NASA Astrophysics Data System (ADS)
Withanage, Wenura K.; Penmatsa, Sashank V.; Acharya, Narendra; Melbourne, Thomas; Cunnane, D.; Karasik, B. S.; Xi, X. X.
2018-07-01
We report on the growth of high quality MgB2 thin films on silicon and silicon-on-insulator substrates by hybrid physical chemical vapor deposition. A boron buffer layer was deposited on all sides of the Si substrate to prevent the reaction of Mg vapor and Si. Ar ion milling at a low angle of 1° was used to reduce the roughness of the boron buffer layer before the MgB2 growth. An Ar ion milling at low angle of 1° was also applied to the MgB2 surface to reduce its roughness. The resultant MgB2 films showed excellent superconducting properties and a smooth surface. The process produces thin MgB2 films suitable for waveguide-based superconducting hot electron bolometers and other MgB2-based electronic devices.
Magnesium Diboride thin Films, multilayers, and coatings for SRF cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Xiaoxing
Superconducting radio frequency (SRF) cavities currently use low-temperature superconductor niobium, and the Nb SRF cavities have approached the performance levels predicted theoretically. Compared to Nb, MgB 2 becomes superconducting at a much higher temperature and promises a better RF performance in terms of higher quality factor Q and higher acceleration capability. An MgB 2 SRF technology can significantly reduce the operating costs of particle accelerators when these potentials are realized. This project aimed to advance the development of an MgB 2 SRF technology. It had two main objectives: (1) materials issues of MgB 2 thin films and multilayers related tomore » their applications in SRF cavities; and (2) coating single-cell cavities for testing at RF frequencies. The key technical thrust of the project is the deposition of high quality clean MgB 2 films and coatings by the hybrid physical-chemical vapor deposition (HPCVD) technique, which was developed in my group. We have achieved technical progress in each of the two areas. For the first objective, we have confirmed that MgB 2 thin film coatings can be used to effectively enhance the vortex penetration field of an SRF cavity. A vortex is a normal region in the shape of spaghetti that threads through a superconductor. Its existence is due to an applied magnetic field that is greater than a so-called lower critical field, H c1. Once a vortex enters the superconductor, its movement leads to loss. This has been shown to be the reason for an SRF cavity to break down. Thus, enhancing the magnetic field for a vortex to enter the superconductor that forms the SRF cavity has be a goal of intense research. To this end, Gurevich proposed that a coating of thin superconductor layer can impede the vortex entrance. In this project, we have done two important experiment to test this concept. One, we showed that the enhancement of H c1 can be achieved by using in both epitaxial and polycrystalline MgB 2 films. Although H c1 is low for bulk MgB 2 samples, about 600 Oe at 5 K, it increases with decreasing film thickness, reaching 1880 Oe when the film thickness is 100 nm. Two, we coated Nb ellipsoids with MgB 2 films to achieve an “inverse cavity” configuration, mimicking the coating of an actual RF cavity. Our results demonstrate that it is indeed possible to increase the vortex penetration field of a cavity by a substantial amount (~600 Oe) by coating it with a thin MgB 2 film. For the second objective, we modified the existing HPCVD system to be able to coat a 3.9 GHz SRF cavity, and using a stainless steel mock cavity showed that a uniform film with good superconducting property can be grown across the cavity interior. Further, we successfully deposited MgB 2 on Cu disc. The two results combined demonstrate that it is possible to coat Cu cavities with high quality MgB 2 films using HPCVD. MgB 2 coated Cu could open up a possibility of using SRF cavities at 20–25 K with cryocoolers.« less
High- and Mid-temperature Superconducting Sensors for Far IR/Sub-mm Applications in Space
NASA Technical Reports Server (NTRS)
Lakew, Brook; Brasunas, J. C.
2004-01-01
In this review paper an overview of the potential applications of high Tc (approx. 90 K) superconductors (HTS) and mid-Tc (approx. 39 K) superconductors (MTS) thin films in far IR/Sub-mm thermal detectors is presented. HTSs (YBCO, GdBCO etc.) were discovered in the late 80s while superconductivity in MgB2, an MTS, was discovered in 2001. The sharp transition in transport properties of HTS has allowed the fabrication of composite infrared thermal detectors (bolometers) with better figures of merit than thermopile detectors - thermopiles are currently on board the CIRS instrument on the Cassini mission to Saturn. The potential for developing even more sensitive sensors for IR/Sub-mm applications using MgB2 thin films is assessed. Current MgB2 thin film deposition techniques and film quality are reviewed.
Lumped element kinetic inductance detectors based on two-gap MgB2 thin films
NASA Astrophysics Data System (ADS)
Yang, C.; Niu, R. R.; Guo, Z. S.; Cai, X. W.; Chu, H. M.; Yang, K.; Wang, Y.; Feng, Q. R.; Gan, Z. Z.
2018-01-01
Lumped element kinetic inductance detectors (LEKIDs) are made from a single layer superconducting thin film. Because of their low noise and highly multiplexibility, LEKIDs provide a sensitive technology for the detection of millimeter and submillimeter waves. In this work, a 5-pixel 50-nm-thick MgB2 array is made. The microwave properties of the array are measured under dark conditions. We show that the loaded quality factor Q of the resonant circuit is 30 000 at 7.5 K, which is comparable to that of lower-operating-temperature (usually several hundred mK) LEKIDs made from superconductors such as Al and Nb. Moreover, the temperature dependence of resonance frequency gives the two-gap character of MgB2, Δπ (0) = 2.58 meV and Δσ (0) = 8.26 meV. The gap frequency (f = 2Δ/h) indicates that MgB2 LEKIDs have a promising application on terahertz detection.
Application of superconducting magnesium diboride (MGB2) in superconducting radio frequency cavities
NASA Astrophysics Data System (ADS)
Tan, Teng
The superconductivity in magnesium diboride (MgB2) was discovered in 2001. As a BCS superconductor, MgB2 has a record-high Tc of 39 K, high Jc of > 107 A/cm2 and no weak link behavior across the grain boundary. All these superior properties endorsed that MgB2 would have great potential in both power applications and electronic devices. In the past 15 years, MgB2 based power cables, microwave devices, and commercial MRI machines emerged and the next frontier are superconducting radio frequency (SRF) cavities. SRF cavities are one of the leading accelerator technologies. In SRF cavities, applied microwave power generates electrical fields that accelerate particle beams. Compared with other accelerator techniques, SRF cavity accelerators feature low loss, high acceleration gradients and the ability to accelerate continuous particle beams. However, current SRF cavities are made from high-purity bulk niobium and work at 2 K in superfluid helium. The construction and operational cost of SRF cavity accelerators are very expensive. The demand for SRF cavity accelerators has been growing rapidly in the past decade. Therefore, a lot of effort has been devoted to the enhancement of the performance and the reduction of cost of SRF cavities. In 2010, an acceleration gradient of over 50 MV/m has been reported for a Nb-based SRF cavity. The magnetic field at the inner surface of such a cavity is ~ 1700 Oe, which is close to the thermodynamic critical field of Nb. Therefore, new materials and technologies are required to raise the acceleration gradient of future SRF cavity accelerators. Among all the proposed approaches, using MgB2 thin films to coat the inner surface of SRF cavities is one of the promising tactics with the potential to raise both the acceleration gradient and the operation temperature of SRF cavity accelerators. In this work, I present my study on MgB2 thin films for their application in SRF cavities. C-epitaxial MgB2 thin films grown on SiC(0001) substrates showed Tc > 41 K and Jc > 107 A/cm2, which is superior to bulk MgB2 samples. Polycrystalline MgB2 thin films grown on metal substrates showed similar Tc and Jc compared with bulk samples, indicating MgB2 is suitable for coating a metal cavity. Large c-pitaxial MgB2 thin films were grown on 2-inch diameter c-sapphire wafers, showing our technique is capable of depositing large area samples. The lower critical field (Hc1) of MgB2 thin films was measured as well as it is know that bulk MgB2 has a small Hc1 and would suffer from vortex penetration at low magnetic fields. The penetrating magnetic vortices would result in loss in an applied RF field. However, due to the geometry barrier, thin film MgB2 would have a higher Hc1 than the bulk material. In my experiments, the Hc1 of MgB2 thin films increased with decreasing film thickness. At 5 K, a 100 nm epitaxial MgB2 thin film showed enhanced Hc1 ~ 1880 Oe, which is higher than Hc1 of Nb at 2 K. This showed that MgB2 coated SRF cavities have the potential to work at higher magnetic fields and higher temperature. Because the magnetic field distribution in the thin film Hc1 measurement is different from the magnetic field in a real SRF cavity, a few Nb ellipsoids were machined and coated with MgB2. The ellipsoid only has a magnetic field outside its surface and can serve as an inverse SRF cavity in the vortex penetration measurement. In the experiments, vortices penetrate into the bulk Nb ellipsoid at a magnetic field 400 Oe lower than the vortex penetration field of MgB2 coated Nb ellipsoids. This result confirmed our prediction that MgB2 coated SRF cavities could work at higher magnetic fields, thus producing higher acceleration gradients. In the last part of this thesis, I discussed how I used the dielectric resonator technique to measure the surface resistance (Rs) and Tc of MgB2 thin films. While the sensitivity of this technique was not high enough to lead to reliable Rs values, it can still serve for the determination of Tc for large area samples that are too bulky for other measurement systems.
Fabrication of superconducting MgB2 nanostructures by an electron beam lithography-based technique
NASA Astrophysics Data System (ADS)
Portesi, C.; Borini, S.; Amato, G.; Monticone, E.
2006-03-01
In this work, we present the results obtained in fabrication and characterization of magnesium diboride nanowires realized by an electron beam lithography (EBL)-based method. For fabricating MgB2 thin films, an all in situ technique has been used, based on the coevaporation of B and Mg by means of an e-gun and a resistive heater, respectively. Since the high temperatures required for the fabrication of good quality MgB2 thin films do not allow the nanostructuring approach based on the lift-off technique, we structured the samples combining EBL, optical lithography, and Ar milling. In this way, reproducible nanowires 1 μm long have been obtained. To illustrate the impact of the MgB2 film processing on its superconducting properties, we measured the temperature dependence of the resistance on a nanowire and compared it to the original magnesium diboride film. The electrical properties of the films are not degraded as a consequence of the nanostructuring process, so that superconducting nanodevices may be obtained by this method.
NASA Technical Reports Server (NTRS)
Lakew, B.; Aslam, S.; Brasunas, J.
2012-01-01
The mid-superconducting critical temperature (T(sub c) approximately 39 K) of the simple binary, intermetallic MgB, [1] makes it a very good candidate for the development of the next generation of electrooptical devices (e.g. [2]). In particular, recent advances in thin film deposition teclmiques to attain higb quality polycrystalline thin film MgB, deposited on SiN-Si substrates, with T(sub c) approximately 38K [3] coupled with the low voltage noise performance of the film [4] makes it higbly desirable for the development of moderately cooled bolometer arrays for integration into future space-bourne far infra-red (FIR) spectrometers and thermal mappers for studying the outer planets, their icy moons and other moons of interest in the 17-250 micrometer spectral wavelength range. Presently, commercially available pyroelectric detectors operating at 300 K have specific detectivity, D(*), around 7 x 10(exp 8) to 2 x 10(exp 9) centimeters square root of Hz/W. However, a MgB2 thin film based bolometer using a low-stress (less than 140 MPa) SiN membrane isolated from the substrate by a small thermal conductive link, operating at 38 K, promises to have two orders of magnitude higher specific detectivity [5][6].
Theoretical and Experimental Evidence for a Nodal Energy Gap in MgB2
2017-02-17
1 Theoretical and Experimental Evidence for a Nodal Energy Gap in MgB2 Y. Dan Agassia and Daniel E. Oatesb aConsultant, Jerusalem, Israel bMIT...surface impedance and intermodulation distortion in high-quality thin films. We briefly review experimental evidence in support of our hypothesis and...demonstrates, this experimental evidence agrees with the l = 6 hypothesis, while inconsistent with s-wave symmetry. To give the l = 6 hypothesis a
Nonlinear microwave response of an MgB2 thin film
NASA Astrophysics Data System (ADS)
Purnell, A. J.; Cohen, L. F.; Zhai, H. Y.; Christen, H. M.; Paranthaman, M. P.; Lowndes, D. H.; Hao, Ling; Gallop, J. C.
2004-04-01
MgB2 is a two-gap superconductor and as a result may manifest unusual physical properties. The performance of MgB2 films at microwave frequencies has so far been rather poor compared to that of Nb alloys and this may result from intrinsic behaviour related to the double-gap structure or extrinsic properties due to non-optimized thin films. Here we give a detailed report on the microwave magnetic field dependent surface impedance of an MgB2 thin film, using a parallel plate resonator, as a function of temperature. We discuss whether the framework used to analyse nonlinear behaviour for other superconductors, both low and high Tc, but single-gap, has any validity for MgB2 and whether the films are limited by intrinsic or extrinsic behaviour. The key result is the observation of junction-type switching effects at high microwave power.
Li, G Z; Susner, M A; Bohnenstiehl, S D; Sumption, M D; Collings, E W
2015-12-01
High quality, c -axis oriented, MgB 2 thin films were successfully grown on 6H-SiC substrates using pulsed laser deposition (PLD) with subsequent in situ annealing. To obtain high purity films free from oxygen contamination, a dense Mg-B target was specially made from a high temperature, high pressure reaction of Mg and B to form large-grained (10~50 µm) MgB 2 . Microstructural analysis via electron microscopy found that the resulting grains of the film were composed of ultrafine columnar grains of 19-30 nm. XRD analysis showed the MgB 2 films to be c -axis oriented; the a -axis and c -axis lattice parameters were determined to be 3.073 ± 0.005 Å and 3.528 ± 0.010 Å, respectively. The superconducting critical temperature, T c,onset , increased monotonically as the annealing temperature was increased, varying from 25.2 K to 33.7 K. The superconducting critical current density as determined from magnetic measurements, J cm , at 5 K, was 10 5 A/cm 2 at 7.8 T; at 20 K, 10 5 A/cm 2 was reached at 3.1 T. The transport and pinning properties of these films were compared to "powder-in-tube" (PIT) and "internal-infiltration" (AIMI) processed wires. Additionally, examination of the pinning mechanism showed that when scaled to the peak in the pinning curve, the films follow the grain boundary, or surface, pinning mechanism quite well, and are similar to the response seen for C doped PIT and AIMI strands, in contrast to the behavior seen in undoped PIT wires, in which deviations are seen at high b ( b = B/B c2 ). On the other hand, the magnitude of the pinning force was similar for the thin films and AIMI conductors, unlike the values from connectivity-suppressed PIT strands.
Sputtered magnesium diboride thin films: Growth conditions and surface morphology
NASA Astrophysics Data System (ADS)
O'Brien, April; Villegas, Brendon; Gu, J. Y.
2009-01-01
Magnesium diboride (MgB 2) thin films were deposited on C-plane sapphire substrates by sputtering pure B and Mg targets at different substrate temperatures, and were followed by in situ annealing. A systematic study about the effects of the various growth and annealing parameters on the physical properties of MgB 2 thin films showed that the substrate temperature is the most critical factor that determines the superconducting transition temperature ( Tc), while annealing plays a minor role. There was no superconducting transition in the thin films grown at room temperature without post-annealing. The highest Tc of the samples grown at room temperature after the optimized annealing was 22 K. As the temperature of the substrate ( Ts) increased, Tc rose. However, the maximum Ts was limited due to the low magnesium sticking coefficient and thus the Tc value was limited as well. The highest Tc, 29 K, was obtained for the sample deposited at 180 °C, annealed at 620 °C, and was subsequently annealed a second time at 800 °C. Three-dimensional (3D) AFM images clearly demonstrated that the thin films with no transition, or very low Tc, did not have the well-developed MgB 2 grains while the films with higher Tc displayed the well-developed grains and smooth surface. Although the Tc of sputtered MgB 2 films in the current work is lower than that for the bulk and ex situ annealed thin films, this work presents an important step towards the fabrication of MgB 2 heterostructures using rather simple physical vapor deposition method such as sputtering.
Theoretical and experimental evidence for a nodal energy gap in MgB2
NASA Astrophysics Data System (ADS)
Agassi, Y. Dan; Oates, Daniel E.
2017-11-01
We present a phenomenological model that strongly suggests that the smaller of the two energy gaps in MgB2, the so-called π gap, contains nodal lines with a six-fold symmetry (i-wave). The model also indicates that the larger gap, the so-called σ gap, is conventional s-wave. The model is an extension of the BCS gap equation that accounts for the elastic anisotropy in MgB2 and the Coulomb repulsion. It is based on a phononic pairing mechanism and assumes no coupling between the two energy gaps in MgB2 at zero temperature. All of the parameters of the model, such as sound velocities and masses, are independently determined material constants. The results agree with a previous ad-hoc hypothesis that the π energy gap has six nodal lines. That hypothesis was motivated by low-temperature measurements of the surface impedance and intermodulation distortion in high-quality thin films. We briefly review experimental evidence in the literature that is relevant to the energy-gap symmetry. We find that the evidence from the literature for s-wave is inconclusive. Our finding is that the π gap has six nodal lines.
Pinning in high performance MgB2 thin films and bulks: Role of Mg-B-O nano-scale inhomogeneities
NASA Astrophysics Data System (ADS)
Prikhna, Tatiana; Shapovalov, Andrey; Eisterer, Michael; Shaternik, Vladimir; Goldacker, Wilfried; Weber, Harald W.; Moshchil, Viktor; Kozyrev, Artem; Sverdun, Vladimir; Boutko, Viktor; Grechnev, Gennadiy; Gusev, Alexandr; Kovylaev, Valeriy; Shaternik, Anton
2017-02-01
The comparison of nano-crystalline MgB2 oxygen-containing thin film (140 nm) and highly dense bulk materials showed that the critical current density, Jc, depends on the distribution of Mg-B-O nano-scale inhomogeneities. It has been shown that MgB2 bulks with high Jc in low (∼106 A/cm2 in 0-1 T at 10 K) and medium magnetic fields contain MgB0.6-0.8O0.8-0.9 nano-inclusions, where δTc or a combined δTc (dominant) / δl pinning mechanism prevails, while in bulk MgB2 with high Jc in high magnetic fields (Birr(18.5 K) = 15 T, Bc2(0 K) = 42.1 T) MgB1.2-2.7O1.8-2.5 nano-layers are present and δl pinning prevails. The structure of oxygen-containing films with high Jc in low and high magnetic fields (Jc (0 Т) = 1.8 × 107 А/сm2 and Jc (5 Т) = 2 × 106 А/сm2 at 10 К) contains very fine oxygen-enriched Mg-B-O inhomogeneities and δl pinning is realized. The results of DOS calculations in MgB2-xOx cells for x = 0, 0.125, 0.25, 0.5, 1 demonstrate that all compounds are conductors with metal-like behaviour. In the case of ordered oxygen substitution for boron the binding energy, Eb, does not increase sufficiently as compared with that for MgB2, while when oxygen atoms form zigzag chains the calculated Eb is even lower (Eb = -1.15712 Ry).
Microwave surface resistance of MgB2
NASA Astrophysics Data System (ADS)
Zhukov, A. A.; Purnell, A.; Miyoshi, Y.; Bugoslavsky, Y.; Lockman, Z.; Berenov, A.; Zhai, H. Y.; Christen, H. M.; Paranthaman, M. P.; Lowndes, D. H.; Jo, M. H.; Blamire, M. G.; Hao, Ling; Gallop, J.; MacManus-Driscoll, J. L.; Cohen, L. F.
2002-04-01
The microwave power and frequency dependence of the surface resistance of MgB2 films and powder samples were studied. Sample quality is relatively easy to identify by the breakdown in the ω2 law for poor-quality samples at all temperatures. The performance of MgB2 at 10 GHz and 21 K was compared directly with that of high-quality YBCO films. The surface resistance of MgB2 was found to be approximately three times higher at low microwave power and showed an onset of nonlinearity at microwave surface fields ten times lower than the YBCO film. It is clear that MgB2 films are not yet optimized for microwave applications.
l/f Noise in the Superconducting Transition of a MgB2 Thin Film
NASA Technical Reports Server (NTRS)
Lakew, B.; Aslam, S.; Jones, H.; Stevenson, T.; Cao, N.
2010-01-01
The noise voltage spectral density in the superconducting transition of a MgB2 thin film on a SiN-coated Si thick substrate was measured over the frequency range 1 Hz-to-1 KHz. Using established bolometer noise theory the theoretical noise components due to Johnson, 1/f(excess) and phonon noise are modeled to the measured data. It is shown that for the case of a MgB2 thin film in the vicinity of the mid-point of transition, coupled to a heat sink via a fairly high thermal conductance (approximately equal to 10(sup -1) W/K)) that the measured noise voltage spectrum is 1/f limited and exhibits lit dependence with a varying between 0.3 and 0.5 in the measured frequency range. At a video frame rate frequency of 30 Hz the measured noise voltage density in the film is approximately equal to 61 nV /the square root of HZ, using this value an upper limit of electrical NEP approximately equal to 0.67pW / the square root of Hz is implied for a practical MgB2 bolometer operating at 36.1 K.
RF critical field measurement of MgB2 thin films coated on Nb
NASA Astrophysics Data System (ADS)
Tajima, T.; Eremeev, G.; Zou, G.; Dolgashev, V.; Martin, D.; Nantista, C.; Tantawi, S.; Yoneda, C.; Moeckly, B. H.; Campisi, I.
2010-06-01
Niobium (Nb) Superconducting RF (SRF) cavities have been used or will be used for a number of particle accelerators. The fundamental limit of the accelerating gradient has been thought to be around 50 MV/m due to its RF critical magnetic field of around 200 mT. This limit will prevent new projects requiring higher gradient and compact accelerators from considering SRF structures. There is a theory, however, that promises to overcome this limitation by coating thin (less than the penetration depth) superconductors on Nb. We initiated measurements of critical magnetic fields of Nb coated with various thin film superconductors, starting with MgB2 films deposited using reactive evaporation technique, with the goal to apply this coating to SRF cavities. This paper will present first test results of the RF critical magnetic field of a system consisting of a 10 nm B and a 100 nm MgB2 films deposited on a chemically polished 2-inch single grain Nb substrate.
Recent developments in melt processed Gd-123 and MgB2 materials at RTRI
NASA Astrophysics Data System (ADS)
Muralidhar, M.; Fukumoto, Y.; Ishihara, A.; Suzuki, K.; Tomita, M.; Koblischka, M. R.; Yamamoto, A.; Kishio, K.
2014-01-01
In this contribution we will report on the current status, recent developments in GdBa2Cu3Oy "Gd-123" and MgB2 material processing, characterization, and applications at the Railway Technical Research Institute (RTRI). Batch-processing of Gd-123 bulk material grown in air was performed using novel thin film Nd-123 seeds grown on MgO crystals. In this way, we are able to fabricate materials with good quality, and uniform performance. We examined the technology of the uniform performance of the large 45 mm diameter, single grain Gd-123 bulks for use in application of NMR. For this purpose, four 5 mm thick pieces are cut vertically from a single grain Gd-123 material and the magnetic field distribution is measured using a scanning hall sensor. We found that all four pieces are single domain and exhibit a quite uniform field distribution. Furthermore, the batch-processed bulk materials are used for the construction of a chilled Maglev vehicle. On the other hand, to optimize the trapped field performance of bulk MgB2 material, several samples were prepared by solid state reaction at different temperatures ranging from 750 to 950 °C in pure argon atmosphere. X-ray diffraction results indicated that single phase and homogenous MgB2 bulks are produced when sintering them around 775 °C. Further, atomic force microscopy (AFM) and scanning electron microscopy (SEM) indicated that an uniform grain size results by controlling the processing temperature. So, higher trapped fields can be achieved in sintered MgB2 material.
NASA Astrophysics Data System (ADS)
Sumption, Mike
2013-03-01
In an attempt to study the effect of doping of MgB2 under conditions leading to efficient doping, we used both an high temperature/high pressure induction furnace to dope into MgB2 bulks at temperatures up to 1600 C and 1500 Psi, and thin film, PLD multilayer and mixed layer film fabrication. The high temperature/high pressure formation was used to explore the solubility at high temperatures of various dopants, and the thin film formation was an attempt to use non-equilibrium conditions to inject dopants more effectively. The dopants used were C, Ti, and Zr. C was seen to reach a maximal level at 4 at% C site substituted into MgB2, as evidenced by EPMA and XRD results. Zr, of interest as a possible Mg site substitution in MgB2 was not seen to enter into the MgB2 phase (instead segregating) in the bulk high temperature/high pressure experiments, but was seen to enter in during PLD, as evidenced by STEM and XRD results. Ti additions were attempted in the high pressures and temperature rig, with some evidence for dopant introduction. Critical field measurements on the Zr doped samples where seen to suppress Bc2 for all except very low levels of Ti addition, presumably associated with the much greater doping efficiency. This work was supported by the U.S. Department of Energy, High Energy Physics university Grant No. DE-FG02-95ER40900
Effective vortex pinning in MgB2 thin films
NASA Astrophysics Data System (ADS)
Bugoslavsky, Y.; Cowey, L.; Tate, T. J.; Perkins, G. K.; Moore, J.; Lockman, Z.; Berenov, A.; MacManus-Driscoll, J. L.; Caplin, A. D.; Cohen, L. F.; Zhai, H. Y.; Christen, H. M.; Paranthaman, M. P.; Lowndes, D. H.; Jo, M. H.; Blamire, M. G.
2002-10-01
We discuss the pinning properties of MgB2 thin films grown by pulsed-laser deposition (PLD) and by electron-beam (EB) evaporation. Two mechanisms are identified that contribute most effectively to the pinning of vortices in randomly oriented films. The EB process produces low defected crystallites with a small grain size providing enhanced pinning at grain boundaries without any degradation of Tc. The PLD process produces films with structural disorder on a scale less than the coherence length that further improves pinning, but also depresses Tc.
Magnesium Diboride Current Leads
NASA Technical Reports Server (NTRS)
Panek, John
2010-01-01
A recently discovered superconductor, magnesium diboride (MgB2), can be used to fabricate conducting leads used in cryogenic applications. Dis covered to be superconducting in 2001, MgB2 has the advantage of remaining superconducting at higher temperatures than the previously used material, NbTi. The purpose of these leads is to provide 2 A of electricity to motors located in a 1.3 K environment. The providing environment is a relatively warm 17 K. Requirements for these leads are to survive temperature fluctuations in the 5 K and 11 K heat sinks, and not conduct excessive heat into the 1.3 K environment. Test data showed that each lead in the assembly could conduct 5 A at 4 K, which, when scaled to 17 K, still provided more than the required 2 A. The lead assembly consists of 12 steelclad MgB2 wires, a tensioned Kevlar support, a thermal heat sink interface at 4 K, and base plates. The wires are soldered to heavy copper leads at the 17 K end, and to thin copper-clad NbTi leads at the 1.3 K end. The leads were designed, fabricated, and tested at the Forschungszentrum Karlsruhe - Institut foer Technische Physik before inclusion in Goddard's XRS (X-Ray Spectrometer) instrument onboard the Astro-E2 spacecraft. A key factor is that MgB2 remains superconducting up to 30 K, which means that it does not introduce joule heating as a resistive wire would. Because the required temperature ranges are 1.3-17 K, this provides a large margin of safety. Previous designs lost superconductivity at around 8 K. The disadvantage to MgB2 is that it is a brittle ceramic, and making thin wires from it is challenging. The solution was to encase the leads in thin steel tubes for strength. Previous designs were so brittle as to risk instrument survival. MgB2 leads can be used in any cryogenic application where small currents need to be conducted at below 30 K. Because previous designs would superconduct only at up to 8 K, this new design would be ideal for the 8-30 K range.
NASA Astrophysics Data System (ADS)
Yudanto, Sigit Dwi; Imaduddin, Agung; Kurniawan, Budhy; Manaf, Azwar
2018-04-01
Magnesium diboride, MgB2 is a new high critical temperature superconductor that discovered in the beginning of the 21st century. The MgB2 has a simple crystal structure and a high critical temperature, which can be manufactured in several forms like thin films, tapes, wires including bulk in the large scale. For that reason, the MgB2 has good prospects for various applications in the field of electronic devices. In the current work, we have explored the synthesis of MgB2 polycrystalline using powder in a sealed tube method. Different initial boron phase for the synthesized of MgB2 polycrystalline were used. These were, in addition to magnesium powders, crystalline boron, amorphous boron and combination both of them were respectively fitted in the synthesis. The raw materials were mixed in a stoichiometric ratio of Mg: B=1:2, ground using agate mortar, packed into stainless steel SS304. The pack was then sintered at temperature of 800°C for 2 hours in air atmosphere. Phase formation of MgB2 polycrystalline in difference of initial boron phase was characterized using XRD and SEM. Referring to the diffraction pattern and microstructure observation, MgB2 polycrystalline was formed, and the formation was effective when using the crystalline Mg and fully amorphous B as the raw materials. The critical temperature of the specimen was evaluated by the cryogenic magnet. The transition temperature of the MgB2 specimen synthesized using crystalline magnesium and full amorphous boron is 42.678 K (ΔTc = 0.877 K).
Bekaert, J; Bignardi, L; Aperis, A; van Abswoude, P; Mattevi, C; Gorovikov, S; Petaccia, L; Goldoni, A; Partoens, B; Oppeneer, P M; Peeters, F M; Milošević, M V; Rudolf, P; Cepek, C
2017-10-31
Two-dimensional materials are known to harbour properties very different from those of their bulk counterparts. Recent years have seen the rise of atomically thin superconductors, with a caveat that superconductivity is strongly depleted unless enhanced by specific substrates, intercalants or adatoms. Surprisingly, the role in superconductivity of electronic states originating from simple free surfaces of two-dimensional materials has remained elusive to date. Here, based on first-principles calculations, anisotropic Eliashberg theory, and angle-resolved photoemission spectroscopy (ARPES), we show that surface states in few-monolayer MgB 2 make a major contribution to the superconducting gap spectrum and density of states, clearly distinct from the widely known, bulk-like σ- and π-gaps. As a proof of principle, we predict and measure the gap opening on the magnesium-based surface band up to a critical temperature as high as ~30 K for merely six monolayers thick MgB 2 . These findings establish free surfaces as an unavoidable ingredient in understanding and further tailoring of superconductivity in atomically thin materials.
NASA Technical Reports Server (NTRS)
Lakew, Brook
2009-01-01
A 2-D array of superconducting Magnesium Diboride(MgB2) far IR thermal detectors has been fabricated. Such an array is intended to be at the focal plane of future generation thermal imaging far-IR instruments that will investigate the outer planets and their icy moons. Fabrication and processing of the pixels of the array as well as noise characterization of architectured MgB2 thin films will be presented. Challenges and solutions for improving the performance of the array will be discussed.
NASA Astrophysics Data System (ADS)
Dou, S. X.; Soltanian, S.; Horvat, J.; Wang, X. L.; Zhou, S. H.; Ionescu, M.; Liu, H. K.; Munroe, P.; Tomsic, M.
2002-10-01
Doping of MgB2 by nano-SiC and its potential for the improvement of flux pinning were studied for MgB2-x)(SiCx/2 with x=0, 0.2, and 0.3 and for 10 wt % nano-SiC-doped MgB2 samples. Cosubstitution of B by Si and C counterbalanced the effects of single-element doping, decreasing Tc by only 1.5 K, introducing intragrain pinning centers effective at high fields and temperatures, and significantly enhancing Jc and Hirr. Compared to the undoped sample, Jc for the 10 wt % doped sample increased by a factor of 32 at 5 K and 8 T, 42 at 20 K and 5 T, and 14 at 30 K and 2 T. At 20 K and 2 T, the Jc for the doped sample was 2.4 x105 A/cm2, which is comparable to Jc values for the best Ag/Bi-2223 tapes. At 20 K and 4 T, Jc was twice as high as for the best MgB2 thin films and an order of magnitude higher than for the best Fe/MgB2 tapes. The magnetic Jc is consistent with the transport Jc which remains at 20 000 A/cm2 even at 10 T and 5 K for the doped sample, an order of magnitude higher than the undoped one. Because of such high performance, it is anticipated that the future MgB2 conductors will be made using a formula of MgBxSiyCz instead of pure MgB2.
Aluminum-Stabilized Magnesium Diboride Superconductors
NASA Astrophysics Data System (ADS)
Dou, S. X.; Collings, E. W.; Shcherbakova, O.; Shcherbakov, A.
2006-03-01
Use of aluminum as stabilizer and iron as reaction barrier for fabrication of MgB2 superconductor wires was studied. The MgB2/Fe/Al or SiC doped MgB2/Fe/Al composite wires were made using Mg+ 2 B powder or SiC doped Mg+2 B powder in Fe/Al tube technique. The composites were processed at 600°C to 650°C for 30 minutes to 3 hours to study the interaction between Fe and Al sheath and the formation of MgB2. No reaction between Fe and Al was found until annealing temperature at 620°C for 30 minutes. A thin layer of alloy, FeAl3 is formed for samples annealed at 620°C for 90 minutes and the reaction layer increases with increasing annealing temperature. Annealing at 650°C resulted in cracks in the Al sheath. Our results show that the Fe/Al sheathed wires achieved the same performance in magnetic and electrical properties as those using an all-Fe sheath. Comparing with the standard NbTi/Cu conductors, the MgB2/Fe/Al conductor having low structural mass, greater thermal conductivity and high efficient stabilization will make a tremendous difference especially for airborne, aerospace, and other applications when weight is important.
Connectivity, Doping, and Anisotropy in Highly Dense Magnesium Diboride (MgB2)
NASA Astrophysics Data System (ADS)
Li, Guangze
Magnesium diboride (MgB2) is a superconducting material which can be potentially used in many applications such as magnetic resonance imaging system (MRI), wind turbine generators and high energy physics facilities. The major advantages of MgB2 over other superconductors include its relatively high critical temperature of about 39 K, its low cost of raw materials, its simple crystal structure, and its round multifilament form when in the form of superconducting wires. Over the past fourteen years, much effort has been made to develop MgB2 wires with excellent superconducting properties, particularly the critical current density J c. However, this research has been limited by technical difficulties such as high porosity and weak connectivity in MgB2, relatively small flux pinning strength, low upper critical field B c2 and relatively high anisotropy. The goal of this dissertation is to understand the relationship between superconducting properties, microstructure, and reaction mechanisms in MgB 2. In particular, the influences of connectivity, B c2, anisotropy and flux pinning were investigated in terms of the effects of these variables on the Jcs and n-values of MgB2 superconducting wires (n-value is a parameter which indicates the sharpness of resistive V-I transition). The n -values of traditional "Powder in Tube (PIT)" processed MgB2 wires were improved by optimizing precursor species after the identification of microstructural defects such as so-called "sausaging problems". Also, it was found that "high porosity and weak connectivity" was one of the most critical issues which limited the J c performance in typical MgB2. To overcome this problem, highly dense, well-connected MgB2 conductors were successfully fabricated by adopting an innovative "Advanced Internal Magnesium Infiltration (AIMI)" process. A careful study on the reaction kinetics together with the microstructural evidence demonstrated how the MgB2 layer was formed as the infiltration process proceeded. As a result, it is possible to control the MgB2 layer growth in the AIMI-processed MgB 2 wires. The best AIMI wires, with improved density and connectivity, accomplished an outstanding layer Jc, which was 1.0 x 105 A/cm2 at 4.2 K and 10 T, nearly 10 times higher than the Jcs of PIT wires. The engineering Je of AIMI wires, namely the critical current over the whole cross-sectional area in the wire, achieved 1.7 x 104 A/cm2 at 4.2 K, 10 T, 200 % higher than those of PIT wires. Finally, two promising dopants, Dy2O3 and O, were engineered to incorporate with MgB2. Dy 2O3 nanopowders, co-doped with C in AIMI wires, enhanced the Jc performance at elevated temperatures such as 20 K. Oxygen, on the other hand, doped into MgB2 thin films through a newly-developed O2 annealing process, improved Bc2 to 14 T at 21 K. Both of the doping studies were helpful to understand the superconducting nature of MgB2.
In situ Pulsed Laser Deposition of C-Axis Oriented MgB2 Films and Their Characterization
NASA Technical Reports Server (NTRS)
Shinde, Sanjay; Lakew, Brook; Ogale, S. B.; Kulkarni, V. N.; Kale, S. N.; Venkatesan, T.
2004-01-01
The recent discovery of an intermetallic superconductor MgB2 has renewed interest in the area of superconductivity not only because of fundamental understanding of superconductivity but also due to its potential applicability in devices such as thermal detectors. Considerable amount of research has been devoted to obtain MgB2 films by an all in situ growth technique. We have grown MgB2 thin films by an all in situ pulsed laser deposition process from pure B and Mg targets. Ultrathin layers of B and Mg were deposited in a multilayer configuration. Hundreds of such Mg-B bilayers with a capping Mg layer on the top were deposited on sapphire substrate. These depositions were done in high vacuum (approx. 10(exp -7) Torr) and at room temperature. After deposition, such a configuration was annealed at high temperature for a short time in a forming gas (4% H2 in Ar). The best films, obtained by this procedure, showed superconducting transition temperature approx. 30 K. These films have been characterized by x-ray diffraction, Rutherford Backscattering Spectrometry, AC susceptibility-, resistivity- (with and without magnetic field) and 1/f noise-measurements. The physical properties of these films will be presented and discussed.
Withanage, Wenura K.; Xi, X. X.; Nassiri, Alireza; ...
2017-02-16
Here, magnesium diboride (MgB 2) coating is a potential candidate to replace bulk niobium (Nb) for superconducting radio frequency cavities due to the appealing superconducting properties of MgB 2. MgB 2 coating on copper may allow cavity operation near 20–25 K as a result of the high transition temperature (T c) of MgB 2 and excellent thermal conductivity of Cu. We have grown MgB 2 films on 2 inch diameter Cu discs by hybrid physical–chemical vapor deposition for radio frequency characterization. Structural and elemental analyses showed a uniform MgB 2 coating on top of a Mg–Cu alloy layer with occasionalmore » intrusion of Mg–Cu alloy regions. High T c values of around 37 K and high critical current density (J c) on the order of 107 A cm –2 at zero field were observed. Radio frequency measurements at 11.4 GHz confirmed a high T c and showed a quality factor (Q 0) much higher than for Cu and close to that of Nb.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Withanage, Wenura K.; Xi, X. X.; Nassiri, Alireza
Here, magnesium diboride (MgB 2) coating is a potential candidate to replace bulk niobium (Nb) for superconducting radio frequency cavities due to the appealing superconducting properties of MgB 2. MgB 2 coating on copper may allow cavity operation near 20–25 K as a result of the high transition temperature (T c) of MgB 2 and excellent thermal conductivity of Cu. We have grown MgB 2 films on 2 inch diameter Cu discs by hybrid physical–chemical vapor deposition for radio frequency characterization. Structural and elemental analyses showed a uniform MgB 2 coating on top of a Mg–Cu alloy layer with occasionalmore » intrusion of Mg–Cu alloy regions. High T c values of around 37 K and high critical current density (J c) on the order of 107 A cm –2 at zero field were observed. Radio frequency measurements at 11.4 GHz confirmed a high T c and showed a quality factor (Q 0) much higher than for Cu and close to that of Nb.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Withanage, Wenura K.; Xi, X. X.; Nassiri, Alireza
Magnesium diboride (MgB2) coating is a potential candidate to replace bulk niobium (Nb) for superconducting radio frequency cavities due to the appealing superconducting properties of MgB2. MgB2 coating on copper may allow cavity operation near 20–25 K as a result of the high transition temperature (T c) of MgB2 and excellent thermal conductivity of Cu. We have grown MgB2 films on 2 inch diameter Cu discs by hybrid physical–chemical vapor deposition for radio frequency characterization. Structural and elemental analyses showed a uniform MgB2 coating on top of a Mg–Cu alloy layer with occasional intrusion of Mg–Cu alloy regions. High Tmore » c values of around 37 K and high critical current density (J c) on the order of 107 A cm-2 at zero field were observed. Radio frequency measurements at 11.4 GHz confirmed a high T c and showed a quality factor (Q 0) much higher than for Cu and close to that of Nb.« less
Fabrication and radio frequency test of large-area MgB 2 films on niobium substrates
Ni, Zhimao; Guo, Xin; Welander, Paul B.; ...
2017-01-19
Magnesium diboride (MgB 2) is a promising candidate material for superconducting radio frequency (RF) cavities because of its higher transition temperature and critical field compared with niobium. To meet the demand of RF test devices, the fabrication of large-area MgB 2 films on metal substrates is needed. Here, in this work, high quality MgB 2 films with 50 mm diameter were fabricated on niobium by using an improved HPCVD system at Peking University, and RF tests were carried out at SLAC National Accelerator Laboratory. The transition temperature is approximately 39.6 K and the RF surface resistance is about 120 μΩmore » at 4 K and 11.4 GHz. Finally, the fabrication processes, surface morphology, DC superconducting properties and RF tests of these large-area MgB 2 films are presented.« less
Fabrication and radio frequency test of large-area MgB 2 films on niobium substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ni, Zhimao; Guo, Xin; Welander, Paul B.
Magnesium diboride (MgB 2) is a promising candidate material for superconducting radio frequency (RF) cavities because of its higher transition temperature and critical field compared with niobium. To meet the demand of RF test devices, the fabrication of large-area MgB 2 films on metal substrates is needed. Here, in this work, high quality MgB 2 films with 50 mm diameter were fabricated on niobium by using an improved HPCVD system at Peking University, and RF tests were carried out at SLAC National Accelerator Laboratory. The transition temperature is approximately 39.6 K and the RF surface resistance is about 120 μΩmore » at 4 K and 11.4 GHz. Finally, the fabrication processes, surface morphology, DC superconducting properties and RF tests of these large-area MgB 2 films are presented.« less
Far-infrared Optical Conductivity Gap in Superconducting MgB2 Films
NASA Astrophysics Data System (ADS)
Carnahan, M. A.; Kaindl, R. A.; Chemla, D. S.; Christen, H. M.; Zhai, H. Y.; Paranthaman, M.; Lowndes, D. H.
2002-03-01
The prospect of unconventional coupling in the superconductor MgB2 motivates experiments which probe the density of states around the superconducting gap. The frequency and temperature dependent optical conductivity contains important spectroscopic information about the fundamental gap excitations as well as providing a contactless measure of the superconducting condensate. Here we present the first measurements of the far-infrared conductivity of MgB2 over a broad frequency range which spans excitations across its lowest-energy superconducting gap [1]. Thin films of MgB2 are grown on Al_2O3 substrates through e-beam evaporation and subsequent ex-situ annealing [2]. Both the real and imaginary parts of the conductivity are obtained - without recourse to Kramers-Kronig transformations - from terahertz time-domain spectroscopy. Below Tc we observe a depletion of oscillator strength due to the opening of a superconducting gap. We find a gap size of 2Δ ≈ 5 meV. This result, a value which is only half that expected in weak-coupling BCS theory, disfavors a conventional isotropic single-gap scenario. [1] R. Kaindl et al., Phys. Rev. Lett. (to appear). [2] M. Paranthaman et al., Appl. Phys. Lett. 78, 3669 (2001).
NASA Astrophysics Data System (ADS)
Christen, H. M.; Zhai, H. Y.; Cantoni, C.; Paranthaman, M.; Sales, B. C.; Rouleau, C.; Norton, D. P.; Christen, D. K.; Lowndes, D. H.
2001-05-01
Thin superconducting films of magnesium diboride (MgB 2) with T c≈24 K were prepared on various oxide substrates by pulsed laser deposition followed by an in situ anneal. A systematic study of the influence of various in situ annealing parameters shows an optimum temperature of about 600°C in a background of 0.7 atm of Ar/4%H 2 for layers consisting of a mixture of magnesium and boron. Contrary to ex situ approaches (e.g. reacting boron films with magnesium vapor at ≈900°C), these films are processed at a temperature at which MgB 2 does not decompose rapidly even in vacuum. This may prove enabling in the formation of multilayers, junctions, and epitaxial films in future work. Issues related to the improvement of these films and to the possible in situ growth of MgB 2 at elevated temperature are discussed.
Microstructure and critical current density in MgB2 bulk made of 4.5 wt% carbon-coated boron
NASA Astrophysics Data System (ADS)
Higuchi, M.; Muralidhar, M.; Jirsa, M.; Murakami, M.
2017-07-01
Superconducting performance and its uniformity was studied in the single-step sintered MgB2 bulk prepared with 4.5 wt% of carbon in the carbon-encapsulated boron. The 20 mm in diameter MgB2 pellet was cut into several pieces from bottom to top and the microstructure, superconducting transition temperature (Tc onset), and critical current density at 20 K were studied. DC magnetization measurements showed a sharp superconducting transition with onset Tc at around 35.5 K in all positions. SEM analysis indicated a dispersion of grains between 200 and 300 nm in size, as the main pinning medium in this MgB2 superconductors. The critical current density at 20 K was quite uniform, around 330 kA/cm2 and 200 kA/cm2 at self-field and 1 T, respectively, for all measured positions. The results indicate that the carbon-encapsulated boron is very promising for production of high quality bulk MgB2 material for various industrial applications.
The microwave surface impedance of MgB2 thin films
NASA Astrophysics Data System (ADS)
Purnell, A. J.; Zhukov, A. A.; Nurgaliev, T.; Lamura, G.; Bugoslavsky, Y.; Lockman, Z.; MacManus-Driscoll, J. L.; Zhai, H. Y.; Christen, H. M.; Paranthaman, M. P.; Lowndes, D. H.; Jo, M. H.; Blamire, M. G.; Hao, Ling; Gallop, J. C.; Cohen, L. F.
2003-01-01
In this paper we present the results of measurements of the microwave surface impedance of a powder sample and two films of MgB2. The powder sample has a Tc = 39 K and the films have Tc = 29 K and 38 K. These samples show different temperature dependences of the field penetration depth. Over a period of six months, the film with Tc = 38 K degraded to a Tc of 35 K. We compare the results on all samples with data obtained elsewhere and discuss the implications as far as is possible at this stage.
NASA Astrophysics Data System (ADS)
Escamez, Guillaume; Sirois, Frédéric; Tousignant, Maxime; Badel, Arnaud; Granger, Capucine; Tixador, Pascal; Bruzek, Christian-Éric
2017-03-01
Today MgB2 superconducting wires can be manufactured in long lengths at low cost, which makes this material a good candidate for large scale applications. However, because of its relatively low critical temperature (less than 40 K), it is necessary to operate MgB2 devices in a liquid or gaseous helium environment. In this context, losses in the cryogenic environment must be rigorously minimized, otherwise the use of a superconductor is not worthy. An accurate estimation of the losses at the design stage is therefore mandatory in order to allow determining the device architecture that minimizes the losses. In this paper, we present a complete a 3D finite element model of a 36-filament MgB2 wire based on the architecture of the Italian manufacturer Colombus. In order for the model to be as accurate as possible, we made a substantial effort to characterize all constitutive materials of the wire, namely the E-J characteristics of the MgB2 filaments and the electric and magnetic properties (B-H curves) of nickel and monel, which are the two major non-superconducting components of the wire. All properties were characterized as a function of temperature and magnetic field. Limitations of the characterization and of the model are discussed, in particular the difficulty to extract the maximum relative permeability of nickel and monel from the experimental data, as well as the lack of a thin conductive layer model in the 3D finite element method, which prevents us from taking into account the resistive barriers around the MgB2 filaments in the matrix. Two examples of numerical simulations are provided to illustrate the capabilities of the model in its current state.
