Sample records for quality liquid fuels

  1. Fuel quality processing study, volume 1

    NASA Astrophysics Data System (ADS)

    Ohara, J. B.; Bela, A.; Jentz, N. E.; Syverson, H. T.; Klumpe, H. W.; Kessler, R. E.; Kotzot, H. T.; Loran, B. L.

    1981-04-01

    A fuel quality processing study to provide a data base for an intelligent tradeoff between advanced turbine technology and liquid fuel quality, and also, to guide the development of specifications of future synthetic fuels anticipated for use in the time period 1985 to 2000 is given. Four technical performance tests are discussed: on-site pretreating, existing refineries to upgrade fuels, new refineries to upgrade fuels, and data evaluation. The base case refinery is a modern Midwest refinery processing 200,000 BPD of a 60/40 domestic/import petroleum crude mix. The synthetic crudes used for upgrading to marketable products and turbine fuel are shale oil and coal liquids. Of these syncrudes, 50,000 BPD are processed in the existing petroleum refinery, requiring additional process units and reducing petroleum feed, and in a new refinery designed for processing each syncrude to produce gasoline, distillate fuels, resid fuels, and turbine fuel, JPGs and coke. An extensive collection of synfuel properties and upgrading data was prepared for the application of a linear program model to investigate the most economical production slate meeting petroleum product specifications and turbine fuels of various quality grades. Technical and economic projections were developed for 36 scenarios, based on 4 different crude feeds to either modified existing or new refineries operated in 2 different modes to produce 7 differing grades of turbine fuels. A required product selling price of turbine fuel for each processing route was calculated. Procedures and projected economics were developed for on-site treatment of turbine fuel to meet limitations of impurities and emission of pollutants.

  2. Fuel quality processing study, volume 1

    NASA Technical Reports Server (NTRS)

    Ohara, J. B.; Bela, A.; Jentz, N. E.; Syverson, H. T.; Klumpe, H. W.; Kessler, R. E.; Kotzot, H. T.; Loran, B. L.

    1981-01-01

    A fuel quality processing study to provide a data base for an intelligent tradeoff between advanced turbine technology and liquid fuel quality, and also, to guide the development of specifications of future synthetic fuels anticipated for use in the time period 1985 to 2000 is given. Four technical performance tests are discussed: on-site pretreating, existing refineries to upgrade fuels, new refineries to upgrade fuels, and data evaluation. The base case refinery is a modern Midwest refinery processing 200,000 BPD of a 60/40 domestic/import petroleum crude mix. The synthetic crudes used for upgrading to marketable products and turbine fuel are shale oil and coal liquids. Of these syncrudes, 50,000 BPD are processed in the existing petroleum refinery, requiring additional process units and reducing petroleum feed, and in a new refinery designed for processing each syncrude to produce gasoline, distillate fuels, resid fuels, and turbine fuel, JPGs and coke. An extensive collection of synfuel properties and upgrading data was prepared for the application of a linear program model to investigate the most economical production slate meeting petroleum product specifications and turbine fuels of various quality grades. Technical and economic projections were developed for 36 scenarios, based on 4 different crude feeds to either modified existing or new refineries operated in 2 different modes to produce 7 differing grades of turbine fuels. A required product selling price of turbine fuel for each processing route was calculated. Procedures and projected economics were developed for on-site treatment of turbine fuel to meet limitations of impurities and emission of pollutants.

  3. Enhanced conversion of syngas to liquid motor fuels

    DOEpatents

    Coughlin, Peter K.; Rabo, Jule A.

    1986-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

  4. Measurements in liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Chigier, N.

    1984-01-01

    Techniques for studying the events directly preceding combustion in the liquid fuel sprays are being used to provide information as a function of space and time on droplet size, shape, number density, position, angle of flight and velocity. Spray chambers were designed and constructed for: (1) air-assist liquid fuel research sprays; (2) high pressure and temperature chamber for pulsed diesel fuel sprays; and (3) coal-water slurry sprays. Recent results utilizing photography, cinematography, and calibration of the Malvern particle sizer are reported. Systems for simultaneous measurement of velocity and particle size distributions using laser Doppler anemometry interferometry and the application of holography in liquid fuel sprays are being calibrated.

  5. Combustion engine for solid and liquid fuels

    NASA Technical Reports Server (NTRS)

    Pabst, W.

    1986-01-01

    A combustion engine having no piston, a single cylinder, and a dual-action, that is applicable for solid and liquid fuels and propellants, and that functions according to the principle of annealing point ignition is presented. The invention uses environmentally benign amounts of fuel and propellants to produce gas and steam pressure, and to use a simple assembly with the lowest possible consumption and constant readiness for mixing and burning. The advantage over conventional combustion engines lies in lower consumption of high quality igniting fluid in the most cost effective manner.

  6. Enhanced catalyst for conversion of syngas to liquid motor fuels

    DOEpatents

    Coughlin, Peter K.; Rabo, Jule A.

    1985-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

  7. Enhanced catalyst for conversion of syngas to liquid motor fuels

    DOEpatents

    Coughlin, P.K.; Rabo, J.A.

    1985-12-03

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C[sub 5][sup +] hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising a SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

  8. Ecodesign of Liquid Fuel Tanks

    NASA Astrophysics Data System (ADS)

    Gicevska, Jana; Bazbauers, Gatis; Repele, Mara

    2011-01-01

    The subject of the study is a 10 litre liquid fuel tank made of metal and used for fuel storage and transportation. The study dealt with separate life cycle stages of this product, compared environmental impacts of similar fuel tanks made of metal and plastic, as well as analysed the product's end-of-life cycle stage, studying the waste treatment and disposal scenarios. The aim of this study was to find opportunities for improvement and to develop proposals for the ecodesign of 10 litre liquid fuel tank.

  9. Fuel quality/processing study. Volume 2: Appendix. Task 1 literature survey

    NASA Technical Reports Server (NTRS)

    Ohara, J. B.; Bela, A.; Jentz, N. E.; Klumpe, H. W.; Kessler, H. E.; Kotzot, H. T.; Loran, B. L.

    1981-01-01

    The results of a literature survey of fuel processing and fuel quality are given. Liquid synfuels produced from coal and oil shale are discussed. Gas turbine fuel property specifications are discussed. On-site fuel pretreatment and emissions from stationary gas turbines are discussed. Numerous data tables and abstracts are given.

  10. Liquid fuel cells.

    PubMed

    Soloveichik, Grigorii L

    2014-01-01

    The advantages of liquid fuel cells (LFCs) over conventional hydrogen-oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  11. Liquid fuel cells

    PubMed Central

    2014-01-01

    Summary The advantages of liquid fuel cells (LFCs) over conventional hydrogen–oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented. PMID:25247123

  12. Process for vaporizing a liquid hydrocarbon fuel

    DOEpatents

    Szydlowski, Donald F.; Kuzminskas, Vaidotas; Bittner, Joseph E.

    1981-01-01

    The object of the invention is to provide a process for vaporizing liquid hydrocarbon fuels efficiently and without the formation of carbon residue on the apparatus used. The process includes simultaneously passing the liquid fuel and an inert hot gas downwardly through a plurality of vertically spaed apart regions of high surface area packing material. The liquid thinly coats the packing surface, and the sensible heat of the hot gas vaporizes this coating of liquid. Unvaporized liquid passing through one region of packing is uniformly redistributed over the top surface of the next region until all fuel has been vaporized using only the sensible heat of the hot gas stream.

  13. Producing liquid fuels from biomass

    NASA Astrophysics Data System (ADS)

    Solantausta, Yrjo; Gust, Steven

    The aim of this survey was to compare, on techno-economic criteria, alternatives of producing liquid fuels from indigenous raw materials in Finland. Another aim was to compare methods under development and prepare a proposal for steering research related to this field. Process concepts were prepared for a number of alternatives, as well as analogous balances and production and investment cost assessments for these balances. Carbon dioxide emissions of the alternatives and the price of CO2 reduction were also studied. All the alternatives for producing liquid fuels from indigenous raw materials are utmost unprofitable. There are great differences between the alternatives. While the production cost of ethanol is 6 to 9 times higher than the market value of the product, the equivalent ratio for substitute fuel oil produced from peat by pyrolysis is 3 to 4. However, it should be borne in mind that the technical uncertainties related to the alternatives are of different magnitude. Production of ethanol from barley is of commercial technology, while biomass pyrolysis is still under development. If the aim is to reach smaller carbon dioxide emissions by using liquid biofuels, the most favorable alternative is pyrolysis oil produced from wood. Fuels produced from cultivated biomass are more expensive ways of reducing CO2 emissions. Their potential of reducing CO2 emissions in Finland is insignificant. Integration of liquid fuel production to some other production line is more profitable.

  14. Fuel quality-processing study. Volume 1: Overview and results

    NASA Technical Reports Server (NTRS)

    Jones, G. E., Jr.

    1982-01-01

    The methods whereby the intermediate results were obtained are outlined, and the evaluation of the feasible paths from liquid fossil fuel sources to generated electricity is presented. The segments from which these paths were built are the results from the fuel upgrading schemes, on-site treatments, and exhaust gas treatments detailed in the subsequent volumes. The salient cost and quality parameters are included.

  15. Aircraft-Fuel-Tank Design for Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Reynolds, T W

    1955-01-01

    Some of the considerations involved in the design of aircraft fuel tanks for liquid hydrogen are discussed herein. Several of the physical properties of metals and thermal insulators in the temperature range from ambient to liquid-hydrogen temperatures are assembled. Calculations based on these properties indicate that it is possible to build a large-size liquid-hydrogen fuel tank which (1) will weigh less then 15 percent of the fuel weight, (2) will have a hydrogen vaporization rate less than 30 percent of the cruise fuel-flow rate, and (3) can be held in a stand-by condition and readied for flight in a short time.

  16. The challenges and opportunities for integration of solar syngas production with liquid fuel synthesis

    NASA Astrophysics Data System (ADS)

    Hinkley, James T.; McNaughton, Robbie K.; Pye, John; Saw, Woei; Stechel, Ellen B.

    2016-05-01

    Reforming of methane is practiced on a vast scale globally for the production of syngas as a precursor for the production of many commodities, including hydrogen, ammonia and synthetic liquid fuels. Solar reforming can reduce the greenhouse gas intensity of syngas production by up to about 40% by using solar thermal energy to provide the endothermic heat of reaction, traditionally supplied by combustion of some of the feed. This has the potential to enable the production of solar derived synthetic fuels as drop in replacements for conventional fuels with significantly lower CO2 intensity than conventional gas to liquids (GTL) processes. However, the intermittent nature of the solar resource - both diurnal and seasonal - poses significant challenges for such a concept, which relies on synthesis processes that typically run continuously on very stable feed compositions. We find that the integration of solar syngas production to a GTL process is a non-trivial exercise, with the ability to turn down the capacity of the GTL synthesis section, and indeed to suspend operations for short periods without significant detriment to product quality or process operability, likely to be a key driver for the commercial implementation of solar liquid fuels. Projected costs for liquid fuel synthesis suggest that solar reforming and small scale gas to liquid synthesis can potentially compete with conventional oil derived transport fuels in the short to medium term.

  17. Nuclear Energy and Synthetic Liquid Transportation Fuels

    NASA Astrophysics Data System (ADS)

    McDonald, Richard

    2012-10-01

    This talk will propose a plan to combine nuclear reactors with the Fischer-Tropsch (F-T) process to produce synthetic carbon-neutral liquid transportation fuels from sea water. These fuels can be formed from the hydrogen and carbon dioxide in sea water and will burn to water and carbon dioxide in a cycle powered by nuclear reactors. The F-T process was developed nearly 100 years ago as a method of synthesizing liquid fuels from coal. This process presently provides commercial liquid fuels in South Africa, Malaysia, and Qatar, mainly using natural gas as a feedstock. Nuclear energy can be used to separate water into hydrogen and oxygen as well as to extract carbon dioxide from sea water using ion exchange technology. The carbon dioxide and hydrogen react to form synthesis gas, the mixture needed at the beginning of the F-T process. Following further refining, the products, typically diesel and Jet-A, can use existing infrastructure and can power conventional engines with little or no modification. We can then use these carbon-neutral liquid fuels conveniently long into the future with few adverse environmental impacts.

  18. Injector for liquid fueled rocket engine

    NASA Technical Reports Server (NTRS)

    Cornelius, Charles S. (Inventor); Myers, W. Neill (Inventor); Shadoan, Michael David (Inventor); Sparks, David L. (Inventor)

    2000-01-01

    An injector for liquid fueled rocket engines wherein a generally flat core having a frustoconical dome attached to one side of the core to serve as a manifold for a first liquid, with the core having a generally circular configuration having an axis. The other side of the core has a plurality of concentric annular first slots and a plurality of annular concentric second slots alternating with the first slots, the second slots having a greater depth than said first slots. A bore extends through the core for inletting a second liquid into said core, the bore intersecting the second slots to feed the second liquid into the second slots. The core also has a plurality of first passageways leading from the manifold to the first annular slots for feeding the first liquid into said first slots. A faceplate brazed to said other side of the core is provided with apertures extending from the first and second slots through said face plate, these apertures being positioned to direct fuel and liquid oxygen into contact with each other in the combustion chamber. The first liquid may be liquid oxygen and the second liquid may be kerosene or liquid hydrogen.

  19. Comparison of alternate fuels for aircraft. [liquid hydrogen, liquid methane, and synthetic aviation kerosene

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1979-01-01

    Liquid hydrogen, liquid methane, and synthetic aviation kerosene were assessed as alternate fuels for aircraft in terms of cost, capital requirements, and energy resource utilization. Fuel transmission and airport storage and distribution facilities are considered. Environmental emissions and safety aspects of fuel selection are discussed and detailed descriptions of various fuel production and liquefaction processes are given. Technological deficiencies are identified.

  20. Hypophosphites as eco-compatible fuel for membrane-free direct liquid fuel cells.

    PubMed

    Wang, Renhe; Wu, Mengjia; Haller, Servane; Métivier, Pascal; Wang, Yonggang; Xia, Yongyao

    2018-05-07

    Crossover of liquid fuel remains a severe problem for conventional direct liquid fuel cells even when polymer electrolyte membranes are applied. Herein, we report for the first time a membrane-free direct liquid fuel cell powered by alkaline hypophosphite solution. The proof-of-concept fuel cell yields a peak power density of 32 mW cm-2 under air flow at room temperature. The removal of the polymer electrolyte membrane is attributed to the high reactivity and selectivity of Pd and α-MnO2 towards the hypophosphite oxidation on anode and oxygen reduction on the cathode, respectively. The discharge products are analyzed by 31P-NMR and the Faradaic efficiencies have been calculated after discharging at 10 mA cm-2 for 20 hours. The non-toxicity of hypophosphite and membrane-free fuel cell structure provide huge potential for future applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Liquid Fuels and Natural Gas in the Americas Analysis Brief

    EIA Publications

    2014-01-01

    This report examines the major energy trends and developments of the past decade in the Americas, focusing on liquid fuels and natural gas—particularly, reserves and resources, production, consumption, trade, and investment. The Americas, which include North America, Central America, the Caribbean, and South America, account for a significant portion of global supply, demand, and trade of both liquid fuels and natural gas. Liquid fuels include all petroleum and petroleum products, natural gas liquids, biofuels, and liquids derived from other hydrocarbon sources.

  2. Spray Characterization of Gas-to-Liquid Synthetic Jet Fuels

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza; GTL jet fuel Consortium Team

    2012-11-01

    Gas-to-Liquid (GTL) Synthetic Paraffinic Kerosene (SPK) fuel obtained from Fischer-Tropsch synthesis has grabbed the global attention due to its cleaner combustion characteristics. GTL fuels are expected to meet the vital qualities such as atomization, combustion and emission characteristics of conventional jet fuels. It is imperative to understand fuel atomization in order to gain insights on the combustion and emission aspects of an alternative fuel. In this work spray characteristics of GTL-SPK, which could be used as a drop-in fuel in aircraft gas turbine engines, is studied. This work outlines the spray experimental facility, the methodology used and the results obtained using two SPK's with different chemical compositions. The spray characteristics, such as droplet size and distribution, are presented at three differential pressures across a simplex nozzle and compared with that of the conventional Jet A-1 fuel. Experimental results clearly show that although the chemical composition is significantly different between SPK's, the spray characteristics are not very different. This could be attributed to the minimal difference in fluid properties between the SPK's. Also, the spray characteristics of SPK's show close resemblance to the spray characteristics of Jet A-1 fuel.

  3. POWER GENERATION FROM LIQUID METAL NUCLEAR FUEL

    DOEpatents

    Dwyer, O.E.

    1958-12-23

    A nuclear reactor system is described wherein the reactor is the type using a liquid metal fuel, such as a dispersion of fissile material in bismuth. The reactor is designed ln the form of a closed loop having a core sectlon and heat exchanger sections. The liquid fuel is clrculated through the loop undergoing flssion in the core section to produce heat energy and transferrlng this heat energy to secondary fluids in the heat exchanger sections. The fission in the core may be produced by a separate neutron source or by a selfsustained chain reaction of the liquid fuel present in the core section. Additional auxiliary heat exchangers are used in the system to convert water into steam which drives a turbine.

  4. Low contaminant formic acid fuel for direct liquid fuel cell

    DOEpatents

    Masel, Richard I [Champaign, IL; Zhu, Yimin [Urbana, IL; Kahn, Zakia [Palatine, IL; Man, Malcolm [Vancouver, CA

    2009-11-17

    A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

  5. LIQUID AND GASEOUS FUEL DISTRIBUTION SYSTEM

    EPA Science Inventory

    The report describes the national liquid and gaseous fuel distribution system. he study leading to the report was performed as part of an effort to better understand emissions of volatile organic compounds from the fuel distribution system. he primary, secondary, and tertiary seg...

  6. EXPERIMENTAL LIQUID METAL FUEL REACTOR

    DOEpatents

    Happell, J.J.; Thomas, G.R.; Denise, R.P.; Bunts, J.L. Jr.

    1962-01-23

    A liquid metal fuel nuclear fission reactor is designed in which the fissionable material is dissolved or suspended in a liquid metal moderator and coolant. The liquid suspension flows into a chamber in which a critical amount of fissionable material is obtained. The fluid leaves the chamber and the heat of fission is extracted for power or other utilization. The improvement is in the support arrangement for a segrnented graphite core to permit dif ferential thermal expansion, effective sealing between main and blanket liquid metal flows, and avoidance of excessive stress development in the graphite segments. (AEC)

  7. Molecular Beam Studies of Volatile Liquids and Fuel Surrogates Using Liquid MICR

    DTIC Science & Technology

    2014-12-23

    Detailed discussions of the microjet technique are carried out in the following publications. Nozzle Liquid Jet Chopper Wheel Cold Collector Cold...process is shown in the picture below; heating and evaporation occur within 1 ms of fuel leaving the fuel injector . This atomization proves is often...liquid jet. This analysis leads to criteria for selecting the temperature and nozzle radius for producing stable jets in vacuum. Figure 4 depicts the

  8. Fuel sensor-less control of a liquid feed fuel cell system under steady load for portable applications

    NASA Astrophysics Data System (ADS)

    Chang, C. L.; Chen, C. Y.; Sung, C. C.; Liou, D. H.

    This study presents a novel fuel sensor-less control scheme for a liquid feed fuel cell system that does not rely on a fuel concentration sensor. The proposed approach simplifies the design and reduces the cost and complexity of a liquid feed fuel cell system, and is especially suited to portable power sources, of which the volume and weight are important. During the reaction of a fuel cell, the cell's operating characteristics, such as potential, current and power are measured to control the supply of fuel and regulate its concentration to optimize performance. Experiments were conducted to verify that the fuel sensor-less control algorithm is effective in the liquid feed fuel cell system.

  9. Processing and fabrication of mixed uranium/refractory metal carbide fuels with liquid-phase sintering

    NASA Astrophysics Data System (ADS)

    Knight, Travis W.; Anghaie, Samim

    2002-11-01

    Optimization of powder processing techniques were sought for the fabrication of single-phase, solid-solution mixed uranium/refractory metal carbide nuclear fuels - namely (U, Zr, Nb)C. These advanced, ultra-high temperature nuclear fuels have great potential for improved performance over graphite matrix, dispersed fuels tested in the Rover/NERVA program of the 1960s and early 1970s. Hypostoichiometric fuel samples with carbon-to-metal ratios of 0.98, uranium metal mole fractions of 5% and 10%, and porosities less than 5% were fabricated. These qualities should provide for the longest life and highest performance capability for these fuels. Study and optimization of processing methods were necessary to provide the quality assurance of samples for meaningful testing and assessment of performance for nuclear thermal propulsion applications. The processing parameters and benefits of enhanced sintering by uranium carbide liquid-phase sintering were established for the rapid and effective consolidation and formation of a solid-solution mixed carbide nuclear fuel.

  10. COMBUSTION OF HEAVY LIQUID FUELS

    DTIC Science & Technology

    characteristics of individual fuel droplets, as functions of the external conditions and fuel properties, the droplet combustion process in a flame ... length and the quality of atomization are examined. In addition, atomization quality is covered, and nozzle systems and the construction of nozzles are

  11. Opposed-Flow Flame Spread Across Propanol Pools: Effect of Liquid Fuel Depth

    NASA Technical Reports Server (NTRS)

    Kim, Inchul; Sirignano, William A.

    1999-01-01

    This computational study examines the effect of liquid fuel depth on flame spread across propanol pools with and without forced, opposed air flow. The initial pool temperature is below its closed- cup flash point temperature T(sub cc); so the liquid fuel must be heated sufficiently to create a combustible mixture of fuel vapor before ignition and flame spread can occur. Furthermore, in order for the flame to spread, an approximate rule is that the liquid fuel surface temperature ahead of the flame must be heated above T(sub cc) so that a flammable mixture just above the lean limit exists ahead of the flame. The depth of a liquid fuel pool would affect the heating of the liquid fuel pool and thus the liquid fuel surface temperature ahead of the flame. It has been observed experimentally and numerically that, at normal gravity without forced gas-phase flow and with the initial pool temperature T(sub 0) in a range well below T(sub cc), the flame periodically accelerates and decelerates (pulsates) as it propagates. The depth of a liquid fuel pool would change this range of T(sub 0) since it would affect the heating of the pool.

  12. High energy-density liquid rocket fuel performance

    NASA Technical Reports Server (NTRS)

    Rapp, Douglas C.

    1990-01-01

    A fuel performance database of liquid hydrocarbons and aluminum-hydrocarbon fuels was compiled using engine parametrics from the Space Transportation Engine Program as a baseline. Propellant performance parameters are introduced. General hydrocarbon fuel performance trends are discussed with respect to hydrogen-to-carbon ratio and heat of formation. Aluminum-hydrocarbon fuel performance is discussed with respect to aluminum metal loading. Hydrocarbon and aluminum-hydrocarbon fuel performance is presented with respect to fuel density, specific impulse, and propellant density specific impulse.

  13. Liquid-fueled SOFC power sources for transportation

    NASA Astrophysics Data System (ADS)

    Myles, K. M.; Doshi, R.; Kumar, R.; Krumpelt, M.

    Traditionally, fuel cells have been developed for space or stationary terrestrial applications. As the first commercial 200-kW systems were being introduced by ONSI and Fuji Electric, the potentially much larger, but also more challenging, application in transportation was beginning to be addressed. As a result, fuel cell-powered buses have been designed and built, and R&D programs for fuel cell-powered passenger cars have been initiated. The engineering challenge of eventually replacing the internal combustion engine in buses, trucks, and passenger cars with fuel cell systems is to achieve much higher power densities and much lower costs than obtainable in systems designed for stationary applications. At present, the leading fuel cell candidate for transportation applications is, without question, the polymer electrolyte fuel cell (PEFC). Offering ambient temperature start-up and the potential for a relatively high power density, the polymer technology has attracted the interest of automotive manufacturers worldwide. But the difficulties of fuel handling for the PEFC have led to a growing interest in exploring the prospects for solid oxide fuel cells (SOFCs) operating on liquid fuels for transportation applications. Solid oxide fuel cells are much more compatible with liquid fuels (methanol or other hydrocarbons) and are potentially capable of power densities high enough for vehicular use. Two SOFC options for such use are discussed in this report.

  14. Process for preparing a liquid fuel composition

    DOEpatents

    Singerman, Gary M.

    1982-03-16

    A process for preparing a liquid fuel composition which comprises liquefying coal, separating a mixture of phenols from said liquefied coal, converting said phenols to the corresponding mixture of anisoles, subjecting at least a portion of the remainder of said liquefied coal to hydrotreatment, subjecting at least a portion of said hydrotreated liquefied coal to reforming to obtain reformate and then combining at least a portion of said anisoles and at least a portion of said reformate to obtain said liquid fuel composition.

  15. 40 CFR 1066.970 - Refueling test for liquid fuels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Refueling test for liquid fuels. 1066... POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Evaporative Emission Test Procedures Evaporative and Refueling Emission Test Procedures for Motor Vehicles § 1066.970 Refueling test for liquid fuels. Except as described...

  16. Evaluation of Liquid Fuel Field Space Heaters: Standard Military, Developmental and Foreign

    DTIC Science & Technology

    1978-10-01

    least 15 kg/kg, (2) to react as much fuel as possible by the flameless combustion reaction, and (3) to maintain gas temperatures not higher than 1000...as there is enough oxygen there to support combustion . As the fuel flow increases, the flames move up until at maximum flow only flameless ...HEATING FIELD HEATING COMBUSTION COMBUSTION (LIQUID FUELS) HEATERS TENT HEATERS LIQUID FUELS FUELS LIQUIDS OXYGEN tS»TRACT rCoaltnu* an rmrormm

  17. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates.

    PubMed

    Román-Leshkov, Yuriy; Barrett, Christopher J; Liu, Zhen Y; Dumesic, James A

    2007-06-21

    Diminishing fossil fuel reserves and growing concerns about global warming indicate that sustainable sources of energy are needed in the near future. For fuels to be useful in the transportation sector, they must have specific physical properties that allow for efficient distribution, storage and combustion; these properties are currently fulfilled by non-renewable petroleum-derived liquid fuels. Ethanol, the only renewable liquid fuel currently produced in large quantities, suffers from several limitations, including low energy density, high volatility, and contamination by the absorption of water from the atmosphere. Here we present a catalytic strategy for the production of 2,5-dimethylfuran from fructose (a carbohydrate obtained directly from biomass or by the isomerization of glucose) for use as a liquid transportation fuel. Compared to ethanol, 2,5-dimethylfuran has a higher energy density (by 40 per cent), a higher boiling point (by 20 K), and is not soluble in water. This catalytic strategy creates a route for transforming abundant renewable biomass resources into a liquid fuel suitable for the transportation sector, and may diminish our reliance on petroleum.

  18. Modified starch containing liquid fuel slurry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, G.W.

    1978-04-04

    A substantially water-free, high solids content, stably dispersed combustible fuel slurry is provided, with a method of preparing the slurry. The slurry contains a minor amount of a solid particulate carbonaceous material such as powdered coal, with substantially the entire balance of the slurry being comprised of a liquid hydrocarbon fuel, particularly a heavy fuel oil. In extremely minor amounts are anionic surfactants, particularly soaps, and a stabilizing amount of a starch modified with an anionic polymer.

  19. Intermediate Temperature Hybrid Fuel Cell System for the Conversion of Natural to Electricity and Liquid Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krause, Theodore

    This goal of this project was to develop a new hybrid fuel cell technology that operates directly on natural gas or biogas to generate electrical energy and to produce ethane or ethylene from methane, the main component of natural gas or biogas, which can be converted to a liquid fuel or high-value chemical using existing process technologies. By taking advantage of the modularity and scalability of fuel cell technology, this combined fuel cell/chemical process technology targets the recovery of stranded natural gas available at the well pad or biogas produced at waste water treatment plants and municipal landfills by convertingmore » it to a liquid fuel or chemical. By converting the stranded gas to a liquid fuel or chemical, it can be cost-effectively transported to market thus allowing the stranded natural gas or biogas to be monetized instead of flared, producing CO2, a greenhouse gas, because the volumes produced at these locations are too small to be economically recovered using current gas-to-liquids process technologies.« less

  20. Fuel sensor-less control of a liquid feed fuel cell under dynamic loading conditions for portable power sources (II)

    NASA Astrophysics Data System (ADS)

    Chang, C. L.; Chen, C. Y.; Sung, C. C.; Liou, D. H.; Chang, C. Y.; Cha, H. C.

    This work presents a new fuel sensor-less control scheme for liquid feed fuel cells that is able to control the supply to a fuel cell system for operation under dynamic loading conditions. The control scheme uses cell-operating characteristics, such as potential, current, and power, to regulate the fuel concentration of a liquid feed fuel cell without the need for a fuel concentration sensor. A current integral technique has been developed to calculate the quantity of fuel required at each monitoring cycle, which can be combined with the concentration regulating process to control the fuel supply for stable operation. As verified by systematic experiments, this scheme can effectively control the fuel supply of a liquid feed fuel cell with reduced response time, even under conditions where the membrane electrolyte assembly (MEA) deteriorates gradually. This advance will aid the commercialization of liquid feed fuel cells and make them more adaptable for use in portable and automotive power units such as laptops, e-bikes, and handicap cars.

  1. Electrochemical device for syngas and liquid fuels production

    DOEpatents

    Braun, Robert J.; Becker, William L.; Penev, Michael

    2017-04-25

    The invention relates to methods for creating high value liquid fuels such as gasoline, diesel, jet and alcohols using carbon dioxide and water as the starting raw materials and a system for using the same. These methods combine a novel solid oxide electrolytic cell (SOEC) for the efficient and clean conversion of carbon dioxide and water to hydrogen and carbon monoxide, uniquely integrated with a gas-to-liquid fuels producing method.

  2. THE LIQUID AND GASEOUS FUEL DISTRIBUTION SYSTEM

    EPA Science Inventory

    The report describes the national liquid and gaseous fuel distribution system. he study leading to the report was performed as part of an effort to better understand emissions of volatile organic compounds from the fuel distribution system. he primary, secondary, and tertiary seg...

  3. Simulating Impacts of Disruptions to Liquid Fuels Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Michael; Corbet, Thomas F.; Baker, Arnold B.

    This report presents a methodology for estimating the impacts of events that damage or disrupt liquid fuels infrastructure. The impact of a disruption depends on which components of the infrastructure are damaged, the time required for repairs, and the position of the disrupted components in the fuels supply network. Impacts are estimated for seven stressing events in regions of the United States, which were selected to represent a range of disruption types. For most of these events the analysis is carried out using the National Transportation Fuels Model (NTFM) to simulate the system-level liquid fuels sector response. Results are presentedmore » for each event, and a brief cross comparison of event simulation results is provided.« less

  4. The JPL Direct Methanol Liquid-feed PEM Fuel Cell

    NASA Technical Reports Server (NTRS)

    Halpert, G.; Surampudi, S.

    1994-01-01

    Recently, there has been a breakthrough in fuel cell technology in the Energy Storage Systems Group at the Jet Propulsion Laboratory with the develpment of a direct methanol, liquid-feed, solid polymer electrolyte membrane (PEM) fuel cell... The methanol liquid-feed, solid polymer electrolyte (PEM) design has numerous system level advantages over the gas-feed design. These include:...

  5. Nontoxic Ionic Liquid Fuels for Exploration Applications

    NASA Technical Reports Server (NTRS)

    Coil, Millicent

    2015-01-01

    The toxicity of propellants used in conventional propulsion systems increases not only safety risks to personnel but also costs, due to special handling required during the entire lifetime of the propellants. Orbital Technologies Corporation (ORBITEC) has developed and tested novel nontoxic ionic liquid fuels for propulsion applications. In Phase I of the project, the company demonstrated the feasibility of several ionic liquid formulations that equaled the performance of conventional rocket propellant monomethylhydrazine (MMH) and also provided low volatility and low toxicity. In Phase II, ORBITEC refined the formulations, conducted material property tests, and investigated combustion behavior in droplet and microreactor experiments. The company also explored the effect of injector design on performance and demonstrated the fuels in a small-scale thruster. The ultimate goal is to replace propellants such as MMH with fuels that are simultaneously high-performance and nontoxic. The fuels will have uses in NASA's propulsion applications and also in a range of military and commercial functions.

  6. Target fuel quality standards performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hublin, M.; Renault, S.A.

    Concerned by a large number of in-service incident due to insufficient quality of market fuels that happened in the 1980s in France and Europe, the two major French car manufacturers-PSA Peugeot Citroen and Renault-decided to define new technical requirements for these fuels. By publishing the fuel charter in July 1989, a whole fuel quality monitoring system was established. Forthcoming fuel refiners and distributors were invited to produce and sell fuels of higher quality. Major French distributors joined the charter, and soon, an improvement on French market fuels was observed. Undoubtedly, the two oil crises, in 1973 and 1979, have boostedmore » technological progress of combustion engines, improving specific power, operating noise, exhaust emissions and fuel consumption. That technological progress was achieved by defining and carrying out research that contributed to a better understanding of combustion engines. Continuous and gradual evolution in the design of engines was achieved in areas such as: combustion, internal air motion, multi-valve technology, fuel injection, engine management systems, friction reduction and after-treatment devices. As long as national fuel specifications define fuel characteristics in a rough and insufficient way, there will be the need for quality fuel certification. Different countries, bearing different cultures, will probably produce slightly different variations, but will continue to exist and increase in number. Fuel quality is a key issue for the future to guarantee trouble-free and comfortable vehicle operation and also to maintain its original emissions characteristics.« less

  7. Liquid fuel supplies

    NASA Astrophysics Data System (ADS)

    Perry, H.

    1980-06-01

    This paper presents an overview of United States and world petroleum, natural gas, and natural gas liquids presumed recoverable but as yet undiscovered resources and suggests that the depletion of these fuels may not occur as quickly as frequently predicted. The paper points out that the construction of a synthetic fuels industry will be very costly and will provide only a small amount of increased energy independence. The fear is expressed that haste in accepting a specific synfuels process on the basis of present technology may serve to forestall the development of a better technology. The paper suggests that we construct relatively few plants now each using a different technology in order to gain better understanding of the various technologies, more information on costs and the essential but as yet unknown information on environmental and socioeconomic effects of large scale plants.

  8. Hydrogen Fuel Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockward, Tommy

    2012-07-16

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of themore » development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.« less

  9. Electrolyte creepage barrier for liquid electrolyte fuel cells

    DOEpatents

    Li, Jian [Alberta, CA; Farooque, Mohammad [Danbury, CT; Yuh, Chao-Yi [New Milford, CT

    2008-01-22

    A dielectric assembly for electrically insulating a manifold or other component from a liquid electrolyte fuel cell stack wherein the dielectric assembly includes a substantially impermeable dielectric member over which electrolyte is able to flow and a barrier adjacent the dielectric member and having a porosity of less than 50% and greater than 10% so that the barrier is able to measurably absorb and chemically react with the liquid electrolyte flowing on the dielectric member to form solid products which are stable in the liquid electrolyte. In this way, the barrier inhibits flow or creepage of electrolyte from the dielectric member to the manifold or component to be electrically insulated from the fuel cell stack by the dielectric assembly.

  10. Combustion of liquid fuels in diesel engine

    NASA Technical Reports Server (NTRS)

    Alt, Otto

    1924-01-01

    Hitherto, definite specifications have always been made for fuel oils and they have been classified as more or less good or non-utilizable. The present aim, however, is to build Diesel engines capable of using even the poorest liquid fuels and especially the waste products of the oil industry, without special chemical or physical preparation.

  11. Mid-infrared laser-absorption diagnostic for vapor-phase fuel mole fraction and liquid fuel film thickness

    NASA Astrophysics Data System (ADS)

    Porter, J. M.; Jeffries, J. B.; Hanson, R. K.

    2011-02-01

    A novel two-wavelength mid-infrared laser-absorption diagnostic has been developed for simultaneous measurements of vapor-phase fuel mole fraction and liquid fuel film thickness. The diagnostic was demonstrated for time-resolved measurements of n-dodecane liquid films in the absence and presence of n-decane vapor at 25°C and 1 atm. Laser wavelengths were selected from FTIR measurements of the C-H stretching band of vapor n-decane and liquid n-dodecane near 3.4 μm (3000 cm-1). n-Dodecane film thicknesses <20 μm were accurately measured in the absence of vapor, and simultaneous measurements of n-dodecane liquid film thickness and n-decane vapor mole fraction (300 ppm) were measured with <10% uncertainty for film thicknesses <10 μm. A potential application of the measurement technique is to provide accurate values of vapor mole fraction in combustion environments where strong absorption by liquid fuel or oil films on windows make conventional direct absorption measurements of the gas problematic.

  12. Ionic Liquid Fuels for Chemical Propulsion

    DTIC Science & Technology

    2012-03-01

    particular: “ Molten salts are nothing new, but these were the only ones I ever heard of that were liquid at 25°C. I’ve never found a use for the...Ethylammonium nitrate is generally regarded as the first reported room temperature ionic liquid (RTIL). Since it is a nitrate salt , it certainly...carry the advantages of engineering simplicity associated with the fuel and oxidizer residing in a single tank . However, by itself, ethylammonium

  13. The problem of liquid fuels (for aircraft engines)

    NASA Technical Reports Server (NTRS)

    Gallo, Gino

    1924-01-01

    The crisis which troubles the world market for liquid fuel in general and for carburants in particular is doubtless one of the most serious ever experienced by modern industry. It is a national crisis of economic and political independence for countries like Italy and France. The solutions suggested for meeting the lack of liquid fuel may be summed up under two general headings: the economical use of the petroleum now available; creation of petroleum substitutes from natural sources within the country. The process of cracking is described at length.

  14. Method for removing solid particulate material from within liquid fuel injector assemblies

    DOEpatents

    Simandl, Ronald F.; Brown, John D.; Andriulli, John B.; Strain, Paul D.

    1998-01-01

    A method for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector.

  15. Method and system for low-NO.sub.x dual-fuel combustion of liquid and/or gaseous fuels

    DOEpatents

    Gard, Vincent; Chojnacki, Dennis A; Rabovitser, Ioseph K

    2014-12-02

    A method and apparatus for combustion in which a pressurized preheated liquid fuel is atomized and a portion thereof flash vaporized, creating a mixture of fuel vapor and liquid droplets. The mixture is mixed with primary combustion oxidant, producing a fuel/primary oxidant mixture which is then injected into a primary combustion chamber in which the fuel/primary oxidant mixture is partially combusted, producing a secondary gaseous fuel containing hydrogen and carbon oxides. The secondary gaseous fuel is mixed with a secondary combustion oxidant and injected into the second combustion chamber wherein complete combustion of the secondary gaseous fuel is carried out. The resulting second stage flue gas containing very low amounts of NO.sub.x is then vented from the second combustion chamber.

  16. Commercial jet fuel quality control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, K.H.

    1995-05-01

    The paper discusses the purpose of jet fuel quality control between the refinery and the aircraft. It describes fixed equipment, including various types of filters, and the usefulness and limitations of this equipment. Test equipment is reviewed as are various surveillance procedures. These include the Air Transport Association specification ATA 103, the FAA Advisory Circular 150/5230-4, the International Air Transport Association Guidance Material for Fuel Quality Control and Fuelling Service and the Guidelines for Quality Control at Jointly Operated Fuel Systems. Some past and current quality control problems are briefly mentioned.

  17. A feasibility study of hydrothermal treatment of rice straw for multi-production of solid fuel and liquid fertilizer

    NASA Astrophysics Data System (ADS)

    Samnang, S.; Prawisudha, P.; Pasek, A. D.

    2017-05-01

    Energy use has increased steadily over the last century due to population and industry increase. With the growing of GHG, biomass becomes an essential contributor to the world energy need. Indonesia is the third rice producer in the world. Rice straw has been converted to solid fuel by Hydrothermal Treatment (HT) for electricity generation. HT is a boiling solid organic or inorganic substance in water at high pressure and temperature within a holding time. HT converts high moisture content biomass into dried, uniform, pulverized, and higher energy density solid fuels. HT can effectively transport nutrient components in biomass into a liquid product known as fertilizer. This paper deals with an evaluation of hydrothermal treatment of rice straw for solid fuel and liquid fertilizer. An investigation of rice straw characteristics were completed for Bandung rice straw with various condition of temperature, biomass-water ratio, and holding time in the purpose to find the changes of calorific value for solid product and (N, P, K, and pH) for liquid product. The results showed that solid product at 225 °C and 90 min consists in a heating value 13.8 MJ/kg equal to lignite B. Liquid product at 225 °C and 90 min had the NPK content similar to that of micronutrients compound liquid fertilizer. The dried solid product should be useful for Coal Fire Power Plant, and the liquid product is suitable for plants. This research proves that hydrothermal process can be applied to rice straw to produce solid fuel and liquid fertilizer with adequate quality.

  18. High pressure combustion of liquid fuels. [alcohol and n-paraffin fuels

    NASA Technical Reports Server (NTRS)

    Canada, G. S.

    1974-01-01

    Measurements were made of the burning rates and liquid surface temperatures for a number of alcohol and n-paraffin fuels under natural and forced convection conditions. Porous spheres ranging in size from 0.64-1.9 cm O.D. were emloyed to simulate the fuel droplets. The natural convection cold gas tests considered the combustion in air of methanol, ethanol, propanol-1, n-pentane, n-heptane, and n-decane droplets at pressures up to 78 atmospheres. The pressure levels of the natural convection tests were high enough so that near critical combustion was observed for methanol and ethanol vaporization rates and liquid surface temperature measurements were made of droplets burning in a simulated combustion chamber environment. Ambient oxygen molar concentrations included 13%, 9.5% and pure evaporation. Fuels used in the forced convection atmospheric tests included those listed above for the natural convection tests. The ambient gas temperature ranged from 600 to 1500 K and the Reynolds number varied from 30 to 300. The high pressure forced convection tests employed ethanol and n-heptane as fuels over a pressure range of one to 40 atmospheres. The ambient gas temperature was 1145 K for the two combustion cases and 1255 K for the evaporation case.

  19. Method for removing solid particulate material from within liquid fuel injector assemblies

    DOEpatents

    Simandl, R.F.; Brown, J.D.; Andriulli, J.B.; Strain, P.D.

    1998-09-08

    A method is described for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector. 1 fig.

  20. Wetted foam liquid fuel ICF target experiments

    DOE PAGES

    Olson, R. E.; Leeper, R. J.; Yi, S. A.; ...

    2016-05-26

    We are developing a new NIF experimental platform that employs wetted foam liquid fuel layer ICF capsules. We will use the liquid fuel layer capsules in a NIF sub-scale experimental campaign to explore the relationship between hot spot convergence ratio (CR) and the predictability of hot spot formation. DT liquid layer ICF capsules allow for flexibility in hot spot CR via the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density. Our hypothesis is that the predictive capability of hot spot formation is robust and 1D-like for a relatively low CR hot spot (CR~15), but will becomemore » less reliable as hot spot CR is increased to CR>20. Simulations indicate that backing off on hot spot CR is an excellent way to reduce capsule instability growth and to improve robustness to low-mode x-ray flux asymmetries. In the initial experiments, we will test our hypothesis by measuring hot spot size, neutron yield, ion temperature, and burn width to infer hot spot pressure and compare to predictions for implosions with hot spot CR's in the range of 12 to 25. Larger scale experiments are also being designed, and we will advance from sub-scale to full-scale NIF experiments to determine if 1D-like behavior at low CR is retained as the scale-size is increased. The long-term objective is to develop a liquid fuel layer ICF capsule platform with robust thermonuclear burn, modest CR, and significant α-heating with burn propagation.« less

  1. Method and apparatus for conversion of carbonaceous materials to liquid fuel

    DOEpatents

    Lux, Kenneth W.; Namazian, Mehdi; Kelly, John T.

    2015-12-01

    Embodiments of the invention relates to conversion of hydrocarbon material including but not limited to coal and biomass to a synthetic liquid transportation fuel. The invention includes the integration of a non-catalytic first reaction scheme, which converts carbonaceous materials into a solid product that includes char and ash and a gaseous product; a non-catalytic second reaction scheme, which converts a portion of the gaseous product from the first reaction scheme to light olefins and liquid byproducts; a traditional gas-cleanup operations; and the third reaction scheme to combine the olefins from the second reaction scheme to produce a targeted fuel like liquid transportation fuels.

  2. Active suppression of vortex-driven combustion instability using controlled liquid-fuel injection

    NASA Astrophysics Data System (ADS)

    Pang, Bin

    Combustion instabilities remain one of the most challenging problems encountered in developing propulsion and power systems. Large amplitude pressure oscillations, driven by unsteady heat release, can produce numerous detrimental effects. Most previous active control studies utilized gaseous fuels to suppress combustion instabilities. However, using liquid fuel to suppress combustion instabilities is more realistic for propulsion applications. Active instability suppression in vortex-driven combustors using a direct liquid fuel injection strategy was theoretically established and experimentally demonstrated in this dissertation work. Droplet size measurements revealed that with pulsed fuel injection management, fuel droplet size could be modulated periodically. Consequently, desired heat release fluctuation could be created. If this oscillatory heat release is coupled with the natural pressure oscillation in an out of phase manner, combustion instabilities can be suppressed. To identify proper locations of supplying additional liquid fuel for the purpose of achieving control, the natural heat release pattern in a vortex-driven combustor was characterized in this study. It was found that at high Damkohler number oscillatory heat release pattern closely followed the evolving vortex front. However, when Damkohler number became close to unity, heat release fluctuation wave no longer coincided with the coherent structures. A heat release deficit area was found near the dump plane when combustor was operated in lean premixed conditions. Active combustion instability suppression experiments were performed in a dump combustor using a controlled liquid fuel injection strategy. High-speed Schlieren results illustrated that vortex shedding plays an important role in maintaining self-sustained combustion instabilities. Complete combustion instability control requires total suppression of these large-scale coherent structures. The sound pressure level at the excited dominant

  3. Molecular Beam Studies of Volatile Liquids and Fuel Surrogates Using Liquid Microjets

    DTIC Science & Technology

    2014-12-18

    themselves. Detailed discussions of the microjet technique are carried out in the following publications. Nozzle Liquid Jet Chopper Wheel...heating and evaporation occur within 1 ms of fuel leaving the fuel injector . This atomization proves is often the limiting process in combustion...This analysis leads to criteria for selecting the temperature and nozzle radius for producing stable jets in vacuum. Figure 4 depicts the

  4. Coal and Biomass to Liquid Fuels

    EPA Science Inventory

    For Frank Princiotta’s book, Global Climate Change—The Technology Challenge Demand for liquid transportation fuels has been increasing by over 2%/yr over the last two decades and is accelerating in the emerging economies which are moving to automobile ownership. Almost all liq...

  5. 46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Flammable liquid and gas fuels as ship's stores-TB/ALL... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable liquids and gases other than diesel fuel, to be used as fuel for approved equipment must satisfy the...

  6. 46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Flammable liquid and gas fuels as ship's stores-TB/ALL... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable liquids and gases other than diesel fuel, to be used as fuel for approved equipment must satisfy the...

  7. 46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Flammable liquid and gas fuels as ship's stores-TB/ALL... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable liquids and gases other than diesel fuel, to be used as fuel for approved equipment must satisfy the...

  8. 46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Flammable liquid and gas fuels as ship's stores-TB/ALL... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable liquids and gases other than diesel fuel, to be used as fuel for approved equipment must satisfy the...

  9. 46 CFR 35.30-40 - Flammable liquid and gas fuels as ship's stores-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Flammable liquid and gas fuels as ship's stores-TB/ALL... OPERATIONS General Safety Rules § 35.30-40 Flammable liquid and gas fuels as ship's stores—TB/ALL. Flammable liquids and gases other than diesel fuel, to be used as fuel for approved equipment must satisfy the...

  10. Liquid fuel injection elements for rocket engines

    NASA Technical Reports Server (NTRS)

    Cox, George B., Jr. (Inventor)

    1993-01-01

    Thrust chambers for liquid propellant rocket engines include three principal components. One of these components is an injector which contains a plurality of injection elements to meter the flow of propellants at a predetermined rate, and fuel to oxidizer mixture ratio, to introduce the mixture into the combustion chamber, and to cause them to be atomized within the combustion chamber so that even combustion takes place. Evolving from these injectors are tube injectors. These tube injectors have injection elements for injecting the oxidizer into the combustion chamber. The oxidizer and fuel must be metered at predetermined rates and mixture ratios in order to mix them within the combustion chamber so that combustion takes place smoothly and completely. Hence tube injectors are subject to improvement. An injection element for a liquid propellant rocket engine of the bipropellant type is provided which includes tangential fuel metering orifices, and a plurality of oxidizer tube injection elements whose injection tubes are also provided with tangential oxidizer entry slots and internal reed valves.

  11. The liquid biodiesel extracted from pranajiwa (Sterculia Foetida) seeds as fuel for direct biofuel-solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Rahmawati, Fitria; Syahputra, Rahmat J. E.; Yuniastuti, Endang; Prameswari, Arum P.; Nurcahyo, I. F.

    2017-03-01

    This research applied the liquid biodiesel extracted from Pranajiwa seeds (biodiesel-p) as fuel in Intermediate Temperature-Solid Oxide Fuel Cell, IT-SOFC, with an operational temperature of 400 - 600°C. FTIR analysis of the liquid biodiesel found that the liquid consist of some functional groups. By comparing the spectrum with the commercial biosolar as produced by Pertamina, Indonesia, it is found that there are differenet peaks at a wavenumber of 3472.98; 1872.00; and 724.30 cm-1. It indicates the presence of alcoholo molecules. Composite of Samarium doped-Ceria, SDC, with sodium carbonate, NaCO3, was used as the electrolyte, and it is named as NSDC. Meanwhile, the composite of NSDC with catalyst powder of LNC, producing NSDC-L was used as a cathode and as an anode. The liquid fuel vapourized at 150 °C before come into the fuel cell, and it was reformed inside the fuel cell tube which was set up at 400, 500, and 600 °C. The measurement found that the highest Open Circuite Voltage is 0.57 volt and the power density of 1.7 mW.cm-2 at 500 °C.

  12. METHOD OF LIQUID-LIQUID EXTRACTION OF BLOOD SURROGATES FOR ASSESSING HUMAN EXPOSURE TO JET FUEL

    EPA Science Inventory

    A baseline method of liquid?liquid extraction for assessing human exposure to JP-8 jet fuel was established by extracting several representative compounds ranging from very volatile to semi-volatile organic compounds, including benzene, toluene, nonane, decane, undecane, tridec...

  13. Liquid-Feed Methanol Fuel Cell With Membrane Electrolyte

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao; Narayanan, S. R.; Halpert, Gerald; Frank, Harvey; Vamos, Eugene

    1995-01-01

    Fuel cell generates electricity from direct liquid feed stream of methanol/water solution circulated in contact with anode, plus direct gaseous feed stream of air or oxygen in contact with cathode. Advantages include relative simplicity and elimination of corrosive electrolytic solutions. Offers potential for reductions in size, weight, and complexity, and for increases in safety of fuel-cell systems.

  14. Modeling CANDU-6 liquid zone controllers for effects of thorium-based fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St-Aubin, E.; Marleau, G.

    2012-07-01

    We use the DRAGON code to model the CANDU-6 liquid zone controllers and evaluate the effects of thorium-based fuels on their incremental cross sections and reactivity worth. We optimize both the numerical quadrature and spatial discretization for 2D cell models in order to provide accurate fuel properties for 3D liquid zone controller supercell models. We propose a low computer cost parameterized pseudo-exact 3D cluster geometries modeling approach that avoids tracking issues on small external surfaces. This methodology provides consistent incremental cross sections and reactivity worths when the thickness of the buffer region is reduced. When compared with an approximate annularmore » geometry representation of the fuel and coolant region, we observe that the cluster description of fuel bundles in the supercell models does not increase considerably the precision of the results while increasing substantially the CPU time. In addition, this comparison shows that it is imperative to finely describe the liquid zone controller geometry since it has a strong impact of the incremental cross sections. This paper also shows that liquid zone controller reactivity worth is greatly decreased in presence of thorium-based fuels compared to the reference natural uranium fuel, since the fission and the fast to thermal scattering incremental cross sections are higher for the new fuels. (authors)« less

  15. Apparatus and method for combusting low quality fuel

    DOEpatents

    Brushwood, John Samuel; Pillsbury, Paul; Foote, John; Heilos, Andreas

    2003-11-04

    A gas turbine (12) capable of combusting a low quality gaseous fuel having a ratio of flammability limits less than 2, or a heat value below 100 BTU/SCF. A high quality fuel is burned simultaneously with the low quality fuel to eliminate instability in the combustion flame. A sensor (46) is used to monitor at least one parameter of the flame indicative of instability. A controller (50) having the sensor signal (48) as input is programmed to control the relative flow rates of the low quality and high quality fuels. When instability is detected, the flow rate of high quality fuel is automatically increased in relation to the flow rate of low quality fuel to restore stability.

  16. Process of producing liquid hydrocarbon fuels from biomass

    DOEpatents

    Kuester, James L.

