shown that forecasts resulting from analyses using the AIRS T(p) assimilation system were superior to those from the Radiance assimilation system, both with regard to global 7 day forecast skill and also the ability to predict storm tracks and intensity.

  18. One multi-media environmental system with linkage between meteorology/ hydrology/ air quality models and water quality model

    NASA Astrophysics Data System (ADS)

    Tang, C.; Lynch, J. A.; Dennis, R. L.

    2016-12-01

    The biogeochemical processing of nitrogen and associated pollutants is driven by meteorological and hydrological processes in conjunction with pollutant loading. There are feedbacks between meteorology and hydrology that will be affected by land-use change and climate change. Changes in meteorology will affect pollutant deposition. It is important to account for those feedbacks and produce internally consistent simulations of meteorology, hydrology, and pollutant loading to drive the (watershed/water quality) biogeochemical models. In this study, the ecological response to emission reductions in streams in the Potomac watershed was evaluated. Firstly, we simulated the deposition by using the fully coupled Weather Research & Forecasting (WRF) model and the Community Multiscale Air Quality (CAMQ) model; secondly, we created the hydrological data by the offline linked Variable Infiltration Capacity (VIC) model and the WRF model. Lastly, we investigated the water quality by one comprehensive/environment model, namely the linkage of CMAQ, WRF, VIC and the Model of Acidification of Groundwater In Catchment (MAGIC) model from 2002 to 2010.The simulated results (such as NO3, SO4, and SBC) fit well to the observed values. The linkage provides a generally accurate, well-tested tool for evaluating sensitivities to varying meteorology and environmental changes on acidification and other biogeochemical processes, with capability to comprehensively explore strategic policy and management design.

  19. Short-range quantitative precipitation forecasting using Deep Learning approaches

    NASA Astrophysics Data System (ADS)

    Akbari Asanjan, A.; Yang, T.; Gao, X.; Hsu, K. L.; Sorooshian, S.

    2017-12-01

    Predicting short-range quantitative precipitation is very important for flood forecasting, early flood warning and other hydrometeorological purposes. This study aims to improve the precipitation forecasting skills using a recently developed and advanced machine learning technique named Long Short-Term Memory (LSTM). The proposed LSTM learns the changing patterns of clouds from Cloud-Top Brightness Temperature (CTBT) images, retrieved from the infrared channel of Geostationary Operational Environmental Satellite (GOES), using a sophisticated and effective learning method. After learning the dynamics of clouds, the LSTM model predicts the upcoming rainy CTBT events. The proposed model is then merged with a precipitation estimation algorithm termed Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) to provide precipitation forecasts. The results of merged LSTM with PERSIANN are compared to the results of an Elman-type Recurrent Neural Network (RNN) merged with PERSIANN and Final Analysis of Global Forecast System model over the states of Oklahoma, Florida and Oregon. The performance of each model is investigated during 3 storm events each located over one of the study regions. The results indicate the outperformance of merged LSTM forecasts comparing to the numerical and statistical baselines in terms of Probability of Detection (POD), False Alarm Ratio (FAR), Critical Success Index (CSI), RMSE and correlation coefficient especially in convective systems. The proposed method shows superior capabilities in short-term forecasting over compared methods.

  20. Implementation of bayesian model averaging on the weather data forecasting applications utilizing open weather map

    NASA Astrophysics Data System (ADS)

    Rahmat, R. F.; Nasution, F. R.; Seniman; Syahputra, M. F.; Sitompul, O. S.

    2018-02-01

    Weather is condition of air in a certain region at a relatively short period of time, measured with various parameters such as; temperature, air preasure, wind velocity, humidity and another phenomenons in the atmosphere. In fact, extreme weather due to global warming would lead to drought, flood, hurricane and other forms of weather occasion, which directly affects social andeconomic activities. Hence, a forecasting technique is to predict weather with distinctive output, particullary mapping process based on GIS with information about current weather status in certain cordinates of each region with capability to forecast for seven days afterward. Data used in this research are retrieved in real time from the server openweathermap and BMKG. In order to obtain a low error rate and high accuracy of forecasting, the authors use Bayesian Model Averaging (BMA) method. The result shows that the BMA method has good accuracy. Forecasting error value is calculated by mean square error shows (MSE). The error value emerges at minumum temperature rated at 0.28 and maximum temperature rated at 0.15. Meanwhile, the error value of minimum humidity rates at 0.38 and the error value of maximum humidity rates at 0.04. Afterall, the forecasting error rate of wind speed is at 0.076. The lower the forecasting error rate, the more optimized the accuracy is.

Top