Far-Infrared Optical Conductivity Gap in Superconducting MgB2 Films
NASA Astrophysics Data System (ADS)
Kaindl, Robert A.; Carnahan, Marc A.; Orenstein, Joseph; Chemla, Daniel S.; Christen, Hans M.; Zhai, Hong-Ying; Paranthaman, Mariappan; Lowndes, Doug H.
2002-01-01
We report the first study of the optical conductivity of MgB 2 covering the range of its lowest-energy superconducting gap. Terahertz time-domain spectroscopy is utilized to determine the complex, frequency-dependent conductivity σ(ω) of thin films. The imaginary part reveals an inductive response due to the emergence of the superconducting condensate. The real part exhibits a strong depletion of oscillator strength near 5 meV resulting from the opening of a superconducting energy gap. The gap ratio of 2Δ0/kBTC~1.9 is well below the weak-coupling value, pointing to complex behavior in this novel superconductor.
Development of hot-electron THz bolometric mixers using MgB2 thin films
NASA Astrophysics Data System (ADS)
Cunnane, Daniel; Kawamura, Jonathan; Karasik, Boris S.; Wolak, Matthaeus A.; Xi, X. X.
2014-07-01
Terahertz high-resolution spectroscopy of interstellar molecular clouds greatly relies on hot-electron superconducting bolometric (HEB) mixers. Current state-of-the-art receivers use mixer devices made from ultrathin (~ 3-5 nm) films of NbN with critical temperature ~ 9-11 K. Such mixers have been deployed on a number of groundbased, suborbital, and orbital platforms including the HIFI instrument on the Hershel Space Observatory. Despite its good sensitivity and well-established fabrication process, the NbN HEB mixer suffers from the narrow intermediate frequency (IF) bandwidth ~ 2-3 GHz and is limited to operation at liquid Helium temperature. As the heterodyne receivers are now trending towards "high THz" frequencies, the need in a larger IF bandwidth becomes more pressing since the same velocity resolution for a Doppler shifted line at 5 THz requires a 5-times greater IF bandwidth than at 1 THz. Our work is focusing on the realization of practical HEB mixers using ultrathin (10-20 nm) MgB2 films. They are prepared using a Hybrid Physical-Chemical Vapor Deposition (HPCVD) process yielding ultrathin films with critical temperature ~ 37-39 K. The expectation is that the combination of small thickness, high acoustic phonon transparency at the interface with the substrate, and very short electron-phonon relaxation time may lead to IF bandwidth ~ 10 GHz or even higher. SiC continues to be the most favorable substrate for MgB2 growth and as a result, a study has been conducted on the transparency of SiC at THz frequencies. FTIR measurements show that semi-insulating SiC substrates are at least as transparent as Si up to 2.5 THz. Currently films are passivated using a thin (10 nm) SiO2 layer which is deposited ex-situ via RF magnetron sputtering. Micron-sized spiral antenna-coupled HEB mixers have been fabricated using MgB2 films as thin as 10 nm. Fabrication was done using contact UV lithography and Ar Ion milling, with E-beam evaporated Au films deposited for the antenna. Measurements have been carried out on these devices in the DC, Microwave, and THz regimes. The devices are capable of mixing signals above 20 K indicating that operation may be possible using a cryogen-free cooling system. We will report the results of all measurements taken to indicate the local oscillator power requirements and the IF bandwidth of MgB2 HEB mixers.
MgB2 magnetometer with a directly coupled pick-up loop
NASA Astrophysics Data System (ADS)
Portesi, C.; Mijatovic, D.; Veldhuis, D.; Brinkman, A.; Monticone, E.; Gonnelli, R. S.
2006-05-01
In this work, we show the results obtained in the fabrication and characterization of an MgB2 magnetometer with a directly coupled pick-up loop. We used an all in situ technique for fabricating magnesium diboride films, which consists of the co-evaporation of B and Mg by means of an e-gun and a resistive heater respectively. Consequently, we realized the superconducting device, which incorporates two nanobridges as weak links in a superconducting loop. The nanobridges were realized by focused ion beam milling; they were 240 nm wide and had a critical current density of 107 A cm-2. The magnetometer was characterized at different temperatures and also measurements of the noise levels have been performed. The device shows Josephson quantum interference up to 20 K and the calculated effective area at low temperatures was 0.24 mm2. The transport properties of the magnetometer allow determining fundamental materials properties of the MgB2 thin films, such as the penetration depth.
Saw-tooth pattern from flux jumps observed by high resolution M-H curves in MgB2 thin films
NASA Astrophysics Data System (ADS)
Lee, Jae-Yeap; Lee, Hu-Jong; Jung, Myung-Hwa; Lee, Sung-Ik; Choi, Eun-Mi; Kang, W. N.
2010-08-01
While flux jumps have been observed in the magnetic hysteresis loops of superconductors, a saw-tooth pattern of the flux jump is known to appear only in a bulk superconductor. But in this study, we were able to observe the saw-tooth pattern in MgB2 thin film with the careful data acquisition method enhancing the data taking capability and report the details of the distribution of the field interval between jumps Bfj, and the size of the flux jump, Mfj. The theory based on Bean's model in the adiabatic approach was adapted and it was compared with experimental results. In addition, we observe the cross-over between the saw-tooth pattern and a rounded saw-tooth pattern, as a byproduct. A patterns diagram of the vortex jump was drawn on the H-T plane.
Fabrication of superconducting nanowires from ultrathin MgB2 films via focused ion beam milling
NASA Astrophysics Data System (ADS)
Zhang, Chen; Wang, Da; Liu, Zheng-Hao; Zhang, Yan; Ma, Ping; Feng, Qing-Rong; Wang, Yue; Gan, Zi-Zhao
2015-02-01
High quality superconducting nanowires were fabricated from ultrathin MgB2 films by a focused ion beam milling technique. The precursor MgB2 films in 10 nm thick were grown on MgO substrates by using a hybrid physical-chemical vapor deposition method. The nanowires, in widths of about 300-600 nm and lengths of 1 or 10 μm, showed high superconducting critical temperatures (Tc's) above 34 K and narrow superconducting transition widths (ΔTc's) of 1-3 K. The superconducting critical current density Jc of the nanowires was above 5 × 107 A/cm2 at 20 K. The high Tc, narrow ΔTc, and high Jc of the nanowires offered the possibility of making MgB2-based nano-devices such as hot-electron bolometers and superconducting nanowire single-photon detectors with high operating temperatures at 15-20 K.
Synthesis of MgB2 at Low Temperature and Autogenous Pressure
Mackinnon, Ian D. R.; Winnett, Abigail; Alarco, Jose A.; Talbot, Peter C.
2014-01-01
High quality, micron-sized interpenetrating grains of MgB2, with high density, are produced at low temperatures (~420 °C < T < ~500 °C) under autogenous pressure by pre-mixing Mg powder and NaBH4 and heating in an Inconel 601 alloy reactor for 5–15 h. Optimum production of MgB2, with yields greater than 75%, occurs for autogenous pressure in the range 1.0 MPa to 2.0 MPa, with the reactor at ~500 °C. Autogenous pressure is induced by the decomposition of NaBH4 in the presence of Mg and/or other Mg-based compounds. The morphology, transition temperature and magnetic properties of MgB2 are dependent on the heating regime. Significant improvement in physical properties accrues when the reactor temperature is held at 250 °C for >20 min prior to a hold at 500 °C. PMID:28788656
Vapor annealing synthesis of non-epitaxial MgB2 films on glassy carbon
NASA Astrophysics Data System (ADS)
Baker, A. A.; Bayu Aji, L. B.; Bae, J. H.; Stavrou, E.; Steich, D. J.; McCall, S. K.; Kucheyev, S. O.
2018-05-01
We describe the fabrication and characterization of 25–800 nm thick MgB2 films on glassy carbon substrates by Mg vapor annealing of sputter-deposited amorphous B films. Results demonstrate a critical role of both the initial B film thickness and the temperature–time profile on the microstructure, elemental composition, and superconducting properties of the resultant MgB2 films. Films with thicknesses of 55 nm and below exhibit a smooth surface, with a roughness of 1.1 nm, while thicker films have surface morphology consisting of elongated nano-crystallites. The suppression of the superconducting transition temperature for thin films scales linearly with the oxygen impurity concentration and also correlates with the amount of lattice disorder probed by Raman scattering. The best results are obtained by a rapid (12 min) anneal at 850 °C with large temperature ramp and cooling rates of ∼540 °C min‑1. Such fast processing suppresses the deleterious oxygen uptake.
MgB2 Thin-Film Bolometer for Applications in Far-Infrared Instruments on Future Planetary Missions
NASA Technical Reports Server (NTRS)
Lakew, B.; Aslam, S.; Brasunas, J.; Cao, N.; Costen, N.; La, A.; Stevenson, T.; Waczynski, A.
2012-01-01
A SiN membrane based MgB2 thin-film bolometer, with a non-optimized absorber, has been fabricated that shows an electrical noise equivalent power of 256 fW/square root Hz operating at 30 Hz in the 8.5 - 12.35 micron spectral bandpass. This value corresponds to an electrical specific detectivity of 7.6 x 10(exp 10) cm square root Hz/W. The bolometer shows a measured blackbody (optical) specific detectivity of 8.8 x 10(exp 9) cm square root Hz/W, with a responsivity of 701.5 kV/W and a first-order time constant of 5.2 ms. It is predicted that with the inclusion of a gold black absorber that a blackbody specific detectivity of 6.4 x 10(exp 10) cm/square root Hz/W at an operational frequency of 10 Hz, can be realized for integration into future planetary exploration instrumentation where high sensitivity is required in the 17 - 250 micron spectral wavelength range.
Hybrid Physical Chemical Vapor Deposition of Magnesium Diboride Inside 3.9 GHz Mock Cavities
Lee, Namhoon; Withanage, Wenura K.; Tan, Teng; ...
2016-12-21
Magnesium diboride (MgB 2) is considered a candidate for the next generation superconducting radio frequency (SRF) cavities due to its higher critical temperature T c (40 K) and increased superheating field (H sh) compared to other conventional superconductors. These properties can lead to reduced BCS surface resistance (R BCS S) and residual resistance (R res), according to theoretical studies, and enhanced accelerating field (E acc) values. Here, we investigated the possibility of coating the inner surface of a 3.9 GHz SRF cavity with MgB 2 by using a hybrid physical-vapor deposition (HPCVD) system designed for this purpose. To simulate themore » actual 3.9 GHz SRF cavity, we also employed a stainless steel mock cavity for the study. The film qualities were characterized on small substrates that were placed at the selected positions within the cavity. MgB 2 films on stainless steel foils, niobium pieces, and SiC substrates showed transition temperatures in the range of 30-38 K with a c-axis-oriented crystallinity observed for films grown on SiC substrates. Dielectric resonator measurements at 18 GHz resulted in a quality factor of over 30 000 for the MgB 2 film grown on a SiC substrate. Furthermore, by employing the HPCVD technique, a uniform film was achieved across the cavity interior, demonstrating the feasibility of HPCVD for MgB 2 coatings for SRF cavities.« less
Hybrid Physical Chemical Vapor Deposition of Magnesium Diboride Inside 3.9 GHz Mock Cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Namhoon; Withanage, Wenura K.; Tan, Teng
Magnesium diboride (MgB 2) is considered a candidate for the next generation superconducting radio frequency (SRF) cavities due to its higher critical temperature T c (40 K) and increased superheating field (H sh) compared to other conventional superconductors. These properties can lead to reduced BCS surface resistance (R BCS S) and residual resistance (R res), according to theoretical studies, and enhanced accelerating field (E acc) values. Here, we investigated the possibility of coating the inner surface of a 3.9 GHz SRF cavity with MgB 2 by using a hybrid physical-vapor deposition (HPCVD) system designed for this purpose. To simulate themore » actual 3.9 GHz SRF cavity, we also employed a stainless steel mock cavity for the study. The film qualities were characterized on small substrates that were placed at the selected positions within the cavity. MgB 2 films on stainless steel foils, niobium pieces, and SiC substrates showed transition temperatures in the range of 30-38 K with a c-axis-oriented crystallinity observed for films grown on SiC substrates. Dielectric resonator measurements at 18 GHz resulted in a quality factor of over 30 000 for the MgB 2 film grown on a SiC substrate. Furthermore, by employing the HPCVD technique, a uniform film was achieved across the cavity interior, demonstrating the feasibility of HPCVD for MgB 2 coatings for SRF cavities.« less
Epitaxial titanium diboride films grown by pulsed-laser deposition
NASA Astrophysics Data System (ADS)
Zhai, H. Y.; Christen, H. M.; Cantoni, C.; Goyal, A.; Lowndes, D. H.
2002-03-01
Epitaxial, smooth, and low-resistivity titanium diboride (TiB2) films have been grown on SiC substrates using pulsed-laser deposition. Combined studies from ex situ x-ray diffraction and in situ reflection high-energy electron diffraction indicate the crystallographic alignment between TiB2 and SiC both parallel and normal to the substrate. Atomic force microscopy and scanning electron microscopy studies show that these epitaxial films have a smooth surface, and the resistivity of these films is comparable to that of single-crystal TiB2. Growth of these films is motivated by this material's structural and chemical similarity and lattice match to the newly discovered superconductor MgB2, both to gain further insight into the physical mechanisms of diborides in general and, more specifically, as a component of MgB2-based thin-film heterostructures.
Li, G. Z.; Sumption, M. D.; Collings, E. W.
2015-01-01
Significantly enhanced critical current density (Jc) for MgB2 superconducting wires can be obtained following the advanced internal Mg infiltration (AIMI) route. But unless suitable precautions are taken, the AIMI-processed MgB2 wires will exhibit incomplete MgB2 layer formation, i.e. reduced superconductor core size and hence suppressed current-carrying capability. Microstructural characterization of AIMI MgB2 wires before and after the heat treatment reveals that the reaction mechanism changes from a “Mg infiltration-reaction” at the beginning of the heat treatment to a “Mg diffusion-reaction” once a dense MgB2 layer is formed. A drastic drop in the Mg transport rate from infiltration to diffusion causes the termination of the MgB2 core growth. To quantify this process, a two-stage kinetic model is built to describe the MgB2 layer formation and growth. The derived kinetic model and the associated experimental observations indicate that fully reacted AIMI-processed MgB2 wires can be achieved following the optimization of B particle size, B powder packing density, MgB2 reaction activation energy and its response to the additions of dopants. PMID:26973431
Characterization of MgB2 Superconducting Hot Electron Bolometers
NASA Technical Reports Server (NTRS)
Cunnane, D.; Kawamura, J. H.; Wolak, M. A.; Acharya, N.; Tan, T.; Xi, X. X.; Karasik, B. S.
2014-01-01
Hot-Electron Bolometer (HEB) mixers have proven to be the best tool for high-resolution spectroscopy at the Terahertz frequencies. However, the current state of the art NbN mixers suffer from a small intermediate frequency (IF) bandwidth as well as a low operating temperature. MgB2 is a promising material for HEB mixer technology in view of its high critical temperature and fast thermal relaxation allowing for a large IF bandwidth. In this work, we have fabricated and characterized thin-film (approximately 15 nanometers) MgB2-based spiral antenna-coupled HEB mixers on SiC substrate. We achieved the IF bandwidth greater than 8 gigahertz at 25 degrees Kelvin and the device noise temperature less than 4000 degrees Kelvin at 9 degrees Kelvin using a 600 gigahertz source. Using temperature dependencies of the radiation power dissipated in the device we have identified the optical loss in the integrated microantenna responsible as a cause of the limited sensitivity of the current mixer devices. From the analysis of the current-voltage (IV) characteristics, we have derived the effective thermal conductance of the mixer device and estimated the required local oscillator power in an optimized device to be approximately 1 microwatts.
NASA Astrophysics Data System (ADS)
Bohnenstiehl, Scot David
In this work, the low temperature synthesis of MgB2 from Mg/B and MgH2/B powder mixtures was studied using Differential Scanning Calorimetry (DSC). For the Mg/B powder mixture, two exothermic reaction events were observed and the first reaction event was initiated by the decomposition of Mg(OH)2 on the surface of the magnesium powder. For the MgH 2/B powder mixture, there was an endothermic event at ˜375 °C (the decomposition of MgH2 into H2 and Mg) and an exothermic event ˜600 °C (the reaction of Mg and B). The Kissinger analysis method was used to estimate the apparent activation energy of the Mg and B reaction using DSC data with different furnace ramp rates. The limitations of MgB2 low temperature synthesis led to the development of a high pressure induction furnace that was constructed using a pressure vessel and an induction heating power supply. The purpose was to not only synthesize more homogeneous MgB2 samples, but also to determine whether MgB2 melts congruently or incongruently. A custom implementation of the Smith Thermal Analysis method was developed and tested on aluminum and AlB2, the closest analogue to MgB2. Measurements on MgB2 powder and a high purity Mg/B elemental mixture confirmed that MgB2 melts incongruently and decomposes into a liquid and MgB4 at ˜1445 °C at 10 MPa via peritectic decomposition. Another measurement using a Mg/B elemental mixture with impure boron suggested that ˜0.7 wt% carbon impurity in the boron raised the incongruent melting temperature to ˜1490-1500 °C. Lastly, the solubility limit for carbon in MgB2 was studied by making samples from B4C and Mg at 1530 °C, 1600 °C and 1700 °C in the high pressure furnace. All three samples had three phases: Mg, MgB2C2, and carbon doped MgB2. The MgB 2C2 and carbon doped MgB2 grain size increased with temperature and the 1700 °C sample had needle-like grains for both phases. The presence of the ternary phase, MgB2C2, suggested that the maximum doping limit for carbon in MgB2 had been reached. The 1530 °C sample was characterized by Electron Probe Microanalysis at the University of Oregon and the average carbon concentration was estimated to be ˜5.9 at%. Further investigation using TEM found MgO inclusions in the 1530 °C sample which were not detected with X-ray diffraction.
Penetration depth of MgB2 measured using Josephson junctions and SQUIDs
NASA Astrophysics Data System (ADS)
Cunnane, Daniel; Zhuang, Chenggang; Chen, Ke; Xi, X. X.; Yong, Jie; Lemberger, T. R.
2013-02-01
The penetration depth of MgB2 was measured using two methods of different mechanisms. The first method used MgB2 Josephson junctions and the magnetic field dependence of the junction critical current. The second method deduced the penetration depth from the inductance of a MgB2 microstrip used to modulate the voltage of a MgB2 DC SQUID. The two methods showed a consistent value of the low-temperature penetration depth for MgB2 to be about 40 nm. Both the small penetration depth value and its temperature dependence are in agreement with a microscopic theory for MgB2 in the clean limit.
Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales.
Curran, P J; Desoky, W M; Milosević, M V; Chaves, A; Laloë, J-B; Moodera, J S; Bending, S J
2015-10-23
Scanning Hall probe microscopy (SHPM) has been used to study vortex structures in thin epitaxial films of the superconductor MgB2. Unusual vortex patterns observed in MgB2 single crystals have previously been attributed to a competition between short-range repulsive and long-range attractive vortex-vortex interactions in this two band superconductor; the type 1.5 superconductivity scenario. Our films have much higher levels of disorder than bulk single crystals and therefore both superconducting condensates are expected to be pushed deep into the type 2 regime with purely repulsive vortex interactions. We observe broken symmetry vortex patterns at low fields in all samples after field-cooling from above Tc. These are consistent with those seen in systems with competing repulsions on disparate length scales, and remarkably similar structures are reproduced in dirty two band Ginzburg-Landau calculations, where the simulation parameters have been defined by experimental observations. This suggests that in our dirty MgB2 films, the symmetry of the vortex structures is broken by the presence of vortex repulsions with two different lengthscales, originating from the two distinct superconducting condensates. This represents an entirely new mechanism for spontaneous symmetry breaking in systems of superconducting vortices, with important implications for pinning phenomena and high current density applications.
An innovative technique to synthesize C-doped MgB2 by using chitosan as the carbon source
NASA Astrophysics Data System (ADS)
Bovone, G.; Vignolo, M.; Bernini, C.; Kawale, S.; Siri, A. S.
2014-02-01
Here, we report a new technique to synthesize carbon-doped MgB2 powder. Chitosan was innovatively used as the carbon source during the synthesis of boron from boron oxide. This allowed the introduction of local defects, which later on served as pinning centers in MgB2, in the boron lattice itself, avoiding the traditional and time consuming ways of ex situ MgB2 doping (e.g. ball milling). Two volume percentages of C-doping have been tried and its effect on the superconducting properties, evaluated by magnetic and transport measurements, are discussed here. Morphological analysis by scanning electron microscopy revealed nano-metric grains’ distribution in the boron and MgB2 powder. Mono-filamentary MgB2 wires have been fabricated by an ex situ powder-in-tube technique by using the thus prepared carbon-doped MgB2 and pure MgB2 powders. Transport property measurements on these wires were made and compared with MgB2 wire produced using commercial boron.
NASA Astrophysics Data System (ADS)
Fujii, Hiroki; Iwanade, Akio; Kawada, Satoshi; Kitaguchi, Hitoshi
2018-01-01
The optimal heat treatment temperature (Topt) at which best performance in the critical current density (Jc) property at 4.2 K is obtained is influenced by the quality or reactivity of the filling powder in ex situ processed MgB2 tapes. Using a controlled fabrication process, the Topt decreases to 705-735 °C, which is lower than previously reported by more than 50 °C. The Topt decrease is effective to suppress both the decomposition of MgB2 and hence the formation of impurities such as MgB4, and the growth of crystallite size which decreases upper critical filed (Hc2). These bring about the Jc improvement and the Jc value at 4.2 K and 10 T reaches 250 A/mm2. The milling process also decreases the critical temperature (Tc) below 30 K. The milled powder is easily contaminated in air and thus, the Jc property of the contaminated tapes degrades severely. The contamination can raise the Topt by more than 50 °C, which is probably due to the increased sintering temperature required against contaminated surface layer around the grains acting as a barrier.
NASA Astrophysics Data System (ADS)
He, Tao
2002-09-01
Perovskite-based ruthenates have been receiving considerable attention both because of their interesting and variable magnetic properties, and because of the discovery of exotic superconductivity in the layered ruthenate Sr 2RuO4. Another perovskite, SrRuO3, is the only known oxide ferromagnet with a 4d transition metal, and magnetism is easily suppressed by Ca doping. The suppression of ferromagnetic interactions in SrxCa1-xRuO3 has frequently been attributed to the orthorhombic structural distortion, either through the crossover to classical antiferromagnetic interactions, or, alternatively, to a nearly ferromagnetic metal. This study reports the comparison of the magnetic properties of Srx(Na0.5La0.5)1-xRuO 3 to SrxCa1-xRuO3, showing that there is a much faster suppression of ferromagnetic interactions in the former case. Neither orthorhombic distortion nor cation size disorder can explain the observed difference. Instead, the difference may be attributed to charge disorder on the A-site, which greatly affects the local environment of Ru atoms and leads to the faster suppression of the long-range ferromagnetic state. The magnetic ground state of perovskite structure CaRuO3 has been enigmatic for decades. This study also shows that paramagnetic CaRuO 3 can be made ferromagnetic by very small amounts of partial substitution of Ru by various transition metals. The results are consistent with the recent proposal that CaRuO3 is not a classical antiferromagnet, but rather is poised at a critical point between ferromagnetic and paramagnetic ground states. Ti, Fe, Mn and Ni doping result in ferromagnetic behavior. The second part of this thesis is on the superconductivity of MgB 2 and MgCNi3. Since the discovery of superconductivity in MgB2 in January 2001, detailed information on its properties has been rapidly accumulated. The reported properties, the very simple structure, and the commercial availability of this material make MgB2 a favorite candidate for large scale and electronic applications. In thin film fabrication, the reactivity of MgB2 with substrate materials or insulating or metallic layers in multi-layer circuits is an important factor. In this work the reactivity of MgB2 with powdered forms of common substrate and electronic materials is studied. Some oxides and nitrides prove to be potentially good substrates for making thin films, while others, including some commonly used substrates like Al2O3, SrTiO 3, and SiO2, have serious chemical compatibility problems. In the latter case, caution should be taken when fabricating thin films. This thesis also describes the discovery of superconductivity at 8 K in the perovskite structure compound MgCNi3. This material is the three-dimensional analogue of the LnNi2B2C family of superconductors, which have Tcs up to 16K. The itinerant electrons in both LnNi2B2C and MgCNi3 are based on partial filling of Ni d-states, which generally leads to ferromagnetism, as is the case in metallic Ni. The very high relative proportion of Ni in MgCNi3 is especially suggestive of the possible importance of magnetic interactions in the superconductivity, and, further, the lower Tc of the three-dimensional compound is contrary to conventional ideas.
Corrosion behavior of pristine and added MgB2 in Phosphate Buffered Saline Solution
NASA Astrophysics Data System (ADS)
Batalu, D.; Bojin, D.; Ghiban, B.; Aldica, G.; Badica, P.
2012-09-01
We have obtained by Spark Plasma Sintering (SPS), dense samples of MgB2 added with Ho2O3. Starting composition was (MgB2)0.975(HoO1.5)0.025 and we used addition powders with an average particle size below and above 100 nm. For Mg, pristine and added MgB2 samples we measured potentiodynamic polarization curves in Phosphate Buffered Saline (PBS) solution media at room temperature. MgB2 based composites show corrosion/ degradation effects. This behavior is in principle similar to Mg based alloys in the same media. Our work suggests that the different morphologies and phase compositions of the SPS-ed samples influence the interaction with corrosion medium; hence additions can play an important role in controlling the corrosion rate. Pristine MgB2 show a significant improvement of the corrosion resistance, if compared with Mg. The best corrosion resistance is obtained for pristine MgB2, followed by MgB2 with nano-Ho2O3 and μ-Ho2O3 additions.
Improving magnetic properties of MgB2 bulk superconductors by synthetic engine oil treatment
NASA Astrophysics Data System (ADS)
Taylan Koparan, E.; Savaskan, B.; Yanmaz, E.
2016-08-01
The present study focuses on the effects of standby time of the MgB2 samples immersed in synthetic engine oil on the critical current density (Jc(H)), magnetic field dependence of the pinning force density fp(b) and Tc performances of MgB2 bulk superconductors. Synthetic engine oil was used as a product which is cheap and a rich carbon source. Manufactured MgB2 pellet samples were immersed at different standby time of 30 min, 120 min, 300 min and 1440 min in synthetic engine oil after the first heating process. Finally, MgB2 samples immersed in synthetic engine oil were sintered at 1000 °C and kept for 15 min in Ar atmosphere. The critical current density of all of MgB2 samples immersed at different standby time in engine oil in whole field range was better than that of the pure MgB2 sample because of the number of the pinning centers. The MgB2 sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. The Jc value for the pure sample is 2.0 × 103 A/cm2, whereas for the MgB2 sample immersed at 300 min standby time in engine oil the Jc is enhanced to 4.8 × 103A/cm2 at 5 K and 3 T. The superconducting transition temperature (Tc) did not change with the increasing standby time of the samples in synthetic engine oil at all. The best diamagnetic property was obtained from the sample which kept in synthetic engine oil for 300 min. Synthetic engine oil treatment results in remarkable improvement of the critical current density and pinning force performances of MgB2 superconductors. It was found that all MgB2 samples have a different pinning property at different measuring temperatures. Using synthetic engine oil as a product which is cheap and a rich carbon source in MgB2 bulk superconductors makes MgB2 samples immersed in synthetic engine oil a good candidate for industrial applications.
Superconducting MgB2 wires with vanadium diffusion barrier
NASA Astrophysics Data System (ADS)
Hušek, I.; Kováč, P.; Melišek, T.; Kulich, M.; Rosová, A.; Kopera, L.; Szundiová, B.
2017-10-01
Single-core MgB2 wires with a vanadium barrier and Cu stabilization have been made by the in situ powder-in-tube (PIT) and internal magnesium diffusion (IMD) into boron processes. Heat treatment of PIT wires was done at the temperature range of 650 °C-850 °C/30 min. Critical currents of differently treated MgB2/V/Cu wires have been measured and related with the structure of MgB2. It was found that critical current density of MgB2/V wire annealed above 700 °C decreases rapidly. The obtained results clearly show that vanadium is a well formable metal and can be applied as an effective diffusion barrier for MgB2 wires heat-treated at temperatures ≤700 °C. This temperature limit is well applicable for MgB2 wires with high current densities made by PIT and also by the IMD process.
NASA Astrophysics Data System (ADS)
Kim, Y. G.; Kim, J. C.; Kim, J. M.; Yoo, B. H.; Hwang, D. Y.; Lee, H. G.
2018-06-01
This study investigates the feasibility of using the partial insulation winding technique for the development of a self-protective MgB2 MRI magnet with a fast charge-discharge rate. Charge-discharge and quench tests for a prototype PI MgB2 magnet confirmed that the magnet was successfully operated at full-field performance and exhibited self-protecting behavior in the event of a quench. Nonetheless, the required time to charge the 0.5-T/300-mm PI MgB2 magnet was almost five days, implying that the charge-discharge delay of the PI MgB2 magnet still needs to be ameliorated further to develop a real-scale MgB2 MRI magnet with a fast charge-discharge rate.
Development of magnesium diboride (MgB 2) wires and magnets using in situ strand fabrication method
NASA Astrophysics Data System (ADS)
Tomsic, Michael; Rindfleisch, Matthew; Yue, Jinji; McFadden, Kevin; Doll, David; Phillips, John; Sumption, Mike D.; Bhatia, Mohit; Bohnenstiehl, Scot; Collings, E. W.
2007-06-01
Since 2001 when magnesium diboride (MgB 2) was first reported to have a transition temperature of 39 K, conductor development has progressed to where MgB 2 superconductor wire in kilometer-long piece-lengths has been demonstrated in magnets and coils. Work has started on demonstrating MgB 2 wire in superconducting devices now that the wire is available commercially. MgB 2 superconductors and coils have the potential to be integrated in a variety of commercial applications such as magnetic resonance imaging, fault current limiters, transformers, motors, generators, adiabatic demagnetization refrigerators, magnetic separation, magnetic levitation, energy storage, and high energy physics applications. This paper discusses the progress on MgB 2 conductor and coil development in the last several years at Hyper Tech Research, Inc.
Kim, Y G; Song, J B; Kim, J C; Kim, J M; Yoo, B H; Yun, S B; Hwang, D Y; Lee, H G
2017-08-01
This note presents a superconducting joint technique for the development of MgB 2 magnetic resonance imaging (MRI) magnets. The MgB 2 superconducting joint was fabricated by a powder processing method using Mg and B powders to establish a wire-bulk-wire connection. The joint resistance measured using a field-decay method was <10 -14 Ω, demonstrating that the proposed joint technique could be employed for developing "next-generation" MgB 2 MRI magnets operating in the persistent current mode.
NASA Astrophysics Data System (ADS)
Tripathi, D.; Dey, T. K.
2018-05-01
The effect of nanoscale aluminum nitride (n-AlN) and carbon (n-C) co-doping on superconducting properties of polycrystalline bulk MgB2 superconductor has been investigated. Polycrystalline pellets of MgB2, MgB2 + 0.5 wt% AlN (nano), MgB_{1.99}C_{0.01} and MgB_{1.99}C_{0.01} + 0.5 wt% AlN (nano) have been synthesized by a solid reaction process under inert atmosphere. The transition temperature (TC) estimated from resistivity measurement indicates only a small decrease for C (nano) and co-doped MgB2 samples. The magnetic field response of investigated samples has been measured at 4, 10, and 20 K in the field range ± 6 T. MgB2 pellets co-doped with 0.5 wt% n-AlN and 1 wt% n-C display appreciable enhancement in critical current density (J_C) of MgB2 in both low (≥ 3 times), as well as, high-field region (≥ 15 times). J_C versus H behavior of both pristine and doped MgB2 pellets is well explained in the light of the collective pinning model. Further, the normalized pinning force density f_p(= F_p/F_{pmax}) displays a fair correspondence with the scaling procedure proposed by Eisterer et al. Moreover, the scaled data of the pinning force density (i.e., f_p{-}h data) of the investigated pellets at different temperature are well interpreted by a modified Dew-Hughes expression reported by Sandu and Chee.
Mammaglobin expression in gynecologic adenocarcinomas.
Hagemann, Ian S; Pfeifer, John D; Cao, Dengfeng
2013-04-01
Mammaglobin (MGB) has been proposed as a sensitive and specific immunohistochemical marker for adenocarcinoma of the breast. The differential diagnosis of breast adenocarcinoma versus a gynecologic primary frequently arises. We performed a semiquantitative survey of MGB immunoreactivity in 26 benign gynecologic tissues (6 ectocervices, 9 endocervices, 11 endometria), 86 ovarian adenocarcinomas, 70 endometrial adenocarcinomas, and 10 endocervical adenocarcinomas. Among ovarian tumors, MGB was present in 40% of endometrioid carcinomas; 36%, serous carcinomas; 21%, clear cell carcinomas; and 6%, mucinous carcinomas. Among endometrial cancers, MGB reactivity was present in 57% of endometrioid carcinomas, but only 30% of serous carcinomas and 6% of clear cell carcinomas. MGB was absent in endocervical adenocarcinomas. Across all tumor types with positive staining, MGB was focal or patchy (ie, less than diffuse) in 50 of 57 cases. Using a scale of 0 to 3+, the only 3 tumors with 3+ MGB reactivity were all serous carcinomas (1 ovarian and 2 endometrial). There were no cases with diffuse 3+ MGB expression. On the other hand, diffuse 2+ MGB was seen in 4 cases: 1 endometrioid carcinoma of ovary, 1 serous carcinoma of ovary, and 2 clear cell carcinomas of ovary. In conclusion, a diagnostically significant proportion of gynecologic carcinomas are immunoreactive for MGB. Gynecologic primaries should be considered in the differential diagnosis of MGB-positive malignancies of unknown origin. Copyright © 2013 Elsevier Inc. All rights reserved.
MgB2 thick films on three-dimensional structures fabricated by HPCVD
NASA Astrophysics Data System (ADS)
Guo, Zhengshan; Cai, Xingwei; Liao, Xuebin; Chen, Yiling; Yang, Can; Niu, Ruirui; Luo, Wenhao; Huang, Zigeng; Feng, Qingrong; Gan, Zizhao
2018-06-01
Magnetic shielding has been a key factor in the measurement of ultra-weak magnetic fields, especially for shielding from low frequency electromagnetic noise. With the recent development of superconducting quantum interference devices, superconducting magnetic shielding has become an important area of research. MgB2 has shown great potential in magnetic shielding for its remarkable superconducting properties, the feasibility of its use in this capacity having been demonstrated by MgB2 bulk samples. However, the potential for application of such bulk samples is limited. In this work, we have investigated the possibility of the fabrication of MgB2 films on three-dimensional (3D) structures using a hybrid physical‑chemical vapor deposition system. MgB2 films 10 μm thick have been fabricated on the outer surface of a polycrystalline Al2O3 cylinder. The deposited film showed a transition temperature (TC) of 39 K and J C of 5.1 × 105 A · cm‑2, which are comparable to those of planar MgB2 films. This work shows the feasibility of depositing MgB2 films onto a 3D structure, and sheds light on the potential use of MgB2 films in superconducting magnetic shielding.
Superconducting characteristics of short MgB2 wires of long level sensor for liquid hydrogen
NASA Astrophysics Data System (ADS)
Takeda, M.; Inoue, Y.; Maekawa, K.; Matsuno, Y.; Fujikawa, S.; Kumakura, H.
2015-12-01
To establish the worldwide storage and marine transport of hydrogen, it is important to develop a high-precision and long level sensor, such as a superconducting magnesium diboride (MgB2) level sensor for large liquid hydrogen (LH2) tanks on board ships. Three 1.7- m-long MgB2 wires were fabricated by an in situ method, and the superconducting characteristics of twenty-four 20-mm-long MgB2 wires on the 1.7-m-long wires were studied. In addition, the static level-detecting characteristics of five 500-mm-long MgB2 level sensors were evaluated under atmospheric pressure.
Towards liquid-helium-free, persistent-mode MgB2 MRI magnets: FBML experience
NASA Astrophysics Data System (ADS)
Iwasa, Yukikazu
2017-05-01
In this article I present our experience at the Magnet Technology Division of the MIT Francis Bitter Magnet Laboratory on liquid-helium (LHe)-free, persistent-mode MgB2 MRI magnets. Before reporting on our MgB2 magnets, I first summarize the basic work that we began in the late 1990s to develop LHe-free, high-temperature superconductor (HTS) magnets cooled in solid cryogen—I begin by discussing the enabling feature, particularly of solid nitrogen (SN2), for adiabatic HTS magnets. The next topic is our first LHe-free, SN2-HTS magnet, for which we chose Bi2223 because in the late 1990s Bi2223 was the only HTS available to build an HTS magnet. I then move on to two MgB2 magnets, I and II, developed after discovery of MgB2 in 2000. The SN2-MgB2 Magnet II—0.5 T/240 mm, SN2-cooled, and operated in persistent mode—was completed in January 2016. The final major topic in this article is a tabletop LHe-free, persistent-mode 1.5 T/70 mm SN2-MgB2 ‘finger’ MRI magnet for osteoporosis screening—we expect to begin this project in 2017. Before concluding this article, I present my current view on challenges and prospects for MgB2 MRI magnets.
Towards Liquid-Helium-Free, Persistent-Mode MgB2 MRI Magnets: FBML Experience.
Iwasa, Yukikazu
2017-01-01
In this article I present our experience at the Magnet Technology Division of the MIT Francis Bitter Magnet Laboratory on liquid-helium (LHe)-free, persistent-mode MgB 2 MRI magnets. Before reporting on our MgB 2 magnets, I first summarize the basic work that we began in the late 1990s to develop LHe-free, high-temperature superconductor (HTS) magnets cooled in solid cryogen-I begin by discussing the enabling feature, particularly of solid nitrogen (SN2), for adiabatic HTS magnets. The next topic is our first LHe-free, SN2-HTS magnet, for which we chose Bi2223 because in the late 1990s Bi2223 was the only HTS available to build an HTS magnet. I then move on to two MgB 2 magnets, I and II, developed after discovery of MgB 2 in 2000. The SN2-MgB 2 Magnet II-0.5-T/240-mm, SN2-cooled, and operated in persistent mode-was completed in January 2016. The final major topic in this article is a tabletop LHe-free, persistent-mode 1.5-T/70-mm SN2-MgB 2 "finger" MRI magnet for osteoporosis screening-we expect to begin this project in 2017. Before concluding this article, I present my current view on challenges and prospects for MgB 2 MRI magnets.
Towards Liquid-Helium-Free, Persistent-Mode MgB2 MRI Magnets: FBML Experience
Iwasa, Yukikazu
2017-01-01
In this article I present our experience at the Magnet Technology Division of the MIT Francis Bitter Magnet Laboratory on liquid-helium (LHe)-free, persistent-mode MgB2 MRI magnets. Before reporting on our MgB2 magnets, I first summarize the basic work that we began in the late 1990s to develop LHe-free, high-temperature superconductor (HTS) magnets cooled in solid cryogen—I begin by discussing the enabling feature, particularly of solid nitrogen (SN2), for adiabatic HTS magnets. The next topic is our first LHe-free, SN2-HTS magnet, for which we chose Bi2223 because in the late 1990s Bi2223 was the only HTS available to build an HTS magnet. I then move on to two MgB2 magnets, I and II, developed after discovery of MgB2 in 2000. The SN2-MgB2 Magnet II—0.5-T/240-mm, SN2-cooled, and operated in persistent mode—was completed in January 2016. The final major topic in this article is a tabletop LHe-free, persistent-mode 1.5-T/70-mm SN2-MgB2 “finger” MRI magnet for osteoporosis screening—we expect to begin this project in 2017. Before concluding this article, I present my current view on challenges and prospects for MgB2 MRI magnets. PMID:29568161
Influence of in situ and ex situ ZrO2 addition on the properties of MgB2
NASA Astrophysics Data System (ADS)
Chen, S. K.; Glowacki, B. A.; MacManus-Driscoll, J. L.; Vickers, M. E.; Majoros, M.
2004-02-01
The effect of ZrO2 addition on the properties of MgB2 has been studied using in situ and ex situ processes. The in situ process was performed by introducing ZrO2 from the milling tools into MgB2 throughout the planetary ball milling, whereas the ex situ process was accomplished by mixing ZrO2 from the milling tools with MgB2 by hand grinding in a mortar. A detectable amount of ZrO2 was present in MgB2 after 4 h of milling during the in situ process and its content increased with milling time as expected. The 400 h milled powder was partially amorphized and showed the formation of a minority ZrB2 phase. For milling up to 100 h, diamagnetism of MgB2 was significantly reduced while Tc remained unchanged. Superconductivity was totally destroyed after 148 h of milling. The loss of superconductivity is attributed to the effect of disordering induced by mechanical milling. As a result of in situ ZrO2 addition, the initial Tc and crystal structure of MgB2 could not be restored upon annealing. With increasing milling time, the expansion of lattice parameters in both the a-axis and c-axis may be due to possible substitution of Mg or B by Zr. The result from the magnetic measurement shows that Jc of MgB2 is deteriorated by in situ ZrO2 addition. On the other hand, ex situ ZrO2 addition with annealing did not degrade the Tc of MgB2.
Wan, F.; Sumption, M. D.; Rindfleisch, M. A.; Tomsic, M. J.; Collings, E. W.
2016-01-01
Standard in-situ type MgB2 strands manufactured by Hyper Tech Inc have 19 – 36 subelements, a monel outer sheath, and a Cu interfilamentary matrix. Typical transport Jcs of the strands are 2×105 A/cm2 with n-values of 20 – 30 at 4.2 K and 5 T. This work introduces two new MgB2 conductor designs. First, a new class of MgB2 strand is designed for magnetic resonance imaging applications. This type has a higher Cu content designed to enhance protection of a magnet wound with it, and a larger diameter to increase the critical current. Second, a new class of low AC loss MgB2 strand with high filament count and a high resistance matrix is discussed. Transport properties at 4.2 K and fields up to 10 T are reported. Optical techniques are used to study the macro- and micro-structures of these MgB2 strands. PMID:28827975
Effect of charcoal doping on the superconducting properties of MgB 2 bulk
NASA Astrophysics Data System (ADS)
Kim, N. K.; Tan, K. S.; Jun, B.-H.; Park, H. W.; Joo, J.; Kim, C.-J.
2008-09-01
The effect of charcoal doping on the superconducting properties of in situ processed MgB 2 bulk samples was investigated. To understand the size effect of the dopant the charcoal powder was attrition milled for 1 h, 3 h and 6 h using ZrO 2 balls. The milled charcoal powders were mixed with magnesium and boron powders to a nominal composition of Mg(B 0.975C 0.025) 2. The Mg(B 0.975C 0.025) 2 compacts were heat-treated at 900 °C for 0.5 h in flowing Ar atmosphere. Magnetic susceptibility for the samples showed that the superconducting transition temperature ( Tc) decreased as the size of the charcoal powder decreased. The critical current density ( Jc) of Mg(B 0.975C 0.025) 2 prepared using large size charcoal powder was lower than that of the undoped MgB 2. However, a crossover of Jc value was observed at high magnetic fields of about 4 T in Mg(B 0.975C 0.025) 2 prepared using small size charcoal powder. Carbon diffusion into the boron site was easier and gave the Jc increase effect when the small size charcoal was used as a dopant.
Electronic structure and surface properties of MgB2(0001) upon oxygen adsorption
NASA Astrophysics Data System (ADS)
Kim, Chang-Eun; Ray, Keith G.; Bahr, David F.; Lordi, Vincenzo
2018-05-01
We use density-functional theory to investigate the bulk and surface properties of MgB2. The unique bonding structure of MgB2 is investigated by Bader's atoms-in-molecules, charge density difference, and occupancy projected band structure analyses. Oxygen adsorption on the charge-depleted surfaces of MgB2 is studied by a surface potential energy mapping method, reporting a complete map including low-symmetry binding sites. The B-terminated MgB2(0001) demonstrates reconstruction of the graphenelike B layer, and the reconstructed geometry exposes a threefold site of the subsurface Mg, making it accessible from the surface. Detailed reconstruction mechanisms are studied by simulated annealing method based on ab initio molecular dynamics and nudged elastic band calculations. The surface clustering of B atoms significantly modifies the B 2 p states to occupy low energy valence states. The present paper emphasizes that a thorough understanding of the surface phase may explain an apparent inconsistency in the experimental surface characterization of MgB2. Furthermore, these results suggest that the surface passivation can be an important technical challenge when it comes to development of a superconducting device using MgB2.
Advanced electron microscopy methods for the analysis of MgB2 superconductor
NASA Astrophysics Data System (ADS)
Birajdar, B.; Peranio, N.; Eibl, O.
2008-02-01
Advanced electron microscopy methods used for the analysis of superconducting MgB2 wires and tapes are described. The wires and tapes were prepared by the powder in tube method using different processing technologies and thoroughly characterised for their superconducting properties within the HIPERMAG project. Microstructure analysis on μm to nm length scales is necessary to understand the superconducting properties of MgB2. For the MgB2 phase analysis on μm scale an analytical SEM, and for the analysis on nm scale a energy-filtered STEM is used. Both the microscopes were equipped with EDX detector and field emission gun. Electron microscopy and spectroscopy of MgB2 is challenging because of the boron analysis, carbon and oxygen contamination, and the presence of large number of secondary phases. Advanced electron microscopy involves, combined SEM, EPMA and TEM analysis with artefact free sample preparation, elemental mapping and chemical quantification of point spectra. Details of the acquisition conditions and achieved accuracy are presented. Ex-situ wires show oxygen-free MgB2 colonies (a colony is a dense arrangement of several MgB2 grains) embedded in a porous and oxygen-rich matrix, introducing structural granularity. In comparison, in-situ wires are generally more dense, but show inhibited MgB2 phase formation with significantly higher fraction of B-rich secondary phases. SiC additives in the in-situ wires forms Mg2Si secondary phases. The advanced electron microscopy has been used to extract the microstructure parameters like colony size, B-rich secondary phase fraction, O mole fraction and MgB2 grain size, and establish a microstructure-critical current density model [1]. In summary, conventional secondary electron imaging in SEM and diffraction contrast imaging in the TEM are by far not sufficient and advanced electron microscopy methods are essential for the analysis of superconducting MgB2 wires and tapes.