    1987-07-07

    A continuous thermochemical indirect liquefaction process to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C.sub.7 -C.sub.17 paraffinic hydrocarbons having cetane indices of 50+.

  17. Combustion of liquid-fuel droplets in supercritical conditions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Yang, Vigor; Hsaio, C. C.

    1992-01-01

    A comprehensive analysis of liquid-fuel droplet combustion in both subcritical and supercritical environments has been conducted. The formulation is based on the complete conservation equations for both gas and liquid phases, and accommodates variable thermophysical properties, finite-rate chemical kinetics, and a full treatment of liquid-vapor phase equilibrium at the drop surface. The governing equations and associated interfacial boundary conditions are solved numerically using a fully coupled, implicit scheme with the dual time-stepping integration technique. The model is capable of treating the entire droplet history, including the transition from the subcritical to supercritical state. As a specific example, the combustion of n-pentane fuel droplets in air is studied for pressures in the range of 5-140 atm. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influence on fluid transport, gas-liquid interfacial thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibit a considerable change in the combustion mechanism at the critical pressure, mainly as a result of reduced mass diffusivity and latent heat of vaporization with increased pressure.

  18. Liquid Fuels from Lignins: Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chum, H. L.; Johnson, D. K.

    1986-01-01

    This task was initiated to assess the conversion of lignins into liquid fuels, primarily of lignins relevant to biomass-to-ethanol conversion processes. The task was composed of a literature review of this area and an experimental part to obtain pertinent data on the conversion of lignins germane to biomass-to-ethanol conversion processes.

  19. High liquid fuel yielding biofuel processes and a roadmap for the future transportation

    NASA Astrophysics Data System (ADS)

    Singh, Navneet R.

    In a fossil-fuel deprived world when crude oil will be scarce and transportation need cannot be met with electricity and transportation liquid fuel must be produced, biomass derived liquid fuels can be a natural replacement. However, the carbon efficiency of the currently known biomass to liquid fuel conversion processes ranges from 35-40%, yielding 90 ethanol gallon equivalents (ege) per ton of biomass. This coupled with the fact that the efficiency at which solar energy is captured by biomass (<1%) is significantly lower than H 2 (10-27%) and electricity (20-42%), implies that sufficient land area is not available to meet the need for the entire transportation sector. To counter this dilemma, a number of processes have been proposed in this work: a hybrid hydrogen-carbon (H2CAR) process based on biomass gasification followed by the Fischer-Tropsch process such that 100% carbon efficiency is achieved yielding 330 ege/ton biomass using hydrogen derived from a carbon-free energy. The hydrogen requirement for the H2CAR process is 0.33 kg/liter of diesel. To decrease the hydrogen requirement associated with the H2CAR process, a hydrogen bio-oil (H2Bioil) process based on biomass fast-hydropyrolysis/hydrodeoxygenation is proposed which can achieve liquid fuel yield of 215 ege/ton consuming 0.11 kg hydrogen per liter of oil. Due to the lower hydrogen consumption of the H2Bioil process, synergistically integrated transition pathways are feasible where hot syngas derived from coal gasification (H2Bioil-C) or a natural gas reformer (H 2Bioil-NG) is used to supply the hydrogen and process heat for the biomass fast-hydropyrolysis/hydrodeoxygenation. Another off-shoot of the H2Bioil process is the H2Bioil-B process, where hydrogen required for the hydropyrolysis is obtained from gasification of a fraction of the biomass. H2Bioil-B achieves the highest liquid fuel yield (126-146 ege/ton of biomass) reported in the literature for any self-contained conversion of biomass to

  20. Liquid-fuel valve with precise throttling control

    NASA Technical Reports Server (NTRS)

    Mcdougal, A. R.; Porter, R. N.; Riebling, R. W.

    1971-01-01

    Prototype liquid-fuel valve performs on-off and throttling functions in vacuum without component cold-welding or excessive leakage. Valve design enables simple and rapid disassembly and parts replacement and operates with short working stroke, providing maximum throttling sensitivity commensurate with good control.

  1. Process of producing liquid hydrocarbon fuels from biomass

    DOEpatents

    Kuester, J.L.

    1987-07-07

    A continuous thermochemical indirect liquefaction process is described to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C[sub 7]-C[sub 17] paraffinic hydrocarbons having cetane indices of 50+. 1 fig.

  2. Numerical Investigation on Sensitivity of Liquid Jet Breakup to Physical Fuel Properties with Experimental Comparison

    NASA Astrophysics Data System (ADS)

    Kim, Dokyun; Bravo, Luis; Matusik, Katarzyna; Duke, Daniel; Kastengren, Alan; Swantek, Andy; Powell, Christopher; Ham, Frank

    2016-11-01

    One of the major concerns in modern direct injection engines is the sensitivity of engine performance to fuel characteristics. Recent works have shown that even slight differences in fuel properties can cause significant changes in efficiency and emission of an engine. Since the combustion process is very sensitive to the fuel/air mixture formation resulting from disintegration of liquid jet, the precise assessment of fuel sensitivity on liquid jet atomization process is required first to study the impact of different fuels on the combustion. In the present study, the breaking process of a liquid jet from a diesel injector injecting into a quiescent gas chamber is investigated numerically and experimentally for different liquid fuels (n-dodecane, iso-octane, CAT A2 and C3). The unsplit geometric Volume-of-Fluid method is employed to capture the phase interface in Large-eddy simulations and results are compared against the radiography measurement from Argonne National Lab including jet penetration, liquid mass distribution and volume fraction. The breakup characteristics will be shown for different fuels as well as droplet PDF statistics to demonstrate the influences of the physical properties on the primary atomization of liquid jet. Supported by HPCMP FRONTIER award, US DOD, Office of the Army.

  3. Liquid Fuels Market Module - NEMS Documentation

    EIA Publications

    2017-01-01

    Defines the objectives of the Liquid Fuels Market Model (LFMM), describes its basic approach, and provides detail on how it works. This report is intended as a reference document for model analysts, users, and the public. This edition of the LFMM reflects changes made to the module over the past two years for the Annual Energy Outlook 2016.

  4. Study on Calculation of Liquid Level And Storage of Tanks for LNG-fueled Vessels

    NASA Astrophysics Data System (ADS)

    Li, Kun; Wang, Guoqing; Liu, Chang

    2018-01-01

    As the ongoing development of the application of LNG as a clean energy in waterborne transport industry, the fleet scale of LNG-fueled vessels enlarged and the safety operation has attracted more attention in the industry. Especially the accurate detection of liquid level of LNG tanks is regarded as an important issue to ensure a safe and stable operation of LNG-fueled ships and a key parameter to keep the proper functioning of marine fuel storage system, supply system and safety control system. At present, detection of LNG tank liquid level mainly adopts differential pressure detection method. Liquid level condition could be found from the liquid level reference tables. However in practice, since LNG-fueled vessels are generally not in a stationary state, liquid state within the LNG tanks will constantly change, the detection of storage of tanks only by reference to the tables will cause deviation to some extent. By analyzing the temperature under different pressure, the effects of temperature change on density and volume integration calculation, a method of calculating the liquid level and storage of LNG tanks is put forward making the calculation of liquid level and actual storage of LNG tanks more accurately and providing a more reliable basis for the calculation of energy consumption level and operation economy for LNG-fueled vessels.

  5. Preliminary Investigation of Performance and Starting Characteristics of Liquid Fluorine : Liquid Oxygen Mixtures with Jet Fuel

    NASA Technical Reports Server (NTRS)

    Rothenberg, Edward A; Ordin, Paul M

    1954-01-01

    The performance of jet fuel with an oxidant mixture containing 70 percent liquid fluorine and 30 percent liquid oxygen by weight was investigated in a 500-pound-thrust engine operating at a chamber pressure of 300 pounds per square inch absolute. A one-oxidant-on-one-fuel skewed-hole impinging-jet injector was evaluated in a chamber of characteristic length equal to 50 inches. A maximum experimental specific impulse of 268 pound-seconds per pound was obtained at 25 percent fuel, which corresponds to 96 percent of the maximum theoretical specific impulse based on frozen composition expansion. The maximum characteristic velocity obtained was 6050 feet per second at 23 percent fuel, or 94 percent of the theoretical maximum. The average thrust coefficient was 1.38 for the 500-pound thrust combustion-chamber nozzle used, which was 99 percent of the theoretical (frozen) maximum. Mixtures of fluorine and oxygen were found to be self-igniting with jet fuel with fluorine concentrations as low as 4 percent, when low starting propellant flow rated were used.

  6. Combustion of liquid fuel droplets in supercritical conditions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Yang, Vigor

    1991-01-01

    A comprehensive analysis of liquid-fuel droplet combustion in both sub- and super-critical environments has been conducted. The formulation is based on the complete conservation equations for both gas and liquid phases, and accommodates finite-rate chemical kinetics and a full treatment of liquid-vapor phase equilibrium at the droplet surface. The governing equations and the associated interface boundary conditions are solved numerically using a fully coupled, implicit scheme with the dual time-stepping integration technique. The model is capable of treating the entire droplet history, including the transition from the subcritical to the supercritical state. As a specific example, the combustion of n-pentane fuel droplets in air is studied for pressures of 5-140 atm. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influences on the fluid transport, gas/liquid interface thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibits a significant variation near the critical burning pressure, mainly as a result of reduced mass-diffusion rate and latent heat of vaporization with increased pressure. The influence of droplet size on the burning characteristics is also noted.

  7. Status of liquid metal fast breeder reactor fuel development in Japan

    NASA Astrophysics Data System (ADS)

    Katsuragawa, M.; Kashihara, H.; Akebi, M.

    1993-09-01

    The mixed-oxide fuel technology for a liquid metal fast breeder reactor (LMFBR) in Japan is progressing toward commercial deployment of LMFBR. Based on accumulated experience in Joyo and Monju fuel development, efforts for large scale LMFBR fuel development are devoted to improved irradiation performance, reliability and economy. This paper summarizes accomplishments, current activities and future plans for LMFBR fuel development in Japan.

  8. Production of High Energy Aviation Fuels from Advanced Coal Liquids. Phase 1.

    DTIC Science & Technology

    1987-04-01

    AD-A192 333 PRODUCTION OF HIGH ENERGY AVIATION FUELS FROM RDYANCED 1/1 COAL LIQUIDS PHASE 1(U) STRAT CO SALT LAKE CITY UT J DOWNEN APR 9? AFWRL-TR-87...OF HIGH ENERGY AVIATION FUELS FROM ADVANCED COAL LIQUIDS * JOHN DOWNEN STRAT CO. 4597 JUPITER DRIVE SALT LAKE CITY, UTAH 84124 APRIL 1987 FINAL REPORT...OAU TION NME or dokew AFo Prpulsin LCbrator NOA"TO INACCE1SPONONO II-TTEX Xuc*cait* 65502F 1 3005 I 20 r 63 Production of High Energy Aviation Fuels

  9. Direct liquid-feed fuel cell with membrane electrolyte and manufacturing thereof

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram (Inventor); Surampudi, Subbarao (Inventor); Halpert, Gerald (Inventor)

    1999-01-01

    An improved direct liquid-feed fuel cell having a solid membrane electrolyte for electrochemical reactions of an organic fuel. Improvements in interfacing of the catalyst layer and the membrane and activating catalyst materials are disclosed.

  10. Liquid fuel molten salt reactors for thorium utilization

    DOE PAGES

    Gehin, Jess C.; Powers, Jeffrey J.

    2016-04-08

    Molten salt reactors (MSRs) represent a class of reactors that use liquid salt, usually fluoride- or chloride-based, as either a coolant with a solid fuel (such as fluoride salt-cooled high temperature reactors) or as a combined coolant and fuel with fuel dissolved in a carrier salt. For liquid-fuelled MSRs, the salt can be processed online or in a batch mode to allow for removal of fission products as well as introduction of fissile fuel and fertile materials during reactor operation. The MSR is most commonly associated with the 233U/thorium fuel cycle, as the nuclear properties of 233U combined with themore » online removal of parasitic absorbers allow for the ability to design a thermal-spectrum breeder reactor; however, MSR concepts have been developed using all neutron energy spectra (thermal, intermediate, fast, and mixed-spectrum zoned concepts) and with a variety of fuels including uranium, thorium, plutonium, and minor actinides. Early MSR work was supported by a significant research and development (R&D) program that resulted in two experimental systems operating at ORNL in the 1960s, the Aircraft Reactor Experiment and the Molten Salt Reactor Experiment. Subsequent design studies in the 1970s focusing on thermal-spectrum thorium-fueled systems established reference concepts for two major design variants: (1) a molten salt breeder reactor (MSBR), with multiple configurations that could breed additional fissile material or maintain self-sustaining operation; and (2) a denatured molten salt reactor (DMSR) with enhanced proliferation-resistance. T MSRs has been selected as one of six most promising Generation IV systems and development activities have been seen in fast-spectrum MSRs, waste-burning MSRs, MSRs fueled with low-enriched uranium (LEU), as well as more traditional thorium fuel cycle-based MSRs. This study provides an historical background of MSR R&D efforts, surveys and summarizes many of the recent development, and provides analysis comparing

  11. Reduced Gravity Studies of Soret Transport Effects in Liquid Fuel Combustion

    NASA Technical Reports Server (NTRS)

    Shaw, Benjamin D.

    2004-01-01

    Soret transport, which is mass transport driven by thermal gradients, can be important in practical flames as well as laboratory flames by influencing transport of low molecular weight species (e.g., monatomic and diatomic hydrogen). In addition, gas-phase Soret transport of high molecular weight fuel species that are present in practical liquid fuels (e.g., octane or methanol) can be significant in practical flames (Rosner et al., 2000; Dakhlia et al., 2002) and in high pressure droplet evaporation (Curtis and Farrell, 1992), and it has also been shown that Soret transport effects can be important in determining oxygen diffusion rates in certain classes of microgravity droplet combustion experiments (Aharon and Shaw, 1998). It is thus useful to obtain information on flames under conditions where Soret effects can be clearly observed. This research is concerned with investigating effects of Soret transport on combustion of liquid fuels, in particular liquid fuel droplets. Reduced-gravity is employed to provide an ideal (spherically-symmetrical) experimental model with which to investigate effects of Soret transport on combustion. The research will involve performing reduced-gravity experiments on combustion of liquid fuel droplets in environments where Soret effects significantly influence transport of fuel and oxygen to flame zones. Experiments will also be performed where Soret effects are not expected to be important. Droplets initially in the 0.5 to 1 mm size range will be burned. Data will be obtained on influences of Soret transport on combustion characteristics (e.g., droplet burning rates, droplet lifetimes, gas-phase extinction, and transient flame behaviors) under simplified geometrical conditions that are most amenable to theoretical modeling (i.e., spherical symmetry). The experiments will be compared with existing theoretical models as well as new models that will be developed. Normal gravity experiments will also be performed.

  12. Alternative Fuels Data Center

    Science.gov Websites

    biomass or other renewable resources that can be used as transportation fuel, combustion fuel, or refinery from biomass. Ethanol is ethyl alcohol derived from biomass that meets ASTM D4806-04a and federal quality requirements. Synthetic transportation fuel is a liquid fuel produced from biomass by a

  13. Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, G.

    The manufacture of liquid energy fuels from syngas (a mixture of H[sub 2] and CO, usually containing CO[sub 2]) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for convertingmore » syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.« less

  14. Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, G

    The manufacture of liquid energy fuels from syngas (a mixture of H{sub 2} and CO, usually containing CO{sub 2}) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for convertingmore » syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.« less

  15. Power generation in fuel cells using liquid methanol and hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Chun, William (Inventor)

    2002-01-01

    The invention is directed to an encapsulated fuel cell including a methanol source that feeds liquid methanol (CH.sub.3 OH) to an anode. The anode is electrical communication with a load that provides electrical power. The fuel cell also includes a hydrogen peroxide source that feeds liquid hydrogen peroxide (H.sub.2 O.sub.2) to the cathode. The cathode is also in communication with the electrical load. The anode and cathode are in contact with and separated by a proton-conducting polymer electrolyte membrane.

  16. Novel method for the measurement of liquid film thickness during fuel spray impingement on surfaces.

    PubMed

    Henkel, S; Beyrau, F; Hardalupas, Y; Taylor, A M K P

    2016-02-08

    This paper describes the development and application of a novel optical technique for the measurement of liquid film thickness formed on surfaces during the impingement of automotive fuel sprays. The technique makes use of the change of the light scattering characteristics of a metal surface with known roughness, when liquid is deposited. Important advantages of the technique over previously established methods are the ability to measure the time-dependent spatial distribution of the liquid film without a need to add a fluorescent tracer to the liquid, while the measurement principle is not influenced by changes of the pressure and temperature of the liquid or the surrounding gas phase. Also, there is no need for non-fluorescing surrogate fuels. However, an in situ calibration of the dependence of signal intensity on liquid film thickness is required. The developed method can be applied to measure the time-dependent and two-dimensional distribution of the liquid fuel film thickness on the piston or the liner of gasoline direct injection (GDI) engines. The applicability of this technique was evaluated with impinging sprays of several linear alkanes and alcohols with different thermo-physical properties. The surface temperature of the impingement plate was controlled to simulate the range of piston surface temperatures inside a GDI engine. Two sets of liquid film thickness measurements were obtained. During the first set, the surface temperature of the plate was kept constant, while the spray of different fuels interacted with the surface. In the second set, the plate temperature was adjusted to match the boiling temperature of each fuel. In this way, the influence of the surface temperature on the liquid film created by the spray of different fuels and their evaporation characteristics could be demonstrated.

  17. Nonhumidified intermediate temperature fuel cells using protic ionic liquids.

    PubMed

    Lee, Seung-Yul; Ogawa, Atsushi; Kanno, Michihiro; Nakamoto, Hirofumi; Yasuda, Tomohiro; Watanabe, Masayoshi

    2010-07-21

    In this paper, the characterization of a protic ionic liquid, diethylmethylammonium trifluoromethanesulfonate ([dema][TfO]), as a proton conductor for a fuel cell and the fabrication of a membrane-type fuel cell system using [dema][TfO] under nonhumidified conditions at intermediate temperatures are described in detail. In terms of physicochemical and electrochemical properties, [dema][TfO] exhibits high activity for fuel cell electrode reactions (i.e., the hydrogen oxidation reaction (HOR) and oxygen reduction reaction (ORR)) at a Pt electrode, and the open circuit voltage (OCV) of a liquid fuel cell is 1.03 V at 150 degrees C, as has reported in ref 27. However, diethylmethylammonium bis(trifluoromethane sulfonyl)amide ([dema][NTf(2)]) has relatively low HOR and ORR activity, and thus, the OCV is ca. 0.7 V, although [dema][NTf(2)] and [dema][TfO] have an identical cation ([dema]) and similar thermal and bulk-transport properties. Proton conduction occurs mainly via the vehicle mechanism in [dema][TfO] and the proton transference number (t(+)) is 0.5-0.6. This relatively low t(+) appears to be more disadvantageous for a proton conductor than for other electrolytes such as hydrated sulfonated polymer electrolyte membranes (t(+) = 1.0). However, fast proton-exchange reactions occur between ammonium cations and amines in a model compound. This indicates that the proton-exchange mechanism contributes to the fuel cell system under operation, where deprotonated amines are continuously generated by the cathodic reaction, and that polarization of the cell is avoided. Six-membered sulfonated polyimides in the diethylmethylammonium form exhibit excellent compatibility with [dema][TfO]. The composite membranes can be obtained up to a [dema][TfO] content of 80 wt % and exhibit good thermal stability, high ionic conductivity, and mechanical strength and gas permeation comparable to those of hydrated Nafion. H(2)/O(2) fuel cells prepared using the composite membranes can

  18. 145. VIEW OF LIQUID NITROGEN/HELIUM HEAT EXCHANGER IN FUEL CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    145. VIEW OF LIQUID NITROGEN/HELIUM HEAT EXCHANGER IN FUEL CONTROL ROOM (215), LSB (BLDG. 751), FROM FUEL APRON WITH BAY DOOR OPEN - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  19. Corrosion-resistant fuel cladding allow for liquid metal fast breeder reactors

    DOEpatents

    Brehm, Jr., William F.; Colburn, Richard P.

    1982-01-01

    An aluminide coating for a fuel cladding tube for LMFBRs (liquid metal fast breeder reactors) such as those using liquid sodium as a heat transfer agent. The coating comprises a mixture of nickel-aluminum intermetallic phases and presents good corrosion resistance to liquid sodium at temperatures up to 700.degree. C. while additionally presenting a barrier to outward diffusion of .sup.54 Mn.

  20. NREL Research on Converting Biomass to Liquid Fuels

    ScienceCinema

    None

    2017-12-09

    Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most common types of biofuels are ethanol and biodiesel. Today, ethanol is made from starches and sugars, but at the National Renewable Energy Laboratory (NREL) scientists are developing technology to allow it to be made from cellulose and hemicellulose, the fibrous material that makes up the bulk of most plant matter. Biodiesel is made by combining alcohol (usually methanol) with vegetable oil, animal fat, or recycled cooking grease. It can be used as an additive (typically 20%) to reduce vehicle emissions or in its pure form as a renewable alternative fuel for diesel engines.

  1. Ionic Liquids and New Proton Exchange Membranes for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Belieres, Jean-Philippe

    2004-01-01

    There is currently a great surge of activity in fuel cell research as laboratories across the world seek to take advantage of the high energy capacity provided by &el cells relative to those of other portable electrochemical power systems. Much of this activity is aimed at high temperature fie1 cells, and a vital component of such &el cells must be the availability of a high temperature stable proton-permeable membrane. NASA Glenn Research Center is greatly involved in developing this technology. Other approaches to the high temperature fuel cell involve the use of single- component or almost-single-component electrolytes that provide a path for protons through the cell. A heavily researched case is the phosphoric acid fuel cell, in which the electrolyte is almost pure phosphoric acid and the cathode reaction produces water directly. The phosphoric acid fie1 cell delivers an open circuit voltage of 0.9 V falling to about 0.7 V under operating conditions at 170 C. The proton transport mechanism is mainly vehicular in character according to the viscosity/conductance relation. Here we describe some Proton Transfer Ionic Liquids (PTILs) with low vapor pressure and high temperature stability that have conductivities of unprecedented magnitude for non-aqueous systems. The first requirement of an ionic liquid is that, contrary to experience with most liquids consisting of ions, it must have a melting point that is not much above room temperature. The limit commonly suggested is 100 C. PTILs constitute an interesting class of non-corrosive proton-exchange electrolyte, which can serve well in high temperature (T = 100 - 250 C) fuel cell applications. We will present cell performance data showing that the open circuit voltage output, and the performance of a simple H2(g)Pt/PTIL/Pt/O2(g) fuel cell may be superior to those of the equivalent phosphoric acid electrolyte fuel cell both at ambient temperature and temperatures up to and above 200 C. My work at NASA Glenn Research

  2. Universal electrode interface for electrocatalytic oxidation of liquid fuels.

    PubMed

    Liao, Hualing; Qiu, Zhipeng; Wan, Qijin; Wang, Zhijie; Liu, Yi; Yang, Nianjun

    2014-10-22

    Electrocatalytic oxidations of liquid fuels from alcohols, carboxylic acids, and aldehydes were realized on a universal electrode interface. Such an interface was fabricated using carbon nanotubes (CNTs) as the catalyst support and palladium nanoparticles (Pd NPs) as the electrocatalysts. The Pd NPs/CNTs nanocomposite was synthesized using the ethylene glycol reduction method. It was characterized using transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, voltammetry, and impedance. On the Pd NPs/CNTs nanocomposite coated electrode, the oxidations of those liquid fuels occur similarly in two steps: the oxidations of freshly chemisorbed species in the forward (positive-potential) scan and then, in the reverse scan (negative-potential), the oxidations of the incompletely oxidized carbonaceous species formed during the forward scan. The oxidation charges were adopted to study their oxidation mechanisms and oxidation efficiencies. The oxidation efficiency follows the order of aldehyde (formaldehyde) > carboxylic acid (formic acid) > alcohols (ethanol > methanol > glycol > propanol). Such a Pd NPs/CNTs nanocomposite coated electrode is thus promising to be applied as the anode for the facilitation of direct fuel cells.

  3. Emissions Prediction and Measurement for Liquid-Fueled TVC Combustor with and without Water Injection

    NASA Technical Reports Server (NTRS)

    Brankovic, A.; Ryder, R. C., Jr.; Hendricks, R. C.; Liu, N.-S.; Shouse, D. T.; Roquemore, W. M.

    2005-01-01

    An investigation is performed to evaluate the performance of a computational fluid dynamics (CFD) tool for the prediction of the reacting flow in a liquid-fueled combustor that uses water injection for control of pollutant emissions. The experiment consists of a multisector, liquid-fueled combustor rig operated at different inlet pressures and temperatures, and over a range of fuel/air and water/fuel ratios. Fuel can be injected directly into the main combustion airstream and into the cavities. Test rig performance is characterized by combustor exit quantities such as temperature and emissions measurements using rakes and overall pressure drop from upstream plenum to combustor exit. Visualization of the flame is performed using gray scale and color still photographs and high-frame-rate videos. CFD simulations are performed utilizing a methodology that includes computer-aided design (CAD) solid modeling of the geometry, parallel processing over networked computers, and graphical and quantitative post-processing. Physical models include liquid fuel droplet dynamics and evaporation, with combustion modeled using a hybrid finite-rate chemistry model developed for Jet-A fuel. CFD and experimental results are compared for cases with cavity-only fueling, while numerical studies of cavity and main fueling was also performed. Predicted and measured trends in combustor exit temperature, CO and NOx are in general agreement at the different water/fuel loading rates, although quantitative differences exist between the predictions and measurements.

  4. Quantifying liquid boundary and vapor distributions in a fuel spray by rainbow schlieren deflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taber Wanstall, C.; Agrawal, Ajay K.; Bittle, Joshua A.

    The rainbow schlieren deflectometry (RSD) technique is used to determine the liquid boundary and the fuel volume fraction distributions in the vapor region of a high-pressure fuel spray. Experiments were conducted in a constant pressure flow vessel, whereby a customized single-hole common-rail diesel injector is used to introduce n-heptane fuel into a coflow of low-speed ambient air at two different test conditions. Only the quasi-steady period of the fuel spray is considered, and multiple injections are performed to acquire statistically significant data at an image acquisition rate of 20 kHz. An algorithm to identify the liquid boundary using intensity recordedmore » by the RSD images is presented. The results are compared against measurements obtained by the Mie scattering technique. Our results demonstrate that the RSD can be a powerful optical diagnostics technique to simultaneously quantify both the vapor and liquid regions in the high-pressure fuel sprays.« less

  5. Quantifying liquid boundary and vapor distributions in a fuel spray by rainbow schlieren deflectometry.

    PubMed

    Taber Wanstall, C; Agrawal, Ajay K; Bittle, Joshua A

    2017-10-20

    The rainbow schlieren deflectometry (RSD) technique is used to determine the liquid boundary and the fuel volume fraction distributions in the vapor region of a high-pressure fuel spray. Experiments were conducted in a constant pressure flow vessel, whereby a customized single-hole common-rail diesel injector is used to introduce n-heptane fuel into a coflow of low-speed ambient air at two different test conditions. Only the quasi-steady period of the fuel spray is considered, and multiple injections are performed to acquire statistically significant data at an image acquisition rate of 20 kHz. An algorithm to identify the liquid boundary using intensity recorded by the RSD images is presented. The results are compared against measurements obtained by the Mie scattering technique. Results demonstrate that the RSD can be a powerful optical diagnostics technique to simultaneously quantify both the vapor and liquid regions in the high-pressure fuel sprays.

  6. Quantifying liquid boundary and vapor distributions in a fuel spray by rainbow schlieren deflectometry

    DOE PAGES

    Taber Wanstall, C.; Agrawal, Ajay K.; Bittle, Joshua A.

    2017-01-01

    The rainbow schlieren deflectometry (RSD) technique is used to determine the liquid boundary and the fuel volume fraction distributions in the vapor region of a high-pressure fuel spray. Experiments were conducted in a constant pressure flow vessel, whereby a customized single-hole common-rail diesel injector is used to introduce n-heptane fuel into a coflow of low-speed ambient air at two different test conditions. Only the quasi-steady period of the fuel spray is considered, and multiple injections are performed to acquire statistically significant data at an image acquisition rate of 20 kHz. An algorithm to identify the liquid boundary using intensity recordedmore » by the RSD images is presented. The results are compared against measurements obtained by the Mie scattering technique. Our results demonstrate that the RSD can be a powerful optical diagnostics technique to simultaneously quantify both the vapor and liquid regions in the high-pressure fuel sprays.« less

  7. Plant for producing an oxygen-containing additive as an ecologically beneficial component for liquid motor fuels

    DOEpatents

    Siryk, Yury Paul; Balytski, Ivan Peter; Korolyov, Volodymyr George; Klishyn, Olexiy Nick; Lnianiy, Vitaly Nick; Lyakh, Yury Alex; Rogulin, Victor Valery

    2013-04-30

    A plant for producing an oxygen-containing additive for liquid motor fuels comprises an anaerobic fermentation vessel, a gasholder, a system for removal of sulphuretted hydrogen, and a hotwell. The plant further comprises an aerobic fermentation vessel, a device for liquid substance pumping, a device for liquid aeration with an oxygen-containing gas, a removal system of solid mass residue after fermentation, a gas distribution device; a device for heavy gases utilization; a device for ammonia adsorption by water; a liquid-gas mixer; a cavity mixer, a system that serves superficial active and dispersant matters and a cooler; all of these being connected to each other by pipelines. The technical result being the implementation of a process for producing an oxygen containing additive, which after being added to liquid motor fuels, provides an ecologically beneficial component for motor fuels by ensuring the stability of composition fuel properties during long-term storage.

  8. Shock Tube Measurements for Liquid Fuels Combustion

    DTIC Science & Technology

    2006-06-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP023631 TITLE: Shock Tube Measurements for Liquid Fuels Combustion ... COMBUSTION ARO Contract Number DAAD 19-01-1-0597 Principal Investigator: Ronald K. Hanson Mechanical Engineering Department Stanford University, Stanford CA...94305-3032 SUMMARY/OVERVIEW: We report results of basic research aimed at improving knowledge of the combustion behavior of diesel and jet-related

  9. Development of Combustion Tube for Gaseous, Liquid, and Solid Fuels to Study Flame Acceleration and DDT

    NASA Astrophysics Data System (ADS)

    Graziano, Tyler J.

    An experimental combustion tube of 20 ft. in length and 10.25 in. in internal diameter was designed and fabricated in order to perform combustion tests to study deflagration rates, flame acceleration, and the possibility of DDT. The experiment was designed to allow gaseous, liquid, or solid fuels, or any combination of the three to produce a homogenous fuel/air mixture within the tube. Combustion tests were initiated with a hydrogen/oxygen torch igniter and the resulting flame behavior was measured with high frequency ion probes and pressure transducers. Tests were performed with a variety of gaseous and liquid fuels in an unobstructed tube with a closed ignition end and open muzzle. The flame performance with the gaseous fuels is loosely correlated with the expansion ratio, while there is a stronger correlation with the laminar flame speed. The strongest correlation to flame performance is the run-up distance scaling factor. This trend was not observed with the liquid fuels. The reason for this is likely due to incomplete evaporation of the liquid fuel droplets resulting in a partially unburned mixture, effectively altering the intended equivalence ratio. Results suggest that the simple theory for run-up distance and flame acceleration must be modified to more accurately predict the behavior of gaseous fuels. Also, it is likely that more complex spray combustion modeling is required to accurately predict the flame behavior for liquid fuels.

  10. Liquid fuel vaporizer and combustion chamber having an adjustable thermal conductor

    DOEpatents

    Powell, Michael R; Whyatt, Greg A; Howe, Daniel T; Fountain, Matthew S

    2014-03-04

    The efficiency and effectiveness of apparatuses for vaporizing and combusting liquid fuel can be improved using thermal conductors. For example, an apparatus having a liquid fuel vaporizer and a combustion chamber can be characterized by a thermal conductor that conducts heat from the combustion chamber to the vaporizer. The thermal conductor can be a movable member positioned at an insertion depth within the combustion chamber that corresponds to a rate of heat conduction from the combustion chamber to the vaporizer. The rate of heat conduction can, therefore, be adjusted by positioning the movable member at a different insertion depth.

  11. High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion.

    PubMed

    Liu, Wei; Mu, Wei; Deng, Yulin

    2014-12-01

    Herein, we report high-performance fuel cells that are catalyzed solely by polyoxometalate (POM) solution without any solid metal or metal oxide. The novel design of the liquid-catalyst fuel cells (LCFC) changes the traditional gas-solid-surface heterogeneous reactions to liquid-catalysis reactions. With this design, raw biomasses, such as cellulose, starch, and even grass or wood powders can be directly converted into electricity. The power densities of the fuel cell with switchgrass (dry powder) and bush allamanda (freshly collected) are 44 mW cm(-2) and 51 mW cm(-2) respectively. For the cellulose-based biomass fuel cell, the power density is almost 3000 times higher than that of cellulose-based microbial fuel cells. Unlike noble-metal catalysts, POMs are tolerant to most organic and inorganic contaminants. Therefore, almost any raw biomass can be used directly to produce electricity without prior purification. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Experimental Assessment of the Mass of Ash Residue During the Burning of Droplets of a Composite Liquid Fuel

    NASA Astrophysics Data System (ADS)

    Glushkov, D. O.; Zakharevich, A. V.; Strizhak, P. A.; Syrodoi, S. V.

    2018-03-01

    An experimental study has been made of the regularities of burning of single droplets of typical compositions of a composite liquid fuel during the heating by an air flow with a varied temperature (600-900 K). As the basic components of the compositions of the composite liquid fuel, use was made of the: waste of processing (filter cakes) of bituminous coals of ranks K, C, and T, waste motor, turbine, and transformer oils, process mixture of mazut and oil, heavy crude, and plasticizer. The weight fraction of a liquid combustible component (petroleum) product) ranged within 0-15%. Consideration has been given to droplets of a composite liquid fuel with dimensions (radius) of 0.5 to 2 mm. Conditions of low-temperature initiation of combustion to ensure a minimum possible mass of solid incombustible residue have been determined. Petroleum products have been singled out whose addition to the composition of the composite liquid fuel tends to increase the ash mass (compared to the corresponding composition without a liquid combustible component). Approximation dependences have been obtained which permit predicting the influence of the concentration of the liquid petroleum product as part of the composite liquid fuel on the ash-residue mass.

  13. Experimental Assessment of the Mass of Ash Residue During the Burning of Droplets of a Composite Liquid Fuel

    NASA Astrophysics Data System (ADS)

    Glushkov, D. O.; Zakharevich, A. V.; Strizhak, P. A.; Syrodoi, S. V.

    2018-05-01

    An experimental study has been made of the regularities of burning of single droplets of typical compositions of a composite liquid fuel during the heating by an air flow with a varied temperature (600-900 K). As the basic components of the compositions of the composite liquid fuel, use was made of the: waste of processing (filter cakes) of bituminous coals of ranks K, C, and T, waste motor, turbine, and transformer oils, process mixture of mazut and oil, heavy crude, and plasticizer. The weight fraction of a liquid combustible component (petroleum) product) ranged within 0-15%. Consideration has been given to droplets of a composite liquid fuel with dimensions (radius) of 0.5 to 2 mm. Conditions of low-temperature initiation of combustion to ensure a minimum possible mass of solid incombustible residue have been determined. Petroleum products have been singled out whose addition to the composition of the composite liquid fuel tends to increase the ash mass (compared to the corresponding composition without a liquid combustible component). Approximation dependences have been obtained which permit predicting the influence of the concentration of the liquid petroleum product as part of the composite liquid fuel on the ash-residue mass.

  14. Characterizing Dissolved Gases in Cryogenic Liquid Fuels

    NASA Astrophysics Data System (ADS)

    Richardson, Ian A.

    Pressure-Density-Temperature-Composition (PrhoT-x) measurements of cryogenic fuel mixtures are a historical challenge due to the difficulties of maintaining cryogenic temperatures and precision isolation of a mixture sample. For decades NASA has used helium to pressurize liquid hydrogen propellant tanks to maintain tank pressure and reduce boil off. This process causes helium gas to dissolve into liquid hydrogen creating a cryogenic mixture with thermodynamic properties that vary from pure liquid hydrogen. This can lead to inefficiencies in fuel storage and instabilities in fluid flow. As NASA plans for longer missions to Mars and beyond, small inefficiencies such as dissolved helium in liquid propellant become significant. Traditional NASA models are unable to account for dissolved helium due to a lack of fundamental property measurements necessary for the development of a mixture Equation Of State (EOS). The first PrhoT-x measurements of helium-hydrogen mixtures using a retrofitted single-sinker densimeter, magnetic suspension microbalance, and calibrated gas chromatograph are presented in this research. These measurements were used to develop the first multi-phase EOS for helium-hydrogen mixtures which was implemented into NASA's Generalized Fluid System Simulation Program (GFSSP) to determine the significance of mixture non-idealities. It was revealed that having dissolved helium in the propellant does not have a significant effect on the tank pressurization rate but does affect the rate at which the propellant temperature rises. PrhoT-x measurements are conducted on methane-ethane mixtures with dissolved nitrogen gas to simulate the conditions of the hydrocarbon seas of Saturn's moon Titan. Titan is the only known celestial body in the solar system besides Earth with stable liquid seas accessible on the surface. The PrhoT-x measurements are used to develop solubility models to aid in the design of the Titan Submarine. NASA is currently designing the submarine

  15. Soot and liquid-phase fuel distributions in a newly designed optically accessible DI diesel engine

    NASA Astrophysics Data System (ADS)

    Dec, J. E.; Espey, C.

    1993-10-01

    Two-dimensional (2-D) laser-sheet imaging has been used to examine the soot and liquid-phase fuel distributions in a newly designed, optically accessible, direct-injection diesel engine of the heavy-duty size class. The design of this engine preserves the intake port geometry and basic dimensions of a Cummins N-series production engine. It also includes several unique features to provide considerable optical access. Liquid-phase fuel and soot distribution studies were conducted at a medium speed (1,200 rpm) using a Cummins closed-nozzle fuel injector. The scattering was used to obtain planar images of the liquid-phase fuel distribution. These images show that the leading edge of the liquid-phase portion of the fuel jet reaches a maximum length of 24 mm, which is about half the combustion bowl radius for this engine. Beyond this point virtually all the fuel has vaporized. Soot distribution measurements were made at a high load condition using three imaging diagnostics: natural flame luminosity, 2-D laser-induced incandescence, and 2-D elastic scattering. This investigation showed that the soot distribution in the combusting fuel jet develops through three stages. First, just after the onset of luminous combustion, soot particles are small and nearly uniformly distributed throughout the luminous region of the fuel jet. Second, after about 2 crank angle degrees a pattern develops of a higher soot concentration of larger sized particles in the head vortex region of the jet and a lower soot concentration of smaller sized particles upstream toward the injector. Third, after fuel injection ends, both the soot concentration and soot particle size increase rapidly in the upstream portion of the fuel jet.

  16. Superheated fuel injection for combustion of liquid-solid slurries

    DOEpatents

    Robben, F.A.

    1984-10-19

    A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

  17. Superheated fuel injection for combustion of liquid-solid slurries

    DOEpatents

    Robben, Franklin A.

    1985-01-01

    A method and device for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal.

  18. Cyanoborohydride-based ionic liquids as green aerospace bipropellant fuels.

    PubMed

    Zhang, Qinghua; Yin, Ping; Zhang, Jiaheng; Shreeve, Jean'ne M

    2014-06-02

    In propellant systems, the most common bipropellants are composed of two chemicals, a fuel (or reducer) and an oxidizer. Currently, the choices for propellant fuels rely mainly on hydrazine and its methylated derivatives, even though they are extremely toxic, highly volatile, sensitive to adiabatic compression (risk of detonation), and, therefore, difficult to handle. With this background, the search for alternative green propellant fuels has been an urgent goal of space science. In this study, a new family of cyanoborohydride-based ionic liquids (ILs) with properties and performances comparable to hydrazine derivatives were designed and synthesized. These new ILs as bipropellant fuels, have some unique advantages including negligible vapor pressure, ultra-short ignition delay (ID) time, and reduced synthetic and storage costs, thereby showing great application potential as environmentally friendly fuels in bipropellant formulations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Stationary Liquid Fuel Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Won Sik; Grandy, Andrew; Boroski, Andrew

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excessmore » reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The

  20. The thermodynamics of pyrochemical processes for liquid metal reactor fuel cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, I.

    1987-01-01

    The thermodynamic basis for pyrochemical processes for the recovery and purification of fuel for the liquid metal reactor fuel cycle is described. These processes involve the transport of the uranium and plutonium from one liquid alloy to another through a molten salt. The processes discussed use liquid alloys of cadmium, zinc, and magnesium and molten chloride salts. The oxidation-reduction steps are done either chemically by the use of an auxiliary redox couple or electrochemically by the use of an external electrical supply. The same basic thermodynamics apply to both the salt transport and the electrotransport processes. Large deviations from idealmore » solution behavior of the actinides and lanthanides in the liquid alloys have a major influence on the solubilities and the performance of both the salt transport and electrotransport processes. Separation of plutonium and uranium from each other and decontamination from the more noble fission product elements can be achieved using both transport processes. The thermodynamic analysis is used to make process design computations for different process conditions.« less

  1. Fuel quality-processing study. Volume 2: Literature survey

    NASA Technical Reports Server (NTRS)

    Jones, G. E., Jr.; Amero, R.; Murthy, B.; Cutrone, M.

    1981-01-01

    The validity of initial assumptions about raw materials choices and relevant upgrading processing options was confirmed. The literature survey also served to define the on-site (at the turbine location) options for fuel treatment and exhaust gas treatment. The literature survey also contains a substantial compilation of specification and physical property information about liquid fuel products relevant to industrial gas turbines.

  2. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper.

    PubMed

    Li, Christina W; Ciston, Jim; Kanan, Matthew W

    2014-04-24

    The electrochemical conversion of CO2 and H2O into liquid fuel is ideal for high-density renewable energy storage and could provide an incentive for CO2 capture. However, efficient electrocatalysts for reducing CO2 and its derivatives into a desirable fuel are not available at present. Although many catalysts can reduce CO2 to carbon monoxide (CO), liquid fuel synthesis requires that CO is reduced further, using H2O as a H(+) source. Copper (Cu) is the only known material with an appreciable CO electroreduction activity, but in bulk form its efficiency and selectivity for liquid fuel are far too low for practical use. In particular, H2O reduction to H2 outcompetes CO reduction on Cu electrodes unless extreme overpotentials are applied, at which point gaseous hydrocarbons are the major CO reduction products. Here we show that nanocrystalline Cu prepared from Cu2O ('oxide-derived Cu') produces multi-carbon oxygenates (ethanol, acetate and n-propanol) with up to 57% Faraday efficiency at modest potentials (-0.25 volts to -0.5 volts versus the reversible hydrogen electrode) in CO-saturated alkaline H2O. By comparison, when prepared by traditional vapour condensation, Cu nanoparticles with an average crystallite size similar to that of oxide-derived copper produce nearly exclusive H2 (96% Faraday efficiency) under identical conditions. Our results demonstrate the ability to change the intrinsic catalytic properties of Cu for this notoriously difficult reaction by growing interconnected nanocrystallites from the constrained environment of an oxide lattice. The selectivity for oxygenates, with ethanol as the major product, demonstrates the feasibility of a two-step conversion of CO2 to liquid fuel that could be powered by renewable electricity.

  3. Liquid hydrogen as a propulsion fuel, 1945-1959

    NASA Technical Reports Server (NTRS)

    Sloop, J. L.

    1978-01-01

    A historical review is presented on the research and development of liquid hydrogen for use as a propulsion fuel. The document is divided into three parts: Part 1 (1945-1950); Part 2 (1950-1957); and Part 3 (1957-1958), encompassing eleven topics. Two appendixes are included. Hydrogen Technology Through World War 2; and Propulsion Primer, Performance Parameters and Units.

  4. Influence of bio-additives on combustion of liquid fuels

    NASA Astrophysics Data System (ADS)

    Patsch, Marek; Durčanský, Peter

    2016-06-01

    In this contribution there are analyses of the course of the pressure curves, which were measured in the diesel engine MD UR IV, which is often used in cogeneration units. The results of the analyses confront the properties and quality of fuels. The measuring was realized with a constant rotation speed of the engine and by using different fuels. The fuels were pure diesel fuels and diesel fuel with bio-additives of hydrogenate RO (rape oil), FAME, and bioethanol.

  5. Deoxy-liquefaction of three different species of macroalgae to high-quality liquid oil.

    PubMed

    Li, Jinhua; Wang, Guoming; Chen, Ming; Li, Jiedong; Yang, Yaoyao; Zhu, Qiuyan; Jiang, Xiaohuan; Wang, Zonghua; Liu, Haichao

    2014-10-01

    Three species of macroalgae (Ulva lactuca, Laminaria japonica and Gelidium amansii) were converted into liquid oils via deoxy-liquefaction. The elemental analysis, FTIR and GC-MS results showed that the three liquid oils were all mainly composed of aromatics, phenols, alkanes and alkenes, other oxygen-containing compounds, and some nitrogen-containing compounds though there were some differences in terms of their types or contents due to the different constituents in the macroalgae feedstocks. The oxygen content was only 5.15-7.30% and the H/C molar ratio was up to 1.57-1.73. Accordingly, the HHV of the three oils were 42.50, 41.76 and 40.00 MJ/kg, respectively. The results suggested that U. lactuca, L. japonica and G. amansii have potential as biomass feedstock for fuel and chemicals and that deoxy-liquefaction technique may be an effective way to convert macroalgae into high-quality liquid oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas.

    PubMed

    Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott

    2008-10-15

    Liquid transportation fuels derived from coal and natural gas could helpthe United States reduce its dependence on petroleum. The fuels could be produced domestically or imported from fossil fuel-rich countries. The goal of this paper is to determine the life-cycle GHG emissions of coal- and natural gas-based Fischer-Tropsch (FT) liquids, as well as to compare production costs. The results show that the use of coal- or natural gas-based FT liquids will likely lead to significant increases in greenhouse gas (GHG) emissions compared to petroleum-based fuels. In a best-case scenario, coal- or natural gas-based FT-liquids have emissions only comparable to petroleum-based fuels. In addition, the economic advantages of gas-to-liquid (GTL) fuels are not obvious: there is a narrow range of petroleum and natural gas prices at which GTL fuels would be competitive with petroleum-based fuels. CTLfuels are generally cheaper than petroleum-based fuels. However, recent reports suggest there is uncertainty about the availability of economically viable coal resources in the United States. If the U.S. has a goal of increasing its energy security, and at the same time significantly reducing its GHG emissions, neither CTL nor GTL consumption seem a reasonable path to follow.

  7. Fuel quality/processing study. Volume 3: Fuel upgrading studies

    NASA Technical Reports Server (NTRS)

    Jones, G. E., Jr.; Bruggink, P.; Sinnett, C.

    1981-01-01

    The methods used to calculate the refinery selling prices for the turbine fuels of low quality are described. Detailed descriptions and economics of the upgrading schemes are included. These descriptions include flow diagrams showing the interconnection between processes and the stream flows involved. Each scheme is in a complete, integrated, stand alone facility. Except for the purchase of electricity and water, each scheme provides its own fuel and manufactures, when appropriate, its own hydrogen.

  8. A quantitative model and the experimental evaluation of the liquid fuel layer for the downward flame spread of XPS foam.

    PubMed

    Luo, Shengfeng; Xie, Qiyuan; Tang, Xinyi; Qiu, Rong; Yang, Yun

    2017-05-05

    The objective of this work is to investigate the distinctive mechanisms of downward flame spread for XPS foam. It was physically considered as a moving down of narrow pool fire instead of downward surface flame spread for normal solids. A method was developed to quantitatively analyze the accumulated liquid fuel based on the experimental measurement of locations of flame tips and burning rates. The results surprisingly showed that about 80% of the generated hot liquid fuel remained in the pool fire during a certain period. Most of the consumed solid XPS foam didn't really burn away but transformed as the liquid fuel in the downward moving pool fire, which might be an important promotion for the fast fire development. The results also indicated that the dripping propensity of the hot liquid fuel depends on the total amount of the hot liquid accumulated in the pool fire. The leading point of the flame front curve might be the breach of the accumulated hot liquid fuel if it is enough for dripping. Finally, it is suggested that horizontal noncombustible barriers for preventing the accumulation and dripping of liquid fuel are helpful for vertical confining of XPS fire. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. 142. STANDBY PRESSURE CONTROL UNIT FOR FUEL AND LIQUID OXYGEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    142. STANDBY PRESSURE CONTROL UNIT FOR FUEL AND LIQUID OXYGEN IN SOUTHWEST PORTION OF CONTROL ROOM (214), LSB (BLDG. 751), FACING WEST - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  10. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    DOEpatents

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2017-05-23

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  11. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    DOEpatents

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2016-07-05

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  12. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    DOEpatents

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2018-04-17

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  13. An Experimental Examination of Combustion of Isolated Liquid Fuel Droplets with Polymeric and Nanoparticle Additives

    NASA Astrophysics Data System (ADS)

    Ghamari, Mohsen

    In spite of recent attention to renewable sources of energy, liquid hydrocarbon fuels are still the main source of energy for industrial and transportation systems. Manufactures and consumers are consistently looking for ways to optimize the efficiency of fuel combustion in terms of cost, emissions and consumer safety. In this regard, increasing burning rate of liquid fuels has been of special interest in both industrial and transportation systems. Recent studies have shown that adding combustible nano-particles could have promising effects on improving combustion performance of liquid fuels. Combustible nano-particles could enhance radiative and conductive heat transfer and also mixing within the droplet. Polymeric additive have also shown promising effect on improving fire safety by suppressing spreading behavior and splatter formation in case of crash scenario. Polymers are also known to have higher burning rate than regular hydrocarbon fuels. Therefore adding polymeric additive could have the potential to increase the burning rate. In this work, combustion dynamics of liquid fuel droplets with both polymeric and nanoparticle additives is studied in normal gravity. High speed photography is employed and the effect of additive concentration on droplet burning rate, burning time, extinction and soot morphology is investigated. Polymer added fuel was found to have a volatility controlled combustion with four distinct regimes. The first three zones are associated with combustion of base fuel while the polymer burns last and after a heating zone because of its higher boiling point. Polymer addition reduces the burning rate of the base fuel in the first zone by means of increasing viscosity and results in nucleate boiling and increased burning rates in the second and third stages. Overall, polymer addition resulted in a higher burning rate and shorter burning time in most of the scenarios. Colloidal suspensions of carbon-based nanomaterials in liquid fuels were also

  14. Abundance and Utility: For Military Operations, Liquid Fuels Remain a Solid Choice over Natural Gas

    DTIC Science & Technology

    2014-08-01

    and combat support vehicles, ships, and aircraft, the adoption of natural gas —whether as compressed natural gas (CNG) or liquefied natural gas (LNG...dangers to U.S. forces and vehicles. Natural gas has different flammability properties than traditional liquid fuels, and as CNG tanks are under high...tacticaldefensemedia.com16 | DoD Power & Energy Fall 2014 For Military Operations, Liquid Fuels Remain a Solid Choice over Natural Gas By Bret

  15. Liquid Water Saturation and Oxygen Transport Resistance in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers

    NASA Astrophysics Data System (ADS)

    Muirhead, Daniel

    In this thesis, the relative humidity (RH) of the cathode reactant gas was investigated as a factor which influences gas diffusion layer (GDL) liquid water accumulation and mass transport-related efficiency losses over a range of operating current densities in a polymer electrolyte membrane (PEM) fuel cell. Limiting current measurements were used to characterize fuel cell oxygen transport resistance while simultaneous measurements of liquid water accumulation were conducted using synchrotron X-ray radiography. GDL porosity distributions were characterized with micro-computed tomography (microCT). The work presented here can be used by researchers to develop improved numerical models to predict GDL liquid water accumulation and to inform the design of next-generation GDL materials to mitigate mass transport-related efficiency losses. This work also contributes an extensive set of concurrent performance and liquid water visualization data to the PEM fuel cell field that can be used for validating multiphase transport models.

  16. Semi-empirical analysis of liquid fuel distribution downstream of a plain orifice injector under cross-stream air flow

    NASA Astrophysics Data System (ADS)

    Cao, M.-H.; Jiang, H.-K.; Chin, J.-S.

    1982-04-01

    An improved flat-fan spray model is used for the semi-empirical analysis of liquid fuel distribution downstream of a plain orifice injector under cross-stream air flow. The model assumes that, due to the aerodynamic force of the high-velocity cross air flow, the injected fuel immediately forms a flat-fan liquid sheet perpendicular to the cross flow. Once the droplets have been formed, the trajectories of individual droplets determine fuel distribution downstream. Comparison with test data shows that the proposed model accurately predicts liquid fuel distribution at any point downstream of a plain orifice injector under high-velocity, low-temperature uniform cross-stream air flow over a wide range of conditions.