NASA Astrophysics Data System (ADS)
Sugano, Michinaka; Ballarino, Amalia; Bartova, Barbora; Bjoerstad, Roger; Gerardin, Alexandre; Scheuerlein, Christian
2016-02-01
MgB2 wire is a promising superconductor for the superconducting links for the high-luminosity upgrade of the large Hadron collider at CERN. The mechanical properties of MgB2 must be fully quantified for the cable design, and in this study, we evaluate the Young’s modulus of MgB2 filaments in wires with a practical level of critical current. The Young’s moduli of MgB2 filaments by two different processes, in situ and ex situ, were compared. Two different evaluation methods were applied to an in situ MgB2 wire, a single-fiber tensile test and a tensile test after removing Monel. In addition, the Young’s modulus of the few-micron-thick Nb-Ni reaction layer in an ex situ processed wire was evaluated using a nanoindentation testing technique to improve the accuracy of analysis based on the rule of mixtures. The Young’s moduli of the in situ and ex situ MgB2 wires were in the range of 76-97 GPa and no distinct difference depending on the fabrication process was found.
Batalu, Dan; Stanciuc, Ana Maria; Moldovan, Lucia; Aldica, Gheorghe; Badica, Petre
2014-09-01
Nano- or micropowders of Eu2O3 were added to MgB2, resulting in a composition of (MgB2)0.975(EuO1.5)0.025. Pristine and doped samples were prepared using spark plasma sintering and tested for (i) Vickers hardness, (ii) pH evolution in phosphate-buffered saline solution, (iii) corrosion resistance (Tafel polarization curves), (iv) cytotoxicity (in vitro tests), and (v) antibacterial activity. Eu2O3 addition influenced the investigated properties. Solutions of MgB2-based samples show a relatively high saturation pH of 8.5. This value is lower than that of solutions incubated with Mg or other Mg-based biodegradable alloys reported in the literature. MgB2-based samples have lower electro-corrosion rates than Mg. Their Vickers hardness is 6.8-10.2GPa, and these values are higher than those of biodegradable Mg-based alloys. MgB2 has low in vitro biocompatibility, good antibacterial activity against Escherichia coli, and mild activity against Staphylococcus aureus. Our results suggest that MgB2-based materials deserve attention in biomedical applications, such as implants or sterile medical instruments. Copyright © 2014 Elsevier B.V. All rights reserved.
Enhancement of the in-field Jc of MgB2 via SiCl4 doping
NASA Astrophysics Data System (ADS)
Wang, Xiao-Lin; Dou, S. X.; Hossain, M. S. A.; Cheng, Z. X.; Liao, X. Z.; Ghorbani, S. R.; Yao, Q. W.; Kim, J. H.; Silver, T.
2010-06-01
We present the following results. (1) We introduce a doping source for MgB2 , liquid SiCl4 , which is free of C, to significantly enhance the irreversibility field (Hirr) , the upper critical field (Hc2) , and the critical current density (Jc) with a little reduction in the critical temperature (Tc) . (2) Although Si can not be incorporated into the crystal lattice, a significant reduction in the a -axis lattice parameter was found, to the same extent as for carbon doping. (3) Based on the first-principles calculation, it is found that it is reliable to estimate the C concentration just from the reduction in the a -lattice parameter for C-doped MgB2 polycrystalline samples that are prepared at high sintering temperatures, but not for those prepared at low sintering temperatures. Strain effects and magnesium deficiency might be reasons for the a -lattice reduction in non-C or some of the C-added MgB2 samples. (4) The SiCl4 -doped MgB2 shows much higher Jc with superior field dependence above 20 K compared to undoped MgB2 and MgB2 doped with various carbon sources. (5) We introduce a parameter, RHH (Hc2/Hirr) , which can clearly reflect the degree of flux-pinning enhancement, providing us with guidance for further enhancing Jc . (6) It was found that spatial variation in the charge-carrier mean free path is responsible for the flux-pinning mechanism in the SiCl4 treated MgB2 with large in-field Jc .
Electroplating of the superconductive boride MgB2 from molten salts
NASA Astrophysics Data System (ADS)
Abe, Hideki; Yoshii, Kenji; Nishida, Kenji; Imai, Motoharu; Kitazawa, Hideaki
2005-02-01
An electroplating technique of the superconductive boride MgB2 onto graphite substrates is reported. Films of MgB2 with a thickness of tens micrometer were fabricated on the planar and curved surfaces of graphite substrates by means of electrolysis on a mixture of magnesium chloride, potassium chloride, sodium chloride, and magnesium borate fused at 600 °C under an Ar atmosphere. The electrical resistivity and magnetization measurements revealed that the electroplated MgB2 films undergo a superconducting transition with the critical temperature (Tc) of 36 K.
Ex-situ manufacturing of SiC-doped MgB2 used for superconducting wire in medical device applications
NASA Astrophysics Data System (ADS)
Herbirowo, Satrio; Imaduddin, Agung; Sofyan, Nofrijon; Yuwono, Akhmad Herman
2017-02-01
Magnesium diboride (MgB2) is a superconductor material with a relatively high critical temperature. Due to its relatively high critical temperature, this material is promising and has the potential to replace Nb3Sn for wire superconducting used in many medical devices. In this work, nanoparticle SiC-doped MgB2 superconducting material has been fabricated through an ex-situ method. The doping of nanoparticle SiC by 10 and 15 wt% was conducted to analyze its effect on specific resistivity of MgB2. The experiment was started by weighing a stoichiometric amount of MgB2 and nanoparticles SiC. Both materials were mixed and grounded for 30 minutes by using an agate mortar. The specimens were then pressed into a 6 mm diameter stainless steel tube, which was then reduced until 3 mm through a wire drawing method. X-ray diffraction analysis was conducted to confirm the phase, whereas the superconductivity of the specimens was analyzed by using resistivity measurement under cryogenic magnetic system. The results indicated that the commercial MgB2 showed a critical temperature of 37.5 K whereas the SiC doped MgB2 has critical temperature of 38.3 K.
NASA Astrophysics Data System (ADS)
Tripathi, D.; Dey, T. K.
2014-12-01
A series of MgB2 pellets with and without addition of carbon from different sources (viz. starch, polystyrene and carbon nanotubes) have been synthesized by solid state reaction under argon atmosphere. XRD analysis indicates a decrease in lattice parameters of MgB2 with addition of starch, polystyrene (PS) and MWCNT and confirms substitution of carbon in boron sites. The presence of nanosized carbon inclusions between the grain boundaries in the present set of samples is evident in TEM photographs. Resistivity data confirms a decrease in superconducting transition temperature (Tc0) for MgB2 doped with starch/PS/MWCNT. The effect of different field cooling heights (HIFC) at 20 K on maximum levitation force (FMLF) and maximum attractive force (FMAF) of pure MgB2 and MgB2 doped with starch/PS/MWCNT have been investigated. Except for MWCNT, doping of starch and PS in MgB2 is found to improve FMLF and FMAF and the best result is obtained for MgB2 doped with 1 wt.% PS. Levitation force measured as a function of decreasing initial field cooling height indicates exponential dependence of both maximum levitation force (FMLF) and maximum attractive force (FMAF). However, the gap distance between PM and the sample (H0AF and HMAF) corresponding to maximum attractive force (FMAF) and zero attractive force (F0AF) varies linearly and their difference remains constant. This constancy in (HMAF - H0AF) is understood in terms of constant reduction rate of magnetic flux density between H0AF and HMAF.
Dry cryomagnetic system with MgB2 coil
NASA Astrophysics Data System (ADS)
Abin, D. A.; Mineev, N. A.; Osipov, M. A.; Pokrovskii, S. V.; Rudnev, I. A.
2017-12-01
MgB2 may be the future superconducting wire material for industrial magnets due to it’s higher operation temperature and potentially lower cost than low temperature superconductors (LTS) have. We designed a compact cryomagnetic system with the use of MgB2. The possibility of creating a magnet with a central field of 5 T from a commercial MgB2 wire by the “react and wound” method was investigated. The magnetic system is cooled by a cryocooler through a copper bus. The magnet has a warm bore diameter of 4 cm. The design of a magnet consisting of three concentric solenoids is proposed: an internal one of high-temperature superconductor (HTS), an average of MgB2, and an external of NbTi. The operating current of the system is 100 A. Two pairs of current leads are used. A separate pair of current leads for power supplying NbTi coil allows testing of MgB2 and HTS coils in an external field. The load curves for each of the magnets are calculated.
Properties of MgB 2 superconductor chemically treated by acetic acid
NASA Astrophysics Data System (ADS)
Hušeková, K.; Hušek, I.; Kováč, P.; Kulich, M.; Dobročka, E.; Štrbík, V.
2010-03-01
Commercial Alfa Aesar MgB 2 powder was chemically treated by acetic acid with the aim of MgO removing. Single-core MgB 2/Fe ex situ wires have been made by powder-in-tube (PIT) process using the powders treated with different acid concentration. All samples were annealed in argon at 950 °C/0.5 h. Differences in transition temperatures and critical currents of acetic acid treated MgB 2 are related to the normal state resistivity, effective carbon substitution from the organic solvent and the active area fraction (grain-connectivity).
Inhomogeneous Phase Effect of Smart Meta-Superconducting MgB2
NASA Astrophysics Data System (ADS)
Li, Yongbo; Chen, Honggang; Qi, Weichang; Chen, Guowei; Zhao, Xiaopeng
2018-05-01
The inhomogeneous phase of a smart meta-superconductor has a great effect on its superconductivity. In this paper, the effect of concentration, dimensions, electroluminescence (EL) intensity, and distribution of the inhomogeneous phase on the superconducting critical temperature (TC) has been systematically investigated. An ex situ solid sintering was utilized to prepare smart meta-superconducting MgB2 doped with six kinds of electroluminescent materials, such as YVO4{:}Eu^{3+} and Y2O3{:}Eu^{3+} flakes. Elemental mappings through energy dispersive spectroscopy (EDS) show that the inhomogeneous phase is comparatively uniformly dispersed around the MgB2 particles; thus V, Y, and Eu were accumulated at a small area. The measurement results show that the optimum doping concentration of the meta-superconducting MgB2 is 2.0 wt%. The offset temperature (TC^{{ off}}) of the sample doped with 2.0 wt% dopant A is 1.6 K higher than that of pure MgB2. The improvement in TC^{{ off}} is likely related to the sizes, thickness, and EL intensity of the inhomogeneous phase of MgB2 smart meta-superconductor. This experiment provides a novel approach to enhance TC.
Sasaki, Eiichi; Tsunoda, Nobuyuki; Hatanaka, Yutaka; Mori, Naoyoshi; Iwata, Hiroji; Yatabe, Yasushi
2007-02-01
Previously, we used the reverse transcription-polymerase chain reaction (RT-PCR) to show that mammaglobin (MGB1) can serve as a differential marker of breast cancer metastasis from primary lung cancer. However, mRNA-based methods are not appropriate for use in clinical practices. In this study, we examined MGB1 protein expression in 480 tumors from various organs using immunohistochemical detection and a tissue microarray technique. Breast cancers expressing MGB1 were also analyzed clinicopathologically to determine whether these cancers constitute a characteristic subset. Immunohistochemically, MGB1 was expressed specifically in breast cancers. Of the other cancers examined, including 29 of the head and neck, eight of the thyroid, 106 of the lung, 35 of the gastrointestinal tract, three of the pancreas, 14 of the uterine cervix and 13 of the ovary, none were positive for MGB1 except a proportion of salivary gland tumors (6/11, 55%) and endometrial cancers (3/23, 13%). Among the 238 breast cancers, MGB1 was expressed in 114 (48%), most of which were classified histologically as invasive duct or lobular carcinomas. Clinicopathologically, MGB1 expression was associated with positive expression of estrogen receptors and negative expression of CK5, but not with pathological stage, HER2 gene amplification or p53 immunoreactivity. Kaplan-Meier analysis revealed prolonged disease-free survival in patients with MGB1-positive breast cancers (log rank test, P=0.016), but the Cox proportional hazard model failed to confirm that MGB1 was an independent prognostic factor (hazard ratio 1.77, P=0.1755). In terms of practical diagnosis, MGB1 immunohistochemistry can serve as a differential marker of breast cancer metastasis from primary lung cancer for two reasons. Firstly, HER2-positive breast cancer frequently lacks estrogen receptor expression, but MGB1 is expressed in about half of this subtype. Secondly, as primary lung adenocarcinomas may express estrogen receptors, MGB1 expression provides further discrimination of the origin of breast cancers.
Phase Formation and Superconductivity of Fe-TUBE Encapsulated and Vacuum-Annealed MgB2
NASA Astrophysics Data System (ADS)
Singh, K. P.; Awana, V. P. S.; Shahabuddin, Md.; Husain, M.; Saxena, R. B.; Nigam, Rashmi; Ansari, M. A.; Gupta, Anurag; Narayan, Himanshu; Halder, S. K.; Kishan, H.
We report optimization of the synthesis parameters viz. heating temperature (TH), and hold time (thold) for vacuum-annealed (10-5 Torr) and LN2 (liquid nitrogen) quenched MgB2 compound. These are single-phase compounds crystallizing in the hexagonal structure (space group P6/mmm) at room temperature. Our XRD results indicated that for phase-pure MgB2, the TH for 10-5 Torr annealed and LN2-quenched samples is 750°C. The right stoichiometry i.e., MgB2 of the compound corresponding to 10-5 Torr and TH of 750°C is found for the hold time (thold) of 2.30 hours. With varying thold from 1-4 hours at fixed TH (750°C) and vacuum (10-5 Torr), the c-lattice parameter decreases first and later increases with thold (hours) before a near saturation, while the a-lattice parameter first increases and later decreases beyond a thold of 2.30 hours. The c/a ratio versus thold plot showed an inverted bell-shaped curve, touching the lowest value of 1.141, which is the reported value for perfect stoichiometry of MgB2. The optimized stoichimetric MgB2 compound exhibited superconductivity at 39.2 K with a transition width of 0.6 K. In conclusion, the synthesis parameters for phase pure stoichimetric vacuum-annealed MgB2 compound are optimized and are compared with widely-reported Ta tube encapsulated samples.
NASA Astrophysics Data System (ADS)
Shahabuddin, Mohammed; Alzayed, Nasser S.; Oh, Sangjun; Choi, Seyong; Maeda, Minoru; Hata, Satoshi; Shimada, Yusuke; Hossain, Md Shahriar Al; Kim, Jung Ho
2014-01-01
A comprehensive study of the effects of structural imperfections in MgB2 superconducting wire has been conducted. As the sintering temperature becomes lower, the structural imperfections of the MgB2 material are increased, as reflected by detailed X-ray refinement and the normal state resistivity. The crystalline imperfections, caused by lattice disorder, directly affect the impurity scattering between the π and σ bands of MgB2, resulting in a larger upper critical field. In addition, low sintering temperature keeps the grain size small, which leads to a strong enhancement of pinning, and thereby, enhanced critical current density. Owing to both the impurity scattering and the grain boundary pinning, the critical current density, irreversibility field, and upper critical field are enhanced. Residual voids or porosities obviously remain in the MgB2, however, even at low sintering temperature, and thus block current transport paths.
Electro-mechanical characterization of MgB2 wires for the Superconducting Link Project at CERN
NASA Astrophysics Data System (ADS)
Konstantopoulou, K.; Ballarino, A.; Gharib, A.; Stimac, A.; Garcia Gonzalez, M.; Perez Fontenla, A. T.; Sugano, M.
2016-08-01
In previous years, the R & D program between CERN and Columbus Superconductors SpA led to the development of several configurations of MgB2 wires. The aim was to achieve excellent superconducting properties in high-current MgB2 cables for the HL-LHC upgrade. In addition to good electrical performance, the superconductor shall have good mechanical strength in view of the stresses during operation (Lorenz forces and thermal contraction) and handling (tension and bending) during cabling and installation at room temperature. Thus, the study of the mechanical properties of MgB2 wires is crucial for the cable design and its functional use. In the present work we report on the electro-mechanical characterization of ex situ processed composite MgB2 wires. Tensile tests (critical current versus strain) were carried out at 4.2 K and in a 3 T external field by means of a purpose-built bespoke device to determine the irreversible strain limit of the wire. The minimum bending radius of the wire was calculated taking into account the dependence of the critical current with the strain and it was then used to obtain the minimum twist pitch of MgB2 wires in the cable. Strands extracted from cables having different configurations were tested to quantify the critical current degradation. The Young’s modulus of the composite wire was measured at room temperature. Finally, all measured mechanical parameters will be used to optimize an 18-strand MgB2 cable configuration.
Suppression of superconductivity in epitaxial MgB2 ultrathin films
NASA Astrophysics Data System (ADS)
Zhang, Chen; Wang, Yue; Wang, Da; Zhang, Yan; Liu, Zheng-Hao; Feng, Qing-Rong; Gan, Zi-Zhao
2013-07-01
MgB2 ultrathin films have potential to make sensitive superconducting devices such as superconducting single-photon detectors working at relatively high temperatures. We have grown epitaxial MgB2 films in thicknesses ranging from about 40 nm to 6 nm by using the hybrid physical-chemical vapor deposition method and performed electrical transport measurements to study the thickness dependence of the superconducting critical temperature Tc. With reducing film thickness d, although a weak depression of the Tc has been observed, which could be attributed to an increase of disorder (interband impurity scattering) in the film, the Tc retains close to the bulk value of MgB2 (39 K), being about 35 K in the film of 6 nm thick. We show that this result, beneficial to the application of MgB2 ultrathin films and in accordance with recent theoretical calculations, is in contrast to previous findings in MgB2 films prepared by other methods such as co-evaporation and molecular-beam epitaxy, where a severe Tc suppression has been observed with Tc about one third of the bulk value in films of ˜5 nm thick. We discuss this apparent discrepancy in experiments and suggest that, towards the ultrathin limit, the different degrees of Tc suppression displayed in currently obtained MgB2 films by various techniques may arise from the different levels of disorder present in the film or different extents of proximity effect at the film surface or film-substrate interface.
Superconducting MgB2 films via precursor postprocessing approach
NASA Astrophysics Data System (ADS)
Paranthaman, M.; Cantoni, C.; Zhai, H. Y.; Christen, H. M.; Aytug, T.; Sathyamurthy, S.; Specht, E. D.; Thompson, J. R.; Lowndes, D. H.; Kerchner, H. R.; Christen, D. K.
2001-06-01
Superconducting MgB2 films with Tc=38.6 K were prepared using a precursor-deposition, ex situ postprocessing approach. Precursor films of boron, ˜0.5 μm thick, were deposited onto Al2O3 (102) substrates by electron-beam evaporation; a postanneal at 890 °C in the presence of bulk MgB2 and Mg metal produced highly crystalline MgB2 films. X-ray diffraction indicated that the films exhibit some degree of c-axis alignment, but are randomly oriented in plane. Transport current measurements of the superconducting properties show high values of the critical current density and yield an irreversibility line that exceeds that determined by magnetic measurements on bulk polycrystalline materials.
NASA Astrophysics Data System (ADS)
Jadhav, A. B.; Subhedar, K. M.; Hyam, R. S.; Talaptra, A.; Sen, Pintu; Bandyopadhyay, S. K.; Pawar, S. H.
2005-06-01
The binary intermetallic MgB2 superconductor has been synthesized by many research groups. However, the mechanism of its formation is not clearly understood. In this communication, a comprehensive mechanism of the formation of MgB2 from Le Chatelier's principle of equilibrium reaction has been explained both for solid-state reaction and electrodeposition methods.
Demonstration of a Conduction Cooled React and Wind MgB2 Coil Segment for MRI Applications
Kim, H. S.; Kovacs, C.; Rindfleisch, M.; Yue, J.; Doll, D.; Tomsic, M.; Sumption, M. D.; Collings, E. W.
2016-01-01
This study is a contribution to the development of technology for an MgB2-based, cryogen-free, superconducting magnet for an MRI system. Specifically, we aim to demonstrate that a react and wind coil can be made using high performance in-situ route MgB2 conductor, and that the conductor could be operated in conduction mode with low levels of temperature gradient. In this work, an MgB2 conductor was used for the winding of a sub-size, MRI-like coil segment. The MgB2 coil was wound on a 457 mm ID 101 OFE copper former using a react-and-wind approach. The total length of conductor used was 330 m. The coil was epoxy impregnated and then instrumented for low temperature testing. After the initial cool down (conduction cooling) the coil Ic was measured as a function of temperature (15-30 K), and an Ic of 200 A at 15 K was measured. PMID:27857508
NASA Astrophysics Data System (ADS)
Ye, ShuJun; Song, Minghui; Matsumoto, Akiyoshi; Togano, Kazumasa; Takeguchi, Masaki; Ohmura, Takahito; Kumakura, Hiroaki
2013-12-01
MgB2 has a superconducting transition temperature (Tc) of 39 K, which is much higher than that for practical metallic superconductors. Thus, it is hoped that MgB2 can not only replace metallic superconductors, but can be used under liquid-helium-free conditions, for example, at temperatures of 10-20 K that can easily be achieved using cryocooling systems. However, to date, the reported critical current density (Jc) for MgB2 wires is not high enough for large-scale applications in liquid-helium-free conditions. In the present study, successful fabrication of high-performance MgB2 superconducting wires was carried out using an internal Mg diffusion (IMD) process, involving a p-dimethylbenzene (C8H10) pre-treatment of carbon-coated B powder with nanometer-sized particles. The resulting wires exhibited the highest ever Jc of 1.2 × 105 A cm-2 at 4.2 K and 10 T, and an engineering critical current density (Je) of about 1 × 104 A cm-2. Not only in 4.2 K, but also in 10 K, the Jc values for the wires fabricated in the present study are in fact higher than that for Nb-Ti wires at 4.2 K for the magnetic fields at which the measurements were carried out. At 20 K and 5 T, the Jc and Je were about 7.6 × 105 A cm-2 and 5.3 × 103 A cm-2, respectively, which are the highest values reported for MgB2 wires to date. The results of a detailed microstructural analysis suggested that the main reason for the superior electrical performance was the high density of the MgB2 layer rather than just the small grain size, and that the critical current could be further increased by suitable control of the microstructure. These high-performance IMD-processed MgB2 wires are thus promising superconductors for applications such as magnetic resonance imaging and maglev trains that can operate under liquid-helium-free conditions.
Variable expression of podocyte-related markers in the glomeruloid bodies in Wilms tumor.
Kanemoto, Katsuyoshi; Takahashi, Shori; Shu, Yujing; Usui, Joichi; Tomari, Shinsuke; Yan, Kunimasa; Hamazaki, Yutaka; Nagata, Michio
2003-09-01
Several podocyte-related markers are organized to express in glomerular differentiation. However, whether expression of them is virtually synchronized and a reliable indicator of the state of differentiation is unknown. The present study investigated, by immunohistochemistry, the divergent expression of several podocyte markers in the improperly differentiated glomeruloid bodies from four cases of Wilms tumors. The glomeruloid bodies were classified into immature (IGB) or mature forms (MGB) based on morphology and epithelial features. Podocytes in IGB expressed WT1, synaptopodin, podocalyxin, and nephrin, and their expression was stronger in MGB. In contrast, Pax2 was strong in IGB and diminished in MGB. p27 was first expressed in MGB. The expression pattern in each molecule mimics normal glomerulogenesis. Podocytes in MGB showed persistent expression of bcl-2 and cytokeratin with synaptopodin, podocalyxin, and nephrin by serial section, a finding unusual for normal glomerulogenesis. Moreover, parietal cells in MGB also occasionally expressed these podocyte markers. The ultrastructure revealed that podocytes in MGB showed tight junctions without foot process formations, which indicated incomplete differentiation. These results suggest that a set of podocyte differentiation markers are occasionally diversely expressed, and raise the possibility that expression of these markers is insufficient to determine the state of terminal differentiation in podocytes.
Conceptual designs of conduction cooled MgB2 magnets for 1.5 and 3.0 T full body MRI systems
NASA Astrophysics Data System (ADS)
Baig, Tanvir; Amin, Abdullah Al; Deissler, Robert J.; Sabri, Laith; Poole, Charles; Brown, Robert W.; Tomsic, Michael; Doll, David; Rindfleisch, Matthew; Peng, Xuan; Mendris, Robert; Akkus, Ozan; Sumption, Michael; Martens, Michael
2017-04-01
Conceptual designs of 1.5 and 3.0 T full-body magnetic resonance imaging (MRI) magnets using conduction cooled MgB2 superconductor are presented. The sizes, locations, and number of turns in the eight coil bundles are determined using optimization methods that minimize the amount of superconducting wire and produce magnetic fields with an inhomogeneity of less than 10 ppm over a 45 cm diameter spherical volume. MgB2 superconducting wire is assessed in terms of the transport, thermal, and mechanical properties for these magnet designs. Careful calculations of the normal zone propagation velocity and minimum quench energies provide support for the necessity of active quench protection instead of passive protection for medium temperature superconductors such as MgB2. A new ‘active’ protection scheme for medium T c based MRI magnets is presented and simulations demonstrate that the magnet can be protected. Recent progress on persistent joints for multifilamentary MgB2 wire is presented. Finite difference calculations of the quench propagation and temperature rise during a quench conclude that active intervention is needed to reduce the temperature rise in the coil bundles and prevent damage to the superconductor. Comprehensive multiphysics and multiscale analytical and finite element analysis of the mechanical stress and strain in the MgB2 wire and epoxy for these designs are presented for the first time. From mechanical and thermal analysis of our designs we conclude there would be no damage to such a magnet during the manufacturing or operating stages, and that the magnet would survive various quench scenarios. This comprehensive set of magnet design considerations and analyses demonstrate the overall viability of 1.5 and 3.0 T MgB2 magnet designs.
Conceptual designs of conduction cooled MgB2 magnets for 1.5 and 3.0T full body MRI systems
Baig, Tanvir; Al Amin, Abdullah; Deissler, Robert J; Sabri, Laith; Poole, Charles; Brown, Robert W; Tomsic, Michael; Doll, David; Rindfleisch, Matthew; Peng, Xuan; Mendris, Robert; Akkus, Ozan; Sumption, Michael; Martens, Michael
2017-01-01
Conceptual designs of 1.5 and 3.0 T full-body magnetic resonance imaging (MRI) magnets using conduction cooled MgB2 superconductor are presented. The sizes, locations, and number of turns in the eight coil bundles are determined using optimization methods that minimize the amount of superconducting wire and produce magnetic fields with an inhomogeneity of less than 10 ppm over a 45 cm diameter spherical volume. MgB2 superconducting wire is assessed in terms of the transport, thermal, and mechanical properties for these magnet designs. Careful calculations of the normal zone propagation velocity and minimum quench energies provide support for the necessity of active quench protection instead of passive protection for medium temperature superconductors such as MgB2. A new ‘active’ protection scheme for medium Tc based MRI magnets is presented and simulations demonstrate that the magnet can be protected. Recent progress on persistent joints for multifilamentary MgB2 wire is presented. Finite difference calculations of the quench propagation and temperature rise during a quench conclude that active intervention is needed to reduce the temperature rise in the coil bundles and prevent damage to the superconductor. Comprehensive multiphysics and multiscale analytical and finite element analysis of the mechanical stress and strain in the MgB2 wire and epoxy for these designs are presented for the first time. From mechanical and thermal analysis of our designs we conclude there would be no damage to such a magnet during the manufacturing or operating stages, and that the magnet would survive various quench scenarios. This comprehensive set of magnet design considerations and analyses demonstrate the overall viability of 1.5 and 3.0 T MgB2 magnet designs. PMID:29170604
Conceptual designs of conduction cooled MgB2 magnets for 1.5 and 3.0T full body MRI systems.
Baig, Tanvir; Al Amin, Abdullah; Deissler, Robert J; Sabri, Laith; Poole, Charles; Brown, Robert W; Tomsic, Michael; Doll, David; Rindfleisch, Matthew; Peng, Xuan; Mendris, Robert; Akkus, Ozan; Sumption, Michael; Martens, Michael
2017-04-01
Conceptual designs of 1.5 and 3.0 T full-body magnetic resonance imaging (MRI) magnets using conduction cooled MgB 2 superconductor are presented. The sizes, locations, and number of turns in the eight coil bundles are determined using optimization methods that minimize the amount of superconducting wire and produce magnetic fields with an inhomogeneity of less than 10 ppm over a 45 cm diameter spherical volume. MgB 2 superconducting wire is assessed in terms of the transport, thermal, and mechanical properties for these magnet designs. Careful calculations of the normal zone propagation velocity and minimum quench energies provide support for the necessity of active quench protection instead of passive protection for medium temperature superconductors such as MgB 2 . A new 'active' protection scheme for medium T c based MRI magnets is presented and simulations demonstrate that the magnet can be protected. Recent progress on persistent joints for multifilamentary MgB 2 wire is presented. Finite difference calculations of the quench propagation and temperature rise during a quench conclude that active intervention is needed to reduce the temperature rise in the coil bundles and prevent damage to the superconductor. Comprehensive multiphysics and multiscale analytical and finite element analysis of the mechanical stress and strain in the MgB 2 wire and epoxy for these designs are presented for the first time. From mechanical and thermal analysis of our designs we conclude there would be no damage to such a magnet during the manufacturing or operating stages, and that the magnet would survive various quench scenarios. This comprehensive set of magnet design considerations and analyses demonstrate the overall viability of 1.5 and 3.0 T MgB 2 magnet designs.
Enhancing the superconducting temperature of MgB2 by SWCNT dilution
NASA Astrophysics Data System (ADS)
Ma, Danhao; Jayasingha, Ruwantha; Hess, Dustin T.; Adu, Kofi W.; Sumanasekera, Gamini U.; Terrones, Mauricio
2014-02-01
We report, for the first time, an increase in the superconducting critical temperature, TC of commercial “dirty” MgB2 by a nonsubstitutional hole-doping of the MgB2 structure using minute, single-wall carbon nanotube (SWCNT) inclusions. We varied the SWCNTs concentration from 0.05 wt% to 5 wt% and investigated the temperature-dependent resistivity from 10 K to 300 K. We used micro-Raman spectroscopy, field-emission scanning electron microscopy, and X-ray diffraction to analyze the interfacial interactions between the SWCNTs and the MgB2 grains. We obtained an increase in TC from 33.0 to 37.8 K (ΔTC+=4.8 K), which is attributed to charge transfer from the MgB2 structure to the SWCNT structure. The charge transfer phenomenon is confirmed by micro-Raman analysis of the phonon states of the SWCNT tangential band frequency in the composites. We determined the charge transfer per carbon atom to be 0.0023/C, 0.0018/C and 0.0008/C for 0.05 wt%, 0.5 wt% and 5 wt% SWCNT inclusions, respectively, taking into account the contributions from the softening of the lattice constant and the nonadiabatic (dynamic) effects at the Fermi level. This report provides an experimental, alternative pathway to hole-doping of MgB2 without appealing to chemical substitution.
NASA Astrophysics Data System (ADS)
Park, Sung Chang; Lim, Yeong Jin; Lee, Tae-Keun; Kim, Cheol Jin
MgB2/carbon fibers have been synthesized by the combination of RF-sputtering of B and thermal evaporation of Mg, followed by co-evaporation. First, boron layer was deposited by RF-sputtering on the carbon fiber with average diameter of 7.1 μm. Later this coated layer of B was reacted with Mg vapor to transform into MgB2. Since the MgB2 reaction proceed with Mg diffusion into the boron layer, Mg vapor pressure and the diffusion time had to be controlled precisely to secure the complete reaction. Also the deposition rate of each element was controlled separately to obtain stoichiometric MgB2, since Mg was evaporated by thermal heating and B by sputtering system. The sintered B target was magnetron sputtered at the RF-power of ~200 W, which corresponded to the deposition rate of ~3.6 Å/s. With the deposition rate of B fixed, the vapor pressure of Mg was controlled by varying the temperature of tungsten boat with heating element control unit between 100 and 900°C. The MgB2 layers with the thickness of 200-950 nm could be obtained and occasionally MgO appeared as a second phase. Superconducting transition temperatures were measured around ~38 K depending on the deposition condition.
Fabrication of MgB2 monofilament wire by in-situ using powder-in-tube (PIT) method
NASA Astrophysics Data System (ADS)
Rasyadi, Muhammad Emir Hanif; Yudanto, Sigit Dwi; Imaduddin, Agung; Sawitri, Dyah
2018-04-01
In this research we have studied the making of MgB2 superconducting monofilament wire using powder-in-tube method with variation of Mg composition to B ie 0.90, 1.00 and 1.10, while Boron remains The precursor used is Mg powder (98%) and powder B (95%) Both materials are mixed and then crushed with agate mortar for 30 minutes and then put into stainless steel tube 316. The tube is then subjected to a mechanical treatment of rolling to form its monofilament wire. The wire is then cut and sintered at a temperature of 800o C for 2 hours. After that we measure the critical temperature then characterize the samples by XRD and SEM. From the result of this research it was found that in-situ wire-making by powder-in-tube method can make MgB2 superconducting monofilament wire with MgB2 as the dominant phase around 95% and MgO as the impurity phase around 5%. MgO is formed due to the oxidation occurring in the MgB2 powder inside the wire. The optimal Mg:B composition to make this wire is in the 1:2 composition Because it has a good resistivity curve with a high enough Tc Onset that is 41,67 K and Tc Zero 40,89 K. However, there is a porosity in the wire due to the volume reduction of the Mg + 2B reaction plus the evaporation of Mg.
Enhancement of Hc2 and Jc by carbon-based chemical doping
NASA Astrophysics Data System (ADS)
Yeoh, W. K.; Dou, S. X.
2007-06-01
In the past 5 years, various kinds of doping of MgB 2, including single elements (metal and non-metal), silicates, various carbon sources, and other compounds have been investigated and reported. Most nanoparticle doping leads to improvement of critical current density, Jc( H), and performance, but some types show a negative effect. In this paper, the effect of carbon doping on Jc and the upper critical field, Hc2, of MgB 2 is reviewed. Carbon substitution effects make two distinguishable contributions to the enhancement of Jc field performance: increase of Hc2 and improvement of flux pinning, both because carbon substitutes for boron in the MgB 2 lattice. Among all the carbon sources so far, nano-SiC has been confirmed to be the most effective dopant to enhance the Jc in magnetic fields and Hc2. An irreversibility field, Hirr, of 10 T has been achieved with nano-SiC doping at 20 K, exceeding Hirr of NbTi at 4.2 K. Besides that, Hc2 of carbon alloyed MgB 2 film has reached the value of 71 T. The significant enhancement in Jc( H) and Hc2 via carbon substitution has provided great potential for practical applications of MgB 2. The dual reaction model proposed by the authors’ group provides a comprehensive understanding of the mechanism of enhancement in Jc and Hc2 by chemical doping. Further improvement in self-field Jc performance while maintaining the already achieved in-field performance remains as a major challenge in the development of MgB 2.
Electrochemical synthesis of superconductive MgB 2 from molten salts
NASA Astrophysics Data System (ADS)
Yoshii, Kenji; Abe, Hideki
2003-05-01
We have found that superconductive MgB2 can be electrochemically synthesized from molten salts. The electrolysis was performed in an Ar flow at 600 °C on fused mixtures composed of MgCl2, MgB2O4, Na2B2O4 and alkali halides such as KCl, NaCl, and LiCl. Superconductivity was observed for a wide variety of electrolytes. It was also found that the magnetic and electrical transport properties are the most improved for samples prepared from MgCl2-NaCl-KCl-MgB2O4 electrolytes.
[A novel TaqMan® MGB probe for specifically detecting Streptococcus mutans].
Zheng, Hui; Lin, Jiu-Xiang; DU, Ning; Chen, Feng
2013-10-18
To design a new TaqMan® MGB probe for improving the specificity of Streptococcus mutans's detection. We extracted six DNA samples from different streptococcal strains for PCR reaction. Conventional nested PCR and TaqMan® MGB real-time PCR were applied independently. The first round of nested PCR was carried out with the bacterial universal primers, while a second PCR was conducted by using primers specific for the 16S rRNA gene of Streptococcus mutans. The TaqMan® MGB probe for Streptococcus mutans was designed from sequence analyses, and the primers were the same as nested PCR. Streptococcus mutans DNA with 2.5 mg/L was sequentially diluted at 5-fold intervals to 0.16 μg/L. Standard DNA samples were used to generate standard curves by TaqMan® MGB real-time PCR. In the nested PCR, the primers specific for Streptococcus mutans also detected Streptococcus gordonii with visible band of 282 bp, giving false-positive results. In the TaqMan® MGB real-time PCR reaction, only Streptococcus mutans was detected. The detection limitation of TaqMan® MGB real-time PCR for Streptococcus mutans 16S rRNA gene was 20 μg/L. We designed a new TaqMan® MGB probe, and successfully set up a PCR based method for detecting oral Streptococcus mutans. TaqMan® MGB real-time PCR is a both specific and sensitive bacterial detection method.
Correlated vortex pinning in Si-nanoparticle doped MgB 2
NASA Astrophysics Data System (ADS)
Kušević, I.; Babić, E.; Husnjak, O.; Soltanian, S.; Wang, X. L.; Dou, S. X.
2004-12-01
The magnetoresistivity and critical current density of well characterized Si-nanoparticle doped and undoped Cu-sheathed MgB 2 tapes have been measured at temperatures T≥28 K in magnetic fields B≤0.9 T. The irreversibility line Birr( T) for doped tape shows a stepwise variation with a kink around 0.3 T. Such Birr( T) variation is typical for high-temperature superconductors with columnar defects (a kink occurs near the matching field Bϕ) and is very different from a smooth Birr( T) variation in undoped MgB 2 samples. The microstructure studies of nanoparticle doped MgB 2 samples show uniformly dispersed nanoprecipitates, which probably act as a correlated disorder. The observed difference between the field variations of the critical current density and pinning force density of the doped and undoped tape supports the above findings.
Microstructure and pinning properties of hexagonal-disc shaped single crystalline MgB2
NASA Astrophysics Data System (ADS)
Jung, C. U.; Kim, J. Y.; Chowdhury, P.; Kim, Kijoon H.; Lee, Sung-Ik; Koh, D. S.; Tamura, N.; Caldwell, W. A.; Patel, J. R.
2002-11-01
We synthesized hexagonal-disc-shaped MgB2 single crystals under high-pressure conditions and analyzed the microstructure and pinning properties. The lattice constants and the Laue pattern of the crystals from x-ray micro-diffraction showed the crystal symmetry of MgB2. A thorough crystallographic mapping within a single crystal showed that the edge and c axis of hexagonal-disc shape exactly matched the [101¯0] and the [0001] directions of the MgB2 phase. Thus, these well-shaped single crystals may be the best candidates for studying the direction dependences of the physical properties. The magnetization curve and the magnetic hysteresis curve for these single crystals showed the existence of a wide reversible region and weak pinning properties, which supported our single crystals being very clean.
Electromechanical properties of superconducting MgB2 wire
NASA Astrophysics Data System (ADS)
Salama, K.; Zhou, Y. X.; Hanna, M.; Alessandrini, M.; Putman, P. T.; Fang, H.
2005-12-01
The current-carrying capability of superconducting wires is degraded by stress. Therefore electromechanical properties are one of the key feedback parameters needed for progress in conductor applications. In this work, uniaxial tensile stresses and bending stresses were applied to Fe /MgB2 wires at room temperature, followed by measurement of critical current using a transport method at 4.2 K. Basic mechanical properties were calculated from the measured stress-strain characteristics. The irreversible tensile strain at which the critical current density of MgB2 wire starts to degrade was found to be 0.5%. In addition, the degradation of Ic with decreasing bending diameters was found to be very rapid for wires that were deformed after the heat treatment that forms the MgB2 compound, while not much degradation of Ic was found for wires that were bent before being annealed. SEM observations confirmed that cracks could be healed by post-annealing.
Degradation of superconducting properties in MgB2 films by exposure to water
NASA Astrophysics Data System (ADS)
Zhai, H. Y.; Christen, H. M.; Zhang, L.; Paranthaman, M.; Fleming, P. H.; Lowndes, D. H.
2001-07-01
The effect of water exposure on MgB2 is studied by submerging an 800 nm thick MgB2 film into de-ionized water at room temperature for 1 h, 4 h, 10 h, and 15 h, and by analysing the resulting material using scanning electron microscopy and resistance versus temperature measurements. It is clearly observed that the Tconset of these films (obtained by an ex-situ reaction of an e-beam evaporated boron layer) remains unchanged throughout this process, indicating that at least a portion of the sample retains its original bulk-like properties. The data is consistent with an interpretation in which a portion of the exposed film - likely to be the region closest to the substrate - becomes superconducting only at ~ 25 K. It is possible that this low-Tc region already exists in the as-prepared film, and we observe that its Tc coincides with that of MgB2 films obtained by annealing precursor films prepared by pulsed laser deposition. Therefore the data presented here not only illustrates the degradation of MgB2 in water but also sheds light on the differences and similarities between films obtained via different routes.
Growth mechanism of superconducting MgB2 films prepared by various methods
NASA Astrophysics Data System (ADS)
Zhai, H. Y.; Christen, H. M.; Zhang, L.; Paranthaman, M.; Cantoni, C.; Sales, B. C.; Fleming, P. H.; Christen, D. K.; Lowndes, D. H.
2001-10-01
The growth mechanisms of MgB2 films obtained by different methods on various substrates are compared via a detailed cross-sectional scanning electron microscopy (SEM) study. The analyzed films include (a) samples obtained by an ex-situ post-anneal at 900 degree of e-beam evaporated boron in the presence of an Mg vapor (exhibiting bulk-like Tc0 about 38.8 K), (b) samples obtained by the same ex-situ 900 degree anneal of pulsed laser deposition (PLD)-grown Mg+B precursors (exhibiting Tc0 ~ 25 K), and (c) films obtained by a low-temperature (600 - 630 degree) in-situ anneal of PLD-grown Mg+B precursors (with Tc0 about 24 K). A significant oxygen contamination was also present in films obtained from a PLD-grown precursors. On the other hand, it is clearly observed that the films obtained by the high-temperature reaction of e-beam evaporated B with Mg vapor are formed by the nucleation of independent MgB2 grains at the film surface, indicating that this approach may not be suitable to obtain smooth and (possibly) epitaxial films.
Li, Huiqin; Hu, Jingtao; Meng, Yue; Su, Jinhua; Wang, Xiaojing
2017-12-15
This study investigated the removal of tetracycline (TC) using multilayered graphene-phase biochar (MGB) derived from waste chicken feather. MGB was produced through a two-stage carbonization and KOH-activation method. MGB was characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Fourier transform infrared (FT-IR), Raman spectra, Zeta potential and elemental analysis. Various chemical functional groups were demonstrated on the surface of MGB. MGB was featured by a very large BET surface area of 1838m 2 /g. A rapid equilibrium (within 30s) and an ultrahigh removal efficiency (up to 99.65%) were obtained when MGB was used in the adsorption of TCs. The adsorption processes were temperature-dependent and the maximum adsorption capacity of MGB was 388.33mg/g at 30°C. The data of adsorption isotherms and kinetics were represented well by the Langmuir and Elovich models, respectively. The chemical monolayer adsorption could play an important role in this process. Furthermore, the adsorption of MGB was tolerant with wide pH, high ionic strength and even co-existing anions. Regeneration experiments indicated the removal efficiency was still satisfied (96.61%) even after four cycles. These results have important implications for the future application of animal waste-derived adsorbents in the treatment of wastewater containing antibiotic residues. Copyright © 2017 Elsevier B.V. All rights reserved.
In-situ synchrotron x-ray study of MgB2 formation when doped by SiC
NASA Astrophysics Data System (ADS)
Abrahamsen, A. B.; Grivel, J.-C.; Andersen, N. H.; Herrmann, M.; Häßler, W.; Birajdar, B.; Eibl, O.; Saksl, K.
2008-02-01
We have studied the evolution of the reaction xMg + 2B + ySiC → zMg1-p(B1-qCq)2 + yMg2Si in samples of 1, 2, 5 and 10 wt% SiC doping. We found a coincident formation of MgB2 and Mg2Si, whereas the crystalline part of the SiC nano particles is not reacting at all. Evidence for incorporation of carbon into the MgB2 phase was established from the decrease of the a-axis lattice parameter upon increasing SiC doping. An estimate of the MgB2 lower limit grain size was found to decrease from L100 = 795 Å and L002 = 337 Å at 1 wt% SiC to L100 = 227 Å and L002= 60 Å at 10 wt% SiC. Thus superconductivity might be suppressed at 10 wt% SiC doping due to the grain size approaching the coherence length.
Fabrication and properties of multifilamentary MgB 2 wires by in-situ powder-in-tube process
NASA Astrophysics Data System (ADS)
Wang, Q. Y.; Jiao, G. F.; Liu, G. Q.; Xiong, X. M.; Yan, S. C.; Zhang, P. X.; Sulpice, A.; Mossang, E.; Feng, Y.; Yan, G.
2010-11-01
We have fabricated the long TiC-doped MgB2 wires with 6 filaments by in-situ powder-in-tube method using Nb as the barrier and copper as the stabilizer. To improve the strength of wires, the Nb-core was used as the central filament. The transport engineering critical current density (Jce) of the samples sintered at different temperature were measured, which reaches 2.5 × 104 A/cm2 at 4.2 K, 5 T. 100 m MgB2 wires with different diameter were wound into coils and the transport critical current (Ic) of the coil were measured at 30 K in self-field. The Jce value 100 m coil achieves 1.1 × 104 A/cm2 in 1.2 mm wire. The reasons leading to the enhancement of high field Jce were discussed. The results show a good potential to fabricate high performance MgB2 wires and tapes at ambient pressure on an industrial scale.
Fang, Ci; Zhang, Tao; Li, Ping; Jiang, Rong-feng; Wang, Ying-cai
2014-09-05
The recycling of lost phosphorus (P) is important in sustainable development. In line with this objective, biochar adsorption is a promising method of P recovery. Therefore, our study investigates the efficiency and selectivity of magnesium modified corn biochar (Mg/biochar) in relation to P adsorption. It also examines the available P derived from postsorption Mg/biochar. Mg/biochar is rich in magnesium nanoparticles and organic functional groups, and it can adsorb 90% of the equilibrium amount of P within 30 min. The Mg/biochar P adsorption process is mainly controlled by chemical action. The maximum P adsorption amount of Mg/biochar is 239 mg/g. The Langmuir-Freundlich model fits the P adsorption isotherm best. Thermodynamics calculation shows ∆H > 0, ∆G < 0, ∆S > 0, and it demonstrates the P adsorption process is an endothermic, spontaneous, and increasingly disordered. The optimal pH is 9. The amounts of P adsorbed by Mg/B300, Mg/B450, and Mg/B600 from swine wastewater are lower than that adsorbed from synthetic P wastewater by 6.6%, 4.8%, and 4.2%, respectively. Mg/biochar is more resistant to pH and to the influence of coexisting ions than biochar. Finally, postsorption Mg/biochar can release P persistently. The P release equilibrium concentrations are ordered as follows: Mg/B600 > Mg/B450 > Mg/B300. The postsorption Mg/B300, Mg/B450, and Mg/B600 can release 3.3%, 3.9%, and 4.4% of the total adsorbed P, respectively, per interval time.
Fang, Ci; Zhang, Tao; Li, Ping; Jiang, Rong-feng; Wang, Ying-cai
2014-01-01
The recycling of lost phosphorus (P) is important in sustainable development. In line with this objective, biochar adsorption is a promising method of P recovery. Therefore, our study investigates the efficiency and selectivity of magnesium modified corn biochar (Mg/biochar) in relation to P adsorption. It also examines the available P derived from postsorption Mg/biochar. Mg/biochar is rich in magnesium nanoparticles and organic functional groups, and it can adsorb 90% of the equilibrium amount of P within 30 min. The Mg/biochar P adsorption process is mainly controlled by chemical action. The maximum P adsorption amount of Mg/biochar is 239 mg/g. The Langmuir-Freundlich model fits the P adsorption isotherm best. Thermodynamics calculation shows ∆H > 0, ∆G < 0, ∆S > 0, and it demonstrates the P adsorption process is an endothermic, spontaneous, and increasingly disordered. The optimal pH is 9. The amounts of P adsorbed by Mg/B300, Mg/B450, and Mg/B600 from swine wastewater are lower than that adsorbed from synthetic P wastewater by 6.6%, 4.8%, and 4.2%, respectively. Mg/biochar is more resistant to pH and to the influence of coexisting ions than biochar. Finally, postsorption Mg/biochar can release P persistently. The P release equilibrium concentrations are ordered as follows: Mg/B600 > Mg/B450 > Mg/B300. The postsorption Mg/B300, Mg/B450, and Mg/B600 can release 3.3%, 3.9%, and 4.4% of the total adsorbed P, respectively, per interval time. PMID:25198685
In situ synthesis and superconducting properties of MgB 2 fibers
NASA Astrophysics Data System (ADS)
Kim, J. H.; Yoon, H. R.; Jo, W.; Kim, J. W.; Kim, K. H.
2006-10-01
Superconducting MgB2 fibers are grown by a diffusion method, in which B filaments are exposed to Mg vapor inside a folded Ta foil over a wide range of temperature and growth time. The as-grown wires with a diameter of about 110 μm are characterized by scanning electron microscopy and energy dispersive X-ray analysis. Surface morphology of the fibers turns out to be dependent on growth temperature and mixing ratio of Mg and B. Radial distribution of Mg ions into B is observed over the cross-sectional area. Transport properties of the MgB2 fibers are investigated in magnetic fields from 0 to 8 T by use of a physical property measurement system. MgB2 fibers grown at 900 °C for 2 h show a superconducting transition at 38.1 K with an onset temperature as 41.7 K and ΔTc < 3.03 K. Resistance of the MgB2 fiber at room temperature is 4 Ω and residual resistivity ratio (RRR) is estimated as 4.72. It is estimated that the upper critical field Hc2 at 4 K is more than 16 T. In addition, a small amount of magneto-resistance is detected at high magnetic fields.
NASA Astrophysics Data System (ADS)
Ye, Lin; Majoros, M.; Campbell, A. M.; Coombs, T.; Harrison, S.; Sargent, P.; Haslett, M.; Husband, M.
2007-04-01
A laboratory scale desktop test system including a cryogenic system, an AC pulse generation system and a real time data acquisition program in LabView/DAQmx, has been developed to evaluate the quench properties of MgB2 wires as an element in a superconducting fault current limiter under pulse overcurrents at 25 K in self-field conditions. The MgB2 samples started from a superconducting state and demonstrated good current limiting properties characterized by a fast transition to the normal state during the first half of the cycle and a continuously limiting effect in the subsequent cycles without burnouts. The experimental and numerical simulation results on the quench behaviour indicate the feasibility of using MgB2 for future superconducting fault current limiter (SFCL) applications. This work is supported by Rolls-Royce Plc and the UK Department of Trade & Industry (DTI).
Low-Temperature Synthesis of Superconducting Nanocrystalline MgB 2
Lu, Jun; Xiao, Zhili; Lin, Qiyin; ...
2010-01-01
Magnesium diboride (MgB 2 ) is considered a promising material for practical application in superconducting devices, with a transition temperature near 40 K. In the present paper, nanocrystalline MgB 2 with an average particle size of approximately 70 nm is synthesized by reacting LiBH 4 with MgH 2 at temperatures as low as 450 ° C. This synthesis approach successfully bypasses the usage of either elemental boron or toxic diborane gas. The superconductivity of the nanostructures is confirmed by magnetization measurements, showing a superconducting critical temperature of 38.7 K.
Novel DNA probes with low background and high hybridization-triggered fluorescence.
Lukhtanov, Eugeny A; Lokhov, Sergey G; Gorn, Vladimir V; Podyminogin, Mikhail A; Mahoney, Walt
2007-01-01
Novel fluorogenic DNA probes are described. The probes (called Pleiades) have a minor groove binder (MGB) and a fluorophore at the 5'-end and a non-fluorescent quencher at the 3'-end of the DNA sequence. This configuration provides surprisingly low background and high hybridization-triggered fluorescence. Here, we comparatively study the performance of such probes, MGB-Eclipse probes, and molecular beacons. Unlike the other two probe formats, the Pleiades probes have low, temperature-independent background fluorescence and excellent signal-to-background ratios. The probes possess good mismatch discrimination ability and high rates of hybridization. Based on the analysis of fluorescence and absorption spectra we propose a mechanism of action for the Pleiades probes. First, hydrophobic interactions between the quencher and the MGB bring the ends of the probe and, therefore, the fluorophore and the quencher in close proximity. Second, the MGB interacts with the fluorophore and independent of the quencher is able to provide a modest (2-4-fold) quenching effect. Joint action of the MGB and the quencher is the basis for the unique quenching mechanism. The fluorescence is efficiently restored upon binding of the probe to target sequence due to a disruption in the MGB-quencher interaction and concealment of the MGB moiety inside the minor groove.
The preliminary study of the quench protection of an MgB2
NASA Astrophysics Data System (ADS)
Juster, F. P.; Berriaud, C.; Bonelli, A.; Pasquet, R.; Przybilski, H.; Schild, T.; Scola, L.
2014-01-01
In the framework of general studies currently carried out at CEA/Saclay in collaboration with Sigmaphi Company on dry MgB2 magnet operating at 10 K and medium range field, 1 T up to 4 T., we plan to build a prototype-coil with a commercial MgB2 wire. This coil, the nominal axial magnetic field of which is 1 tesla, will be placed in a 3 teslas background field generated by a classical NbTi coil. This paper deals with the preliminary quench protection studies including stability and quench propagation modeling.
Preparation of MgB2 superconducting microbridges by focused ion beam direct milling
NASA Astrophysics Data System (ADS)
Zhang, Xuena; Li, Yanli; Xu, Zhuang; Kong, Xiangdong; Han, Li
2017-01-01
MgB2 superconducting microbridges were prepared by focused ion beam (FIB) direct milling on MgB2 films. The surface topography of the microbridges were observed using SEM and AFM and the superconductivity was measured in this paper. Lots of cracks and holes were found near the milled area. And the superconducting transition temperature was decreased a lot and the bridges prepared were not superconducting due to ion damage after milled with large dose. Through these works, we explored the effect regular of FIB milling and experimental parameters on the performance of microbridges.
Effects influencing the grain connectivity in ex-situ MgB 2 wires
NASA Astrophysics Data System (ADS)
Kováč, P.; Hušek, I.; Kulich, M.; Melišek, T.; Hušeková, K.; Dobročka, E.
2010-03-01
Single-core MgB 2/Fe ex-situ wires have been made by powder-in-tube (PIT) using: (i) commercial Alfa Aesar (AA) powder deformed by variable modes, (ii) AA powder oxidized by air milling and heat treatment and (iii) AA powder chemically treated by acetic and benzoic acid. All samples were finally annealed at 950 °C/0.5 h in Argon. The effect of deformation, oxidation and chemical treatment on the transport properties of MgB 2 wires was tested. Differences in critical currents, transition temperatures and normal state resistivity are shown and discussed.
Automatic development of normal zone in composite MgB2/CuNi wires with different diameters
NASA Astrophysics Data System (ADS)
Jokinen, A.; Kajikawa, K.; Takahashi, M.; Okada, M.
2010-06-01
One of the promising applications with superconducting technology for hydrogen utilization is a sensor with a magnesium-diboride (MgB2) superconductor to detect the position of boundary between the liquid hydrogen and the evaporated gas stored in a Dewar vessel. In our previous experiment for the level sensor, the normal zone has been automatically developed and therefore any energy input with the heater has not been required for normal operation. Although the physical mechanism for such a property of the MgB2 wire has not been clarified yet, the deliberate application might lead to the realization of a simpler superconducting level sensor without heater system. In the present study, the automatic development of normal zone with increasing a transport current is evaluated for samples consisting of three kinds of MgB2 wires with CuNi sheath and different diameters immersed in liquid helium. The influences of the repeats of current excitation and heat cycle on the normal zone development are discussed experimentally. The aim of this paper is to confirm the suitability of MgB2 wire in a heater free level sensor application. This could lead to even more optimized design of the liquid hydrogen level sensor and the removal of extra heater input.
Becknell, Brian; Mohamed, Ahmad Z; Li, Birong; Wilhide, Michael E; Ingraham, Susan E
2015-01-01
Urinary stasis is a risk factor for recurrent urinary tract infection (UTI). Homozygous mutant Megabladder (Mgb-/-) mice exhibit incomplete bladder emptying as a consequence of congenital detrusor aplasia. We hypothesize that this predisposes Mgb-/- mice to spontaneous and experimental UTI. Mgb-/-, Mgb+/-, and wild-type female mice underwent serial ultrasound and urine cultures at 4, 6, and 8 weeks to detect spontaneous UTI. Urine bacterial isolates were analyzed by Gram stain and speciated. Bladder stones were analyzed by x-ray diffractometry. Bladders and kidneys were subject to histologic analysis. The pathogenicity of coagulase-negative Staphylococcus (CONS) isolated from Mgb-/- urine was tested by transurethral administration to culture-negative Mgb-/- or wild-type animals. The contribution of urinary stasis to CONS susceptibility was evaluated by cutaneous vesicostomy in Mgb-/- mice. Mgb-/- mice develop spontaneous bacteriuria (42%) and struvite bladder stones (31%) by 8 weeks, findings absent in Mgb+/- and wild-type controls. CONS was cultured as a solitary isolate from Mgb-/- bladder stones. Bladders and kidneys from mice with struvite stones exhibit mucosal injury, inflammation, and fibrosis. These pathologic features of cystitis and pyelonephritis are replicated by transurethral inoculation of CONS in culture-negative Mgb-/- females, whereas wild-type animals are less susceptible to CONS colonization and organ injury. Cutaneous vesicostomy prior to CONS inoculation significantly reduces the quantity of CONS recovered from Mgb-/- urine, bladders, and kidneys. CONS is an opportunistic uropathogen in the setting of urinary stasis, leading to enhanced UTI incidence and severity in Mgb-/- mice.
Becknell, Brian; Mohamed, Ahmad Z.; Li, Birong; Wilhide, Michael E.; Ingraham, Susan E.
2015-01-01
Purpose Urinary stasis is a risk factor for recurrent urinary tract infection (UTI). Homozygous mutant Megabladder (Mgb-/-) mice exhibit incomplete bladder emptying as a consequence of congenital detrusor aplasia. We hypothesize that this predisposes Mgb-/- mice to spontaneous and experimental UTI. Methods Mgb-/-, Mgb+/-, and wild-type female mice underwent serial ultrasound and urine cultures at 4, 6, and 8 weeks to detect spontaneous UTI. Urine bacterial isolates were analyzed by Gram stain and speciated. Bladder stones were analyzed by x-ray diffractometry. Bladders and kidneys were subject to histologic analysis. The pathogenicity of coagulase-negative Staphylococcus (CONS) isolated from Mgb-/- urine was tested by transurethral administration to culture-negative Mgb-/- or wild-type animals. The contribution of urinary stasis to CONS susceptibility was evaluated by cutaneous vesicostomy in Mgb-/- mice. Results Mgb-/- mice develop spontaneous bacteriuria (42%) and struvite bladder stones (31%) by 8 weeks, findings absent in Mgb+/- and wild-type controls. CONS was cultured as a solitary isolate from Mgb-/- bladder stones. Bladders and kidneys from mice with struvite stones exhibit mucosal injury, inflammation, and fibrosis. These pathologic features of cystitis and pyelonephritis are replicated by transurethral inoculation of CONS in culture-negative Mgb-/- females, whereas wild-type animals are less susceptible to CONS colonization and organ injury. Cutaneous vesicostomy prior to CONS inoculation significantly reduces the quantity of CONS recovered from Mgb-/- urine, bladders, and kidneys. Conclusions CONS is an opportunistic uropathogen in the setting of urinary stasis, leading to enhanced UTI incidence and severity in Mgb-/- mice. PMID:26401845
MgB2 wire diameter reduction by hot isostatic pressing—a route for enhanced critical current density
NASA Astrophysics Data System (ADS)
Morawski, A.; Cetner, T.; Gajda, D.; Zaleski, A. J.; Häßler, W.; Nenkov, K.; Rindfleisch, M. A.; Tomsic, M.; Przysłupski, P.
2018-07-01
The effect of wire diameter reduction on the critical current density of pristine MgB2 wire was studied. Wires were treated by a hot isostatic pressing method at 570 °C and at pressures of up to 1.1 GPa. It was found that the wire diameter reduction induces an increase of up to 70% in the mass density of the superconducting cores. This feature leads to increases in critical current, critical current density, and pinning force density. The magnitude and field dependence of the critical current density are related to both grain connectivity and structural defects, which act as effective pinning centers. High field transport properties were obtained without doping of the MgB2 phase. A critical current density jc of 3500 A mm‑2 was reached at 4 K, 6 T for the best sample, which was a five-fold increase compared to MgB2 samples synthesized at ambient pressure.
Solid cryogen: a cooling system for future MgB2 MRI magnet.
Patel, Dipak; Hossain, Md Shahriar Al; Qiu, Wenbin; Jie, Hyunseock; Yamauchi, Yusuke; Maeda, Minoru; Tomsic, Mike; Choi, Seyong; Kim, Jung Ho
2017-03-02
An efficient cooling system and the superconducting magnet are essential components of magnetic resonance imaging (MRI) technology. Herein, we report a solid nitrogen (SN 2 ) cooling system as a valuable cryogenic feature, which is targeted for easy usability and stable operation under unreliable power source conditions, in conjunction with a magnesium diboride (MgB 2 ) superconducting magnet. The rationally designed MgB 2 /SN 2 cooling system was first considered by conducting a finite element analysis simulation, and then a demonstrator coil was empirically tested under the same conditions. In the SN 2 cooling system design, a wide temperature distribution on the SN 2 chamber was observed due to the low thermal conductivity of the stainless steel components. To overcome this temperature distribution, a copper flange was introduced to enhance the temperature uniformity of the SN 2 chamber. In the coil testing, an operating current as high as 200 A was applied at 28 K (below the critical current) without any operating or thermal issues. This work was performed to further the development of SN 2 cooled MgB 2 superconducting coils for MRI applications.
Solid cryogen: a cooling system for future MgB2 MRI magnet
NASA Astrophysics Data System (ADS)
Patel, Dipak; Hossain, Md Shahriar Al; Qiu, Wenbin; Jie, Hyunseock; Yamauchi, Yusuke; Maeda, Minoru; Tomsic, Mike; Choi, Seyong; Kim, Jung Ho
2017-03-01
An efficient cooling system and the superconducting magnet are essential components of magnetic resonance imaging (MRI) technology. Herein, we report a solid nitrogen (SN2) cooling system as a valuable cryogenic feature, which is targeted for easy usability and stable operation under unreliable power source conditions, in conjunction with a magnesium diboride (MgB2) superconducting magnet. The rationally designed MgB2/SN2 cooling system was first considered by conducting a finite element analysis simulation, and then a demonstrator coil was empirically tested under the same conditions. In the SN2 cooling system design, a wide temperature distribution on the SN2 chamber was observed due to the low thermal conductivity of the stainless steel components. To overcome this temperature distribution, a copper flange was introduced to enhance the temperature uniformity of the SN2 chamber. In the coil testing, an operating current as high as 200 A was applied at 28 K (below the critical current) without any operating or thermal issues. This work was performed to further the development of SN2 cooled MgB2 superconducting coils for MRI applications.
Fine-Filament MgB2 Superconductor Wire
NASA Technical Reports Server (NTRS)
Cantu, Sherrie
2015-01-01
Hyper Tech Research, Inc., has developed fine-filament magnesium diboride (MgB2) superconductor wire for motors and generators used in turboelectric aircraft propulsion systems. In Phase I of the project, Hyper Tech demonstrated that MgB2 multifilament wires (<10 micrometers) could reduce alternating current (AC) losses that occur due to hysteresis, eddy currents, and coupling losses. The company refined a manufacturing method that incorporates a magnesium-infiltration process and provides a tenfold enhancement in critical current density over wire made by a conventional method involving magnesium-boron powder mixtures. Hyper Tech also improved its wire-drawing capability to fabricate fine multifilament strands. In Phase II, the company developed, manufactured, and tested the wire for superconductor and engineering current density and AC losses. Hyper Tech also fabricated MgB2 rotor coil packs for a superconducting generator. The ultimate goal is to enable low-cost, round, lightweight, low-AC-loss superconductors for motor and generator stator coils operating at 25 K in next-generation turboelectric aircraft propulsion systems.
NASA Astrophysics Data System (ADS)
Dou, S. X.; Pan, A. V.; Zhou, S.; Ionescu, M.; Wang, X. L.; Horvat, J.; Liu, H. K.; Munroe, P. R.
2003-08-01
We investigated the effect of SiC nanoparticle doping on the crystal lattice structure, critical temperature Tc, critical current density Jc, and flux pinning in MgB2 superconductor. A series of MgB2-x(SiC)x/2 samples with x=0-1.0 were fabricated using an in situ reaction process. The contraction of the lattice and depression of Tc with increasing SiC doping level remained rather small most likely due to the counterbalancing effect of Si and C co-doping. The high level Si and C co-doping allowed the creation of intragrain defects and highly dispersed nanoinclusions within the grains which can act as effective pinning centers for vortices, improving Jc behavior as a function of the applied magnetic field. The enhanced pinning is mainly attributable to the substitution-induced defects and local structure fluctuations within grains. A pinning mechanism is proposed to account for different contributions of different defects in MgB2-x(SiC)x/2 superconductors.
Two ways to model voltage current curves of adiabatic MgB2 wires
NASA Astrophysics Data System (ADS)
Stenvall, A.; Korpela, A.; Lehtonen, J.; Mikkonen, R.
2007-08-01
Usually overheating of the sample destroys attempts to measure voltage-current curves of conduction cooled high critical current MgB2 wires at low temperatures. Typically, when a quench occurs a wire burns out due to massive heat generation and negligible cooling. It has also been suggested that high n values measured with MgB2 wires and coils are not an intrinsic property of the material but arise due to heating during the voltage-current measurement. In addition, quite recently low n values for MgB2 wires have been reported. In order to find out the real properties of MgB2 an efficient computational model is required to simulate the voltage-current measurement. In this paper we go back to basics and consider two models to couple electromagnetic and thermal phenomena. In the first model the magnetization losses are computed according to the critical state model and the flux creep losses are considered separately. In the second model the superconductor resistivity is described by the widely used power law. Then the coupled current diffusion and heat conduction equations are solved with the finite element method. In order to compare the models, example runs are carried out with an adiabatic slab. Both models produce a similar significant temperature rise near the critical current which leads to fictitiously high n values.
NASA Astrophysics Data System (ADS)
Deissler, Robert J.; Baig, Tanvir; Poole, Charles; Amin, Abdullah; Doll, David; Tomsic, Michael; Martens, Michael
2017-02-01
The active quench protection of a 1.5 T MgB2 conduction-cooled MRI magnet operating in persistent current mode is considered. An active quench protection system relies on the detection of the resistive voltage developed in the magnet, which is used to trigger the external energizing of quench heaters located on the surfaces of all ten coil bundles. A numerical integration of the heat equation is used to determine the development of the temperature profile and the maximum temperature in the coil at the origin, or ‘hot spot’, of the quench. Both n-value of the superconductor and magnetoresistance of the wire are included in the simulations. An MgB2 wire manufactured by Hyper Tech Research, Inc. was used as the basis to model the wire for the simulations. With the proposed active quench protection system, the maximum temperature was limited to 200 K or less, which is considered low enough to prevent damage to the magnet. By substituting Glidcop for the Monel in the wire sheath or by increasing the thermal conductivity of the insulation, the margin for safe operation was further increased, the maximum temperature decreasing by more than 40 K. The strain on the MgB2 filaments is calculated using ANSYS, verifying that the stress and strain limits in the MgB2 superconductor and epoxy insulation are not exceeded.
Synthesis and characterization of luminescent materials for thermal sensing and proton dosimetry
NASA Astrophysics Data System (ADS)
Doull, Brandon Arthur
The work presented in this thesis is the materials synthesis, investigation of synthesis parameters, and basic luminescent characterizations of MgB 4O7, Li2B4O7, and MgO for the applications of thermal sensing using thermoluminescence (TL) and proton dosimetry using optically stimulated luminescence (OSL). The materials were synthesized using solution combustion synthesis and characterized by x-ray diffraction, radioluminescence, thermoluminescence, and optically stimulated luminescence. Based upon the basic characterizations MgB 4O7:Li,Dy and Li2B4O7:Cu,Ag were selected for their potential for use as TL materials for thermal sensing while MgB4O7:Li,Ce and MgO:Li were chosen for use as OSL materials in proton dosimetry. Furthermore, MgB4O7:Li,Ce and MgO:Li were fabricated into detector assemblies and exposed to a clinical proton beam for analysis.
Aluminium-stabilized magnesium diboride—a new light-weight superconductor
NASA Astrophysics Data System (ADS)
Dou, S. X.; Collings, E. W.; Shcherbakova, O.; Shcherbakov, A.
2006-04-01
As a stabilizer for low-temperature superconductors, Al has found limited use due to the metallurgical difficulty and low melting point of Al. However, now that the processing of MgB2 wires at 600 °C has been demonstrated, all of the advantages of Al stabilization can be realized. With Al stabilization in mind, we describe in situ powder-in-tube 'low temperature processing' of mixed Mg+B powders in an Al tube lined with a protective Fe barrier. Reaction heat treatment at 600 °C, for up to 3 h, led to complete MgB2 formation; furthermore, no reaction between the Fe barrier and the Al sheath took place at 620 °C. The Fe/Al clad wires showed the same magnetic and electrical properties as those with an all-Fe sheath. The MgB2/Fe/Al conductor, mainly made up of low-density components, will be advantageous for airborne, aerospace, and other applications where weight is important.
NASA Astrophysics Data System (ADS)
Choi, Hyoung Joon; Cohen, Marvin L.; Louie, Steven G.
2003-03-01
The anisotropic Eliashberg formalism, employing results from the ab initio pseudopotential density functional calculations, is applied to study the superconducting properties of MgB 2. It is shown that the relatively high transition temperature of MgB 2 originates from strong electron-phonon coupling of the hole states in the boron σ-bonds although the coupling strength averaged over the Fermi surface is moderate, and the reduction of the isotope effect arises from the large anharmonicity of the relevant phonons. The superconducting energy gap is nodeless but its value varies strongly on different pieces of the Fermi surface. The gap values Δ( k) cluster into two groups at low temperature, a small value of ∼2 meV and a large value of ∼7 meV, resulting in two thresholds in the quasiparticle density of states and an increase in the specific heat at low temperature due to quasiparticle excitations over the small gap. All of these results are in good agreement with corresponding experiments and support the view that MgB 2 is a phonon-mediated multiple-gap superconductor.
Solid cryogen: a cooling system for future MgB2 MRI magnet
Patel, Dipak; Hossain, Md Shahriar Al; Qiu, Wenbin; Jie, Hyunseock; Yamauchi, Yusuke; Maeda, Minoru; Tomsic, Mike; Choi, Seyong; Kim, Jung Ho
2017-01-01
An efficient cooling system and the superconducting magnet are essential components of magnetic resonance imaging (MRI) technology. Herein, we report a solid nitrogen (SN2) cooling system as a valuable cryogenic feature, which is targeted for easy usability and stable operation under unreliable power source conditions, in conjunction with a magnesium diboride (MgB2) superconducting magnet. The rationally designed MgB2/SN2 cooling system was first considered by conducting a finite element analysis simulation, and then a demonstrator coil was empirically tested under the same conditions. In the SN2 cooling system design, a wide temperature distribution on the SN2 chamber was observed due to the low thermal conductivity of the stainless steel components. To overcome this temperature distribution, a copper flange was introduced to enhance the temperature uniformity of the SN2 chamber. In the coil testing, an operating current as high as 200 A was applied at 28 K (below the critical current) without any operating or thermal issues. This work was performed to further the development of SN2 cooled MgB2 superconducting coils for MRI applications. PMID:28251984
Fundamental Study of Tank with MgB2 Level Sensor for Transportation of Liquid Hydrogen
NASA Astrophysics Data System (ADS)
Maekawa, Kazuma; Takeda, Minoru; Matsuno, Yu; Fujikawa, Shizuichi; Kuroda, Tsuneo; Kumakura, Hiroaki
We are currently developing an external-heating-type superconducting magnesium diboride (MgB2) level sensor for a liquid hydrogen (LH2) tank. The aim of this study is to investigate the measuring current dependence of the level-detecting characteristics of the MgB2 level sensor for LH2 under a static condition which has not yet been clarified. It was found that the linear correlation coefficient was 0.99 or more, indicating high linearity, regardless of the measuring current at heater inputs of 3 W and 6 W. Moreover, there was no effect of self-heating by the measuring current and it was found that a current of up to 100 mA can be used.
Neutron Microtomography of MgB2 Superconducting Multifilament Wire
NASA Astrophysics Data System (ADS)
Trtik, Pavel; Scheuerlein, Christian; Alknes, Patrick; Meyer, Michael; Schmid, Florian; Lehmann, Eberhard
Neutron imaging of sub-10-micrometres spatial resolution has been recently achieved in 2D mode within the framework of the Neutron Microscope project at the Paul Scherrer Institut. Here we report on the development of the PSI Neutron Microscope instrument and the results of the first microtomographic imaging experiment of multifilament superconducting MgB2 wire. The sample of MgB2 superconducting 37 multifilaments embedded in copper-nickel matrix was investigated -in microtomographic mode- with the scientific interest regarding the distribution of boron within the individual superconducting filaments (about 40 μm in diameter). The resulting tomographic dataset revealed the distribution of boron within the entire 0.8 mm thick multifilamental wire with the isotropic voxel size of 2.6 micrometres.
NASA Astrophysics Data System (ADS)
Sarmiento, G.; Sanz, S.; Pujana, A.; Merino, J. M.; Iturbe, R.; Apiñaniz, S.; Nardelli, D.; Marino, I.
2014-05-01
Although renewable sector has started to take advantage of the offshore wind energy recently, the development is very intense. Turbines reliability, size, and cost are key aspects for the wind industry, especially in marine locations. A superconducting generator will allow a significant reduction in terms of weight and size, but cost and reliability are two aspects to deal with. MgB2 wire is presented as one promising option to be used in superconducting coils for wind generators. This work shows the experimental results in first cryogen-free MgB2 prototype coils, designed according to specific requirements of TECNALIA's wind generator concept.
Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient
NASA Astrophysics Data System (ADS)
Tan, Teng; Wolak, M. A.; Xi, X. X.; Tajima, T.; Civale, L.
2016-10-01
Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (Hvp). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases Hvp. In this work, we utilized Nb ellipsoid to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significant enhancement of Hvp was observed. At 2.8 K, Hvp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with ~200 nm thick MgB2 thin film. This finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb.
Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient.
Tan, Teng; Wolak, M A; Xi, X X; Tajima, T; Civale, L
2016-10-24
Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (H vp ). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases H vp . In this work, we utilized Nb ellipsoid to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significant enhancement of H vp was observed. At 2.8 K, H vp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with ~200 nm thick MgB 2 thin film. This finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb.
Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient
NASA Astrophysics Data System (ADS)
Civale, Leonardo; Tan, Teng; Wolak, M.; Xi, Xiaoxing; Tajima, Tsuyoshi
Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (Hvp). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases Hvp. In this work, we utilized Nb ellipsoids to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significant enhancement of Hvp was observed. At 2.8 K, Hvp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with 200 nm thick MgB2 thin film. This finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb.
Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient
Tan, Teng; Wolak, M. A.; Xi, X. X.; Tajima, T.; Civale, L.
2016-01-01
Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (Hvp). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases Hvp. In this work, we utilized Nb ellipsoid to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significant enhancement of Hvp was observed. At 2.8 K, Hvp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with ~200 nm thick MgB2 thin film. This finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb. PMID:27775087
Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Teng; Wolak, M. A.; Xi, X. X.
2016-10-24
Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (H vp). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases H vp. In this work, we utilized Nb ellipsoid to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significantmore » enhancement of H vp was observed. At 2.8 K, H vp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with ~200 nm thick MgB 2 thin film. In conclusion, this finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb.« less
Influence of iridium doping in MgB2 superconducting wires
NASA Astrophysics Data System (ADS)
Grivel, J.-C.
2018-04-01
MgB2 wires with iridium doping were manufactured using the in-situ technique in a composite Cu-Nb sheath. Reaction was performed at 700 °C, 800 °C or 900 °C for 1 h in argon atmosphere. A maximum of about 1.5 at.% Ir replaces Mg in MgB2. The superconducting transition temperature is slightly lowered by Ir doping. The formation of IrMg3 and IrMg4 secondary phase particles is evidenced, especially for a nominal stoichiometry with 2.0 at.% Ir doping. The critical current density and accommodation field of the wires are strongly dependent on the Ir content and are generally weakened in the presence of Ir, although the effect is less pronounced at lower temperatures.
Mou, Daixiang; Jiang, Rui; Taufour, Valentin; ...
2015-04-08
We use a tunable laser angle-resolved photoemission spectroscopy to study the electronic properties of the prototypical multiband BCS superconductor MgB 2. Our data reveal a strong renormalization of the dispersion (kink) at ~65meV, which is caused by the coupling of electrons to the E 2g phonon mode. In contrast to cuprates, the 65 meV kink in MgB 2 does not change significantly across T c. More interestingly, we observe strong coupling to a second, lower energy collective mode at a binding energy of 10 meV. As a result, this excitation vanishes above T c and is likely a signature ofmore » the elusive Leggett mode.« less
Auditory thalamic circuits and GABAA receptor function: Putative mechanisms in tinnitus pathology.
Caspary, Donald M; Llano, Daniel A
2017-06-01
Tinnitus is defined as a phantom sound (ringing in the ears), and can significantly reduce the quality of life for those who suffer its effects. Ten to fifteen percent of the general adult population report symptoms of tinnitus with 1-2% reporting that tinnitus negatively impacts their quality of life. Noise exposure is the most common cause of tinnitus and the military environment presents many challenging high-noise situations. Military noise levels can be so intense that standard hearing protection is not adequate. Recent studies suggest a role for inhibitory neurotransmitter dysfunction in response to noise-induced peripheral deafferentation as a key element in the pathology of tinnitus. The auditory thalamus, or medial geniculate body (MGB), is an obligate auditory brain center in a unique position to gate the percept of sound as it projects to auditory cortex and to limbic structures. Both areas are thought to be involved in those individuals most impacted by tinnitus. For MGB, opposing hypotheses have posited either a tinnitus-related pathologic decrease or pathologic increase in GABAergic inhibition. In sensory thalamus, GABA mediates fast synaptic inhibition via synaptic GABA A receptors (GABA A Rs) as well as a persistent tonic inhibition via high-affinity extrasynaptic GABA A Rs and slow synaptic inhibition via GABA B Rs. Down-regulation of inhibitory neurotransmission, related to partial peripheral deafferentation, is consistently presented as partially underpinning neuronal hyperactivity seen in animal models of tinnitus. This maladaptive plasticity/Gain Control Theory of tinnitus pathology (see Auerbach et al., 2014; Richardson et al., 2012) is characterized by reduced inhibition associated with increased spontaneous and abnormal neuronal activity, including bursting and increased synchrony throughout much of the central auditory pathway. A competing hypothesis suggests that maladaptive oscillations between the MGB and auditory cortex, thalamocortical dysrhythmia, predict tinnitus pathology (De Ridder et al., 2015). These unusual oscillations/rhythms reflect net increased tonic inhibition in a subset of thalamocortical projection neurons resulting in abnormal bursting. Hyperpolarizing de-inactivation of T-type Ca2+ channels switches thalamocortical projection neurons into burst mode. Thalamocortical dysrhythmia originating in sensory thalamus has been postulated to underpin neuropathies including tinnitus and chronic pain. Here we review the relationship between noise-induced tinnitus and altered inhibition in the MGB. Copyright © 2016 Elsevier B.V. All rights reserved.
Auditory Thalamic Circuits and GABAA Receptor Function: Putative Mechanisms in Tinnitus Pathology
Caspary, Donald M.; Llano, Daniel A
2016-01-01
Tinnitus is defined as a phantom sound (ringing in the ears), and can significantly reduce the quality of life for those who suffer its effects. Ten to fifteen percent of the general adult population report symptoms of tinnitus with 1-2% reporting that tinnitus negatively impacts their quality of life. Noise exposure is the most common cause of tinnitus and the military environment presents many challenging high-noise situations. Military noise levels can be so intense that standard hearing protection is not adequate. Recent studies suggest a role for inhibitory neurotransmitter dysfunction in response to noise-induced peripheral deafferentation as a key element in the pathology of tinnitus. The auditory thalamus, or medial geniculate body (MGB), is an obligate auditory brain center in a unique position to gate the percept of sound as it projects to auditory cortex and to limbic structures. Both areas are thought to be involved in those individuals most impacted by tinnitus. For MGB, opposing hypotheses have posited either a tinnitus-related pathologic decrease or pathologic increase in GABAergic inhibition. In sensory thalamus, GABA mediates fast synaptic inhibition via synaptic GABAA receptors (GABAARs) as well as a persistent tonic inhibition via high-affinity extrasynaptic GABAARs and slow synaptic inhibition via GABABRs. Down-regulation of inhibitory neurotransmission, related to partial peripheral deafferentation, is consistently presented as partially underpinning neuronal hyperactivity seen in animal models of tinnitus. This maladaptive plasticity/Gain Control Theory of tinnitus pathology (see Auerbach et al., 2014; Richardson et al., 2012) is characterized by reduced inhibition associated with increased spontaneous and abnormal neuronal activity, including bursting and increased synchrony throughout much of the central auditory pathway. A competing hypothesis suggests that maladaptive oscillations between the MGB and auditory cortex, thalamocortical dysrhythmia, predicts tinnitus pathology (De Ridder et al., 2015). These unusual oscillations/rhythms reflect net increased tonic inhibition in a subset of thalamocortical projection neurons resulting in abnormal bursting. Hyperpolarizing deinactivation of t-type Ca2+ channels switches thalamocortical projection neurons into burst mode. Thalamocortical dysrhythmia originating in sensory thalamus has been postulated to underpin neuropathies including tinnitus and chronic pain. Here we review the relationship between noise-induced tinnitus and altered inhibition in the MGB. PMID:27553899
Novel DNA probes with low background and high hybridization-triggered fluorescence
Lukhtanov, Eugeny A.; Lokhov, Sergey G.; Gorn, Vladimir V.; Podyminogin, Mikhail A.; Mahoney, Walt
2007-01-01
Novel fluorogenic DNA probes are described. The probes (called Pleiades) have a minor groove binder (MGB) and a fluorophore at the 5′-end and a non-fluorescent quencher at the 3′-end of the DNA sequence. This configuration provides surprisingly low background and high hybridization-triggered fluorescence. Here, we comparatively study the performance of such probes, MGB-Eclipse probes, and molecular beacons. Unlike the other two probe formats, the Pleiades probes have low, temperature-independent background fluorescence and excellent signal-to-background ratios. The probes possess good mismatch discrimination ability and high rates of hybridization. Based on the analysis of fluorescence and absorption spectra we propose a mechanism of action for the Pleiades probes. First, hydrophobic interactions between the quencher and the MGB bring the ends of the probe and, therefore, the fluorophore and the quencher in close proximity. Second, the MGB interacts with the fluorophore and independent of the quencher is able to provide a modest (2–4-fold) quenching effect. Joint action of the MGB and the quencher is the basis for the unique quenching mechanism. The fluorescence is efficiently restored upon binding of the probe to target sequence due to a disruption in the MGB–quencher interaction and concealment of the MGB moiety inside the minor groove. PMID:17259212
NASA Astrophysics Data System (ADS)
Zhai, H. Y.; Christen, H. M.; White, C. W.; Budai, J. D.; Lowndes, D. H.; Meldrum, A.
2002-06-01
Superconducting layers of MgB2 were formed on Si substrates using techniques that are widely used and accepted in the semiconductor industry. Mg ions were implanted into boron films deposited on Si or Al2O3 substrates. After a thermal processing step, buried superconducting layers comprised of MgB2 nanocrystals were obtained which exhibit the highest Tc reported so far for MgB2 on silicon (Tconsetapproximately33.6 K, DeltaTc=0.5 K, as measured by current transport). These results show that our approach is clearly applicable to the fabrication of superconducting devices that can be operated at much higher temperatures (approximately20 K) than the current Nb technology (approximately6 K) while their integration with silicon structures remains straight-forward.
NASA Astrophysics Data System (ADS)
Hiroki, K.; Muralidhar, M.; Koblischka, M. R.; Murakami, M.
2017-07-01
The object of this investigation is to reduce the cost of bulk production and in the same time to increase the critical current performance of bulk MgB2 material. High-purity commercial powders of Mg metal (99.9% purity) and two types of crystalline (99% purity) and 16.5 wt% carbon-coated, nanometer-sized amorphous boron powders (98.5% purity) were mixed in a nominal composition of MgB2 to reduce the boron cost and to see the effect on the superconducting and magnetic properties. Several samples were produced mixing the crystalline boron and carbon-coated, nanometer-sized amorphous boron powders in varying ratios (50:50, 60:40, 70:30, 80:20, 90:10) and synthesized using a single-step process using the solid state reaction around 800 °C for 3 h in pure argon atmosphere. The magnetization measurements exhibited a sharp superconducting transition temperature with T c, onset around 38.6 K to 37.2 K for the bulk samples prepared utilizing the mixture of crystalline boron and 16.5% carbon-coated amorphous boron. The critical current density at higher magnetic field was improved with addition of carbon-coated boron to crystalline boron in a ratio of 80:20. The highest self-field Jc around 215,000 A/cm2 and 37,000 A/cm2 were recorded at 20 K, self-field and 2 T for the sample with a ratio of 80:10. The present results clearly demonstrate that the bulk MgB2 performance can be improved by adding carbon-coated nano boron to crystalline boron, which will be attractive to reduce the cost of bulk MgB2 material for several industrial applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-17
... gearbox (MGB) filter bowl assembly with a two-piece MGB filter bowl assembly and replacing the existing mounting studs. The AD also requires inspecting the MGB lube system filters, the housing, the housing... prompted by tests indicating that an existing MGB filter bowl assembly can fail under certain loading...
NASA Astrophysics Data System (ADS)
Naito, Tomoyuki; Mochizuki, Hidehiko; Fujishiro, Hiroyuki; Teshima, Hidekazu
2016-03-01
We have studied experimentally and numerically the trapped magnetic-field properties of a hybrid-type superconducting bulk magnet, which comprised an inner Gd-Ba-Cu-O (GdBCO) disk-bulk and an outer MgB2 ring-bulk, under field-cooled magnetization (FCM) and pulsed-field magnetization (PFM). The trapped field by FCM at the center of the hybrid bulk was 4.5 T at 20 K, which was 0.2 T higher than that of the inner GdBCO disk-bulk without MgB2 ring-bulk. The experimental results by FCM were quantitatively reproduced by the numerical estimations for a model, which makes it possible to understand the trapped field properties of the hybrid bulk. The total magnetic flux by FCM, which was estimated numerically, was enhanced by about 1.7 times from 0.91 mWb of the single GdBCO bulk to 1.53 mWb of the hybrid bulk. We also succeeded in magnetizing the whole hybrid bulk by applying multi-pulsed-fields. The central trapped field of 1.88 T was not enhanced, but the total magnetic flux, which was obtained experimentally, was evidently increased by 2.5 times (0.25 \\to 0.62 mWb) for the hybrid bulk. The obtained results suggest that the hybridization is effective to enhance the total magnetic flux. To confirm the reinforcing effect of the MgB2 ring to the GdBCO disk during the cooling and magnetization processes, we have measured the thermal dilatation, {\\text{}}{dL}({\\text{}}T)/{\\text{}}L(300 K), of the GdBCO, MgB2 and stainless steel. As a result, the thermal dilatation of MgB2 was smaller than that of GdBCO. MgB2 ring-bulk shows no compression effect to resist the hoop stress of the GdBCO disk-bulk during the FCM process. The reinforcing material such as the stainless steel ring must be set outside the GdBCO disk-bulk.
NASA Astrophysics Data System (ADS)
Lee, Sang Young; Lee, J. H.; Han, Jung Hoon; Moon, S. H.; Lee, H. N.; Booth, James C.; Claassen, J. H.
2005-03-01
The surface resistance (RS) and the real part (σ1) of the microwave complex conductivity of a ˜380-nm -thick polycrystalline MgB2 film with the critical temperature (TC) of 39.3K were investigated at frequency ˜8.5GHz as a function of temperature. Two distinct coherence peaks were observed in the σ1 vs temperature curve at Ttilde 0.5TC and ˜0.9TC , respectively, providing a direct evidence for the two-gap nature of MgB2 . The film is shown to have a π -band gap energy of ˜1.7meV . For the MgB2 film ion milled down to the thickness of ˜320nm , two coherence peaks were still observable with the first conductivity peak at ˜0.6TC . The inferred π -band gap energy of ˜2.0meV is higher than before ion milling. Reduced normal-state conductivity at TC and RS at temperatures below 15K were found for the ion-milled film. Calculations based on the weak-coupling BCS theory and the strong coupling theory suggest that both σ and π bands contribute to σ1 of the polycrystalline MgB2 films significantly. Our results are in contrast with the observation of single coherence peak, ascribed to the dominant role of the π band, in the microwave conductivity of c -axis-oriented MgB2 films reported by Jin [Phys. Rev. Lett. 91, 127006 (2003)]. Variations in the interband coupling constants with the level of disorder can account for the different TC and σ1 behavior of the as-grown and ion-milled films.
Electrochemical Synthesis of Magnesium Hexaboride by Molten Salt Technique
Angappan, S.; Kalaiselvi, N.; Sudha, R.; Visuvasam, A.
2014-01-01
The present work reports electrochemical synthesis of MgB6 from molten salts using the precursor consists of LiF–B2O3–MgCl2. An attempt has been made to synthesize metastable phase MgB6 crystal by electrolysis method. DTA/TGA studies were made to determine the eutectic point of the melt and it was found to be around 900°C. The electrolysis was performed at 900°C under argon atmosphere, at current density of 1.5 A/cm2. The electrodeposited crystals were examined using XRD, SEM, and XPS. From the above studies, the electrochemical synthesis method for hypothetical MgB6 from chloro-oxy-fluoride molten salt system is provided. Mechanism for the formation of magnesium hexaboride is discussed. PMID:27350961
NASA Astrophysics Data System (ADS)
Ribeiro, R. A.; Bud'ko, S. L.; Petrovic, C.; Canfield, P. C.
2002-11-01
We present a study of the effects of non-stoichiometry, boron purity, wire diameter and post-synthesis treatment (etching and Mg distilling) on the temperature dependent resistance and resistivity of sintered MgB 2 pellets and wire segments. Whereas the residual resistivity ratio (RRR) varies between RRR≈4 to RRR⩾20 for different boron purity, it is only moderately affected by non-stoichiometry (from 20% Mg deficiency to 20% Mg excess) and is apparently independent of wire diameter and presence of Mg metal traces on the wire surface. The obtained set of data indicates that RRR values in excess of 20 and residual resistivities as low as ρ 0≈0.4 μΩ cm are intrinsic material properties of high purity MgB 2.
Electrochemical Synthesis of Magnesium Hexaboride by Molten Salt Technique.
Angappan, S; Kalaiselvi, N; Sudha, R; Visuvasam, A
2014-01-01
The present work reports electrochemical synthesis of MgB6 from molten salts using the precursor consists of LiF-B2O3-MgCl2. An attempt has been made to synthesize metastable phase MgB6 crystal by electrolysis method. DTA/TGA studies were made to determine the eutectic point of the melt and it was found to be around 900°C. The electrolysis was performed at 900°C under argon atmosphere, at current density of 1.5 A/cm(2). The electrodeposited crystals were examined using XRD, SEM, and XPS. From the above studies, the electrochemical synthesis method for hypothetical MgB6 from chloro-oxy-fluoride molten salt system is provided. Mechanism for the formation of magnesium hexaboride is discussed.
Persistence of metastable vortex lattice domains in MgB2 in the presence of vortex motion.
Rastovski, C; Schlesinger, K J; Gannon, W J; Dewhurst, C D; DeBeer-Schmitt, L; Zhigadlo, N D; Karpinski, J; Eskildsen, M R
2013-09-06
Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.
Paretti, Nicholas V.; Kennedy, Jeffrey R.; Cohn, Timothy A.