  17. Characterization of Emissions from Liquid Fuel and Propane Open Burns

    EPA Science Inventory

    The comparative combustion emissions of using jet propellant (JP-5) liquid fuel pools or a propane manifold grid to simulate the effects of accidental fires was investigated. A helium-filled tethered aerostat was used to maneuver an instrument package into the open fire plumes ...

  18. An assessment of the crash fire hazard of liquid hydrogen fueled aircraft

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The crash fire hazards of liquid hydrogen fueled aircraft relative to those of mission equivalent aircraft fueled either with conventional fuel or with liquefied methane were evaluated. The aircraft evaluated were based on Lockheed Corporation design for 400 passenger, Mach 0.85, 5500 n. mile aircraft. Four crash scenarios were considered ranging from a minor incident causing some loss of fuel system integrity to a catastrophic crash. Major tasks included a review of hazardous properties of the alternate fuels and of historic crash fire data; a comparative hazard evluation for each of the three fuels under four crash scenarios a comprehensive review and analysis and an identification of areas further development work. The conclusion was that the crash fire hazards are not significantly different when compared in general for the three fuels, although some fuels showed minor advantages in one respect or another.

  19. Chamber studies on nonvented decorative fireplaces using liquid or gelled ethanol fuel.

    PubMed

    Schripp, Tobias; Salthammer, Tunga; Wientzek, Sebastian; Wensing, Michael

    2014-03-18

    Decorative ethanol fireplaces are becoming more and more commonly used in many different countries. These fireplaces are constructed such that they have no fume extraction system, and so all of the gases from combustion, volatile organic compounds, and particulate emissions are released into the room. In order to determine the release behavior and the chemical composition of the emissions, a variety of combinations of ethanol fireplaces and fuels were examined in a 48 m(3) emission test chamber under typical living room environmental conditions. Four ethanol fireplaces with 8 different fuels (3 liquid samples, 5 gel-type samples) were tested. The ventilation conditions were set up corresponding to the manufacturers' recommendations and DIN 4734-1. The air concentrations in the chamber were evaluated based on guideline values for indoor air. Of the combustion gases examined, the quantity of carbon dioxide and nitrogen dioxide in particular were close to or even above the guideline values in many cases. A release of components of the fuel (e.g., the denaturing substances) was also detected in the chamber air. In two experiments, a benzene concentration of over 12 ppb and an increased formaldehyde concentration (>0.1 ppm) were identified in the chamber air. The ethanol fireplaces were--irrespective of the type of fuel used--strong sources of fine and ultrafine particles. Overall, ethanol fireplaces have a considerable influence on the quality of the indoor air due to the lack of ventilation. This aspect should--in addition to fire protection--be properly considered when using such devices.

  20. Study of Hydrogen Recovery Systems for Gas Vented While Refueling Liquid-Hydrogen Fueled Aircraft

    NASA Technical Reports Server (NTRS)

    Baker, C. R.

    1979-01-01

    Methods of capturing and reliquefying the cold hydrogen vapor produced during the fueling of aircraft designed to utilize liquid hydrogen fuel were investigated. An assessment of the most practical, economic, and energy efficient of the hydrogen recovery methods is provided.

  1. Lignin depolymerization and upgrading via fast pyrolysis and electrocatalysis for the production of liquid fuels and value-added products

    NASA Astrophysics Data System (ADS)

    Garedew, Mahlet

    The production of liquid hydrocarbon fuels from biomass is needed to replace fossil fuels, which are decreasing in supply at an unsustainable rate. Renewable fuels also address the rising levels of greenhouse gases, an issue for which the Intergovernmental Panel on Climate Change implicated humanity in 2013. In response, the Energy Independence and Security Act (EISA) mandates the production of 21 billion gallons of advanced biofuels by 2022. Biomass fast pyrolysis (BFP) uses heat (400-600 °C) without oxygen to convert biomass to liquids fuel precursors offering an alternative to fossil fuels and a means to meet the EISA mandate. The major product, bio-oil, can be further upgraded to liquid hydrocarbon fuels, while biochar can serve as a solid fuel or soil amendment. The combustible gas co-product is typically burned for process heat. Though the most valuable of the pyrolysis products, the liquid bio-oil is highly oxygenated, corrosive, low in energy content and unstable during storage. As a means of improving bio-oil properties, electrocatalytic hydrogenation (ECH) is employed to reduce and deoxygenate reactive compounds. This work specifically focuses on lignin as a feed material for BFP. As lignin comprises up to 30% of the mass and 40% of the energy stored in biomass, it offers great potential for the production of liquid fuels and value-added products by utilizing fast pyrolysis as a conversion method coupled with electrocatalysis as an upgrading method.

  2. Fuel quality/processing study. Volume 4: On site processing studies

    NASA Technical Reports Server (NTRS)

    Jones, G. E., Jr.; Cutrone, M.; Doering, H.; Hickey, J.

    1981-01-01

    Fuel treated at the turbine and the turbine exhaust gas processed at the turbine site are studied. Fuel treatments protect the turbine from contaminants or impurities either in the upgrading fuel as produced or picked up by the fuel during normal transportation. Exhaust gas treatments provide for the reduction of NOx and SOx to environmentally acceptable levels. The impact of fuel quality upon turbine maintenance and deterioration is considered. On site costs include not only the fuel treatment costs as such, but also incremental costs incurred by the turbine operator if a turbine fuel of low quality is not acceptably upgraded.

  3. Triaxial Swirl Injector Element for Liquid-Fueled Engines

    NASA Technical Reports Server (NTRS)

    Muss, Jeff

    2010-01-01

    A triaxial injector is a single bi-propellant injection element located at the center of the injector body. The injector element consists of three nested, hydraulic swirl injectors. A small portion of the total fuel is injected through the central hydraulic injector, all of the oxidizer is injected through the middle concentric hydraulic swirl injector, and the balance of the fuel is injected through an outer concentric injection system. The configuration has been shown to provide good flame stabilization and the desired fuel-rich wall boundary condition. The injector design is well suited for preburner applications. Preburner injectors operate at extreme oxygen-to-fuel mass ratios, either very rich or very lean. The goal of a preburner is to create a uniform drive gas for the turbomachinery, while carefully controlling the temperature so as not to stress or damage turbine blades. The triaxial injector concept permits the lean propellant to be sandwiched between two layers of the rich propellant, while the hydraulic atomization characteristics of the swirl injectors promote interpropellant mixing and, ultimately, good combustion efficiency. This innovation is suited to a wide range of liquid oxidizer and liquid fuels, including hydrogen, methane, and kerosene. Prototype testing with the triaxial swirl injector demonstrated excellent injector and combustion chamber thermal compatibility and good combustion performance, both at levels far superior to a pintle injector. Initial testing with the prototype injector demonstrated over 96-percent combustion efficiency. The design showed excellent high -frequency combustion stability characteristics with oxygen and kerosene propellants. Unlike the more conventional pintle injector, there is not a large bluff body that must be cooled. The absence of a protruding center body enhances the thermal durability of the triaxial swirl injector. The hydraulic atomization characteristics of the innovation allow the design to be

  4. Rational Design and Facile Synthesis of Boranophosphate Ionic Liquids as Hypergolic Rocket Fuels.

    PubMed

    Liu, Tianlin; Qi, Xiujuan; Wang, Binshen; Jin, Yunhe; Yan, Chao; Wang, Yi; Zhang, Qinghua

    2018-05-14

    The design and synthesis of new hypergolic ionic liquids (HILs) as replacements for toxic hydrazine derivatives have been the focus of current academic research in the field of liquid bipropellant fuels. In most cases, however, the requirements of excellent ignition performances, good hydrolytic stabilities, and low synthetic costs are often contradictory, which makes the development of high-performance HILs an enormous challenge. Here, we show how a fuel-rich boranophosphate ion was rationally designed and used to synthesize a series of high-performance HILs with excellent comprehensive properties. In the design strategy, we introduced the {BH 3 } moiety into the boranophosphate ion for improving the self-ignition property, whereas the complexation of boron and phosphite was used to improve the hydrolytic activity of the borohydride species. As a result, these boranophosphate HILs exhibited wide liquid operating ranges (>220 °C), high densities (1.00-1.10 g cm -3 ), good hydrolytic stabilities, and short ignition delay times (2.3-9.7 milliseconds) with white fuming nitric acid (WFNA) as the oxidizer. More importantly, these boranophosphate HILs could be readily prepared in high yields from commercial phosphite esters, avoiding complex and time-consuming synthetic routes. This work offers an effective strategy of designing boranophosphate HILs towards safer and greener hypergolic fuels for liquid bipropellant applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Aqueous liquid feed organic fuel cell using solid polymer electrolyte membrane

    NASA Technical Reports Server (NTRS)

    Olah, George A. (Inventor); Surampudi, Subbarao (Inventor); Vamos, Eugene (Inventor); Halpert, Gerald (Inventor); Narayanan, Sekharipuram R. (Inventor); Frank, Harvey A. (Inventor); Prakash, G. K. Surya (Inventor)

    1997-01-01

    A liquid organic fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.

  6. In situ liquid water visualization in polymer electrolyte membrane fuel cells with high resolution synchrotron x-ray radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chevalier, S.; Banerjee, R.; Lee, J.

    In this work, we investigated the dominating properties of the porous materials that impact water dynamics in a polymer electrolyte membrane fuel cell (PEMFC). Visualizations of liquid water in an operating PEMFC were performed at the Canadian Light Source. A miniature fuel cell was specifically designed for X-ray imaging investigations, and an in-house image processing algorithm based on the Beer-Lambert law was developed to extract quantities of liquid water thicknesses (cm) from raw X-ray radiographs. The X-ray attenuation coefficient of water at 24 keV was measured with a calibration device to ensure accurate measurements of the liquid water thicknesses. Frommore » this experiment, the through plane distribution of the liquid water in the fuel cell was obtained.« less

  7. Alternative Fuels Data Center: Fuel Prices

    Science.gov Websites

    Report provides regional alternative and conventional fuel prices for biodiesel, compressed natural gas petroleum fuels (gasoline and diesel fuel) is the primary driver of liquid fuel prices. This is because the liquid fuels are used in non-dedicated vehicles and can be substituted out by petroleum fuels if their

  8. Organic-resistant screen-printed graphitic electrodes: Application to on-site monitoring of liquid fuels.

    PubMed

    Almeida, Eduardo S; Silva, Luiz A J; Sousa, Raquel M F; Richter, Eduardo M; Foster, Christopher W; Banks, Craig E; Munoz, Rodrigo A A

    2016-08-31

    This work presents the potential application of organic-resistant screen-printed graphitic electrodes (SPGEs) for fuel analysis. The required analysis of the antioxidant 2,6-di-tert-butylphenol (2,6-DTBP) in biodiesel and jet fuel is demonstrated as a proof-of-concept. The screen-printing of graphite, Ag/AgCl and insulator inks on a polyester substrate (250 μm thickness) resulted in SPGEs highly compatible with liquid fuels. SPGEs were placed on a batch-injection analysis (BIA) cell, which was filled with a hydroethanolic solution containing 99% v/v ethanol and 0.1 mol L(-1) HClO4 (electrolyte). An electronic micropipette was connected to the cell to perform injections (100 μL) of sample or standard solutions. Over 200 injections can be injected continuously without replacing electrolyte and SPGE strip. Amperometric detection (+1.1 V vs. Ag/AgCl) of 2,6-DTBP provided fast (around 8 s) and precise (RSD = 0.7%, n = 12) determinations using an external calibration curve. The method was applied for the analysis of biodiesel and aviation jet fuel samples and comparable results with liquid and gas chromatographic analyses, typically required for biodiesel and jet fuel samples, were obtained. Hence, these SPGE strips are completely compatible with organic samples and their combination with the BIA cell shows great promise for routine and portable analysis of fuels and other organic liquid samples without requiring sophisticated sample treatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Biomass to Liquid Fuels and Electrical Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Steven; McDonald, Timothy; Gallagher, Thomas

    This research program provided data on immediate applicability of forest biomass production and logistics models. Also, the research further developed and optimized fractionation techniques that can be used to separate biomass feedstocks into their basic chemical constituents. Finally, additional research established systematic techniques to determine economically feasible technologies for production of biomass-derived synthesis gases that will be used for clean, renewable power generation and for production of liquid transportation fuels. Moreover, this research program continued our efforts to educate the next generation of engineers and scientists needed to implement these technologies.

  10. 147. EAST END OF LIQUID NITROGEN/HELIUM HEAT EXCHANGER IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    147. EAST END OF LIQUID NITROGEN/HELIUM HEAT EXCHANGER IN FUEL CONTROL ROOM (215), LSB (BLDG. 751), WITH ASSOCIATED PIPING AND VALVES - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. Liquid fossil-fuel technology. Quarterly technical progress report, April-June 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linville, B.

    This report primarily covers in-house oil, gas, and synfuel research and lists the contracted research. The report is broken into the following areas: liquid fossil fuel cycle, extraction, processing, utilization, and project integration and technology transfer. BETC publications are listed. (DLC)

  12. Liquid Water Transport in the Reactant Channels of Proton Exchange Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Banerjee, Rupak

    Water management has been identified as a critical issue in the development of PEM fuel cells for automotive applications. Water is present inside the PEM fuel cell in three phases, i.e. liquid phase, vapor phase and mist phase. Liquid water in the reactant channels causes flooding of the cell and blocks the transport of reactants to the reaction sites at the catalyst layer. Understanding the behavior of liquid water in the reactant channels would allow us to devise improved strategies for removing liquid water from the reactant channels. In situ fuel cell tests have been performed to identify and diagnose operating conditions which result in the flooding of the fuel cell. A relationship has been identified between the liquid water present in the reactant channels and the cell performance. A novel diagnostic technique has been established which utilizes the pressure drop multiplier in the reactant channels to predict the flooding of the cell or the drying-out of the membrane. An ex-situ study has been undertaken to quantify the liquid water present in the reactant channels. A new parameter, the Area Coverage Ratio (ACR), has been defined to identify the interfacial area of the reactant channel which is blocked for reactant transport by the presence of liquid water. A parametric study has been conducted to study the effect of changing temperature and the inlet relative humidity on the ACR. The ACR decreases with increase in current density as the gas flow rates increase, removing water more efficiently. With increase in temperature, the ACR decreases rapidly, such that by 60°C, there is no significant ACR to be reported. Inlet relative humidity of the gases does change the saturation of the gases in the channel, but did not show any significant effect on the ACR. Automotive powertrains, which is the target for this work, are continuously faced with transient changes. Water management under transient operating conditions is significantly more challenging and has not

  13. Two-step catalytic hydrodeoxygenation of fast pyrolysis oil to hydrocarbon liquid fuels.

    PubMed

    Xu, Xingmin; Zhang, Changsen; Liu, Yonggang; Zhai, Yunpu; Zhang, Ruiqin

    2013-10-01

    Two-step catalytic hydrodeoxygenation (HDO) of fast pyrolysis oil was investigated for translating pyrolysis oil to transportation grade hydrocarbon liquid fuels. At the first mild HDO step, various organic solvents were employed to promote HDO of bio-oil to overcome coke formation using noble catalyst (Ru/C) under mild conditions (300 °C, 10 MPa). At the second deep HDO step, conventional hydrogenation setup and catalyst (NiMo/Al2O3) were used under severe conditions (400 °C, 13 MPa) for obtaining hydrocarbon fuel. Results show that the phenomenon of coke formation is effectively eliminated, and the properties of products have been significantly improved, such as oxygen content decreases from 48 to 0.5 wt% and high heating value increases from 17 to 46 MJ kg(-1). GC-MS analysis indicates that the final products include C11-C27 aliphatic hydrocarbons and aromatic hydrocarbons. In short, the fast pyrolysis oils were successfully translated to hydrocarbon liquid fuels using a two-step catalytic HDO process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Symbiotic Nuclear—Coal Systems for Production of Liquid Fuels

    NASA Astrophysics Data System (ADS)

    Taczanowski, S.

    The notion of safety is not confined to the technological or non-proliferation aspects. It covers also the elements of energy policy: irrational reactions of societies, emotions, egoistic interests of more or less powerful pressure of economical and external political factors. One should be conscious that the country's privilege of being equipped by the Nature with rich resources of oil or gas is not solely economical, but even more a political one. Simultaneously, the gradual depletion of world hydrocarbons that draws behind irrevocable price increase has to be expected within the time scale of exploitation of power plants (now amounted to ~60 years). Therefore consequences of energy policy last much longer than the perspectives the political or economical decision makers are planning and acting within and the public is expecting successes and finally evaluating them. The world oil and gas resources are geopolitically very non-uniformly distributed, in contrast to coal and uranium. Since the level of energy self-sufficiency of the EU is highest for coal, the old idea of synfuels production from coal is recalled. Yet, in view of limits to the CO2 emissions in the EU another method has to be used here than the conventional coal liquefaction just applied in China. Simultaneously, an interesting evolution of energy prices was be observed, namely an increase in that of motor fuels in contrast to that of electricity remaining well stable. This fact suggests that the use of electricity (mainly the off-peak load), generated without emissions of CO2 for production of liquid fuels can prove reasonable. Thus, the essence of the presented idea of coal-nuclear symbiosis lies in the supply of energy in the form of H2, necessary for this process, from a nuclear reactor. Particularly, in the present option H2 is obtained by electrolytic water splitting supplying also O2 as a precious by-product in well mature and commercially available already since decades, Light Water Reactors

  15. Evolution of temperature of a droplet of liquid composite fuel interacting with heated airflow

    NASA Astrophysics Data System (ADS)

    Glushkov, D. O.; Zakharevich, A. V.; Strizhak, P. A.; Syrodoy, S. V.

    2016-11-01

    The macroscopic patterns of a temperature change at the center of a droplet of three-component (coal, water, petroleum) composite liquid fuel (CLF) were studied using a low-inertia thermoelectric converter and system of high-speed (up to 105 frames per second) video recording during the induction period at different heating intensity by the air flow with variable parameters: temperature of 670-870 K and motion velocity of 1-4 m/s. The studies were carried out for two groups of CLF compositions: fuel based on brown coal and coal cleaning rejects (filter cake). To assess the effect of liquid combustible component of CLF on characteristics of the ignition process, the corresponding composition of two-component coal-water fuel (CWF) was studied. The stages of inert heating of CLF and CWF droplets with characteristic size corresponding to radius of 0.75-1.5 mm, evaporation of moisture and liquid oil (for CLF), thermal decomposition of the organic part of coal, gas mixture ignition, and carbon burnout were identified. Regularities of changes in the temperature of CLF and CWF droplets at each of identified stages were identified for the cooccurrence of phase transitions and chemical reactions. Comparative analysis of the times of ignition delay and complete combustion of the droplets of examined fuel compositions was performed with varying droplet dimensions, temperatures, and oxidant flow velocity.

  16. Enhanced Endosomal Escape by Light-Fueled Liquid-Metal Transformer.

    PubMed

    Lu, Yue; Lin, Yiliang; Chen, Zhaowei; Hu, Quanyin; Liu, Yang; Yu, Shuangjiang; Gao, Wei; Dickey, Michael D; Gu, Zhen

    2017-04-12

    Effective endosomal escape remains as the "holy grail" for endocytosis-based intracellular drug delivery. To date, most of the endosomal escape strategies rely on small molecules, cationic polymers, or pore-forming proteins, which are often limited by the systemic toxicity and lack of specificity. We describe here a light-fueled liquid-metal transformer for effective endosomal escape-facilitated cargo delivery via a chemical-mechanical process. The nanoscale transformer can be prepared by a simple approach of sonicating a low-toxicity liquid-metal. When coated with graphene quantum dots (GQDs), the resulting nanospheres demonstrate the ability to absorb and convert photoenergy to drive the simultaneous phase separation and morphological transformation of the inner liquid-metal core. The morphological transformation from nanospheres to hollow nanorods with a remarkable change of aspect ratio can physically disrupt the endosomal membrane to promote endosomal escape of payloads. This metal-based nanotransformer equipped with GQDs provides a new strategy for facilitating effective endosomal escape to achieve spatiotemporally controlled drug delivery with enhanced efficacy.

  17. Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alleman, T. L.; Eudy, L.; Miyasato, M.

    A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.

  18. Diesel Fuel Property Effects on In-Cylinder Liquid Penetration Length: Impact on Smoke Emissions and Equivalence Ratio Estimates at the Flame Lift-Off Length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumitrescu, Cosmin E.; Polonowski, Christopher J.; Fisher, Brian T.

    Here in this study, elastic scattering was employed to investigate diesel fuel property effects on the liquid length (i.e., the maximum extent of in-cylinder liquid-phase fuel penetration) using select research fuels: an ultralow-sulfur #2 diesel emissions-certification fuel (CF) and four of the Coordinating Research Council (CRC) Fuels for Advanced Combustion Engines (FACE) diesel fuels (F1, F2, F6, and F8). The experiments were performed in a single-cylinder heavy-duty optical compression-ignition engine under time-varying, noncombusting conditions to minimize the influence of chemical heat release on the liquid-length measurement. The FACE diesel fuel and CF liquid lengths under combusting conditions were also predicted using Siebers’ scaling law and pressure data from previous work using the same fuels at similar in-cylinder conditions. The objective was to observe if the liquid length under noncombusting or combusting conditions provides additional insights into the relationships among the main fuel properties (i.e., cetane number (CN), the 90 vol % distillation recovery temperature (T90), and aromatic content) and smoke emissions. Results suggest that liquid-length values are best correlated to fuel distillation characteristics measured with ASTM D2887 (simulated distillation method). This work also studied the relationship between liquid length and lift-off length, H (i.e., distance from the fuel-injector orifice exit to the position where the standing premixed autoignition zone stabilizes during mixing-controlled combustion). Two possible cases were identified based on the relative magnitudes of liquid length under combusting conditions (Lc) and H. The low-CN fuels are representative of the first case, L c < H, in which the fuel is always fully vaporized at H. The high-CN fuels are mostly representative of the second case, L c ≥ H, in which there is still liquid fuel at H. Lc ≥ H would suggest higher smoke emissions, but there is not enough evidence

  19. Diesel Fuel Property Effects on In-Cylinder Liquid Penetration Length: Impact on Smoke Emissions and Equivalence Ratio Estimates at the Flame Lift-Off Length

    DOE PAGES

    Dumitrescu, Cosmin E.; Polonowski, Christopher J.; Fisher, Brian T.; ...

    2015-10-05

    Here in this study, elastic scattering was employed to investigate diesel fuel property effects on the liquid length (i.e., the maximum extent of in-cylinder liquid-phase fuel penetration) using select research fuels: an ultralow-sulfur #2 diesel emissions-certification fuel (CF) and four of the Coordinating Research Council (CRC) Fuels for Advanced Combustion Engines (FACE) diesel fuels (F1, F2, F6, and F8). The experiments were performed in a single-cylinder heavy-duty optical compression-ignition engine under time-varying, noncombusting conditions to minimize the influence of chemical heat release on the liquid-length measurement. The FACE diesel fuel and CF liquid lengths under combusting conditions were also predicted using Siebers’ scaling law and pressure data from previous work using the same fuels at similar in-cylinder conditions. The objective was to observe if the liquid length under noncombusting or combusting conditions provides additional insights into the relationships among the main fuel properties (i.e., cetane number (CN), the 90 vol % distillation recovery temperature (T90), and aromatic content) and smoke emissions. Results suggest that liquid-length values are best correlated to fuel distillation characteristics measured with ASTM D2887 (simulated distillation method). This work also studied the relationship between liquid length and lift-off length, H (i.e., distance from the fuel-injector orifice exit to the position where the standing premixed autoignition zone stabilizes during mixing-controlled combustion). Two possible cases were identified based on the relative magnitudes of liquid length under combusting conditions (Lc) and H. The low-CN fuels are representative of the first case, L c < H, in which the fuel is always fully vaporized at H. The high-CN fuels are mostly representative of the second case, L c ≥ H, in which there is still liquid fuel at H. Lc ≥ H would suggest higher smoke emissions, but there is not enough evidence

  20. Study on Conversion of Municipal Plastic Wastes into Liquid Fuel Compounds, Analysis of Crdi Engine Performance and Emission Characteristics

    NASA Astrophysics Data System (ADS)

    Divakar Shetty, A. S.; Kumar, R. Ravi; Kumarappa, S.; Antony, A. J.

    2016-09-01

    The rate of economic evolution is untenable unless we save or stops misusing the fossil fuels like coal, crude oil or fossil fuels. So we are in need of start count on the alternate or renewable energy sources. In this experimental analysis an attempt has been made to investigate the conversion of municipal plastic wastes like milk covers and water bottles are selected as feed stocks to get oil using pyrolysis method, the performance analysis on CRDI diesel engine and to assess emission characteristics like HC, CO, NOX and smoke by using blends of Diesel-Plastic liquid fuels. The plastic fuel is done with the pH test using pH meter after the purification process and brought to the normal by adding KOH and NaOH. Blends of 0 to 100% plastic liquid fuel-diesel mixture have been tested for performance and emission aspect as well. The experimental results shows the efficiently convert weight of municipal waste plastics into 65% of useful liquid hydrocarbon fuels without emitting much pollutants.

  1. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. L. Hawkes; J. E. O'Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expandsmore » the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of

  2. High quality fuel gas from biomass pyrolysis with calcium oxide.

    PubMed

    Zhao, Baofeng; Zhang, Xiaodong; Chen, Lei; Sun, Laizhi; Si, Hongyu; Chen, Guanyi

    2014-03-01

    The removal of CO2 and tar in fuel gas produced by biomass thermal conversion has aroused more attention due to their adverse effects on the subsequent fuel gas application. High quality fuel gas production from sawdust pyrolysis with CaO was studied in this paper. The results of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments indicate that the mass ratio of CaO to sawdust (Ca/S) remarkably affects the behavior of sawdust pyrolysis. On the basis of Py-GC/MS results, one system of a moving bed pyrolyzer coupled with a fluid bed combustor has been developed to produce high quality fuel gas. The lower heating value (LHV) of the fuel gas was above 16MJ/Nm(3) and the content of tar was under 50mg/Nm(3), which is suitable for gas turbine application to generate electricity and heat. Therefore, this technology may be a promising route to achieve high quality fuel gas for biomass utilization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Catalyst for converting synthesis gas to liquid motor fuels

    DOEpatents

    Coughlin, Peter K.

    1986-01-01

    The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  4. Pyrolysis of plastic waste for liquid fuel production as prospective energy resource

    NASA Astrophysics Data System (ADS)

    Sharuddin, S. D. A.; Abnisa, F.; Daud, W. M. A. W.; Aroua, M. K.

    2018-03-01

    The worldwide plastic generation expanded over years because of the variety applications of plastics in numerous sectors that caused the accumulation of plastic waste in the landfill. The growing of plastics demand definitely affected the petroleum resources availability as non-renewable fossil fuel since plastics were the petroleum-based material. A few options that have been considered for plastic waste management were recycling and energy recovery technique. Nevertheless, several obstacles of recycling technique such as the needs of sorting process that was labour intensive and water pollution that lessened the process sustainability. As a result, the plastic waste conversion into energy was developed through innovation advancement and extensive research. Since plastics were part of petroleum, the oil produced through the pyrolysis process was said to have high calorific value that could be used as an alternative fuel. This paper reviewed the thermal and catalytic degradation of plastics through pyrolysis process and the key factors that affected the final end product, for instance, oil, gaseous and char. Additionally, the liquid fuel properties and a discussion on several perspectives regarding the optimization of the liquid oil yield for every plastic were also included in this paper.

  5. Iowa Central Quality Fuel Testing Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heach, Don; Bidieman, Julaine

    2013-09-30

    The objective of this project is to finalize the creation of an independent quality fuel testing laboratory on the campus of Iowa Central Community College in Fort Dodge, Iowa that shall provide the exploding biofuels industry a timely and cost-effective centrally located laboratory to complete all state and federal fuel and related tests that are required. The recipient shall work with various state regulatory agencies, biofuel companies and state and national industry associations to ensure that training and testing needs of their members and American consumers are met. The recipient shall work with the Iowa Department of Ag and Landmore » Stewardship on the development of an Iowa Biofuel Quality Standard along with the Development of a standard that can be used throughout industry.« less

  6. Hydrocarbon group type determination in jet fuels by high performance liquid chromatography

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.

    1977-01-01

    Thirty-two jet and diesel fuel samples of varying chemical composition and physical properties were prepared from oil shale and coal syncrudes. Hydrocarbon types in these samples were determined by a fluorescent indicator adsorption analysis, and the results from three laboratories are presented and compared. Two methods of rapid high performance liquid chromatography were used to analyze some of the samples, and these results are also presented and compared. Two samples of petroleum-based Jet A fuel are similarly analyzed.

  7. Vacuum plasma spray applications on liquid fuel rocket engines

    NASA Technical Reports Server (NTRS)

    Mckechnie, T. N.; Zimmerman, F. R.; Bryant, M. A.

    1992-01-01

    The vacuum plasma spray process (VPS) has been developed by NASA and Rocketdyne for a variety of applications on liquid fuel rocket engines, including the Space Shuttle Main Engine. These applications encompass thermal barrier coatings which are thermal shock resistant for turbopump blades and nozzles; bond coatings for cryogenic titanium components; wear resistant coatings and materials; high conductivity copper, NaRloy-Z, combustion chamber liners, and structural nickel base material, Inconel 718, for nozzle and combustion chamber support jackets.

  8. Nafion(TM) Coats For Electrodes In Liquid-Feed Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R.; Surampudi, Subbarao; Halpert, Gerald; Vamos, Eugene; Frank, Harvey A.

    1995-01-01

    Coating or impregnation with commercially available material enables oxidation of organic liquid fuels. Nafion(TM) investigated for use in application because of known combination of desirable characteristics: It is perfluorinated, hydrophilic, proton-conducting ion-exchange polymer exhibiting relatively high thermal and electrochemical stability and not detrimental to kinetics of electrochemical processes. Available in solubilized form and used to apply stable coats to surfaces of electrodes.

  9. Studies on Methanol Crossover in Liquid-Feed Direct Methanol Pem Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.

    1995-01-01

    The performance of liquid feed direct methanol fuel cells using various types of Nafion membranes as the solid polymer electrolyte have been studied. The rate of fuel crossover and electrical performance has been measured for cells with Nafion membranes of various thicknesses and equivalent weights. The crossover rate is found to decrease with increasing thickness and applied current. The dependence of crossover rate on current density can be understood in terms of a simple linear diffusion model which suggests that the crossover rate can be influenced by the electrode structure in addition to the membrane. The studies suggest that Nafion EW 1500 is a very promising alternate to Nafion EW 1100 for direct methanol fuel cells.

  10. Advanced control of liquid water region in diffusion media of polymer electrolyte fuel cells through a dimensionless number

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Chen, Ken S.

    2016-05-01

    In the present work, a three-dimension (3-D) model of polymer electrolyte fuel cells (PEFCs) is employed to investigate the complex, non-isothermal, two-phase flow in the gas diffusion layer (GDL). Phase change in gas flow channels is explained, and a simplified approach accounting for phase change is incorporated into the fuel cell model. It is found that the liquid water contours in the GDL are similar along flow channels when the channels are subject to two-phase flow. Analysis is performed on a dimensionless parameter Da0 introduced in our previous paper [Y. Wang and K. S. Chen, Chemical Engineering Science 66 (2011) 3557-3567] and the parameter is further evaluated in a realistic fuel cell. We found that the GDL's liquid water (or liquid-free) region is determined by the Da0 number which lumps several parameters, including the thermal conductivity and operating temperature. By adjusting these factors, a liquid-free GDL zone can be created even though the channel stream is two-phase flow. Such a liquid-free zone is adjacent to the two-phase region, benefiting local water management, namely avoiding both severe flooding and dryness.

  11. Advanced control of liquid water region in diffusion media of polymer electrolyte fuel cells through a dimensionless number

    DOE PAGES

    Wang, Yun; Chen, Ken S.

    2016-03-21

    In the present study, a three-dimension (3-D) model of polymer electrolyte fuel cells (PEFCs) is employed to investigate the complex, non-isothermal, two-phase flow in the gas diffusion layer (GDL). Phase change in gas flow channels is explained, and a simplified approach accounting for phase change is incorporated into the fuel cell model. It is found that the liquid water contours in the GDL are similar along flow channels when the channels are subject to two-phase flow. Here, analysis is performed on a dimensionless parameter Da 0 introduced in our previous paper and the parameter is further evaluated in a realisticmore » fuel cell. We found that the GDL's liquid water (or liquid-free) region is determined by the Da 0 number which lumps several parameters, including the thermal conductivity and operating temperature. By adjusting these factors, a liquid-free GDL zone can be created even though the channel stream is two-phase flow. Such a liquid-free zone is adjacent to the two-phase region, benefiting local water management, namely avoiding both severe flooding and dryness.« less

  12. Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, Patrick; Leachman, Jacob

    2014-01-29

    Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms.more » A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate.« less

  13. Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Adam, Patrick; Leachman, Jacob

    2014-01-01

    Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate.

  14. Transverse liquid fuel jet breakup, burning, and ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hsi-shang

    1990-01-01

    An analytical/numerical study of the breakup, burning, and ignition of liquid fuels injected transversely into a hot air stream is conducted. The non-reacting liquid jet breakup location is determined by the local sonic point criterion first proposed by Schetz, et al. (1980). Two models, one employing analysis of an elliptical jet cross-section and the other employing a two-dimensional blunt body to represent the transverse jet, have been used for sonic point calculations. An auxiliary criterion based on surface tension stability is used as a separate means of determining the breakup location. For the reacting liquid jet problem, a diffusion flamemore » supported by a one-step chemical reaction within the gaseous boundary layer is solved along the ellipse surface in subsonic crossflow. Typical flame structures and concentration profiles have been calculated for various locations along the jet cross-section as a function of upstream Mach numbers. The integrated reaction rate along the jet cross-section is used to predict ignition position, which is found to be situated near the stagnation point. While a multi-step reaction is needed to represent the ignition process more accurately, the present calculation does yield reasonable predictions concerning ignition along a curved surface.« less

  15. Synthesis, Characterization and Application of 1-Butyl-3 Methylimidazolium Chloride as Green Material for Extractive Desulfurization of Liquid Fuel

    PubMed Central

    Dharaskar, Swapnil A.; Varma, Mahesh N.; Shende, Diwakar Z.; Yoo, Chang Kyoo; Wasewar, Kailas L.

    2013-01-01

    The possible application of imidazolium ionic liquids as energy-efficient green material for extractive deep desulfurization of liquid fuel has been investigated. 1-Butyl-3-methylimidazolium chloride [BMIM]Cl was synthesized by nucleophilic substitution reaction of n-methylimidazolium and 1-chlorobutane. Molecular structures of the ILs were confirmed by FTIR, 1H-NMR, and 13C-NMR. The thermal properties, conductivity, solubility, water content and viscosity analysis of [BMIM]Cl were carried out. The effects of reaction time, reaction temperature, sulfur compounds, and recycling of IL without regeneration on dibenzothiophene removal of liquid fuel were presented. In the extractive desulfurization process, the removal of dibenzothiophene in n-dodecane using [BMIM]Cl was 81% with mass ratio of 1 : 1, in 30 min at 30°C under the mild reaction conditions. Also, desulfurization of real fuels with IL and multistage extraction were studied. The results of this work might offer significant insights in the perceptive use of imidazoled ILs as energy-efficient green material for extractive deep desulfurization of liquid fuels as it can be reused without regeneration with considerable extraction efficiency. PMID:24307868

  16. New membranes based on ionic liquids for PEM fuel cells at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Ye, H.; Huang, J.; Xu, J. J.; Kodiweera, N. K. A. C.; Jayakody, J. R. P.; Greenbaum, S. G.

    Proton exchange membrane (PEM) fuel cells operating at elevated temperature, above 120 °C, will yield significant benefits but face big challenges for the development of suitable PEMs. The objectives of this research are to demonstrate the feasibility of the concept and realize [acid/ionic liquid/polymer] composite gel-type membranes as such PEMs. Novel membranes consisting of anhydrous proton solvent H 3PO 4, the protic ionic liquid PMIH 2PO 4, and polybenzimidazole (PBI) as a matrix have been prepared and characterized for PEM fuel cells intended for operation at elevated temperature (120-150 °C). Physical and electrochemical analyses have demonstrated promising characteristics of these H 3PO 4/PMIH 2PO 4/PBI membranes at elevated temperature. The proton transport mechanism in these new membranes has been investigated by Fourier transform infrared and nuclear magnetic resonance spectroscopic methods.

  17. A Continuous Liquid-Level Sensor for Fuel Tanks Based on Surface Plasmon Resonance

    PubMed Central

    Pozo, Antonio M.; Pérez-Ocón, Francisco; Rabaza, Ovidio

    2016-01-01

    A standard problem in large tanks at oil refineries and petrol stations is that water and fuel usually occupy the same tank. This is undesirable and causes problems such as corrosion in the tanks. Normally, the water level in tanks is unknown, with the problems that this entails. We propose herein a method based on surface plasmon resonance (SPR) to detect in real time the interfaces in a tank which can simultaneously contain water, gasoline (or diesel) and air. The plasmonic sensor is composed of a hemispherical glass prism, a magnesium fluoride layer, and a gold layer. We have optimized the structural parameters of the sensor from the theoretical modeling of the reflectance curve. The sensor detects water-fuel and fuel-air interfaces and measures the level of each liquid in real time. This sensor is recommended for inflammable liquids because inside the tank there are no electrical or electronic signals which could cause explosions. The sensor proposed has a sensitivity of between 1.2 and 3.5 RIU−1 and a resolution of between 5.7 × 10−4 and 16.5 × 10−4 RIU. PMID:27213388

  18. Liquid phase products and solid deposit formation from thermally stressed model jet fuels

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Bittker, D. A.

    1984-01-01

    The relationship between solid deposit formation and liquid degradation product concentration was studied for the high temperature (400 C) stressing of three hydrocarbon model fuels. A Jet Fuel Thermal Oxidation Tester was used to simulate actual engine fuel system conditions. The effects of fuel type, dissolved oxygen concentration, and hot surface contact time (reaction time) were studied. Effects of reaction time and removal of dissolved oxygen on deposit formation were found to be different for n-dodecane and for 2-ethylnaphthalene. When ten percent tetralin is added to n-dodecane to give a simpler model of an actual jet fuel, the tetralin inhibits both the deposit formation and the degradation of n-dodecane. For 2-ethylnaphthalene primary product analyses indicate a possible self-inhibition at long reaction times of the secondary reactions which form the deposit precursors. The mechanism of the primary breakdown of these fuels is suggested and the primary products which participate in these precursor-forming reactions are identified. Some implications of the results to the thermal degradation of real jet fuels are given.

  19. Microbial fuel cells for inexpensive continuous in-situ monitoring of groundwater quality.

    PubMed

    Velasquez-Orta, S B; Werner, D; Varia, J C; Mgana, S

    2017-06-15

    Online monitoring of groundwater quality in shallow wells to detect faecal or organic pollution could dramatically improve understanding of health risks in unplanned peri-urban settlements. Microbial fuel cells (MFC) are devices able to generate electricity from the organic matter content in faecal pollution making them suitable as biosensors. In this work, we evaluate the suitability of four microbial fuel cell systems placed in different regions of a groundwater well for the low-cost monitoring of a faecal pollution event. Concepts created include the use of a sediment/bulk liquid MFC (SED/BL), a sediment/sediment MFC (SED/SED), a bulk liquid/air MFC (BL/Air), and a bulk liquid/bulk liquid MFC (BL/BL). MFC electrodes assembly aimed to use inexpensive, durable, materials, which would produce a signal after a contamination event without external energy or chemical inputs. All MFC configurations were responsive to a contamination event, however SED/SED and BL/Air MFC concepts failed to deliver a reproducible output within the tested period of time. BL/BL MFC and SED/BL MFCs presented an increase in the average current after contamination from -0.75 ± 0.35 μA to -0.66 ± 0.41 μA, and 0.07 ± 0.2 mA to 0.11 ± 0.03 mA, respectively. Currents produced by the SED/BL MFC (SMFC) were considerably higher than for the BL/BL MFCs, making them more responsive, readable and graphically visible. A factorial design of experiments (DOE) was applied to evaluate which environmental and design factors had the greatest effect on current response in a contamination event. Within the ranges of variables tested, salinity, temperature and external resistance, only temperature presented a statistically significant effect (p = 0.045). This showed that the biosensor response would be sensitive to fluctuations in temperature but not to changes in salinity, or external resistances produced from placing electrodes at different distances within a groundwater well. Copyright

  20. Effects of mixing system and pilot fuel quality on diesel-biogas dual fuel engine performance.

    PubMed

    Bedoya, Iván Darío; Arrieta, Andrés Amell; Cadavid, Francisco Javier

    2009-12-01

    This paper describes results obtained from CI engine performance running on dual fuel mode at fixed engine speed and four loads, varying the mixing system and pilot fuel quality, associated with fuel composition and cetane number. The experiments were carried out on a power generation diesel engine at 1500 m above sea level, with simulated biogas (60% CH(4)-40% CO(2)) as primary fuel, and diesel and palm oil biodiesel as pilot fuels. Dual fuel engine performance using a naturally aspirated mixing system and diesel as pilot fuel was compared with engine performance attained with a supercharged mixing system and biodiesel as pilot fuel. For all loads evaluated, was possible to achieve full diesel substitution using biogas and biodiesel as power sources. Using the supercharged mixing system combined with biodiesel as pilot fuel, thermal efficiency and substitution of pilot fuel were increased, whereas methane and carbon monoxide emissions were reduced.

  1. Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions.

    PubMed

    Jia, Xiangqing; Qin, Chuan; Friedberger, Tobias; Guan, Zhibin; Huang, Zheng

    2016-06-01

    Polyethylene (PE) is the largest-volume synthetic polymer, and its chemical inertness makes its degradation by low-energy processes a challenging problem. We report a tandem catalytic cross alkane metathesis method for highly efficient degradation of polyethylenes under mild conditions. With the use of widely available, low-value, short alkanes (for example, petroleum ethers) as cross metathesis partners, different types of polyethylenes with various molecular weights undergo complete conversion into useful liquid fuels and waxes. This method shows excellent selectivity for linear alkane formation, and the degradation product distribution (liquid fuels versus waxes) can be controlled by the catalyst structure and reaction time. In addition, the catalysts are compatible with various polyolefin additives; therefore, common plastic wastes, such as postconsumer polyethylene bottles, bags, and films could be converted into valuable chemical feedstocks without any pretreatment.

  2. Conversion of olefins to liquid motor fuels

    DOEpatents

    Rabo, Jule A.; Coughlin, Peter K.

    1988-01-01

    Linear and/or branched claim C.sub.2 to C.sub.12 olefins are converted to hydrocarbon mixtures suitable for use as liquid motor fuels by contact with a catalyst capable of ensuring the production of desirable products with only a relatively minor amount of heavy products boiling beyond the diesel oil range. The catalyst having desirable stability during continuous production operations, comprises a steam stabilized zeolite Y catalyst of hydrophobic character, desirably in aluminum-extracted form. The olefins such as propylene, may be diluted with inerts, such as paraffins or with water, the latter serving to moderate the acidity of the catalyst, or to further moderate the activity of the aluminum-extracted catalyst, so as to increase the effective life of the catalyst.

  3. Liquid-phase penetration under unsteady in-cylinder conditions: Soy- and Cuphea-derived biodiesel fuels vs. conventional diesel

    USDA-ARS?s Scientific Manuscript database

    Accelerated dilution of engine-lubrication oil is a significant potential issue when fueling with biodiesel. Biodiesel produced from some feedstocks is less volatile than conventional diesel, which makes wall-impingement of liquid fuel more likely, a problem that could be exacerbated by advanced in...

  4. Alternative Fuels Data Center

    Science.gov Websites

    alternative fuels as propane, natural gas, liquefied hydrogen, liquid fuel derived from coal through the Fischer-Tropsch process, liquid hydrocarbons derived from biomass, and P-Series fuels. Biodiesel, ethanol ;hydrocarbons" includes liquids that contain oxygen, hydrogen, and carbon and as such "liquid

  5. Investigation of Critical Burning of Fuel Droplets. [of liquid rocket propellant

    NASA Technical Reports Server (NTRS)

    Chanin, S. P.; Shearer, A. J.; Faeth, G. M.

    1976-01-01

    An earlier analysis for the combustion response of a liquid monopropellant strand (hydrazine) was extended to consider individual droplets and sprays. While small drops gave low or negative response, large droplets provided response near unity at low frequencies, with the response declining at frequencies greater than the characteristic liquid phase frequency. Temperature gradients in the liquid phase resulted in response peaks greater than unity. A second response peak was found for large drops which corresponded to gas phase transient effects. Spray response was generally reduced from the response of the largest injected droplet, however, even a small percentage of large droplets can yield appreciable response. An apparatus was designed and fabricated to allow observation of bipropellant fuel spray combustion at elevated pressures. A locally homogeneous model was developed to describe this combustion process which allows for high pressure phenomena associated with the thermodynamic critical point.

  6. Catalysts for conversion of syngas to liquid motor fuels

    DOEpatents

    Rabo, Jule A.; Coughlin, Peter K.

    1987-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst composition capable of ensuring the production of only relatively minor amounts of heavy products boiling beyond the diesel oil range. The catalyst composition, having desirable stability during continuous production operation, employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component. The latter component is a steam-stabilized zeolite Y catalyst of hydrophobic character, desirably in acid-extracted form.

  7. Biomass gasification for liquid fuel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Najser, Jan, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz; Peer, Václav, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz; Vantuch, Martin

    2014-08-06

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification willmore » have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.« less

  8. Biomass gasification for liquid fuel production

    NASA Astrophysics Data System (ADS)

    Najser, Jan; Peer, Václav; Vantuch, Martin

    2014-08-01

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

  9. LIGHT NONAQUEOUS-PHASE LIQUID HYDROCARBON WEATHERING AT SOME JP-4 FUEL RELEASE SITES

    EPA Science Inventory

    A fuel weathering study was conducted for database entries to estimate natural light, nonaqueousphase
    liquid weathering and source-term reduction rates for use in natural attenuation models. A range of BTEX
    weathering rates from mobile LNAPL plumes at eight field sites with...

  10. X-ray and Electrochemical Impedance Spectroscopy Diagnostic Investigations of Liquid Water in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers

    NASA Astrophysics Data System (ADS)

    Antonacci, Patrick

    In this thesis, electrochemical impedance spectroscopy (EIS) and synchrotron x-ray radiography were utilized to characterize the impact of liquid water distributions in polymer electrolyte membrane fuel cell (PEMFC) gas diffusion layers (GDLs) on fuel cell performance. These diagnostic techniques were used to quantify the effects of liquid water visualized on equivalent resistances measured through EIS. The effects of varying the thickness of the microporous layer (MPL) of GDLs were studied using these diagnostic techniques. In a first study on the feasibility of this methodology, two fuel cell cases with a 100 microm-thick and a 150 microm-thick MPL were compared under constant current density operation. In a second study with 10, 30, 50, and 100 microm-thick MPLs, the liquid water in the cathode substrate was demonstrated to affect mass transport resistance, while the liquid water content in the anode (from back diffusion) affected membrane hydration, evidenced through ohmic resistance measurements.

  11. Performance of PEM Liquid-Feed Direct Methanol-Air Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.

    1995-01-01

    A direct methanol-air fuel cell operating at near atmospheric pressure, low-flow rate air, and at temperatures close to 60oC would tremendously enlarge the scope of potential applications. While earlier studies have reported performance with oxygen, the present study focuses on characterizing the performance of a PEM liquid feed direct methanol-air cell consisting of components developed in house. These cells employ Pt-Ru catalyst in the anode, Pt at the cathode and Nafion 117 as the PEM. The effect of pressure, flow rate of air and temperature on cell performance has been studied. With air, the performance level is as high as 0.437 V at 300 mA/cm2 (90oC, 20 psig, and excess air flow) has been attained. Even more significant is the performance level at 60oC, 1 atm and low flow rates of air (3-5 times stoichiometric), which is 0.4 V at 150 mA/cm2. Individual electrode potentials for the methanol and air electrode have been separated and analyzed. Fuel crossover rates and the impact of fuel crossover on the performance of the air electrode have also been measured. The study identifies issues specific to the methanol-air fuel cell and provides a basis for improvement strategies.

  12. Enhanced catalyst for converting synthesis gas to liquid motor fuels

    DOEpatents

    Coughlin, Peter K.

    1986-01-01

    The conversion of synthesis gas to liquid molar fuels by means of a cobalt Fischer-Tropsch catalyst composition is enhanced by the addition of molybdenum, tungsten or a combination thereof as an additional component of said composition. The presence of the additive component increases the olefinic content of the hydrocarbon products produced. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  13. Fuel Injector With Shear Atomizer

    NASA Technical Reports Server (NTRS)

    Beal, George W.; Mills, Virgil L.; Smith, Durward B., II; Beacom, William F.

    1995-01-01

    Atomizer for injecting liquid fuel into combustion chamber uses impact and swirl to break incoming stream of fuel into small, more combustible droplets. Slanted holes direct flow of liquid fuel to stepped cylindrical wall. Impact on wall atomizes liquid. Air flowing past vanes entrains droplets of liquid in swirling flow. Fuel injected at pressure lower than customarily needed.

  14. Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions

    PubMed Central

    Jia, Xiangqing; Qin, Chuan; Friedberger, Tobias; Guan, Zhibin; Huang, Zheng

    2016-01-01

    Polyethylene (PE) is the largest-volume synthetic polymer, and its chemical inertness makes its degradation by low-energy processes a challenging problem. We report a tandem catalytic cross alkane metathesis method for highly efficient degradation of polyethylenes under mild conditions. With the use of widely available, low-value, short alkanes (for example, petroleum ethers) as cross metathesis partners, different types of polyethylenes with various molecular weights undergo complete conversion into useful liquid fuels and waxes. This method shows excellent selectivity for linear alkane formation, and the degradation product distribution (liquid fuels versus waxes) can be controlled by the catalyst structure and reaction time. In addition, the catalysts are compatible with various polyolefin additives; therefore, common plastic wastes, such as postconsumer polyethylene bottles, bags, and films could be converted into valuable chemical feedstocks without any pretreatment. PMID:27386559

  15. Conversion of wood residues to diesel fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuester, J.L.

    1981-01-01

    The basic approach is indirect liquefaction, i.e., thermal gasification followed by catalytic liquefaction. The indirect approach results in separation of the oxygen in the biomass feedstock, i.e., oxygenated compounds do not appear in the liquid hydrocarbon fuel product. The general conversion scheme is shown. The process is capable of accepting a wide variety of feedstocks. Potential products include medium quality gas, normal propanol, paraffinic fuel and/or high octane gasoline. A flow diagram of the continuous laboratory unit is shown. A fluidized bed pyrolysis system is used for gasification. Capacity is about 10 lbs/h of feedstock. The pyrolyzer can be fluidizedmore » with recycle pyrolysis gas, steam or recycle liquefaction system off gas or some combination thereof. Tars are removed in a wet scrubber. Unseparated pyrolysis gases are utilized as feed to a modified Fischer-Tropsch reactor. The liquid condensate from the reactor consists of a normal propanol-water phase and a paraffinic hydrocarbon phase. The reactor can be operated to optimize for either product. If a high octane gasoline is desired, the paraffinic fuel is passed through a conventional catalytic reformer. The normal propanol could be used as a fuel extender if blended with the hydrocarbon fuel products. Off gases from the downstream reactors are of high quality due to the accumulation of low molecular weight paraffins.« less

  16. NMR Express-analyser for quality monitoring of motor fuel

    NASA Astrophysics Data System (ADS)

    Protasov, E. A.; Protasov, D. E.

    2016-09-01

    A method for the rapid analysis of motor fuel quality was developed by artificial increase of the octane number through dissolving ferrocene in a low-octane gasoline (C10H10Fe). Measurements of the spin-lattice relaxation time of nuclear magnetic resonance is used for determination of ferrocene presence in standardized and real fuel from gas stations. The results of measurements of the relaxation characteristics among certain grades of motor fuel with dissolving ferrocene therein are presented.

  17. Design and Testing of a Liquid Nitrous Oxide and Ethanol Fueled Rocket Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youngblood, Stewart

    A small-scale, bi-propellant, liquid fueled rocket engine and supporting test infrastructure were designed and constructed at the Energetic Materials Research and Testing Center (EMRTC). This facility was used to evaluate liquid nitrous oxide and ethanol as potential rocket propellants. Thrust and pressure measurements along with high-speed digital imaging of the rocket exhaust plume were made. This experimental data was used for validation of a computational model developed of the rocket engine tested. The developed computational model was utilized to analyze rocket engine performance across a range of operating pressures, fuel-oxidizer mixture ratios, and outlet nozzle configurations. A comparative study ofmore » the modeling of a liquid rocket engine was performed using NASA CEA and Cantera, an opensource equilibrium code capable of being interfaced with MATLAB. One goal of this modeling was to demonstrate the ability of Cantera to accurately model the basic chemical equilibrium, thermodynamics, and transport properties for varied fuel and oxidizer operating conditions. Once validated for basic equilibrium, an expanded MATLAB code, referencing Cantera, was advanced beyond CEAs capabilities to predict rocket engine performance as a function of supplied propellant flow rate and rocket engine nozzle dimensions. Cantera was found to comparable favorably to CEA for making equilibrium calculations, supporting its use as an alternative to CEA. The developed rocket engine performs as predicted, demonstrating the developedMATLAB rocket engine model was successful in predicting real world rocket engine performance. Finally, nitrous oxide and ethanol were shown to perform well as rocket propellants, with specific impulses experimentally recorded in the range of 250 to 260 seconds.« less

  18. Combustion of liquid fuels in a flowing combustion gas environment at high pressures

    NASA Technical Reports Server (NTRS)

    Canada, G. S.; Faeth, G. M.

    1975-01-01

    The combustion of fuel droplets in gases which simulate combustion chamber conditions was considered both experimentally and theoretically. The fuel droplets were simulated by porous spheres and allowed to gasify in combustion gases produced by a burner. Tests were conducted for pressures of 1-40 atm, temperatures of 600-1500 K, oxygen concentrations of 0-13% (molar) and approach Reynolds numbers of 40-680. The fuels considered in the tests included methanol, ethanol, propanol-1, n-pentane, n-heptane and n-decane. Measurements were made of both the rate of gasification of the droplet and the liquid surface temperature. Measurements were compared with theory, involving various models of gas phase transport properties with a multiplicative correction for the effect of forced convection.

  19. Simulation of a 250 kW diesel fuel processor/PEM fuel cell system

    NASA Astrophysics Data System (ADS)

    Amphlett, J. C.; Mann, R. F.; Peppley, B. A.; Roberge, P. R.; Rodrigues, A.; Salvador, J. P.

    Polymer-electrolyte membrane (PEM) fuel cell systems offer a potential power source for utility and mobile applications. Practical fuel cell systems use fuel processors for the production of hydrogen-rich gas. Liquid fuels, such as diesel or other related fuels, are attractive options as feeds to a fuel processor. The generation of hydrogen gas for fuel cells, in most cases, becomes the crucial design issue with respect to weight and volume in these applications. Furthermore, these systems will require a gas clean-up system to insure that the fuel quality meets the demands of the cell anode. The endothermic nature of the reformer will have a significant affect on the overall system efficiency. The gas clean-up system may also significantly effect the overall heat balance. To optimize the performance of this integrated system, therefore, waste heat must be used effectively. Previously, we have concentrated on catalytic methanol-steam reforming. A model of a methanol steam reformer has been previously developed and has been used as the basis for a new, higher temperature model for liquid hydrocarbon fuels. Similarly, our fuel cell evaluation program previously led to the development of a steady-state electrochemical fuel cell model (SSEM). The hydrocarbon fuel processor model and the SSEM have now been incorporated in the development of a process simulation of a 250 kW diesel-fueled reformer/fuel cell system using a process simulator. The performance of this system has been investigated for a variety of operating conditions and a preliminary assessment of thermal integration issues has been carried out. This study demonstrates the application of a process simulation model as a design analysis tool for the development of a 250 kW fuel cell system.

  20. Ionic liquids and ionic liquid acids with high temperature stability for fuel cell and other high temperature applications, method of making and cell employing same

    DOEpatents

    Angell, C Austen [Mesa, AZ; Xu, Wu [Broadview Heights, OH; Belieres, Jean-Philippe [Chandler, AZ; Yoshizawa, Masahiro [Tokyo, JP

    2011-01-11

    Disclosed are developments in high temperature fuel cells including ionic liquids with high temperature stability and the storage of inorganic acids as di-anion salts of low volatility. The formation of ionically conducting liquids of this type having conductivities of unprecedented magnitude for non-aqueous systems is described. The stability of the di-anion configuration is shown to play a role in the high performance of the non-corrosive proton-transfer ionic liquids as high temperature fuel cell electrolytes. Performance of simple H.sub.2(g) electrolyte/O.sub.2(g) fuel cells with the new electrolytes is described. Superior performance both at ambient temperature and temperatures up to and above 200.degree. C. are achieved. Both neutral proton transfer salts and the acid salts with HSO.sup.-.sub.4 anions, give good results, the bisulphate case being particularly good at low temperatures and very high temperatures. The performance of all electrolytes is improved by the addition of a small amount of involatile base of pK.sub.a value intermediate between those of the acid and base that make the bulk electrolyte. The preferred case is the imidazole-doped ethylammonium hydrogensulfate which yields behavior superior in all respects to that of the industry standard phosphoric acid electrolyte.

  1. Amorphizing of Cu Nanoparticles toward Highly Efficient and Robust Electrocatalyst for CO2 Reduction to Liquid Fuels with High Faradaic Efficiencies.

    PubMed

    Duan, Yan-Xin; Meng, Fan-Lu; Liu, Kai-Hua; Yi, Sha-Sha; Li, Si-Jia; Yan, Jun-Min; Jiang, Qing

    2018-04-01

    Conversion of carbon dioxide (CO 2 ) into valuable chemicals, especially liquid fuels, through electrochemical reduction driven by sustainable energy sources, is a promising way to get rid of dependence on fossil fuels, wherein developing of highly efficient catalyst is still of paramount importance. In this study, as a proof-of-concept experiment, first a facile while very effective protocol is proposed to synthesize amorphous Cu NPs. Unexpectedly, superior electrochemical performances, including high catalytic activity and selectivity of CO 2 reduction to liquid fuels are achieved, that is, a total Faradaic efficiency of liquid fuels can sum up to the maximum value of 59% at -1.4 V, with formic acid (HCOOH) and ethanol (C 2 H 6 O) account for 37% and 22%, respectively, as well as a desirable long-term stability even up to 12 h. More importantly, this work opens a new avenue for improved electroreduction of CO 2 based on amorphous metal catalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Design, quality, and quality assurance of solid recovered fuels for the substitution of fossil feedstock in the cement industry.

    PubMed

    Sarc, R; Lorber, K E; Pomberger, R; Rogetzer, M; Sipple, E M

    2014-07-01

    This paper describes the requirements for the production, quality, and quality assurance of solid recovered fuels (SRF) that are increasingly used in the cement industry. Different aspects have to be considered before using SRF as an alternative fuel. Here, a study on the quality of SRF used in the cement industry is presented. This overview is completed by an investigation of type and properties of input materials used at waste splitting and SRF production plants in Austria. As a simplified classification, SRF can be divided into two classes: a fine, high-calorific SRF for the main burner, or coarser SRF material with low calorific value for secondary firing systems, such as precombustion chambers or similar systems. In the present study, SRFs coming from various sources that fall under these two different waste fuel classes are discussed. Both SRFs are actually fired in the grey clinker kiln of the Holcim (Slovensko) plant in Rohožnik (Slovakia). The fine premium-quality material is used in the main burner and the coarse regular-quality material is fed to a FLS Hotdisc combustion device. In general, the alternative fuels are used instead of their substituted fossil fuels. For this, chemical compositions and other properties of SRF were compared to hard coal as one of the most common conventional fuels in Europe. This approach allows to compare the heavy metal input from traditional and alternative fuels and to comment on the legal requirements on SRF that, at the moment, are under development in Europe. © The Author(s) 2014.

  3. Fuels planning: science synthesis and integration; social issues fact sheet 13: Strategies for managing fuels and visual quality

    Treesearch

    Christine Esposito

    2006-01-01

    The public's acceptance of forest management practices, including fuels reduction, is heavily based on how forests look. Fuels managers can improve their chances of success by considering aesthetics when making management decisions. This fact sheet reviews a three-part general strategy for managing fuels and visual quality: planning, implementation, and monitoring...

  4. Impact of fuel quality regulation and speed reductions on shipping emissions: implications for climate and air quality.

    PubMed

    Lack, Daniel A; Cappa, Christopher D; Langridge, Justin; Bahreini, Roya; Buffaloe, Gina; Brock, Charles; Cerully, Kate; Coffman, Derek; Hayden, Katherine; Holloway, John; Lerner, Brian; Massoli, Paola; Li, Shao-Meng; McLaren, Robert; Middlebrook, Ann M; Moore, Richard; Nenes, Athanasios; Nuaaman, Ibraheem; Onasch, Timothy B; Peischl, Jeff; Perring, Anne; Quinn, Patricia K; Ryerson, Tom; Schwartz, Joshua P; Spackman, Ryan; Wofsy, Steven C; Worsnop, Doug; Xiang, Bin; Williams, Eric

    2011-10-15

    Atmospheric emissions of gas and particulate matter from a large ocean-going container vessel were sampled as it slowed and switched from high-sulfur to low-sulfur fuel as it transited into regulated coastal waters of California. Reduction in emission factors (EFs) of sulfur dioxide (SO₂), particulate matter, particulate sulfate and cloud condensation nuclei were substantial (≥ 90%). EFs for particulate organic matter decreased by 70%. Black carbon (BC) EFs were reduced by 41%. When the measured emission reductions, brought about by compliance with the California fuel quality regulation and participation in the vessel speed reduction (VSR) program, are placed in a broader context, warming from reductions in the indirect effect of SO₄ would dominate any radiative changes due to the emissions changes. Within regulated waters absolute emission reductions exceed 88% for almost all measured gas and particle phase species. The analysis presented provides direct estimations of the emissions reductions that can be realized by California fuel quality regulation and VSR program, in addition to providing new information relevant to potential health and climate impact of reduced fuel sulfur content, fuel quality and vessel speed reductions.

  5. Microorganism mediated liquid fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troiano, Richard

    Herein disclosed is a method for producing liquid hydrocarbon product, the method comprising disintegrating a hydrocarbon source; pretreating the disintegrated hydrocarbon source; solubilizing the disintegrated hydrocarbon source to form a slurry comprising a reactant molecule of the hydrocarbon source; admixing a biochemical liquor into the slurry, wherein the biochemical liquor comprises at least one conversion enzyme configured to facilitate bond selective photo-fragmentation of said reactant molecule of the hydrocarbon source, to form liquid hydrocarbons via enzyme assisted bond selective photo-fragmentation, wherein said conversion enzyme comprises reactive sites configured to restrict said reactant molecule such that photo-fragmentation favorably targets a preselectedmore » internal bond of said reactant molecule; separating the liquid hydrocarbons from the slurry, wherein contaminants remain in the slurry; and enriching the liquid hydrocarbons to form a liquid hydrocarbon product. Various aspects of such method/process are also discussed.« less

  6. Interactions between liquid-water and gas-diffusion layers in polymer-electrolyte fuel cells

    DOE PAGES

    Das, Prodip K.; Santamaria, Anthony D.; Weber, Adam Z.

    2015-06-11

    Over the past few decades, a significant amount of research on polymer-electrolyte fuel cells (PEFCs) has been conducted to improve performance and durability while reducing the cost of fuel cell systems. However, the cost associated with the platinum (Pt) catalyst remains a barrier to their commercialization and PEFC durability standards have yet to be established. An effective path toward reducing PEFC cost is making the catalyst layers (CLs) thinner thus reducing expensive Pt content. The limit of thin CLs is high gas-transport resistance and the performance of these CLs is sensitive to the operating temperature due to their inherent lowmore » water uptake capacity, which results in higher sensitivity to liquid-water flooding and reduced durability. Therefore, reducing PEFC's cost by decreasing Pt content and improving PEFC's performance and durability by managing liquid-water are still challenging and open topics of research. An overlooked aspect nowadays of PEFC water management is the gas-diffusion layer (GDL). While it is known that GDL's properties can impact performance, typically it is not seen as a critical component. In this work, we present data showing the importance of GDLs in terms of water removal and management while also exploring the interactions between liquid-water and GDL surfaces. The critical interface of GDL and gas-flow-channel in the presence of liquid-water was examined through systematic studies of adhesion forces as a function of water-injection rate for various GDLs of varying thickness. GDL properties (breakthrough pressure and adhesion force) were measured experimentally under a host of test conditions. Specifically, the effects of GDL hydrophobic (PTFE) content, thickness, and water-injection rate were examined to identify trends that may be beneficial to the design of liquid-water management strategies and next-generation GDL materials for PEFCs.« less

  7. Catalyst and process for converting synthesis gas to liquid motor fuels

    DOEpatents

    Coughlin, Peter K.

    1987-01-01

    The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  8. Characterization of Emissions from Liquid Fuel and Propane Open Burns.

    PubMed

    Aurell, Johanna; Hubble, David; Gullett, Brian K; Holder, Amara; Washburn, Ephraim; Tabor, Dennis

    2017-11-07

    The effect of accidental fires are simulated to understand the response of items such as vehicles, fuel tanks, and military ordnance and to remediate the effects through re-design of the items or changes in operational procedures. The comparative combustion emissions of using jet propellant (JP-5) liquid fuel pools or a propane manifold grid to simulate the effects of accidental fires was investigated. A helium-filled tethered aerostat was used to maneuver an instrument package into the open fire plumes to measure CO, CO 2 , fine particulate matter (PM 2.5 ), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and elemental/organic/total carbon (EC/OC/TC). The results showed that all emissions except CO 2 were significantly higher from JP-5 burns than from propane. The major portion of the PM mass from fires of both fuels was less than 1 μm in diameter and differed in carbon content. The PM 2.5 emission factor from JP-5 burns (129 ± 23 g/kg Fuel c ) was approximately 150 times higher than the PM 2.5 emission factor from propane burns (0.89 ± 0.21 g/kg Fuel c ). The PAH emissions as well as some VOCs were more than one hundred times higher for the JP-5 burns than the propane burns. Using the propane test method to study flammability responses, the environmental impact of PM 2.5 , PAHs, and VOCs would be reduced by 2300, 700, and 100 times per test, respectively.

  9. Group-type hydrocarbon standards for high-performance liquid chromatographic analysis of middistillate fuels

    NASA Technical Reports Server (NTRS)

    Otterson, D. A.; Seng, G. T.

    1984-01-01

    A new high-performance liquid chromatographic (HPLC) method for group-type analysis of middistillate fuels is described. It uses a refractive index detector and standards that are prepared by reacting a portion of the fuel sample with sulfuric acid. A complete analysis of a middistillate fuel for saturates and aromatics (including the preparation of the standard) requires about 15 min if standards for several fuels are prepared simultaneously. From model fuel studies, the method was found to be accurate to within 0.4 vol% saturates or aromatics, and provides a precision of + or - 0.4 vol%. Olefin determinations require an additional 15 min of analysis time. However, this determination is needed only for those fuels displaying a significant olefin response at 200 nm (obtained routinely during the saturated/aromatics analysis procedure). The olefin determination uses the responses of the olefins and the corresponding saturates, as well as the average value of their refractive index sensitivity ratios (1.1). Studied indicated that, although the relative error in the olefins result could reach 10 percent by using this average sensitivity ratio, it was 5 percent for the fuels used in this study. Olefin concentrations as low as 0.1 vol% have been determined using this method.

  10. A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Rakesh; Delgass, W. N.; Ribeiro, F.

    2013-08-31

    The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H 2Bioil) using supplementary hydrogen (H 2) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H 2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitivemore » for the cases when supplementary H 2 is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H 2Bioilprocess for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H 2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass feedstocks

  11. Hydrocarbon group type determination in jet fuels by high performance liquid chromatography

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.

    1977-01-01

    Results are given for the analysis of some jet and diesel fuel samples which were prepared from oil shale and coal syncrudes. Thirty-two samples of varying chemical composition and physical properties were obtained. Hydrocarbon types in these samples were determined by fluorescent indicator adsorption (FIA) analysis, and the results from three laboratories are presented and compared. Recently, rapid high performance liquid chromatography (HPLC) methods have been proposed for hydrocarbon group type analysis, with some suggestion for their use as a replacement of the FIA technique. Two of these methods were used to analyze some of the samples, and these results are also presented and compared. Two samples of petroleum-based Jet A fuel are similarly analyzed.

  12. 146. FUEL LINE TO SKID 2 (FUEL LOADER) IN FUEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    146. FUEL LINE TO SKID 2 (FUEL LOADER) IN FUEL CONTROL ROOM (215), LSB (BLDG. 751). LIQUID NITROGEN/HELIUM HEAT EXCHANGER ON RIGHT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  13. Renewing Liquid Fueled Molten Salt Reactor Research and Development

    NASA Astrophysics Data System (ADS)

    Towell, Rusty; NEXT Lab Team

    2016-09-01

    Globally there is a desperate need for affordable, safe, and clean energy on demand. More than anything else, this would raise the living conditions of those in poverty around the world. An advanced reactor that utilizes liquid fuel and molten salts is capable of meeting these needs. Although, this technology was demonstrated in the Molten Salt Reactor Experiment (MSRE) at ORNL in the 60's, little progress has been made since the program was cancelled over 40 years ago. A new research effort has been initiated to advance the technical readiness level of key reactor components. This presentation will explain the motivation and initial steps for this new research initiative.

  14. Alternative Fuels Data Center

    Science.gov Websites

    with gasoline; natural gas and liquid fuels domestically produced from natural gas; propane; coal -derived liquid fuels; hydrogen; electricity; pure biodiesel (B100); fuels, other than alcohol, derived

  15. A Stirling engine for use with lower quality fuels

    NASA Astrophysics Data System (ADS)

    Paul, Christopher J.

    There is increasing interest in using renewable fuels from biomass or alternative fuels such as municipal waste to reduce the need for fossil based fuels. Due to the lower heating values and higher levels of impurities, small scale electricity generation is more problematic. Currently, there are not many technologically mature options for small scale electricity generation using lower quality fuels. Even though there are few manufacturers of Stirling engines, the history of their development for two centuries offers significant guidance in developing a viable small scale generator set using lower quality fuels. The history, development, and modeling of Stirling engines were reviewed to identify possible model and engine configurations. A Stirling engine model based on the finite volume, ideal adiabatic model was developed. Flow dissipation losses are shown to need correcting as they increase significantly at low mean engine pressure and high engine speed. The complete engine including external components was developed. A simple yet effective method of evaluating the external heat transfer to the Stirling engine was created that can be used with any second order Stirling engine model. A derivative of the General Motors Ground Power Unit 3 was designed. By significantly increasing heater, cooler and regenerator size at the expense of increased dead volume, and adding a combustion gas recirculation, a generator set with good efficiency was designed.

  16. Hydrogen-methane fuel control systems for turbojet engines

    NASA Technical Reports Server (NTRS)

    Goldsmith, J. S.; Bennett, G. W.

    1973-01-01

    Design, development, and test of a fuel conditioning and control system utilizing liquid methane (natural gas) and liquid hydrogen fuels for operation of a J85 jet engine were performed. The experimental program evaluated the stability and response of an engine fuel control employing liquid pumping of cryogenic fuels, gasification of the fuels at supercritical pressure, and gaseous metering and control. Acceptably stable and responsive control of the engine was demonstrated throughout the sea level power range for liquid gas fuel and up to 88 percent engine speed using liquid hydrogen fuel.

  17. A preliminary assessment of the feasibility of deriving liquid and gaseous fuels from grown and waste organics

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Reynolds, T. W.; Hsu, Y. Y.

    1976-01-01

    The anticipated depletion of our resources of natural gas and petroleum in a few decades has caused a search for renewable sources of fuel. Among the possibilities is the chemical conversion of waste and grown organic matter into gaseous or liquid fuels. The overall feasibility of such a system is considered from the technical, economic, and social viewpoints. Although there are a number of difficult problems to overcome, this preliminary study indicates that this option could provide between 4 and 10 percent of the U.S. energy needs. Estimated costs of fuels derived from grown organic material are appreciably higher than today's market price for fossil fuel. The cost of fuel derived from waste organics is competitive with fossil fuel prices. Economic and social reasons will prohibit the allocation of good food producing land to fuel crop production.

  18. Photoregenerative I⁻/I₃⁻ couple as a liquid cathode for proton exchange membrane fuel cell.

    PubMed

    Liu, Zhen; Wang, Yadong; Ai, Xinping; Tu, Wenmao; Pan, Mu

    2014-10-28

    A photoassisted oxygen reduction reaction (ORR) through I(-)/I3(-) redox couple was investigated for proton exchange membrane (PEM) fuel cell cathode reaction. The I(-)/I3(-)-based liquid cathode was used to replace conventional oxygen cathode, and its discharge product I(-) was regenerated to I3(-) by photocatalytic oxidation with the participation of oxygen. This new and innovative approach may provide a strategy to eliminate the usage of challenging ORR electrocatalysts, resulting in an avenue for developing low-cost and high-efficiency PEM fuel cells.

  19. Air quality effects of alternative fuels : final report

    DOT National Transportation Integrated Search

    1997-11-01

    This report presents the results of Phase 1 of a comparison of the potential air quality effects of alternative transportation fuels. The focus is on reformulated gasoline (RFG), methanol blended with 15% gasoline (M85), and compressed natural gas (C...

  20. Liquid Fuels: Pyrolytic Degradation and Fire Spread Behavior as Influenced by Buoyancy

    NASA Technical Reports Server (NTRS)

    Yeboah, Yaw D.; Malbrue, Courtney; Savage, Melane; Liao, Bo; Ross, Howard D. (Technical Monitor)

    2001-01-01

    This work is being conducted by the Combustion and Emission Control Lab in the Engineering Department at Clark Atlanta University under NASA Grant No. NCC3-707. The work aims at providing data to supplement the ongoing NASA research activities on fire spread across liquid pools by providing flow visualization and velocity measurements especially in the gas phase and gas-liquid interface. The fabrication, installation, and testing were completed during this reporting period. The system shakedown and detailed quantitative measurements with High Speed Video and Particle Image Velocimetry (PIV) systems using butanol as fuel were performed. New and interesting results, not previously reported in the literature, were obtained from the experiments using a modified NASA tray and butanol as fuel. Three distinct flame spread regimes, as previously reported, were observed. These were the pseudo-uniform regime below 20 C, the pulsating regime between 22 and 30 C and the uniform regime above about 31 C. In the pulsating regime the jump velocity appeared to be independent of the pool temperature. However, the retreat velocity between jumps appeared to depend on the initial pool temperature. The flame retreated before surging forwards with increasing brightness. Previous literature reported this phenomenon only under microgravity conditions. However, we observed such behavior in our normal gravity experiments. Mini-pulsations behind the flame front were also observed. Two or three of these pulsations were observed within a single flame front pulsating time period. The velocity vector maps of the gas and liquid phases ahead, during, and behind the flame front were characterized. At least one recirculation cell was observed right below the flame front.The size of the liquid phase vortex (recirculation cell) below the flame front appeared to decrease with increasing initial pool temperature. The experiments also showed how multiple vortices developed in the liquid phase. A large

  1. CORROSION STUDIES FOR A FUSED SALT-LIQUID METAL EXTRACTION PROCESS FOR THE LIQUID METAL FUEL REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susskind, H.; Hill, F.B.; Green, L.

    1960-06-30

    Corrosion screening tests were carried out on potential materials of construction for use in a fused salt-liquid metal extraction process plant. The corrodents of interest were NaCl--KCl-- MgCl/sub 2/ eutectic, LiCl--KCl eutectic, Bi-- U fuel, and BiCl/sub 3/, either separately or in various combinations. Screening tests to determine the resistance of a wide range of commercial alloys to the corrodents were performed in static and tilting-furnace capsules. Some ceramic materials were tested in static capsules. Largerscale tests of metallic materials were conducted in thermal convection loops and in a forced circulation loop. Some of the tests were conducted isothermally atmore » 500 deg C, and others were performed under 40 to 50 deg C temperature differences at roughly the same teinperature level. On the basis of metallographic examination of exposed test tabs and chemical analyses of corrodents, it was found that the binary and ternary eutectics by themselves produced little attack on any of the materials tested. A wide variety of materials including 1020 mild steel, 2 1/4 Cr--1 Mo alloy steel, types 304 (ELC), 310, 316, 347, 430, and 446 stainless steel, 16-1 Croloy, Inconel, Hastelloy C, Inor-8, Mo, and Ta is, therefore, available for further study. Corrosion by the ternary salt-fuel system was characteristic of that produced by the fuel alone. Alloys such as 1020 mild steel, and 1 1/4 Cr--1/ 2 Mo, and 2 1/4 Cr--1 Mo alloy steel, which are resistant to fuel, would be likely choices at present for container materials. BiCl/sub 3/ produced extensive attack on ternary salt-fuel containers when the fuel contained insufficient concentrations of oxidizable solutes. Au and Al/sub 2/O/sub 3/ were the only materials not attacked by BiCl/sub 3/ in ternary salt alone. (auth)« less

  2. Alternate aircraft fuels prospects and operational implications

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1977-01-01

    The paper discusses NASA studies of the potentials of coal-derived aviation fuels, specifically synthetic aviation kerosene, liquid methane, and liquid hydrogen. Topics include areas of fuel production, air terminal requirements for aircraft fueling (for liquid hydrogen only), and the performance characteristics of aircraft designed to utilize alternate fuels. Energy requirements associated with the production of each of the three selected fuels are determined, and fuel prices are estimated. Subsonic commercial air transports using liquid hydrogen fuel have been analyzed, and their performance and the performance of aircraft which use commercial aviation kerosene are compared. Environmental and safety issues are considered.

  3. Microfluidic fuel cell systems

    NASA Astrophysics Data System (ADS)

    Ho, Bernard; Kjeang, Erik

    2011-06-01

    A microfluidic fuel cell is a microfabricated device that produces electrical power through electrochemical reactions involving a fuel and an oxidant. Microfluidic fuel cell systems exploit co-laminar flow on the microscale to separate the fuel and oxidant species, in contrast to conventional fuel cells employing an ion exchange membrane for this function. Since 2002 when the first microfluidic fuel cell was invented, many different fuels, oxidants, and architectures have been investigated conceptually and experimentally. In this mini-review article, recent advancements in the field of microfluidic fuel cell systems are documented, with particular emphasis on design, operation, and performance. The present microfluidic fuel cell systems are categorized by the fluidic phases of the fuel and oxidant streams, featuring gaseous/gaseous, liquid/gaseous, and liquid/liquid systems. The typical cell configurations and recent contributions in each category are analyzed. Key research challenges and opportunities are highlighted and recommendations for further work are provided.

  4. Transverse liquid fuel jet breakup, burning, and ignition. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Li, Hsi-Shang

    1990-01-01

    An analytical study of the breakup, burning, and ignition of liquid fuels injected transversely into a hot air stream is conducted. The non-reacting liquid jet breakup location is determined by the local sonic point criterion. Two models, one employing analysis of an elliptical jet cross-section and the other employing a two-dimensional blunt body to represent the transverse jet, were used for sonic point calculations. An auxiliary criterion based on surface tension stability is used as a separate means of determining the breakup location. For the reacting liquid jet problem, a diffusion flame supported by a one-step chemical reaction within the gaseous boundary layer is solved along the ellipse surface in subsonic cross flow. Typical flame structures and concentration profiles were calculated for various locations along the jet cross-section as a function of upstream Mach numbers. The integration reaction rate along the jet cross-section is used to predict ignition position, which is found to be situated near the stagnation point. While a multi-step reaction is needed to represent the ignition process more accurately, the present calculation does yield reasonable predictions concerning ignition along a curved surface.

  5. OPTIMIZED DETERMINATION OF TRACE JET FUEL VOLATILE ORGANIC COMPOUNDS IN HUMAN BLOOD USING IN-FIELD LIQUID-LIQUID EXTRACTION WITH SUBSEQUENT LABORATORY GAS CHROMATOGRAPHIC-MASS SPECTROMETRIC ANALYSIS AND ON-COLUMN LARGE VOLUME INJECTION

    EPA Science Inventory

    A practical and sensitive method to assess volatile organic compounds (VOCs) from JP-8 jet fuel in human whole blood was developed by modifying previously established liquid-liquid extraction procedures, optimizing extraction times, solvent volume, specific sample processing te...

  6. Forest fuels, prescribed fire, and air quality

    Treesearch

    J. Alfred Hall

    1972-01-01

    The combustion products (smoke) from forest wildfires or prescribed burns are often considered on a par with any other emission that might affect air quality. But enough is known about smoke from woody fuels to indicate that its importance is limited almost entirely to visibility obstruction, an effect that can be minimized by proper timing and preparation for burning...

  7. Catalytic Steam and Partial Oxidation Reforming of Liquid Fuels for Application in Improving the Efficiency of Internal Combustion Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brookshear, Daniel William; Pihl, Josh A.; Szybist, James P.

    Here, this study investigated the potential for catalytically reforming liquid fuels in a simulated exhaust gas recirculation (EGR) mixture loop for the purpose of generating reformate that could be used to increase stoichiometric combustion engine efficiency. The experiments were performed on a simulated exhaust flow reactor using a Rh/Al 2O 3 reformer catalyst, and the fuels evaluated included iso-octane, ethanol, and gasoline. Both steam reforming and partial oxidation reforming were examined as routes for the production of reformate. Steam reforming was determined to be an ineffective option for reforming in an EGR loop, because of the high exhaust temperatures (inmore » excess of 700 °C) required to produce adequate concentrations of reformate, regardless of fuel. However, partial oxidation reforming is capable of producing hydrogen concentrations as high as 10%–16%, depending on fuel and operating conditions in the simulated EGR gas mixture. Meanwhile, measurements of total fuel enthalpy retention were shown to have favorable energetics under a range of conditions, although a tradeoff between fuel enthalpy retention and reformate production was observed. Of the three fuels evaluated, iso-octane exhibited the best overall performance, followed by ethanol and then gasoline. Overall, it was found that partial oxidation reforming of liquid fuels in a simulated EGR mixture over the Rh/Al 2O 3 catalyst demonstrated sufficiently high reformate yields and favorable energetics to warrant further evaluation in the EGR system of a stoichiometric combustion engine.« less

  8. Catalytic Steam and Partial Oxidation Reforming of Liquid Fuels for Application in Improving the Efficiency of Internal Combustion Engines

    DOE PAGES

    Brookshear, Daniel William; Pihl, Josh A.; Szybist, James P.

    2018-02-07

    Here, this study investigated the potential for catalytically reforming liquid fuels in a simulated exhaust gas recirculation (EGR) mixture loop for the purpose of generating reformate that could be used to increase stoichiometric combustion engine efficiency. The experiments were performed on a simulated exhaust flow reactor using a Rh/Al 2O 3 reformer catalyst, and the fuels evaluated included iso-octane, ethanol, and gasoline. Both steam reforming and partial oxidation reforming were examined as routes for the production of reformate. Steam reforming was determined to be an ineffective option for reforming in an EGR loop, because of the high exhaust temperatures (inmore » excess of 700 °C) required to produce adequate concentrations of reformate, regardless of fuel. However, partial oxidation reforming is capable of producing hydrogen concentrations as high as 10%–16%, depending on fuel and operating conditions in the simulated EGR gas mixture. Meanwhile, measurements of total fuel enthalpy retention were shown to have favorable energetics under a range of conditions, although a tradeoff between fuel enthalpy retention and reformate production was observed. Of the three fuels evaluated, iso-octane exhibited the best overall performance, followed by ethanol and then gasoline. Overall, it was found that partial oxidation reforming of liquid fuels in a simulated EGR mixture over the Rh/Al 2O 3 catalyst demonstrated sufficiently high reformate yields and favorable energetics to warrant further evaluation in the EGR system of a stoichiometric combustion engine.« less

  9. High performance liquid chromatographic hydrocarbon group-type analyses of mid-distillates employing fuel-derived fractions as standards

    NASA Technical Reports Server (NTRS)

    Seng, G. T.; Otterson, D. A.

    1983-01-01

    Two high performance liquid chromatographic (HPLC) methods have been developed for the determination of saturates, olefins and aromatics in petroleum and shale derived mid-distillate fuels. In one method the fuel to be analyzed is reacted with sulfuric acid, to remove a substantial portion of the aromatics, which provides a reacted fuel fraction for use in group type quantitation. The second involves the removal of a substantial portion of the saturates fraction from the HPLC system to permit the determination of olefin concentrations as low as 0.3 volume percent, and to improve the accuracy and precision of olefins determinations. Each method was evaluated using model compound mixtures and real fuel samples.

  10. Enhanced catalyst and process for converting synthesis gas to liquid motor fuels

    DOEpatents

    Coughlin, Peter K.

    1986-01-01

    The conversion of synthesis gas to liquid molar fuels by means of a cobalt Fischer-Tropsch catalyst composition is enhanced by the addition of molybdenum, tungsten or a combination thereof as an additional component of said composition. The presence of the additive component increases the olefinic content of the hydrocarbon products produced. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  11. "Liquid-liquid-solid"-type superoleophobic surfaces to pattern polymeric semiconductors towards high-quality organic field-effect transistors.

    PubMed

    Wu, Yuchen; Su, Bin; Jiang, Lei; Heeger, Alan J

    2013-12-03

    Precisely aligned organic-liquid-soluble semiconductor microwire arrays have been fabricated by "liquid-liquid-solid" type superoleophobic surfaces directed fluid drying. Aligned organic 1D micro-architectures can be built as high-quality organic field-effect transistors with high mobilities of >10 cm(2) ·V(-1) ·s(-1) and current on/off ratio of more than 10(6) . All these studies will boost the development of 1D microstructures of organic semiconductor materials for potential application in organic electronics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Bioconversion of natural gas to liquid fuel: opportunities and challenges.

    PubMed

    Fei, Qiang; Guarnieri, Michael T; Tao, Ling; Laurens, Lieve M L; Dowe, Nancy; Pienkos, Philip T

    2014-01-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Bioconversion of Natural Gas to Liquid Fuel. Opportunities and Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, Qiang; Guarnieri, Michael T.; Tao, Ling

    2014-05-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Moreover, methanotrophic bacteria are capable of convertingmore » methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. Our review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel.« less

  14. Bioconversion of natural gas to liquid fuel: Opportunities and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, Q; Guarnieri, MT; Tao, L

    2014-05-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methanemore » into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel. (C) 2014 The Authors. Published by Elsevier Inc.« less

  15. Direct Coal -to-Liquids (CTL) for Jet Fuel Using Biomass-Derived Solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, Satya P.; Garbark, Daniel B.; Taha, Rachid

    Battelle has demonstrated a novel and potentially breakthrough technology for a direct coal-to-liquids (CTL) process for producing jet fuel using biomass-derived coal solvents (bio-solvents). The Battelle process offers a significant reduction in capital and operating costs and a substantial reduction in greenhouse gas (GHG) emissions, without requiring carbon capture and storage (CCS). The results of the project are the advancement of three steps of the hybrid coal/biomass-to-jet fuel process to the technology readiness level (TRL) of 5. The project objectives were achieved over two phases. In Phase 1, all three major process steps were explored and refined at bench-scale, including:more » (1) biomass conversion to high hydrogen-donor bio-solvent; (2) coal dissolution in biomass-derived bio-solvent, without requiring molecular H 2, to produce a synthetic crude (syncrude); and (3) two-stage catalytic hydrotreating/hydrogenation of syncrude to jet fuel and other distillates. In Phase 2, all three subsystems of the CTL process were scaled up to a pre-pilot scale, and an economic analysis was carried out. A total of over 40 bio-solvents were identified and prepared. The most unique attribute of Battelle’s bio-solvents is their ability to provide much-needed hydrogen to liquefy coal and thus increase its hydrogen content so much that the resulting syncrude is liquid at room temperature. Based on the laboratory-scale testing with bituminous coals from Ohio and West Virginia, a total of 12 novel bio-solvent met the goal of greater than 80% coal solubility, with 8 bio-solvents being as good as or better than a well-known but expensive hydrogen-donor solvent, tetralin. The Battelle CTL process was then scaled up to 1 ton/day (1TPD) at a pre-pilot facility operated in Morgantown, WV. These tests were conducted, in part, to produce enough material for syncrude-upgrading testing. To convert the Battelle-CTL syncrude into a form suitable as a blending stock for jet turbine

  16. Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, R.D.; McIlvried, H.G.; Gray, D.

    1995-12-31

    For the foreseeable future, liquid hydrocarbon fuels will play a significant role in the transportation sector of both the United States and the world. Factors favoring these fuels include convenience, high energy density, and the vast existing infrastructure for their production and use. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports from countries with developing economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can bemore » allieviated in part by utilizing the abundant domestic coal resource base. One option is direct coal conversion to liquid transportation fuels. Continued R&D in coal conversion technology will results in improved technical readiness that can significantly reduce costs so that synfuels can compete economically in a time frame to address the shortfall.« less

  17. Fuel processors for fuel cell APU applications

    NASA Astrophysics Data System (ADS)

    Aicher, T.; Lenz, B.; Gschnell, F.; Groos, U.; Federici, F.; Caprile, L.; Parodi, L.

    The conversion of liquid hydrocarbons to a hydrogen rich product gas is a central process step in fuel processors for auxiliary power units (APUs) for vehicles of all kinds. The selection of the reforming process depends on the fuel and the type of the fuel cell. For vehicle power trains, liquid hydrocarbons like gasoline, kerosene, and diesel are utilized and, therefore, they will also be the fuel for the respective APU systems. The fuel cells commonly envisioned for mobile APU applications are molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and proton exchange membrane fuel cells (PEMFC). Since high-temperature fuel cells, e.g. MCFCs or SOFCs, can be supplied with a feed gas that contains carbon monoxide (CO) their fuel processor does not require reactors for CO reduction and removal. For PEMFCs on the other hand, CO concentrations in the feed gas must not exceed 50 ppm, better 20 ppm, which requires additional reactors downstream of the reforming reactor. This paper gives an overview of the current state of the fuel processor development for APU applications and APU system developments. Furthermore, it will present the latest developments at Fraunhofer ISE regarding fuel processors for high-temperature fuel cell APU systems on board of ships and aircrafts.

  18. Theoretical Investigation For The Effect of Fuel Quality on Gas Turbine Power Plants

    NASA Astrophysics Data System (ADS)

    AbdulRazzak khudair, Omar; Alwan Abass, Khetam; Saadi Abed, Noor; Hussain Ali, Khalid; AbdulAziz, Saad; Chlaib Shaboot, Ali

    2018-05-01

    Gas turbine engine power generation is declined dramatically because of the reduction in thermodynamic parameters as a work of turbine, compressor ratio, compressor work, and air mass flow rate and fuel consumption. There are two main objectives of this work, the first is related with the effect of fuel kinds and their quality on the operation of fuel flow divider and its performance specifically gear pump displacement and fuel flow rate to the combustion chambers of gas power plant. AL-DORA gas turbine power plant 35MW was chosen to predict these effects on its performance MATLAB Software program is used to perform thermodynamic calculations. Fuel distribution stage before the process of combustion and as a result of the kind and its quality, chemical reaction will occur between the fuel and the parts of the gear system of each pump of the flow divider, which causes the erosion of the internal pump wall and the teeth of the gear system, thus hampering the pump operation in terms of fuel discharge. The discharge of fuel form the eight external gates of flow divider is decreased and varied when going to the combustion chambers, so that, flow divider does not give reliable mass flow rate due to absence of accurate pressure in each of eight exit pipes. The second objective deals with the stage of fuel combustion process inside the combustion chamber. A comparative study based upon performance parameters, such as specific fuel consumption for gas and gasoil and power generation. Fuel poor quality causes incomplete combustion and increased its consumption, so that combustion products are interacted with the surface of the turbine blades, causing the erosion and create surface roughness of the blade and disruption of gas flow. As a result of this situation, turbulence flow of these gases will increase causing the separation of gas boundary layers over the suction surface of the blade. Therefore the amount of extracted gas will decrease causing retreat work done by

  19. 40 CFR 80.29 - Controls and prohibitions on diesel fuel quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Controls and prohibitions on diesel... Controls and prohibitions on diesel fuel quality. (a) Prohibited activities. Beginning October 1, 1993 and..., sell, offer for sale, supply, store, dispense, offer for supply or transport any diesel fuel for use in...

  20. 40 CFR 80.29 - Controls and prohibitions on diesel fuel quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Controls and prohibitions on diesel... Controls and prohibitions on diesel fuel quality. (a) Prohibited activities. Beginning October 1, 1993 and..., sell, offer for sale, supply, store, dispense, offer for supply or transport any diesel fuel for use in...

  1. REACTOR FUEL SCAVENGING MEANS

    DOEpatents

    Coffinberry, A.S.

    1962-04-10

    A process for removing fission products from reactor liquid fuel without interfering with the reactor's normal operation or causing a significant change in its fuel composition is described. The process consists of mixing a liquid scavenger alloy composed of about 44 at.% plutoniunm, 33 at.% lanthanum, and 23 at.% nickel or cobalt with a plutonium alloy reactor fuel containing about 3 at.% lanthanum; removing a portion of the fuel and scavenger alloy from the reactor core and replacing it with an equal amount of the fresh scavenger alloy; transferring the portion to a quiescent zone where the scavenger and the plutonium fuel form two distinct liquid layers with the fission products being dissolved in the lanthanum-rich scavenger layer; and the clean plutonium-rich fuel layer being returned to the reactor core. (AEC)

  2. Performance Evaluation of a High Bandwidth Liquid Fuel Modulation Valve for Active Combustion Control

    NASA Technical Reports Server (NTRS)

    Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2012-01-01

    At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.

  3. Alternate aircraft fuels: Prospects and operational implications

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1977-01-01

    The potential use of coal-derived aviation fuels was assessed. The studies addressed the prices and thermal efficiencies associated with the production of coal-derived aviation kerosene, liquid methane and liquid hydrogen and the air terminal requirements and subsonic transport performance when utilizing liquid hydrogen. The fuel production studies indicated that liquid methane can be produced at a lower price and with a higher thermal efficiency than aviation kerosene or liquid hydrogen. Ground facilities of liquefaction, storage, distribution and refueling of liquid hydrogen fueled aircraft at airports appear technically feasibile. The aircraft studies indicate modest onboard energy savings for hydrogen compared to conventional fuels. Liquid hydrogen was found to be superior to both aviation kerosene and liquid methane from the standpoint of aircraft engine emissions.

  4. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    DOEpatents

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  5. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald P. Huffman

    2004-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogenmore » from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.« less

  6. Fuel quality combustion analysis

    NASA Technical Reports Server (NTRS)

    Naegeli, D. W.; Moses, C. A.

    1979-01-01

    A high pressure research combustor operating over a wide range of burner inlet conditions was used to determine the effects of fuel molecular structure on soot formation. Six test fuels with equal hydrogen content (12.8%) were blended to stress different molecular components and final boiling points. The fuels containing high concentrations (20%) of polycyclic aromatics and partially saturated polycyclic structures such as tetralin, produced more soot than would be expected from a hydrogen content correlation for typical petroleum based fuels. Fuels containing naphthenes such as decalin agreed with the hydrogen content correlation. The contribution of polycyclic aromatics to soot formation was equivalent to a reduction in fuel hydrogen content of about one percent. The fuel sensitivity to soot formation due to the polycyclic aromatic contribution decreased as burner inlet pressure and fuel/air ratio increased.

  7. Converting oil shale to liquid fuels: energy inputs and greenhouse gas emissions of the Shell in situ conversion process.

    PubMed

    Brandt, Adam R

    2008-10-01

    Oil shale is a sedimentary rock that contains kerogen, a fossil organic material. Kerogen can be heated to produce oil and gas (retorted). This has traditionally been a CO2-intensive process. In this paper, the Shell in situ conversion process (ICP), which is a novel method of retorting oil shale in place, is analyzed. The ICP utilizes electricity to heat the underground shale over a period of 2 years. Hydrocarbons are produced using conventional oil production techniques, leaving shale oil coke within the formation. The energy inputs and outputs from the ICP, as applied to oil shales of the Green River formation, are modeled. Using these energy inputs, the greenhouse gas (GHG) emissions from the ICP are calculated and are compared to emissions from conventional petroleum. Energy outputs (as refined liquid fuel) are 1.2-1.6 times greater than the total primary energy inputs to the process. In the absence of capturing CO2 generated from electricity produced to fuel the process, well-to-pump GHG emissions are in the range of 30.6-37.1 grams of carbon equivalent per megajoule of liquid fuel produced. These full-fuel-cycle emissions are 21%-47% larger than those from conventionally produced petroleum-based fuels.

  8. Fuels characterization studies. [jet fuels

    NASA Technical Reports Server (NTRS)

    Seng, G. T.; Antoine, A. C.; Flores, F. J.

    1980-01-01

    Current analytical techniques used in the characterization of broadened properties fuels are briefly described. Included are liquid chromatography, gas chromatography, and nuclear magnetic resonance spectroscopy. High performance liquid chromatographic ground-type methods development is being approached from several directions, including aromatic fraction standards development and the elimination of standards through removal or partial removal of the alkene and aromatic fractions or through the use of whole fuel refractive index values. More sensitive methods for alkene determinations using an ultraviolet-visible detector are also being pursued. Some of the more successful gas chromatographic physical property determinations for petroleum derived fuels are the distillation curve (simulated distillation), heat of combustion, hydrogen content, API gravity, viscosity, flash point, and (to a lesser extent) freezing point.

  9. Antimisting kerosene: Base fuel effects, blending and quality control techniques

    NASA Technical Reports Server (NTRS)

    Yavrouian, A. H.; Ernest, J.; Sarohia, V.

    1984-01-01

    The problems associated with blending of the AMK additive with Jet A, and the base fuel effects on AMK properties are addressed. The results from the evaluation of some of the quality control techniques for AMK are presented. The principal conclusions of this investigation are: significant compositional differences for base fuel (Jet A) within the ASTM specification DI655; higher aromatic content of the base fuel was found to be beneficial for the polymer dissolution at ambient (20 C) temperature; using static mixer technology, the antimisting additive (FM-9) is in-line blended with Jet A, producing AMK which has adequate fire-protection properties 15 to 20 minutes after blending; degradability of freshly blended and equilibrated AMK indicated that maximum degradability is reached after adequate fire protection is obtained; the results of AMK degradability as measured by filter ratio, confirmed previous RAE data that power requirements to decade freshly blended AMK are significantly higher than equilibrated AMK; blending of the additive by using FM-9 concentrate in Jet A produces equilibrated AMK almost instantly; nephelometry offers a simple continuous monitoring capability and is used as a real time quality control device for AMK; and trajectory (jet thurst) and pressure drop tests are useful laboratory techniques for evaluating AMK quality.

  10. Aerosol feed direct methanol fuel cell

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor)

    2002-01-01

    Improvements to fuel cells include introduction of the fuel as an aerosol of liquid fuel droplets suspended in a gas. The particle size of the liquid fuel droplets may be controlled for optimal fuel cell performance by selection of different aerosol generators or by separating droplets based upon size using a particle size conditioner.

  11. Real-time monitoring of methanol concentration using a shear horizontal surface acoustic wave sensor for direct methanol fuel cell without reference liquid measurement

    NASA Astrophysics Data System (ADS)

    Tada, Kyosuke; Nozawa, Takuya; Kondoh, Jun

    2017-07-01

    In recent years, there has been an increasing demand for sensors that continuously measure liquid concentrations and detect abnormalities in liquid environments. In this study, a shear horizontal surface acoustic wave (SH-SAW) sensor is applied for the continuous monitoring of liquid concentrations. As the SH-SAW sensor functions using the relative measurement method, it normally needs a reference at each measurement. However, if the sensor is installed in a liquid flow cell, it is difficult to measure a reference liquid. Therefore, it is important to establish an estimation method for liquid concentrations using the SH-SAW sensor without requiring a reference measurement. In this study, the SH-SAW sensor is installed in a direct methanol fuel cell to monitor the methanol concentration. The estimated concentration is compared with a conventional density meter. Moreover, the effect of formic acid is examined. When the fuel temperature is higher than 70 °C, it is necessary to consider the influence of liquid conductivity. Here, an estimation method for these cases is also proposed.

  12. Rapid estimation of concentration of aromatic classes in middistillate fuels by high-performance liquid chromatography

    NASA Technical Reports Server (NTRS)

    Otterson, D. A.; Seng, G. T.

    1985-01-01

    An high performance liquid chromatography (HPLC) method to estimate four aromatic classes in middistillate fuels is presented. Average refractive indices are used in a correlation to obtain the concentrations of each of the aromatic classes from HPLC data. The aromatic class concentrations can be obtained in about 15 min when the concentration of the aromatic group is known. Seven fuels with a wide range of compositions were used to test the method. Relative errors in the concentration of the two major aromatic classes were not over 10 percent. Absolute errors of the minor classes were all less than 0.3 percent. The data show that errors in group-type analyses using sulfuric acid derived standards are greater for fuels containing high concentrations of polycyclic aromatics. Corrections are based on the change in refractive index of the aromatic fraction which can occur when sulfuric acid and the fuel react. These corrections improved both the precision and the accuracy of the group-type results.

  13. Suppression of evaporation of hydrocarbon liquids and fuels by films containing aqueous film forming foam (AFFF) concentrate FC-196. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, J.T.; Burnett, J.C.

    1974-12-31

    Suppression of evaporation of hydrocarbon liquids and fuels by aqueous film containing a fluorocarbon surfactant has been examined as a function of film thickness, time, and hydrocarbon type. The hydrocarbon liquids included the homologous series of n-alkanes from pentane to dodecane, aromatic compounds, motor and aviation gasolines and jet fuels JP-4 and JP-5, and Navy distillate fuel. The surfactant solution used to form the films was a 6 percent solution of aqueous film forming foam (AFFF) concentrate FC-196. Films of the surfactant solution, ranging in thickness from 5 to 100 micrometers, were placed on the surface of the hydrocarbon liquidmore » to test the ability of the film to suppress evaporation over a 1-hr period. Results indicated that for the n-alkanes and the hydrocarbon fuels a certain critical thickness of surfactant solution was required for optimum vapor suppression. In comparison with the n-alkanes, it was considerably more difficult to suppress evaporation of the aromatic compounds. (GRA)« less

  14. Space shuttle with common fuel tank for liquid rocket booster and main engines (supertanker space shuttle)

    NASA Technical Reports Server (NTRS)

    Thorpe, Douglas G.

    1991-01-01

    An operation and schedule enhancement is shown that replaces the four-body cluster (Space Shuttle Orbiter (SSO), external tank, and two solid rocket boosters) with a simpler two-body cluster (SSO and liquid rocket booster/external tank). At staging velocity, the booster unit (liquid-fueled booster engines and vehicle support structure) is jettisoned while the remaining SSO and supertank continues on to orbit. The simpler two-bodied cluster reduces the processing and stack time until SSO mate from 57 days (for the solid rocket booster) to 20 days (for the liquid rocket booster). The areas in which liquid booster systems are superior to solid rocket boosters are discussed. Alternative and future generation vehicles are reviewed to reveal greater performance and operations enhancements with more modifications to the current methods of propulsion design philosophy, e.g., combined cycle engines, and concentric propellant tanks.

  15. Photoregenerative I−/I3− couple as a liquid cathode for proton exchange membrane fuel cell

    PubMed Central

    Liu, Zhen; Wang, Yadong; Ai, Xinping; Tu, Wenmao; Pan, Mu

    2014-01-01

    A photoassisted oxygen reduction reaction (ORR) through I−/I3− redox couple was investigated for proton exchange membrane (PEM) fuel cell cathode reaction. The I−/I3−-based liquid cathode was used to replace conventional oxygen cathode, and its discharge product I− was regenerated to I3− by photocatalytic oxidation with the participation of oxygen. This new and innovative approach may provide a strategy to eliminate the usage of challenging ORR electrocatalysts, resulting in an avenue for developing low-cost and high-efficiency PEM fuel cells. PMID:25348812

  16. Modeling of atomization and distribution of drop-liquid fuel in unsteady swirling flows in a combustion chamber and free space

    NASA Astrophysics Data System (ADS)

    Sviridenkov, A. A.; Toktaliev, P. D.; Tretyakov, V. V.

    2018-03-01

    Numerical and experimental research of atomization and propagation of drop-liquid phase in swirling flow behind the frontal device of combustion chamber was performed. Numerical procedure was based on steady and unsteady Reynolds equations solution. It's shown that better agreement with experimental data could be obtained with unsteady approach. Fractional time step method was implemented to solve Reynolds equations. Models of primary and secondary breakup of liquid fuel jet in swirling flows are formulated and tested. Typical mean sizes of fuel droplets for base operational regime of swirling device and combustion chamber were calculated. Comparison of main features of internal swirling flow in combustion chamber with unbounded swirling flow was made.

  17. Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality

    Science.gov Websites

    in MinnesotaA> Electric Ice Resurfacers Improve Air Quality in Minnesota to someone by E-mail alternative fuel vehicles to improve air quality. For information about this project, contact Twin Cities Related Videos Photo of a car Electric Vehicles Charge up at State Parks in West Virginia Dec. 9, 2017

  18. Total Quality Management in the Defense Fuel Supply Center: Issues and Observations.

    ERIC Educational Resources Information Center

    Matysek, Eugene F., Jr.

    1993-01-01

    Examines the Total Quality Management (TQM) activities at a federal government agency (i.e., the Defense Fuel Supply Center) using the following criteria established by the Federal Quality Institute: top management leadership and support; strategic quality planning; customer focus; training and recognition; employee empowerment and teamwork; and…

  19. Regional water implications of reducing oil imports with liquid transportation fuel alternatives in the United States.