2014-01-01
Flooding is among the costliest natural disasters in terms of loss of life and property in Arizona, which is why the accurate estimation of flood frequency and magnitude is crucial for proper structural design and accurate floodplain mapping. Current guidelines for flood frequency analysis in the United States are described in Bulletin 17B (B17B), yet since B17B’s publication in 1982 (Interagency Advisory Committee on Water Data, 1982), several improvements have been proposed as updates for future guidelines. Two proposed updates are the Expected Moments Algorithm (EMA) to accommodate historical and censored data, and a generalized multiple Grubbs-Beck (MGB) low-outlier test. The current guidelines use a standard Grubbs-Beck (GB) method to identify low outliers, changing the determination of the moment estimators because B17B uses a conditional probability adjustment to handle low outliers while EMA censors the low outliers. B17B and EMA estimates are identical if no historical information or censored or low outliers are present in the peak-flow data. EMA with MGB (EMA-MGB) test was compared to the standard B17B (B17B-GB) method for flood frequency analysis at 328 streamgaging stations in Arizona. The methods were compared using the relative percent difference (RPD) between annual exceedance probabilities (AEPs), goodness-of-fit assessments, random resampling procedures, and Monte Carlo simulations. The AEPs were calculated and compared using both station skew and weighted skew. Streamgaging stations were classified by U.S. Geological Survey (USGS) National Water Information System (NWIS) qualification codes, used to denote historical and censored peak-flow data, to better understand the effect that nonstandard flood information has on the flood frequency analysis for each method. Streamgaging stations were also grouped according to geographic flood regions and analyzed separately to better understand regional differences caused by physiography and climate. The B17B-GB and EMA-MGB RPD-boxplot results showed that the median RPDs across all streamgaging stations for the 10-, 1-, and 0.2-percent AEPs, computed using station skew, were approximately zero. As the AEP flow estimates decreased (that is, from 10 to 0.2 percent AEP) the variability in the RPDs increased, indicating that the AEP flow estimate was greater for EMA-MGB when compared to B17B-GB. There was only one RPD greater than 100 percent for the 10- and 1-percent AEP estimates, whereas 19 RPDs exceeded 100 percent for the 0.2-percent AEP. At streamgaging stations with low-outlier data, historical peak-flow data, or both, RPDs ranged from −84 to 262 percent for the 0.2-percent AEP flow estimate. When streamgaging stations were separated by the presence of historical peak-flow data (that is, no low outliers or censored peaks) or by low outlier peak-flow data (no historical data), the results showed that RPD variability was greatest for the 0.2-AEP flow estimates, indicating that the treatment of historical and (or) low-outlier data was different between methods and that method differences were most influential when estimating the less probable AEP flows (1, 0.5, and 0.2 percent). When regional skew information was weighted with the station skew, B17B-GB estimates were generally higher than the EMA-MGB estimates for any given AEP. This was related to the different regional skews and mean square error used in the weighting procedure for each flood frequency analysis. The B17B-GB weighted skew analysis used a more positive regional skew determined in USGS Water Supply Paper 2433 (Thomas and others, 1997), while the EMA-MGB analysis used a more negative regional skew with a lower mean square error determined from a Bayesian generalized least squares analysis. Regional groupings of streamgaging stations reflected differences in physiographic and climatic characteristics. Potentially influential low flows (PILFs) were more prevalent in arid regions of the State, and generally AEP flows were larger with EMA-MGB than with B17B-GB for gaging stations with PILFs. In most cases EMA-MGB curves would fit the largest floods more accurately than B17B-GB. In areas of the State with more baseflow, such as along the Mogollon Rim and the White Mountains, streamgaging stations generally had fewer PILFs and more positive skews, causing estimated AEP flows to be larger with B17B-GB than with EMA-MGB. The effect of including regional skew was similar for all regions, and the observed pattern was increasingly greater B17B-GB flows (more negative RPDs) with each decreasing AEP quantile. A variation on a goodness-of-fit test statistic was used to describe each method’s ability to fit the largest floods. The mean absolute percent difference between the measured peak flows and the log-Pearson Type 3 (LP3)-estimated flows, for each method, was averaged over the 90th, 75th, and 50th percentiles of peak-flow data at each site. In most percentile subsets, EMA-MGB on average had smaller differences (1 to 3 percent) between the observed and fitted value, suggesting that the EMA-MGB-LP3 distribution is fitting the observed peak-flow data more precisely than B17B-GB. The smallest EMA-MGB percent differences occurred for the greatest 10 percent (90th percentile) of the peak-flow data. When stations were analyzed by USGS NWIS peak flow qualification code groups, the stations with historical peak flows and no low outliers had average percent differences as high as 11 percent greater for B17B-GB, indicating that EMA-MGB utilized the historical information to fit the largest observed floods more accurately. A resampling procedure was used in which 1,000 random subsamples were drawn, each comprising one-half of the observed data. An LP3 distribution was fit to each subsample using B17B-GB and EMA-MGB methods, and the predicted 1-percent AEP flows were compared to those generated from distributions fit to the entire dataset. With station skew, the two methods were similar in the median percent difference, but with weighted skew EMA-MGB estimates were generally better. At two gages where B17B-GB appeared to perform better, a large number of peak flows were deemed to be PILFs by the MGB test, although they did not appear to depart significantly from the trend of the data (step or dogleg appearance). At two gages where EMA-MGB performed better, the MGB identified several PILFs that were affecting the fitted distribution of the B17B-GB method. Monte Carlo simulations were run for the LP3 distribution using different skews and with different assumptions about the expected number of historical peaks. The primary benefit of running Monte Carlo simulations is that the underlying distribution statistics are known, meaning that the true 1-percent AEP is known. The results showed that EMA-MGB performed as well or better in situations where the LP3 distribution had a zero or positive skew and historical information. When the skew for the LP3 distribution was negative, EMA-MGB performed significantly better than B17B-GB and EMA-MGB estimates were less biased by more closely estimating the true 1-percent AEP for 1, 2, and 10 historical flood scenarios.
77 FR 41889 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-17
... requires inspecting the main gearbox (MGB) for a crack. This AD is prompted by a crack in the cored passage... detect a crack in the MGB housing, which could result in loss of oil, failure of the MGB, and subsequent... prompted by an incident in which a crack in the MGB housing, in the cored passage area adjacent to the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-19
... corrosion. If you do not find a crack, the AD requires applying a corrosion preventive compound. If you find a crack, the AD requires replacing the MGB before further flight. If you find corrosion, bubbled... include another MGB assembly and MGB housing that is prone to the same cracks and corrosion as the MGB...
Differential Conductance Measurements of MgB2/I/Pb Heterojunctions and all-MgB2 Junctions
NASA Astrophysics Data System (ADS)
Cusick, David; Eckhardt, Matthew; Dai, Wenqing; Li, Qi; Chen, Ke; Cunnane, Daniel; Zhuang, C. G.; Xi, X. X.; Naito, Michio; Ramos, Roberto
2015-03-01
We present our work characterizing several types of Magnesium Diboride Josephson junctions, including MgB2/I/Pb heterojunctions and all-MgB2 junctions. We will report on the I-V and dI/dV-V data collected at various temperatures using both a cryocooler-based experimental platform between 2 and 20 Kelvin and using a 3He probe platform between 0.3 and 1.0 Kelvin. These were both developed by undergraduates in a liberal arts university. Using high-sampling rates with a 24-bit data acquisition card and access to a broad of range of temperatures, we track and report energy gap distributions and temperature-dependent features of dI/dV peaks of MgB2, comparing these with theoretical predictions. R.C.R. acknowledges support from National Science Foundation Grant # DMR-1206561.
Observation of pseudogap in MgB2
NASA Astrophysics Data System (ADS)
Patil, S.; Medicherla, V. R. R.; Ali, Khadiza; Singh, R. S.; Manfrinetti, P.; Wrubl, F.; Dhar, S. K.; Maiti, Kalobaran
2017-11-01
We investigate the electronic structure of a specially prepared highly dense conventional high temperature superconductor, MgB2, employing high resolution photoemission spectroscopy. The spectral evolution close to the Fermi energy is commensurate to BCS descriptions as expected. However, the spectra in the wider energy range reveal the emergence of a pseudogap much above the superconducting transition temperature indicating an apparent departure from the BCS scenario. The energy scale of the pseudogap is comparable to the energy of the E2g phonon mode responsible for superconductivity in MgB2 and the pseudogap can be attributed to the effect of electron-phonon coupling on the electronic structure. These results reveal a scenario of the emergence of the superconducting gap within an electron-phonon coupling induced pseudogap and have significant implications in the study of high temperature superconductors.
Active Protection of an MgB2 Test Coil
Park, Dong Keun; Hahn, Seungyong; Bascuñán, Juan; Iwasa, Yukikazu
2011-01-01
This paper presents results of a study, experimental and computational, of a detect-and-activate-the-heater protection technique applied to a magnesium diboride (MgB2) test coil operated in semi-persistent mode. The test coil with a winding ID of 25 cm and wound with ~500-m long reacted MgB2 wire was operated at 4.2 K immersed in a bath of liquid helium. In this active technique, upon the initiation of a “hot spot” of a length ~10 cm, induced by a “quench heater,” a “protection heater” (PH) of ~600-cm long planted within the test coil is activated. The normal zone created by the PH is large enough to absorb the test coil’s entire initial stored energy and still keeps the peak temperature within the winding below ~260 K. PMID:22081754
Evaluation of Toxoplasma ELITe MGB Real-Time PCR Assay for Diagnosis of Toxoplasmosis
Brenier-Pinchart, Marie-Pierre; Yera, Hélène; Belaz, Sorya; Varlet-Marie, Emmanuelle; Bastien, Patrick
2017-01-01
ABSTRACT Molecular diagnosis of congenital toxoplasmosis or disseminated toxoplasmosis is based mainly on PCR. The repeated DNA element rep529 has become the main DNA target used in most PCR methods, whether laboratory developed or commercial. In this multicenter study, we evaluated the Toxoplasma ELITe MGB (Elitech) commercial kit by comparison with three reference quantitative PCR assays (RAs) used routinely in three proficient laboratories of the French National Reference Center for Toxoplasmosis network, using Toxoplasma calibrated suspensions diluted to obtain a range of concentrations from 0.1 to 10,000 parasites/ml. These suspensions were extracted with either the DNA extraction kit (EXTRAblood; Elitech) recommended by the manufacturer or the QIAamp DNA minikit (Qiagen). The Toxoplasma ELITe MGB assay was also evaluated on a panel of 128 clinical samples, including 56 amniotic fluid samples, 55 placenta samples, and various other samples, of which 95 originated from patients with proven toxoplasmosis. The ELITe MGB assay amplified low-concentration replicates (<10 parasites/ml) of calibrated suspensions less frequently than the RAs of 2/3 laboratories. Additionally, the combination of EXTRAblood and Toxoplasma ELITe MGB yielded poorer sensitivity than the combination of QIAamp DNA minikit and ELITe MGB for low parasite concentrations (P < 0.001 for 1 parasite/ml). On clinical samples, the sensitivity and the specificity of the commercial assay were 89% and 100%, respectively. The sensitivity ranged from 79% (placenta samples) to 100% (amniotic fluid samples). Overall, this study shows that the Toxoplasma ELITe MGB assay is suitable for the diagnosis of toxoplasmosis from non-cell-rich or non-hemoglobin-rich samples and that the EXTRAblood kit is not optimal. PMID:28202794
Evaluation of Toxoplasma ELITe MGB Real-Time PCR Assay for Diagnosis of Toxoplasmosis.
Robert-Gangneux, Florence; Brenier-Pinchart, Marie-Pierre; Yera, Hélène; Belaz, Sorya; Varlet-Marie, Emmanuelle; Bastien, Patrick
2017-05-01
Molecular diagnosis of congenital toxoplasmosis or disseminated toxoplasmosis is based mainly on PCR. The repeated DNA element rep529 has become the main DNA target used in most PCR methods, whether laboratory developed or commercial. In this multicenter study, we evaluated the Toxoplasma ELITe MGB (Elitech) commercial kit by comparison with three reference quantitative PCR assays (RAs) used routinely in three proficient laboratories of the French National Reference Center for Toxoplasmosis network, using Toxoplasma calibrated suspensions diluted to obtain a range of concentrations from 0.1 to 10,000 parasites/ml. These suspensions were extracted with either the DNA extraction kit (EXTRAblood; Elitech) recommended by the manufacturer or the QIAamp DNA minikit (Qiagen). The Toxoplasma ELITe MGB assay was also evaluated on a panel of 128 clinical samples, including 56 amniotic fluid samples, 55 placenta samples, and various other samples, of which 95 originated from patients with proven toxoplasmosis. The ELITe MGB assay amplified low-concentration replicates (<10 parasites/ml) of calibrated suspensions less frequently than the RAs of 2/3 laboratories. Additionally, the combination of EXTRAblood and Toxoplasma ELITe MGB yielded poorer sensitivity than the combination of QIAamp DNA minikit and ELITe MGB for low parasite concentrations ( P < 0.001 for 1 parasite/ml). On clinical samples, the sensitivity and the specificity of the commercial assay were 89% and 100%, respectively. The sensitivity ranged from 79% (placenta samples) to 100% (amniotic fluid samples). Overall, this study shows that the Toxoplasma ELITe MGB assay is suitable for the diagnosis of toxoplasmosis from non-cell-rich or non-hemoglobin-rich samples and that the EXTRAblood kit is not optimal. Copyright © 2017 American Society for Microbiology.
Development and Properties of Advanced Internal Magnesium Infiltration (AIMI) Processed MgB2 Wires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collings, Prof Edward William; Sumption, Prof Michael D; Li, Guangze
The development, processing, properties, and formation mechanisms of Advanced Internal Magnesium Infiltration (AIMI) MgB2 wires are discussed against a background of the related and original processes, Internal-Magnesium-Diffusion (IMD) and Magnesium-Reactive-Liquid-Infiltration (Mg-RLI). First reviewed are the formation, properties and applications of Mg-RLI bulks as basis for discussions of Mg-RLI-processed and IMD-processed wires. The transition from Mg-RLI- and IMD- to AIMI wires is explained, and the relative performances of powder-in-tube (PIT), IMD and AIMI wires are summarized in the form of an iso-Je diagram of Jc,nb versus Anb/ATOT in which ATOT, Anb, Jc,nb, and Je are, respectively, the wire s cross-sectional area,more » the area inside the chemical barrier, the critical current (Ic) normalized to Anb, and Ic normalized to ATOT. After the details of AIMI wire fabrication selection of starting powders, dopants, and reaction heat treatments are introduced the report goes on to describe in detail the development of high performance AIMI wires: layer Jcs, fill factors, Jes, and the effects of wire size, multifilamentarization, doping with C, and co-doping with C and Dy2O3. The two-stage mechanism of layer formation in AIMI wires is discussed: first the reactive infiltration of liquid Mg into a porous B pack, a process that terminates with the formation of a dense MgB2 layer; second the slow diffusion of Mg into any remaining B through that MgB2 layer. The report concludes with a brief general discussion of anisotropy, current percolation, and the Jc field dependence of MgB2 wires.« less
Flux-pinning and inhomogeneity in MgB 2 /Fe wires
NASA Astrophysics Data System (ADS)
Husnjak, O.; Babić, E.; Kušević, I.; Wang, X. L.; Soltanian, S.; Dou, S. X.
2007-08-01
Transport critical current densities Jc and irreversibility fields B of undoped and nanoparticle doped (10 wt% SiC) Fe-sheathed MgB 2 wires were measured from 2 to 40 K in magnetic field B≤16 T. For the best segments of wires (≤1 cm) both the magnitude and field variations of Jc and the pinning force density Fp=JcB depend only on the magnitude of B, hence the strength of flux-pinning. B of doped wire for T≤30 K is ˜1.4 times larger than that of undoped and reaches that of NbTi (10 T at 4.2 K) already at 20 K. Accordingly, its high-field Jcs and Fps are large, typically three times larger than the best literature results, and are limited by the porosity and inhomogeneity of the superconducting cores in present-day MgB 2 wires.
78 FR 70205 - Airworthiness Directives; Eurocopter France Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-25
... 332 L2 and Model EC 225 LP helicopters. According to EASA, analysis of tightening torques revealed some cases of tightening torque loss, which can lead to the formation of a crack at the MGB bar... rear of the MGB bar attaching fittings for tightening torque loss and, if the loss is equal to or...
The Influence of CuFe2O4 Nanoparticles on Superconductivity of MgB2
NASA Astrophysics Data System (ADS)
Novosel, Nikolina; Pajić, Damir; Skoko, Željko; Mustapić, Mislav; Babić, Emil; Zadro, Krešo; Horvat, Joseph
The influence of CuFe2O4 nanoparticle doping on superconducting properties of Fe-sheated MgB2 wires has been studied. The wires containing 0, 3 and 7.5 wt.% of monodisperse superparamagnetic nanoparticles (˜7 nm) were sintered at 650°C or 750°C for 1 hour in the pure argon atmosphere. X-ray diffraction patterns of doped samples showed very small maxima corresponding to iron boride and an increase in the fraction of MgO phase indicating some interaction of nanoparticles with Mg and B. Both magnetic and transport measurements (performed in the temperature range 2-42 K and magnetic field up to 16 T) showed strong deterioration of the superconducting properties upon doping with CuFe2O4. The transition temperatures, Tc, of doped samples decreased for about 1.4 K per wt.% of CuFe2O4. Also, the irreversibility fields Birr(T) decreased progressively with increasing doping. Accordingly, also the suppression of Jc with magnetic field became stronger. The observed strong deterioration of superconducting properties of MgB2 wires is at variance with reported enhancement of critical currents at higher temperatures (determined from magnetization) in bulk MgB2 samples doped with Fe3O4 nanoparticles. The probable reason for this discrepancy is briefly discussed
Positioning Continuing Education Computer Programs for the Corporate Market.
ERIC Educational Resources Information Center
Tilney, Ceil
1993-01-01
Summarizes the findings of the market assessment phase of Bellevue Community College's evaluation of its continuing education computer training program. Indicates that marketing efforts must stress program quality and software training to help overcome strong antiacademic client sentiment. (MGB)
Two regimes in the magnetic field response of superconducting MgB2
NASA Astrophysics Data System (ADS)
Kohen, A.; Giubileo, F.; Proslier, Th.; Bobba, F.; Cucolo, A. M.; Sacks, W.; Noat, Y.; Troianovski, A.; Roditchev, D.
2007-05-01
Using Scanning Tunneling Microscope at low temperature we explore the superconducting phase diagram in the π-band of the two-band superconductor MgB2. In this band the peculiar shape of the local tunneling spectra and their dynamics in the magnetic field reveal the complex character of the quasiparticle density of states (DOS). The gap in the DOS is first rapidly filled with states in raising the magnetic field up to 0.5 T and then slowly approaches the normal state value: the gap is observed up to 2 T. Such a change in the DOS dynamics suggests the existence of two terms in the DOS of the π-band: a first one, reflecting an intrinsic superconductivity in the band and a second one, originating from an inter-band coupling to the σ-band. Our findings allow a deeper understanding of the unique phase diagram of MgB2.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-28
... main gearbox (MGB) planet gear carrier for a crack and replacing any MGB that has a cracked planet gear... another crack in a MGB planet gear carrier and additional analysis that indicates that the initial... crack in the web of the planet gear carrier, which could lead to a MGB seizure and subsequent loss of...
Hackett, Troy A; Clause, Amanda R; Takahata, Toru; Hackett, Nicholas J; Polley, Daniel B
2016-06-01
Vesicular transporter proteins are an essential component of the presynaptic machinery that regulates neurotransmitter storage and release. They also provide a key point of control for homeostatic signaling pathways that maintain balanced excitation and inhibition following changes in activity levels, including the onset of sensory experience. To advance understanding of their roles in the developing auditory forebrain, we tracked the expression of the vesicular transporters of glutamate (VGluT1, VGluT2) and GABA (VGAT) in primary auditory cortex (A1) and medial geniculate body (MGB) of developing mice (P7, P11, P14, P21, adult) before and after ear canal opening (~P11-P13). RNA sequencing, in situ hybridization, and immunohistochemistry were combined to track changes in transporter expression and document regional patterns of transcript and protein localization. Overall, vesicular transporter expression changed the most between P7 and P21. The expression patterns and maturational trajectories of each marker varied by brain region, cortical layer, and MGB subdivision. VGluT1 expression was highest in A1, moderate in MGB, and increased with age in both regions. VGluT2 mRNA levels were low in A1 at all ages, but high in MGB, where adult levels were reached by P14. VGluT2 immunoreactivity was prominent in both regions. VGluT1 (+) and VGluT2 (+) transcripts were co-expressed in MGB and A1 somata, but co-localization of immunoreactive puncta was not detected. In A1, VGAT mRNA levels were relatively stable from P7 to adult, while immunoreactivity increased steadily. VGAT (+) transcripts were rare in MGB neurons, whereas VGAT immunoreactivity was robust at all ages. Morphological changes in immunoreactive puncta were found in two regions after ear canal opening. In the ventral MGB, a decrease in VGluT2 puncta density was accompanied by an increase in puncta size. In A1, perisomatic VGAT and VGluT1 terminals became prominent around the neuronal somata. Overall, the observed changes in gene and protein expression, regional architecture, and morphology relate to-and to some extent may enable-the emergence of mature sound-evoked activity patterns. In that regard, the findings of this study expand our understanding of the presynaptic mechanisms that regulate critical period formation associated with experience-dependent refinement of sound processing in auditory forebrain circuits.
Hackett, Troy A.; Clause, Amanda R.; Takahata, Toru; Hackett, Nicholas J.; Polley, Daniel B.
2015-01-01
Vesicular transporter proteins are an essential component of the presynaptic machinery that regulates neurotransmitter storage and release. They also provide a key point of control for homeostatic signaling pathways that maintain balanced excitation and inhibition following changes in activity levels, including the onset of sensory experience. To advance understanding of their roles in the developing auditory forebrain, we tracked the expression of the vesicular transporters of glutamate (VGluT1, VGluT2) and GABA (VGAT) in primary auditory cortex (A1) and medial geniculate body (MGB) of developing mice (P7, P11, P14, P21, adult) before and after ear canal opening (~P11–P13). RNA sequencing, in situ hybridization, and immunohistochemistry were combined to track changes in transporter expression and document regional patterns of transcript and protein localization. Overall, vesicular transporter expression changed the most between P7 and P21. The expression patterns and maturational trajectories of each marker varied by brain region, cortical layer, and MGB subdivision. VGluT1 expression was highest in A1, moderate in MGB, and increased with age in both regions. VGluT2 mRNA levels were low in A1 at all ages, but high in MGB, where adult levels were reached by P14. VGluT2 immunoreactivity was prominent in both regions. VGluT1+ and VGluT2+ transcripts were co-expressed in MGB and A1 somata, but co-localization of immunoreactive puncta was not detected. In A1, VGAT mRNA levels were relatively stable from P7 to adult, while immunoreactivity increased steadily. VGAT+ transcripts were rare in MGB neurons, whereas VGAT immunoreactivity was robust at all ages. Morphological changes in immunoreactive puncta were found in two regions after ear canal opening. In the ventral MGB, a decrease in VGluT2 puncta density was accompanied by an increase in puncta size. In A1, peri-somatic VGAT and VGluT1 terminals became prominent around the neuronal somata. Overall, the observed changes in gene and protein expression, regional architecture, and morphology relate to—and to some extent may enable— the emergence of mature sound-evoked activity patterns. In that regard, the findings of this study expand our understanding of the presynaptic mechanisms that regulate critical period formation associated with experience-dependent refinement of sound processing in auditory forebrain circuits. PMID:26159773
NASA Astrophysics Data System (ADS)
Grivel, J. C.; Andersen, N. H.; Pinholt, R.; Ková, P.; Husek, I.; Hässler, W.; Herrmann, M.; Perner, O.; Rodig, C.; Homeyer, J.
2006-06-01
The phase transformations occurring in the ceramic core of Fe-sheathed MgB2 wires and tapes prepared by in-situ reaction of Mg and B precursor powders, have been studied by means of high-energy x-ray diffraction. In particular, the time evolution of the Fe2B phase, forming at the interface between the sheath and the ceramic, was studied at different sintering temperatures. The reactivity of the sheath towards Fe2B formation is strongly dependent on powder pre-treatment. In wires produced with commercial Mg and B powders without additional mechanical activation, the Fe2B phase starts forming around 650°C. In contrast, in tapes produced from a mixture of Mg and B powders subjected to high-energy ball milling, the interfacial Fe2B layer forms readily at 600°C. The increase of Fe2B volume fraction is linear to first approximation, showing that the interfacial layer does not act as a diffusion barrier against further reaction between the sheath and the ceramic core. If the ceramic core is converted to MgB2 at a temperature, which is low enough to avoid Fe2B formation, the interface is stable during further annealing at temperatures up to 700°C at least. However, too high annealing temperatures (T > 800°C), would result in formation of Fe2B, probably following the partial decomposition of MgB2.
Persistent Thalamic Sound Processing Despite Profound Cochlear Denervation.
Chambers, Anna R; Salazar, Juan J; Polley, Daniel B
2016-01-01
Neurons at higher stages of sensory processing can partially compensate for a sudden drop in peripheral input through a homeostatic plasticity process that increases the gain on weak afferent inputs. Even after a profound unilateral auditory neuropathy where >95% of afferent synapses between auditory nerve fibers and inner hair cells have been eliminated with ouabain, central gain can restore cortical processing and perceptual detection of basic sounds delivered to the denervated ear. In this model of profound auditory neuropathy, auditory cortex (ACtx) processing and perception recover despite the absence of an auditory brainstem response (ABR) or brainstem acoustic reflexes, and only a partial recovery of sound processing at the level of the inferior colliculus (IC), an auditory midbrain nucleus. In this study, we induced a profound cochlear neuropathy with ouabain and asked whether central gain enabled a compensatory plasticity in the auditory thalamus comparable to the full recovery of function previously observed in the ACtx, the partial recovery observed in the IC, or something different entirely. Unilateral ouabain treatment in adult mice effectively eliminated the ABR, yet robust sound-evoked activity persisted in a minority of units recorded from the contralateral medial geniculate body (MGB) of awake mice. Sound driven MGB units could decode moderate and high-intensity sounds with accuracies comparable to sham-treated control mice, but low-intensity classification was near chance. Pure tone receptive fields and synchronization to broadband pulse trains also persisted, albeit with significantly reduced quality and precision, respectively. MGB decoding of temporally modulated pulse trains and speech tokens were both greatly impaired in ouabain-treated mice. Taken together, the absence of an ABR belied a persistent auditory processing at the level of the MGB that was likely enabled through increased central gain. Compensatory plasticity at the level of the auditory thalamus was less robust overall than previous observations in cortex or midbrain. Hierarchical differences in compensatory plasticity following sensorineural hearing loss may reflect differences in GABA circuit organization within the MGB, as compared to the ACtx or IC.
Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor.
Lee, Jung-Soo; Kim, Sun-I; Yoon, Jong-Chul; Jang, Ji-Hyun
2013-07-23
A mass-producible mesoporous graphene nanoball (MGB) was fabricated via a precursor-assisted chemical vapor deposition (CVD) technique for supercapacitor application. Polystyrene balls and reduced iron created under high temperature and a hydrogen gas environment provide a solid carbon source and a catalyst for graphene growth during the precursor-assisted CVD process, respectively. Carboxylic acid and sulfonic acid functionalization of the polystyrene ball facilitates homogeneous dispersion of the hydrophobic polymer template in the metal precursor solution, thus, resulting in a MGB with a uniform number of graphene layers. The MGB is shown to have a specific surface area of 508 m(2)/g and is mesoporous with a mean mesopore diameter of 4.27 nm. Mesopores are generated by the removal of agglomerated iron domains, permeating down through the soft polystyrene spheres and providing the surface for subsequent graphene growth during the heating process in a hydrogen environment. This technique requires only drop-casting of the precursor/polystyrene solution, allowing for mass-production of multilayer MGBs. The supercapacitor fabricated by the use of the MGB as an electrode demonstrates a specific capacitance of 206 F/g and more than 96% retention of capacitance after 10,000 cycles. The outstanding characteristics of the MGB as an electrode for supercapacitors verify the strong potential for use in energy-related areas.
Reproducible nucleation sites for flux dendrites in MgB 2
NASA Astrophysics Data System (ADS)
Johansen, T. H.; Shantsev, D. V.; Olsen, Å. A. F.; Roussel, M.; Pan, A. V.; Dou, S. X.
2007-12-01
Magneto-optical imaging was used to study dendritic flux penetration in films of MgB 2. By repeating experiments under the same external conditions, reproducible features were seen in the pattern formation; dendrites tend to nucleate from fixed locations along the edge. However, their detailed structure deeper inside the film is never reproduced. The reproducibility in nucleation sites is explained as a result of edge roughness causing field hot spots.
A 0.6 T/650 mm RT Bore Solid Nitrogen Cooled MgB2 Demonstration Coil for MRI—a Status Report
Bascuñán, Juan; Lee, Haigunan; Bobrov, Emmanuel S.; Hahn, Seungyong; Iwasa, Yukikazu; Tomsic, Mike; Rindfleisch, Matt
2014-01-01
Aiming to demonstrate feasibility and practicality of a low cost superconducting MRI magnet system targeted for use in small hospitals, rural communities and underdeveloped countries, MIT-Francis Bitter Magnet Laboratory has developed a 0.6 T/650 mm room temperature bore demonstration coil wound with multifilament MgB2 conductor and cooled via an innovative cryogenic design/operation. The coil is to be maintained cold by solid nitrogen kept in the solid state by a cryocooler. In the event of a power failure the cryocooler is automatically thermally decoupled from the system. In this paper we present details of the MgB2 conductor, winding process, and preliminary theoretical analysis of the current-carrying performance of the conductively cooled coils in zero background field and over the 10–30 K temperature range. PMID:25580068
Effects of neutron irradiation on carbon doped MgB2 wire segments
NASA Astrophysics Data System (ADS)
Wilke, R. H. T.; Bud'ko, S. L.; Canfield, P. C.; Finnemore, D. K.; Suplinskas, Raymond J.; Farmer, J.; Hannahs, S. T.
2006-06-01
We have studied the evolution of superconducting and normal state properties of neutron irradiated Mg(B0.962C0.038)2 wire segments as a function of post-exposure annealing time and temperature. The initial fluence fully suppressed superconductivity and resulted in an anisotropic expansion of the unit cell. Superconductivity was restored by post-exposure annealing. The upper critical field, Hc2(T = 0), approximately scales with Tc, starting with an undamaged Tc near 37 K and Hc2(T = 0) near 32 T. Up to an annealing temperature of 400 °C the recovery of Tc tends to coincide with a decrease in the normal state resistivity and a systematic recovery of the lattice parameters. Above 400 °C a decrease in ordering along the c-direction coincides with an increase in resistivity, but no apparent change in the evolution of Tc and Hc2. To a first order approximation, it appears that carbon doping and neutron damage affect the superconducting properties of MgB2 independently.
Evaluation of persistent-mode operation in a superconducting MgB2 coil in solid nitrogen
NASA Astrophysics Data System (ADS)
Patel, Dipak; Hossain, Md Shahriar Al; See, Khay Wai; Qiu, Wenbin; Kobayashi, Hiroki; Ma, Zongqing; Kim, Seong Jun; Hong, Jonggi; Park, Jin Yong; Choi, Seyong; Maeda, Minoru; Shahabuddin, Mohammed; Rindfleisch, Matt; Tomsic, Mike; Xue Dou, Shi; Kim, Jung Ho
2016-04-01
We report the fabrication of a magnesium diboride (MgB2) coil and evaluate its persistent-mode operation in a system cooled by a cryocooler with solid nitrogen (SN2) as a cooling medium. The main purpose of SN2 was to increase enthalpy of the cold mass. For this work, an in situ processed carbon-doped MgB2 wire was used. The coil was wound on a stainless steel former in a single layer (22 turns), with an inner diameter of 109 mm and height of 20 mm without any insulation. The two ends of the coil were then joined to make a persistent-current switch to obtain the persistent-current mode. After a heat treatment, the whole coil was installed in the SN2 chamber. During operation, the resultant total circuit resistance was estimated to be <7.4 × 10-14 Ω at 19.5 K ± 1.5 K, which meets the technical requirement for magnetic resonance imaging application.
Ye, Liyang; Cruciani, Davide; Xu, Minfeng; Mine, Susumu; Amm, Kathleen; Schwartz, Justin
2015-01-01
Long lengths of metal/MgB2 composite conductors with high critical current density (Jc), fabricated by the power-in-tube (PIT) process, have recently become commercially available. Owing to its electromagnetic performance in the 20 K – 30 K range and relatively low cost, MgB2 may be attractive for a variety of applications. One of the key issues for magnet design is stability and quench protection, so the behavior of MgB2 wires and magnets must be understood before large systems can emerge. In this work, the stability and quench behavior of several conduction-cooled MgB2 wires are studied. Measurements of the minimum quench energy and normal zone propagation velocity are performed on short samples in a background magnetic field up to 3 T and on coils in self-field and the results are explained in terms of variations in the conductor architecture, electrical transport behavior, operating conditions (transport current and background magnetic field) and experimental setup (short sample vs small coil). Furthermore, one coil is quenched repeatedly with increasing hot-spot temperature until Jc is decreased. It is found that degradation during quenching correlates directly with temperature and not with peak voltage; a safe operating temperature limit of 260 K at the surface is identified. PMID:25883414
Bile Reflux Scintigraphy After Mini-Gastric Bypass.
Saarinen, Tuure; Räsänen, Jari; Salo, Jarmo; Loimaala, Antti; Pitkonen, Miia; Leivonen, Marja; Juuti, Anne
2017-08-01
Significant weight-loss and diabetes remission have been reported after mini-gastric bypass (MGB). Concern has been raised regarding postoperative bile reflux (BR), but it has not been demonstrated in previous studies. We set out to find out if BR is evident in hepatobiliary scintigraphy after MGB. Nine consecutive patients, seven with type 2 diabetes, underwent MGB (15 cm gastric tube, 250-275 cm biliary limb) at our institution with a 12-month follow-up, with none lost to follow-up. Then, 10.7 months (8.6-13.0) after MGB, all patients underwent hepatobiliary scintigraphy and a reflux symptom questionnaire (GerdQ) was filled out. A gastroscopy with biopsies was done for all patients with a bile-reflux-positive scintigraphy. Mean age at operation was 56 years (41-65) and preoperative BMI 43.1 kg/m 2 (34.2-54.6). Mean %EWL was 83.9 (49.5-128.3) at 12 months. Four patients reached diabetes remission and two became insulin-independent. Hepatobiliary scintigraphy showed a transient BR into the gastric tube for five patients. Bile tracer was found in the gastric tube at 23-58 min after the tracer injection and highest activity was 8% (1-8%) at 58 min. Bile tracer was not found in the esophagus of any of the patients. One patient with a positive scintigraphy in the gastric tube required re-operation. Two patients with reflux symptoms had a negative scintigraphy. Our results indicate that transient bile reflux is common after MGB in the gastric tube, but not in the esophagus. The clinical relevance of bile reflux needs further studies.
NASA Technical Reports Server (NTRS)
Lakew, Brook; Aslam, S.
2011-01-01
Detectors with better performance than the current thermopile detectors that operate at room temperature will be needed at the focal plane of far-infrared instruments on future planetary exploration missions. We will present an update on recent results from the 2-D array of MgB2 thermal detectors being currently developed at NASA Goddard. Noise and sensitivity results will be presented and compared to thermal detectors currently in use on planetary missions.
A 6-year experience with 1,054 mini-gastric bypasses-first study from Indian subcontinent.
Kular, K S; Manchanda, N; Rutledge, R
2014-09-01
We started laparoscopic mini-gastric bypass (MGB) for the first time in India in February 2007 for its reported safety, efficacy, and easy reversibility. A retrospective review of prospectively maintained data of all 1,054 consecutive patients (342 men and 712 women) who underwent MGB at our institute from February 2007 to January 2013 was done. Mean age was 38.4 years, preoperative mean weight was 128.5 kg, mean BMI was 43.2 kg/m(2), mean operating time was 52 ± 18.5 min, and mean hospital stay was 2.5 ± 1.3 days. There were 49 (4.6%) early minor complications, 14 (1.3%) major complications, and 2 leaks (0.2%). In late complications, one patient had low albumin and one had excess weight loss; MGB was easily reversed in both (0.2%). Marginal ulcers were noted in five patients (0.6%) during follow-up for symptomatic dyspepsia, and anemia was the most frequent late complication occurring in 68 patients (7.6%). Patient satisfaction was high, and mean excess weight loss was 84, 91, 88, 86, 87, and 85% at years 1 to 6, respectively. This study confirms previous publications showing that MGB is quite safe, with a short hospital stay and low risk of complications. It results in effective and sustained weight loss with high resolution of comorbidities and complications that are easily managed.
2003-01-01
vehicle-launched bridge (AVLB), the medium-girder bridge (MGB) and the Ribbon Bridge. The AVLB is capable of crossing 17-meter gaps using a crew under ... armor protection (FM 5-34, 2001). The MGB is capable of crossing single spans of 46.2 meters with the addition of a “link-reinforcement system” that
MgB2-based superconductors for fault current limiters
NASA Astrophysics Data System (ADS)
Sokolovsky, V.; Prikhna, T.; Meerovich, V.; Eisterer, M.; Goldacker, W.; Kozyrev, A.; Weber, H. W.; Shapovalov, A.; Sverdun, V.; Moshchil, V.
2017-02-01
A promising solution of the fault current problem in power systems is the application of fast-operating nonlinear superconducting fault current limiters (SFCLs) with the capability of rapidly increasing their impedance, and thus limiting high fault currents. We report the results of experiments with models of inductive (transformer type) SFCLs based on the ring-shaped bulk MgB2 prepared under high quasihydrostatic pressure (2 GPa) and by hot pressing technique (30 MPa). It was shown that the SFCLs meet the main requirements to fault current limiters: they possess low impedance in the nominal regime of the protected circuit and can fast increase their impedance limiting both the transient and the steady-state fault currents. The study of quenching currents of MgB2 rings (SFCL activation current) and AC losses in the rings shows that the quenching current density and critical current density determined from AC losses can be 10-20 times less than the critical current determined from the magnetization experiments.
Yang, Yuqiong; Lu, Shanming; Zeng, Wenqin; Xie, Shoucheng; Xiao, Shengjun
2017-02-01
GATA3 has been recognized as the novel marker for identifying primary and metastatic breast carcinomas, consistently showing that GATA3 was significantly more sensitive than traditional markers gross cystic disease fluid protein 15 (GCDFP15) and mammaglobin (MGB). However, clinically useful groups of breast carcinomas status were not identified, which were determining appropriate treatment strategy, affecting the prognosis. In this study, we undertook a comparative study of the marker GATA3 and GCDFP15 and MGB in clinically useful groups of paired primary and metastatic breast cancer. We retrieved 64 cases of matched primary and metastatic breast cancer from the surgical pathology archive at our institution. According to the emerging 2015 St. Gallen Consensus, the clinically useful groups were divided into ER and/or PR (+), HER2 (-), abbreviated as A; ER and/or PR (+), HER2 (+), abbreviated as B; ER and PR (-), HER2 (+), abbreviated as C; ER, PR and HER2 (-), abbreviated as D; each group contained 16 cases (n=16). Tissue microarrays were created, with three 1-mm punch specimens from each case. The tissue microarrays were cut at 4-μm thickness and stained with monoclonal antibodies to GATA3, GCDFP15, and MGB. Staining intensity (0-3+) and extent (0%-100%) were scored with an H-score calculated (range, 0-300). Sensitivities by varying H-score cutoffs (any; ≥50; ≥150) for a positive result in the clinically useful groups of matched primary or metastatic breast cancer among GATA3, GCDFP15, and MGB. GATA3 was significantly more sensitive than GCDFP15 and MGB A and B groups (P<.05) rather than C and D groups (P>.05). However, GATA3 in conjunction with GCDFP15 and MGB detection could improve the sensitivity of C group (P<.05) rather than D group (P>.05). Significantly, good coincidence was observed between primary and metastatic tumor GATA3 expression (κ value = 0.826 >0.75) as compared with the coincidence of GCDFP15 (κ value =0.492 <0.75) and MGB (κ value =0.593 <0.75) (both P<.05). In conclusion, GATA3 expression did not show the same sensitivity for the clinically useful groups of breast cancer. GATA3 expression is positively correlated with ER-positive, PR-positive, and HER2-positive carcinomas. In addition, the matched primary and metastatic tumor expression of GATA3 shows good coincidence. We propose the careful selection of GATA3 for identifying hormone receptor negativity of breast cancer, especially in the case of triple-negative breast cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
Decaro, Nicola; Elia, Gabriella; Desario, Costantina; Roperto, Sante; Martella, Vito; Campolo, Marco; Lorusso, Alessio; Cavalli, Alessandra; Buonavoglia, Canio
2006-09-01
A minor groove binder (MGB) probe assay was developed to discriminate between type 2-based vaccines and field strains of canine parvovirus (CPV). Considering that most of the CPV vaccines contain the old type 2, no longer circulating in canine population, two MGB probes specific for CPV-2 and the antigenic variants (types 2a, 2b and 2c), respectively, were labeled with different fluorophores. The MGB probe assay was able to discriminate correctly between the old type and the variants, with a detection limit of 10(1) DNA copies and a good reproducibility. Quantitation of the viral DNA loads was accurate, as demonstrated by comparing the CPV DNA titres to those calculated by means of the TaqMan assay recognising all CPV types. This assay will ensure resolution of most diagnostic problems in dogs showing CPV disease shortly after CPV vaccination, although it does not discriminate between field strains and type 2b-based vaccines, recently licensed to market in some countries.
Marginal ulcers after one anastomosis (mini) gastric bypass: a survey of surgeons.
Mahawar, K K; Reed, A N; Graham, Y N H
2017-06-01
Many surgeons believe that one anastomosis (mini) gastric bypass (OAGB/MGB) is associated with a high marginal ulcer (MU) rate and that this is associated with complications in a significant number of patients. The purpose of this survey was to find out the participant-reported incidence of MU after OAGB/MGB and its complications. We also aimed to understand practices in this cohort concerning prophylaxis, diagnosis, treatment and management of complications. Bariatric surgeons who perform OAGB/MGB procedures were invited to participate in a confidential, online survey using SurveyMonkey®. A total of 86 surgeons performing OAGB/MGB procedures participated in the survey. The total number of OAGB/MGB procedures reported was 27 672, revealing 622 MU, giving an MU rate of 2.24 %. Most participants (69/84, 82.4%) routinely use proton pump inhibitor (PPI) prophylaxis, but there was variation in drugs, dosages and duration. The majority (49/85, 57.6%) of participants 'always' use endoscopy for diagnosis, and 48.1% (39/81) 'always' perform an endoscopy to ensure healing. Most (49/55) perforated ulcers were treated with laparoscopic repair +/- omentoplasty +/- drainage. Most (55/59, 93.0%) of the bleeding ulcers were managed with PPI +/- blood transfusions +/- endoscopic intervention (23/59, 39.0%). Non-healing ulcers were treated by conversion to Roux-en-Y gastric bypass (RYGB) in 46.5% of patients (n = 20/43). The participants did not report any MU-related mortality but described a number of risk factors for it. This survey is the first detailed attempt to understand the incidence of MU following OAGB/MGB; its complications; and practices concerning prophylaxis, diagnosis, treatment and management of complications. © 2017 World Obesity Federation.
NASA Astrophysics Data System (ADS)
Shokri, Asiye; Yazdani, Ahmad; Barakati, Behrad
2018-03-01
The delicate balancing of strong anisotropy on strength of hybridisation resulted to CDW- order “TCDW=33K” and finally emerging superconductivity at “Tc = 7.2K” are the most intriguing question in characteristic behaviour of NbSe2. On other hand, the original mechanism of MgB2 old superconductor, which has unlike the cuprates a lower anisotropy on strength hybridisation is still unknown. We believe this could result to bond exchange and larger coherence length of the grain boundary to current. Since the cause and the mechanism of band strengths of two original layering and rod structures are consequence of bond- rupturing-atomic displacement, here the stability of crystalline structure of inter atomic potential through the elasticity-compressibility is investigated. Consequently, in order to clear out the strong difference between the layering NbSe2 and domination of rod-character of MgB2 the stability of both crystal structures through the cohesive energy c/a, czz and c33 are investigated. The proposed investigations are more evident on different characteristic behaviour of calculated parameters.
Flux pinning and inhomogeneity in magnetic nanoparticle doped MgB2/Fe wires
NASA Astrophysics Data System (ADS)
Novosel, Nikolina; Pajić, Damir; Mustapić, Mislav; Babić, Emil; Shcherbakov, Andrey; Horvat, Joseph; Skoko, Željko; Zadro, Krešo
2010-06-01
The effects of magnetic nanoparticle doping on superconductivity of MgB2/Fe wires have been investigated. Fe2B and SiO2-coated Fe2B particles with average diameters 80 and 150 nm, respectively, were used as dopands. MgB2 wires with different nanoparticle contents (0, 3, 7.5, 12 wt.%) were sintered at temperature 750°C. The magnetoresistivity and critical current density Jc of wires were measured in the temperature range 2-40 K in magnetic field B <= 16 T. Both transport and magnetic Jc were determined. Superconducting transition temperature Tc of doped wires decreases quite rapidly with doping level (~ 0.5 K per wt.%). This results in the reduction of the irreversibility fields Birr(T) and critical current densities Jc(B,T) in doped samples (both at low (5 K) and high temperatures (20 K)). Common scaling of Jc(B,T) curves for doped and undoped wires indicates that the main mechanism of flux pinning is the same in both types of samples. Rather curved Kramer's plots for Jc of doped wires imply considerable inhomogeneity.
Wind and React MgB2 Rotor Coils
NASA Astrophysics Data System (ADS)
Bohnenstiehl, S. D.; Sumption, M. D.; Majoros, M.; Tomsic, M.; Rindfleisch, M.; Phillips, J.; Yue, J.; Collings, E. W.
2008-03-01
Five rotor coils (four plus a spare) intended for a prototype 2 MW generator were fabricated and tested. For each coil, multifilamentary MgB2 strand was wound around a stepped former in a wind and react mode using S-glass insulation in combination with vacuum epoxy impregnation. The stepped, ellipsoidal coils had maximum in-plane dimensions of 26.7 cm×13.1 cm and a total thickness of 5.4 cm, and were wound with approximately 580 m of MgB2 strand per coil. Each of the coils were measured separately for Ic and magnetic field in the bore at 4.2 K and for one coil Ic and B were also measured as a function of temperature. The bore field as a function of position along the z-axis was also determined near the critical current at 4.2 K. The coils typically reached 186 A at 4.2 K generating a 1.7 T field, while at 20 K the Ic was 117 A with a bore field of 1.1 T field.
Gunda, Harini; Das, Saroj Kumar; Jasuja, Kabeer
2018-04-05
Layered metal diborides that contain metal atoms sandwiched between boron honeycomb planes offer a rich opportunity to access graphenic forms of boron. We recently demonstrated that magnesium diboride (MgB 2 ) could be exfoliated by ultrasonication in water to yield boron-based nanosheets. However, knowledge of the fate of metal boride crystals in aqueous phases is still in its incipient stages. This work presents our preliminary findings on the discovery that MgB 2 crystals can undergo dissolution in water under ambient conditions to result in precursors (prenucleation clusters) that, upon aging, undergo nonclassical crystallization preferentially growing in lateral directions by two-dimensional (2D) oriented attachment. We show that this recrystallization can be utilized as an avenue to obtain a high yield (≈92 %) of boron-based nanostructures, including nanodots, nanograins, nanoflakes, and nanosheets. These nanostructures comprise boron honeycomb planes chemically modified with hydride and oxy functional groups, which results in an overall negative charge on their surfaces. This ability of MgB 2 crystals to yield prenucleation clusters that can self-seed to form nanostructures comprising chemically modified boron honeycomb planes presents a new facet to the physicochemical interaction of MgB 2 with water. These findings also open newer avenues to obtain boron-based nanostructures with tunable morphologies by varying the chemical milieu during recrystallization. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Improving the Kinetics and Thermodynamics of Mg(BH 4) 2 for Hydrogen Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Brandon; Klebanoff, Lennie; Stavila, Vitalie
The objective of this project is to (1) combine theory, synthesis, and characterization across multiple scales to understand the intrinsic kinetic and thermodynamic limitations in MgB 2/Mg(BH 4) 2; (2) construct and apply a flexible, validated, multiscale theoretical framework for modeling (de)hydrogenation kinetics of the Mg-B-H system and related metal hydrides; and (3) devise strategies for improving kinetics and thermodynamics, particularly through nanostructuring and doping. The project has an emphasis on understanding and improving rehydrogenation of MgB 2, which has generally been less explored and is key to enabling practical use.
Characterisation and luminescence studies of Tm and Na doped magnesium borate phosphors.