    PubMed

    Jordaan, Sarah M; Diaz Anadon, Laura; Mielke, Erik; Schrag, Daniel P

    2013-01-01

    The Renewable Fuel Standard (RFS) is among the cornerstone policies created to increase U.S. energy independence by using biofuels. Although greenhouse gas emissions have played a role in shaping the RFS, water implications are less understood. We demonstrate a spatial, life cycle approach to estimate water consumption of transportation fuel scenarios, including a comparison to current water withdrawals and drought incidence by state. The water consumption and land footprint of six scenarios are compared to the RFS, including shale oil, coal-to-liquids, shale gas-to-liquids, corn ethanol, and cellulosic ethanol from switchgrass. The corn scenario is the most water and land intense option and is weighted toward drought-prone states. Fossil options and cellulosic ethanol require significantly less water and are weighted toward less drought-prone states. Coal-to-liquids is an exception, where water consumption is partially weighted toward drought-prone states. Results suggest that there may be considerable water and land impacts associated with meeting energy security goals through using only biofuels. Ultimately, water and land requirements may constrain energy security goals without careful planning, indicating that there is a need to better balance trade-offs. Our approach provides policymakers with a method to integrate federal policies with regional planning over various temporal and spatial scales.

  20. The combustion properties analysis of various liquid fuels based on crude oil and renewables

    NASA Astrophysics Data System (ADS)

    Grab-Rogalinski, K.; Szwaja, S.

    2016-09-01

    The paper presents results of investigation on combustion properties analysis of hydrocarbon based liquid fuels commonly used in the CI engine. The analysis was performed with aid of the CRU (Combustion Research Unit). CRU is the machine consisted of a constant volume combustion chamber equipped with one or two fuel injectors and a pressure sensor. Fuel can be injected under various both injection pressure and injection duration, also with two injector versions two stage combustion with pilot injection can be simulated, that makes it possible to introduce and modify additional parameter which is injection delay (defined as the time between pilot and main injection). On a basis of this investigation such combustion parameters as pressure increase, rate of heat release, ignition delay and combustion duration can be determined. The research was performed for the four fuels as follows: LFO, HFO, Biofuel from rape seeds and Glycerol under various injection parameters as well as combustion chamber thermodynamic conditions. Under these tests the change in such injection parameters as injection pressure, use of pilot injection, injection delay and injection duration, for main injection, were made. Moreover, fuels were tested under different conditions of load, what was determined by initial conditions (pressure and temperature) in the combustion chamber. Stored data from research allows to compare combustion parameters for fuels applied to tests and show this comparison in diagrams.

  1. A demonstration of pig lard as an industrial boiler fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, B.G.; Badger, M.; Larsen, J.

    Hatfield Quality Meats is a family owned regional meat processor and vendor and has multiple facilities in Pennsylvania. The main plant and corporate offices are located in Hatfield, Pennsylvania where they process 7,000 hogs per day. Two of Hatfield's by-products are lard and choice white grease (CWG), both of which are produced in large quantities. The lard, which is stored warm and liquid, is sold by tanker truck to veal producers, by 55-gallon drums to commercial bakeries, in 5-gallon pails to a variety of restaurants, and periodically in 1-pound tins to grocery stores. The CWG, which is a rendered product,more » is also sold to veal producers. A decrease in sales could leave the company with large excess of these products and difficult disposal problems. Hatfield Quality Meats, Lehigh University, and Penn State's the Energy Institute evaluated the liquid lard as an industrial boiler fuel and obtained the necessary handleability and combustion data to allow for its use as a supplemental fuel in Hatfield's process, were burned in Penn State's research boiler. The boiler, which has a nominal firing rate of two million Btu/h, is a 150 psig working pressure, A-frame watertube boiler. In addition to the lard samples, No.6 fuel oil was fired for baseline comparison. This paper discusses the comparison of lard and No.6 fuel oil as boiler fuels. Issues discussed include fuel characterization, material handling, combustion performance, flame character and stability, and emissions.« less

  2. Solid recovered fuel: influence of waste stream composition and processing on chlorine content and fuel quality.

    PubMed

    Velis, Costas; Wagland, Stuart; Longhurst, Phil; Robson, Bryce; Sinfield, Keith; Wise, Stephen; Pollard, Simon

    2012-02-07

    Solid recovered fuel (SRF) produced by mechanical-biological treatment (MBT) of municipal waste can replace fossil fuels, being a CO(2)-neutral, affordable, and alternative energy source. SRF application is limited by low confidence in quality. We present results for key SRF properties centered on the issue of chlorine content. A detailed investigation involved sampling, statistical analysis, reconstruction of composition, and modeling of SRF properties. The total chlorine median for a typical plant during summer operation was 0.69% w/w(d), with lower/upper 95% confidence intervals of 0.60% w/w(d) and 0.74% w/w(d) (class 3 of CEN Cl indicator). The average total chlorine can be simulated, using a reconciled SRF composition before shredding to <40 mm. The relative plastics vs paper mass ratios in particular result in an SRF with a 95% upper confidence limit for ash content marginally below the 20% w/w(d) deemed suitable for certain power plants; and a lower 95% confidence limit of net calorific value (NCV) at 14.5 MJ kg(ar)(-1). The data provide, for the first time, a high level of confidence on the effects of SRF composition on its chlorine content, illustrating interrelationships with other fuel properties. The findings presented here allow rational debate on achievable vs desirable MBT-derived SRF quality, informing the development of realistic SRF quality specifications, through modeling exercises, needed for effective thermal recovery.

  3. Production, quality and quality assurance of Refuse Derived Fuels (RDFs).

    PubMed

    Sarc, R; Lorber, K E

    2013-09-01

    This contribution describes characterization, classification, production, application and quality assurance of Refuse Derived Fuels (RDFs) that are increasingly used in a wide range of co-incineration plants. It is shown in this paper, that the fuel-parameter, i.e. net calorific value [MJ/kg(OS)], particle size d(90) or d(95) [mm], impurities [w%], chlorine content [w%], sulfur content [w%], fluorine content [w%], ash content [w%], moisture [w%] and heavy metals content [mg/kg(DM)], can be preferentially used for the classification of different types of RDF applied for co-incineration and substitution of fossil-fuel in different industial sectors. Describing the external production of RDF by processing and confectioning of wastes as well as internal processing of waste at the incineration plant, a case study is reported on the application of RDF made out of different household waste fractions in a 120,000t/yr Waste to Energy (WtE) circulating fluidized bed (CFB) incinerator. For that purpose, delivered wastes, as well as incinerator feedstock material (i.e. after internal waste processing) are extensively investigated. Starting with elaboration of sampling plan in accordance with the relevant guidelines and standards, waste from different suppliers was sampled. Moreover, manual sorting analyses and chemical analyses were carried out. Finally, results of investigations are presented and discussed in the paper. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. DEVELOPMENT AND SELECTION OF IONIC LIQUID ELECTROLYTES FOR HYDROXIDE CONDUCTING POLYBENZIMIDAZOLE MEMBRANES IN ALKALINE FUEL CELLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, E.

    2012-05-01

    Alkaline fuel cell (AFC) operation is currently limited to specialty applications such as low temperatures and pure HO due to the corrosive nature of the electrolyte and formation of carbonates. AFCs are the cheapest and potentially most efficient (approaching 70%) fuel cells. The fact that non-Pt catalysts can be used, makes them an ideal low cost alternative for power production. The anode and cathode are separated by and solid electrolyte or alkaline porous media saturated with KOH. However, CO from the atmosphere or fuel feed severely poisons the electrolyte by forming insoluble carbonates. The corrosivity of KOH (electrolyte) limits operatingmore » temperatures to no more than 80°C. This chapter examines the development of ionic liquids electrolytes that are less corrosive, have higher operating temperatures, do not chemically bond to CO and enable alternative fuels. Work is detailed on the IL selection and characterization as well as casting methods within the polybenzimidazole based solid membrane. This approach is novel as it targets the root of the problem (the electrolyte) unlike other current work in alkaline fuel cells which focus on making the fuel cell components more durable.« less

  5. Design and Implementation of a Characterization Test Rig for Evaluating High Bandwidth Liquid Fuel Flow Modulators

    NASA Technical Reports Server (NTRS)

    Saus, Joseph R.; Chang, Clarence T.; DeLaat, John C.; Vrnak, Daniel R.

    2010-01-01

    A test rig was designed and developed at the NASA Glenn Research Center (GRC) for the purpose of characterizing high bandwidth liquid fuel flow modulator candidates to determine their suitability for combustion instability control research. The test rig is capable of testing flow modulators at up to 600 psia supply pressure and flows of up to 2 gpm. The rig is designed to provide a quiescent flow into the test section in order to isolate the dynamic flow modulations produced by the test article. Both the fuel injector orifice downstream of the test article and the combustor are emulated. The effect of fuel delivery line lengths on modulator dynamic performance can be observed and modified to replicate actual fuel delivery systems. For simplicity, water is currently used as the working fluid, although future plans are to use jet fuel. The rig is instrumented for dynamic pressures and flows and a high-speed data system is used for dynamic data acquisition. Preliminary results have been obtained for one candidate flow modulator.

  6. High-temperature compatibility between liquid metal as PWR fuel gap filler and stainless steel and high-density concrete

    NASA Astrophysics Data System (ADS)

    Wongsawaeng, Doonyapong; Jumpee, Chayanit; Jitpukdee, Manit

    2014-08-01

    In conventional nuclear fuel rods for light-water reactors, a helium-filled as-fabricated gap between the fuel and the cladding inner surface accommodates fuel swelling and cladding creep down. Because helium exhibits a very low thermal conductivity, it results in a large temperature rise in the gap. Liquid metal (LM; 1/3 weight portion each of lead, tin, and bismuth) has been proposed to be a gap filler because of its high thermal conductivity (∼100 times that of He), low melting point (∼100 °C), and lack of chemical reactivity with UO2 and water. With the presence of LM, the temperature drop across the gap is virtually eliminated and the fuel is operated at a lower temperature at the same power output, resulting in safer fuel, delayed fission gas release and prevention of massive secondary hydriding. During normal reactor operation, should an LM-bonded fuel rod failure occurs resulting in a discharge of liquid metal into the bottom of the reactor pressure vessel, it should not corrode stainless steel. An experiment was conducted to confirm that at 315 °C, LM in contact with 304 stainless steel in the PWR water chemistry environment for up to 30 days resulted in no observable corrosion. Moreover, during a hypothetical core-melt accident assuming that the liquid metal with elevated temperature between 1000 and 1600 °C is spread on a high-density concrete basement of the power plant, a small-scale experiment was performed to demonstrate that the LM-concrete interaction at 1000 °C for as long as 12 h resulted in no penetration. At 1200 °C for 5 h, the LM penetrated a distance of ∼1.3 cm, but the penetration appeared to stop. At 1400 °C the penetration rate was ∼0.7 cm/h. At 1600 °C, the penetration rate was ∼17 cm/h. No corrosion based on chemical reactions with high-density concrete occurred, and, hence, the only physical interaction between high-temperature LM and high-density concrete was from tiny cracks generated from thermal stress. Moreover

  7. Experimental investigation on the morphology of soot aggregates from the burning of typical solid and liquid fuels

    NASA Astrophysics Data System (ADS)

    Huang, Dongmei; Guo, Chenning; Shi, Long

    2017-03-01

    Soot particles from the burning of typical fuels are one of the critical sources causing environmental problems and human disease. To understand the soot formation of these typical fuels, the size and morphology of soot aggregates produced from the burning of typical solid and liquid fuels, including diesel, kerosene, natural rubber (NR) latex foam, and wood crib, were studied by both extractive sampling and subsequent image analysis. The 2D and 3D fractal dimensions together with the diameter distribution of agglomerate and primary particles were analyzed for these four typical fuels. The average diameters of the primary particles were within 45-85 nm when sampling from different heights above the fire sources. Irregular sheet structures and flake-like masses were observed from the burning of NR latex foam and wood cribs. Superaggregates with a mean maximum length scale of over 100 μm were also found from the burning of all these four tested fuels. The fractal dimension of a single aggregate was 3 for all the tested fuels.

  8. Fuel pin

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  9. Fuel pin

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-10-03

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  10. Fuel pin

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  11. 40 CFR 63.1217 - What are the standards for liquid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ng TEQ/dscm, corrected to 7 percent oxygen, for liquid fuel boilers equipped with a dry air pollution... by paragraph (a)(5) of this section for sources not equipped with a dry air pollution control system; (iii) A source equipped with a wet air pollution control system followed by a dry air pollution control...

  12. 40 CFR 63.1217 - What are the standards for liquid fuel boilers that burn hazardous waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ng TEQ/dscm, corrected to 7 percent oxygen, for liquid fuel boilers equipped with a dry air pollution... by paragraph (a)(5) of this section for sources not equipped with a dry air pollution control system; (iii) A source equipped with a wet air pollution control system followed by a dry air pollution control...

  13. Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics

    DOE PAGES

    Mueller, Charles J.; Cannella, William J.; Bruno, Thomas J.; ...

    2012-05-22

    In this study, a novel approach was developed to formulate surrogate fuels having characteristics that are representative of diesel fuels produced from real-world refinery streams. Because diesel fuels typically consist of hundreds of compounds, it is difficult to conclusively determine the effects of fuel composition on combustion properties. Surrogate fuels, being simpler representations of these practical fuels, are of interest because they can provide a better understanding of fundamental fuel-composition and property effects on combustion and emissions-formation processes in internal-combustion engines. In addition, the application of surrogate fuels in numerical simulations with accurate vaporization, mixing, and combustion models could revolutionizemore » future engine designs by enabling computational optimization for evolving real fuels. Dependable computational design would not only improve engine function, it would do so at significant cost savings relative to current optimization strategies that rely on physical testing of hardware prototypes. The approach in this study utilized the state-of-the-art techniques of 13C and 1H nuclear magnetic resonance spectroscopy and the advanced distillation curve to characterize fuel composition and volatility, respectively. The ignition quality was quantified by the derived cetane number. Two well-characterized, ultra-low-sulfur #2 diesel reference fuels produced from refinery streams were used as target fuels: a 2007 emissions certification fuel and a Coordinating Research Council (CRC) Fuels for Advanced Combustion Engines (FACE) diesel fuel. A surrogate was created for each target fuel by blending eight pure compounds. The known carbon bond types within the pure compounds, as well as models for the ignition qualities and volatilities of their mixtures, were used in a multiproperty regression algorithm to determine optimal surrogate formulations. The predicted and measured surrogate-fuel properties were

  14. Quality of Rapeseed Bio-Fuel Waste: Optical Properties

    NASA Astrophysics Data System (ADS)

    Sujak, Agnieszka; Muszyñski, Siemowit; Kachel-Jakubowska, Magdalena

    2014-04-01

    The objective of the presented work was to examine the optical properties of selected bio-fuel waste. Three independent optical methods: UV-Vis spectroscopy, infrared spectroscopy and chromametric measurements were applied to establish the possible quality control test for the obtained substances. The following by-products were tested: distilled glycerine, technical glycerine and matter organic non glycerine fraction from rapeseed oil bio-fuel production. The results show that analysis of UV-Vis spectra can give rapid information about the purity of distilled glycerine, while no direct information can be obtained concerning the concentration and kind of impurities. Transmission mode is more useful as compared to absorption, concerning the detection abilities of average UV-Vis spectrometers. Infrared spectroscopy can be used as a complementary method for determining impurities/admixtures in samples. Measurements of chroma give the quickest data to compare the colour of biofuel by-products obtained by different producers. The condition is, however, that the products are received through the same or similar chemical processes. The other important factor is application of well defined measuring background. All the discussed analyses are quick, cheap and non-destructive, and can help to compare the quality of products.

  15. European emission, fuel quality regs tighten--

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-12-18

    Emission regulations and fuel quality requirements will tighten as Europe enters the 1990s. The stiffer emission regulations, particularly in those nations in the European Economic Community (EEC), will more closely resemble those already in effect in the U.S. and Japan. Nations not in the EEC, particularly Austria, Switzerland, Norway, Sweden, and Finland, are also formulating rules that adopt the 1983 U.S. emission standards. Rules and tax incentives have also been introduced to encourage the use of unleaded gasoline in EEC member countries. Details of some of the emission rules for both EEC member and non-member countries are discussed.

  16. Stability analysis of a liquid fuel annular combustion chamber. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. H.

    1978-01-01

    High frequency combustion instability problems in a liquid fuel annular combustion chamber are examined. A modified Galerkin method was used to produce a set of modal amplitude equations from the general nonlinear partial differential acoustic wave equation in order to analyze the problem of instability. From these modal amplitude equations, the two variable perturbation method was used to develop a set of approximate equations of a given order of magnitude. These equations were modeled to show the effects of velocity sensitive combustion instabilities by evaluating the effects of certain parameters in the given set of equations.

  17. The Synthesis and Characterization of Ionic Liquids for Alkali-Metal Batteries and a Novel Electrolyte for Non-Humidified Fuel Cells

    NASA Astrophysics Data System (ADS)

    Tucker, Telpriore G.

    This thesis focused on physicochemical and electrochemical projects directed towards two electrolyte types: 1) class of ionic liquids serving as electrolytes in the catholyte for alkali-metal ion conduction in batteries and 2) gel membrane for proton conduction in fuel cells; where overall aims were encouraged by the U.S. Department of Energy. Large-scale, sodium-ion batteries are seen as global solutions to providing undisrupted electricity from sustainable, but power-fluctuating, energy production in the near future. Foreseen ideal advantages are lower cost without sacrifice of desired high-energy densities relative to present lithium-ion and lead-acid battery systems. Na/NiCl2 (ZEBRA) and Na/S battery chemistries, suffer from high operation temperature (>300ºC) and safety concerns following major fires consequent of fuel mixing after cell-separator rupturing. Initial interest was utilizing low-melting organic ionic liquid, [EMI+][AlCl 4-], with well-known molten salt, NaAlCl4, to create a low-to-moderate operating temperature version of ZEBRA batteries; which have been subject of prior sodium battery research spanning decades. Isothermal conductivities of these electrolytes revealed a fundamental kinetic problem arisen from "alkali cation-trapping effect" yet relived by heat-ramping >140ºC. Battery testing based on [EMI+][FeCl4 -] with NaAlCl4 functioned exceptional (range 150-180ºC) at an impressive energy efficiency >96%. Newly prepared inorganic ionic liquid, [PBr4+][Al2Br7-]:NaAl2Br 7, melted at 94ºC. NaAl2Br7 exhibited super-ionic conductivity 10-1.75 Scm-1 at 62ºC ensued by solid-state rotator phase transition. Also improved thermal stability when tested to 265ºC and less expensive chemical synthesis. [PBr4 +][Al2Br7-] demonstrated remarkable, ionic decoupling in the liquid-state due to incomplete bromide-ion transfer depicted in NMR measurements. Fuel cells are electrochemical devices generating electrical energy reacting hydrogen/oxygen gases

  18. Fast and slow active control of combustion instabilities in liquid-fueled combustors

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Yeon

    This thesis describes an experimental investigation of two different novel active control approaches that are employed to suppress combustion instabilities in liquid-fueled combustors. A "fast" active controller requires continuous modulation of the fuel injection rate at the frequency of the instability with proper phase and gain. Use of developed optical tools reveals that the "fast" active control system suppresses the instability by changing the nearly flat distribution of the phase between pressure and heat release oscillations to a gradually varying phase distribution, thus dividing the combustion zone into regions that alternately damp and drive combustor oscillations. The effects of these driving/damping regions tend to counter one another, which result in significant damping of the unstable oscillations. In contrast, a "slow" active controller operates at a rate commensurate with that at which operating conditions change during combustor operation. Consequently, "slow" controllers need infrequent activation in response to changes in engine operating conditions to assure stable operation at all times. Using two types of fuel injectors that can produce large controllable variation of fuel spray properties, it is shown that by changing the spray characteristics it is possible to significantly damp combustion instabilities. Similar to the aforementioned result of the "fast" active control study, "slow" change of the fuel spray properties also modifies the nearly flat phase distribution during unstable operation to a gradually varying phase distribution, resulting in combustor "stabilization". Furthermore, deconvolutions of CH*-chemiluminescence images reveal the presence of vortex-flame interaction during unstable operation. Strong driving of instabilities occurs where the mean axial velocity of the flow is approximately zero, a short distance downstream of the flame holder where a significant fraction of the fuel burns in phase with the pressure oscillations

  19. Ambient pressure fuel cell system

    DOEpatents

    Wilson, Mahlon S.

    2000-01-01

    An ambient pressure fuel cell system is provided with a fuel cell stack formed from a plurality of fuel cells having membrane/electrode assemblies (MEAs) that are hydrated with liquid water and bipolar plates with anode and cathode sides for distributing hydrogen fuel gas and water to a first side of each one of the MEAs and air with reactant oxygen gas to a second side of each one of the MEAs. A pump supplies liquid water to the fuel cells. A recirculating system may be used to return unused hydrogen fuel gas to the stack. A near-ambient pressure blower blows air through the fuel cell stack in excess of reaction stoichiometric amounts to react with the hydrogen fuel gas.

  20. Comparison of the safety-related physical and combustion properties of liquid hydrogen and liquid natural gas in the context of the SF-BREEZE high-speed fuel-cell ferry

    DOE PAGES

    Klebanoff, L. E.; Pratt, J. W.; LaFleur, C. B.

    2016-11-25

    Here, we review liquid hydrogen (LH 2) as a maritime vessel fuel, from descriptions of its fundamental properties to its practical application and safety aspects, in the context of the San Francisco Bay Renewable Energy Electric Vessel with Zero Emissions (SF-BREEZE) high-speed fuel-cell ferry. Since marine regulations have been formulated to cover liquid natural gas (LNG) as a primary propulsion fuel, we frame our examination of LH 2 as a comparison to LNG, for both maritime use in general, and the SF-BREEZE in particular. Due to weaker attractions between molecules, LH 2 is colder than LNG, and evaporates more easily.more » We describe the consequences of these physical differences for the size and duration of spills of the two cryogenic fuels. The classical flammability ranges are reviewed, with a focus on how fuel buoyancy modifies these combustion limits. We examine the conditions for direct fuel explosion (detonation) and contrast them with initiation of normal (laminar) combustion. Direct fuel detonation is not a credible accident scenario for the SF-BREEZE. For both fuels, we review experiments and theory elucidating the deflagration to detonation transition (DDT). LH 2 fires have a shorter duration than energy-equivalent LNG fires, and produce significantly less thermal radiation. The thermal (infrared) radiation from hydrogen fires is also strongly absorbed by humidity in the air. Hydrogen permeability is not a leak issue for practical hydrogen plumbing. We describe the chemistry of hydrogen and methane at iron surfaces, clarifying their impact on steel-based hydrogen storage and transport materials. These physical, chemical and combustion properties are pulled together in a comparison of how a LH 2 or LNG pool fire on the Top Deck of the SF-BREEZE might influence the structural integrity of the aluminum deck. Neither pool fire scenario leads to net heating of the aluminum decking. Overall, LH 2 and LNG are very similar in their physical and combustion

  1. Comparison of the safety-related physical and combustion properties of liquid hydrogen and liquid natural gas in the context of the SF-BREEZE high-speed fuel-cell ferry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klebanoff, L. E.; Pratt, J. W.; LaFleur, C. B.

    Here, we review liquid hydrogen (LH 2) as a maritime vessel fuel, from descriptions of its fundamental properties to its practical application and safety aspects, in the context of the San Francisco Bay Renewable Energy Electric Vessel with Zero Emissions (SF-BREEZE) high-speed fuel-cell ferry. Since marine regulations have been formulated to cover liquid natural gas (LNG) as a primary propulsion fuel, we frame our examination of LH 2 as a comparison to LNG, for both maritime use in general, and the SF-BREEZE in particular. Due to weaker attractions between molecules, LH 2 is colder than LNG, and evaporates more easily.more » We describe the consequences of these physical differences for the size and duration of spills of the two cryogenic fuels. The classical flammability ranges are reviewed, with a focus on how fuel buoyancy modifies these combustion limits. We examine the conditions for direct fuel explosion (detonation) and contrast them with initiation of normal (laminar) combustion. Direct fuel detonation is not a credible accident scenario for the SF-BREEZE. For both fuels, we review experiments and theory elucidating the deflagration to detonation transition (DDT). LH 2 fires have a shorter duration than energy-equivalent LNG fires, and produce significantly less thermal radiation. The thermal (infrared) radiation from hydrogen fires is also strongly absorbed by humidity in the air. Hydrogen permeability is not a leak issue for practical hydrogen plumbing. We describe the chemistry of hydrogen and methane at iron surfaces, clarifying their impact on steel-based hydrogen storage and transport materials. These physical, chemical and combustion properties are pulled together in a comparison of how a LH 2 or LNG pool fire on the Top Deck of the SF-BREEZE might influence the structural integrity of the aluminum deck. Neither pool fire scenario leads to net heating of the aluminum decking. Overall, LH 2 and LNG are very similar in their physical and combustion

  2. Fuel and fuel blending components from biomass derived pyrolysis oil

    DOEpatents

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  3. Ionic Liquid Fuels for Chemical Propulsion

    DTIC Science & Technology

    2016-10-31

    nucleophilicity in the ionic liquid is critical. Both gas -phase and condensed-phase (CPCM-GIL) density functional theory calculations support the...stability trends in dialkylimidazolium ionic liquids and could be used as a higher accuracy method than the gas -phase DFT approach for predicting thermal...stabilities of ionic liquids in general. One important finding from the comparison of the gas -phase basicities relative to the GIL condensed- phase

  4. Catalysts and methods for converting carbonaceous materials to fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, Jesse; Ruddy, Daniel A.; Schaidle, Joshua A.

    Catalysts and processes designed to convert DME and/or methanol and hydrogen (H.sub.2) to desirable liquid fuels are described. These catalysts produce the fuels efficiently and with a high selectivity and yield, and reduce the formation of aromatic hydrocarbons by incorporating H.sub.2 into the products. Also described are process methods to further upgrade these fuels to higher molecular weight liquid fuel mixtures, which have physical properties comparable with current commercially used liquid fuels.

  5. Advances in the Use of Thermography to Inspect Composite Tanks for Liquid Fuel Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lansing, Matthew D.; Russell, Samuel S.; Walker, James L.; Jones, Clyde S. (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of advances in the use of thermography to inspect composite tanks for liquid fuel propulsion systems. Details are given on the thermographic inspection system, thermographic analysis method (includes scan and defect map, method of inspection, and inclusions, ply wrinkle, and delamination defects), graphite composite cryogenic feedline (including method, image map, and deep/shallow inclusions and resin rich area defects), and material degradation nondestructive evaluation.

  6. Quality evaluation of extemporaneous delayed-release liquid formulations of lansoprazole.

    PubMed

    Melkoumov, Alexandre; Soukrati, Amina; Elkin, Igor; Forest, Jean-Marc; Hildgen, Patrice; Leclair, Grégoire

    2011-11-01

    The quality attributes of extemporaneous delayed-release liquid formulations of lansoprazole for oral administration were evaluated. A novel liquid formulation (3 mg/mL) of Prevacid FasTab in an Ora-Blend vehicle was prepared and compared with the Prevacid FasTab 30 mg and Prevacid-sodium bicarbonate 1 M formulation (3 mg/mL). The latter formulation was combined with hydrochloric acid 0.1 N, and the remaining lansoprazole content was assayed by high-performance liquid chromatography (HPLC). A batch of delayed-release liquid formulation was prepared to evaluate content uniformity. For content assay, three samples were prepared for each evaluated condition and each sample was analyzed in triplicate by HPLC. The lansoprazole in the sodium bicarbonate formulation was extensively degraded by quantities of hydrochloric acid 0.1 N in excess of 100 mL. Storage time and temperature had a significant effect on lansoprazole stability in the Ora-Blend formulation. The drug remained stable for seven days when the formulation was stored at 4.5-5.5 °C, but storage at 21-22 °C or the reduction of pH with citric acid accelerated lansoprazole degradation. The amount of lansoprazole released from the Ora-Blend formulation during the buffer stage of the dissolution test decreased with increases in formulation storage time, in formulation storage temperature, and in the amount of lansoprazole released and degraded during the acid stage of the test. An extemporaneous formulation consisting of lansoprazole microgranules in Ora-Blend maintained acceptable quality attributes when stored for three days at 4.5-5.5 °C.

  7. 40 CFR 49.130 - Rule for limiting sulfur in fuels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fuel oil, coal, solid fuel, liquid fuel, or gaseous fuel within the Indian reservation. (c) What is... not sell, distribute, use, or make available for use any fuel oil, coal, solid fuel, liquid fuel, or... sulfur by weight; (7) For solid fuels, 2.0 percent sulfur by weight; (8) For gaseous fuels, 1.1 grams of...

  8. 40 CFR 49.130 - Rule for limiting sulfur in fuels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fuel oil, coal, solid fuel, liquid fuel, or gaseous fuel within the Indian reservation. (c) What is... not sell, distribute, use, or make available for use any fuel oil, coal, solid fuel, liquid fuel, or... sulfur by weight; (7) For solid fuels, 2.0 percent sulfur by weight; (8) For gaseous fuels, 1.1 grams of...

  9. 40 CFR 49.130 - Rule for limiting sulfur in fuels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fuel oil, coal, solid fuel, liquid fuel, or gaseous fuel within the Indian reservation. (c) What is... not sell, distribute, use, or make available for use any fuel oil, coal, solid fuel, liquid fuel, or... sulfur by weight; (7) For solid fuels, 2.0 percent sulfur by weight; (8) For gaseous fuels, 1.1 grams of...

  10. Ethanol and air quality: influence of fuel ethanol content on emissions and fuel economy of flexible fuel vehicles.

    PubMed

    Hubbard, Carolyn P; Anderson, James E; Wallington, Timothy J

    2014-01-01

    Engine-out and tailpipe emissions of NOx, CO, nonmethane hydrocarbons (NMHC), nonmethane organic gases (NMOG), total hydrocarbons (THC), methane, ethene, acetaldehyde, formaldehyde, ethanol, N2O, and NH3 from a 2006 model year Mercury Grand Marquis flexible fuel vehicle (FFV) operating on E0, E10, E20, E30, E40, E55, and E80 on a chassis dynamometer are reported. With increasing ethanol content in the fuel, the tailpipe emissions of ethanol, acetaldehyde, formaldehyde, methane, and ammonia increased; NOx and NMHC decreased; while CO, ethene, and N2O emissions were not discernibly affected. NMOG and THC emissions displayed a pronounced minimum with midlevel (E20-E40) ethanol blends; 25-35% lower than for E0 or E80. Emissions of NOx decreased by approximately 50% as the ethanol content increased from E0 to E30-E40, with no further decrease seen with E55 or E80. We demonstrate that emission trends from FFVs are explained by fuel chemistry and engine calibration effects. Fuel chemistry effects are fundamental in nature; the same trend of increased ethanol, acetaldehyde, formaldehyde, and CH4 emissions and decreased NMHC and benzene emissions are expected for all FFVs. Engine calibration effects are manufacturer and model specific; emission trends for NOx, THC, and NMOG will not be the same for all FFVs. Implications for air quality are discussed.

  11. Catalysts and methods for converting carbonaceous materials to fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, Jesse; Ruddy, Daniel A.; Schaidle, Joshua A.

    This disclosure relates to catalysts and processes designed to convert DME and/or methanol and hydrogen (H.sub.2) to desirable liquid fuels. These catalysts produce the fuels efficiently and with a high selectivity and yield, and reduce the formation of aromatic hydrocarbons by incorporating H.sub.2 into the products. This disclosure also describes process methods to further upgrade these fuels to higher molecular weight liquid fuel mixtures, which have physical properties comparable with current commercially used liquid fuels.

  12. Power plant fuel switching and air quality in a tropical, forested environment

    DOE PAGES

    Medeiros, Adan S. S.; Calderaro, Gisele; Guimarães, Patricia C.; ...

    2017-07-26

    How a changing energy matrix for electricity production affects air quality is considered for an urban region in a tropical, forested environment. Manaus, the largest city in the central Amazon Basin of Brazil, is in the process of changing its energy matrix for electricity production from fuel oil and diesel to natural gas over an approximately 10-year period, with a minor contribution by hydropower. Three scenarios of urban air quality, specifically afternoon ozone concentrations, were simulated using the Weather Research and Forecasting (WRF-Chem) model. The first scenario used fuel oil and diesel for electricity production, which was the reality inmore » 2008. The second scenario was based on the fuel mix from 2014, the most current year for which data were available. The third scenario considered nearly complete use of natural gas for electricity production, which is the anticipated future, possibly for 2018. For each case, inventories of anthropogenic emissions were based on electricity generation, refinery operations, and transportation. Transportation and refinery operations were held constant across the three scenarios to focus on effects of power plant fuel switching in a tropical context. The simulated NO x and CO emissions for the urban region decrease by 89 and 55 %, respectively, after the complete change in the energy matrix. The results of the simulations indicate that a change to natural gas significantly decreases maximum afternoon ozone concentrations over the population center, reducing ozone by >70 % for the most polluted days. The sensitivity of ozone concentrations to the fuel switchover is consistent with a NO x-limited regime, as expected for a tropical forest having high emissions of biogenic volatile organic compounds, high water vapor concentrations, and abundant solar radiation. There are key differences in a shifting energy matrix in a tropical, forested environment compared to other world environments. Therefore, policies favoring

  13. Power plant fuel switching and air quality in a tropical, forested environment

    NASA Astrophysics Data System (ADS)

    Medeiros, Adan S. S.; Calderaro, Gisele; Guimarães, Patricia C.; Magalhaes, Mateus R.; Morais, Marcos V. B.; Rafee, Sameh A. A.; Ribeiro, Igor O.; Andreoli, Rita V.; Martins, Jorge A.; Martins, Leila D.; Martin, Scot T.; Souza, Rodrigo A. F.

    2017-07-01

    How a changing energy matrix for electricity production affects air quality is considered for an urban region in a tropical, forested environment. Manaus, the largest city in the central Amazon Basin of Brazil, is in the process of changing its energy matrix for electricity production from fuel oil and diesel to natural gas over an approximately 10-year period, with a minor contribution by hydropower. Three scenarios of urban air quality, specifically afternoon ozone concentrations, were simulated using the Weather Research and Forecasting (WRF-Chem) model. The first scenario used fuel oil and diesel for electricity production, which was the reality in 2008. The second scenario was based on the fuel mix from 2014, the most current year for which data were available. The third scenario considered nearly complete use of natural gas for electricity production, which is the anticipated future, possibly for 2018. For each case, inventories of anthropogenic emissions were based on electricity generation, refinery operations, and transportation. Transportation and refinery operations were held constant across the three scenarios to focus on effects of power plant fuel switching in a tropical context. The simulated NOx and CO emissions for the urban region decrease by 89 and 55 %, respectively, after the complete change in the energy matrix. The results of the simulations indicate that a change to natural gas significantly decreases maximum afternoon ozone concentrations over the population center, reducing ozone by > 70 % for the most polluted days. The sensitivity of ozone concentrations to the fuel switchover is consistent with a NOx-limited regime, as expected for a tropical forest having high emissions of biogenic volatile organic compounds, high water vapor concentrations, and abundant solar radiation. There are key differences in a shifting energy matrix in a tropical, forested environment compared to other world environments. Policies favoring the burning of

  14. Power plant fuel switching and air quality in a tropical, forested environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Adan S. S.; Calderaro, Gisele; Guimarães, Patricia C.

    How a changing energy matrix for electricity production affects air quality is considered for an urban region in a tropical, forested environment. Manaus, the largest city in the central Amazon Basin of Brazil, is in the process of changing its energy matrix for electricity production from fuel oil and diesel to natural gas over an approximately 10-year period, with a minor contribution by hydropower. Three scenarios of urban air quality, specifically afternoon ozone concentrations, were simulated using the Weather Research and Forecasting (WRF-Chem) model. The first scenario used fuel oil and diesel for electricity production, which was the reality inmore » 2008. The second scenario was based on the fuel mix from 2014, the most current year for which data were available. The third scenario considered nearly complete use of natural gas for electricity production, which is the anticipated future, possibly for 2018. For each case, inventories of anthropogenic emissions were based on electricity generation, refinery operations, and transportation. Transportation and refinery operations were held constant across the three scenarios to focus on effects of power plant fuel switching in a tropical context. The simulated NO x and CO emissions for the urban region decrease by 89 and 55 %, respectively, after the complete change in the energy matrix. The results of the simulations indicate that a change to natural gas significantly decreases maximum afternoon ozone concentrations over the population center, reducing ozone by >70 % for the most polluted days. The sensitivity of ozone concentrations to the fuel switchover is consistent with a NO x-limited regime, as expected for a tropical forest having high emissions of biogenic volatile organic compounds, high water vapor concentrations, and abundant solar radiation. There are key differences in a shifting energy matrix in a tropical, forested environment compared to other world environments. Therefore, policies favoring

  15. Design of a Helium Vapor Shroud for Liquid Hydrogen Fueling of an Unmanned Aerial Vehicle (UAV)

    NASA Astrophysics Data System (ADS)

    Cavender, K.; Evans, C.; Haney, J.; Leachman, J.

    2017-12-01

    Filling a vehicular liquid hydrogen fuel tank presents the potential for flammable mixtures due to oxygen concentration from liquid air condensation. Current liquid hydrogen tank designs utilize insulating paradigms such as aerogel/fiberglass materials, vacuum jackets, or inert gas purge systems to keep the outer surface from reaching the condensation temperature of air. This work examines the heat transfer at the refuelling connection of the tank to identify potential areas of condensation, as well as the surface temperature gradient. A shrouded inert gas purge was designed to minimize vehicle weight and refuelling time. The design of a shrouded inert gas purge system is presented to displace air preventing air condensation. The design investigates 3D printed materials for an inert gas shroud, as well as low-temperature sealing designs. Shroud designs and temperature profiles were measured and tested by running liquid nitrogen through the filling manifold. Materials for the inert gas shroud are discussed and experimental results are compared to analytical model predictions. Suggestions for future design improvements are made.

  16. Evaluation of Liquid Fuel Spray Models for Hybrid RANS/LES and DLES Prediction of Turbulent Reactive Flows

    NASA Astrophysics Data System (ADS)

    Afshar, Ali

    An evaluation of Lagrangian-based, discrete-phase models for multi-component liquid sprays encountered in the combustors of gas turbine engines is considered. In particular, the spray modeling capabilities of the commercial software, ANSYS Fluent, was evaluated. Spray modeling was performed for various cold flow validation cases. These validation cases include a liquid jet in a cross-flow, an airblast atomizer, and a high shear fuel nozzle. Droplet properties including velocity and diameter were investigated and compared with previous experimental and numerical results. Different primary and secondary breakup models were evaluated in this thesis. The secondary breakup models investigated include the Taylor analogy breakup (TAB) model, the wave model, the Kelvin-Helmholtz Rayleigh-Taylor model (KHRT), and the Stochastic secondary droplet (SSD) approach. The modeling of fuel sprays requires a proper treatment for the turbulence. Reynolds-averaged Navier-Stokes (RANS), large eddy simulation (LES), hybrid RANS/LES, and dynamic LES (DLES) were also considered for the turbulent flows involving sprays. The spray and turbulence models were evaluated using the available benchmark experimental data.

  17. Comparison of alternate fuels for aircraft

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1979-01-01

    A comparison of candidate alternate fuels for aircraft is presented. The fuels discussed include liquid hydrogen, liquid methane, and synthetic aviation kerosene. Each fuel is evaluated from the standpoint of production, transmission, airport storage and distribution facilities, and use in aircraft. Technology deficient areas for cryogenic fuels, which should be advanced prior to the introduction of the fuels into the aviation industry, are identified, as are the cost and energy penalties associated with not achieving those advances. Environmental emissions and safety aspects of fuel selection are discussed. A detailed description of the various fuel production and liquefaction processes and their efficiencies and economics is given.

  18. Quality Assurance Program Plan for SFR Metallic Fuel Data Qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benoit, Timothy; Hlotke, John Daniel; Yacout, Abdellatif

    2017-07-05

    This document contains an evaluation of the applicability of the current Quality Assurance Standards from the American Society of Mechanical Engineers Standard NQA-1 (NQA-1) criteria and identifies and describes the quality assurance process(es) by which attributes of historical, analytical, and other data associated with sodium-cooled fast reactor [SFR] metallic fuel and/or related reactor fuel designs and constituency will be evaluated. This process is being instituted to facilitate validation of data to the extent that such data may be used to support future licensing efforts associated with advanced reactor designs. The initial data to be evaluated under this program were generatedmore » during the US Integral Fast Reactor program between 1984-1994, where the data includes, but is not limited to, research and development data and associated documents, test plans and associated protocols, operations and test data, technical reports, and information associated with past United States Nuclear Regulatory Commission reviews of SFR designs.« less

  19. Direct carbon fuel cell and stack designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorte, Raymond J.; Oh, Tae-Sik

    Disclosed are novel configurations of Direct Carbon Fuel Cells (DCFCs), which optionally comprise a liquid anode. The liquid anode comprises a molten salt/metal, preferably Sb, and a fuel, which has significant elemental carbon content (coal, bio-mass, etc.). The supply of fuel is continuously replenished in the anode. In addition, a stack configuration is suggested where combining a large number of planar or tubular fuel elements.

  20. Onboard fuel reformers for fuel cell vehicles: Equilibrium, kinetic and system modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreutz, T.G.; Steinbugler, M.M.; Ogden, J.M.

    1996-12-31

    On-board reforming of liquid fuels to hydrogen for use in proton exchange membrane (PEM) fuel cell electric vehicles (FCEVs) has been the subject of numerous investigations. In many respects, liquid fuels represent a more attractive method of carrying hydrogen than compressed hydrogen itself, promising greater vehicle range, shorter refilling times, increased safety, and perhaps most importantly, utilization of the current fuel distribution infrastructure. The drawbacks of on-board reformers include their inherent complexity [for example a POX reactor includes: a fuel vaporizer, a reformer, water-gas shift reactors, a preferential oxidation (PROX) unit for CO cleanup, heat exchangers for thermal integration, sensorsmore » and controls, etc.], weight, and expense relative to compressed H{sub 2}, as well as degraded fuel cell performance due to the presence of inert gases and impurities in the reformate. Partial oxidation (POX) of automotive fuels is another alternative for hydrogen production. This paper provides an analysis of POX reformers and a fuel economy comparison of vehicles powered by on-board POX and SRM fuel processors.« less

  1. United States transportation fuel economics (1975 - 1995)

    NASA Technical Reports Server (NTRS)

    Alexander, A. D., III

    1975-01-01

    The United States transportation fuel economics in terms of fuel resources options, processing alternatives, and attendant economics for the period 1975 to 1995 are evaluated. The U.S. energy resource base is reviewed, portable fuel-processing alternatives are assessed, and selected future aircraft fuel options - JP fuel, liquid methane, and liquid hydrogen - are evaluated economically. Primary emphasis is placed on evaluating future aircraft fuel options and economics to provide guidance for future strategy of NASA in the development of aviation and air transportation research and technology.

  2. Formation of Platinum Catalyst on Carbon Black Using an In-Liquid Plasma Method for Fuel Cells.

    PubMed

    Show, Yoshiyuki; Ueno, Yutaro

    2017-01-31

    Platinum (Pt) catalyst was formed on the surface of carbon black using an in-liquid plasma method. The formed Pt catalyst showed the average particle size of 4.1 nm. This Pt catalyst was applied to a polymer electrolyte membrane fuel cell (PEMFC). The PEMFC showed an open voltage of 0.85 V and a maximum output power density of 216 mW/cm2.

  3. Formation of Platinum Catalyst on Carbon Black Using an In-Liquid Plasma Method for Fuel Cells

    PubMed Central

    Show, Yoshiyuki; Ueno, Yutaro

    2017-01-01

    Platinum (Pt) catalyst was formed on the surface of carbon black using an in-liquid plasma method. The formed Pt catalyst showed the average particle size of 4.1 nm. This Pt catalyst was applied to a polymer electrolyte membrane fuel cell (PEMFC). The PEMFC showed an open voltage of 0.85 V and a maximum output power density of 216 mW/cm2. PMID:28336864

  4. Fuel cell having dual electrode anode or cathode

    DOEpatents

    Findl, Eugene

    1985-01-01

    A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

  5. Fuel cell having dual electrode anode or cathode

    DOEpatents

    Findl, E.

    1984-04-10

    A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

  6. Stocking rate and fuels reduction effects on beef cattle diet composition and quality

    Treesearch

    Abe Clark; Tim DelCurto; Martin Vavra; Brian L. Dick

    2013-01-01

    An experiment was conducted to evaluate the influence of forest fuels reduction on diet quality, botanical composition, relative preference, and foraging efficiency of beef cattle grazing at different stocking rates. A split plot factorial design was used, with whole plots (3 ha) being fuel reduced or no treatment (control), and split plots (1 ha) within whole plots...

  7. Liquid uranium alloy-helium fission reactor

    DOEpatents

    Minkov, Vladimir

    1986-01-01

    This invention teaches a nuclear fission reactor having a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200.degree.-1800.degree. C. range, and even higher to 2500.degree. C., limited only by the thermal effectiveness of the structural materials, increasing the efficiency of power generation from the normal 30-35% with 300.degree.-500.degree. C. upper limit temperature to 50-65%. Irradiation of the circulating liquid fuel, as contrasted to only localized irradiation of a solid fuel, provides improved fuel utilization.

  8. Quality evaluation and control of end cap welds in PHWR fuel elements by ultrasonic examination

    NASA Astrophysics Data System (ADS)

    Choi, M. S.; Yang, M. S.

    1991-02-01

    The current quality control procedure of nuclear fuel end cap weld is mainly dependent on the destructive metallographic examination. A nondestructive examination technique, i.e., ultrasonic examination, has been developed to identify and evaluate weld discontinuities. A few interesting results of the weld quality evaluation by applying the developed ultrasonic examination technique to PHWR fuel welds are presented. In addition, the feasibility of the weld quality control by the ultrasonic examination is discussed. This study shows that the ultrasonic examination is effective and reliable method for detecting abnormal weld contours and weld discontinuities such as micro-fissure, crack, upset split and expulsion, and can be used as a quality control tool for the end cap welding process.

  9. Self Regulating Fiber Fuel Cell

    DTIC Science & Technology

    2010-08-16

    12000 68.2 77.4 24/7 Extreme Rigid liquid hydrogen fuel cell Medis 68 X 97 X 57 20000 53.2 108.1 Fiber Fuel Cell Flexible Individual fiber Honeywell...which allows hydrogen and water vapor to permeate freely but prevents liquids from entering or fuel particles from escaping. The SPM permeability...S is the solubility and D is the diffusivity. Solubility and diffusivity data vs. pressure for hydrogen in Nafion is not available in the literature

  10. Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter Emitted from Burning Kerosene, Liquid Petroleum Gas, and Wood Fuels in Household Cookstoves

    EPA Science Inventory

    This study measured polycyclic aromatic hydrocarbon (PAH) composition in particulate matter emissions from residential cookstoves. A variety of fuel and cookstove combinations were examined, including: (i) liquid petroleum gas (LPG), (ii) kerosene in a wick stove, (iii) wood (10%...

  11. Renewable liquid fuels from catalytic reforming of biomass-derived oxygenated hydrocarbons

    NASA Astrophysics Data System (ADS)

    Barrett, Christopher J.

    Diminishing fossil fuel reserves and growing concerns about global warming require the development of sustainable sources of energy. Fuels for use in the transportation sector must have specific physical properties that allow for efficient distribution, storage, and combustion; these requirements are currently fulfilled by petroleum-derived liquid fuels. The focus of this work has been the development of two new biofuels that have the potential to become widely used transportation fuels from carbohydrate intermediates. Our first biofuel has cetane numbers ranging from 63 to 97 and is comprised of C7 to C15 straight chain alkanes. These alkanes can be blended with diesel like fuels or with P-series biofuel. Production involves a solid base catalyzed aldol condensation with mixed Mg-Al-oxide between furfural or 5-hydroxymethylfurfural (HMF) and acetone, followed by hydrogenation over Pd/Al2O3, and finally hydrogenation/dehydration over Pt/SiO2-Al2O3. Water was the solvent for all process steps, except for the hydrogenation/dehydration stage where hexadecane was co-fed to spontaneously separate out all alkane products and eliminate the need for energy intensive distillation. A later optimization identified Pd/MgO-ZrO2 as a hydrothermally stable bifunctional catalyst to replace Pd/Al2O3 and the hydrothermally unstable Mg-Al-oxide catalysts along with optimizing process parameters, such as temperature and molar ratios of reactants to maximize yields to heavier alkanes. Our second biofuel involved creating an improved process to produce HMF through the acid-catalyzed dehydration of fructose in a biphasic reactor. Additionally, we developed a technique to further convert HMF into 2,5-dimethylfuran (DMF) by hydrogenolysis of C-O bonds over a copper-ruthenium catalyst. DMF has many properties that make it a superior blending agent to ethanol: it has a high research octane number at 119, a 40% higher energy density than ethanol, 20 K higher boiling point, and is insoluble in

  12. Plasma Reforming of Liquid Hydrocarbon Fuels in Non-Thermal Plasma-Liquid Systems

    DTIC Science & Technology

    2010-04-30

    microporous liquid which has a very large ratio of the plasma-liquid contact surface to the plasma volume. As is known the ultrasonic (US) cavitation is a very...effective method for creating micropores in liquid [17]. Therefore, the DGCLW with additional US pumping is also very interesting for research and...electrodes. Another PLS reactor was prepared with the DGCLW working with the air flow in the liquid under the induced microporous

  13. Laser absorption-scattering technique applied to asymmetric evaporating fuel sprays for simultaneous measurement of vapor/liquid mass distributions

    NASA Astrophysics Data System (ADS)

    Gao, J.; Nishida, K.

    2010-10-01

    This paper describes an Ultraviolet-Visible Laser Absorption-Scattering (UV-Vis LAS) imaging technique applied to asymmetric fuel sprays. Continuing from the previous studies, the detailed measurement principle was derived. It is demonstrated that, by means of this technique, cumulative masses and mass distributions of vapor/liquid phases can be quantitatively measured no matter what shape the spray is. A systematic uncertainty analysis was performed, and the measurement accuracy was also verified through a series of experiments on the completely vaporized fuel spray. The results show that the Molar Absorption Coefficient (MAC) of the test fuel, which is typically pressure and temperature dependent, is the major error source. The measurement error in the vapor determination has been shown to be approximately 18% under the assumption of constant MAC of the test fuel. Two application examples of the extended LAS technique were presented for exploring the dynamics and physical insight of the evaporating fuel sprays: diesel sprays injected by group-hole nozzles and gasoline sprays impinging on an inclined wall.

  14. Mesocarbon microbead based graphite for spherical fuel element to inhibit the infiltration of liquid fluoride salt in molten salt reactor

    NASA Astrophysics Data System (ADS)

    Zhong, Yajuan; Zhang, Junpeng; Lin, Jun; Xu, Liujun; Zhang, Feng; Xu, Hongxia; Chen, Yu; Jiang, Haitao; Li, Ziwei; Zhu, Zhiyong; Guo, Quangui

    2017-07-01

    Mesocarbon microbeads (MCMB) and quasi-isostatic pressing method were used to prepare MCMB based graphite (MG) for spherical fuel element to inhibit the infiltration of liquid fluoride salt in molten salt reactor (MSR). Characteristics of mercury infiltration and molten salt infiltration in MG were investigated and compared with A3-3 (graphite for spherical fuel element in high temperature gas cooled reactor) to identify the infiltration behaviors. The results indicated that MG had a low porosity about 14%, and an average pore diameter of 96 nm. Fluoride salt occupation of A3-3 (average pore diameter was 760 nm) was 10 wt% under 6.5 atm, whereas salt gain did not infiltrate in MG even up to 6.5 atm. It demonstrated that MG could inhibit the infiltration of liquid fluoride salt effectively. Coefficient of thermal expansion (CTE) of MG lies in 6.01 × 10-6 K-1 (α∥) and 6.15 × 10-6 K-1 (α⊥) at the temperature range of 25-700 °C. The anisotropy factor of MG calculated by CTE maintained below 1.02, which could meet the requirement of the spherical fuel element (below 1.30). The constant isotropic property of MG is beneficial for the integrity and safety of the graphite used in the spherical fuel element for a MSR.

  15. Development, optimization and validation of gas chromatographic fingerprinting of Brazilian commercial diesel fuel for quality control.

    PubMed

    dos Santos, Bruno César Diniz Brito; Flumignan, Danilo Luiz; de Oliveira, José Eduardo

    2012-10-01

    A three-step development, optimization and validation strategy is described for gas chromatography (GC) fingerprints of Brazilian commercial diesel fuel. A suitable GC-flame ionization detection (FID) system was selected to assay a complex matrix such as diesel. The next step was to improve acceptable chromatographic resolution with reduced analysis time, which is recommended for routine applications. Full three-level factorial designs were performed to improve flow rate, oven ramps, injection volume and split ratio in the GC system. Finally, several validation parameters were performed. The GC fingerprinting can be coupled with pattern recognition and multivariate regressions analyses to determine fuel quality and fuel physicochemical parameters. This strategy can also be applied to develop fingerprints for quality control of other fuel types.

  16. Rating hydrogen as a potential aviation fuel

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1980-01-01

    The viability of liquid hydrogen, liquid methane, and synthetic aviation kerosene as future alternate fuels for transport aircraft is analyzed, and the results of a comparative assessment are given in terms of cost, energy resource utilization, areas of fuel production, transmission airport facilities, and ultimate use in the aircraft. Important safety (fires) and some environmental aspects (CO2 balance) are also described. It is concluded that fuel price estimates indicate the price of synthetic aviation kerosene (synjet) would be approximately half of the price calculated for liquid hydrogen and somewhat less than that of liquid methane, with synjet from oil shale reported to be the least expensive.

  17. Alternative fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.; Butze, H. F.; Friedman, R.; Antoine, A. C.; Reynolds, T. W.

    1977-01-01

    Potential problems related to the use of alternative aviation turbine fuels are discussed and both ongoing and required research into these fuels is described. This discussion is limited to aviation turbine fuels composed of liquid hydrocarbons. The advantages and disadvantages of the various solutions to the problems are summarized. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source. The second solution is to minimize energy consumption at the refinery and keep fuel costs down by relaxing specifications.

  18. Methods of producing transportation fuel

    DOEpatents

    Nair, Vijay [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Cherrillo, Ralph Anthony [Houston, TX; Bauldreay, Joanna M [Chester, GB

    2011-12-27

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.

  19. Fuel-air munition and device

    DOEpatents

    Carlson, Gary A.

    1976-01-01

    An aerially delivered fuel-air munition consisting of an impermeable tank filled with a pressurized liquid fuel and joined at its two opposite ends with a nose section and a tail assembly respectively to complete an aerodynamic shape. On impact the tank is explosively ruptured to permit dispersal of the fuel in the form of a fuel-air cloud which is detonated after a preselected time delay by means of high explosive initiators ejected from the tail assembly. The primary component in the fuel is methylacetylene, propadiene, or mixtures thereof to which is added a small mole fraction of a relatively high vapor pressure liquid diluent or a dissolved gas diluent having a low solubility in the primary component.

  20. Alternative Fuel Research in Fischer-Tropsch Synthesis

    NASA Technical Reports Server (NTRS)

    Surgenor, Angela D.; Klettlinger, Jennifer L.; Yen, Chia H.; Nakley, Leah M.

    2011-01-01

    NASA Glenn Research Center has recently constructed an Alternative Fuels Laboratory which is solely being used to perform Fischer-Tropsch (F-T) reactor studies, novel catalyst development and thermal stability experiments. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch synthesis. The purpose of this test facility is to conduct bench scale Fischer-Tropsch (F-T) catalyst screening experiments while focusing on reducing energy inputs, reducing CO2 emissions and increasing product yields within the F-T process. Fischer-Tropsch synthesis is considered a gas to liquid process which reacts syn-gas (a gaseous mixture of hydrogen and carbon monoxide), over the surface of a catalyst material which is then converted into liquids of various hydrocarbon chain length and product distributions1. These hydrocarbons can then be further processed into higher quality liquid fuels such as gasoline and diesel. The experiments performed in this laboratory will enable the investigation of F-T reaction kinetics to focus on newly formulated catalysts, improved process conditions and enhanced catalyst activation methods. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor used solely for cobalt catalyst activation.

  1. Liquid fuels of high octane values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessup, P.J.

    1989-03-14

    This patent describes an unleaded fuel composition having an octane rating of about 100 or more, the fuel comprising toluene and alkylate and at least two further components selected from the group consisting of methyl tertiary-butyl ether, isopentane, and n-butane. It also describes a specific composition consisting of toluene, isopentane, alkylate, and MTBE.

  2. NON-CORROSIVE PLUTONIUM FUEL SYSTEMS

    DOEpatents

    Coffinberry, A.S.; Waber, J.T.

    1962-10-23

    An improved plutonium reactor liquid fuel is described for utilization in a nuclear reactor having a tantalum fuel containment vessel. The fuel consists of plutonium and a diluent such as iron, cobalt, nickel, cerium, cerium-- iron, cerium--cobalt, cerium--nickel, and cerium--copper, and an additive of carbon and silicon. The carbon and silicon react with the tantalum container surface to form a coating that is self-healing and prevents the corrosive action of liquid plutonium on the said tantalum container. (AEC)

  3. Liquid water breakthrough location distances on a gas diffusion layer of polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Yu, Junliang; Froning, Dieter; Reimer, Uwe; Lehnert, Werner

    2018-06-01

    The lattice Boltzmann method is adopted to simulate the three dimensional dynamic process of liquid water breaking through the gas diffusion layer (GDL) in the polymer electrolyte membrane fuel cell. 22 micro-structures of Toray GDL are built based on a stochastic geometry model. It is found that more than one breakthrough locations are formed randomly on the GDL surface. Breakthrough location distance (BLD) are analyzed statistically in two ways. The distribution is evaluated statistically by the Lilliefors test. It is concluded that the BLD can be described by the normal distribution with certain statistic characteristics. Information of the shortest neighbor breakthrough location distance can be the input modeling setups on the cell-scale simulations in the field of fuel cell simulation.

  4. Three-Dimensional Ignition and Flame Propagation Above Liquid Fuel Pools: Computational Analysis

    NASA Technical Reports Server (NTRS)

    Cai, Jinsheng; Sirignano, William A.

    2001-01-01

    A three-dimensional unsteady reactive Navier-Stokes code is developed to study the ignition and flame spread above liquid fuels initially below the flashpoint temperature. Opposed air flow to the flame spread due to forced and/or natural convection is considered. Pools of finite width and length are studied in air channels of prescribed height and width. Three-dimensional effects of the flame front near the edge of the pool are captured in the computation. The formation of a recirculation zone in the gas phase similar to that found in two-dimensional calculations is also present in the three-dimensional calculations. Both uniform spread and pulsating spread modes are found in the calculated results.

  5. Fuels reduction in a western coniferous forest: effects on quantity and quality of forage for elk

    Treesearch

    Ryan A. Long; Janet L. Rachlow; John G. Kie; Martin Vavra

    2008-01-01

    Use of mechanical thinning and prescribed fire to reduce fuels in dry forest ecosystems has become increasingly common in western North America. Nevertheless, few studies have quantified effects of fuels reduction treatments on wildlife. We evaluated effects of fuels reduction on quantity and quality of forage available to elk (Cervus elaphus) in...

  6. Process for stabilization of coal liquid fractions

    DOEpatents

    Davies, Geoffrey; El-Toukhy, Ahmed

    1987-01-01

    Coal liquid fractions to be used as fuels are stabilized against gum formation and viscosity increases during storage, permitting the fuel to be burned as is, without further expensive treatments to remove gums or gum-forming materials. Stabilization is accomplished by addition of cyclohexanol or other simple inexpensive secondary and tertiary alcohols, secondary and tertiary amines, and ketones to such coal liquids at levels of 5-25% by weight with respect to the coal liquid being treated. Cyclohexanol is a particularly effective and cost-efficient stabilizer. Other stabilizers are isopropanol, diphenylmethanol, tertiary butanol, dipropylamine, triethylamine, diphenylamine, ethylmethylketone, cyclohexanone, methylphenylketone, and benzophenone. Experimental data indicate that stabilization is achieved by breaking hydrogen bonds between phenols in the coal liquid, thereby preventing or retarding oxidative coupling. In addition, it has been found that coal liquid fractions stabilized according to the invention can be mixed with petroleum-derived liquid fuels to produce mixtures in which gum deposition is prevented or reduced relative to similar mixtures not containing stabilizer.

  7. Proceedings: Fourteenth annual EPRI conference on fuel science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-05-01

    EPRI's Fourteenth Annual Contractors' Conference on Fuel Science was held on May 18--19, 1989 in Palo Alto, CA. The conference featured results of work on coal science, coal liquefaction, methanol production, and coal oil coprocessing and coal upgrading. The following topics were discussed: recent development in coal liquefaction at the Wilsonville Clean Coal Research Center; British coal's liquid solvent extraction (LSE) process; feedstock reactivity in coal/oil co-processing; utility applications for coal-oil coprocessed fuels; effect of coal rank and quality on two-stage liquefaction; organic sulfur compounds in coals; the perchloroethylene refining process of high-sulfur coals; extraction of sulfur coals; extraction ofmore » sulfur from coal; agglomeration of bituminous and subbituminous coals; solubilization of coals by cell-free extracts derived from polyporus versicolor; remediation technologies and services; preliminary results from proof-of-concept testing of heavy liquid cyclone cleaning technology; clean-up of soil contaminated with tarry/oily organics; midwest ore processing company's coal benefication technology: recent prep plant, scale and laboratory activities; combustion characterization of coal-oil agglomerate fuels; status report on the liquid phase methanol project; biomimetic catalysis; hydroxylation of C{sub 2} {minus} C{sub 3} and cycloc{sub 6} hydrocarbons with Fe cluster catalysts as models for methane monooxygenase enzyme; methanol production scenarios; and modeling studies of the BNL low temperature methanol catalyst. Individual projects are processed separately for the data bases.« less

  8. Military utility of very large airplanes and alternative fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikolowsky, W.T.; Noggle, L.W.; Stanley, W.L.

    1977-09-01

    Synthetic chemical fuels and nuclear fuels were evaluated for use in very large airplanes (VLA's). Candidate fuels included synthetic jet fuel, liquid hydrogen, liquid methane, methanol, ethanol, ammonia, and gasoline. Airplane life-cycle costs and life-cycle energy consumption are estimated, and energy and cost effectiveness are evaluated. It is concluded that a synthetic conventional hydrocarbon jet fuel remains the most attractive for military aircraft. (PMA)

  9. Evaporation And Ignition Of Dense Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1988-01-01

    Simple theoretical model makes useful predictions of trends. Pair of reports presents theoretical model of evaporation and ignition of sprayed liquid fuel. Developed as part of research in combustion of oil and liquid fuels derived from coal, tar sand, and shale in furnace. Work eventually contributes to increase efficiency of combustion and decrease pollution generated by burning of such fuels.

  10. Ionic Liquid Fuels for Chemical Propulsion

    DTIC Science & Technology

    2014-11-20

    researchers seeking hypergolic fuels have limited themselves to the extremely toxic and corrosive nitric acid solutions. While important questions remain...storable oxidizer (N204 , nitric acid ) have been synthesized and demonstrated. The bipropellant fuels are based upon salts containing dicyanamide or...20-30% nanoparticle loading but decreases between 10-20%, perhaps indicating an optimal loading concentration for these nanoparticles between 10-20

  11. Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Charles J.; Cannella, William J.; Bruno, Thomas J.

    In this study, a novel approach was developed to formulate surrogate fuels having characteristics that are representative of diesel fuels produced from real-world refinery streams. Because diesel fuels typically consist of hundreds of compounds, it is difficult to conclusively determine the effects of fuel composition on combustion properties. Surrogate fuels, being simpler representations of these practical fuels, are of interest because they can provide a better understanding of fundamental fuel-composition and property effects on combustion and emissions-formation processes in internal-combustion engines. In addition, the application of surrogate fuels in numerical simulations with accurate vaporization, mixing, and combustion models could revolutionizemore » future engine designs by enabling computational optimization for evolving real fuels. Dependable computational design would not only improve engine function, it would do so at significant cost savings relative to current optimization strategies that rely on physical testing of hardware prototypes. The approach in this study utilized the stateof- the-art techniques of 13C and 1H nuclear magnetic resonance spectroscopy and the advanced distillation curve to characterize fuel composition and volatility, respectively. The ignition quality was quantified by the derived cetane number. Two wellcharacterized, ultra-low-sulfur #2 diesel reference fuels produced from refinery streams were used as target fuels: a 2007 emissions certification fuel and a Coordinating Research Council (CRC) Fuels for Advanced Combustion Engines (FACE) diesel fuel. A surrogate was created for each target fuel by blending eight pure compounds. The known carbon bond types within the pure compounds, as well as models for the ignition qualities and volatilities of their mixtures, were used in a multiproperty regression algorithm to determine optimal surrogate formulations. The predicted and measured surrogate-fuel properties were

  12. Experimental study of the form of "hot" steel particles on the ignition characteristics of liquid fuels

    NASA Astrophysics Data System (ADS)

    Zakharevich, Arkadiy V.

    2015-01-01

    The results of an experimental study of laws governing the ignition of liquid propellants (kerosene, diesel fuel and petroleum residue) by the single spherical steel particle heated to high temperatures are presented. Is carried out the comparison of the ignition delay times of the investigated flammable substances by the particles in the sphere and disk forms. It is established that the particle shape does not exert a substantial influence on the ignition process characteristics.

  13. Data quality objectives for the initial fuel conditioning examinations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, L.A.

    The Data Quality Objectives (DQOs) were established for the response of the first group of fuel samples shipped from the K West Basin to the Hanford 327 Building hot cells for examinations to the proposed Path Forward conditioning process. Controlled temperature and atmosphere furnace testing testing will establish performance parameters using the conditioning process (drying, sludge drying, hydride decomposition passivation) proposed by the Independent Technical Assessment (ITA) Team as the baseline.

  14. 136. VIEW OF LIQUID NITROGEN/HELIUM HEAT EXCHANGER IN LIQUID NITROGEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    136. VIEW OF LIQUID NITROGEN/HELIUM HEAT EXCHANGER IN LIQUID NITROGEN CONTROL ROOM (115), LSB (BLDG. 770), FROM FUEL APRON WITH BAY DOOR OPEN - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. Flame spread across liquid pools

    NASA Technical Reports Server (NTRS)

    Ross, Howard; Miller, Fletcher; Schiller, David; Sirignano, William A.

    1993-01-01

    For flame spread over liquid fuel pools, the existing literature suggests three gravitational influences: (1) liquid phase buoyant convection, delaying ignition and assisting flame spread; (2) hydrostatic pressure variation, due to variation in the liquid pool height caused by thermocapillary-induced convection; and (3) gas-phase buoyant convection in the opposite direction to the liquid phase motion. No current model accounts for all three influences. In fact, prior to this work, there was no ability to determine whether ignition delay times and flame spread rates would be greater or lesser in low gravity. Flame spread over liquid fuel pools is most commonly characterized by the relationship of the initial pool temperature to the fuel's idealized flash point temperature, with four or five separate characteristic regimes having been identified. In the uniform spread regime, control has been attributed to: (1) gas-phase conduction and radiation; (2) gas-phase conduction only; (3) gas-phase convection and liquid conduction, and most recently (4) liquid convection ahead of the flame. Suggestions were made that the liquid convection was owed to both vuoyancy and thermocapillarity. Of special interest to this work is the determination of whether, and under what conditions, pulsating spread can and will occur in microgravity in the absence of buoyant flows in both phases. The approach we have taken to resolving the importance of buoyancy for these flames is: (1) normal gravity experiments and advanced diagnostics; (2) microgravity experiments; and (3) numerical modelling at arbitrary gravitational level.

  16. Capacity enhancement of aqueous borohydride fuels for hydrogen storage in liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schubert, David; Neiner, Doinita; Bowden, Mark

    2015-10-01

    In this work we demonstrate enhanced hydrogen storage capacities through increased solubility of sodium borate product species in aqueous media achieved by adjusting the sodium (NaOH) to boron (B(OH) 3) ratio, i.e., M/B, to obtain a distribution of polyborate anions. For a 1:1 mole ratio of NaOH to B(OH) 3, M/B = 1, the ratio of the hydrolysis product formed from NaBH 4 hydrolysis, the sole borate species formed and observed by 11B NMR is sodium metaborate, NaB(OH) 4. When the ratio is 1:3 NaOH to B(OH) 3, M/B = 0.33, a mixture of borate anions is formed and observedmore » as a broad peak in the 11B NMR spectrum. The complex polyborate mixture yields a metastable solution that is difficult to crystallize. Given the enhanced solubility of the polyborate mixture formed when M/B = 0.33 it should follow that the hydrolysis of sodium octahydrotriborate, NaB 3H 8, can provide a greater storage capacity of hydrogen for fuel cell applications compared to sodium borohydride while maintaining a single phase. Accordingly, the hydrolysis of a 23 wt% NaB 3H 8 solution in water yields a solution having the same complex polyborate mixture as formed by mixing a 1:3 molar ratio of NaOH and B(OH) 3 and releases >8 eq of H 2. By optimizing the M/B ratio a complex mixture of soluble products, including B 3O 3(OH) 5 2-, B 4O 5(OH) 4 2-, B 3O 3(OH) 4-, B 5O 6(OH) 4- and B(OH) 3, can be maintained as a single liquid phase throughout the hydrogen release process. Consequently, hydrolysis of NaB 3H 8 can provide a 40% increase in H 2 storage density compared to the hydrolysis of NaBH 4 given the decreased solubility of sodium metaborate. The authors would like to thank Jim Sisco and Paul Osenar of Protonex Inc. for useful discussion regarding liquid hydrogen storage materials for portable power applications and the U.S. DoE Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies Office for their continued interest in liquid hydrogen storage carriers. Pacific Northwest

  17. Fuel-rich, catalytic reaction experimental results

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. James

    1991-01-01

    Future aeropropulsion gas turbine combustion requirements call for operating at very high inlet temperatures, pressures, and large temperature rises. At the same time, the combustion process is to have minimum pollution effects on the environment. Aircraft gas turbine engines utilize liquid hydrocarbon fuels which are difficult to uniformly atomize and mix with combustion air. An approach for minimizing fuel related problems is to transform the liquid fuel into gaseous form prior to the completion of the combustion process. Experimentally obtained results are presented for vaporizing and partially oxidizing a liquid hydrocarbon fuel into burnable gaseous components. The presented experimental data show that 1200 to 1300 K reaction product gas, rich in hydrogen, carbon monoxide, and light-end hydrocarbons, is formed when flowing 0.3 to 0.6 fuel to air mixes through a catalyst reactor. The reaction temperatures are kept low enough that nitrogen oxides and carbon particles (soot) do not form. Results are reported for tests using different catalyst types and configurations, mass flowrates, input temperatures, and fuel to air ratios.

  18. Information system of quality assessment for liquid and gaseous medium production

    NASA Astrophysics Data System (ADS)

    Bobrov, V. N.; Us, N. A.; Davidov, I. S.

    2018-05-01

    A method and a technical solution for controlling the quality of production of liquid and gaseous media is proposed. It is also proposed to monitor harmful factors in production while ensuring safe working conditions. Initially, using the mathematical model of an ideal atmosphere, the projection to the horizontal surface of the observation trajectory is calculated. At the second stage, the horizontal projection of the observation trajectory in real conditions is measured. The quality of the medium is judged by the difference between the projections of observation trajectories. The technical result is presented in the form of a device allowing obtaining information about the quality of the medium under investigation.

  19. Catalytic combustion of coal-derived liquids

    NASA Technical Reports Server (NTRS)

    Bulzan, D. L.; Tacina, R. R.

    1981-01-01

    A noble metal catalytic reactor was tested with three grades of SRC 2 coal derived liquids, naphtha, middle distillate, and a blend of three parts middle distillate to one part heavy distillate. A petroleum derived number 2 diesel fuel was also tested to provide a direct comparison. The catalytic reactor was tested at inlet temperatures from 600 to 800 K, reference velocities from 10 to 20 m/s, lean fuel air ratios, and a pressure of 3 x 10 to the 5th power Pa. Compared to the diesel, the naphtha gave slightly better combustion efficiency, the middle distillate was almost identical, and the middle heavy blend was slightly poorer. The coal derived liquid fuels contained from 0.58 to 0.95 percent nitrogen by weight. Conversion of fuel nitrogen to NOx was approximately 75 percent for all three grades of the coal derived liquids.

  20. LMFBR fuel assembly design for HCDA fuel dispersal

    DOEpatents

    Lacko, Robert E.; Tilbrook, Roger W.

    1984-01-01

    A fuel assembly for a liquid metal fast breeder reactor having an upper axial blanket region disposed in a plurality of zones within the fuel assembly. The characterization of a zone is dependent on the height of the axial blanket region with respect to the active fuel region. The net effect of having a plurality of zones is to establish a dispersal flow path for the molten materials resulting during a core meltdown accident. Upward flowing molten material can escape from the core region and/or fuel assembly without solidifying on the surface of fuel rods due to the heat sink represented by blanket region pellets.

  1. Short-Term Outlook for Hydrocarbon Gas Liquids

    EIA Publications

    2016-01-01

    U.S. liquid fuels production increased from 7.43 million barrels per day (b/d) in 2008 to 13.75 million b/d in 2015. However, the Short-Term Energy Outlook (STEO) expects liquid fuels production to decline to 12.99 million b/d in 2017, mainly as a result of prolonged low oil prices. The liquid fuels production forecast reflects a 1.24 million b/d decline in crude oil production by 2017 that is partially offset by a 450,000 b/d increase in the production of hydrocarbon gas liquids (HGL)—a group of products including ethane, propane, butane (normal and isobutane), natural gasoline, and refinery olefins. This analysis will discuss the outlook for each of these four HGL streams and related infrastructure projects through 2017.

  2. Progress on coal-derived fuels for aviation systems

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1978-01-01

    Synthetic aviation kerosene (Syn. Jet-A), liquid methane (LCH4), and liquid hydrogen (LH2) appear to be the most promising coal-derived fuels. Liquid hydrogen aircraft configurations, their fuel systems, and their ground requirements at the airport are identified. These aircraft appear viable, particularly for long haul use, where aircraft fueled with coal derived LH2 would consume 9 percent less coal resources than would aircraft fueled with coal derived Syn. Jet-A. Distribution of hydrogen from the point of manufacture to airports may pose problems. Synthetic JET-A would appear to cause fewer concerns to the air transportation industry. Of the three candidate fuels, LCH4 is the most energy efficient to produce, and an aircraft fueled with coal derived LCH4 may provide both the most efficient utilization of coal resources and the least expensive ticket as well.

  3. Characterization of Liquid Fuel Evaporation of a Lifted Methanol Spray Flame in a Vitiated Coflow Burner

    NASA Technical Reports Server (NTRS)

    Cabra, Ricardo; Dibble, Robert W.; Chen, Jyh-Yuan

    2002-01-01

    An experimental investigation of lifted spray flames in a coflow of hot, vitiated gases is presented. The vitiated coflow burner is a spray flame that issues into a coaxial flow of hot combustion products from a lean, premixed H2/Air flame. The spray flame in a vitiated coflow emulates the combustion that occurs in many advanced combustors without the detailed fluid mechanics. Two commercially available laser diagnostic systems are used to characterize the spray flame and to demonstrate the vitiated coflow burner's amenability to optical investigation. The Ensemble Particle Concentration and Size (EPCS) system is used to measure the path-average droplet size distribution and liquid volume fraction at several axial locations while an extractive probe instrument named the Real-time Fuel-air Analyzer (RFA) is used to measure the air to fuel ratio downstream of the spray nozzle with high temporal and spatial resolution. The effect of coflow conditions (stoichiometry) and dilution of the fuel with water was studied with the EPCS optical system. As expected, results show that water retards the evaporation and combustion of fuels. Measurements obtained by the RFA extractive probe show that while the Delavan manufactured nozzle does distribute the fuel over the manufacturer specified spray angle, it unfortunately does not distribute the fuel uniformly, providing conditions that may result in the production of unwanted NOx. Despite some limitations due to the inherent nature of the experimental techniques, the two diagnostics can be readily applied to spray flames in the vitiated coflow environment.

  4. Impacts of Particulate Pollution from Fossil Fuel and Biomass Burnings on the Air Quality and Human Health in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Lee, H. H.; Iraqui, O.; Gu, Y.; Yim, S. H. L.; Wang, C.

    2017-12-01

    Severe haze events in Southeast Asia have attracted the attention of governments and the general public in recent years, due to their impact on local economies, air quality and public health. Widespread biomass burning activities are a major source of severe haze events in Southeast Asia. On the other hand, particulate pollutants from human activities other than biomass burning also play an important role in degrading air quality in Southeast Asia. These pollutants can be locally produced or brought in from neighboring regions by long-range transport. A better understanding of the respective contributions of fossil fuel and biomass burning aerosols to air quality degradation becomes an urgent task in forming effective air pollution mitigation policies in Southeast Asia. In this study, to examine and quantify the contributions of fossil fuel and biomass burning aerosols to air quality and visibility degradation over Southeast Asia, we conducted three numerical simulations using the Weather Research and Forecasting (WRF) model coupled with a chemistry component (WRF-Chem). These simulations were driven by different aerosol emissions from: (a) fossil fuel burning only, (b) biomass burning only, and (c) both fossil fuel and biomass burning. By comparing the simulation results, we examined the corresponding impacts of fossil fuel and biomass burning emissions, separately and combined, on the air quality and visibility of the region. The results also showed that the major contributors to low visibility days (LVDs) among 50 ASEAN cities are fossil fuel burning aerosols (59%), while biomass burning aerosols provided an additional 13% of LVDs in Southeast Asia. In addition, the number of premature mortalities among ASEAN cities has increased from 4110 in 2002 to 6540 in 2008, caused primarily by fossil fuel burning aerosols. This study suggests that reductions in both fossil fuel and biomass burning emissions are necessary to improve the air quality in Southeast Asia.

  5. Alternative Fuels Data Center

    Science.gov Websites

    mixture containing at least 85% methanol, denatured ethanol, or other alcohols; natural gas, propane , hydrogen, or coal derived liquid fuels; or fuels derived from biological materials. PEVs are defined as

  6. Fiber-Optic Determination of N2, O2, and Fuel Vapor in the Ullage of Liquid-Fuel Tanks

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    2008-01-01

    A fiber-optic sensor system has been developed that can remotely measure the concentration of molecular oxygen (O2), nitrogen (N2), hydrocarbon vapor, and other gases (CO2, CO, H2O, chlorofluorocarbons, etc.) in the ullage of a liquid-fuel tank. The system provides an accurate and quantitative identification of the above gases with an accuracy of better than 1 percent by volume (for O2 or N2) in real-time (5 seconds). In an effort to prevent aircraft fuel tank fires or explosions similar to the tragic TWA Flight 800 explosion in 1996, OBIGGS are currently being developed for large commercial aircraft to prevent dangerous conditions from forming inside fuel tanks by providing an inerting gas blanket that is low in oxygen, thus preventing the ignition of the fuel/air mixture in the ullage. OBIGGS have been used in military aircraft for many years and are now standard equipment on some newer large commercial aircraft (such as the Boeing 787). Currently, OBIGGS are being developed for retrofitting to existing commercial aircraft fleets in response to pending mandates from the FAA. Most OBIGGS use an air separation module (ASM) that separates O2 from N2 to make nitrogen-enriched air from compressed air flow diverted from the engine (bleed air). Current OBIGGS systems do not have a closed-loop feedback control, in part, due to the lack of suitable process sensors that can reliably measure N2 or O2 and at the same time, do not constitute an inherent source of ignition. Thus, current OBIGGS operate with a high factor-of-safety dictated by process protocol to ensure adequate fuel-tank inerting. This approach is inherently inefficient as it consumes more engine bleed air than is necessary compared to a closed-loop controlled approach. The reduction of bleed air usage is important as it reduces fuel consumption, which translates to both increased flight range and lower operational costs. Numerous approaches to developing OBIGGS feedback-control sensors have been under

  7. Chemical Reactivity Testing for the National Spent Nuclear Fuel Program. Quality Assurance Project Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newsom, H.C.

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of Work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, QA-101PD, revision 1, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will be noted.

  8. Energy-dense liquid fuel intermediates by pyrolysis of guayule (Parthenium argentatum) shrub and bagasse

    USDA-ARS?s Scientific Manuscript database

    Guayule is a perennial shrub grown in the southwestern United States that is used to produce high quality, natural rubber latex. However, only about 10% of the plant material is used for latex production; the remaining biomass, called bagasse, can be used for renewable fuel production. Fast pyroly...

  9. The Direct Methanol Liquid-Feed Fuel Cell

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald

    1997-01-01

    Until the early 1990's the idea of a practical direct methanol fuel cell from transportation and other applications was just that, an idea. Several types of fuel cells that operate under near ambient conditions were under development.

  10. Effect of Fuel Additives on Spray Performance of Alternative Jet Fuels

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza

    2015-11-01

    Role of alternative fuels on reducing the combustion pollutants is gaining momentum in both land and air transport. Recent studies have shown that addition of nanoscale metal particles as fuel additives to liquid fuels have a positive effect not only on their combustion performance but also in reducing the pollutant formation. However, most of those studies are still in the early stages of investigation with the addition of nanoparticles at low weight percentages. Such an addition can affect the hydrodynamic and thermo-physical properties of the fuel. In this study, the near nozzle spray performance of gas-to-liquid jet fuel with and without the addition of alumina nanoparticles are investigated at macro- and microscopic levels using optical diagnostic techniques. At macroscopic level, the addition of nanoparticles is seen to enhance the sheet breakup process when compared to that of the base fuel. Furthermore, the microscopic spray characteristics such as droplet size and velocity are also found to be affected. Although the addition of nanoscale metal particles at low weight percentages does not affect the bulk fluid properties, the atomization process is found to be affected in the near nozzle region. Funded by Qatar National Research Fund.

  11. Solids precipitation and polymerization of asphaltenes in coal-derived liquids

    DOEpatents

    Kydd, Paul H.

    1984-01-01

    The precipitation and removal of particulate solids from coal-derived liquids by adding a process-derived anti-solvent liquid fraction and continuing the precipitation process at a temperature above the melting point of the mixed liquids for sufficient time to allow the asphaltenes to polymerize and solids to settle at atmospheric pressure conditions. The resulting clarified light hydrocarbon overflow liquid contains less than about 0.02 W % ash and is suitable as turbine fuel or as boiler fuel for burning without particulate emission control equipment. An underflow liquid fraction containing less than about 0.1 W % solids along with low sulfur and nitrogen concentrations is suitable as a boiler fuel with emission control equipment.

  12. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOEpatents

    Vogt, Robert L.

    1981-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  13. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOEpatents

    Vogt, Robert L.

    1985-02-12

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  14. Enhancing the properties of Fischer-Tropsch fuel produced from syngas over Co/SiO2 catalyst: Lubricity and Calorific Value

    NASA Astrophysics Data System (ADS)

    Doustdar, O.; Wyszynski, M. L.; Mahmoudi, H.; Tsolakis, A.

    2016-09-01

    Bio-fuel produced from renewable sources is considered the most viable alternatives for the replacement of mineral diesel fuel in compression ignition engines. There are several options for biomass derived fuels production involving chemical, biological and thermochemical processes. One of the best options is Fischer Tropsch Synthesis, which has an extensive history of gasoline and diesel production from coal and natural gas. FTS fuel could be one of the best solutions to the fuel emission due to its high quality. FTS experiments were carried out in 16 different operation conditions. Mini structured vertical downdraft fixed bed reactor was used for the FTS. Instead of Biomass gasification, a simulated N2 -rich syngas cylinder of, 33% H2 and 50% N2 was used. FT fuels products were analyzed in GCMS to find the hydrocarbon distributions of FT fuel. Calorific value and lubricity of liquid FT product were measured and compared with commercial diesel fuel. Lubricity has become an important quality, particularly for biodiesel, due to higher pressures in new diesel fuel injection (DFI) technology which demands better lubrication from the fuel and calorific value which is amount of energy released in combustion paly very important role in CI engines. Results show that prepared FT fuel has desirable properties and it complies with standard values. FT samples lubricities as measured by ASTM D6079 standard vary from 286μm (HFRR scar diameter) to 417μm which are less than limit of 520μm. Net Calorific value for FT fuels vary from 9.89 MJ/kg to 43.29 MJ/kg, with six of the samples less than EN 14213 limit of 35MJ/kg. Effect of reaction condition on FT fuel properties was investigated which illustrates that in higher pressure Fischer-Tropsch reaction condition liquid product has better properties.

  15. One‐Step Reforming of CO2 and CH4 into High‐Value Liquid Chemicals and Fuels at Room Temperature by Plasma‐Driven Catalysis

    PubMed Central

    Wang, Li; Yi, Yanhui; Wu, Chunfei; Guo, Hongchen

    2017-01-01

    Abstract The conversion of CO2 with CH4 into liquid fuels and chemicals in a single‐step catalytic process that bypasses the production of syngas remains a challenge. In this study, liquid fuels and chemicals (e.g., acetic acid, methanol, ethanol, and formaldehyde) were synthesized in a one‐step process from CO2 and CH4 at room temperature (30 °C) and atmospheric pressure for the first time by using a novel plasma reactor with a water electrode. The total selectivity to oxygenates was approximately 50–60 %, with acetic acid being the major component at 40.2 % selectivity, the highest value reported for acetic acid thus far. Interestingly, the direct plasma synthesis of acetic acid from CH4 and CO2 is an ideal reaction with 100 % atom economy, but it is almost impossible by thermal catalysis owing to the significant thermodynamic barrier. The combination of plasma and catalyst in this process shows great potential for manipulating the distribution of liquid chemical products in a given process. PMID:28842938

  16. Determining air quality and greenhouse gas impacts of hydrogen infrastructure and fuel cell vehicles.

    PubMed

    Stephens-Romero, Shane; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald; Samuelsen, Scott

    2009-12-01

    Adoption of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion engine (ICE) vehicles has been proposed as a strategy to reduce criteria pollutant and greenhouse gas (GHG) emissions from the transportation sector and transition to fuel independence. However, it is uncertain (1) to what degree the reduction in criteria pollutants will impact urban air quality, and (2) how the reductions in pollutant emissions and concomitant urban air quality impacts compare to ultralow emission gasoline-powered vehicles projected for a future year (e.g., 2060). To address these questions, the present study introduces a "spatially and temporally resolved energy and environment tool" (STREET) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure and HFCVs at a high level of geographic and temporal resolution. To demonstrate the utility of STREET, two spatially and temporally resolved scenarios for hydrogen infrastructure are evaluated in a prototypical urban airshed (the South Coast Air Basin of California) using geographic information systems (GIS) data. The well-to-wheels (WTW) GHG emissions are quantified and the air quality is established using a detailed atmospheric chemistry and transport model followed by a comparison to a future gasoline scenario comprised of advanced ICE vehicles. One hydrogen scenario includes more renewable primary energy sources for hydrogen generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen generation, distribution, and fueling strategies. GHG emissions reductions range from 61 to 68% for both hydrogen scenarios in parallel with substantial improvements in urban air quality (e.g., reductions of 10 ppb in peak 8-h-averaged ozone and 6 mug/m(3) in 24-h-averaged particulate matter concentrations, particularly in regions of the airshed where concentrations are highest for the gasoline scenario).

  17. Optical Fuel Injector Patternation Measurements in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.

    1998-01-01

    Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. For one injector, further comparison is also made with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.

  18. Fuel cell membrane humidification

    DOEpatents

    Wilson, Mahlon S.

    1999-01-01

    A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

  19. Catalytic oxidative desulfurization of liquid hydrocarbon fuels using air

    NASA Astrophysics Data System (ADS)

    Sundararaman, Ramanathan

    Conventional approaches to oxidative desulfurization of liquid hydrocarbons involve use of high-purity, expensive water soluble peroxide for oxidation of sulfur compounds followed by post-treatment for removal of oxidized sulfones by extraction. Both are associated with higher cost due to handling, storage of oxidants and yield loss with extraction and water separation, making the whole process more expensive. This thesis explores an oxidative desulfurization process using air as an oxidant followed by catalytic decomposition of sulfones thereby eliminating the aforementioned issues. Oxidation of sulfur compounds was realized by a two step process in which peroxides were first generated in-situ by catalytic air oxidation, followed by catalytic oxidation of S compounds using the peroxides generated in-situ completing the two step approach. By this technique it was feasible to oxidize over 90% of sulfur compounds present in real jet (520 ppmw S) and diesel (41 ppmw S) fuels. Screening of bulk and supported CuO based catalysts for peroxide generation using model aromatic compound representing diesel fuel showed that bulk CuO catalyst was more effective in producing peroxides with high yield and selectivity. Testing of three real diesel fuels obtained from different sources for air oxidation over bulk CuO catalyst showed different level of effectiveness for generating peroxides in-situ which was consistent with air oxidation of representative model aromatic compounds. Peroxides generated in-situ was then used as an oxidant to oxidize sulfur compounds present in the fuel over MoO3/SiO2 catalyst. 81% selectivity of peroxides for oxidation of sulfur compounds was observed on MoO3/SiO2 catalyst at 40 °C and under similar conditions MoO3/Al2O3 gave only 41% selectivity. This difference in selectivity might be related to the difference in the nature of active sites of MoO3 on SiO2 and Al2O 3 supports as suggested by H2-TPR and XRD analyses. Testing of supported and bulk Mg

  20. Advanced thermally stable jet fuels: Technical progress report, October 1994--December 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schobert, H.H.; Eser, S.; Song, C.

    There are five tasks within this project on thermally stable coal-based jet fuels. Progress on each of the tasks is described. Task 1, Investigation of the quantitative degradation chemistry of fuels, has 5 subtasks which are described: Literature review on thermal stability of jet fuels; Pyrolytic and catalytic reactions of potential endothermic fuels: cis- and trans-decalin; Use of site specific {sup 13}C-labeling to examine the thermal stressing of 1-phenylhexane: A case study for the determination of reaction kinetics in complex fuel mixtures versus model compound studies; Estimation of critical temperatures of jet fuels; and Surface effects on deposit formation inmore » a flow reactor system. Under Task 2, Investigation of incipient deposition, the subtask reported is Uncertainty analysis on growth and deposition of particles during heating of coal-derived aviation gas turbine fuels; under Task 3, Characterization of solid gums, sediments, and carbonaceous deposits, is subtask, Studies of surface chemistry of PX-21 activated carbon during thermal degradation of jet A-1 fuel and n-dodecane; under Task 4, Coal-based fuel stabilization studies, is subtask, Exploratory screening and development potential of jet fuel thermal stabilizers over 400 C; and under Task 5, Exploratory studies on the direct conversion of coal to high quality jet fuels, are 4 subtasks: Novel approaches to low-severity coal liquefaction and coal/resid co-processing using water and dispersed catalysts; Shape-selective naphthalene hydrogenation for production of thermally stable jet fuels; Design of a batch mode and a continuous mode three-phase reactor system for the liquefaction of coal and upgrading of coal liquids; and Exploratory studies on coal liquids upgrading using mesopores molecular sieve catalysts. 136 refs., 69 figs., 24 tabs.« less

  1. The influence of temperature on the formation of liquid fuel from Polypropylene plastic wastes

    NASA Astrophysics Data System (ADS)

    Martynis, M.; Mulyazmi; Praputri, E.; Witri, R.; Putri, N.

    2018-03-01

    The current trend of municipal waste management in urban areas is caused by rapid changes in social, economic, political and cultural life. As a non-biodegradable polymers that have become essential materials, plastic wastes have created a very serious environmental challenge because of the huge quantities and their disposal problems. Recycling of plastics is seen as one method for reducing environmental and resource depletion. The most attractive technique of plastics recycling is pyrolysis involving the degradation of the polymeric materials by heating in the absence of oxygen. This study investigated the characteristics of pyrolysis liquid fuel (PLF) produced from polypropylene plastic wastes with temperature variations. Pyrolisis was carried out on 200 grams of polypropylene waste plastics at the operating temperature of 200°C, 250°C, 300 °C and 350 °C for 45 minutes. The liquid products were found to have carbon chain length in the range of C8-C9, similar with gasoline. The maximum density, volume and calorific value of the oil obtained were 0.8 g/cm3, 61 ml and 1307 cal/gr, respectively.

  2. Ignition of deuterium-trtium fuel targets

    DOEpatents

    Musinski, Donald L.; Mruzek, Michael T.

    1991-01-01

    A method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom.

  3. Lean direct wall fuel injection method and devices

    NASA Technical Reports Server (NTRS)

    Choi, Kyung J. (Inventor); Tacina, Robert (Inventor)

    2000-01-01

    A fuel combustion chamber, and a method of and a nozzle for mixing liquid fuel and air in the fuel combustion chamber in lean direct injection combustion for advanced gas turbine engines, including aircraft engines. Liquid fuel in a form of jet is injected directly into a cylindrical combustion chamber from the combustion chamber wall surface in a direction opposite to the direction of the swirling air at an angle of from about 50.degree. to about 60.degree. with respect to a tangential line of the cylindrical combustion chamber and at a fuel-lean condition, with a liquid droplet momentum to air momentum ratio in the range of from about 0.05 to about 0.12. Advanced gas turbines benefit from lean direct wall injection combustion. The lean direct wall injection technique of the present invention provides fast, uniform, well-stirred mixing of fuel and air. In addition, in order to further improve combustion, the fuel can be injected at a venturi located in the combustion chamber at a point adjacent the air swirler.

  4. Consolidated fuel reprocessing program

    NASA Astrophysics Data System (ADS)

    1985-04-01

    A survey of electrochemical methods applications in fuel reprocessing was completed. A dummy fuel assembly shroud was cut using the remotely operated laser disassembly equipment. Operations and engineering efforts have continued to correct equipment operating, software, and procedural problems experienced during the previous uranium compaigns. Fuel cycle options were examined for the liquid metal reactor fuel cycle. In high temperature gas cooled reactor spent fuel studies, preconceptual designs were completed for the concrete storage cask and open field drywell storage concept. These and other tasks operating under the consolidated fuel reprocessing program are examined.

  5. Low NOx heavy fuel combustor concept program addendum: Low/mid heating value gaseous fuel evaluation

    NASA Technical Reports Server (NTRS)

    Novick, A. S.; Troth, D. L.

    1982-01-01

    The combustion performance of a rich/quench/lean (RQL) combustor was evaluated when operated on low and mid heating value gaseous fuels. Two synthesized fuels were prepared having lower heating values of 10.2 MJ/cu m. (274 Btu/scf) and 6.6 MJ/cu m (176 Btu/scf). These fuels were configured to be representative of actual fuels, being composed primarily of nitrogen, hydrogen, carbon monoxide, and carbon dioxide. A liquid fuel air assist fuel nozzle was modified to inject both of the gaseous fuels. The RQL combustor liner was not changed from the configuration used when the liquid fuels were tested. Both gaseous fuels were tested over a range of power levels from 50 percent load to maximum rated power of the DDN Model 570-K industrial gas turbine engine. Exhaust emissions were recorded for four power level at several rich zone equivalence ratios to determine NOx sensitivity to the rich zone operating point. For the mid Btu heating value gas, ammonia was added to the fuel to simulate a fuel bound nitrogen type gaseous fuel. Results at the testing showed that for the low heating value fuel NOx emissions were all below 20 ppmc and smoke was below a 10 smoke number. For the mid heating value fuel, NOx emissions were in the 50 to 70 ppmc range with the smoke below a 10 smoke number.

  6. Low Cost High-H 2 Syngas Production for Power and Liquid Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, S. James

    2015-07-31

    This report summarizes the technical progress made of the research project entitled “Low Cost High-H2 Syngas Production for Power and Liquid Fuels,” under DOE Contract No. DE-FE-0011958. The period of performance was October 1, 2013 through July 30, 2015. The overall objectives of this project was to determine the technical and economic feasibility of a systems approach for producing high hydrogen syngas from coal with the potential to reduce significantly the cost of producing power, chemical-grade hydrogen or liquid fuels, with carbon capture to reduce the environmental impact of gasification. The project encompasses several areas of study and the resultsmore » are summarized here. (1) Experimental work to determine the technical feasibility of a novel hybrid polymer/metal H2-membrane to recover pure H2 from a coal-derived syngas was done. This task was not successful. Membranes were synthesized and show impermeability of any gases at required conditions. The cause of this impermeability was most likely due to the densification of the porous polymer membrane support made from polybenzimidazole (PBI) at test temperatures above 250 °C. (2) Bench-scale experimental work was performed to extend GTI's current database on the University of California Sulfur Recovery Process-High Pressure (UCSRP-HP) and recently renamed Sulfur Removal and Recovery (SR2) process for syngas cleanup including removal of sulfur and other trace contaminants, such as, chlorides and ammonia. The SR2 process tests show >90% H2S conversion with outlet H2S concentrations less than 4 ppmv, and 80-90% ammonia and chloride removal with high mass transfer rates. (3) Techno-economic analyses (TEA) were done for the production of electric power, chemical-grade hydrogen and diesel fuels, from a mixture of coal- plus natural gas-derived syngas using the Aerojet Rocketdyne (AR) Advanced Compact coal gasifier and a natural gas partial oxidation reactor (POX) with SR2 technology. Due to the

  7. Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil.

    PubMed

    Hassan, H; Lim, J K; Hameed, B H

    2016-12-01

    Co-pyrolysis of biomass with abundantly available materials could be an economical method for production of bio-fuels. However, elimination of oxygenated compounds poses a considerable challenge. Catalytic co-pyrolysis is another potential technique for upgrading bio-oils for application as liquid fuels in standard engines. This technique promotes the production of high-quality bio-oil through acid catalyzed reduction of oxygenated compounds and mutagenic polyaromatic hydrocarbons. This work aims to review and summarize research progress on co-pyrolysis and catalytic co-pyrolysis, as well as their benefits on enhancement of bio-oils derived from biomass. This review focuses on the potential of plastic wastes and coal materials as co-feed in co-pyrolysis to produce valuable liquid fuel. This paper also proposes future directions for using this technique to obtain high yields of bio-oils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Alternative Fuel for Portland Cement Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burnmore » characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were

  9. Analytical and experimental investigation of rubbing interaction in labyrinth seals for a liquid hydrogen fuel pump. [space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Dolan, F. X.; Kennedy, F. E.; Schulson, E. M.

    1984-01-01

    Cracking of the titanium knife edges on the labyrinth seals of the liquid hydrogen fuel pump in the Space Shuttle main engine is considered. Finite element analysis of the thermal response of the knife edge in sliding contact with the wear ring surface shows that interfacial temperatures can be quite high and they are significantly influenced by the thermal conductivity of the surfaces in rubbing contact. Thermal shock experiments on a test specimen similar to the knife edge geometry demonstrate that cracking of the titanium alloy is possible in a situation involving repeated thermal cycles over a wide temperature range, as might be realized during a rub in the liquid hydrogen fuel pump. High-speed rub interaction tests were conducted using a representative knife edge and seal geometry over a broad range of interaction rates and alternate materials were experimentally evaluated. Plasma-sprayed aluminum-graphite was found to be significantly better than presently used aluminum alloy seals from the standpoint of rub performance. Ion nitriding the titanium alloy knife-edges also improved rub performance compared to the untreated baseline.

  10. Experimental Altitude Performance of JP-4 Fuel and Liquid-Oxygen Rocket Engine with an Area Ratio of 48

    NASA Technical Reports Server (NTRS)

    Fortini, Anthony; Hendrix, Charles D.; Huff, Vearl N.

    1959-01-01

    The performance for four altitudes (sea-level, 51,000, 65,000, and 70,000 ft) of a rocket engine having a nozzle area ratio of 48.39 and using JP-4 fuel and liquid oxygen as a propellant was evaluated experimentally by use of a 1000-pound-thrust engine operating at a chamber pressure of 600 pounds per square inch absolute. The altitude environment was obtained by a rocket-ejector system which utilized the rocket exhaust gases as the pumping fluid of the ejector. Also, an engine having a nozzle area ratio of 5.49 designed for sea level was tested at sea-level conditions. The following table lists values from faired experimental curves at an oxidant-fuel ratio of 2.3 for various approximate altitudes.

  11. Liquid uranium alloy-helium fission reactor

    DOEpatents

    Minkov, V.

    1984-06-13

    This invention describes a nuclear fission reactor which has a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200 to 1800/sup 0/C range, and even higher to 2500/sup 0/C.

  12. 49 CFR 393.67 - Liquid fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... section. The rules in this section apply to tanks containing or supplying fuel for the operation of... leak more than a total of one ounce by weight of fuel per minute in any position the tank assumes...) Drop test—(i) Procedure. Fill the tank with a quantity of water having a weight equal to the weight of...

  13. Spray visualization of alternative fuels at hot ambient conditions

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza

    2017-11-01

    Gas-to-Liquid (GTL) has gained significant interest as drop-in alternative jet fuel owing to its cleaner combustion characteristics. The physical and evaporation properties of GTL fuels are different from those of the conventional jet fuels. Those differences will have an effect on the spray, and in turn, the combustion performance. In this study, the non-reacting near nozzle spray dynamics such as spray cone angle, liquid sheet breakup and liquid velocity of GTL fuel will be investigated and compared with those of the conventional jet fuel. This work is a follow up of the preliminary study performed at atmospheric ambient conditions where differences were observed in the near nozzle spray characteristics between the fuels. Whereas, in this study the spray visualization will be performed in a hot and inert environment to account for the difference in evaporation characteristics of the fuels. The spray visualization images will be captured using the shadowgraph technique. A rigorous statistical analysis of the images will be performed to compare the spray dynamics between the fuels.

  14. Biodiesel production using alkaline ionic liquid and adopted as lubricity additive for low-sulfur diesel fuel.

    PubMed

    Luo, Hui; Fan, Weiyu; Li, Yang; Nan, Guozhi

    2013-07-01

    Preparation of biodiesel from vegetable oils, such as rapeseed oil, soybean oil and sunflower oil, catalyzed by an alkaline ionic liquid 1-butyl-3-methylimidazolium imidazolide ([Bmim]Im) was investigated in this work. The results demonstrated that [Bmim]Im exhibited high activity and the yield of biodiesel was up to 95% or more when molar ratio of methanol to vegetable oil was 6:1, ionic liquid dosage was 6 wt.%, reaction temperature was 60°C, and reaction time was 60 min. After [Bmim]Im was used for the sixth time, the yield of biodiesel still remained at about 95%. The effects of the biodiesels on the lubricity of low-sulfur diesel fuel were also investigated using the High Frequency Reciprocating Rig method, and the results showed that sunflower biodiesel and soybean biodiesel had higher lubrication performance than that of rapeseed biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Urban airshed modeling of air quality impacts of alternative transportation fuel use in Los Angeles and Atlanta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-01

    The main objective of NREL in supporting this study is to determine the relative air quality impact of the use of compressed natural gas (CNG) as an alternative transportation fuel when compared to low Reid vapor pressure (RVP) gasoline and reformulated gasoline (RFG). A table lists the criteria, air toxic, and greenhouse gas pollutants for which emissions were estimated for the alternative fuel scenarios. Air quality impacts were then estimated by performing photochemical modeling of the alternative fuel scenarios using the Urban Airshed Model Version 6.21 and the Carbon Bond Mechanism Version IV (CBM-IV) (Geary et al., 1988) Using thismore » model, the authors examined the formation and transport of ozone under alternative fuel strategies for motor vehicle transportation sources for the year 2007. Photochemical modeling was performed for modeling domains in Los Angeles, California, and Atlanta, Georgia.« less

  16. Investigation of critical burning of fuel droplets

    NASA Technical Reports Server (NTRS)

    Allison, C. B.; Canada, G. S.; Faeth, G. M.

    1972-01-01

    Measurements were made on the burning of liquid hydrazine, MMH, and UDMH in a combustion gas environment. The experimental range of these tests involved gas temperatures of 1660-2530 K, oxygen concentrations of 0-42% by mass and droplet diameters (employing both droplets and porous spheres) of 0.11-1.91 cm. at atmospheric pressure. A simplified hybrid combustion theory was developed which was found to correlate the present results as well as the experimental measurements of other investigators. Measurements were also made of the monopropellant strand burning rates and liquid surface temperatures of a number of nitrate ester fuels and hydrazine at elevated pressures. The temperature measurements for the nitrate esters were found to be in good agreement with a theoretical model which allowed for gas solubility in the liquid phase at high pressures. Experimental results were also obtained on the burning rates and liquid surface temperatures of a number of paraffin and alcohol fuels burning in air pressures up to 72 atm. For these tests, the fuels were burned from porous spheres in a natural convection environment. Initial findings on a pressurized flat flame burner are also described as well as the design of an oscillatory combustion apparatus to test the response of burning liquid fuels.

  17. Low cost, lightweight fuel cell elements

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor)

    2001-01-01

    New fuel cell elements for use in liquid feed fuel cells are provided. The elements including biplates and endplates are low in cost, light in weight, and allow high efficiency operation. Electrically conductive elements are also a part of the fuel cell elements.

  18. Ignition of deuterium-tritium fuel targets

    DOEpatents

    Musinski, D.L.; Mruzek, M.T.

    1991-08-27

    Disclosed is a method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom. 5 figures.

  19. Hydrogen fuel - Universal energy

    NASA Astrophysics Data System (ADS)

    Prince, A. G.; Burg, J. A.

    The technology for the production, storage, transmission, and consumption of hydrogen as a fuel is surveyed, with the physical and chemical properties of hydrogen examined as they affect its use as a fuel. Sources of hydrogen production are described including synthesis from coal or natural gas, biomass conversion, thermochemical decomposition of water, and electrolysis of water, of these only electrolysis is considered economicially and technologically feasible in the near future. Methods of production of the large quantities of electricity required for the electrolysis of sea water are explored: fossil fuels, hydroelectric plants, nuclear fission, solar energy, wind power, geothermal energy, tidal power, wave motion, electrochemical concentration cells, and finally ocean thermal energy conversion (OTEC). The wind power and OTEC are considered in detail as the most feasible approaches. Techniques for transmission (by railcar or pipeline), storage (as liquid in underwater or underground tanks, as granular metal hydride, or as cryogenic liquid), and consumption (in fuel cells in conventional power plants, for home usage, for industrial furnaces, and for cars and aircraft) are analyzed. The safety problems of hydrogen as a universal fuel are discussed, noting that they are no greater than those for conventional fuels.