Ekdal, E; Garcia Guinea, J; Karabulut, Y; Canimoglu, A; Harmansah, C; Jorge, A; Karali, T; Can, N
2015-09-01
In this study, structural and luminescence properties of magnesium borate of the form MgB4O7 doped with Tm and Na were investigated by X-ray diffraction (XRD), Raman spectroscopy and cathodoluminescence (CL). The morphologies of the synthetised compounds exhibit clustered granules and road-like materials. As doping trivalent ions into a host with divalent cations requires charge compensation, this effect is discussed. The CL spectra of undoped MgB4O7 shows a broad band emission centred around 350 nm which is postulated to be produced by self-trapped excitons and some other defects. From the CL emission spectrum, main emission bands centred at 360, 455, 475 nm due to the respective transitions of (1)D2→(3)H6,(1)D2→(3)F4 and (1)G4→(3)H6 suggest the presence of Tm(3+) ion in MgB4O7 lattice site. CL mechanism was proposed to explain the observed phenomena which are valuable in possibility of the developing new luminescent materials for different applications. In addition, the experimental Raman spectrum of doped and undoped MgB4O7 were reported and discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evidence of new pinning centers in irradiated MgB2
NASA Astrophysics Data System (ADS)
Tarantini, C.; Martinelli, A.; Manfrinetti, P.; Palenzona, A.; Pallecchi, I.; Putti, M.; Ferdeghini, C.; Cimberle, M. R.
2008-03-01
It has been shown that C or SiC addictions can strongly enhance upper critical field of MgB2, leading to an in-field increase of critical current, but without introducing pinning centers other than grain boundaries. On the contrary neutron irradiation introduces new pinning centers, as highlighted by a significant shift of the maximum of pinning force and by a strong improvement of Jc at high field. This effect can be correlated to the defects that neutron irradiation produces. In fact TEM images show the presence of nanometric amorphous regions whose sizes are compatible with the coherence length and such as to act as pinning centers through two different mechanisms. The influence that neutron irradiation induces on MgB2 is also confirmed by magnetization decays that, differently by doped samples, show an important enhancement of pinning energies at high field. These measurements highlight as the increase of pinning energy with irradiation fluence is strongly correlated with Jc improvement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doull, B; Zheng, Y; Procure Proton Therapy Center, Oklahoma City, OK
2014-06-01
Purpose: The objective of this work is to test the premise that luminescence materials with less under-response to proton beams can be identified by testing their dose response to low-LET radiation. The goal is to develop new Optically Stimulated Luminescence (OSL) materials with improved response for proton therapy dosimetry. Methods: We first measured the dose response of new OSL materials, synthesized in our laboratory, to low-LET radiation (beta rays from a {sup 90}Sr/{sup 90}Y source) and selected two materials having different OSL saturation characteristics and good dosimetric properties, namely MgB4O7:Ce,Li and MgO:Li. Commercial Al2O3:C was also used for comparison. Thesemore » materials were then irradiated at several depths along a pristine proton beam. The luminescence responses of the materials, relative to the entrance response, were compared with the depth dose profile measured by a multiple-layer ion chamber. Results: The OSL signals of MgB4O7:Ce,Li and MgO:Li were characterized for signal stability, dose response, and response to a clinical proton beam. The materials were also compared with the commercial Al2O3:C. The signals from both MgB4O7:Ce,Li and MgO:Li were relatively stable after a one day delay following irradiation. The low-LET dose response of the materials showed that, over the dose range investigated (up to ∼800 Gy), MgB4O7:Ce,Li did not saturate, whereas MgO:Li and Al2O3:C saturated at doses of ∼100 Gy. MgB4O7:Ce,Li showed less underresponse to proton beams than MgO:Li and Al2O3:C. Conclusion: In general the material with the highest saturation doses for low-LET radiation (MgB4O7:Ce,Li) showed the least under-response to proton beams, which suggests that it may be possible to develop better OSL materials for proton dosimetry if the dose response can be controlled during synthesis. Nevertheless, the degree in which the response to proton beams can be controlled remains to be determined. The research is funded by the Oklahoma Center for the Advancement of Science and Technology (OCAST), project number HR12-055.« less
Genser, Laurent; Soprani, Antoine; Tabbara, Malek; Siksik, Jean-Michel; Cady, Jean; Carandina, Sergio
2017-12-01
Malnutrition after mini-gastric bypass (MGB) is a rare and dreaded complication with few data available regarding its surgical management. We aim to report the feasibility, safety, and results of laparoscopic reversal of MGB to normal anatomy (RMGB) in case of severe and refractory malnutrition syndrome after intensive nutritional support (SRMS). A 10-year retrospective chart review was performed on patients who underwent RMGB (video included) for SRMS following MGB. Twenty-six of 2934 patients underwent a RMGB at a mean delay of 20.9 ± 13.4 months post-MGB. At presentation, mean body mass index (BMI), excess weight loss (%EWL), and albumin serum level were 22 ± 4.4 kg/m 2 , 103.6 ± 22.5%, and 25.5 ± 3.6 gr/L, respectively. Seventeen (63.5%) patients had at least one severe malnutrition related complication including severe edema in 13 (50%), venous ulcers in 2 (7.7%), infectious complications in 7 (27%), deep venous thrombosis in 5 (19.2%), and motor deficit in 5 (19.2%) patients. At surgical exploration, 8 of 12 (66.5%) patients had a biliary limb longer than 200 cm and 9 (34.6%) had bile reflux symptoms. Overall morbidity was 30.8% but lower when resecting the entire previous gastrojejunostomy with creation of a new jejunojejunostomy (8.3 vs 50%, p = 0.03). After a mean follow-up of 8 ± 9.7 months, all patients experienced a complete clinical and biological regression of the SRMS after the RMGB despite a mean 13.9 kg weight regain in 16 (61.5%) patients. Post-MGB SRMS and its related comorbidities are rare but dreaded conditions. Although burdened by a significant postoperative morbidity and weight regain, RMGB remains an effective option to consider, when intensive nutritional support fails.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beringer, Douglas
Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory’s CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater performance benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency – 1.5more » GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m – there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (≈ 45 MV/m for Nb) where inevitable thermodynamic breakdown occurs. With state of the art Nb based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio frequency applications. Correlated studies on structure, surface morphology and superconducting properties of epitaxial Nb and MgB2 thin films are presented.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-27
... the Sikorsky Model S-92A helicopters. The AD would require replacing the main gearbox (MGB) filter bowl assembly with a two-piece MGB filter bowl assembly and replacing the existing mounting studs. The AD would also require inspecting the MGB lube system filters, the housing, the housing threads, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-02
... new airworthiness directive (AD) for the Sikorsky Model S-92A helicopters. This AD requires a... (MGB) upper housing assembly rib on the left, right, and forward MGB mounting foot at specified... prompted by a report of a crack found on the MGB upper housing assembly left mounting foot forward rib that...
Astro-E2 Magnesium Diboride High Current Leads
NASA Technical Reports Server (NTRS)
Panek, J. S.; Tuttle, J. G.; Riall, S.; Mustafi, S.; Gray, A.; Edmonds, R.; Marrero, V.
2003-01-01
The recent discovery of superconducting properties in MgB_2 and rapid development of small diameter steel-clad wires has opened up the possibility of enhancing the design of the baseline Astro-E2 high current lead assembly. Replacing YBCO filaments with MgB_2 wires and modifying the heat sink location can give much higher margins against quench from temperature oscillations of the 4 K heat sink, although wih some overall thermal penalty. The design and performance of a new lead assembly during flight qualification is discussed, with emphasis on thermal, structural, and electrical test results.
Presentation and surgical management of leaks after mini-gastric bypass for morbid obesity.
Genser, Laurent; Carandina, Sergio; Tabbara, Malek; Torcivia, Adriana; Soprani, Antoine; Siksik, Jean-Michel; Cady, Jean
2016-02-01
Few data exist about the characteristics and management of enteric leaks after mini-gastric bypass (MGB). We aimed to describe the incidence, presentation, and surgical management of enteric leaks in patients who underwent laparoscopic MGB for morbid obesity. Private practice. An 8-year, 9-month retrospective chart review was performed on patients who had enteric leak requiring reoperation after MGB at a single institution. Thirty-five of 2321 patients were included. Ninety-seven percent had symptoms. Arterial hypertension and heavy smoking were predicting factors of leaks occurrence post-MGB (P<.01). Enteric leak was diagnosed by systematic upper gastrointestinal series in 4 pts (11.4%) and by computed tomography with oral water soluble contrast in 4 of 31 pts (13%). In the other 27 patients, diagnosis of the leak was made intraoperatively. Eleven patients (32%) had leak arising from the gastric stapler line (type 1), 4 (11%) from the gastrojejunal anastomosis (type 2), and 20 (57%) from undetermined origin. The most common presentation was intra-abdominal abscess in type 1 and leaks of undetermined origin and generalized peritonitis in type 2. One third of the patients who underwent reoperation developed well-drained chronic fistula into the irrigation-drainage system, with complete healing in all patients without any further procedure. The mean hospital stay was 19 days with no mortality reported. Enteric leak leading to intra-abdominal sepsis post-MGB is rare (1.5%) An operative aggressive management based on clinical symptoms is the treatment of choice allowing no postoperative leak-related mortality and complete healing. Copyright © 2016 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Loudon, J. C.; Yazdi, S.; Kasama, T.; Zhigadlo, N. D.; Karpinski, J.
2015-02-01
We demonstrate that images of flux vortices in a superconductor taken with a transmission electron microscope can be used to measure the penetration depth and coherence length in all directions at the same temperature and magnetic field. This is particularly useful for MgB 2, where these quantities vary with the applied magnetic field and values are difficult to obtain at low field or in the c direction. We obtained images of flux vortices from a MgB 2 single crystal cut in the a c plane by focused ion beam milling and tilted to 45∘ with respect to the electron beam about the crystallographic a axis. A new method was developed to simulate these images that accounted for vortices with a nonzero core in a thin, anisotropic superconductor and a simplex algorithm was used to make a quantitative comparison between the images and simulations to measure the penetration depths and coherence lengths. This gave penetration depths Λa b=100 ±35 nm and Λc=120 ±15 nm at 10.8 K in a field of 4.8 mT. The large error in Λa b is a consequence of tilting the sample about a and had it been tilted about c , the errors on Λa b and Λc would be reversed. Thus obtaining the most precise values requires taking images of the flux lattice with the sample tilted in more than one direction. In a previous paper [J. C. Loudon et al., Phys. Rev. B 87, 144515 (2013), 10.1103/PhysRevB.87.144515], we obtained a more precise value for Λa b using a sample cut in the a b plane. Using this value gives Λa b=107 ±8 nm, Λc=120 ±15 nm, ξa b=39 ±11 nm, and ξc=35 ±10 nm, which agree well with measurements made using other techniques. The experiment required two days to conduct and does not require large-scale facilities. It was performed on a very small sample, 30 ×15 μ m and 200-nm thick, so this method could prove useful for superconductors where only small single crystals are available, as is the case for some iron-based superconductors.
Numerical investigations on the characteristics of thermomagnetic instability in MgB2 bulks
NASA Astrophysics Data System (ADS)
Xia, Jing; Li, Maosheng; Zhou, Youhe
2017-07-01
This paper presents the characteristics of thermomagnetic instability in MgB2 bulks by numerically solving the macroscopic dynamics of thermomagnetic interaction governed by the coupled magnetic and heat diffusion equations in association with a modified E-J power-law relationship. The finite element method is used to discretize the system of partial differential equations. The calculated magnetization loops with flux jumps are consistent with the experimental results for MgB2 slabs bathed in a wide range of ambient temperatures. We reveal the evolution process of the thermomagnetic instability and present the distributions of the magnetic field, temperature, and current density before and after flux jumps. A 2D axisymmetric model is used to study the thermomagnetic instability in cylindrical MgB2 bulks. It is found that the number of flux jumps monotonously reduces as the ambient temperature rises and no flux jump appears when the ambient temperature exceeds a certain value. Moreover, the flux-jump phenomenon exists in a wide range of the ramp rate of the applied external field, i.e. 10-2-102 T s-1. Furthermore, the dependences of the first flux-jump field on the ambient temperature, ramp rate, and bulk thickness are investigated. The critical bulk thicknesses for stability are obtained for different ambient temperatures and sample radii. In addition, the influence of the capability of the interfacial heat transfer on the temporal response of the bulk temperature is discussed. We also find that the prediction of thermomagnetic instability is sensitive to the employment of the flux creep exponent in the simulations.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-07
... gearbox (MGB) planet gear carrier for a crack and replacing any MGB that has a cracked planet gear carrier... planet gear carrier and additional analysis that indicates that the initial inspection interval must be shortened. The actions specified by this AD are intended to detect a crack in the web of the planet gear...
Conductors for commercial MRI magnets beyond NbTi: requirements and challenges.
Parizh, Michael; Lvovsky, Yuri; Sumption, Michael
2017-01-01
Magnetic Resonance Imaging (MRI), a powerful medical diagnostic tool, is the largest commercial application of superconductivity. The superconducting magnet is the largest and most expensive component of an MRI system. The magnet configuration is determined by competing requirements including optimized functional performance, patient comfort, ease of siting in a hospital environment, minimum acquisition and lifecycle cost including service. In this paper, we analyze conductor requirements for commercial MRI magnets beyond traditional NbTi conductors, while avoiding links to a particular magnet configuration or design decisions. Potential conductor candidates include MgB 2 , ReBCO and BSCCO options. The analysis shows that no MRI-ready non-NbTi conductor is commercially available at the moment. For some conductors, MRI specifications will be difficult to achieve in principle. For others, cost is a key barrier. In some cases, the prospects for developing an MRI-ready conductor are more favorable, but significant developments are still needed. The key needs include the development of, or significant improvements in: (a) conductors specifically designed for MRI applications, with form-fit-and-function readily integratable into the present MRI magnet technology with minimum modifications. Preferably, similar conductors should be available from multiple vendors; (b) conductors with improved quench characteristics, i.e. the ability to carry significant current without damage while in the resistive state; (c) insulation which is compatible with manufacturing and refrigeration technologies; (d) dramatic increases in production and long-length quality control, including large-volume conductor manufacturing technology. In-situ MgB 2 is, perhaps, the closest to meeting commercial and technical requirements to become suitable for commercial MRI. Conductor technology is an important, but not the only, issue in introduction of HTS / MgB 2 conductor into commercial MRI magnets. These new conductors, even when they meet the above requirements, will likely require numerous modifications and developments in the associated magnet technology.
Conductors for commercial MRI magnets beyond NbTi: requirements and challenges
Parizh, Michael; Lvovsky, Yuri; Sumption, Michael
2016-01-01
Magnetic Resonance Imaging (MRI), a powerful medical diagnostic tool, is the largest commercial application of superconductivity. The superconducting magnet is the largest and most expensive component of an MRI system. The magnet configuration is determined by competing requirements including optimized functional performance, patient comfort, ease of siting in a hospital environment, minimum acquisition and lifecycle cost including service. In this paper, we analyze conductor requirements for commercial MRI magnets beyond traditional NbTi conductors, while avoiding links to a particular magnet configuration or design decisions. Potential conductor candidates include MgB2, ReBCO and BSCCO options. The analysis shows that no MRI-ready non-NbTi conductor is commercially available at the moment. For some conductors, MRI specifications will be difficult to achieve in principle. For others, cost is a key barrier. In some cases, the prospects for developing an MRI-ready conductor are more favorable, but significant developments are still needed. The key needs include the development of, or significant improvements in: (a) conductors specifically designed for MRI applications, with form-fit-and-function readily integratable into the present MRI magnet technology with minimum modifications. Preferably, similar conductors should be available from multiple vendors; (b) conductors with improved quench characteristics, i.e. the ability to carry significant current without damage while in the resistive state; (c) insulation which is compatible with manufacturing and refrigeration technologies; (d) dramatic increases in production and long-length quality control, including large-volume conductor manufacturing technology. In-situ MgB2 is, perhaps, the closest to meeting commercial and technical requirements to become suitable for commercial MRI. Conductor technology is an important, but not the only, issue in introduction of HTS / MgB2 conductor into commercial MRI magnets. These new conductors, even when they meet the above requirements, will likely require numerous modifications and developments in the associated magnet technology. PMID:28626340
Effect of addition of nanoparticle TiO 2/SiO 2 on the superconducting properties of MgB 2
NASA Astrophysics Data System (ADS)
Zhang, Y.; Zhou, S. H.; Wang, X. L.; Dou, S. X.
2008-09-01
In this paper, bulk MgB 2 was prepared by doping with nanoparticle TiO 2 surface-modified by 5-10% SiO 2. The doping ratio of TiO 2/SiO 2 to MgB 2 was 0, 5, 10, and 15 wt%. The sintering temperature varied from 650 °C to 950 °C. Quantitative X-ray diffraction (XRD) analysis was performed to obtain the lattice constants and the weight fraction of impurities using the Rietveld method. It was found that the critical temperature ( Tc) increases with the lattice constants. The critical current density ( Jc) is affected by the doping ratio and the sintering temperature. The Jc exhibited the highest value at the doping ratio of 10 wt% for 5 K and 20 K and at the doping ratio of 5 wt% for 30 K, when the sintering temperature was fixed at 750 °C. When the doping ratio was fixed at 5 wt%, the samples with the sintering temperature of 750 °C had the best Jc for 5 K and 20 K, while the sample with the sintering temperature of 850 °C exhibited the highest Jc at 30 K.
NASA Astrophysics Data System (ADS)
Gonnelli, R. S.; Daghero, D.; Calzolari, A.; Ummarino, G. A.; Tortello, M.; Stepanov, V. A.; Zhigadlo, N. D.; Rogacki, K.; Karpinski, J.; Portesi, C.; Monticone, E.; Mijatovic, D.; Veldhuis, D.; Brinkman, A.
2006-03-01
In the first part of the present paper we discuss the fabrication and the characterization of an MgB2-based SQUID magnetometer with a directly coupled large-area pick-up loop, made on an MgB2 film deposited by an all in situ technique. The coarse structure of the SQUID was defined by optical lithography and Ar-ion milling, while the two nanobridges acting as weak links in the superconducting loop were made by focused ion beam (FIB) milling. The device was characterized at different temperatures and showed Josephson quantum interference up to 20 K as well as a noise level already compatible with the recording of an adult magnetocardiogram. In the second part, concerning the fundamental physics of MgB2, we present the results of very recent point-contact measurements on Mg1-xMnxB2 single crystals with 34.1 ⩾ Tc ⩾ 13.3 K (i.e. 0.37% ⩽ x ⩽ 1.5%). The experimental conductance curves were fitted with the generalized two-band BTK model and their behaviour in magnetic fields was studied to check if both the order parameters (OPs) of the σ and π bands were present in the whole doping range. The dependence of the OPs (evaluated through the fit) on the Andreev critical temperature of the junctions is analyzed in the framework of the two-band Eliashberg theory by including the effects of magnetic impurities. The results give an evidence of a dominant effect of the magnetic impurities on the σ-band channel.
The Levitation Characteristics of MGB2 Plates on Tracks of Permanent Magnets
NASA Astrophysics Data System (ADS)
Perini, E.; Bassani, E.; Giunchi, G.
2010-04-01
The bulk MgB2 can be manufactured in large plates by an innovative process: the reactive liquid Mg infiltration (Mg-RLI). According to this process it is possible to produce, even at lab scale, plates of 10÷20 cm in lateral dimensions. The superconducting material resulting is very dense and, even if it is in polycrystalline form, it levitates with respect to Permanent Magnets (PM), like the textured YBCO samples, up to 35 K. In order to control the levitation forces and stiffnesses of an MgB2 plate (10×10×1 cm3) moving with respect to a track of PM's (NdFeB bars arranged in 4 lines according to an Halbach disposition and separated by Iron flux concentrators), we have used an instrumented Cryogenic Levitation Apparatus (CLA). We have studied different kind of movements of the PM's track with respect to the MgB2 plate. First, we consider the vertical movement, assumed z direction, which describes the properly levitation characteristics. Secondly, we consider two kinds of lateral movements of the track, assumed x direction, with the long size of the magnets either perpendicular or parallel to the movement direction. The resulting configurations simulate the main movements that a superconducting levitating vehicle will do in a real track, either of axial or of guidance type. The levitation axial forces, measured in Field Cooling or Zero Field Cooling conditions, indicate that at the distance between superconducting plate and PM's of 4 mm it is possible to have an overall levitating pressure of 7 N/cm2.
Detection of KIT Genotype in Pigs by TaqMan MGB Real-Time Quantitative Polymerase Chain Reaction.
Li, Xiuxiu; Li, Xiaoning; Luo, Rongrong; Wang, Wenwen; Wang, Tao; Tang, Hui
2018-05-01
The dominant white phenotype in domestic pigs is caused by two mutations in the KIT gene: a 450 kb duplication containing the entire KIT gene together with flanking sequences and one splice mutation with a G:A substitution in intron 17. The purpose of this study was to establish a simple, rapid method to determine KIT genotype in pigs. First, to detect KIT copy number variation (CNV), primers for exon 2 of the KIT gene, along with a TaqMan minor groove binder (MGB) probe, were designed. The single-copy gene, estrogen receptor (ESR), was used as an internal control. A real-time fluorescence-based quantitative PCR (FQ-PCR) protocol was developed to accurately detect KIT CNVs. Second, to detect the splice mutation ratio of the G:A substitution in intron 17, a 175 bp region, including the target mutation, was amplified from genomic DNA. Based on the sequence of the resulting amplified fragment, an MGB probe set was designed to detect the ratio of splice mutation to normal using FQ-PCR. A series of parallel amplification curves with the same internal distances were obtained using gradually diluted DNA as templates. The CT values among dilutions were significantly different (p < 0.001) and the coefficients of variation from each dilution were low (from 0.13% to 0.26%). The amplification efficiencies for KIT and ESR were approximately equal, indicating ESR was an appropriate control gene. Furthermore, use of the MGB probe set resulted in detection of the target mutation at a high resolution and stability; standard curves illustrated that the amplification efficiencies of KIT1 (G) and KIT2 (A) were approximately equal (98.8% and 97.2%). In conclusion, a simple, rapid method, with high specificity and stability, for the detection of the KIT genotype in pigs was established using TaqMan MGB probe real-time quantitative PCR.
Isotope effect on electron-phonon interaction in the multiband superconductor MgB 2
Mou, Daixiang; Manni, Soham; Taufour, Valentin; ...
2016-04-07
We investigate the effect of isotope substitution on the electron-phonon interaction in the multiband superconductor MgB 2 using tunable laser-based angle-resolved photoemission spectroscopy. The kink structure around 70 meV in the σ band, which is caused by electron coupling to the E 2g phonon mode, is shifted to higher binding energy by ~3.5 meV in Mg 10B 2 and the shift is not affected by superconducting transition. Furthermore, these results serve as the benchmark for investigations of isotope effects in known, unconventional superconductors and newly discovered superconductors where the origin of pairing is unknown.
Impact of shock waves on the conductive properties and structure of MgB2 tapes
NASA Astrophysics Data System (ADS)
Mikhailov, Boris P.; Mikhailova, Alexandra B.; Borovitskaya, Irina V.; Nikulin, Valerii Ya.; Peregudova, Elena N.; Polukhin, Sergei N.; Silin, Pavel V.
2017-10-01
This article presents data on shock waves effect on the structure and the critical current of superconducting MgB2 tapes. To generate shock waves, a plasma focus installation (PF) was used. The conductive characteristics of the superconducting tapes dependence on the intensity of the impact and the number of shock pulses were studied. A distinct pattern of change in critical currents in transversal and longitudinal magnetic fields in the range of 2-9 T is studied at a temperature of 4.2 K. The microstructure of the superconducting tape and chemical composition of its layer are studied in the original state and after the shock wave effect. Changes were found in a microstructure of layers of MgB2 (granulation, subdivision of grains and consolidation), which arose due to the shock-wave impact (SWI), are found. The possibility of increasing the critical current of tapes on 50-80 A in a transversal magnetic field of 2-3 T by means of SWI has been established. In a parallel magnetic field, the impact of the shock effect was essential in magnetic fields lower than 4 T.
Quench dynamics in MgB2 Rutherford cables
NASA Astrophysics Data System (ADS)
Cubero, A.; Navarro, R.; Kováč, P.; Kopera, L.; Rindfleisch, M.; Martínez, E.
2018-04-01
The generation and propagation of quench induced by a local heat disturbance or by overcurrents in MgB2 Rutherford cables have been studied experimentally. The analysed cable is composed of 12 strands of monocore MgB2/Nb/Cu10Ni wire and has a transposition length of about 27 mm. Measurements of intra- and inter-strand voltages have been performed to analyse the superconducting-to-normal transition behaviour of these cables during quench. In case of external hot-spots, two different time-dynamic regimes have been observed, a slow stage for the formation of the minimum propagation zone (MPZ), and a fast dynamics once the quench is triggered and propagates to the rest of the cable. Significant local variations of the quench propagation velocity across the strands around the MPZ have been observed, but with average quench propagation velocities closely correlated with the predictions given by one-dimensional-geometry models. For quench induced by overcurrents (i.e. with applied currents higher than the critical current) the nucleation of many normal zones distributed within the cable, which overlap during quench propagation, gives a distinctive and faster quench dynamics.
The influence of the shock treatment under heating on the structure and properties of HTS tapes
NASA Astrophysics Data System (ADS)
Mikhailov, B. P.; Mikhailova, A. B.; Borovitskaya, I. V.; Nikulin, V. Ya; Silin, P. V.; Peregudova, E. N.; Polukhin, S. N.; Shavkin, S. V.; Mineev, N. A.; Shamray, V. F.; Kolokoltsev, V. N.; Krutskih, N. A.; Alibekov, S. Y.
2017-12-01
The influence of shocks of different intensity on the structure and properties of multifilamentary superconducting tapes of Bi2Sr2Ca2Cu3O10+x (Bi-2223) and MgB2 compounds was studied. The Plasma Focus setup was used to produce the plasma shock waves, and a specially designed setup was utilized for the mechanical shock treatment. The experiments have shown a possibility to increase the critical current of MgB2 tapes by more than 60% in magnetic fields of 1.5-2.0 T due to the treatment. The critical current increase is caused by homogeneity improvement, densification of superconducting filaments and the pinning enhancement.
Cooling Stability Test of MgB2 Wire Immersed in Liquid Hydrogen under External Magnetic Field
NASA Astrophysics Data System (ADS)
Shirai, Yasuyuki; Hikawa, Kyosuke; Shiotsu, Masahiro; Tatsumoto, Hideki; Naruo, Yoshihiro; Kobayashi, Hiroaki; Inagaki, Yoshifumi
2014-05-01
Liquid hydrogen (LH2), which has large latent heat, low viscosity coefficient, is expected to be a candidate for a cryogen for superconducting wires, not only MgB2 but also other HTC superconductors. LH2 cooled superconducting wires are expected to have excellent electro-magnetic characteristics, which is necessary to be clear for cooling stability design of LH2 cooled superconducting device, however, due to handling difficulties of LH2, there are only few papers on the properties of LH2 cooled superconductors, especially under external magnetic field. We designed and made an experimental setup which can energize superconducting wires immersed in LH2 with the current of up to 500A under the condition of external magnetic field up to 7 T and pressure up to 1.5 MPa. In order to confirm experimental method and safety operation of the setup, over current tests were carried out using MgB2 superconducting wires under various external magnetic field conditions. Critical current of the test wire at the temperature 21, 24, 27, 29 K under external magnetic fields up to 1.2 T was successfully measured. The resistance of the wire also was measured, while the transport current exceeded the critical current of the wire.
Tracing the evolution of the two energy gaps in magnesium diboride under pressure
NASA Astrophysics Data System (ADS)
Kononenko, V.; Tarenkov, V.; Belogolovskii, M.; Döring, S.; Schmidt, S.; Seidel, P.
2015-04-01
We have studied transport characteristics of mesoscopic multiple-mode superconducting contacts formed between two grains in bulk two-gap magnesium diboride. The experimental setup was realized by driving a normal-metal tip into MgB2 polycrystalline sample and proved to be extremely stable, providing possibility to perform pressure experiments at low temperatures. It is argued that in our procedure a small piece of the superconducting electrode is captured by the tip apex and, as a result, two junctions in series are formed: a junction between a tip and MgB2 grain and a mesoscopic disordered contact between two superconducting pellets. Although the relative weight of the first junction resistance was considerably less, its contribution is shown to be important for the comparison of measured data with expected gap values. Two hallmarks of multiple Andreev reflections inside the MgB2-c-MgB2 contact (c stands for a high-transparent constriction), a zero-bias 1/ √{|V | } -like singularity of the dc differential conductance and peaks connected to the two gap values, have been revealed. Finally, we report results of a hydrostatic compression experiment showing the evolution of the MgB2 gap values with pressure. In contrast to the theoretical expectations, we have observed an increase of the smaller gap Δπ whereas the larger gap Δσ decreased with increasing pressure as it should be for the electron-phonon pairing mechanism. We argue that the so-called separable model of anisotropy effects is insufficient to describe such changes and only improved two-band versions are capable to reproduce the pressure effect on the energy gaps in magnesium diboride.
NASA Astrophysics Data System (ADS)
Thomas, Syju; Varghese, Neson; Rahul, S.; Devadas, K. M.; Vinod, K.; Syamaprasad, U.
2012-12-01
The effect of bending strain on current carrying capacity of MgB2 multifilamentary wires was studied with 4, 8 and 16 multifilamentary wires. The critical current density (JC) of straight wires and bent wires with 5, 10, and 15 cm diameter was measured. Both annealed & bent and bent & annealed wires were used for measurement. The JC of annealed & bent wires were found to decrease with decrease in bent diameter and the rate of degradation of JC decreased with increasing number of filaments, while bent & annealed wires almost retained its JC at all diameters studied.
Multi-band description of the specific heat and thermodynamic critical field in MgB2 superconductor
NASA Astrophysics Data System (ADS)
Szcześniak, R.; Jarosik, M. W.; Tarasewicz, P.; Durajski, A. P.
2018-05-01
The thermodynamic properties of MgB2 superconductor can be explained using the multi-band models. In the present paper we have examined the experimental data available in literature and we have found out that it is possible to reproduce the measured values of the superconducting energy gaps, the thermodynamic critical magnetic field and specific heat jump within the framework of two-band Eliashberg formalism and appropriate defined free energy difference between superconducting and normal state. Moreover, we found that the obtained results differ significantly from the predictions of the conventional Bardeen-Cooper-Schrieffer theory.
NASA Astrophysics Data System (ADS)
Liu, Yongchang; Lan, Feng; Ma, Zongqing; Chen, Ning; Li, Huijun; Barua, Shaon; Patel, Dipak; Shahriar, M.; Hossain, Al; Acar, S.; Kim, Jung Ho; Xue Dou, Shi
2015-05-01
High performance MgB2 bulks using carbon-coated amorphous boron as a boron precursor were fabricated by Cu-activated sintering at low temperature (600 °C, below the Mg melting point). Dense nano-MgB2 grains with a high level of homogeneous carbon doping were formed in these MgB2 samples. This type of microstructure can provide a stronger flux pinning force, together with depressed volatility and oxidation of Mg owing to the low-temperature Cu-activated sintering, leading to a significant improvement of critical current density (Jc) in the as-prepared samples. In particular, the value of Jc for the carbon-coated (Mg1.1B2)Cu0.05 sample prepared here is even above 1 × 105 A cm-2 at 20 K, 2 T. The results herein suggest that the combination of low-temperature Cu-activated sintering and employment of carbon-coated amorphous boron as a precursor could be a promising technique for the industrial production of practical MgB2 bulks or wires with excellent Jc, as the carbon-coated amorphous boron powder can be produced commercially at low cost, while the addition of Cu is very convenient and inexpensive.
Fröhlich, Felix; Ernst, Arne; Strübing, Ira; Basta, Dietmar; Gröschel, Moritz
2017-12-01
A correlation between noise-induced apoptosis and cell loss has previously been shown after a single noise exposure in the cochlear nucleus, inferior colliculus, medial geniculate body (MGB) and primary auditory cortex (AI). However, repeated noise exposure is the most common situation in humans and a major risk factor for the induction of noise-induced hearing loss (NIHL). The present investigation measured cell death pathways using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) in the dorsal, medial and ventral MGB (dMGB, mMGB and vMGB) and six layers of the AI (AI-1 to AI-6) in mice (NMRI strain) after a second noise exposure (double-exposure group). Therefore, a single noise exposure group has been investigated 7 (7-day-group-single) or 14 days (14-day-group-single) after noise exposure (3 h, 5-20 kHz, 115 dB SPL peak-to-peak). The double-exposure group received the same noise trauma for a second time 7 days after the initial exposure and was either TUNEL-stained immediately (7-day-group-double) or 1 week later (14-day-group-double) and data were compared to the corresponding single-trauma group as well as to an unexposed control group. It was shown that TUNEL increased immediately after the second noise exposure in AI-3 and stayed upregulated in the 14-day-group-double. A significant increase in TUNEL was also seen in the 14-day-group-double in vMGB, mMGB and AI-1. The present results show for the first time the influence of a repeated noise trauma on cell death mechanisms in thalamic and cortical structures and might contribute to the understanding of pathophysiological findings and psychoacoustic phenomena accompanying NIHL.
Isotope and multiband effects in layered superconductors.
Bussmann-Holder, Annette; Keller, Hugo
2012-06-13
In this review we consider three classes of superconductors, namely cuprate superconductors, MgB(2) and the new Fe based superconductors. All of these three systems are layered materials and multiband compounds. Their pairing mechanisms are under discussion with the exception of MgB(2), which is widely accepted to be a 'conventional' electron-phonon interaction mediated superconductor, but extending the Bardeen-Cooper-Schrieffer (BCS) theory to account for multiband effects. Cuprates and Fe based superconductors have higher superconducting transition temperatures and more complex structures. Superconductivity is doping dependent in these material classes unlike in MgB(2) which, as a pure compound, has the highest values of T(c) and a rapid suppression of superconductivity with doping takes place. In all three material classes isotope effects have been observed, including exotic ones in the cuprates, and controversial ones in the Fe based materials. Before the area of high-temperature superconductivity, isotope effects on T(c) were the signature for phonon mediated superconductivity-even when deviations from the BCS value to smaller values were observed. Since the discovery of high T(c) materials this is no longer evident since competing mechanisms might exist and other mediating pairing interactions are discussed which are of purely electronic origin. In this work we will compare the three different material classes and especially discuss the experimentally observed isotope effects of all three systems and present a rather general analysis of them. Furthermore, we will concentrate on multiband signatures which are not generally accepted in cuprates even though they are manifest in various experiments, the evidence for those in MgB(2), and indications for them in the Fe based compounds. Mostly we will consider experimental data, but when possible also discuss theoretical models which are suited to explain the data.
Superconducting RF materials other than bulk niobium: a review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valente-Feliciano, Anne-Marie
For the last five decades, bulk niobium (Nb) has been the material of choice for Superconducting RF (SRF) cavity applications. Thin film alternatives such as Nb and other higher-Tc materials, mainly Nb compounds and A15 compounds, have been investigated with moderate effort in the past. In recent years, RF cavity performance has approached the theoretical limit for bulk Nb. For further improvement of RF cavity performance for future accelerator projects, research interest is renewed towards alternatives to bulk Nb. Institutions around the world are now investing renewed efforts in the investigation of Nb thin films and superconductors with higher transitionmore » temperature Tc for application to SRF cavities. Our paper gives an overview of the results obtained so far and challenges encountered for Nb films as well as other materials, such as Nb compounds, A15 compounds, MgB2, and oxypnictides, for SRF cavity applications. An interesting alternative using a Superconductor-Insulator- Superconductor multilayer approach has been recently proposed to delay the vortex penetration in Nb surfaces. This could potentially lead to further improvement in RF cavities performance using the benefit of the higher critical field Hc of higher-Tc superconductors without being limited with their lower Hc1.« less
Superconducting RF materials other than bulk niobium: a review
Valente-Feliciano, Anne-Marie
2016-09-26
For the last five decades, bulk niobium (Nb) has been the material of choice for Superconducting RF (SRF) cavity applications. Thin film alternatives such as Nb and other higher-Tc materials, mainly Nb compounds and A15 compounds, have been investigated with moderate effort in the past. In recent years, RF cavity performance has approached the theoretical limit for bulk Nb. For further improvement of RF cavity performance for future accelerator projects, research interest is renewed towards alternatives to bulk Nb. Institutions around the world are now investing renewed efforts in the investigation of Nb thin films and superconductors with higher transitionmore » temperature Tc for application to SRF cavities. Our paper gives an overview of the results obtained so far and challenges encountered for Nb films as well as other materials, such as Nb compounds, A15 compounds, MgB2, and oxypnictides, for SRF cavity applications. An interesting alternative using a Superconductor-Insulator- Superconductor multilayer approach has been recently proposed to delay the vortex penetration in Nb surfaces. This could potentially lead to further improvement in RF cavities performance using the benefit of the higher critical field Hc of higher-Tc superconductors without being limited with their lower Hc1.« less
A Solid Nitrogen Cooled MgB2 “Demonstration” Coil for MRI Applications
Yao, Weijun; Bascuñán, Juan; Kim, Woo-Seok; Hahn, Seungyong; Lee, Haigun; Iwasa, Yukikazu
2009-01-01
A 700-mm bore superconducting magnet was built and operated in our laboratory to demonstrate the feasibility of newly developed MgB2 superconductor wire for fabricating MRI magnets. The magnet, an assembly of 10 coils each wound with a reacted and s-glass insulated wire ~1-km long, was immersed in solid nitrogen rather than in a bath of liquid cryogen. This MgB2 magnet was designed to operate in the temperature range 10–15 K, maintained by a cryocooler. A combination of this “wide” temperature range and immersion of the winding in solid nitrogen enables this magnet to operate under conditions not possible with a low temperature superconductor (LTS) counterpart. Tested individually at 13 K, each coil could carry current up to 100 A. When assembled into the magnet, some coils, however, became resistive, causing the magnet to prematurely quench at currents ranging from 79 A to 88 A, at which point the magnet generated a center field of 0.54 T. Despite the presence of a large volume (50 liters) of solid nitrogen in the cold body, cooldown from 77 K to 10 K went smoothly. PMID:20390056
Properties of boride-added powder metallurgy magnesium alloys
NASA Astrophysics Data System (ADS)
Tanaka, Atsushi; Yoshimura, Syota; Fujima, Takuya; Takagi, Ken-ichi
2009-06-01
Magnesium alloys with metallic borides, magnesium diboride (MgB2) or aluminum diboride (AlB2), were investigated regarding their mechanical properties, transverse rupture strength (TRS) and micro Vickers hardness (HV). The alloys were made from pure Mg, Al and B powders by mechanical alloying and hot pressing to have boride content of between 2.0 and 20 vol%. The alloy with AlB2 exhibited an obvious improvement of HV around a boride content of 6 vol% though the other alloy, with MgB2, did not. TRS showed moderate maxima around the same boride content region for the both alloys. X-ray diffraction measurements indicated an intermetallic compound, Mg17Al12, formed in the alloy with AlB2, which was consistent with its higher hardness.
Decision making and effort in the self-regulation of hypertension: testing two competing theories.
Taylor, Stephanie D; Bagozzi, Richard P; Gaither, Caroline A
2005-11-01
We compare the ability of two social psychological models to explain self-regulation decisions to control hypertension by 208 patients at a hospital clinic: the theory of planned behaviour (TPB) and the model of goal-directed behaviour (MGB). The sample was drawn from patients at a large research hospital in North America. The findings show that the MGB not only explains significantly more variance in decision making than the TPB, but it provides an account for how reasons for acting become integrated and transformed into intentions to act, which the TPB does not address. The MGB does this in part by introducing the variable, desire, as an essential mediator between reasons for acting and intentions. The MGB also incorporates the effects of anticipated emotions on decision making, which are forms of forward-looking counterfactual thinking with respect to goals. In addition, the present study reconceptualized instrumental behaviour to encompass how hard one tries to act in the senses of (1) devoting time to planning with respect to reducing/maintaining blood pressure, (2) expending mental/physical energy to reduce/maintain blood pressure, (3) maintaining will power to reduce/maintain blood pressure, and (4) sustaining self-discipline (e.g. in overcoming obstacles) to reduce/maintain blood pressure. Key differences, as well as commonalities, in decision making are pointed-out between men and women and between people whose goal is to reduce versus maintain blood pressure.
Kandori, Kazuhiko; Kuroda, Tomohiko; Togashi, Shigenori; Katayama, Erika
2011-02-03
The calcium hydroxyapatite Ca(10)(PO(4))(6)(OH)(2) (Hap) nanoparticles were prepared by using microreactor and employed these Hap nanoparticles to clarify the adsorption behavior of proteins. The size of Hap particles produced by the microreactor reduced in the order of a hardness of the reaction conditions for mixing Ca(OH)(2) and H(3)PO(4) aqueous solutions, such as flow rates of both solutions and temperature. Finally, the size of the smallest Hap nanoparticle became 2 × 15 nm(2), similar to that of BSA molecule (4 × 14 nm(2)). It is noteworthy that the smallest Hap nanoparticles still possesses rodlike shape, suggesting that particles are grown along c-axis even though the reactants mixed very rapidly in narrow channels of the microreactors. The X-ray diffraction patterns of the Hap nanoparticles revealed that the crystallinity of the materials produced by the microreactor is low. The FTIR measurement indicated that the Hap nanoparticles produced by microreactor were carbonate-substituted type B Hap, where the carbonate ions replace the phosphate ions in the crystal lattice. All the adsorption isotherms of acidic bovine serum albumin (BSA), neutral myoglobin (MGB), and basic lysozyme (LSZ) onto Hap nanoparticles from 1 × 10(-4) mol/dm(3) KCl solution were the Langmuirian type. The saturated amounts of adsorbed BSA (n(S)(BSA)) for the Hap nanoparticles produced by microreactor were decreased with decrease in the mean particle length, and finally it reduced to zero for the smallest Hap nanoparticles. Similar results were observed for the adsorption of LSZ; the saturated amounts of adsorbed LSZ (n(S)(LSZ)) also reduced to zero for the smallest Hap nanoparticles. However, in the case of MGB, the saturated mounts of adsorbed MGB (n(S)(MGB)) are also depressed with decreased in their particle size, but about half of MGB molecules still adsorbed onto the smallest Hap nanoparticles. This difference in the protein adsorption behavior was explained by the difference in the size and flexibility of three kinds of proteins. The reduction of n(S)(BSA) is due to the decrease in the fraction of C sites on the side face of each Hap nanoparticle; i.e., there is not enough area left on the nanoparticle surface to adsorb large BSA molecules even though the BSA molecules are soft and their conformations are alterable. The reduction of n(S)(LSZ) was explained by the reduction of P sites. Further, rigidity of the LSZ molecules was given another possibility of the depression of n(S)(LSZ) for the Hap nanoparticles. However, MGB molecules with small and soft structure were adsorbed on the Hap nanoparticle surface by changing their conformation. We could control the amounts of adsorbed proteins by changing the particle size of Hap in the nanometer range and kinds of proteins. These obtained results may be useful for developing biomimetic materials for bone grafts and successful surgical devices in the biochemical field.
Alpha-ray detection with a MgB 2 transition edge sensor
NASA Astrophysics Data System (ADS)
Okayasu, S.; Katagiri, M.; Hojou, K.; Morii, Y.; Miki, S.; Shimakage, H.; Wang, Z.; Ishida, T.
2008-09-01
We have been investigating for neutron detection with the MgB 2 transition edge sensor (TES). For the purpose, we have been developing a low noise measurement system for the detection. To confirm the performance of the detecting sensor, alpha ray detection from an americium-241 ( 241Am) alpha-ray source was achieved. A short microfabricated sample with 10 μm length and 1 μm width is used to improve the S/N ratio. The detection is achieved under a constant current condition in the range between 1 and 6 μA bias current, and the resistivity changes at the sample due to the alpha ray irradiation is detected just on the transition edge.
Feasibility study of a MgB 2 superconducting magnetic cloak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giunchi, Giovanni; Turrioni, Daniele; Kashikhin, Vladimir
The magnetic shielding capability of bulk MgB 2 hollow cylinders can be fruitfully combined with an external paramagnetic sheath, to tailor the shape of the external magnetic flux lines. By appropriate selection of the external sheath permeability and thickness, it is possible to leave the magnetic flux lines unaltered by the shield (cloaking effect). Preliminary measurements have been performed at 4.2 K on shielding capability of bulk cylinders, which are subjected to axial and transversal magnetic fields up to 5 T. Furthermore, the cloaking conditions have been modeled to find the optimized thickness to realize the cloaking effect. The MgBmore » 2 material of the superconducting shield is also optimized to avoid low-temperature flux jumps, without losing its shielding capability.« less
Feasibility study of a MgB 2 superconducting magnetic cloak
Giunchi, Giovanni; Turrioni, Daniele; Kashikhin, Vladimir; ...
2016-04-01
The magnetic shielding capability of bulk MgB 2 hollow cylinders can be fruitfully combined with an external paramagnetic sheath, to tailor the shape of the external magnetic flux lines. By appropriate selection of the external sheath permeability and thickness, it is possible to leave the magnetic flux lines unaltered by the shield (cloaking effect). Preliminary measurements have been performed at 4.2 K on shielding capability of bulk cylinders, which are subjected to axial and transversal magnetic fields up to 5 T. Furthermore, the cloaking conditions have been modeled to find the optimized thickness to realize the cloaking effect. The MgBmore » 2 material of the superconducting shield is also optimized to avoid low-temperature flux jumps, without losing its shielding capability.« less
Critical current densities of powder-in-tube MgB2 tapes fabricated with nanometer-size Mg powder
NASA Astrophysics Data System (ADS)
Yamada, H.; Hirakawa, M.; Kumakura, H.; Matsumoto, A.; Kitaguchi, H.
2004-03-01
We fabricated powder-in-tube MgB2/Fe tapes using a powder mixture of nanometer-size Mg and commercial amorphous B and investigated the transport properties. High-purity nanometer-size Mg powder was fabricated by applying the thermal plasma method. 5-10 mol % SiC powder doping was tried to enhance the Jc properties. We found that the use of nanometer-size Mg powder was effective to increase the Jc values. The transport Jc values of the nondoped and 10 mol % SiC-doped tapes prepared with nanometer-size Mg powder reached 90 and 250 A/mm2 at 4.2 K and 10 T, respectively. These values were about five times higher than those of the tapes prepared with commercial Mg powder.
Erdmann, Susanne; Shah, Shiraz A; Garrett, Roger A
2013-12-01
Organisms of the crenarchaeal order Sulfolobales carry complex CRISPR (clustered regularly interspaced short palindromic repeats) adaptive immune systems. These systems are modular and show extensive structural and functional diversity, especially in their interference complexes. The primary targets are an exceptional range of diverse viruses, many of which propagate stably within cells and follow lytic life cycles without producing cell lysis. These properties are consistent with the difficulty of activating CRISPR spacer uptake in the laboratory, but appear to conflict with the high complexity and diversity of the CRISPR immune systems that are found among the Sulfolobales. In the present article, we re-examine the first successful induction of archaeal spacer acquisition in our laboratory that occurred exclusively for the conjugative plasmid pMGB1 in Sulfolobus solfataricus P2 that was co-infected with the virus SMV1 (Sulfolobus monocaudavirus 1). Although we reaffirm that protospacer selection is essentially a random process with respect to the pMGB1 genome, we identified single spacer sequences specific for each of CRISPR loci C, D and E that, exceptionally, occurred in many sequenced clones. Moreover, the same sequence was reproducibly acquired for a given locus in independent experiments, consistent with it being the first protospacer to be selected. There was also a small protospacer bias (1.6:1) to the antisense strand of protein genes. In addition, new experiments demonstrated that spacer acquisition in the previously inactive CRISPR locus A could be induced on freeze-thawing of the infected cells, suggesting that environmental stress can facilitate activation. Coincidentally with spacer acquisition, a mobile OrfB element was deleted from pMGB1, suggesting that interplay can occur between spacer acquisition and transposition.