  20. The Liquid Annular Reactor System (LARS) propulsion

    NASA Technical Reports Server (NTRS)

    Powell, James; Ludewig, Hans; Horn, Frederick; Lenard, Roger

    1990-01-01

    A concept for very high specific impulse (greater than 2000 seconds) direct nuclear propulsion is described. The concept, termed the liquid annular reactor system (LARS), uses liquid nuclear fuel elements to heat hydrogen propellant to very high temperatures (approximately 6000 K). Operating pressure is moderate (approximately 10 atm), with the result that the outlet hydrogen is virtually 100 percent dissociated to monatomic H. The molten fuel is contained in a solid container of its own material, which is rotated to stabilize the liquid layer by centripetal force. LARS reactor designs are described, together with neutronic and thermal-hydraulic analyses. Power levels are on the order of 200 megawatts. Typically, LARS designs use seven rotating fuel elements, are beryllium moderated, and have critical radii of approximately 100 cm (core L/D approximately equal to 1.5).

  1. A paper-based analytical device for the determination of hydrogen sulfide in fuel oils based on headspace liquid-phase microextraction and cyclic voltammetry.

    PubMed

    Nechaeva, Daria; Shishov, Andrey; Ermakov, Sergey; Bulatov, Andrey

    2018-06-01

    An easily performed miniaturized, cheap, selective and sensitive procedure for the determination of H 2 S in fuel oil samples based on a headspace liquid-phase microextraction followed by a cyclic voltammetry detection using a paper-based analytical device (PAD) was developed. A modified wax dipping method was applied to fabricate the PAD. The PAD included hydrophobic zones of sample and supporting electrolyte connecting by hydrophilic channel. The zones of sample and supporting electrolyte were connected with nickel working, platinum auxiliary and Ag/AgCl reference electrodes. The analytical procedure included separation of H 2 S from fuel oil sample based on the headspace liquid-phase microextraction in alkaline solution. Then, sulfide ions solution obtained and supporting electrolyte were dropped on the zones followed by analyte detection at + 0.45 V. Under the optimized conditions, H 2 S concentration in the range from 2 to 20 mg kg -1 had a good linear relation with the peak current. The limit of detection (3σ) was 0.6 mg kg -1 . The procedure was successfully applied to the analysis of fuel oil samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Parameter Estimation of Spacecraft Fuel Slosh Model

    NASA Technical Reports Server (NTRS)

    Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles

    2004-01-01

    Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.

  3. One-Step Reforming of CO2 and CH4 into High-Value Liquid Chemicals and Fuels at Room Temperature by Plasma-Driven Catalysis.

    PubMed

    Wang, Li; Yi, Yanhui; Wu, Chunfei; Guo, Hongchen; Tu, Xin

    2017-10-23

    The conversion of CO 2 with CH 4 into liquid fuels and chemicals in a single-step catalytic process that bypasses the production of syngas remains a challenge. In this study, liquid fuels and chemicals (e.g., acetic acid, methanol, ethanol, and formaldehyde) were synthesized in a one-step process from CO 2 and CH 4 at room temperature (30 °C) and atmospheric pressure for the first time by using a novel plasma reactor with a water electrode. The total selectivity to oxygenates was approximately 50-60 %, with acetic acid being the major component at 40.2 % selectivity, the highest value reported for acetic acid thus far. Interestingly, the direct plasma synthesis of acetic acid from CH 4 and CO 2 is an ideal reaction with 100 % atom economy, but it is almost impossible by thermal catalysis owing to the significant thermodynamic barrier. The combination of plasma and catalyst in this process shows great potential for manipulating the distribution of liquid chemical products in a given process. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. 16 CFR 309.10 - Alternative vehicle fuel rating.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Alternative vehicle fuel rating. 309.10... LABELING REQUIREMENTS FOR ALTERNATIVE FUELS AND ALTERNATIVE FUELED VEHICLES Requirements for Alternative Fuels Duties of Importers, Producers, and Refiners of Non-Liquid Alternative Vehicle Fuels (other Than...

  5. Fuel cell system with combustor-heated reformer

    DOEpatents

    Pettit, William Henry

    2000-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

  6. High wettability of liquid caesium iodine with solid uranium dioxide.

    PubMed

    Kurosaki, Ken; Suzuki, Masanori; Uno, Masayoshi; Ishii, Hiroto; Kumagai, Masaya; Anada, Keito; Murakami, Yukihiro; Ohishi, Yuji; Muta, Hiroaki; Tanaka, Toshihiro; Yamanaka, Shinsuke

    2017-09-13

    In March 2011, the Fukushima Daiichi Nuclear Power Plant accident caused nuclear fuel to melt and the release of high-volatility fission products into the environment. Caesium and iodine caused environmental contamination and public exposure. Certain fission-product behaviours remain unclear. We found experimentally that liquid CsI disperses extremely favourably toward solid UO 2 , exhibiting a contact angle approaching zero. We further observed the presence of CsI several tens of micrometres below the surface of the solid UO 2 sample, which would be caused by the infiltration of pores network by liquid CsI. Thus, volatile fission products released from molten nuclear fuels with complex internal composition and external structure migrate or evaporate to varying extents, depending on the nature of the solid-liquid interface and the fuel material surface, which becomes the pathway for the released fission products. Introducing the concept of the wettability of liquid chemical species of fission products in contact with solid fuels enabled developing accurate behavioural assessments of volatile fission products released by nuclear fuel.

  7. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J.

    1978-01-01

    In connection with the anticipated impossibility to provide on a long-term basis liquid fuels derived from petroleum, an investigation has been conducted with the objective to assess the suitability of jet fuels made from oil shale and coal and to develop a data base which will allow optimization of future fuel characteristics, taking energy efficiency of manufacture and the tradeoffs in aircraft and engine design into account. The properties of future aviation fuels are examined and proposed solutions to problems of alternative fuels are discussed. Attention is given to the refining of jet fuel to current specifications, the control of fuel thermal stability, and combustor technology for use of broad specification fuels. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source.

  8. Fuels Containing Methane of Natural Gas in Solution

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A.

    2004-01-01

    While exploring ways of producing better fuels for propulsion of a spacecraft on the Mars sample return mission, a researcher at Johnson Space Center (JSC) devised a way of blending fuel by combining methane or natural gas with a second fuel to produce a fuel that can be maintained in liquid form at ambient temperature and under moderate pressure. The use of such a blended fuel would be a departure for both spacecraft engines and terrestrial internal combustion engines. For spacecraft, it would enable reduction of weights on long flights. For the automotive industry on Earth, such a fuel could be easily distributed and could be a less expensive, more efficient, and cleaner-burning alternative to conventional fossil fuels. The concept of blending fuels is not new: for example, the production of gasoline includes the addition of liquid octane enhancers. For the future, it has been commonly suggested to substitute methane or compressed natural gas for octane-enhanced gasoline as a fuel for internal-combustion engines. Unfortunately, methane or natural gas must be stored either as a compressed gas (if kept at ambient temperature) or as a cryogenic liquid. The ranges of automobiles would be reduced from their present values because of limitations on the capacities for storage of these fuels. Moreover, technical challenges are posed by the need to develop equipment to handle these fuels and, especially, to fill tanks acceptably rapidly. The JSC alternative to provide a blended fuel that can be maintained in liquid form at moderate pressure at ambient temperature has not been previously tried. A blended automotive fuel according to this approach would be made by dissolving natural gas in gasoline. The autogenous pressure of this fuel would eliminate the need for a vehicle fuel pump, but a pressure and/or flow regulator would be needed to moderate the effects of temperature and to respond to changing engine power demands. Because the fuel would flash as it entered engine

  9. Direct methanol fuel cell and system

    DOEpatents

    Wilson, Mahlon S.

    2004-10-26

    A fuel cell having an anode and a cathode and a polymer electrolyte membrane located between anode and cathode gas diffusion backings uses a methanol vapor fuel supply. A permeable polymer electrolyte membrane having a permeability effective to sustain a carbon dioxide flux equivalent to at least 10 mA/cm.sup.2 provides for removal of carbon dioxide produced at the anode by reaction of methanol with water. Another aspect of the present invention includes a superabsorpent polymer material placed in proximity to the anode gas diffusion backing to hold liquid methanol or liquid methanol solution without wetting the anode gas diffusion backing so that methanol vapor from the liquid methanol or liquid methanol-water solution is supplied to the membrane.

  10. Experimental study of cleaning aircraft GTE fuel injectors using a vortex ejector

    NASA Astrophysics Data System (ADS)

    Evdokimov, O. A.; Piralishvili, Sh A.; Veretennikov, S. V.; Elkes, A. A.

    2017-11-01

    The main ways of cleaning the fuel injectors and the circuits of jet and vortex ejectors used for pumping gas, liquid and two-phase media, as well as for evacuation of enclosed spaces are analyzed. The possibility of organizing the process of pumping the liquid out of the fuel injection manifold secondary circuit using a vortex ejector is shown experimentally. The regimes of manifold evacuation at various inlet liquid pressure values are studied. The technology of carbon cleaning fuel injectors using a washing liquid at various working process parameters is tested.

  11. Progress on coal-derived fuels for aviation systems

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1978-01-01

    The results of engineering studies of coal-derived aviation fuels and their potential application to the air transportation system are presented. Synthetic aviation kerosene (SYN. JET-A), liquid methane (LCH4) and liquid hydrogen (LH2) appear to be the most promising coal-derived fuels. Aircraft configurations fueled with LH2, their fuel systems, and their ground requirements at the airport are identified. Energy efficiency, transportation hazards, and costs are among the factors considered. It is indicated that LCH4 is the most energy efficient to produce, and provides the most efficient utilization of coal resources and the least expensive ticket as well.

  12. Fuel Consumption Modeling of a Transport Category Aircraft Using Flight Operations Quality Assurance Data: A Literature Review

    NASA Technical Reports Server (NTRS)

    Stolzer, Alan J.

    2002-01-01

    Fuel is a major cost expense for air carriers. A typical airline spends 10% of its operating budget on the purchase of jet fuel, which even exceeds its expenditures on aircraft acquisitions. Thus, it is imperative that fuel consumption be managed as wisely as possible. The implementation of Flight Operations Quality Assurance (FOQA) programs at airlines may be able to assist in this management effort. The purpose of the study is to examine the literature regarding fuel consumption by air carriers, the literature related to air carrier fuel conservation efforts, and the literature related to the appropriate statistical methodologies to analyze the FOQA-derived data.

  13. Acidic Ionic Liquids.

    PubMed

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  14. Understanding Kelvin-Helmholtz instability in paraffin-based hybrid rocket fuels

    NASA Astrophysics Data System (ADS)

    Petrarolo, Anna; Kobald, Mario; Schlechtriem, Stefan

    2018-04-01

    Liquefying fuels show higher regression rates than the classical polymeric ones. They are able to form, along their burning surface, a low viscosity and surface tension liquid layer, which can become unstable (Kelvin-Helmholtz instability) due to the high velocity gas flow in the fuel port. This causes entrainment of liquid droplets from the fuel surface into the oxidizer gas flow. To better understand the droplets entrainment mechanism, optical investigations on the combustion behaviour of paraffin-based hybrid rocket fuels in combination with gaseous oxygen have been conducted in the framework of this research. Combustion tests were performed in a 2D single-slab burner at atmospheric conditions. High speed videos were recorded and analysed with two decomposition techniques. Proper orthogonal decomposition (POD) and independent component analysis (ICA) were applied to the scalar field of the flame luminosity. The most excited frequencies and wavelengths of the wave-like structures characterizing the liquid melt layer were computed. The fuel slab viscosity and the oxidizer mass flow were varied to study their influence on the liquid layer instability process. The combustion is dominated by periodic, wave-like structures for all the analysed fuels. Frequencies and wavelengths characterizing the liquid melt layer depend on the fuel viscosity and oxidizer mass flow. Moreover, for very low mass flows, no wavelength peaks are detected for the higher viscosity fuels. This is important to better understand and predict the onset and development of the entrainment process, which is connected to the amplification of the longitudinal waves.

  15. Performance evaluation of a liquid tin anode solid oxide fuel cell operating under hydrogen, argon and coal

    NASA Astrophysics Data System (ADS)

    Khurana, Sanchit; LaBarbera, Mark; Fedkin, Mark V.; Lvov, Serguei N.; Abernathy, Harry; Gerdes, Kirk

    2015-01-01

    A liquid tin anode solid oxide fuel cell is constructed and investigated under different operating conditions. Electrochemical Impedance Spectroscopy (EIS) is used to reflect the effect of fuel feed as the EIS spectra changes significantly on switching the fuel from argon to hydrogen. A cathode symmetric cell is used to separate the impedance from the two electrodes, and the results indicate that a major contribution to the charge-transfer and mass-transfer impedance arises from the anode. The OCP of 0.841 V for the cell operating under argon as a metal-air battery indicates the formation of a SnO2 layer at the electrolyte/anode interface. The increase in the OCP to 1.1 V for the hydrogen fueled cell shows that H2 reduces the SnO2 film effectively. The effective diffusion coefficients are calculated using the Warburg element in the equivalent circuit model for the experimental EIS data, and the values of 1.9 10-3 cm2 s-1 at 700 °C, 2.3 10-3 cm2 s-1 at 800 °C and 3.5 10-3 cm2 s-1 at 900 °C indicate the system was influenced by diffusion of hydrogen in the system. Further, the performance degradation over time is attributed to the irreversible conversion of Sn to SnO2 resulting from galvanic polarization.

  16. Liquid Hydrogen Fuel System for Small Unmanned Air Vehicles

    DTIC Science & Technology

    2013-01-07

    the Office of Naval Research for support of this research. VII. References 1 R. Stroman, J.C. Kellogg, K. Swider-Lyons, “Testing of a PEM Fuel Cell ...energy storage system. The Naval Research Laboratory has been extending the duration of electric UAVs through the use of hydrogen fuel cells , which...take advantage of both the high energy of H2 fuel in combination with the high efficiency (~50%) of polymer fuel cells . In this paper, we describe

  17. Dehydrogenation of liquid fuel in microchannel catalytic reactor

    DOEpatents

    Toseland, Bernard Allen; Pez, Guido Peter; Puri, Pushpinder Singh

    2010-08-03

    The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.

  18. Dehydrogenation of liquid fuel in microchannel catalytic reactor

    DOEpatents

    Toseland, Bernard Allen [Allentown, PA; Pez, Guido Peter [Allentown, PA; Puri, Pushpinder Singh [Emmaus, PA

    2009-02-03

    The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.

  19. Chemical and physical aspects of refining coal liquids

    NASA Astrophysics Data System (ADS)

    Shah, Y. T.; Stiegel, G. J.; Krishnamurthy, S.

    1981-02-01

    Increasing costs and declining reserves of petroleum are forcing oil importing countries to develop alternate energy sources. The direct liquefaction of coal is currently being investigated as a viable means of producing substitute liquid fuels. The coal liquids derived from such processes are typically high in nitrogen, oxygen and sulfur besides having a high aromatic and metals content. It is therefore envisaged that modifications to existing petroleum refining technology will be necessary in order to economically upgrade coal liquids. In this review, compositional data for various coal liquids are presented and compared with those for petroleum fuels. Studies reported on the stability of coal liquids are discussed. The feasibility of processing blends of coal liquids with petroleum feedstocks in existing refineries is evaluated. The chemistry of hydroprocessing is discussed through kinetic and mechanistic studies using compounds which are commonly detected in coal liquids. The pros and cons of using conventional petroleum refining catalysts for upgrading coal liquids are discussed.

  20. Alternative Fuels and Their Potential Impact on Aviation

    NASA Technical Reports Server (NTRS)

    Daggett, D.; Hendricks, R.; Walther, R.

    2006-01-01

    With a growing gap between the growth rate of petroleum production and demand, and with mounting environmental needs, the aircraft industry is investigating issues related to fuel availability, candidates for alternative fuels, and improved aircraft fuel efficiency. Bio-derived fuels, methanol, ethanol, liquid natural gas, liquid hydrogen, and synthetic fuels are considered in this study for their potential to replace or supplement conventional jet fuels. Most of these fuels present the airplane designers with safety, logistical, and performance challenges. Synthetic fuel made from coal, natural gas, or other hydrocarbon feedstock shows significant promise as a fuel that could be easily integrated into present and future aircraft with little or no modification to current aircraft designs. Alternatives, such as biofuel, and in the longer term hydrogen, have good potential but presently appear to be better suited for use in ground transportation. With the increased use of these fuels, a greater portion of a barrel of crude oil can be used for producing jet fuel because aircraft are not as fuel-flexible as ground vehicles.

  1. NUCLEAR REACTOR FUEL SYSTEMS

    DOEpatents

    Thamer, B.J.; Bidwell, R.M.; Hammond, R.P.

    1959-09-15

    Homogeneous reactor fuel solutions are reported which provide automatic recombination of radiolytic gases and exhibit large thermal expansion characteristics, thereby providing stability at high temperatures and enabling reactor operation without the necessity of apparatus to recombine gases formed by the radiolytic dissociation of water in the fuel and without the necessity of liquid fuel handling outside the reactor vessel except for recovery processes. The fuels consist of phosphoric acid and water solutions of enriched uranium, wherein the uranium is in either the hexavalent or tetravalent state.

  2. Characterization of a Heated Liquid Jet in Crossflow

    NASA Astrophysics Data System (ADS)

    Wiest, Heather K.

    The liquid jet in crossflow (LJICF) is a widely utilized fuel injection method for airbreathing propulsion devices such as low NO x gas turbine combustors, turbojet afterburners, scramjet/ramjet engines, and rotating detonation engines (RDE's). This flow field allows for efficient fuel-air mixing as aerodynamic forces from the crossflow augment atomization. Additionally, increases in the thermal demands of advanced aeroengines necessitates the use of fuel as a primary coolant. The resulting higher fuel temperatures can cause flash atomization of the liquid fuel as it is injected into a crossflow, potentially leading to a large reduction in the jet penetration. While many experimental works have characterized the overall atomization process of a room temperature liquid jet in an ambient temperature and pressure crossflow, the aggressive conditions associated with flash atomization especially in an air crossflow with elevated temperatures and pressures have been less studied in the community. A successful test campaign was conducted to study the effects of fuel temperature on a liquid jet injected transversely into a steady air crossflow at ambient as well as elevated temperature and pressure conditions. Modifications were made to an existing optically accessible rig, and a new fuel injector was designed for this study. Backlit imaging was utilized to record changes in the overall spray characteristics and jet trajectory as fuel temperature and crossflow conditioners were adjusted. Three primary analysis techniques were applied to the heated LJICF data: linear regression of detected edges to determine trajectory correlations, exploratory study of pixel intensity variations both temporally as well as spatially, and modal decomposition of the data. The overall objectives of this study was to assess the trajectory, breakup, and mixing of the LJICF undery varying jet and crossflow conditions, develop a trajectory correlation to predict changes in jet penetration due to

  3. Effect of aviation fuel type and fuel injection conditions on the spray characteristics of pressure swirl and hybrid air blast fuel injectors

    NASA Astrophysics Data System (ADS)

    Feddema, Rick

    Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative

  4. Evaluation of Ultra Clean Fuels from Natural Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Abbott; Edward Casey; Etop Esen

    2006-02-28

    ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-cleanmore » burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also

  5. Multiple pulsed hypersonic liquid diesel fuel jetsdriven by projectile impact

    NASA Astrophysics Data System (ADS)

    Pianthong, K.; Takayama, K.; Milton, B. E.; Behnia, M.

    2005-06-01

    Further studies on high-speed liquid diesel fuel jets injected into ambient air conditions have been carried out. Projectile impact has been used as the driving mechanism. A vertical two-stage light gas gun was used as a launcher to provide the high-speed impact. This paper describes the experimental technique and visualization methods that provided a rapid series of jet images in the one shot. A high-speed video camera (106 fps) and shadowgraph optical system were used to obtain visualization. Very interesting and unique phenomena have been discovered and confirmed in this study. These are that multiple high frequency jet pulses are generated within the duration of a single shot impact. The associated multiple jet shock waves have been clearly captured. This characteristic consistently occurs with the smaller conical angle, straight cone nozzles but not with those with a very wide cone angle or curved nozzle profile. An instantaneous jet tip velocity of 2680 m/s (Mach number of 7.86) was the maximum obtained with the 40^circ nozzle. However, this jet tip velocity can only be sustained for a few microseconds as attenuation is very rapid.

  6. Associations between added sugar (solid vs. liquid) intakes, diet quality, and adiposity indicators in Canadian children.

    PubMed

    Wang, JiaWei; Shang, Lei; Light, Kelly; O'Loughlin, Jennifer; Paradis, Gilles; Gray-Donald, Katherine

    2015-08-01

    Little is known about the influence of different forms of added sugar intake on diet quality or their association with obesity among youth. Dietary intake was assessed by three 24-h recalls in 613 Canadian children (aged 8-10 years). Added sugars (mean of 3-day intakes) were categorized according to source (solid or liquid). Dietary intake and the Canadian Healthy Eating Index (« HEI-C ») were compared across tertiles of solid and liquid added sugars separately as were adiposity indicators (body mass index (BMI), fat mass (dual-energy X-ray absorptiometry), and waist circumference). Cross-sectional associations were examined in linear regression models adjusting for age, sex, energy intake, and physical activity (7-day accelerometer). Added sugar contributed 12% of total energy intake (204 kcal) on average, of which 78% was from solid sources. Higher consumption of added sugars from either solid or liquid source was associated with higher total energy, lower intake of micronutrients, vegetables and fruit, and lower HEI-C score. Additionally liquid sources were associated with lower intake of dairy products. A 10-g higher consumption of added sugars from liquid sources was associated with 0.4 serving/day lower of vegetables and fruit, 0.4-kg/m(2) higher BMI, a 0.5-kg higher fat mass, and a 0.9-cm higher waist circumference whereas the associations of added sugars from solid sources and adiposity indicators tended to be negative. In conclusion, higher consumption of added sugar from either solid or liquid sources was associated with lower overall diet quality. Adiposity indicators were only positively associated with added sugars from liquid sources.

  7. Solid-liquid staged combustion space boosters

    NASA Technical Reports Server (NTRS)

    Culver, D. W.

    1990-01-01

    NASA has begun to evaluate solid-liquid hybrid propulsion for launch vehicle booster. A three-phase program was outlined to identify, acquire, and demonstrate technology needed to approximate solid and liquid propulsion state of the art. Aerojet has completed a Phase 1 study and recommends a solid-liquid staged combustion concept in which turbopump fed LO2 is burned with fuel-rich solid propellant effluent in aft-mounted thrust chambers.These reasonably sized thrust chambers are LO2 regeneratively cooled, supplemented with fuel-rich barrier cooling. Turbopumps are driven by the resulting GO2 coolant in an expander-bleed-burnoff cycle. Turbine exhaust pressurizes the LO2 tankage directly, and the excess is bled into supersonic nozzle splitlines, where it combusts with the fuel rich boundary layer. Thrust vector control is enhanced by supersonic nozzle movement on flexseal mounts. Every hybrid solid-liquid concept examined improves booster energy management and launch propellant safety compared to current solid boosters. Solid-liquid staged combustion improves hybrid performance by improving both combustion efficiency and combustion stability, especially important for large boosters. These improvements result from careful fluid management and use of smaller combustors. The study shows NASA safety, reliability, cost, and performance criteria are best met with this concept, wherein simple hardware relies on several separate emerging technologies, all of which have been demonstrated successfully.

  8. Fuel Surrogate Physical Property Effects on Direct Injection Spray and Ignition Behavior

    DTIC Science & Technology

    2015-09-01

    of fuel density and the energy required to vaporize the liquid fuel. Genzale et al. [11] compared diesel and biodiesel sprays under conditions...relevant to late-cycle post-injection conditions and showed ~15 % longer liquid penetration length for biodiesel . Kook and Pickett [12] tested various...emissions, and spray characteristics to the properties of alternative diesel fuels, such as dimethyl ether (DME), biodiesel , and jet fuel, which are

  9. BIOMASS AND NATURAL GAS AS CO-FEEDSTOCKS FOR PRODUCTION OF FUEL FOR FUEL-CELL VEHICLES

    EPA Science Inventory

    The article gives results of an examination of prospects for utilizing renewable energy crops as a source of liquid fuel to mitigate greenhouse gas emissions from mobile sources and reduce dependence on imported petroleum. Fuel cells would provide an optimum vehicle technology fo...

  10. Risk factors of jet fuel combustion products.

    PubMed

    Tesseraux, Irene

    2004-04-01

    Air travel is increasing and airports are being newly built or enlarged. Concern is rising about the exposure to toxic combustion products in the population living in the vicinity of large airports. Jet fuels are well characterized regarding their physical and chemical properties. Health effects of fuel vapors and liquid fuel are described after occupational exposure and in animal studies. Rather less is known about combustion products of jet fuels and exposure to those. Aircraft emissions vary with the engine type, the engine load and the fuel. Among jet aircrafts there are differences between civil and military jet engines and their fuels. Combustion of jet fuel results in CO2, H2O, CO, C, NOx, particles and a great number of organic compounds. Among the emitted hydrocarbons (HCs), no compound (indicator) characteristic for jet engines could be detected so far. Jet engines do not seem to be a source of halogenated compounds or heavy metals. They contain, however, various toxicologically relevant compounds including carcinogenic substances. A comparison between organic compounds in the emissions of jet engines and diesel vehicle engines revealed no major differences in the composition. Risk factors of jet engine fuel exhaust can only be named in context of exposure data. Using available monitoring data, the possibilities and limitations for a risk assessment approach for the population living around large airports are presented. The analysis of such data shows that there is an impact on the air quality of the adjacent communities, but this impact does not result in levels higher than those in a typical urban environment.

  11. Alternative Fuels Data Center: Deploying Alternative Fuel Vehicles in

    Science.gov Websites

    Rochester, New York, Through the Congestion Mitigation and Air Quality Improvement Program in Rochester, New York, Through the Congestion Mitigation and Air Quality Improvement Program to someone by E -mail Share Alternative Fuels Data Center: Deploying Alternative Fuel Vehicles in Rochester, New York

  12. The investigation of critical burning of fuel droplets

    NASA Technical Reports Server (NTRS)

    Allison, C. B.; Canada, G. S.; Faeth, G. M.

    1973-01-01

    The combustion and evaporation of liquid fuels at high pressures were investigated. Particular emphasis was placed on conditions where the liquid surface approaches the thermodynamic critical point during combustion. The influence of transient effects on a burning liquid fuel was also investigated through both analysis and measurements of the response of liquid monopropellant combustion to imposed pressure oscillations. Work was divided into four phases (1) Droplet combustion at high pressures, which consider both measurement and analysis of the porous sphere burning rate of liquids in a natural convection environment at elevated pressure. (2) High pressure droplet burning in combustion gases, which involved steady burning and evaporation of liquids from porous spheres in a high pressure environment that simulates actual combustion chamber conditions. (3) Liquid strand combustion, which considered the burning rate, the state of the liquid surface and the liquid phase temperature distribution of a burning liquid monopropellant column over a range of pressures. (4) Oscillatory combustion, which was a theoretical and experimental investigation of the response of a burning liquid monopropellant to pressure oscillations.

  13. Air quality assessment in Delhi: before and after CNG as fuel.

    PubMed

    Chelani, Asha B; Devotta, Sukumar

    2007-02-01

    A number of policy measures have been activated in India in order to control the levels of air pollutants such as particulate matter, sulphur dioxide (SO(2)) and nitrogen dioxide (NO(2)). Delhi, which is one of the most polluted cities in the world, is also going through the implementation phase of the control policies. Ambient air quality data monitored during 2000 to 2003, at 10 sites in Delhi, were analyzed to assess the impact of implementation of these measures, specifically fuel change in vehicles. This paper presents the impact of policy measures on ambient air quality levels and also the source apportionment. CO and NO(2) concentration levels in ambient air are found to be associated with the mobile sources. The temporal variation of air quality data shows the significant effect of shift to CNG (Compressed Natural Gas) in vehicles.

  14. Multiphase transport in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Gauthier, Eric D.

    Polymer electrolyte membrane fuel cells (PEMFCs) enable efficient conversion of fuels to electricity. They have enormous potential due to the high energy density of the fuels they utilize (hydrogen or alcohols). Power density is a major limitation to wide-scale introduction of PEMFCs. Power density in hydrogen fuel cells is limited by accumulation of water in what is termed fuel cell `flooding.' Flooding may occur in either the gas diffusion layer (GDL) or within the flow channels of the bipolar plate. These components comprise the electrodes of the fuel cell and balance transport of reactants/products with electrical conductivity. This thesis explores the role of electrode materials in the fuel cell and examines the fundamental connection between material properties and multiphase transport processes. Water is generated at the cathode catalyst layer. As liquid water accumulates it will utilize the largest pores in the GDL to go from the catalyst layer to the flow channels. Water collects to large pores via lateral transport at the interface between the GDL and catalyst layer. We have shown that water may be collected in these large pores from several centimeters away, suggesting that we could engineer the GDL to control flooding with careful placement and distribution of large flow-directing pores. Once liquid water is in the flow channels it forms slugs that block gas flow. The slugs are pushed along the channel by a pressure gradient that is dependent on the material wettability. The permeable nature of the GDL also plays a major role in slug growth and allowing bypass of gas between adjacent channels. Direct methanol fuel cells (DMFCs) have analogous multiphase flow issues where carbon dioxide bubbles accumulate, `blinding' regions of the fuel cell. This problem is fundamentally similar to water management in hydrogen fuel cells but with a gas/liquid phase inversion. Gas bubbles move laterally through the porous GDL and emerge to form large bubbles within the

  15. 78 FR 33132 - Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ... Fuel Elements for Use in Research and Test Reactors AGENCY: Nuclear Regulatory Commission. ACTION... Research and Test Reactors.'' This guide describes a method that the staff of the NRC considers acceptable... assurance program for verifying the quality of plate-type uranium-aluminum fuel elements used in research...

  16. JSC Case Study: Fleet Experience with E-85 Fuel

    NASA Technical Reports Server (NTRS)

    Hummel, Kirck

    2009-01-01

    JSC has used E-85 as part of an overall strategy to comply with Presidential Executive Order 13423 and the Energy Policy Act. As a Federal fleet, we are required to reduce our petroleum consumption by 2 percent per year, and increase the use of alternative fuels in our vehicles. With the opening of our onsite dispenser in October 2004, JSC became the second federal fleet in Texas and the fifth NASA center to add E-85 fueling capability. JSC has a relatively small number of GSA Flex Fuel fleet vehicles at the present time (we don't include personal vehicles, or other contractor's non-GSA fleet), and there were no reasonably available retail E-85 fuel stations within a 15-minute drive or within five miles (one way). So we decided to install a small 1000 gallon onsite tank and dispenser. It was difficult to obtain a supplier due to our low monthly fuel consumption, and our fuel supplier contract has changed three times in less than five years. We experiences a couple of fuel contamination and quality control issues. JSC obtained good information on E-85 from the National Ethanol Vehicle Coalition (NEVC). We also spoke with Defense Energy Support Center, (DESC), Lawrence Berkeley Laboratory, and US Army Fort Leonard Wood. E-85 is a liquid fuel that is dispensed into our Flexible Fuel Vehicles identically to regular gasoline, so it was easy for our vehicle drivers to make the transition.

  17. A fuel conservation study for transport aircraft utilizing advanced technology and hydrogen fuel

    NASA Technical Reports Server (NTRS)

    Berry, W.; Calleson, R.; Espil, J.; Quartero, C.; Swanson, E.

    1972-01-01

    The conservation of fossil fuels in commercial aviation was investigated. Four categories of aircraft were selected for investigation: (1) conventional, medium range, low take-off gross weight; (2) conventional, long range, high take-off gross weights; (3) large take-off gross weight aircraft that might find future applications using both conventional and advanced technology; and (4) advanced technology aircraft of the future powered with liquid hydrogen fuel. It is concluded that the hydrogen fueled aircraft can perform at reduced size and gross weight the same payload/range mission as conventionally fueled aircraft.

  18. Method for Making a Fuel Cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L. (Inventor); Setlock, John A. (Inventor); Farmer, Serene C. (Inventor)

    2014-01-01

    The invention is a novel solid oxide fuel cell (SOFC) stack comprising individual bi-electrode supported fuel cells in which an electrolyte layer is supported between porous electrodes. The porous electrodes may be made from graded pore ceramic tape that has been created by the freeze cast method followed by freeze-drying. Each piece of graded pore tape later becomes a graded pore electrode scaffold that, subsequent to sintering, is made into either an anode or a cathode. The electrode scaffold comprising the anode includes a layer of liquid metal. The pores of the electrode scaffolds gradually increase in diameter as the layer extends away from the electrolyte layer. As a result of this diameter increase, any forces that would tend to pull the liquid metal away from the electrolyte are reduced while maintaining a diffusion path for the fuel. Advantageously, the fuel cell of the invention may utilize a hydrocarbon fuel without pre-processing to remove sulfur.

  19. Fuel cell membrane hydration and fluid metering

    DOEpatents

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  20. Chapter 8: Pyrolysis of Biomass for Aviation Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robichaud, David J; Jenkins, Rhodri W.; Sutton, Andrew D.

    2016-07-15

    Pyrolysis, the breaking down of organic material using heat and the absence of oxygen, is a method that has been widely researched for the production of liquid fuels. In this chapter, we review the feedstocks typically used for pyrolysis, the properties and the composition of the liquid fraction (termed 'bio-oil') obtained, the studies in which pyrolysis has been used in an attempt to increase the bio-oil yield, and how the bio-oil has been upgraded to fuel-like molecules. We also discuss the viability of pyrolysis to produce jet fuel hydrocarbons.

  1. Molybdenum dioxide-based anode for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Kwon, Byeong Wan; Ellefson, Caleb; Breit, Joe; Kim, Jinsoo; Grant Norton, M.; Ha, Su

    2013-12-01

    The present paper describes the fabrication and performance of a molybdenum dioxide (MoO2)-based anode for liquid hydrocarbon/oxygenated hydrocarbon-fueled solid oxide fuel cells (SOFCs). These fuel cells first internally reform the complex liquid fuel into carbon fragments and hydrogen, which are then electrochemically oxidized to produce electrical energy without external fuel processors. The MoO2-based anode was fabricated on to an yttria-stabilized zirconia (YSZ) electrolyte via combined electrostatic spray deposition (ESD) and direct painting methods. The cell performance was measured by directly feeding liquid fuels such as n-dodecane (i.e., a model diesel/kerosene fuel) or biodiesel (i.e., a future biomass-based liquid fuel) to the MoO2-based anode at 850 °C. The maximum initial power densities obtained from our MoO2-based SOFC were 34 mW cm-2 and 45 mW cm-2 using n-dodecane and biodiesel, respectively. The initial power density of the MoO2-based SOFC was improved up to 2500 mW cm-2 by optimizing the porosity of the MoO2-based anode. To test the long-term stability of the MoO2-based anode SOFC against coking, n-dodecane was continuously fed into the cell for 24 h at the open circuit voltage (OCV). During long-term testing, voltage-current density (V-I) plots were periodically obtained and they showed no significant changes over the operation time. Microstructural examination of the tested cells indicated that the MoO2-based anode displayed negligible coke formation, which explains its stability. On the other hand, SOFCs with conventional nickel (Ni)-based anodes under the same operating conditions showed a significant amount of coke formation on the metal surface, which led to a rapid drop in cell performance. Hence, the present work demonstrates that MoO2-based anodes exhibit outstanding tolerance to coke formation. This result opens up the opportunity for more efficiently generating electrical energy from both existing transportation and next generation

  2. Laser-Induced Fluorescence and Synthetic Jet Fuel Analysis in the Ultra Compact Combustor

    DTIC Science & Technology

    2009-12-01

    In the primary zone, high- temperature, high-pressure air enters from the compressor and flows around fuel injectors spraying atomized liquid -droplet...chemical reaction in which synthesis gas , a mixture of carbon monoxide and hydrogen, is converted into liquid hydrocarbons of various forms. The most...the fuel lines needed to be rebuilt due to a recent COAL lab renovation. The liquid fuel system had not been used for nearly two years so some

  3. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    STAN, MARIUS; HECKER, SIEGFRIED S.

    2007-02-07

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuelsmore » suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.« less

  4. NACA Research on Slurry Fuels

    NASA Technical Reports Server (NTRS)

    Pinns, M L; Olson, W T; Barnett, H C; Breitwieser, R

    1958-01-01

    An extensive program was conducted to investigate the use of concentrated slurries of boron and magnesium in liquid hydrocarbon as fuels for afterburners and ramjet engines. Analytical calculations indicated that magnesium fuel would give greater thrust and that boron fuel would give greater range than are obtainable from jet hydrocarbon fuel alone. It was hoped that the use of these solid elements in slurry form would permit the improvement to be obtained without requiring unconventional fuel systems or combustors. Small ramjet vehicles fueled with magnesium slurry were flown successfully, but the test flights indicated that further improvement of combustors and fuel systems was needed.

  5. Investigation of critical burning of fuel droplets

    NASA Technical Reports Server (NTRS)

    Allison, C. B.; Canada, G. S.

    1972-01-01

    Fuel droplets were simulated by porous spheres having diameters in the range 0.63 to 1.9 cm and combustion tests were conducted at pressures up to 78 atm in a quiescent cold air environment. Measurements were made of the burning rate and liquid surface temperature during steady combustion. A high pressure flat flame burner apparatus is under development in order to allow testing of high pressure droplet burning in a combustion gas environment. Work was continued on the high pressure strand combustion characteristics of liquid fuels, with the major emphasis on hydrazine. Data was obtained on the burning rate and liquid surface temperatures at pressures in the range 7 to 500 psia. The response of a burning liquid monopropellant to imposed pressure oscillations is being investigated.

  6. Biocidal treatment and preservation of liquid fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegert, W.

    1995-05-01

    Strict microbiological limit values are the result of damage caused by microorganisms in fuels. With MAR 71, a biocide based on methylenebisoxazolidine, a product is available which has been tested and approved by leading car manufacturers, the mineral oil industry, and NATO. Depending on the degree of microbiological contamination, different decontamination concepts are presented, and recommendations for the treatment of fuels which are contaminated when purchased are given. In order to avoid recontamination, planning principles or the new design of tanks are necessary. The possibility of convenient, economical and regular drainage is a key factor.

  7. Carbon Nanomaterials in Direct Liquid Fuel Cells.

    PubMed

    Du, Huayun; Zhao, Cindy Xinxin; Lin, Jing; Guo, Jiang; Wang, Bin; Hu, Zhen; Shao, Qian; Pan, Duo; Wujcik, Evan K; Guo, Zhanhu

    2018-04-19

    Fuel cells have attracted more attentions due to many advantages they can provide, including high energy efficiency and low environmental burden. To form a stable, low cost and efficient catalyst, we presented here the state of the art of electrocatalyst fabrication approaches, involving carbon nanotubes and their multifunctional nanocomposites incorporated with noble metals, such as Pt, Pd, Au, their binary and ternary systems. Both fuel oxidation reactions and oxygen reduction reactions were emphasized with comprehensive examples and future prospects. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Heated transportable fuel cell cartridges

    DOEpatents

    Lance, Joseph R.; Spurrier, Francis R.

    1985-01-01

    A fuel cell stack protective system is made where a plurality of fuel cells, each containing liquid electrolyte subject to crystallization, is enclosed by a containing vessel, and where at least one electric heater is placed in the containing vessel and is capable of preventing electrolyte crystallization.

  9. Emission reduction potential of using gas-to-liquid and dimethyl ether fuels on a turbocharged diesel engine.

    PubMed

    Xinling, Li; Zhen, Huang

    2009-03-15

    A study of engine performance characteristics and both of regulated (CO, HC, NO(x), and smoke) and unregulated (ultrafine particle number, mass concentrations and size distribution) emissions for a turbocharged diesel engine fueled with conventional diesel, gas-to-liquid (GTL) and dimethyl ether (DME) fuels respectively at different engine loads and speeds have been carried out. The results indicated that fuel components significantly affected the engine performance and regulated/unregulated emissions. GTL exhibited almost the same power and torque output as diesel, while improved fuel economy. GTL significantly reduced regulated emissions with average reductions of 21.2% in CO, 15.7% in HC, 15.6% in NO(x) and 22.1% in smoke in comparison to diesel, as well as average reductions in unregulated emissions of total ultrafine particle number (N(tot)) and mass (M(tot)) emissions by 85.3% and 43.9%. DME can significantly increase torque and power, compared with the original diesel engine, as well as significantly reduced regulated emissions of 40.1% in HC, 48.2% in NO(x) and smoke free throughout all the engine conditions. However, N(tot) for DME is close to that for diesel. The reason is that the accumulation mode particle number emissions for DME are very low due to the characteristics of oxygen content and no C-C bond, which promotes the processes of nucleation and condensation of the semi-volatile compounds in the exhaust gas, as a result, a lot of nucleation mode particles produce.

  10. National Aerospace Fuels Research Complex

    DTIC Science & Technology

    2010-03-01

    supercritical pyrolysis. 7 6. Representative chromatogram of low conversion stressed S-8 liquid product from supercritical pyrolysis on ECAT. 7 7...Representative chromatogram of very high conversion stressed S-8 liquid product from supercritical pyrolysis at UTRC. 9 8. Representative chromatogram...of stressed S-8 liquid product from supercritical pyrolysis at Louisiana State University. 9 9. GC-MS scanning total ion chromatograms of fuels

  11. Oligomerization of Biomass-Derived Light Olefins to Liquid Fuel: Effect of Alkali Treatment of HZSM-5 Catalyst

    DOE PAGES

    Wang, Xiaoxing; Hu, Xiaoyan; Song, Chunshan; ...

    2017-09-27

    As a part of a new approach to convert biomass to liquid fuels, we investigated the effects of alkali treatment on the property and performance of HZSM-5 for oligomerization of biomass-derived ethylene under atmospheric pressure. The characterization results showed that alkali treatment led to the increase in the total and mesopore volumes, but decrease in the surface area and micropore volume. Furthermore, when NaOH concentration was low (< 0.5 M), the ZSM-5 structure was largely preserved with the increase in the mesopores and acidity, while higher NaOH concentration can severely destroy the zeolite structure, resulting in a significant reduction inmore » the micropores and acidity. The ethylene oligomerization results showed that not only the ethylene conversion and the liquid yield increased, but also the catalyst stability was improved after proper NaOH treatment. Finally, we discussed the relationship between the structure and performance« less

  12. Oligomerization of Biomass-Derived Light Olefins to Liquid Fuel: Effect of Alkali Treatment of HZSM-5 Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoxing; Hu, Xiaoyan; Song, Chunshan

    As a part of a new approach to convert biomass to liquid fuels, we investigated the effects of alkali treatment on the property and performance of HZSM-5 for oligomerization of biomass-derived ethylene under atmospheric pressure. The characterization results showed that alkali treatment led to the increase in the total and mesopore volumes, but decrease in the surface area and micropore volume. Furthermore, when NaOH concentration was low (< 0.5 M), the ZSM-5 structure was largely preserved with the increase in the mesopores and acidity, while higher NaOH concentration can severely destroy the zeolite structure, resulting in a significant reduction inmore » the micropores and acidity. The ethylene oligomerization results showed that not only the ethylene conversion and the liquid yield increased, but also the catalyst stability was improved after proper NaOH treatment. Finally, we discussed the relationship between the structure and performance« less

  13. Thorium Fuel Utilization Analysis on Small Long Life Reactor for Different Coolant Types

    NASA Astrophysics Data System (ADS)

    Permana, Sidik

    2017-07-01

    A small power reactor and long operation which can be deployed for less population and remote area has been proposed by the IAEA as a small and medium reactor (SMR) program. Beside uranium utilization, it can be used also thorium fuel resources for SMR as a part of optimalization of nuclear fuel as a “partner” fuel with uranium fuel. A small long-life reactor based on thorium fuel cycle for several reactor coolant types and several power output has been evaluated in the present study for 10 years period of reactor operation. Several key parameters are used to evaluate its effect to the reactor performances such as reactor criticality, excess reactivity, reactor burnup achievement and power density profile. Water-cooled types give higher criticality than liquid metal coolants. Liquid metal coolant for fast reactor system gives less criticality especially at beginning of cycle (BOC), which shows liquid metal coolant system obtains almost stable criticality condition. Liquid metal coolants are relatively less excess reactivity to maintain longer reactor operation than water coolants. In addition, liquid metal coolant gives higher achievable burnup than water coolant types as well as higher power density for liquid metal coolants.

  14. Accelerator-driven transmutation of spent fuel elements

    DOEpatents

    Venneri, Francesco; Williamson, Mark A.; Li, Ning

    2002-01-01

    An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing

  15. Modeling two-phase flow in PEM fuel cell channels

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Basu, Suman; Wang, Chao-Yang

    2008-05-01

    This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M2 formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels.

  16. Uniform hydrogen fuel layers for inertial fusion targets by microgravity

    NASA Technical Reports Server (NTRS)

    Parks, P. B.; Fagaly, Robert L.

    1994-01-01

    A critical concern in the fabrication of targets for inertial confinement fusion (ICF) is ensuring that the hydrogenic (D(sub 2) or DT) fuel layer maintains spherical symmetry. Solid layered targets have structural integrity, but lack the needed surface smoothness. Liquid targets are inherently smooth, but suffer from gravitationally induced sagging. One method to reduce the effective gravitational field environment is freefall insertion into the target chamber. Another method to counterbalance field gravitational force is to use an applied magnetic field combined with a gradient field to induce a magnetic dipole force on the liquid fuel layer. Based on time dependent calculations of the dynamics of the liquid fuel layer in microgravity environments, we show that it may be possible to produce a liquid layered ICF target that satisfies both smoothness and symmetry requirements.

  17. Hypervelocity Launching and Frozen Fuels as a Major Contribution to Spaceflight

    NASA Astrophysics Data System (ADS)

    Cocks, F. H.; Harman, C. M.; Klenk, P. A.; Simmons, W. N.

    Acting as a virtual first stage, a hypervelocity launch together with the use of frozen hydrogen/frozen oxygen propellant, offers a Single-Stage-To-Orbit (SSTO) system that promises an enormous increase in SSTO mass-ratio. Ram acceleration provides hypervelocity (2 km/sec) to the orbital vehicle with a gas gun supplying the initial velocity required for ram operation. The vehicle itself acts as the center body of a ramjet inside a launch tube, filled with gaseous fuel and oxidizer, acting as an engine cowling. The high acceleration needed to achieve hypervelocity precludes a crew, and it would require greatly increased liquid fuel tank structural mass if a liquid propellant is used for post-launch vehicle propulsion. Solid propellants do not require as much fuel- chamber strengthening to withstand a hypervelocity launch as do liquid propellants, but traditional solid fuels have lower exhaust velocities than liquid hydrogen/liquid oxygen. The shock-stability of frozen hydrogen/frozen oxygen propellant has been experimentally demonstrated. A hypervelocity launch system using frozen hydrogen/frozen oxygen propellant would be a revolutionary new development in spaceflight.

  18. Calculation of global carbon dioxide emissions: Review of emission factors and a new approach taking fuel quality into consideration

    NASA Astrophysics Data System (ADS)

    Hiete, Michael; Berner, Ulrich; Richter, Otto

    2001-03-01

    Anthropogenic carbon dioxide emissions resulting from fossil fuel consumption play a major role in the current debate on climate change. Carbon dioxide emissions are calculated on the basis of a carbon dioxide emission factor (CEF) for each type of fuel. Published CEFs are reviewed in this paper. It was found that for nearly all CEFs, fuel quality is not adequately taken into account. This is especially true in the case of the CEFs for coal. Published CEFs are often based on generalized assumptions and inexact conversions. In particular, conversions from gross calorific value to net calorific value were examined. A new method for determining CEFs as a function of calorific value (for coal, peat, and natural gas) and specific gravity (for crude oil) is presented that permits CEFs to be calculated for specific fuel qualities. A review of proportions of fossil fuels that remain unoxidized owing to incomplete combustion or inclusion in petrochemical products, etc., (stored carbon) shows that these figures need to be updated and checked for their applicability on a global scale, since they are mostly based on U.S. data.

  19. Test program to provide confidence in liquid oxygen cooling of hydrocarbon fueled rocket thrust chambers

    NASA Technical Reports Server (NTRS)

    Armstrong, E. S.

    1986-01-01

    An experimental program has been planned at the NASA Lewis Research Center to build confidence in the feasibility of liquid oxygen cooling for hydrocarbon fueled rocket engines. Although liquid oxygen cooling has previously been incorporated in test hardware, more runtime is necessary to gain confidence in this concept. In the previous tests, small oxygen leaks developed at the throat of the thrust chamber and film cooled the hot-gas side of the chamber wall without resulting in catastrophic failure. However, more testing is necessary to demonstrate that a catastrophic failure would not occur if cracks developed further upstream between the injector and the throat, where the boundary layer has not been established. Since under normal conditions cracks are expected to form in the throat region of the thrust chamber, cracks must be initiated artificially in order to control their location. Several methods of crack initiation are discussed in this report. Four thrust chambers, three with cracks and one without, should be tested. The axial location of the cracks should be varied parametrically. Each chamber should be instrumented to determine the effects of the cracks, as well as the overall performance and durability of the chambers.

  20. Alternate Fuels for Use in Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Daggett, David L.; Hendricks, Robert C.; Walther, Rainer; Corporan, Edwin

    2008-01-01

    The engine and aircraft Research and Development (R&D) communities have been investigating alternative fueling in near-term, midterm, and far-term aircraft. A drop in jet fuel replacement, consisting of a kerosene (Jet-A) and synthetic fuel blend, will be possible for use in existing and near-term aircraft. Future midterm aircraft may use a biojet and synthetic fuel blend in ultra-efficient airplane designs. Future far-term engines and aircraft in 50-plus years may be specifically designed to use a low- or zero-carbon fuel. Synthetic jet fuels from coal, natural gas, or other hydrocarbon feedstocks are very similar in performance to conventional jet fuel, yet the additional CO2 produced during the manufacturing needs to be permanently sequestered. Biojet fuels need to be developed specifically for jet aircraft without displacing food production. Envisioned as midterm aircraft fuel, if the performance and cost liabilities can be overcome, biofuel blends with synthetic jet or Jet-A fuels have near-term potential in terms of global climatic concerns. Long-term solutions address dramatic emissions reductions through use of alternate aircraft fuels such as liquid hydrogen or liquid methane. Either of these new aircraft fuels will require an enormous change in infrastructure and thus engine and airplane design. Life-cycle environmental questions need to be addressed.

  1. LIQUID METAL COMPOSITIONS CONTAINING URANIUM

    DOEpatents

    Teitel, R.J.

    1959-04-21

    Liquid metal compositions containing a solid uranium compound dispersed therein is described. Uranium combines with tin to form the intermetallic compound USn/sub 3/. It has been found that this compound may be incorporated into a liquid bath containing bismuth and lead-bismuth components, if a relatively small percentage of tin is also included in the bath. The composition has a low thermal neutron cross section which makes it suitable for use in a liquid metal fueled nuclear reactor.

  2. Computational And Experimental Studies Of Three-Dimensional Flame Spread Over Liquid Fuel Pools

    NASA Technical Reports Server (NTRS)

    Ross, Howard D. (Technical Monitor); Cai, Jinsheng; Liu, Feng; Sirignano, William A.; Miller, Fletcher J.