Is GABA neurotransmission enhanced in auditory thalamus relative to inferior colliculus?
Cai, Rui; Kalappa, Bopanna I.; Brozoski, Thomas J.; Ling, Lynne L.
2013-01-01
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central auditory system. Sensory thalamic structures show high levels of non-desensitizing extrasynaptic GABAA receptors (GABAARs) and a reduction in the redundancy of coded information. The present study compared the inhibitory potency of GABA acting at GABAARs between the inferior colliculus (IC) and the medial geniculate body (MGB) using quantitative in vivo, in vitro, and ex vivo experimental approaches. In vivo single unit studies compared the ability of half maximal inhibitory concentrations of GABA to inhibit sound-evoked temporal responses, and found that GABA was two to three times (P < 0.01) more potent at suppressing MGB single unit responses than IC unit responses. In vitro whole cell patch-clamp slice recordings were used to demonstrate that gaboxadol, a δ-subunit selective GABAAR agonist, was significantly more potent at evoking tonic inhibitory currents from MGB neurons than IC neurons (P < 0.01). These electrophysiological findings were supported by an in vitro receptor binding assay which used the picrotoxin analog [3H]TBOB to assess binding in the GABAAR chloride channel. MGB GABAARs had significantly greater total open chloride channel capacity relative to GABAARs in IC (P < 0.05) as shown by increased total [3H]TBOB binding. Finally, a comparative ex vivo measurement compared endogenous GABA levels and suggested a trend towards higher GABA concentrations in MGB than in IC. Collectively, these studies suggest that, per unit GABA, high affinity extrasynaptic and synaptic GABAARs confer a significant inhibitory GABAAR advantage to MGB neurons relative to IC neurons. This increased GABA sensitivity likely underpins the vital filtering role of auditory thalamus. PMID:24155003
Structural and critical current properties in Al-doped MgB 2
NASA Astrophysics Data System (ADS)
Zheng, D. N.; Xiang, J. Y.; Lang, P. L.; Li, J. Q.; Che, G. C.; Zhao, Z. W.; Wen, H. H.; Tian, H. Y.; Ni, Y. M.; Zhao, Z. X.
2004-08-01
A series of Al-doped Mg 1- xAl xB 2 samples have been fabricated and systematic study on structure and superconducting properties have been carried out for the samples. In addition to a structural transition observed by XRD, TEM micrographs showed the existence of a superstructure of double c-axis lattice constant along the direction perpendicular to the boron honeycomb sheet. In order to investigate the effect of Al doping on flux pinning and critical current properties in MgB 2, measurements on the superconducting transition temperature Tc, irreversible field Birr and critical current density Jc were performed too, for the samples with the doping levels lower than 0.15 in particular. These experimental observations were discussed in terms of Al doping induced changes in carrier concentration.
Experimental investigation on a pulsating heat pipe with hydrogen
NASA Astrophysics Data System (ADS)
Deng, H. R.; Liu, Y. M.; Ma, R. F.; Han, D. Y.; Gan, Z. H.; Pfotenhauer, J. M.
2015-12-01
The pulsating heat pipe (PHP) has been increasingly studied in cryogenic application, for its high transfer coefficient and quick response. Compared with Nb3Sn and NbTi, MgB2 whose critical transformation temperature is 39 K, is expected to replace some high-temperature superconducting materials at 25 K. In order to cool MgB2, this paper designs a Hydrogen Pulsating Heat Pipe, which allows a study of applied heat, filling ratio, turn number, inclination angle and length of adiabatic section on the thermal performance of the PHP. The thermal performance of the hydrogen PHP is investigated for filling ratios of 35%, 51%, 70% at different heat inputs, and provides information regarding the starting process is received at three filling ratios.
Sottile, Sarah Y; Hackett, Troy A; Cai, Rui; Ling, Lynne; Llano, Daniel A; Caspary, Donald M
2017-11-22
Acetylcholine (ACh) is a potent neuromodulator capable of modifying patterns of acoustic information flow. In auditory cortex, cholinergic systems have been shown to increase salience/gain while suppressing extraneous information. However, the mechanism by which cholinergic circuits shape signal processing in the auditory thalamus (medial geniculate body, MGB) is poorly understood. The present study, in male Fischer Brown Norway rats, seeks to determine the location and function of presynaptic neuronal nicotinic ACh receptors (nAChRs) at the major inputs to MGB and characterize how nAChRs change during aging. In vitro electrophysiological/optogenetic methods were used to examine responses of MGB neurons after activation of nAChRs during a paired-pulse paradigm. Presynaptic nAChR activation increased responses evoked by stimulation of excitatory corticothalamic and inhibitory tectothalamic terminals. Conversely, nAChR activation appeared to have little effect on evoked responses from inhibitory thalamic reticular nucleus and excitatory tectothalamic terminals. In situ hybridization data showed nAChR subunit transcripts in GABAergic inferior colliculus neurons and glutamatergic auditory cortical neurons supporting the present slice findings. Responses to nAChR activation at excitatory corticothalamic and inhibitory tectothalamic inputs were diminished by aging. These findings suggest that cholinergic input to the MGB increases the strength of tectothalamic inhibitory projections, potentially improving the signal-to-noise ratio and signal detection while increasing corticothalamic gain, which may facilitate top-down identification of stimulus identity. These mechanisms appear to be affected negatively by aging, potentially diminishing speech perception in noisy environments. Cholinergic inputs to the MGB appear to maximize sensory processing by adjusting both top-down and bottom-up mechanisms in conditions of attention and arousal. SIGNIFICANCE STATEMENT The pedunculopontine tegmental nucleus is the source of cholinergic innervation for sensory thalamus and is a critical part of an ascending arousal system that controls the firing mode of thalamic cells based on attentional demand. The present study describes the location and impact of aging on presynaptic neuronal nicotinic acetylcholine receptors (nAChRs) within the circuitry of the auditory thalamus (medial geniculate body, MGB). We show that nAChRs are located on ascending inhibitory and descending excitatory presynaptic inputs onto MGB neurons, likely increasing gain selectively and improving temporal clarity. In addition, we show that aging has a deleterious effect on nAChR efficacy. Cholinergic dysfunction at the level of MGB may affect speech understanding negatively in the elderly population. Copyright © 2017 the authors 0270-6474/17/3711378-13$15.00/0.
Sottile, Sarah Y.; Hackett, Troy A.
2017-01-01
Acetylcholine (ACh) is a potent neuromodulator capable of modifying patterns of acoustic information flow. In auditory cortex, cholinergic systems have been shown to increase salience/gain while suppressing extraneous information. However, the mechanism by which cholinergic circuits shape signal processing in the auditory thalamus (medial geniculate body, MGB) is poorly understood. The present study, in male Fischer Brown Norway rats, seeks to determine the location and function of presynaptic neuronal nicotinic ACh receptors (nAChRs) at the major inputs to MGB and characterize how nAChRs change during aging. In vitro electrophysiological/optogenetic methods were used to examine responses of MGB neurons after activation of nAChRs during a paired-pulse paradigm. Presynaptic nAChR activation increased responses evoked by stimulation of excitatory corticothalamic and inhibitory tectothalamic terminals. Conversely, nAChR activation appeared to have little effect on evoked responses from inhibitory thalamic reticular nucleus and excitatory tectothalamic terminals. In situ hybridization data showed nAChR subunit transcripts in GABAergic inferior colliculus neurons and glutamatergic auditory cortical neurons supporting the present slice findings. Responses to nAChR activation at excitatory corticothalamic and inhibitory tectothalamic inputs were diminished by aging. These findings suggest that cholinergic input to the MGB increases the strength of tectothalamic inhibitory projections, potentially improving the signal-to-noise ratio and signal detection while increasing corticothalamic gain, which may facilitate top-down identification of stimulus identity. These mechanisms appear to be affected negatively by aging, potentially diminishing speech perception in noisy environments. Cholinergic inputs to the MGB appear to maximize sensory processing by adjusting both top-down and bottom-up mechanisms in conditions of attention and arousal. SIGNIFICANCE STATEMENT The pedunculopontine tegmental nucleus is the source of cholinergic innervation for sensory thalamus and is a critical part of an ascending arousal system that controls the firing mode of thalamic cells based on attentional demand. The present study describes the location and impact of aging on presynaptic neuronal nicotinic acetylcholine receptors (nAChRs) within the circuitry of the auditory thalamus (medial geniculate body, MGB). We show that nAChRs are located on ascending inhibitory and descending excitatory presynaptic inputs onto MGB neurons, likely increasing gain selectively and improving temporal clarity. In addition, we show that aging has a deleterious effect on nAChR efficacy. Cholinergic dysfunction at the level of MGB may affect speech understanding negatively in the elderly population. PMID:29061702
Physical property characterization of Fe-tube encapsulated and vacuum annealed bulk MgB 2
NASA Astrophysics Data System (ADS)
Awana, V. P. S.; Rawat, Rajeev; Gupta, Anurag; Isobe, M.; Singh, K. P.; Vajpayee, Arpita; Kishan, H.; Takayama-Muromachi, E.; Narlikar, A. V.
2006-08-01
We report the phase formation, and present a detailed study of magnetization and resistivity under magnetic field of MgB 2 polycrystalline bulk samples prepared by the Fe-tube encapsulated and vacuum (10 -5 Torr) annealed (750 ∘C) route. Zero-field-cooled magnetic susceptibility (χ) measurements exhibited a sharp transition to the superconducting state with a sizeable diamagnetic signal at 39 K (Tc). The measured magnetization loops of the samples, despite the presence of flux jumps, exhibited a stable current density (Jc) of around 2.4×10 5 A/cm 2 in up to 2 T (Tesla) field and at temperatures (T) up to 10 K. The upper critical field is estimated from resistivity measurements in various fields and shows a typical value of 8 T at 21 K. Further, χ measurements at an applied field of 0.1 T reveal a paramagnetic Meissner effect (PME) that is briefly discussed.
A persistent-mode 0.5 T solid-nitrogen-cooled MgB2 magnet for MRI.
Ling, Jiayin; Voccio, John P; Hahn, Seungyong; Qu, Timing; Bascuñán, Juan; Iwasa, Yukikazu
2017-02-01
This paper presents construction details and test results of a persistent-mode 0.5-T MgB 2 magnet developed at the Francis Bitter Magnet Lab, MIT. The magnet, of 276-mm inner diameter and 290-mm outer diameter, consisted of a stack of 8 solenoidal coils with a total height of 460 mm. Each coil was wound with monofilament MgB 2 wire, equipped with a persistent-current switch and terminated with a superconducting joint, forming an individual superconducting loop. Resistive solder joints connected the 8 coils in series. The magnet, after being integrated into a testing system, immersed in solid nitrogen, was operated in a temperature range of 10-13 K. A two-stage cryocooler was deployed to cool a radiation shield and the cold mass that included mainly ~60 kg of solid nitrogen and the magnet. The solid nitrogen was capable of providing a uniform and stable cryogenic environment to the magnet. The magnet sustained a 0.47-T magnetic field at its center persistently in a range of 10-13 K. The current in each coil was inversely calculated from the measured field profile to determine the performance of each coil in persistent-mode operation. Persistent-current switches were successfully operated in solid nitrogen for ramping the magnet. They were also designed to absorb magnetic energy in a protection mechanism; its effectiveness was evaluated in an induced quench.
Design of a cryogenic system for a 20m direct current superconducting MgB2 and YBCO power cable
NASA Astrophysics Data System (ADS)
Cheadle, Michael J.; Bromberg, Leslie; Jiang, Xiaohua; Glowacki, Bartek; Zeng, Rong; Minervini, Joseph; Brisson, John
2014-01-01
The Massachusetts Institute of Technology, the University of Cambridge in the United Kingdom, and Tsinghua University in Beijing, China, are collaborating to design, construct, and test a 20 m, direct current, superconducting MgB2 and YBCO power cable. The cable will be installed in the State Key Laboratory of Power Systems at Tsinghua University in Beijing beginning in 2013. In a previous paper [1], the cryogenic system was briefly discussed, focusing on the cryogenic issues for the superconducting cable. The current paper provides a detailed discussion of the design, construction, and assembly of the cryogenic system and its components. The two-stage system operates at nominally 80 K and 20 K with the primary cryogen being helium gas. The secondary cryogen, liquid nitrogen, is used to cool the warm stage of binary current leads. The helium gas provides cooling to both warm and cold stages of the rigid cryostat housing the MgB2 and YBCO conductors, as well as the terminations of the superconductors at the end of the current leads. A single cryofan drives the helium gas in both stages, which are thermally isolated with a high effectiveness recuperator. Refrigeration for the helium circuit is provided by a Sumitomo RDK415 cryocooler. This paper focuses on the design, construction, and assembly of the cryostat, the recuperator, and the current leads with associated superconducting cable terminations.
Phase dynamics of single long Josephson junction in MgB2 superconductor
NASA Astrophysics Data System (ADS)
Chimouriya, Shanker Pd.; Ghimire, Bal Ram; Kim, Ju H.
2018-05-01
A system of perturbed sine Gordon equations is derived to a superconductor-insulator-superconductor (SIS) long Joseph-son junction as an extension of the Ambegaokar-Baratoff relation, following the long route of path integral formalism. A computer simulation is performed by discretizing the equations using finite difference approximation and applied to the MgB2 superconductor with SiO2 as the junction material. The solution of unperturbed sG equation is taken as the initial profile for the simulation and observed how the perturbation terms play the role to modify it. It is found initial profile deformed as time goes on. The variation of total Josephson current has also been observed. It is found that, the perturbation terms play the role for phase frustration. The phase frustration achieves quicker for high tunneling current.
Cooperation in Academic Negotiations: A Guide to Mutual Gains Bargaining.
ERIC Educational Resources Information Center
Birnbaum, Robert; And Others
A guide to mutual gains bargaining (MGB) is presented for faculty union leaders and college administrators, as well as school systems. MGB is based on applied behavioral sciences concepts and the use of bargaining teams and emphasizes problem-solving and improving communications and campus relationships. Two different uses of the mutual gains…
Decaro, Nicola; Martella, Vito; Elia, Gabriella; Desario, Costantina; Campolo, Marco; Buonavoglia, Domenico; Bellacicco, Anna Lucia; Tempesta, Maria; Buonavoglia, Canio
2006-12-01
TaqMan-based diagnostic tests have been developed for the identification of canine parvovirus type 2 (CPV-2) strains in the faeces of dogs with diarrhoea, including a minor groove binder (MGB) probe assay for identification of type 2-based vaccines and field strains (types 2a, 2b and 2c). Since type 2b vaccines have been licensed recently in Europe, two novel MGB assays were developed for discrimination between type 2b vaccines and field strains of CPV. Such assays have been found to be highly sensitive, specific and reproducible, allowing for simultaneous detection of type 2b vaccinal and field strains present in the same specimens. These new assays will help resolution of the diagnostic problems related to the detection of a type 2b strain in the faeces of dogs shortly after the administration of a type 2b vaccine.
Giant dielectric constant in CaCu3Ti4O12-MgB2 composites near the percolation threshold
NASA Astrophysics Data System (ADS)
Mukherjee, Rupam; Fernandez, Lucia; Lawes, Gavin; Nadgorny, Boris
2013-03-01
We have investigated the enhancement of the dielectric constant K in CaCu3Ti4O12 (CCTO)-MgB2 composite near the percolation threshold. To optimize the dielectric properties of pure CCTO we have sintered the samples at variuos temperatures. We will present the results of the measurements of K in a broad frequency for pure CCTO for the samples sintered at 1100°C and 500°C. Commercially available MgB2 powder was mixed with different weight fractions of CCTO and the pressure of 1GPa was applied to form composite pellets. Near the percolation threshold PC, CCTO/MgB2 composite system exhibit a dramatic increase of the dielectric constant K by several orders of magnitude, compared to pure CCTO. We will also discuss the magnetic field dependence of the capacitance of CCTO composite powders.
Flux pinning in nanoparticle doped MgB 2/Cu tapes
NASA Astrophysics Data System (ADS)
Babić, E.; Kušević, I.; Husnjak, O.; Soltanian, S.; Wang, X. L.; Dou, S. X.
2007-09-01
The irreversibility fields Birr and critical current densities Jc of undoped and Si and SiC nanoparticle doped (5, 10 and 20 wt%) MgB2 tapes were measured in the temperature (T) range 2-38 K and in magnetic fields B ⩽ 16 T. Whereas Birr of undoped tapes varies smoothly with T, those of doped tapes show a change in slope around a crossover field Bcr which increases with nanoparticle content and also depends on their type. This indicates matching effect in vortex pinning, probably associated with Mg2Si nanoprecipitates formed during heat treatment. Indeed, Birr of doped tapes was enhanced in respect to that of undoped one with the highest enhancement for Birr ≈ Bcr, but the enhancement remained high ≈1.4 even for Birr ≫ Bcr (low temperatures). The variations of Jc and the pinning force density Fp = JcB with B and T support the above findings.
Auditory cortex stimulation to suppress tinnitus: mechanisms and strategies.
Zhang, Jinsheng
2013-01-01
Brain stimulation is an important method used to modulate neural activity and suppress tinnitus. Several auditory and non-auditory brain regions have been targeted for stimulation. This paper reviews recent progress on auditory cortex (AC) stimulation to suppress tinnitus and its underlying neural mechanisms and stimulation strategies. At the same time, the author provides his opinions and hypotheses on both animal and human models. The author also proposes a medial geniculate body (MGB)-thalamic reticular nucleus (TRN)-Gating mechanism to reflect tinnitus-related neural information coming from upstream and downstream projection structures. The upstream structures include the lower auditory brainstem and midbrain structures. The downstream structures include the AC and certain limbic centers. Both upstream and downstream information is involved in a dynamic gating mechanism in the MGB together with the TRN. When abnormal gating occurs at the thalamic level, the spilled-out information interacts with the AC to generate tinnitus. The tinnitus signals at the MGB-TRN-Gating may be modulated by different forms of stimulations including brain stimulation. Each stimulation acts as a gain modulator to control the level of tinnitus signals at the MGB-TRN-Gate. This hypothesis may explain why different types of stimulation can induce tinnitus suppression. Depending on the tinnitus etiology, MGB-TRN-Gating may be different in levels and dynamics, which cause variability in tinnitus suppression induced by different gain controllers. This may explain why the induced suppression of tinnitus by one type of stimulation varies across individual patients. Copyright © 2012. Published by Elsevier B.V.
Musella, M; Susa, A; Greco, F; De Luca, M; Manno, E; Di Stefano, C; Milone, M; Bonfanti, R; Segato, G; Antonino, A; Piazza, L
2014-01-01
Due to the failure of the "old Mason loop," the mini-gastric bypass (MGB) has been viewed with skepticism. During the past 12 years, a growing number of authors from around the world have continued to report excellent short- and long-term results with MGB. One university center, three regional hospitals, and two private hospitals participated in this study. From July 2006 to December 2012, 475 men (48.8 %) and 499 women (51.2 %) underwent 974 laparoscopic MGBs. The mean age of these patients was 39.4, and their preoperative body mass index was 48 ± 4.58 kg/m(2). Type 2 diabetes mellitus (T2DM) affected 224 (22.9 %) of the 974 patients, whereas 291 of the 974 patients (29.8 %) presented with hypertension. The preoperative gastrointestinal status was explored in all the patients through esophagogastroduodenoscopia. The major end points of the study were definitions of both MGB safety and efficacy in the long term as well as the endoscopic changes in symptomatic patients eventually produced by surgery. The rate of conversion to open surgery was 1.2 % (12/974), and the mortality rate was 0.2 % (2/974). The perioperative morbidity rate was 5.5 % (54/974), with 20 (2 %) of the 974 patients requiring an early surgical revision. The mean hospital length of stay was 4.0 ± 1.7 days. At this writing, 818 patients are being followed up. Late complications have affected 74 (9 %) of the 818 patients. The majority of these complications (66/74, 89.1 %) have occurred within 1 year after surgery. Bile reflux gastritis was symptomatic, with endoscopic findings reported for 8 (0.9 %) and acid peptic ulcers for 14 (1.7 %) of the 818 patients. A late revision surgery was required for 7 (0.8 %) of the 818 patients. No patient required revision surgery due to biliary gastritis. At 60 months, the percentage of excess weight loss was 77 ± 5.1 %, the T2DM remission was 84.4 %, and the resolution of hypertension was 87.5 %. Despite initial skepticism, this study, together with many other large-scale, long-term similar studies from around the world (e.g., Taiwan, United States, France, Spain, India, Lebanon) demonstrated the MGB to be a short, simple, low-risk, effective, and durable bariatric procedure.
Park, Dongkeun; Bascuñán, Juan; Michael, Philip C.; Iwasa, Yukikazu
2017-01-01
In this paper we present two design options for a tabletop liquid-helium-free, persistent-mode 1.5-T/90-mm MgB2 “finger” MRI magnet for osteoporosis screening. Both designs, one with and the other without an iron yoke, satisfy the following criteria: 1) 1.5-T center field with a 90-mm room-temperature bore for a finger to be placed at the magnet center; 2) spatial field homogeneity of <5 ppm over a 20-mm diameter of spherical volume (DSV); 3) persistent-mode operation with temporal stability of <0.1 ppm/hr; 4) liquid-helium-free operation; 5) 5-gauss fringe field radius of <50 cm from the magnet center; and 6) small and light enough for placement on an exam table. Although the magnet is designed to operate nominally at 10 K, maintained by a cryocooler, it has a 5-K temperature margin to keep its 1.5-T persistent field up to 15 K. The magnet will be immersed in a volume of solid nitrogen (SN2) that provides additional thermal mass when the cryocooler is switched off to provide a vibration-free measurement environment. The SN2 enables the magnet to maintain its persistent field over a period of time sufficient for quiescent measurement, while still limiting the magnet operating temperature to ≤15 K. We discuss first pros and cons of each design, and then further studies of our proposed MgB2 finger MRI magnet. PMID:29456437
Park, Dongkeun; Bascuñán, Juan; Michael, Philip C; Iwasa, Yukikazu
2018-04-01
In this paper we present two design options for a tabletop liquid-helium-free, persistent-mode 1.5-T/90-mm MgB 2 "finger" MRI magnet for osteoporosis screening. Both designs, one with and the other without an iron yoke, satisfy the following criteria: 1) 1.5-T center field with a 90-mm room-temperature bore for a finger to be placed at the magnet center; 2) spatial field homogeneity of <5 ppm over a 20-mm diameter of spherical volume (DSV); 3) persistent-mode operation with temporal stability of <0.1 ppm/hr; 4) liquid-helium-free operation; 5) 5-gauss fringe field radius of <50 cm from the magnet center; and 6) small and light enough for placement on an exam table. Although the magnet is designed to operate nominally at 10 K, maintained by a cryocooler, it has a 5-K temperature margin to keep its 1.5-T persistent field up to 15 K. The magnet will be immersed in a volume of solid nitrogen (SN 2 ) that provides additional thermal mass when the cryocooler is switched off to provide a vibration-free measurement environment. The SN 2 enables the magnet to maintain its persistent field over a period of time sufficient for quiescent measurement, while still limiting the magnet operating temperature to ≤15 K. We discuss first pros and cons of each design, and then further studies of our proposed MgB 2 finger MRI magnet.
Simon, Ferenc; Murányi, Ferenc
2005-04-01
The design and performance of an electron spin resonance spectrometer operating at 3 and 9 GHz microwave frequencies combined with a 9-T superconducting magnet are described. The probehead contains a compact two-loop, one gap resonator, and is inside the variable temperature insert of the magnet enabling measurements in the 0-9T magnetic field and 1.5-400 K temperature range. The spectrometer allows studies on systems where resonance occurs at fields far above the g approximately 2 paramagnetic condition such as in antiferromagnets. The low quality factor of the resonator allows time resolved experiments such as, e.g., longitudinally detected ESR. We demonstrate the performance of the spectrometer on the NaNiO2 antiferromagnet, the MgB2 superconductor, and the RbC60 conducting alkaline fulleride polymer.
Nanoscale-SiC doping for enhancing Jc and Hc2 in superconducting MgB2
NASA Astrophysics Data System (ADS)
Dou, S. X.; Braccini, V.; Soltanian, S.; Klie, R.; Zhu, Y.; Li, S.; Wang, X. L.; Larbalestier, D.
2004-12-01
The effect of nanoscale-SiC doping of MgB2 was investigated in comparison with undoped, clean-limit, and Mg-vapor-exposed samples using transport and magnetic measurements. It was found that there are two distinguishable but related mechanisms that control the critical current-density-field Jc(H ) behavior: increase of upper critical field Hc2 and improvement of flux pinning. There is a clear correlation between the critical temperature Tc, the resistivity ρ, the residual resistivity ratio RRR =R(300K)/R(40K), the irreversibility field H*, and the alloying state in the samples. The Hc2 is about the same within the measured field range for both the Mg-vapor-treated and the SiC-doped samples. However, the Jc(H ) for the latter is higher than the former in a high-field regime by an order of magnitude. Mg vapor treatment induced intrinsic scattering and contributed to an increase in Hc2. SiC doping, on the other hand, introduced many nanoscale precipitates and disorder at B and Mg sites, provoking an increase of ρ(40K ) from 1μΩcm (RRR=15) for the clean-limit sample to 300μΩcm (RRR=1.75) for the SiC-doped sample, leading to significant enhancement of both Hc2 and H * with only a minor effect on Tc. Electron energy-loss spectroscope and transmission electron microscope analysis revealed impurity phases: Mg2Si, MgO, MgB4, BOx, SixByOz, and BC at a scale below 10nm and an extensive domain structure of 2-4-nm domains in the doped sample, which serve as strong pinning centers.
Harding, Sherie C.; Nash, Barbara P.; Petersen, Erich U.; Ekdale, A. A.; Bradbury, Christopher D.; Dyar, M. Darby
2014-01-01
The Main Glauconite Bed (MGB) is a pelleted greensand located at Stone City Bluff on the south bank of the Brazos River in Burleson County, Texas. It was deposited during the Middle Eocene regional transgression on the Texas Gulf Coastal Plain. Stratigraphically it lies in the upper Stone City Member, Crockett Formation, Claiborne Group. Its mineralogy and geochemistry were examined in detail, and verdine facies minerals, predominantly odinite, were identified. Few glauconitic minerals were found in the green pelleted sediments of the MGB. Without detailed mineralogical work, glaucony facies minerals and verdine facies minerals are easily mistaken for one another. Their distinction has value in assessing paleoenvironments. In this study, several analytical techniques were employed to assess the mineralogy. X-ray diffraction of oriented and un-oriented clay samples indicated a clay mixture dominated by 7 and 14Å diffraction peaks. Unit cell calculations from XRD data for MGB pellets match the odinite-1M data base. Electron microprobe analyses (EMPA) from the average of 31 data points from clay pellets accompanied with Mössbauer analyses were used to calculate the structural formula which is that of odinite: Fe3+ 0.89 Mg0.45 Al0.67 Fe2+ 0.30 Ti0.01 Mn0.01) Σ = 2.33 (Si1.77 Al0.23) O5.00 (OH)4.00. QEMSCAN (Quantitative Evaluation of Minerals by Scanning Electron Microscopy) data provided mineral maps of quantitative proportions of the constituent clays. The verdine facies is a clay mineral facies associated with shallow marine shelf and lagoonal environments at tropical latitudes with iron influx from nearby runoff. Its depositional environment is well documented in modern nearshore locations. Recognition of verdine facies clays as the dominant constituent of the MGB clay pellets, rather than glaucony facies clays, allows for a more precise assessment of paleoenvironmental conditions. PMID:24503875
In situ investigations of phase transformations in Fe-sheathed MgB2 wires
NASA Astrophysics Data System (ADS)
Grivel, J.-C.; Pinholt, R.; Andersen, N. H.; Kovác, P.; Husek, I.; Homeyer, J.
2006-01-01
The phase evolution inside Fe-sheathed wires containing precursor powders consisting of a mixture of Mg and B has been studied in situ by means of x-ray diffraction with hard synchrotron radiation (90 keV). Mg was found to disappear progressively during the heating stage. At 500 °C, the intensity of the Mg diffraction lines is reduced by about 20%. This effect is partly attributable to MgO formation. The MgB2 phase was detected from 575 °C. Fe2B was forming at the interface between the sheath and the ceramic core at sintering temperatures of 780 and 700 °C, but not at 650 °C. The formation rate of this phase is strongly dependent on the heat treatment temperature. Its presence can be readily detected as soon as the average interface reaction thickness exceeds 150-200 nm.
NASA Astrophysics Data System (ADS)
Hossain, M. S. A.; Motaman, A.; Çiçek, Ö.; Ağıl, H.; Ertekin, E.; Gencer, A.; Wang, X. L.; Dou, S. X.
2012-12-01
The effects of sintering temperature on the lattice parameters, full width at half maximum (FWHM), strain, critical temperature (Tc), critical current density (Jc), irreversibility field (Hirr), upper critical field (Hc2), and resistivity (ρ) of 10 wt.% silicone oil doped MgB2 bulk and wire samples are investigated in state of the art by this article. The a-lattice parameter of the silicone oil doped samples which were sintered at different temperatures was drastically reduced from 3.0864 Å to 3.0745 Å, compared to the un-doped samples, which indicates the substitution of the carbon (C) into the boron sites. It was found that sintered samples at the low temperature of 600 °C shows more lattice distortion by more C-substitution and higher strain, lower Tc, higher impurity scattering, and enhancement of both magnetic Jc and Hc2, compared to those sintered samples at high temperatures. The flux pinning mechanism has been analyzed based on the extended normalized pinning force density fp = Fp/Fp,max scaled with b = B/Bmax. Results show that surface pinning is the dominant pinning mechanism for the doped sample sintered at the low temperature of 600 °C, while point pinning is dominant for the un-doped sample. The powder in tube (PIT) MgB2 wire was also fabricated by using of this liquid doping and found that both transport Jc and n-factor increased which proves this cheap and abundant silicone oil doping can be a good candidate for industrial application.
Haddad, Ashraf; Bashir, Ahmad; Nimeri, Abdelrahman
2018-05-04
One anastomosis gastric bypass/mini-gastric bypass (OAGB/MGB) was first described in 2001 as a safe and effective procedure. It has been gaining popularity worldwide. Multiple authors have reported the need to re-operate on patients for bile reflux. We report a patient with severe bile reflux after laparoscopic conversion of sleeve gastrectomy (LSG) to OAGB/MGB. A 33-year-old patient underwent a LSG in 2014. Postoperatively, she developed severe gastroesophageal acid reflux. In 2016, she underwent conversion of LSG to OAGB/MGB at the original institution for the treatment of her reflux symptoms. In 2017, she presented to us with epigastric pain, worsening reflux symptoms, steatorrhea, hypoproteinemia (6 g/dl), and body mass index of 25 kg/m 2 . Preoperative endoscopy revealed bile reflux, suture bezoar, and ulceration at the anastomosis. Laparoscopic exploration started by identifying the anatomy and measuring the lengths of the biliopancreatic limb (350 cm) and the common channel (450 cm). Upon dissecting the pouch, a gastrogastric fistula extending from the antrum to the pouch was encountered. This was confirmed with intraoperative endoscopy with bile refluxing to the pouch. The fistula, antrum, and part of the pouch were resected. The patient was converted to Roux-en-Y gastric bypass. She had an uneventful postoperative recovery. At 3 months of follow-up, her weight was stable and her steatorrhea resolved. Patients with bile reflux after OAGB/MGB need a high index of suspicion to detect unusual causes. Gastrogastric fistula is an unusual etiology of bile reflux that was never reported in the literature previously.
Materials Data on MgB4(H9O8)2 (SG:2) by Materials Project
Kristin Persson
2014-07-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
A bulk superconducting MgB2 cylinder for holding transversely polarized targets
NASA Astrophysics Data System (ADS)
Statera, M.; Balossino, I.; Barion, L.; Ciullo, G.; Contalbrigo, M.; Lenisa, P.; Lowry, M. M.; Sandorfi, A. M.; Tagliente, G.
2018-02-01
An innovative solution is being pursued for the challenging magnetic problem of producing an internal transverse field around a polarized target, while shielding out an external longitudinal field from a detector. A hollow bulk superconductor can trap a transverse field that is present when cooled through its transition temperature, and also shield its interior from any subsequent field changes. A feasibility study with a prototype bulk MgB2 superconducting cylinder is described. Promising measurements taken of the interior field retention and exterior field exclusion, together with the corresponding long-term stability performance, are reported. In the context of an electron scattering experiment, such a solution minimizes beam deflection and the energy loss of reaction products, while also eliminating the heat load to the target cryostat from current leads that would be used with conventional electromagnets.
A persistent-mode 0.5 T solid-nitrogen-cooled MgB2 magnet for MRI
Ling, Jiayin; Voccio, John P.; Hahn, Seungyong; Qu, Timing; Bascuñán, Juan; Iwasa, Yukikazu
2017-01-01
This paper presents construction details and test results of a persistent-mode 0.5-T MgB2 magnet developed at the Francis Bitter Magnet Lab, MIT. The magnet, of 276-mm inner diameter and 290-mm outer diameter, consisted of a stack of 8 solenoidal coils with a total height of 460 mm. Each coil was wound with monofilament MgB2 wire, equipped with a persistent-current switch and terminated with a superconducting joint, forming an individual superconducting loop. Resistive solder joints connected the 8 coils in series. The magnet, after being integrated into a testing system, immersed in solid nitrogen, was operated in a temperature range of 10–13 K. A two-stage cryocooler was deployed to cool a radiation shield and the cold mass that included mainly ~60 kg of solid nitrogen and the magnet. The solid nitrogen was capable of providing a uniform and stable cryogenic environment to the magnet. The magnet sustained a 0.47-T magnetic field at its center persistently in a range of 10–13 K. The current in each coil was inversely calculated from the measured field profile to determine the performance of each coil in persistent-mode operation. Persistent-current switches were successfully operated in solid nitrogen for ramping the magnet. They were also designed to absorb magnetic energy in a protection mechanism; its effectiveness was evaluated in an induced quench. PMID:28966476
2D Array of Far-infrared Thermal Detectors: Noise Measurements and Processing Issues
NASA Technical Reports Server (NTRS)
Lakew, B.; Aslam, S.; Stevenson, T.
2008-01-01
A magnesium diboride (MgB2) detector 2D array for use in future space-based spectrometers is being developed at GSFC. Expected pixel sensitivities and comparison to current state-of-the-art infrared (IR) detectors will be discussed.
Theoretical modeling of critical temperature increase in metamaterial superconductors
NASA Astrophysics Data System (ADS)
Smolyaninov, Igor; Smolyaninova, Vera
Recent experiments have demonstrated that the metamaterial approach is capable of drastic increase of the critical temperature Tc of epsilon near zero (ENZ) metamaterial superconductors. For example, tripling of the critical temperature has been observed in Al-Al2O3 ENZ core-shell metamaterials. Here, we perform theoretical modelling of Tc increase in metamaterial superconductors based on the Maxwell-Garnett approximation of their dielectric response function. Good agreement is demonstrated between theoretical modelling and experimental results in both aluminum and tin-based metamaterials. Taking advantage of the demonstrated success of this model, the critical temperature of hypothetic niobium, MgB2 and H2S-based metamaterial superconductors is evaluated. The MgB2-based metamaterial superconductors are projected to reach the liquid nitrogen temperature range. In the case of an H2S-based metamaterial Tc appears to reach 250 K. This work was supported in part by NSF Grant DMR-1104676 and the School of Emerging Technologies at Towson University.
NASA Astrophysics Data System (ADS)
Zhai, H. Y.; Christen, H. M.; Zhang, L.; Cantoni, C.; Paranthaman, M.; Sales, B. C.; Christen, D. K.; Lowndes, D. H.
2001-10-01
Superconducting magnesium diboride films with Tc0˜24 K and sharp transition ˜1 K were prepared on Si by pulsed-laser deposition from stoichiometric MgB2 target. Contrary to previous reports, anneals at 630 °C and a background of 2×10-4Ar/4%H2 were performed without the requirement of Mg vapor or Mg cap layer. This integration of superconducting MgB2 film on Si may thus prove enabling in superconductor-semiconductor device applications. Images of surface morphology and cross-section profiles by scanning electron microscopy show that the films have a uniform surface morphology and thickness. Energy-dispersive spectroscopy study reveals these films were contaminated with oxygen, originating either from the growth environment or from sample exposure to air. The oxygen contamination may account for the low Tc for those in situ annealed films, while the use of Si as a substrate does not result in a decrease in Tc as compared to other substrates.
Critical Current Test of Liquid Hydrogen Cooled HTC Superconductors under External Magnetic Field
NASA Astrophysics Data System (ADS)
Shirai, Yasuyuki; Shiotsu, Masahiro; Tatsumoto, Hideki; Kobayashi, Hiroaki; Naruo, Yoshihiro; Nonaka, Satoshi; Inatani, Yoshifumi
High-Tc (HTC) superconductors including MgB2 will show excellent properties under temperature of Liquid Hydrogen (LH2:20K), which has large latent heat and low viscosity coefficient. In order to design and fabricate the LH2 cooled superconducting energy devices, we must clear the cooling property of LH2 for superconductors, the cooling system and safety design of LH2 cooled superconducting devices and electro-magnetic property evaluation of superconductors (BSCCO, REBCO and MgB2) and their magnets cooled by LH2. As the first step of the study, an experimental setup which can be used for investigating heat transfer characteristics of LH2 in a pool and also in forced flow (circulation loop with a pump), and also for evaluation of electro-magnetic properties of LH2 cooled superconductors under external magnetic field (up to 7 T). In this paper, we will show a short sketch of the experimental set-up, practical experiences in safety operation of liquid hydrogen cooling system and example test results of critical current evaluation of HTC superconductors cooled by LH2.
A bulk superconducting MgB 2 cylinder for holding transversely polarized targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Statera, M.; Balossino, I.; Barion, L.
An innovative solution is being pursued for the challenging magnetic problem of producing an internal transverse field around a polarized target, while shielding out an external longitudinal field from a detector. A hollow bulk superconductor can trap a transverse field that is present when cooled through its transition temperature, and also shield its interior from any subsequent field changes. Here, a feasibility study with a prototype bulk MgB 2 superconducting cylinder is described. Promising measurements taken of the interior field retention and exterior field exclusion, together with the corresponding long-term stability performance, are reported. In the context of an electronmore » scattering experiment, such a solution minimizes beam deflection and the energy loss of reaction products, while also eliminating the heat load to the target cryostat from current leads that would be used with conventional electromagnets.« less
Momentum dependence of the superconducting gap and in-gap states in MgB 2 multiband superconductor
Mou, Daixiang; Jiang, Rui; Taufour, Valentin; ...
2015-06-29
We use tunable laser-based angle-resolved photoemission spectroscopy to study the electronic structure of the multiband superconductor MgB 2. These results form the baseline for detailed studies of superconductivity in multiband systems. We find that the magnitude of the superconducting gap on both σ bands follows a BCS-like variation with temperature with Δ 0 ~ 7meV. Furthermore, the value of the gap is isotropic within experimental uncertainty and in agreement with a pure s-wave pairing symmetry. We observe in-gap states confined to k F of the σ band that occur at some locations of the sample surface. As a result, themore » energy of this excitation, ~ 3 meV, was found to be somewhat larger than the previously reported gap on π Fermi sheet and therefore we cannot exclude the possibility of interband scattering as its origin.« less
A bulk superconducting MgB 2 cylinder for holding transversely polarized targets
Statera, M.; Balossino, I.; Barion, L.; ...
2017-11-06
An innovative solution is being pursued for the challenging magnetic problem of producing an internal transverse field around a polarized target, while shielding out an external longitudinal field from a detector. A hollow bulk superconductor can trap a transverse field that is present when cooled through its transition temperature, and also shield its interior from any subsequent field changes. Here, a feasibility study with a prototype bulk MgB 2 superconducting cylinder is described. Promising measurements taken of the interior field retention and exterior field exclusion, together with the corresponding long-term stability performance, are reported. In the context of an electronmore » scattering experiment, such a solution minimizes beam deflection and the energy loss of reaction products, while also eliminating the heat load to the target cryostat from current leads that would be used with conventional electromagnets.« less
Materials Data on Mg(B6C)2 (SG:74) by Materials Project
Kristin Persson
2014-07-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Mg(B2O5)3 (SG:61) by Materials Project
Kristin Persson
2016-05-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
NASA Astrophysics Data System (ADS)
Segler, Kurt; Williams, Wendell; Siegel, Edward
2011-03-01
Detailed are old blowpipe new applications: charcoal-block reduction of borates to yield ("N-NW" of MgB2) Overhauser-[PR 35,1,411(1987); Intl.J.Mod.Phys.1, 2 & 4, 927(1987)]-"land" predicted high-EST-POSSIBLE Tc SC "LiD2"; very-early: Siegel[Phys.Stat.Sol.(a)11,45(1972);Semiconductors.and Insulators 5: 39,47,62(1979)] carb-IDES SOLID-state phase-TRANSITIONED CHEMICALLY-REDOX"-REACTED STABLE PERMANENT LONG-term NOT "CO2" BUT C-sequestration: PROFITABLE "Grab and Sell" TRUMPS "cap and trade"!!!; Mott alloying/vertical metal-insulator transitions in "borax-(GLASS)-beads"; and very-earlySiegel [{3rd Intl.Conf.Alt.Energy }(1980)-vol.5/p.459!!!] "FLYING-WATER" Hindenberg-effect (H2-UP;H2O-DOWN) via Hydrogen-maximal-Archimedes-buoyancy "chemical-rain-in-pipelines", only via Siegel proprietary "magnetic-hydrogen-valve"(MHV): Renewables-Hydrogen-Water flexible versatile agile scaleable retrofitable integrated operating-system for PERMANENT drought(s)-elimination FOREVER!!!
Tokoro, Kazuhiko; Sato, Hironobu; Yamamoto, Mayumi; Nagai, Yoshiko
2015-12-01
Attention is the process by which information and selection occurs, the thalamus plays an important role in the selective attention of visual and auditory information. Selective attention is a conscious effort; however, it occurs subconsciously, as well. The lateral geniculate body (LGB) filters visual information before it reaches the cortex (bottom-up attention). The thalamic reticular nucleus (TRN) provides a strong inhibitory input to both the LGB and pulvinar. This regulation involves focusing a spotlight on important information, as well as inhibiting unnecessary background information. Behavioral contexts more strongly modulate activity of the TRN and pulvinar influencing feedforward and feedback information transmission between the frontal, temporal, parietal and occipital cortical areas (top-down attention). The medial geniculate body (MGB) filters auditory information the TRN inhibits the MGB. Attentional modulation occurring in the auditory pathway among the cochlea, cochlear nucleus, superior olivary complex, and inferior colliculus is more important than that of the MGB and TRN. We also discuss the attentional consequence of thalamic hemorrhage.
NASA Astrophysics Data System (ADS)
Kumar, Anuj; Pawar, Shuvam; Singh, Kirandeep; Kaur, Davinder
2018-05-01
In this study, we have reported the influence of growth temperature on perovskite phase evolution in sputtered deposited high quality Pb1-x Lax (Zr0.9 Ti0.1)O3 (PLZT) thin films on Pt/Ti/SiO2/Si substrate. PLZT thin films were fabricated at substrate temperature ranging from 400 to 700 °C. We have investigated the structural, dielectric, ferroelectric and leakage current characteristics of these thin films. XRD patterns reveal that 600 °C is the optimized temperature to deposit highly (110) oriented perovskite phase PLZT thin film. The further increase in temperature (700 °) causes reappearance of additional peaks corresponding to lead deficient pyrochlore phase. All PLZT thin films show decrease in dielectric constant with frequency. However, PLZT thin film fabricated at 600 °C displays dielectric constant ˜532 at 1 MHz frequency which is relatively higher than other deposited thin films. The P-E loops of these PLZT thin films exhibit strong dependence on deposition temperature. The pure perovskite PZLT thin film shows saturation polarization of ˜51.2µC/cm2 and coercive field (2Ec) ˜67.85 kV/cm. These high quality PLZT thin films finds their applications in non-volatile memory and nano-electro-mechanical systems (NEMS).
High-performance thin layer chromatography to assess pharmaceutical product quality.
Kaale, Eliangiringa; Manyanga, Vicky; Makori, Narsis; Jenkins, David; Michael Hope, Samuel; Layloff, Thomas
2014-06-01
To assess the sustainability, robustness and economic advantages of high-performance thin layer chromatography (HPTLC) for quality control of pharmaceutical products. We compared three laboratories where three lots of cotrimoxazole tablets were assessed using different techniques for quantifying the active ingredient. The average assay relative standard deviation for the three lots was 1.2 with a range of 0.65-2.0. High-performance thin layer chromatography assessments are yielding valid results suitable for assessing product quality. The local pharmaceutical manufacturer had evolved the capacity to produce very high quality products. © 2014 John Wiley & Sons Ltd.
High quality atomically thin PtSe2 films grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Yan, Mingzhe; Wang, Eryin; Zhou, Xue; Zhang, Guangqi; Zhang, Hongyun; Zhang, Kenan; Yao, Wei; Lu, Nianpeng; Yang, Shuzhen; Wu, Shilong; Yoshikawa, Tomoki; Miyamoto, Koji; Okuda, Taichi; Wu, Yang; Yu, Pu; Duan, Wenhui; Zhou, Shuyun
2017-12-01
Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality thin films with large size and controlled thickness is critical. Here we report the first successful epitaxial growth of high quality PtSe2 films by molecular beam epitaxy. Atomically thin films from 1 ML to 22 ML have been grown and characterized by low-energy electron diffraction, Raman spectroscopy and x-ray photoemission spectroscopy. Moreover, a systematic thickness dependent study of the electronic structure is revealed by angle-resolved photoemission spectroscopy (ARPES), and helical spin texture is revealed by spin-ARPES. Our work provides new opportunities for growing large size single crystalline films to investigate the physical properties and potential applications of PtSe2.
Navarrete, Salvador; Leyba, José Luis; Ll, Salvador Navarrete; Borjas, Guillermo; Tapia, José León; Alcázar, Ruben
2018-05-01
Obesity has experienced worldwide increase and surgery has become the treatment that has achieved the best results. Several techniques have been described; the most popular are vertical gastrectomy (GV) and the Roux-en-Y gastric bypass (RYGB). However, mini-gastric bypass/one anastomosis gastric bypass (MGB/OAGB) has gained popularity due to its simplicity and good results. To comparatively evaluate the results of MGB/OAGB with those of RYGB with 1-year follow-up. The paper presents a comparative case and control study of 100 patients that underwent MGB/OAGB surgery and another 100 with RYGB surgery, operated between 2008 and 2016. Patients were not submitted to revision surgery and had the following pre-operative variables: age 40.46 ± 12.4 vs. 39.43 ± 10.33 years; sex 64 and 54 women, 36 and 46 men; BMI 44.8 ± 12.06 and 45.29 ± 8.82 kg/m 2 ; 50 and 54 cases with comorbidities, respectively, these being non-significant differences. The surgical time was 69.01 ± 4.62 (OAGB) vs. 88.98 ± 3.44 min; the time of hospitalization was 2 days, reaching a BMI of 27.7 ± 7.85 and 29 ± 4.52 kg/m 2 , with an excess weight loss 1 year after surgery of 89.4 vs. 85.9%, respectively. The morbidity rates are 9% for OAGB and 11% for the RYGB. There was a comorbidity resolution of 84.4 and 83.7% respectively, without mortality. The results show the benefits of both techniques, OAGB being the easiest to perform and with less surgical time.