    2003-01-01

    Schiller, Ross, and Sirignano (1996) studied ignition and flame spread above liquid fuels initially below the flashpoint temperature by using a two-dimensional computational fluid dynamics code that solves the coupled equations of both the gas and the liquid phases. Pulsating flame spread was attributed to the establishment of a gas-phase recirculation cell that forms just ahead of the flame leading edge because of the opposing effect of buoyancy-driven flow in the gas phase and the thermocapillary-driven flow in the liquid phase. Schiller and Sirignano (1996) extended the same study to include flame spread with forced opposed flow in the gas phase. A transitional flow velocity was found above which an originally uniform spreading flame pulsates. The same type of gas-phase recirculation cell caused by the combination of forced opposed flow, buoyancy-driven flow, and thermocapillary-driven concurrent flow was responsible for the pulsating flame spread. Ross and Miller (1998) and Miller and Ross (1998) performed experimental work that corroborates the computational findings of Schiller, Ross, and Sirignano (1996) and Schiller and Sirignano (1996). Cai, Liu, and Sirignano (2002) developed a more comprehensive three-dimensional model and computer code for the flame spread problem. Many improvements in modeling and numerical algorithms were incorporated in the three-dimensional model. Pools of finite width and length were studied in air channels of prescribed height and width. Significant three-dimensional effects around and along the pool edge were observed. The same three-dimensional code is used to study the detailed effects of pool depth, pool width, opposed air flow velocity, and different levels of air oxygen concentration (Cai, Liu, and Sirignano, 2003). Significant three-dimensional effects showing an unsteady wavy flame front for cases of wide pool width are found for the first time in computation, after being noted previously by experimental observers (Ross

  3. Hydrogen generation from biogenic and fossil fuels by autothermal reforming

    NASA Astrophysics Data System (ADS)

    Rampe, Thomas; Heinzel, Angelika; Vogel, Bernhard

    Hydrogen generation for fuel cell systems by reforming technologies from various fuels is one of the main fields of investigation of the Fraunhofer ISE. Suitable fuels are, on the one hand, gaseous hydrocarbons like methane, propane but also, on the other hand, liquid hydrocarbons like gasoline and alcohols, e.g., ethanol as biogenic fuel. The goal is to develop compact systems for generation of hydrogen from fuel being suitable for small-scale membrane fuel cells. The most recent work is related to reforming according to the autothermal principle — fuel, air and steam is supplied to the reactor. Possible applications of such small-scale autothermal reformers are mobile systems and also miniature fuel cell as co-generation plant for decentralised electricity and heat generation. For small stand-alone systems without a connection to the natural gas grid liquid gas, a mixture of propane and butane is an appropriate fuel.

  4. 26 CFR 48.4041-18 - Fuels containing alcohol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Fuels containing alcohol. 48.4041-18 Section 48... EXCISE TAXES MANUFACTURERS AND RETAILERS EXCISE TAXES Special Fuels § 48.4041-18 Fuels containing alcohol..., of any liquid fuel described in section 4041(a) (1) or (2) which consists of at least 10% alcohol by...

  5. 26 CFR 48.4041-18 - Fuels containing alcohol.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Fuels containing alcohol. 48.4041-18 Section 48... EXCISE TAXES MANUFACTURERS AND RETAILERS EXCISE TAXES Special Fuels § 48.4041-18 Fuels containing alcohol..., of any liquid fuel described in section 4041(a) (1) or (2) which consists of at least 10% alcohol by...

  6. Fuel cells for low power applications

    NASA Astrophysics Data System (ADS)

    Heinzel, A.; Hebling, C.; Müller, M.; Zedda, M.; Müller, C.

    Electronic devices show an ever-increasing power demand and thus, require innovative concepts for power supply. For a wide range of power and energy capacity, membrane fuel cells are an attractive alternative to conventional batteries. The main advantages are the flexibility with respect to power and capacity achievable with different devices for energy conversion and energy storage, the long lifetime and long service life, the good ecological balance, very low self-discharge. Therefore, the development of fuel cell systems for portable electronic devices is an attractive, although also a challenging, goal. The fuel for a membrane fuel cell might be hydrogen from a hydride storage system or methanol/water as a liquid alternative. The main differences between the two systems are the much higher power density for hydrogen fuel cells, the higher energy density per weight for the liquid fuel, safety aspects and infrastructure for fuel supply for hydride materials. For different applications, different system designs are required. High power cells are required for portable computers, low power methanol fuel cells required for mobile phones in hybrid systems with batteries and micro-fuel cells are required, e.g. for hand held PCs in the sub-Watt range. All these technologies are currently under development. Performance data and results of simulations and experimental investigations will be presented.

  7. Combustion characteristics in the transition region of liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Cernansky, N. P.; Namer, I.; Tidona, R. J.

    1986-01-01

    A number of important effects have been observed in the droplet size transition region in spray combustion systems. In this region, where the mechanism of flame propagation is transformed from diffusive to premixed dominated combustion, the following effects have been observed: (1) maxima in burning velocity; (2) extension of flammability limits; (3) minima in ignition energy; and (4) minima in NOx formation. A monodisperse aerosol generator has been used to form and deliver a well controlled liquid fuel spray to the combustion test section where measurements of ignition energy have been made. The ignition studies were performed on monodisperse n-heptane sprays at atmospheric pressure over a range of equivalence ratios and droplet diameters. A capacitive discharge spark ignition system was used as the ignition source, providing independent control of spark energy and duration. Preliminary measurements were made to optimize spark duration and spark gap, optimum conditions being those at which the maximum frequency or probability of ignition was observed. Using the optimum electrode spacing and spark duration, the frequency of ignition was determined as a function of spark energy for three overall equivalence ratios (0.6, 0.8, and 1.0) and for initial droplet diameters of 25, 40, 50, 60, and 70 micro m.

  8. Gas Requirements in Pressurized Transfer of Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Gluck, D. F.; Kline, J. F.

    1961-01-01

    Of late, liquid hydrogen has become a very popular fuel for space missions. It is being used in such programs as Centaur and Saturn. Furthermore, hydrogen is the ideal working fluid for nuclear powered space vehicles currently under development. In these applications, liquid hydrogen fuel is generally transferred to the combustion chamber by a combination of pumping and pressurization. The pump forces the liquid propellant from the fuel tank to the combustion chamber; gaseous pressurant holds tank pressure sufficiently high to prevent cavitation at the pump inlet and to maintain the structural rigidity of the tank. The pressurizing system, composed of pressurant, tankage, and associated hardware can be a large portion of the total vehicle weight. Pressurant weight can be reduced by introducing the pressurizing gas at temperatures substantially greater than those of liquid hydrogen. Heat and mass transfer processes thereby induced complicate gas requirements during discharge. These requirements must be known to insure proper design of the pressurizing system. The aim of this paper is to develop from basic mass and energy transfer processes a general method to predict helium and hydrogen gas usage for the pressurized transfer of liquid hydrogen. This required an analytical and experimental investigation, the results of which are described in this paper.

  9. Solar-Driven Liquid-Metal MHD Generator

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Lee, J. H.

    1982-01-01

    Liquid-metal magnetohydrodynamic (MHD) power generator with solar oven as its heat source has potential to produce electric power in space and on Earth at high efficiency. Generator focuses radiation from Sun to heat driving gas that pushes liquid metal past magnetic coil. Power is extracted directly from electric currents set up in conducting liquid. Using solar energy as fuel can save considerable costs and payload weight, compared to previous systems.

  10. Fuel Composition and Performance Analysis of Endothermically Heated Fuels for Pulse Detonation Engines

    DTIC Science & Technology

    2009-03-01

    Waste heat from a pulse detonation engine (PDE) was extracted via concentric, counter flow heat exchangers to produce supercritical pyrolytic...mass spectrometry HLPC = High performance liquid chromatography NPT = National pipe thread PAH = Polycyclic aromatic hydrocarbon PDE = Pulse...Precision Liquid Chromatography (HPLC). The resulting “stressed” fuel showed a 29 shift to lower molecular weight compounds, as well as the production

  11. Fuel cell elements with improved water handling capacity

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Lee, Albany (Inventor)

    2001-01-01

    New fuel cell components for use in liquid feed fuel cell systems are provided. The components include biplates and endplates, having a hydrophilic surface and allow high efficiency operation. Conductive elements and a wicking device also form a part of the fuel cell components of the invention.

  12. Design of a 500 lbf liquid oxygen and liquid methane rocket engine for suborbital flight

    NASA Astrophysics Data System (ADS)

    Trillo, Jesus Eduardo

    Liquid methane (LCH4)is the most promising rocket fuel for our journey to Mars and other space entities. Compared to liquid hydrogen, the most common cryogenic fuel used today, methane is denser and can be stored at a more manageable temperature; leading to more affordable tanks and a lighter system. The most important advantage is it can be produced from local sources using in-situ resource utilization (ISRU) technology. This will allow the production of the fuel needed to come back to earth on the surface of Mars, or the space entity being explored, making the overall mission more cost effective by enabling larger usable mass. The major disadvantage methane has over hydrogen is it provides a lower specific impulse, or lower rocket performance. The UTEP Center for Space Exploration and Technology Research (cSETR) in partnership with the National Aeronautics and Space Administration (NASA) has been the leading research center for the advancement of Liquid Oxygen (LOX) and Liquid Methane (LCH4) propulsion technologies. Through this partnership, the CROME engine, a throattable 500 lbf LOX/LCH4 rocket engine, was designed and developed. The engine will serve as the main propulsion system for Daedalus, a suborbital demonstration vehicle being developed by the cSETR. The purpose of Daedalus mission and the engine is to fire in space under microgravity conditions to demonstrate its restartability. This thesis details the design process, decisions, and characteristics of the engine to serve as a complete design guide.

  13. Optical spectral signatures of liquids by means of fiber optic technology for product and quality parameter identification

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Mencaglia, A. A.; Diaz-Herrera, N.; Garcia-Allende, P. B.; Ottevaere, H.; Thienpont, H.; Attilio, C.; Cimato, A.; Francalanci, S.; Paccagnini, A.; Pavone, F. S.

    2009-01-01

    Absorption spectroscopy in the wide 200-1700 nm spectral range is carried out by means of optical fiber instrumentation to achieve a digital mapping of liquids for the prediction of important quality parameters. Extra virgin olive oils from Italy and lubricant oils from turbines with different degrees of degradation were considered as "case studies". The spectral data were processed by means of multivariate analysis so as to obtain a correlation to quality parameters. In practice, the wide range absorption spectra were considered as an optical signature of the liquids from which to extract product quality information. The optical signatures of extra virgin olive oils were used to predict the content of the most important fatty acids. The optical signatures of lubricant oils were used to predict the concentration of the most important parameters for indicating the oil's degree of degradation, such as TAN, JOAP anti-wear index, and water content.

  14. Molten tin reprocessing of spent nuclear fuel elements

    DOEpatents

    Heckman, Richard A.

    1983-01-01

    A method and apparatus for reprocessing spent nuclear fuel is described. Within a containment vessel, a solid plug of tin and nitride precipitates supports a circulating bath of liquid tin therein. Spent nuclear fuel is immersed in the liquid tin under an atmosphere of nitrogen, resulting in the formation of nitride precipitates. The layer of liquid tin and nitride precipitates which interfaces the plug is solidified and integrated with the plug. Part of the plug is melted, removing nitride precipitates from the containment vessel, while a portion of the plug remains solidified to support the liquid tin and nitride precipitates remaining in the containment vessel. The process is practiced numerous times until substantially all of the precipitated nitrides are removed from the containment vessel.

  15. Adiabatic Compression Sensitivity of Liquid Fuels and Monopropellants

    NASA Technical Reports Server (NTRS)

    Ismail, Ismail M. K.; Hawkins, Tom W.

    2000-01-01

    Liquid rocket propellants can be sensitive to rapid compression. Such liquids may undergo decomposition and their handling may be accompanied with risk. Decomposition produces small gas bubbles in the liquid, which upon rapid compression may cause catastrophic explosions. The rapid compression can result from mechanical shocks applied on the tank containing the liquid or from rapid closure of the valves installed on the lines. It is desirable to determine the conditions that may promote explosive reactions. At Air Force Research Laboratory (AFRL), we constructed an apparatus and established a safe procedure for estimating the sensitivity of propellant materials towards mechanical shocks (Adiabatic Compression Tester). A sample is placed on a stainless steel U-tube, held isothermally at a temperature between 20 and 150 C then exposed to an abrupt mechanical shock of nitrogen gas at a pressure between 6.9 and 20.7 MPa (1000 to 3000 psi). The apparatus is computer interfaced and is driven with LABTECH NOTEBOOK-pro (registered) Software. In this presentation, the design of the apparatus is shown, the operating procedure is outlined, and the safety issues are addressed. The results obtained on different energetic materials are presented.

  16. Jet Propellant 8 versus Alternative Jet Fuels: A Life-Cycle Perspective

    DTIC Science & Technology

    2011-01-01

    United States imports.26 The CBTL process uses three existing technologies to convert coal and biomass into liquid fuel: gasification , FT synthesis...and carbon capture and storage. Gasification converts coal and biomass into CO and H2, a mixture commonly referred to as “syngas.” FT synthesis...com- pare petroleum-derived jet fuel (i.e., JP-8) to an alternative jet fuel derived from a coal- biomass -to-liquid (CBTL) process. The EIO- LCA

  17. Advanced reactors and novel reactions for the conversion of triglyceride based oils into high quality renewable transportation fuels

    NASA Astrophysics Data System (ADS)

    Linnen, Michael James

    Sustainable energy continues to grow more important to all societies, leading to the research and development of a variety of alternative and renewable energy technologies. Of these, renewable liquid transportation fuels may be the most visible to consumers, and this visibility is further magnified by the long-term trend of increasingly expensive petroleum fuels that the public consumes. While first-generation biofuels such as biodiesel and fuel ethanol have been integrated into the existing fuel infrastructures of several countries, the chemical differences between them and their petroleum counterparts reduce their effectiveness. This gives rise to the development and commercialization of second generation biofuels, many of which are intended to have equivalent properties to those of their petroleum counterparts. In this dissertation, the primary reactions for a second-generation biofuel process, known herein as the University of North Dakota noncatalytic cracking process (NCP), have been studied at the fundamental level and improved. The NCP is capable of producing renewable fuels and chemicals that are virtually the same as their petroleum counterparts in performance and quality (i.e., petroleum-equivalent). In addition, a novel analytical method, FIMSDIST was developed which, within certain limitations, can increase the elution capabilities of GC analysis and decrease sample processing times compared to other high resolution methods. These advances are particularly useful for studies of highly heterogeneous fuel and/or organic chemical intermediates, such as those studied for the NCP. However the data from FIMSDIST must be supplemented with data from other methods such as for certain carboxylic acid, to provide accurate, comprehensive results, From a series of TAG cracking experiments that were performed, it was found that coke formation during cracking is most likely the result of excessive temperature and/or residence time in a cracking reactor. Based on this

  18. Deposit formation in liquid fuels. III - The effect of selected nitrogen compounds on diesel fuel

    NASA Technical Reports Server (NTRS)

    Worstell, J. H.; Daniel, S. R.; Frauenhoff, G.

    1981-01-01

    The influence of substituted quinolines, pyrroles, indoles, and pyridines on deposit formation in a diesel fuel is evaluated. Significant increases in deposition rate are found which are dependent upon the basicity of the nitrogen compound within a given compound class. These effects correspond closely with those produced in a Jet A fuel. Removal of highly polar fuel components renders the nitrogen compound influence inoperative. These components are therefore participants in deposit-forming reactions.

  19. Effect of oxygen on the ignition of liquid fuels

    NASA Technical Reports Server (NTRS)

    Pahl, H

    1929-01-01

    The ignition temperature, ignition lag, and ignition strength of simple and homogeneous fuels in combustion air of small oxygen content differ from what they are in air of greater oxygen content. In the case of small oxygen content, these fuels behave as if mixed unevenly. In the case of air with a definite oxygen content, the simple fuels have two ignition points, between which ignition takes place within a certain temperature range. The phenomena are explained by pyrogenous decomposition, comparison of the individual heat quantities, and the effect of the walls.

  20. A survey of Opportunities for Microbial Conversion of Biomass to Hydrocarbon Compatible Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jovanovic, Iva; Jones, Susanne B.; Santosa, Daniel M.

    2010-09-01

    Biomass is uniquely able to supply renewable and sustainable liquid transportation fuels. In the near term, the Biomass program has a 2012 goal of cost competitive cellulosic ethanol. However, beyond 2012, there will be an increasing need to provide liquid transportation fuels that are more compatible with the existing infrastructure and can supply fuel into all transportation sectors, including aviation and heavy road transport. Microbial organisms are capable of producing a wide variety of fuel and fuel precursors such as higher alcohols, ethers, esters, fatty acids, alkenes and alkanes. This report surveys liquid fuels and fuel precurors that can bemore » produced from microbial processes, but are not yet ready for commercialization using cellulosic feedstocks. Organisms, current research and commercial activities, and economics are addressed. Significant improvements to yields and process intensification are needed to make these routes economic. Specifically, high productivity, titer and efficient conversion are the key factors for success.« less

  1. Fuel-Cell Water Separator

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth Alan; Fisher, Caleb; Newman, Paul

    2010-01-01

    The main product of a typical fuel cell is water, and many fuel-cell configurations use the flow of excess gases (i.e., gases not consumed by the reaction) to drive the resultant water out of the cell. This two-phase mixture then exits through an exhaust port where the two fluids must again be separated to prevent the fuel cell from flooding and to facilitate the reutilization of both fluids. The Glenn Research Center (GRC) has designed, built, and tested an innovative fuel-cell water separator that not only removes liquid water from a fuel cell s exhaust ports, but does so with no moving parts or other power-consuming components. Instead it employs the potential and kinetic energies already present in the moving exhaust flow. In addition, the geometry of the separator is explicitly intended to be integrated into a fuel-cell stack, providing a direct mate with the fuel cell s existing flow ports. The separator is also fully scalable, allowing it to accommodate a wide range of water removal requirements. Multiple separators can simply be "stacked" in series or parallel to adapt to the water production/removal rate. GRC s separator accomplishes the task of water removal by coupling a high aspect- ratio flow chamber with a highly hydrophilic, polyethersulfone membrane. The hydrophilic membrane readily absorbs and transports the liquid water away from the mixture while simultaneously resisting gas penetration. The expansive flow path maximizes the interaction of the water particles with the membrane while minimizing the overall gas flow restriction. In essence, each fluid takes its corresponding path of least resistance, and the two fluids are effectively separated. The GRC fuel-cell water separator has a broad range of applications, including commercial hydrogen-air fuel cells currently being considered for power generation in automobiles.

  2. Shingle Springs Band of Miwok Indians/Shingle Springs Rancheria: Express Fuel General Air Quality Permit Application

    EPA Pesticide Factsheets

    Shingle Springs Rancheria/Shingle Springs Band of Miwok Indians/Express Fuel Request for Coverage under the General Air Quality Permit for New or Modified Minor Source Gasoline Dispensing Facilities in Indian Country within California.

  3. Mixing of an Airblast-atomized Fuel Spray Injected into a Crossflow of Air

    NASA Technical Reports Server (NTRS)

    Leong, May Y.; McDonell, Vincent G.; Samuelsen, G. Scott

    2000-01-01

    The injection of a spray of fuel droplets into a crossflow of air provides a means of rapidly mixing liquid fuel and air for combustion applications. Injecting the liquid as a spray reduces the mixing length needed to accommodate liquid breakup, while the transverse injection of the spray into the air stream takes advantage of the dynamic mixing induced by the jet-crossflow interaction. The structure of the spray, formed from a model plain-jet airblast atomizer, is investigated in order to determine and understand the factors leading to its dispersion. To attain this goal, the problem is divided into the following tasks which involve: (1) developing planar imaging techniques that visualize fuel and air distributions in the spray, (2) characterizing the airblast spray without a crossflow, and (3) characterizing the airblast spray upon injection into a crossflow. Geometric and operating conditions are varied in order to affect the atomization, penetration, and dispersion of the spray into the crossflow. The airblast spray is first characterized, using imaging techniques, as it issues into a quiescent environment. The spray breakup modes are classified in a liquid Reynolds number versus airblast Weber number regime chart. This work focuses on sprays formed by the "prompt" atomization mode, which induces a well-atomized and well-dispersed spray, and which also produces a two-lobed liquid distribution corresponding to the atomizing air passageways in the injector. The characterization of the spray jet injected into the crossflow reveals the different processes that control its dispersion. Correlations that describe the inner and outer boundaries of the spray jet are developed, using the definition of a two-phase momentum-flux ratio. Cross-sections of the liquid spray depict elliptically-shaped distributions, with the exception of the finely-atomized sprays which show kidney-shaped distributions reminiscent of those obtained in gaseous jet in crossflow systems. A droplet

  4. Method and device for feeding fuel in a fuel system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, E.

    1988-07-26

    This patent describes a device for feeding fuel in a fuel system for a liquid fuel engine, with the fuel system having a fuel tank, fuel lines, multiple microscreen fuel filters, a fuel pump, and engine fuel injectors, with the fuel tank having a fill opening having a perimeter, comprising, in combination: a ball having a size for overfitting and abutting with the perimeter of the fill opening of differing sizes, shapes, and constructions; and means for introducing air pressure greater than atmospheric through the ball and through the fill opening and into the fuel tank, with the ball havingmore » a solid cross section and being generally impermeable to air passage, with the ball being deformable to conform to the perimeter of the fill opening for sealingly engaging the perimeter of the fill opening and having a firmness for transmitting a force applied to the ball in the direction of the fill opening into a sealing force applied by the ball to the fill opening to balance opposing forces created by the introduction of air pressure into the fuel tank and for increasing the air pressure in the fuel tank acting on the fuel to increase the rate of fuel flow from the fuel tank into the fuel line for assisting the fuel pump in moving the fuel from the fuel tank through the fuel lines and through the microscreen filters to the engine fuel injectors while allowing an excessive air pressure to escape from the fill opening around the ball.« less

  5. 16 CFR 309.10 - Alternative vehicle fuel rating.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Electricity) and of Manufacturers of Electric Vehicle Fuel Dispensing Systems § 309.10 Alternative vehicle... (other than electricity), you must determine the fuel rating of all non-liquid alternative vehicle fuel (other than electricity) before you transfer it. You can do that yourself or through a testing lab. To...

  6. Stimulated raman scattering of fuel droplets

    NASA Astrophysics Data System (ADS)

    Acker, William P.; Serpengüzel, Ali; Chang, Richard K.; Hill, Steven C.

    1990-07-01

    The strong stimulated Raman scattering (SRS) from diesel fuel droplets has the potential of providing the relative concentration of multicomponent fuel and the absolute size of individual droplets. The morphology-dependent resonances (MDRs) of a sphere cause the droplet to act as an optical resonator which greatly lowers the SRS threshold. The number density, quality factor, and frequency shift of several MDRs are calculated as a function of the ratio of the index of refraction of the liquid and the surrounding gas, which approaches unity at the thermodynamic critical condition for the fuel spray. The SRS spectra of monodispersed droplets of toluene, pentane, Exxon-Aromatic-150, and Mobil D-2 are presented. The exponential growth region of the SRS intensity I 1S as a function of the input laser intensity I input is investigated for the toluene carbon ring breathing mode v 2 and the pentane C-H stretching region. The I 1S ratio of toluene and pentane is measured as a function of the ratio of the toluene and pentane concentration for monodispersed droplets. The reduced fluctuation in I 1S when I input is changed from multimode to single-mode is displayed as a histogram of the I 1S of the v 2 mode of toluene droplets.

  7. Effects of glutathione on sperm quality during liquid storage in boars.

    PubMed

    Zhang, Xiao-Gang; Liu, Qi; Wang, Li-Qiang; Yang, Gong-She; Hu, Jian-Hong

    2016-10-01

    The aim of this study was to investigate the effects of different concentrations of glutathione in Modena on boar sperm quality during liquid storage at 17°C. Boar semen samples were collected and diluted with Modena containing different concentrations (0, 1, 5, 10, 15 mmol/L) of glutathione. Sperm motility, effective survival period, plasma membrane integrity, acrosome integrity, total antioxidant capacity (T-AOC) activity, malondialdehyde (MDA) content and hydrogen peroxide (H 2 O 2 ) content were measured and analyzed. The results showed that Modena supplemented with 1, 5 and 10 mmol/L glutathione improved sperm motility, effective survival period, plasma membrane integrity and T-AOC, and decreased MDA content and H 2 O 2 content. Meanwhile, the semen sample diluted with Modena containing 1 mmol/L glutathione achieved optimum effect, and effective survival period was 6.1 days. After 5 days preservation, sperm motility, plasma membrane integrity and T-AOC of the group treated with 1 mmol/L glutathione were all higher than that of other groups. Meanwhile, MDA content and H 2 O 2 content were lower than that of other groups. In conclusion, Modena supplemented with glutathione decreased the oxidative stress and improved the quality of boar semen during liquid storage at 17°C, and 1 mmol/L concentration was the optimum concentration. © 2016 Japanese Society of Animal Science. © 2016 Japanese Society of Animal Science.

  8. Fail-safe system for activity cooled supersonic and hypersonic aircraft. [using liquid hydrogen fuel

    NASA Technical Reports Server (NTRS)

    Jones, R. A.; Braswell, D. O.; Richie, C. B.

    1975-01-01

    A fail-safe-system concept was studied as an alternative to a redundant active cooling system for supersonic and hypersonic aircraft which use the heat sink of liquid-hydrogen fuel for cooling the aircraft structure. This concept consists of an abort maneuver by the aircraft and a passive thermal protection system (TPS) for the aircraft skin. The abort manuever provides a low-heat-load descent from normal cruise speed to a lower speed at which cooling is unnecessary, and the passive TPS allows the aircraft skin to absorb the abort heat load without exceeding critical skin temperature. On the basis of results obtained, it appears that this fail-safe-system concept warrants further consideration, inasmuch as a fail-safe system could possibly replace a redundant active cooling system with no increase in weight and would offer other potential advantages.

  9. Microbial fuel cell with improved anode

    DOEpatents

    Borole, Abhijeet P.

    2010-04-13

    The present invention relates to a method for preparing a microbial fuel cell, wherein the method includes: (i) inoculating an anodic liquid medium in contact with an anode of the microbial fuel cell with one or more types of microorganisms capable of functioning by an exoelectrogenic mechanism; (ii) establishing a biofilm of the microorganisms on and/or within the anode along with a substantial absence of planktonic forms of the microorganisms by substantial removal of the planktonic microorganisms during forced flow and recirculation conditions of the anodic liquid medium; and (iii) subjecting the microorganisms of the biofilm to a growth stage by incorporating one or more carbon-containing nutritive compounds in the anodic liquid medium during biofilm formation or after biofilm formation on the anode has been established.

  10. Alternative fuels in fire debris analysis: biodiesel basics.

    PubMed

    Stauffer, Eric; Byron, Doug

    2007-03-01

    Alternative fuels are becoming more prominent on the market today and, soon, fire debris analysts will start seeing them in liquid samples or in fire debris samples. Biodiesel fuel is one of the most common alternative fuels and is now readily available in many parts of the United States and around the world. This article introduces biodiesel to fire debris analysts. Biodiesel fuel is manufactured from vegetable oils and/or animal oils/fats. It is composed of fatty acid methyl esters (FAMEs) and is sold pure or as a blend with diesel fuel. When present in fire debris samples, it is recommended to extract the debris using passive headspace concentration on activated charcoal, possibly followed by a solvent extraction. The gas chromatographic analysis of the extract is first carried out with the same program as for regular ignitable liquid residues, and second with a program adapted to the analysis of FAMEs.

  11. Fuel-rich catalytic combustion: A fuel processor for high-speed propulsion

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.; Rollbuhler, R. James; Lezberg, Erwin A.

    1990-01-01

    Fuel-rich catalytic combustion of Jet-A fuel was studied over the equivalence ratio range 4.7 to 7.8, which yielded combustion temperatures of 1250 to 1060 K. The process was soot-free and the gaseous products were similar to those obtained in the iso-octane study. A carbon atom balance across the catalyst bed calculated for the gaseous products accounted for about 70 to 90 percent of the fuel carbon; the balance was condensed as a liquid in the cold trap. It was shown that 52 to 77 percent of the fuel carbon was C1, C2, and C3 molecules. The viability of using fuel-rich catalytic combustion as a technique for preheating a practical fuel to very high temperatures was demonstrated. Preliminary results from the scaled up version of the catalytic combustor produced a high-temperature fuel containing large amounts of hydrogen and carbon monoxide. The balance of the fuel was completely vaporized and in various stages of pyrolysis and oxidation. Visual observations indicate that there was no soot present.

  12. Bioethanol and Biodiesel: Alertnative Liquid Fuels for Future Generations

    USDA-ARS?s Scientific Manuscript database

    Global population is expected to increase by approximately three billion by 2050 and with this increase in population, industry, transportation, and the cost of fossil fuels will increase dramatically . New technology is needed for fuel extraction using feedstocks which do not threaten food security...

  13. An anisotropic numerical model for thermal hydraulic analyses: application to liquid metal flow in fuel assemblies

    NASA Astrophysics Data System (ADS)

    Vitillo, F.; Vitale Di Maio, D.; Galati, C.; Caruso, G.

    2015-11-01

    A CFD analysis has been carried out to study the thermal-hydraulic behavior of liquid metal coolant in a fuel assembly of triangular lattice. In order to obtain fast and accurate results, the isotropic two-equation RANS approach is often used in nuclear engineering applications. A different approach is provided by Non-Linear Eddy Viscosity Models (NLEVM), which try to take into account anisotropic effects by a nonlinear formulation of the Reynolds stress tensor. This approach is very promising, as it results in a very good numerical behavior and in a potentially better fluid flow description than classical isotropic models. An Anisotropic Shear Stress Transport (ASST) model, implemented into a commercial software, has been applied in previous studies, showing very trustful results for a large variety of flows and applications. In the paper, the ASST model has been used to perform an analysis of the fluid flow inside the fuel assembly of the ALFRED lead cooled fast reactor. Then, a comparison between the results of wall-resolved conjugated heat transfer computations and the results of a decoupled analysis using a suitable thermal wall-function previously implemented into the solver has been performed and presented.

  14. Predicting the effects of nanoscale cerium additives in diesel fuel on regional-scale air quality.

    PubMed

    Erdakos, Garnet B; Bhave, Prakash V; Pouliot, George A; Simon, Heather; Mathur, Rohit

    2014-11-04

    Diesel vehicles are a major source of air pollutant emissions. Fuel additives containing nanoparticulate cerium (nCe) are currently being used in some diesel vehicles to improve fuel efficiency. These fuel additives also reduce fine particulate matter (PM2.5) emissions and alter the emissions of carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbon (HC) species, including several hazardous air pollutants (HAPs). To predict their net effect on regional air quality, we review the emissions literature and develop a multipollutant inventory for a hypothetical scenario in which nCe additives are used in all on-road and nonroad diesel vehicles. We apply the Community Multiscale Air Quality (CMAQ) model to a domain covering the eastern U.S. for a summer and a winter period. Model calculations suggest modest decreases of average PM2.5 concentrations and relatively larger decreases in particulate elemental carbon. The nCe additives also have an effect on 8 h maximum ozone in summer. Variable effects on HAPs are predicted. The total U.S. emissions of fine-particulate cerium are estimated to increase 25-fold and result in elevated levels of airborne cerium (up to 22 ng/m3), which might adversely impact human health and the environment.

  15. Ionic liquid propellants: future fuels for space propulsion.

    PubMed

    Zhang, Qinghua; Shreeve, Jean'ne M

    2013-11-11

    Use of green propellants is a trend for future space propulsion. Hypergolic ionic liquid propellants, which are environmentally-benign while exhibiting energetic performances comparable to hydrazine, have shown great potential to meet the requirements of developing nontoxic high-performance propellant formulations for space propulsion applications. This Concept article presents a review of recent advances in the field of ionic liquid propellants. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Nutrients content and quality of liquid fertilizer made from goat manure

    NASA Astrophysics Data System (ADS)

    Sunaryo, Yacobus; Purnomo, Djoko; Theresia Darini, Maria; Ratri Cahyani, Vita

    2018-05-01

    Quality of liquid fertilizer is determined by the content of nutrients and other chemical factors such as pH and EC. This research aimed to examine nutrient contents and dynamic of pH and EC of liquid fertilizer made from goat manure in combination with sugar and ammonium sulfate (ZA) and using Effective Microorganisms (EM) as the decomposer. This research was conducted by employing 3 x 3 factorial experiment with three replications. Each treatment combination was applied in 20 L of water. The first factor was the quantity of sugar which consisted of 3 levels: 12.5, 25, and 50 g L-1 of water. The second factor was the quantity of ZA which consisted of 3 levels: 25, 37.5, and 50 g L-1 of water. All combinations were added by 100 g of air dried goat manure L-1 of water and EM solution 1 ml L-1 of water, and incubated for five months. Results of the experiment indicated that the increasing concentration of ZA resulted in the significantly increase of N total and S total. Increasing concentration of sugar resulted in decreasing pH and increasing lactic acid; whereas, increasing concentration of ZA followed by increasing Electrical Conductivity (EC). There was no significantly change of pH and EC of the liquid fertilizer during five months incubation.

  17. Selective catalytic oxidation: a new catalytic approach to the desulfurization of natural gas and liquid petroleum gas for fuel cell reformer applications

    NASA Astrophysics Data System (ADS)

    Lampert, J.

    In both natural gas and liquid petroleum gas (LPG), sulfur degrades the performance of the catalysts used in fuel reformers and fuel cells. In order to improve system performance, the sulfur must be removed to concentrations of less than 200 ppbv (in many applications to less than 20 ppbv) before the fuel reforming operation. Engelhard Corporation presents a unique approach to the desulfurization of natural gas and LPG. This new method catalytically converts the organic and inorganic sulfur species to sulfur oxides. The sulfur oxides are then adsorbed on a high capacity adsorbent. The sulfur compounds in the fuel are converted to sulfur oxides by combining the fuel with a small amount of air. The mixture is then heated from 250 to 270 °C, and contacted with a monolith supported sulfur tolerant catalyst at atmospheric pressure. When Engelhard Corporation demonstrated this catalytic approach in the laboratory, the result showed sulfur breakthrough to be less than 10 ppbv in the case of natural gas, and less than 150 ppbv for LPG. We used a simulated natural gas and LPG mixture, doped with a 50-170 ppmv sulfur compound containing equal concentrations of COS, ethylmercaptan, dimethylsulfide, methylethylsulfide and tetrahydrothiophene. There is no need for recycled H 2 as in the case for hydrodesulfurization.

  18. Minimum Specific Fuel Consumption of a Liquid-Cooled Multicylinder Aircraft Engine as Affected by Compression Ratio and Engine Operating Conditions

    NASA Technical Reports Server (NTRS)

    Brun, Rinaldo J.; Feder, Melvin S.; Harries, Myron L.

    1947-01-01

    An investigation was conducted on a 12-cylinder V-type liquid-cooled aircraft engine of 1710-cubic-inch displacement to determine the minimum specific fuel consumption at constant cruising engine speed and compression ratios of 6.65, 7.93, and 9.68. At each compression ratio, the effect.of the following variables was investigated at manifold pressures of 28, 34, 40, and 50 inches of mercury absolute: temperature of the inlet-air to the auxiliary-stage supercharger, fuel-air ratio, and spark advance. Standard sea-level atmospheric pressure was maintained at the auxiliary-stage supercharger inlet and the exhaust pressure was atmospheric. Advancing the spark timing from 34 deg and 28 deg B.T.C. (exhaust and intake, respectively) to 42 deg and 36 deg B.T.C. at a compression ratio of 6.65 resulted in a decrease of approximately 3 percent in brake specific fuel consumption. Further decreases in brake specific fuel consumption of 10.5 to 14.1 percent (depending on power level) were observed as the compression ratio was increased from 6.65 to 9.68, maintaining at each compression ratio the spark advance required for maximum torque at a fuel-air ratio of 0.06. This increase in compression ratio with a power output of 0.585 horsepower per cubic inch required a change from . a fuel- lend of 6-percent triptane with 94-percent 68--R fuel at a compression ratio of 6.65 to a fuel blend of 58-percent, triptane with 42-percent 28-R fuel at a compression ratio of 9.68 to provide for knock-free engine operation. As an aid in the evaluation of engine mechanical endurance, peak cylinder pressures were measured on a single-cylinder engine at several operating conditions. Peak cylinder pressures of 1900 pounds per square inch can be expected at a compression ratio of 9.68 and an indicated mean effective pressure of 320 pounds per square inch. The engine durability was considerably reduced at these conditions.

  19. Improved hybrid rocket fuel

    NASA Technical Reports Server (NTRS)

    Dean, David L.

    1995-01-01

    McDonnell Douglas Aerospace, as part of its Independent R&D, has initiated development of a clean burning, high performance hybrid fuel for consideration as an alternative to the solid rocket thrust augmentation currently utilized by American space launch systems including Atlas, Delta, Pegasus, Space Shuttle, and Titan. It could also be used in single stage to orbit or as the only propulsion system in a new launch vehicle. Compared to solid propellants based on aluminum and ammonium perchlorate, this fuel is more environmentally benign in that it totally eliminates hydrogen chloride and aluminum oxide by products, producing only water, hydrogen, nitrogen, carbon oxides, and trace amounts of nitrogen oxides. Compared to other hybrid fuel formulations under development, this fuel is cheaper, denser, and faster burning. The specific impulse of this fuel is comparable to other hybrid fuels and is between that of solids and liquids. The fuel also requires less oxygen than similar hybrid fuels to produce maximum specific impulse, thus reducing oxygen delivery system requirements.

  20. Novel electrospun gas diffusion layers for polymer electrolyte membrane fuel cells: Part II. In operando synchrotron imaging for microscale liquid water transport characterization

    NASA Astrophysics Data System (ADS)

    Chevalier, S.; Ge, N.; Lee, J.; George, M. G.; Liu, H.; Shrestha, P.; Muirhead, D.; Lavielle, N.; Hatton, B. D.; Bazylak, A.

    2017-06-01

    This is the second paper in a two-part series in which we investigate the impact of the gas diffusion layer structure on the liquid water distribution in an operating polymer electrolyte membrane (PEM) fuel cell through the procedures of design, fabrication, and testing of novel hydrophobic electrospun gas diffusion layers (eGDLs). In this work, fibre diameters and alignment in eGDLs are precisely controlled, and concurrent synchrotron X-ray radiography and electrochemical impedance spectroscopy (EIS) are used to evaluate the influence of the controlled eGDL parameters on the liquid water distribution and on membrane liquid water content. For eGDLs with small fibre diameters (150-200 nm) and correspondingly smaller pore sizes, reduced liquid water accumulation under the flow field ribs is observed. However, more liquid water is pinned onto the eGDL - at the interface with flow field channels. Orienting fibre alignment perpendicular to the flow field channel direction leads to improved eGDL-catalyst layer contact and prevents rib-channel membrane deformation. On the other hand, eGDLs facilitate significant membrane dry-out, even under highly humidified operating conditions at high current densities.

  1. Development of An Advanced JP-8 Fuel

    DTIC Science & Technology

    1993-12-01

    included the Microthermal Precipitation Test (MTP), Fuel Reactor Test, Hot Liquid Process Simulator (HLPS), and Isothermal Corrosion Oxidation Test (ICOT... Microthermal Precipitation Test The impetus for this development effort was the need for a screening test that could discriminate between fuels of...varying propensity to produce thermally induced insoluble particulate material in the bulk fuel. The Microthermal Precipitation (MTP) test thermally

  2. 86. VIEW OF LIQUID NITROGEN STORAGE FACILITY LOCATED DIRECTLY WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    86. VIEW OF LIQUID NITROGEN STORAGE FACILITY LOCATED DIRECTLY WEST OF THE SLC-3W FUEL APRON. NOTE HEAT EXCHANGER IN BACKGROUND. CAMERA TOWER LOCATED DIRECTLY IN FRONT OF LIQUID NITROGEN STORAGE TANK. NITROGEN AND HELIUM GAS STORAGE TANKS AT SOUTH END OF FUEL APRON IN LOWER RIGHT CORNER. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. High Fidelity Simulation of Transcritical Liquid Jet in Crossflow

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyi; Soteriou, Marios

    2017-11-01

    Transcritical injection of liquid fuel occurs in many practical applications such as diesel, rocket and gas turbine engines. In these applications, the liquid fuel, with a supercritical pressure and a subcritical temperature, is introduced into an environment where both the pressure and temperature exceeds the critical point of the fuel. The convoluted physics of the transition from subcritical to supercritical conditions poses great challenges for both experimental and numerical investigations. In this work, numerical simulation of a binary system of a subcritical liquid injecting into a supercritical gaseous crossflow is performed. The spatially varying fluid thermodynamic and transport properties are evaluated using established cubic equation of state and extended corresponding state principles with established mixing rules. To efficiently account for the large spatial gradients in property variations, an adaptive mesh refinement technique is employed. The transcritical simulation results are compared with the predictions from the traditional subcritical jet atomization simulations.

  4. Fuel cell membrane hydration and fluid metering

    DOEpatents

    Jones, Daniel O.; Walsh, Michael M.

    2003-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  5. Performance of high-altitude, long-endurance, turboprop airplanes using conventional or cryogenic fuels

    NASA Technical Reports Server (NTRS)

    Liu, G. C.; Morris, C. E. K., Jr.; Koenig, R. W.

    1983-01-01

    An analytical study has been conducted to evaluate the potential endurance of remotely piloted, low speed, high altitude, long endurance airplanes designed with 1990 technology. The baseline configuration was a propeller driven, sailplane like airplane powered by turbine engines that used JP-7, liquid methane, or liquid hydrogen as fuel. Endurance was measured as the time spent between 60,000 feet and an engine limited maximum altitude of 70,000 feet. Performance was calculated for a baseline vehicle and for configurations derived by varying aerodynamic, structural or propulsion parameters. Endurance is maximized by reducing wing loading and engine size. The level of maximum endurance for a given wing loading is virtually the same for all three fuels. Constraints due to winds aloft and propulsion system scaling produce maximum endurance values of 71 hours for JP-7 fuel, 70 hours for liquid methane, and 65 hours for liquid hydrogen. Endurance is shown to be strongly effected by structural weight fraction, specific fuel consumption, and fuel load. Listings of the computer program used in this study and sample cases are included in the report.

  6. High perfomance liquid chromatography fingerprint analysis for quality control of brotowali (Tinospora crispa)

    NASA Astrophysics Data System (ADS)

    Syarifah, V. B.; Rafi, M.; Wahyuni, W. T.

    2017-05-01

    Brotowali (Tinospora crispa) is widely used in Indonesia as ingredient of herbal medicine formulation. To ensure the quality, safety, and efficacy of herbal medicine products, its chemical constituents should be continuously evaluated. High performance liquid chromatography (HPLC) fingerprint is one of powerful technique for this quality control process. In this study, HPLC fingerprint analysis method was developed for quality control of brotowali. HPLC analysis was performed in C18 column and detection was performed using photodiode array detector. The optimum mobile phase for brotowali fingerprint was acetonitrile (ACN) and 0.1% formic acid in gradient elution mode at a flow rate of 1 mL/min. The number of peaks detected in HPLC fingerprint of brotowali was 32 peaks and 23 peaks for stems and leaves, respectively. Berberine as marker compound was detected at retention time of 20.525 minutes. Evaluation of analytical performance including precision, reproducibility, and stability prove that this HPLC fingerprint analysis was reliable and could be applied for quality control of brotowali.

  7. 49 CFR 393.67 - Liquid fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., by brazing, by silver soldering, or by techniques which provide heat resistance and mechanical... soldering with a lead-based or other soft solder. (2) Fittings. The fuel tank body must have flanges or...

  8. 49 CFR 393.67 - Liquid fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., by brazing, by silver soldering, or by techniques which provide heat resistance and mechanical... soldering with a lead-based or other soft solder. (2) Fittings. The fuel tank body must have flanges or...

  9. 49 CFR 393.67 - Liquid fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., by brazing, by silver soldering, or by techniques which provide heat resistance and mechanical... soldering with a lead-based or other soft solder. (2) Fittings. The fuel tank body must have flanges or...

  10. 49 CFR 393.67 - Liquid fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., by brazing, by silver soldering, or by techniques which provide heat resistance and mechanical... soldering with a lead-based or other soft solder. (2) Fittings. The fuel tank body must have flanges or...

  11. Coolant mass flow equalizer for nuclear fuel

    DOEpatents

    Betten, Paul R.

    1978-01-01

    The coolant mass flow distribution in a liquid metal cooled reactor is enhanced by restricting flow in sub-channels defined in part by the peripheral fuel elements of a fuel assembly. This flow restriction, which results in more coolant flow in interior sub-channels, is achieved through the use of a corrugated liner positioned between the bundle of fuel elements and the inner wall of the fuel assembly coolant duct. The corrugated liner is expandable to accommodate irradiation induced growth of fuel assembly components.

  12. High speed commercial transport fuels considerations and research needs

    NASA Technical Reports Server (NTRS)

    Lee, C. M.; Niedzwiecki, R. W.

    1989-01-01

    NASA is currently evaluating the potential of incorporating High Speed Civil Transport (HSCT) aircraft in the commercial fleet in the beginning of the 21st century. NASA sponsored HSCT enabling studies currently underway with airframers and engine manufacturers, are addressing a broad range of technical, environmental, economic, and related issues. Supersonic cruise speeds for these aircraft were originally focused in the Mach 2 to 5 range. At these flight speeds, both jet fuels and liquid methane were considered potential fuel candidates. For the year 2000 to 2010, cruise Mach numbers of 2 to 3+ are projected for aircraft fuel with thermally stable liquid jet fuels. For 2015 and beyond, liquid methane fueled aircraft cruising at Mach numbers of 4+ may be viable candidates. Operation at supersonic speeds will be much more severe than those encountered at subsonic flight. One of the most critical problems is the potential deterioration of the fuel due to the high temperature environment. HSCT fuels will not only be required to provide the energy necessary for flight, but will also be subject to aerodynamic heating and, will be required to serve as the primary heat sink for cooling the engine and airframe. To define fuel problems for high speed flight, a fuels workshop was conducted at NASA Lewis Research Center. The purpose of the workshop was to gather experts on aviation fuels, airframe fuel systems, airport infrastructure, and combustion systems to discuss high speed fuel alternatives, fuel supply scenarios, increased thermal stability approaches and measurements, safety considerations, and to provide directional guidance for future R and D efforts. Subsequent follow-up studies defined airport infrastructure impacts of high speed fuel candidates. The results of these activities are summarized. In addition, an initial case study using modified in-house refinery simulation model Gordian code (1) is briefly discussed. This code can be used to simulate different

  13. Black carbon from ships: a review of the effects of ship speed, fuel quality and exhaust gas scrubbing

    NASA Astrophysics Data System (ADS)

    Lack, D. A.; Corbett, J. J.

    2012-01-01

    The International Maritime Organization (IMO) has moved to address the health and climate impact of the emissions from the combustion of low-quality residual fuels within the commercial shipping industry. Fuel sulfur content (FS) limits and an efficiency design index for future ships are examples of such IMO actions. The impacts of black carbon (BC) emissions from shipping are now under review by the IMO, with a particular focus on the potential impacts of future Arctic shipping. Recognizing that associating impacts with BC emissions requires both ambient and onboard observations, we provide recommendations for the measurement of BC. We also evaluate current insights regarding the effect of ship speed (engine load), fuel quality and exhaust gas scrubbing on BC emissions from ships. Observations demonstrate that BC emission factors (EFBC) increases 3 to 6 times at very low engine loads (<25% compared to EFBC at 85-100% load); absolute BC emissions (per nautical mile of travel) also increase up to 100% depending on engine load, even with reduced load fuel savings. If fleets were required to operate at lower maximum engine loads, presumably associated with reduced speeds, then engines could be re-tuned, which would reduce BC emissions. Ships operating in the Arctic are likely running at highly variable engine loads (25-100%) depending on ice conditions and ice breaking requirements. The ships operating at low load may be emitting up to 50% more BC than they would at their rated load. Such variable load conditions make it difficult to assess the likely emissions rate of BC. Current fuel sulfur regulations have the effect of reducing EFBC by an average of 30% and potentially up to 80% regardless of engine load; a removal rate similar to that of scrubbers. Uncertainties among current observations demonstrate there is a need for more information on (a) the impact of fuel quality on EFBC using robust measurement methods and (b) the efficacy of scrubbers for the removal of

  14. Black carbon from ships: a review of the effects of ship speed, fuel quality and exhaust gas scrubbing

    NASA Astrophysics Data System (ADS)

    Lack, D. A.; Corbett, J. J.

    2012-05-01

    The International Maritime Organization (IMO) has moved to address the health and climate impact of the emissions from the combustion of low-quality residual fuels within the commercial shipping industry. Fuel sulfur content (FS) limits and an efficiency design index for future ships are examples of such IMO actions. The impacts of black carbon (BC) emissions from shipping are now under review by the IMO, with a particular focus on the potential impacts of future Arctic shipping. Recognizing that associating impacts with BC emissions requires both ambient and onboard observations, we provide recommendations for the measurement of BC. We also evaluate current insights regarding the effect of ship speed (engine load), fuel quality and exhaust gas scrubbing on BC emissions from ships. Observations demonstrate that BC emission factors (EFBC) increases 3 to 6 times at very low engine loads (<25% compared to EFBC at 85-100% load); absolute BC emissions (per nautical mile of travel) also increase up to 100% depending on engine load, even with reduced load fuel savings. If fleets were required to operate at lower maximum engine loads, presumably associated with reduced speeds, then engines could be re-tuned, which would reduce BC emissions. Ships operating in the Arctic are likely running at highly variable engine loads (25-100%) depending on ice conditions and ice breaking requirements. The ships operating at low load may be emitting up to 50% more BC than they would at their rated load. Such variable load conditions make it difficult to assess the likely emissions rate of BC. Current fuel sulfur regulations have the effect of reducing EFBC by an average of 30% and potentially up to 80% regardless of engine load; a removal rate similar to that of scrubbers. Uncertainties among current observations demonstrate there is a need for more information on a) the impact of fuel quality on EFBC using robust measurement methods and b) the efficacy of scrubbers for the removal of

  15. 46 CFR 151.50-6 - Motor fuel antiknock compounds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Motor fuel antiknock compounds. 151.50-6 Section 151.50... BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-6 Motor fuel antiknock compounds. When transporting motor fuel antiknock compounds containing tetraethyl lead and...

  16. 46 CFR 151.50-6 - Motor fuel antiknock compounds.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Motor fuel antiknock compounds. 151.50-6 Section 151.50... BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-6 Motor fuel antiknock compounds. When transporting motor fuel antiknock compounds containing tetraethyl lead and...

  17. 46 CFR 151.50-6 - Motor fuel antiknock compounds.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Motor fuel antiknock compounds. 151.50-6 Section 151.50... BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-6 Motor fuel antiknock compounds. When transporting motor fuel antiknock compounds containing tetraethyl lead and...

  18. Study of Rapid-Regression Liquefying Hybrid Rocket Fuels

    NASA Technical Reports Server (NTRS)

    Zilliac, Greg; DeZilwa, Shane; Karabeyoglu, M. Arif; Cantwell, Brian J.; Castellucci, Paul

    2004-01-01

    A report describes experiments directed toward the development of paraffin-based hybrid rocket fuels that burn at regression rates greater than those of conventional hybrid rocket fuels like hydroxyl-terminated butadiene. The basic approach followed in this development is to use materials such that a hydrodynamically unstable liquid layer forms on the melting surface of a burning fuel body. Entrainment of droplets from the liquid/gas interface can substantially increase the rate of fuel mass transfer, leading to surface regression faster than can be achieved using conventional fuels. The higher regression rate eliminates the need for the complex multi-port grain structures of conventional solid rocket fuels, making it possible to obtain acceptable performance from single-port structures. The high-regression-rate fuels contain no toxic or otherwise hazardous components and can be shipped commercially as non-hazardous commodities. Among the experiments performed on these fuels were scale-up tests using gaseous oxygen. The data from these tests were found to agree with data from small-scale, low-pressure and low-mass-flux laboratory tests and to confirm the expectation that these fuels would burn at high regression rates, chamber pressures, and mass fluxes representative of full-scale rocket motors.

  19. Production of CO2 from Fossil Fuel Burning by Fuel Type, 1860-1982

    DOE Data Explorer

    Rotty, R.M. [Oak Ridge Associated Univ., Oak Ridge, TN (United States); Marland, G. [Oak Ridge Associated Univ., Oak Ridge, TN (United States)

    2004-01-01

    Global carbon dioxide emissions for 1950 through 1982 were estimated by Marland and Rotty (1984) from fuel production data from the U.N. Energy Statistics Yearbook (1983, 1984). Data before 1950 came from Keeling (1973). Fuel-production data were used in these calculations because they appeared to be more reliable on a global basis than fuel-consumption data. The data given are the year and annual global CO2 emissions (annual global total; cumulative global total since 1860; and annual global emissions from solid fuels, liquid fuels, natural gas, gas flaring, and cement manufacturing). These data provide the only pre-1950 estimates of the amount of carbon emitted to the atmosphere from fossil-fuel burning. The CO2 emission record since 1950 has been updated and revised several times with the most recent estimates being published by Marland et al. (1989).

  20. Oxidative desulfurization of fuel oil by pyridinium-based ionic liquids.

    PubMed

    Zhao, Dishun; Wang, Yanan; Duan, Erhong

    2009-10-28

    In this work, an N-butyl-pyridinium-based ionic liquid [BPy]BF(4) was prepared. The effect of extraction desulfurization on model oil with thiophene and dibenzothiophene (DBT) was investigated. Ionic liquids and hydrogen peroxide (30%) were tested in extraction-oxidation desulfurization of model oil. The results show that the ionic liquid [BPy]BF(4) has a better desulfurization effect. The best technological conditions are: V(IL)/V(Oil) /V(H(2)O(2)) = 1:1:0.4, temperature 55 degrees C, the time 30 min. The ratio of desulfurization to thiophene and DBT reached 78.5% and 84.3% respectively, which is much higher than extraction desulfurization with simple ionic liquids. Under these conditions, the effect of desulfurization on gasoline was also investigated. The used ionic liquids can be recycled up to four times after regeneration.