Electron-phonon coupling and superconductivity in MgB2 under hydrostatic pressure.
NASA Astrophysics Data System (ADS)
Quijano, Ramiro; Aguayo, Aaron
2005-03-01
We have studied the dynamics and coupling of the E2g phonon mode with the σ-band in MgB2 under pressure using the Frozen Phonon Approximation. The results were obtained by means of first-principles total-energy calculations using the full potential Linearized Augmented Plane Wave (LAPW) method and the Generalized Gradient Approximation (GGA) for the exchange-correlation potential. We present results for the evolution of the anharmonicity and phonon frequency of the E2g mode, the electron-phonon coupling constant, and Tc as a function of hydrostatic pressure in the range 0-40 GPa. We find that the phonon frequency increases monotonically with pressure, but the the anharmonicity, the electron-phonon coupling and Tc decreases with pressure. We have obtained a very good agreement between the calculated Tc(P) and the experimental data available in the literature, in particular with the experimental data corresponding to monocystalline samples. This work was supported by Consejo Nacional de Ciencia y Tecnolog'ia (CONACYT, M'exico) under Grant No. 43830-F.
Synthesis of nanoscale magnesium diboride powder
NASA Astrophysics Data System (ADS)
Finnemore, D. K.; Marzik, J. V.
2015-12-01
A procedure has been developed for the preparation of small grained magnesium diboride (MgB2) powder by reacting nanometer size boron powder in a magnesium vapor. Plasma synthesized boron powder that had particle sizes ranging from 20 to 300nm was mixed with millimeter size chunks of Mg by rolling stoichiometric amounts of the powders in a sealed cylindrical container under nitrogen gas. This mixture then was placed in a niobium reaction vessel, evacuated, and sealed by e-beam welding. The vessel was typically heated to approximately 830°C for several hours. The resulting MgB2 particles have a grain size in the 200 nm to 800 nm range. Agglomerates of loosely bound particles could be broken up by light grinding in a mortar and pestle. At 830°C, many particles are composed of several grains grown together so that the average particle size is about twice the average grain size. Experiments were conducted primarily with undoped boron powder, but carbon-doped boron powder showed very similar results.
Superheating in coated niobium
NASA Astrophysics Data System (ADS)
Junginger, T.; Wasserman, W.; Laxdal, R. E.
2017-12-01
Using muon spin rotation it is shown that the field of first flux penetration {H}{entry} in Nb is enhanced by about 30% if coated with an overlayer of Nb3Sn or MgB2. This is consistent with an increase from the lower critical magnetic field {H}{{c}1} up to the superheating field {H}{sh} of the Nb substrate. In the experiments presented here coatings of Nb3Sn and MgB2 with a thickness between 50 and 2000 nm have been tested. {H}{entry} does not depend on material or thickness. This suggests that the energy barrier at the boundary between the two materials prevents flux entry up to {H}{sh} of the substrate. A mechanism consistent with these findings is that the proximity effect recovers the stability of the energy barrier for flux penetration, which is suppressed by defects for uncoated samples. Additionally, a low temperature baked Nb sample has been tested. Here a 6% increase of {H}{entry} was found, also pushing {H}{entry} beyond {H}{{c}1}.
Vahidnia, Ali; van Empel, Pieter Jan; Costa, Sandra; Oud, Rob T N; van der Straaten, Tahar; Bliekendaal, Harry; Spaargaren, Joke
2015-07-01
A 53-year-old homosexual man presented at his general practitioner (GP) practice with a suspicion of sexually transmitted infection. Initial NAAT screening was performed for Chlamydia trachomatis and Neisseria gonorrhoeae. The patient was positive for Neisseria gonorrhoeae both for his urine and rectal sample. The subsequent confirmation test for Neisseria gonorrhoeae by a second laboratory was only confirmed for the urine sample and the rectal sample was negative. We report a case of a potential false-negative diagnosis of Neisseria gonorrhoeae due to mutations of DNA sequence in the probe region of opa-MGB assay of the rectal sample. The patient did not suffer any discomfort as diagnosis of Neisseria gonorrhoeae in his urine sample had already led to treatment by prescribing the patient with Ceftriaxone 500 mg IV dissolved in 1 ml lidocaine 2% and 4 mL saline. The patient also received a prescription for Azithromycin (2x500 mg).
STS studies of the pi-band superconductivity in MgB2 in a transverse field
NASA Astrophysics Data System (ADS)
Griggs, C.; Eskildsen, M. R.; Zhigadlo, N. D.; Karpinski, J.
2012-02-01
Since being discovered MgB2 has become the paradigm for two-band/two-gap superconductivity. Early scanning tunneling spectroscopy (STS) measurements, showed a rapid suppression of the superconductivty in the isotropic π-band for modest applied fields H c. These measurements were performed with the tunnel current (It) parallel to the crystalline c-axis which couple, almost exclusively, to the π-band, and with the suppression attributed to vortex core overlap. Here we report STS measurements performed in a transverse field, such that Itc H. In this configuration no vortices are cutting through the image plane, and instead the superconducting phase is affected by the Meissner currents running within one penetration depth of the sample surface. Within this field orientation we observe far less suppression of the superconducting state in the π-band compared to the earlier measurements with H c. A clear gap is seen up to H= 0.9 T.
First principles study of Al and C-doped MgB2: evolution of two gaps and critical temperature
NASA Astrophysics Data System (ADS)
de La Peña-Seaman, Omar; de Coss, Romeo; Heid, Rolf; Bohnen, Klaus-Peter
2008-03-01
We have studied the electron-phonon and superconducting properties of the Mg1-xAlxB2 and MgB2(1-x)C2x alloys within the framework of density functional perturbation theory, using a mixed-basis pseudopotential method and the virtual crystal approximation (VCA) for modeling the alloys. For both systems, the Eliashberg spectral function (2̂F(φ)) and the electron-phonon coupling parameter (λ) have been calculated in the two band model (σ,π) for several concentrations until x(Al)=0.55 and x(C)=0.175. Using the calculated 2̂ijF(φ) and a diagonal expression for the Coulomb pseudopotential matrix, &*circ;, we solved numerically the Eliashberg gap equations in the two band model without interband scattering. We reproduce the experimental decreasing behavior of δσ(x), δπ(x), and Tc(x) for both alloy systems. The role of the interband scattering in the observed behavior of the superconducting gaps and Tc in the Al- and C-MgB2 alloys is discussed. This research was supported by Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt) under Grant No. 43830-F.
NASA Astrophysics Data System (ADS)
Wunderman, Irwin; Siegel, Edward Carl-Ludwig; Lewis, Thomas; Young, Frederic; Smith, Adolph; Dresschhoff-Zeller, Gieselle
2013-03-01
SHMUTZ: ``wet-graphite''Scheike-....[Adv.Mtls.(7/16/12)]hyper/super-SCHMUTZ-conductor(S!!!) = ``wet''(?)-``graphite''(?) = ``graphene''(?) = water(?) = hydrogen(?) =ultra-heavy proton-bands(???) = ...(???) claimed room/high-Tc/high-Jc superconductOR ``p''-``wave''/ BAND(!!!) superconductIVITY and actualized/ instantiated MgB2 high-Tc superconductors and their BCS- superconductivity: Tc Siegel[ICMAO(77);JMMM 7,190(78)] connection to SiegelJ.Nonxline-Sol.40,453(80)] disorder/amorphous-superconductivity in nano-powders mechanical bulk/shear(?)-moduli/hardness: proton-irradiated diamond, powders TiB2, TiC,{Siegel[Semis. & Insuls.5:39,47, 62 (79)])-...``VS''/concommitance with Siegel[Phys.Stat.Sol.(a)11,45(72)]-Dempsey [Phil.Mag. 8,86,285(63)]-Overhauser-(Little!!!)-Seitz-Smith-Zeller-Dreschoff-Antonoff-Young-...proton-``irradiated''/ implanted/ thermalized-in-(optimal: BOTH heat-capacity/heat-sink & insulator/maximal dielectric-constant) diamond: ``VS'' ``hambergite-borate-mineral transformable to Overhauser optimal-high-Tc-LiBD2 in Overhauser-(NW-periodic-table)-Land: CO2/CH4-ETERNAL-sequestration by-product: WATER!!!: physics lessons from
In-situ study on growth units of Ba2Mg(B3O6)2 crystal
NASA Astrophysics Data System (ADS)
Lv, X. S.; Sun, Y. L.; Tang, X. L.; Wan, S. M.; Zhang, Q. L.; You, J. L.; Yin, S. T.
2013-05-01
BMBO (Ba2Mg(B3O6)2 crystal) is an excellent birefringent crystal and a potential stimulated Raman scattering (SRS) crystal. In this paper, high temperature Raman spectroscopy was used to in-situ study the melt structure near a BMBO crystal-melt interface. [B3O6]3- groups were found in this region. The result reveals that both of BaO bonds and MgO bonds are the weak bonds in the BMBO crystal structure. During the melting process, the crystal structure broke into Ba2+ ions, Mg2+ ions and [B3O6]3- groups. Our experimental results confirmed that the well-developed faces of BMBO crystals are the (001), (101) and (012) faces. Based on attachment energy theory, the crystal growth habit was discussed. The (001) (101) and (012) crystal faces linked by the weak BaO bonds and MgO bonds have smaller attachment energies and slower growth rates, and thus present in the final morphology. The (012) crystal face has a multi-terrace structure, which suggests that BMBO crystal grows with a layer-by-layer mode.
Estimation of hysteretic losses for MgB2 tapes under the operating conditions of a generator
NASA Astrophysics Data System (ADS)
Vargas-Llanos, Carlos Roberto; Zermeño, Víctor M. R.; Sanz, Santiago; Trillaud, Frederic; Grilli, Francesco
2016-03-01
Hysteretic losses in the MgB2 wound superconducting coils of a 550 kW synchronous hybrid scaled generator were estimated as part of the European project SUPRAPOWER led by the Spanish Fundación Tecnalia Research & Innovation. Particular interest was given to the losses caused by the magnetic flux ripples in the rotor coils originating from the conventional stator during nominal operation. To compute these losses, a 2D finite element analysis was conducted and Maxwell’s equations written in the H-formulation were solved considering the nonlinear material properties of the conductor materials. The modeled tapes are made of multiple MgB2 filaments embedded in a Ni matrix and soldered to a high purity copper strip and insulated with Dacron braid. Three geometrical models of single tape cross sections of decreasing complexity were studied: (1) the first model reproduced closely the actual cross section obtained from tape micrographs. (2) The second model was obtained from the computed elasto-plastic deformation of a round Ni wire. (3) The third model was based on a simplified cross section with the superconducting filaments bundled in a single elliptical bulky structure. The last geometry allowed the validation of the modeling technique by comparing numerical losses with results from well-established analytical expressions. Additionally, the following cases of filament transpositions of the multi-filamentary tape were studied: no transposition, partial and full transposition; thereby improving understanding of the relevance of the tape fabrication process on the magnitude of the determination of ac losses. Finally, choosing the right level of geometrical detail, the following operational regimes of the machine and its impact on individual superconducting tape losses in the rotor were studied: bias-dc current, ramping current under ramping background field and magnetic flux ripples under dc background current and field.
Influence of pressure and volume on superconductivity in Mg1-xAlxB2 and Mg(B1-yCy)2
NASA Astrophysics Data System (ADS)
Sharma, Roopam; Singh, Namita; Khenata, R.; Varshney, Dinesh
2018-05-01
A quantitative analysis of observed parameters is studied that influences superconducting state in Al (C) doped MgB2. The three square well model with three interactions namely, the Coulomb the electron-phonon and the electron- charge fluctuations is based on indirect-exchange Cooper pairing of electrons (quasiparticles) via adhoc attractive charge fluctuations apart from phonons. The relevant energy gap expressions are solved. The indirect-exchange formalism provides a unique set of electronic parameters [electron-phonon (λσσph), electron-charge fluctuations (λσσpl), electron-electron (μσσ) and Coulomb screening parameter (μσσ*)] which, in particular, reproduce the dependence of Tc on Al (C) doping concentration and pressure P. Also, the variation in slope dTc/dP with increased Al (C) substitution (0 ≤ x ≤ 0.5)(0 ≤ y ≤ 0.125) is studied. Moreover, variation of dlnTc/dV Å-3 as a function of electron-phonon coupling strength and as a function of Coulomb screening parameter is studied.
Conductors for commercial MRI magnets beyond NbTi: requirements and challenges
NASA Astrophysics Data System (ADS)
Parizh, Michael; Lvovsky, Yuri; Sumption, Michael
2017-01-01
Magnetic resonance imaging (MRI), a powerful medical diagnostic tool, is the largest commercial application of superconductivity. The superconducting magnet is the largest and most expensive component of an MRI system. The magnet configuration is determined by competing requirements including optimized functional performance, patient comfort, ease of siting in a hospital environment, minimum acquisition and lifecycle cost including service. In this paper, we analyze conductor requirements for commercial MRI magnets beyond traditional NbTi conductors, while avoiding links to a particular magnet configuration or design decisions. Potential conductor candidates include MgB2, ReBCO and BSCCO options. The analysis shows that no MRI-ready non-NbTi conductor is commercially available at the moment. For some conductors, MRI specifications will be difficult to achieve in principle. For others, cost is a key barrier. In some cases, the prospects for developing an MRI-ready conductor are more favorable, but significant developments are still needed. The key needs include the development of, or significant improvements in: (a) conductors specifically designed for MRI applications, with form-fit-and-function readily integratable into the present MRI magnet technology with minimum modifications. Preferably, similar conductors should be available from multiple vendors; (b) conductors with improved quench characteristics, i.e. the ability to carry significant current without damage while in the resistive state; (c) insulation which is compatible with manufacturing and refrigeration technologies; (d) dramatic increases in production and long-length quality control, including large-volume conductor manufacturing technology. In-situ MgB2 is, perhaps, the closest to meeting commercial and technical requirements to become suitable for commercial MRI. Conductor technology is an important, but not the only, issue in introduction of HTS/MgB2 conductor into commercial MRI magnets. These new conductors, even when they meet the above requirements, will likely require numerous modifications and developments in the associated magnet technology.
Superconductivity of magnesium diboride
Bud’ko, Sergey L.; Canfield, Paul C.
2015-07-15
Over the past 14 years MgB 2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.
NASA Astrophysics Data System (ADS)
Smolyaninov, Igor I.; Smolyaninova, Vera N.
2018-05-01
Searching for natural materials exhibiting larger electron-electron interactions constitutes a traditional approach to high-temperature superconductivity research. Very recently, we pointed out that the newly developed field of electromagnetic metamaterials deals with the somewhat related task of dielectric response engineering on a sub-100-nm scale. Considerable enhancement of the electron-electron interaction may be expected in such metamaterial scenarios as in epsilon near-zero (ENZ) and hyperbolic metamaterials. In both cases, dielectric function may become small and negative in substantial portions of the relevant four-momentum space, leading to enhancement of the electron pairing interaction. This approach has been verified in experiments with aluminum-based metamaterials. Metamaterial superconductor with Tc=3.9 K have been fabricated, which is three times that of pure aluminum (Tc=1.2 K), which opens up new possibilities to improve the Tc of other simple superconductors considerably. Taking advantage of the demonstrated success of this approach, the critical temperature of hypothetical niobium, MgB2- and H2S-based metamaterial superconductors is evaluated. The MgB2-based metamaterial superconductors are projected to reach the liquid nitrogen temperature range. In the case of an H2S-based metamaterial, the projected Tc appears to reach 250 K.
Josephson junction devices: Model quantum mechanical systems and medical applications
NASA Astrophysics Data System (ADS)
Chen, Josephine
In this dissertation, three experiments using Josephson junction devices are described. In Part I, the effect of dissipation on tunneling between charge states in a superconducting single-electron transistor (sSET) was studied. The sSET was fabricated on top of a semi-conductor heterostructure with a two-dimensional electron gas (2DEG) imbedded beneath the surface. The 2DEG acted as a dissipative ground plane. The sheet resistance of the 2DEG could be varied in situ by applying a large voltage to a gate on the back of the substrate. The zero-bias conductance of the sSET was observed to increase with increasing temperature and 2DEG resistance. Some qualitative but not quantitative agreement was found with theoretical calculations of the functional dependence of the conductance on temperature and 2DEG resistance. Part II describes a series of experiments performed on magnesium diboride point-contact junctions. The pressure between the MgB2 tip and base pieces could be adjusted to form junctions with different characteristics. With light pressure applied between the two pieces, quasiparticle tunneling in superconductor-insulator-superconductor junctions was measured. From these data, a superconducting gap of approximately 2 meV and a critical temperature of 29 K were estimated. Increasing the pressure between the MgB2 pieces formed junctions with superconductor-normal metal-superconductor characteristics. We used these junctions to form MgB2 superconducting quantum interference devices (SQUIDS). Noise levels as low as 35 fT/Hz1/2 and 4 muphi 0/Hz1/2 at 1 kHz were measured. In Part III, we used a SQUID-based instrument to acquire magnetocardiograms (MCG), the magnetic field signal measured from the human heart. We measured 51 healthy volunteers and 11 cardiac patients both at rest and after treadmill exercise. We found age and sex related differences in the MCG of the healthy volunteers that suggest that these factors should be considered when evaluating the MCG for disease. We also defined a spatio-temporal MCG parameter, the repolarization stabilization interval, which successfully discriminated our patients from our healthy controls.
Meylan, Sylvain; Robert, Daniel; Estrade, Christine; Grimbuehler, Valérie; Péter, Olivier; Meylan, Pascal R; Sahli, Roland
2008-02-01
HSV-1 and HSV-2 cause CNS infections of dissimilar clinico-pathological characteristics with prognostic and therapeutic implications. To validate a type-specific real-time PCR that uses MGB/LNA Taqman probes and to review the virologico-clinical data of 25 eligible patients with non-neonatal CNS infections. This real-time PCR was evaluated against conventional PCR (26 CSF and 20 quality controls), and LightCycler assay (51 mucocutaneous, 8 CSF and 32 quality controls) and culture/immunofluorescence (75 mucocutaneous) to assess typing with independent methods. Taqman real-time PCR detected 240 HSV genomes per ml CSF, a level appropriate for the management of patients, and provided unambiguous typing for the 104 positive (62 HSV-1 and 42 HSV-2) out the 160 independent clinical samples tested. HSV type diagnosed by Taqman real-time PCR predicted final diagnosis (meningitis versus encephalitis/meningoencephalitis, p<0.001) in 24/25 patients at time of presentation, in contrast to clinical evaluation. Our real-time PCR, as a sensitive and specific means for type-specific HSV diagnosis, provided rapid prognostic information for patient management.
LPCVD homoepitaxy of Si doped β-Ga2O3 thin films on (010) and (001) substrates
NASA Astrophysics Data System (ADS)
Rafique, Subrina; Karim, Md Rezaul; Johnson, Jared M.; Hwang, Jinwoo; Zhao, Hongping
2018-01-01
This paper presents the homoepitaxy of Si-doped β-Ga2O3 thin films on semi-insulating (010) and (001) Ga2O3 substrates via low pressure chemical vapor deposition with a growth rate of ≥1 μm/h. Both high resolution scanning transmission electron microscopy and X-ray diffraction measurements demonstrated high crystalline quality homoepitaxial growth of these thin films. Atomic resolution STEM images of the as-grown β-Ga2O3 thin films on (010) and (001) substrates show high quality material without extended defects or dislocations. The charge carrier transport properties of the as-grown Si-doped β-Ga2O3 thin films were characterized by the temperature dependent Hall measurement using van der Pauw patterns. The room temperature carrier concentrations achieved for the (010) and (001) homoepitaxial thin films were ˜1.2 × 1018 cm-3 and ˜9.5 × 1017 cm-3 with mobilities of ˜72 cm2/V s and ˜42 cm2/V s, respectively.
High-field transport properties of a P-doped BaFe2As2 film on technical substrate
Iida, Kazumasa; Sato, Hikaru; Tarantini, Chiara; Hänisch, Jens; Jaroszynski, Jan; Hiramatsu, Hidenori; Holzapfel, Bernhard; Hosono, Hideo
2017-01-01
High temperature (high-Tc) superconductors like cuprates have superior critical current properties in magnetic fields over other superconductors. However, superconducting wires for high-field-magnet applications are still dominated by low-Tc Nb3Sn due probably to cost and processing issues. The recent discovery of a second class of high-Tc materials, Fe-based superconductors, may provide another option for high-field-magnet wires. In particular, AEFe2As2 (AE: Alkali earth elements, AE-122) is one of the best candidates for high-field-magnet applications because of its high upper critical field, Hc2, moderate Hc2 anisotropy, and intermediate Tc. Here we report on in-field transport properties of P-doped BaFe2As2 (Ba-122) thin films grown on technical substrates by pulsed laser deposition. The P-doped Ba-122 coated conductor exceeds a transport Jc of 105 A/cm2 at 15 T for main crystallographic directions of the applied field, which is favourable for practical applications. Our P-doped Ba-122 coated conductors show a superior in-field Jc over MgB2 and NbTi, and a comparable level to Nb3Sn above 20 T. By analysing the E − J curves for determining Jc, a non-Ohmic linear differential signature is observed at low field due to flux flow along the grain boundaries. However, grain boundaries work as flux pinning centres as demonstrated by the pinning force analysis. PMID:28079117
High-field transport properties of a P-doped BaFe2As2 film on technical substrate
NASA Astrophysics Data System (ADS)
Iida, Kazumasa; Sato, Hikaru; Tarantini, Chiara; Hänisch, Jens; Jaroszynski, Jan; Hiramatsu, Hidenori; Holzapfel, Bernhard; Hosono, Hideo
2017-01-01
High temperature (high-Tc) superconductors like cuprates have superior critical current properties in magnetic fields over other superconductors. However, superconducting wires for high-field-magnet applications are still dominated by low-Tc Nb3Sn due probably to cost and processing issues. The recent discovery of a second class of high-Tc materials, Fe-based superconductors, may provide another option for high-field-magnet wires. In particular, AEFe2As2 (AE: Alkali earth elements, AE-122) is one of the best candidates for high-field-magnet applications because of its high upper critical field, Hc2, moderate Hc2 anisotropy, and intermediate Tc. Here we report on in-field transport properties of P-doped BaFe2As2 (Ba-122) thin films grown on technical substrates by pulsed laser deposition. The P-doped Ba-122 coated conductor exceeds a transport Jc of 105 A/cm2 at 15 T for main crystallographic directions of the applied field, which is favourable for practical applications. Our P-doped Ba-122 coated conductors show a superior in-field Jc over MgB2 and NbTi, and a comparable level to Nb3Sn above 20 T. By analysing the E - J curves for determining Jc, a non-Ohmic linear differential signature is observed at low field due to flux flow along the grain boundaries. However, grain boundaries work as flux pinning centres as demonstrated by the pinning force analysis.
Limbic-Auditory Interactions of Tinnitus: An Evaluation Using Diffusion Tensor Imaging.
Gunbey, H P; Gunbey, E; Aslan, K; Bulut, T; Unal, A; Incesu, L
2017-06-01
Tinnitus is defined as an imaginary subjective perception in the absence of an external sound. Convergent evidence proposes that tinnitus perception includes auditory, attentional and emotional components. The aim of this study was to investigate the thalamic, auditory and limbic interactions associated with tinnitus-related distress by Diffusion Tensor Imaging (DTI). A total of 36 tinnitus patients, 20 healthy controls underwent an audiological examination, as well as a magnetic resonance imaging protocol including structural and DTI sequences. All participants completed the Tinnitus Handicap Inventory (THI) and Visual Analog Scales (VAS) related with tinnitus. The fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were obtained for the auditory cortex (AC), inferior colliculus (IC), lateral lemniscus (LL), medial geniculate body (MGB), thalamic reticular nucleus (TRN), amygdala (AMG), hippocampus (HIP), parahippocampus (PHIP) and prefrontal cortex (PFC). In tinnitus patients the FA values of IC, MGB, TRN, AMG, HIP decreased and the ADC values of IC, MGB, TRN, AMG, PHIP increased significantly. The contralateral IC-LL and bilateral MGB FA values correlated negatively with hearing loss. A negative relation was found between the AMG-HIP FA values and THI and VAS scores. Bilateral ADC values of PHIP and PFC significantly correlated with the attention deficiency-VAS scores. In conclusion, this is the first DTI study to investigate the grey matter structures related to tinnitus perception and the significant correlation of FA and ADC with clinical parameters suggests that DTI can provide helpful information for tinnitus. Magnifying the microstructures in DTI can help evaluate the three faces of tinnitus nature: hearing, emotion and attention.
Novel technique of making thin target foil of high density material via rolling method
NASA Astrophysics Data System (ADS)
Gupta, C. K.; Rohilla, Aman; Singh, R. P.; Singh, Gurjot; Chamoli, S. K.
2018-05-01
The conventional rolling method fails to yield good quality thin foils of thicknesses less than 2 mg/cm2 for high density materials with Z ≥ 70 (e.g. gold, lead). A special and improved technique has been developed to obtain such low thickness good quality gold foils by rolling method. Using this technique thin gold foils of thickness in the range of 0.850-2.5 mg/cm2 were obtained in the present work. By making use of alcohol during rolling, foils of thickness 1 mg/cm2 can be obtained in shorter time with less effort.
Phonon renormalization and anharmonicity in Al-doped MgB2
NASA Astrophysics Data System (ADS)
Ortiz, Filiberto; Aguayo, Aarón
2005-03-01
We have studied the evolution of the E2g phonon mode dynamics in Mg1-xAlxB2 as a function of doping using the Frozen Phonon Approximation (FPA). The doping was modeled in the ab-initio Virtual Crystal Approximation (VCA). The results were obtained by means of first-principles total-energy calculations using the full potential Linearized Augmented Plane Wave (LAPW) method and the Generalized Gradient Approximation (GGA) for the exchange-correlation potential. We present results for the evolution of the phonon frequency and anharmonicity of the E2g mode as a function of Al concentration (x). From a comparison of the experimental data with the calculated E2g phonon frequency we show that the VCA-FPA reproduces the observed phonon renormalization in the whole range of Al concentrations. More interestingly, we find that the anharmonicity gradually decreases with Al doping and vanishes for x(Al)>0.5, that behaviour correlates with the evolution of the measured Raman linewidth in Al-doped MgB2. The significance of these results are discussed in the light of the experimentally observed loss of superconductivity in Mg1- xAlxB2.This work was supported by Consejo Nacional de Ciencia y Tecnolog'ia (CONACYT, M'exico) under Grant. No. 43830-F.
Synthesis of nanoscale magnesium diboride powder
Finnemore, D. K.; Marzik, J. V.
2015-12-18
A procedure has been developed for the preparation of small grained magnesium diboride (MgB 2) powder by reacting nanometer size boron powder in a magnesium vapor. Plasma synthesized boron powder that had particle sizes ranging from 20 to 300nm was mixed with millimeter size chunks of Mg by rolling stoichiometric amounts of the powders in a sealed cylindrical container under nitrogen gas. This mixture then was placed in a niobium reaction vessel, evacuated, and sealed by e-beam welding. The vessel was typically heated to approximately 830°C for several hours. The resulting MgB 2 particles have a grain size in themore » 200 nm to 800 nm range. Agglomerates of loosely bound particles could be broken up by light grinding in a mortar and pestle. At 830°C, many particles are composed of several grains grown together so that the average particle size is about twice the average grain size. Furthermore, experiments were conducted primarily with undoped boron powder, but carbon-doped boron powder showed very similar results.« less
Effect of grain-boundary flux pinning in MgB 2 with columnar structure
NASA Astrophysics Data System (ADS)
Kim, D. H.; Hwang, T. J.; Cha, Y. J.; Seong, W. K.; Kang, W. N.
2009-10-01
We studied the flux pinning properties by grain boundaries in MgB 2 films prepared by using a hybrid physical chemical vapor deposition method on the c-axis oriented sapphire substrates. All the films we report here had the columnar grains with the growth direction perpendicular to the substrates and the grain sizes in the range of a few hundred nanometers. At very low magnetic fields, no discernable grain-boundary (GB) pinning effect was observed in all measuring temperatures, but above those fields, the effect of GB flux pinning was observed as enhanced critical current densities ( Jcs) and reduced resistances when an external magnetic field ( B) was aligned parallel to the c-axis. We interpret the B dependence of Jc in the terms of flux line lattice shear inside the columnar grains activated by dislocations of Frank-Read source while the flux lines pinned by GB act as anchors for dislocations. Magnetic field dependence of flux pinning force density for B parallel to the c-axis was reasonably explained by the above model.
NASA Astrophysics Data System (ADS)
Watanabe, Kentaro; Taniguchi, Tatsuhiko; Sakane, Shunya; Aoki, Shunsuke; Suzuki, Takeyuki; Fujita, Takeshi; Nakamura, Yoshiaki
2017-05-01
Si-based epitaxial β-FeSi2 thin films are attractive as materials for on-chip thermoelectric power generators. We investigated the structure, crystallinity, and thermoelectric properties of β-FeSi2 thin films epitaxially grown on Si(111) substrates by using three different techniques: conventional reactive deposition epitaxy followed by molecular beam epitaxy (RDE+MBE), solid phase epitaxy (SPE) based on codeposition of Fe and Si presented previously, and SPE followed by MBE (SPE+MBE) presented newly by this work. Their epitaxial growth temperatures were fixed at 530 °C for comparison. RDE+MBE thin films exhibited high crystalline quality, but rough surfaces and rugged β-FeSi2/Si(111) interfaces. On the other hand, SPE thin films showed flat surfaces and abrupt β-FeSi2/Si(111) interfaces but low crystallinity. We found that SPE+MBE thin films realized crystallinity higher than SPE thin films, and also had flatter surfaces and sharper interfaces than RDE+MBE thin films. In SPE+MBE thin film growth, due to the initial SPE process with low temperature codeposition, thermal interdiffusion of Fe and Si was suppressed, resulting in the surface flatness and abrupt interface. Second high temperature MBE process improved the crystallinity. We also investigated thermoelectric properties of these β-FeSi2 thin films. Structural factors affecting the thermoelectric properties of RDE+MBE, SPE, and SPE+MBE thin films were investigated.
7 CFR 29.3648 - Thin Leaf (C Group).
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Thin Leaf (C Group). 29.3648 Section 29.3648... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3648 Thin Leaf (C Group). This group consists of leaves... specifications, and tolerances C1L Choice Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth...
7 CFR 29.3648 - Thin Leaf (C Group).
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 2 2012-01-01 2012-01-01 false Thin Leaf (C Group). 29.3648 Section 29.3648... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3648 Thin Leaf (C Group). This group consists of leaves... specifications, and tolerances C1L Choice Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth...
7 CFR 29.3648 - Thin Leaf (C Group).
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 2 2013-01-01 2013-01-01 false Thin Leaf (C Group). 29.3648 Section 29.3648... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3648 Thin Leaf (C Group). This group consists of leaves... specifications, and tolerances C1L Choice Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth...
7 CFR 29.3648 - Thin Leaf (C Group).
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Thin Leaf (C Group). 29.3648 Section 29.3648... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3648 Thin Leaf (C Group). This group consists of leaves... specifications, and tolerances C1L Choice Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth...
7 CFR 29.3648 - Thin Leaf (C Group).
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 2 2014-01-01 2014-01-01 false Thin Leaf (C Group). 29.3648 Section 29.3648... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.3648 Thin Leaf (C Group). This group consists of leaves... specifications, and tolerances C1L Choice Quality Light-brown Thin Leaf. Ripe, thin, open leaf structure, smooth...
The effect of nano-alumina on structural and magnetic properties of MgB2 superconductors
NASA Astrophysics Data System (ADS)
Ansari, Intikhab A.; Shahabuddin, M.; Ziq, Khalil A.; Salem, A. F.; Awana, V. P. S.; Husain, M.; Kishan, H.
2007-08-01
Nano-Al2O3 doped Mg1-xAlxB2 with 0<=x<=6% were synthesized by solid state reaction at 750 °C in Fe tube encapsulation under a vacuum of 10-5 Torr. Resistance measurement shows that the Tc decreases with x and zero resistivity for x = 0 and 6% are obtained at 38 and 35 K, respectively. XRD measurement shows that the lattice parameter and cell volume also decrease monotonically with increasing doping levels. From this we infer that the Al has been substituted in the lattice of MgB2 at Mg sites. Resistivity measurement shows a systematic decrease in Tc with doping which also confirms the substitution of Al. Magnetization studies in the temperature range from 4 to 35 K and in the magnetic field up to 9 T shows a significant increase in the irreversibility field (Hirr), critical current density (Jc) and remanent magnetization (MR) with increasing concentration of the Al2O3 nanoparticle. At low fields we have observed large vortex instabilities (known as a vortex avalanche) associated with all doped samples. The vortex-avalanche effect is reduced with increasing temperature and vanishes near 20 K. The results are discussed in terms of local-vortex instabilities caused by doping of Al2O3 nanoparticles.
Homoepitaxial growth of β-Ga{sub 2}O{sub 3} thin films by low pressure chemical vapor deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafique, Subrina; Han, Lu; Zhao, Hongping, E-mail: hongping.zhao@case.edu
2016-05-02
This paper presents the homoepitaxial growth of phase pure (010) β-Ga{sub 2}O{sub 3} thin films on (010) β-Ga{sub 2}O{sub 3} substrate by low pressure chemical vapor deposition. The effects of growth temperature on the surface morphology and crystal quality of the thin films were systematically investigated. The thin films were synthesized using high purity metallic gallium (Ga) and oxygen (O{sub 2}) as precursors for gallium and oxygen, respectively. The surface morphology and structural properties of the thin films were characterized by atomic force microscopy, X-ray diffraction, and high resolution transmission electron microscopy. Material characterization indicates the growth temperature played anmore » important role in controlling both surface morphology and crystal quality of the β-Ga{sub 2}O{sub 3} thin films. The smallest root-mean-square surface roughness of ∼7 nm was for thin films grown at a temperature of 950 °C, whereas the highest growth rate (∼1.3 μm/h) with a fixed oxygen flow rate was obtained for the epitaxial layers grown at 850 °C.« less
NASA Astrophysics Data System (ADS)
Mallick, Rajnish; Ganguli, Ranjan; Seetharama Bhat, M.
2015-09-01
The objective of this study is to determine an optimal trailing edge flap configuration and flap location to achieve minimum hub vibration levels and flap actuation power simultaneously. An aeroelastic analysis of a soft in-plane four-bladed rotor is performed in conjunction with optimal control. A second-order polynomial response surface based on an orthogonal array (OA) with 3-level design describes both the objectives adequately. Two new orthogonal arrays called MGB2P-OA and MGB4P-OA are proposed to generate nonlinear response surfaces with all interaction terms for two and four parameters, respectively. A multi-objective bat algorithm (MOBA) approach is used to obtain the optimal design point for the mutually conflicting objectives. MOBA is a recently developed nature-inspired metaheuristic optimization algorithm that is based on the echolocation behaviour of bats. It is found that MOBA inspired Pareto optimal trailing edge flap design reduces vibration levels by 73% and flap actuation power by 27% in comparison with the baseline design.
Phan, Manh-Huong; Mandrus, David
2016-12-01
A new type of rotary coolers based on the temperature change (ΔT rot) of an anisotropic superconductor when rotated in a constant magnetic field is proposed.We show that at low temperature the Sommerfeld coefficient (B,Θ) of a single crystalline superconductor, such as MgB 2 and NbS 2, sensitively depends on the applied magnetic field (B) and the orientation of the crystal axis (Θ), which is related to the electronic entropy (S E) and temperature (T) via the expression: S E = T. A simple rotation of the crystal from one axis to one another in a constant magnetic field resultsmore » in a change in and hence S E: ΔSE = ΔγT. A temperature change -ΔT rot ~ 0.94 K from a bath temperature of 2.5 K is achieved by simply rotating the single crystal MgB2 by 90° with respect to the c-axis direction in a fixed field of 2 T. ΔT rot can be tuned by adjusting the strength of B within a wide magnetic field range. Our study paves the way for development of new materials and cryogenic refrigerators that are potentially more energy-efficient, simplified, and compact.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phan, Manh-Huong; Mandrus, David
A new type of rotary coolers based on the temperature change (ΔT rot) of an anisotropic superconductor when rotated in a constant magnetic field is proposed.We show that at low temperature the Sommerfeld coefficient (B,Θ) of a single crystalline superconductor, such as MgB 2 and NbS 2, sensitively depends on the applied magnetic field (B) and the orientation of the crystal axis (Θ), which is related to the electronic entropy (S E) and temperature (T) via the expression: S E = T. A simple rotation of the crystal from one axis to one another in a constant magnetic field resultsmore » in a change in and hence S E: ΔSE = ΔγT. A temperature change -ΔT rot ~ 0.94 K from a bath temperature of 2.5 K is achieved by simply rotating the single crystal MgB2 by 90° with respect to the c-axis direction in a fixed field of 2 T. ΔT rot can be tuned by adjusting the strength of B within a wide magnetic field range. Our study paves the way for development of new materials and cryogenic refrigerators that are potentially more energy-efficient, simplified, and compact.« less
Soto-Muñoz, Lourdes; Teixidó, Neus; Usall, Josep; Viñas, Inmaculada; Torres, Rosario
2014-04-03
The registration of biological control agents requires the development of monitoring systems to detect and quantify the agent in the environment. Pantoea agglomerans CPA-2 is an effective biocontrol agent for postharvest diseases of citrus and pome fruits. The monitoring of CPA-2 in postharvest semi-commercial trials was evaluated by Rodac impression plates and the colonies isolated were confirmed by conventional PCR using the SCAR primers PAGA1 and PAGB1. Samples were taken from different surfaces that had contact with CPA-2, the surrounding environment and working clothes worn by handlers. Moreover, population dynamics of the strain CPA-2 were determined on apple surfaces using both the classical plating technique and real-time quantitative PCR (qPCR). A qPCR assay using a 3'-minor groove-binding (MGB) probe was developed for the specific detection and quantification of P. agglomerans strain CPA-2. Based on the nucleotide sequence of a SCAR fragment of CPA-2, one primer set and TaqMan MGB probe were designed. The primers SP2-F/SP2-R and the TaqMan MGB probe showed a specific detection of strain CPA-2 on apple surfaces, which was verified tested against purified DNA from 17 strains of P. agglomerans, 4 related Pantoea species, and 21 bacterial strains from other genera isolated from whole and also freshly-cut fruit and vegetables. The detection level was approximately 10(3) cells per reaction, and the standard curve was linear within a range of 5log units. Results from semi-commercial trials showed that CPA-2 had a low impact. The maximum persistence of P. agglomerans CPA-2 was not longer than 5days in plastic boxes stored at 0°C. Significant differences in CPA-2 population level dynamics were observed in results obtained by qPCR and dilution plating. These differences may indicate the presence of non-degraded DNA from non-viable cells. In conclusion, qPCR is a novel potential tool to quickly and specifically monitor recent surface colonisation by CPA-2 populations on apple surfaces during large-scale experiments that could ensure efficient and successful treatments. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Xiaoqiong; Jensen, Bent Borg; Højberg, Ole; Noel, Samantha Joan; Canibe, Nuria
2018-06-16
Olsenella scatoligenes is the only skatole-producing bacterium isolated from the pig gut. Skatole, produced from microbial degradation of l-tryptophan, is the main contributor to boar taint, an off-odor and off-flavor taint, released upon heating meat from some entire male pigs. An appropriate method for quantifying O. scatoligenes would help investigating the relationship between O. scatoligenes abundance and skatole concentration in the pig gut. Thus, the present study aimed at developing a TaqMan-MGB probe-based, species-specific qPCR assay for rapid quantification of O. scatoligenes. The use of a MGB probe allowed discriminating O. scatoligenes from other closely related species. Moreover, the assay allowed quantifying down to three target gene copies per PCR reaction using genomic DNA-constructed standards, or 1.5 × 10 3 cells/g digesta, using O. scatoligenes-spiked digesta samples as reference standards. The developed assay was applied to assess the impact of dietary chicory roots on O. scatoligenes in the hindgut of pigs. Olsenella scatoligenes made up < 0.01% of the microbial population in the pig hindgut. Interestingly, the highest number of O. scatoligenes was found in young entire male pigs fed high levels of chicory roots. This indicates that the known effect of chicory roots for reducing skatole production is not by inhibiting the growth of this skatole-producing bacterium in the pig hindgut. Accordingly, the abundance of O. scatoligenes in the hindgut does not seem to be an appropriate indicator of boar taint. The present study is the first to describe a TaqMan-MGB probe qPCR assay for detection and quantification of O. scatoligenes in pigs.
75 FR 69858 - Airworthiness Directives; Eurocopter France (Eurocopter) Model AS332L2 Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-16
... MCAI AD states that a hard landing occurred during in-flight engine failure (one engine inoperative (OEI)) training. An examination revealed the failure of the right-hand main reduction gear module... freewheel unit. In case of a freewheel unit failure on one of the two MGB inputs, either inadvertently or as...
NASA Astrophysics Data System (ADS)
Lee, Dong Jin; Kim, Youn Soo; Shin, Yong Taek; Jeon, Eon Chan; Lee, Sang Hwa; Lee, Hyo-Jong; Lee, Sung Keun; Lee, Jun Hee; Lee, Hae Woo
2010-10-01
We investigated the crack properties in Alloy 625 weld metals and their characteristics using experimentally designed filler wires fabricated by varying the niobium and manganese contents in the flux with the shield metal arc welding (SMAW) process. The fast diffusivity of niobium on the migrated grain boundary (MGB) under strong restraint tensile stress, which was induced by the hardened matrix in weld metal containing high niobium and manganese, accelerated the growth of niobium carbide (NbC) in multipass deposits. Coalescence of microvoids along with incoherent NbC and further propagation induced ductility-dip cracking (DDC) on MGB.
2015-10-16
On October 16, 2015, NASA astronaut Scott Kelly became the new record holder for most time in space by an American astronaut. He broke fellow astronaut Mike Fincke’s mark of 382 days, and will extend that record well beyond 500 days by the end of his yearlong mission. Kelly and Russian cosmonaut Mikhail Kornienko are spending a year aboard the International Space Station, testing the limits of human research, space exploration and the human spirit. Music Credit Info: “SPEED OF SOUND” Written by Guy Rupert Berryman, Jonathan Mark Buckland, William Champion, and Christopher Anthony John Martin Courtesy of Universal Music - MGB Songs on behalf of Universal Music Publ. MGB Ltd.
NASA Astrophysics Data System (ADS)
Shen, Huaxiang; Zhu, Guo-Zhen; Botton, Gianluigi A.; Kitai, Adrian
2015-03-01
The growth mechanisms of high quality GaN thin films on 6H-SiC by sputtering were investigated by X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM). The XRD θ-2θ scans show that high quality ( 0002 ) oriented GaN was deposited on 6H-SiC by reactive magnetron sputtering. Pole figures obtained by 2D-XRD clarify that GaN thin films are dominated by ( 0002 ) oriented wurtzite GaN and { 111 } oriented zinc-blende GaN. A thin amorphous silicon oxide layer on SiC surfaces observed by STEM plays a critical role in terms of the orientation information transfer from the substrate to the GaN epilayer. The addition of H2 into Ar and/or N2 during sputtering can reduce the thickness of the amorphous layer. Moreover, adding 5% H2 into Ar can facilitate a phase transformation from amorphous to crystalline in the silicon oxide layer and eliminate the unwanted { 3 3 ¯ 02 } orientation in the GaN thin film. Fiber texture GaN thin films can be grown by adding 10% H2 into N2 due to the complex reaction between H2 and N2.
Dean S. DeBell; Constance A. Harrington; John. Shumway
2002-01-01
Three thinning treatments (thinned to 3.7 by 3.7 m, thinned to 4.3 by 4.3 m, and an unthinned control treatment with nominal spacing averaging 2.6 by 2.6 m) were installed in a 10-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) plantation growing on a low-quality site at the Wind River Experimental Forest in southwest Washington. Two...
High-field transport properties of a P-doped BaFe2As2 film on technical substrate.
Iida, Kazumasa; Sato, Hikaru; Tarantini, Chiara; Hänisch, Jens; Jaroszynski, Jan; Hiramatsu, Hidenori; Holzapfel, Bernhard; Hosono, Hideo
2017-01-12
High temperature (high-T c ) superconductors like cuprates have superior critical current properties in magnetic fields over other superconductors. However, superconducting wires for high-field-magnet applications are still dominated by low-T c Nb 3 Sn due probably to cost and processing issues. The recent discovery of a second class of high-T c materials, Fe-based superconductors, may provide another option for high-field-magnet wires. In particular, AEFe 2 As 2 (AE: Alkali earth elements, AE-122) is one of the best candidates for high-field-magnet applications because of its high upper critical field, H c2 , moderate H c2 anisotropy, and intermediate T c . Here we report on in-field transport properties of P-doped BaFe 2 As 2 (Ba-122) thin films grown on technical substrates by pulsed laser deposition. The P-doped Ba-122 coated conductor exceeds a transport J c of 10 5 A/cm 2 at 15 T for main crystallographic directions of the applied field, which is favourable for practical applications. Our P-doped Ba-122 coated conductors show a superior in-field J c over MgB 2 and NbTi, and a comparable level to Nb 3 Sn above 20 T. By analysing the E - J curves for determining J c , a non-Ohmic linear differential signature is observed at low field due to flux flow along the grain boundaries. However, grain boundaries work as flux pinning centres as demonstrated by the pinning force analysis.
Karimi, Mehrdad; Kabir, Ali; Nejatifar, Masoumeh; Pazouki, Abdolreza
2018-03-01
The aim of this study is to investigate the pattern of changes in serum albumin level after mini-gastric bypass (MGB) and its association with gender, age, and body mass index (BMI) of the patients. This cohort study was conducted on 196 morbidly obese patients undergoing MGB followed for 1 year. The data on BMI, serum albumin level, demographic, anthropometric, biochemical variables and comorbidities were gathered before and after (3, 6, and 12 months) surgery. The trend of changes in BMI and serum albumin of the patients was investigated by repeated measures tests using general linear model (GLM) and generalized estimating equations (GEE) approaches. The mean age, baseline median BMI, and albumin of the patients were 41.34 ± 11.03 years, 44.54 kg/m 2 , and 4.00 g/dl, respectively. There was a chronologically significant trend of decline in BMI (P < 0.001). GEE demonstrated no chronologically significant trend in serum albumin (P = 0.278). The trend of changes in albumin was significantly associated only with age grouping and baseline serum albumin level (P = 0.017 and 0.001, respectively). This trend had fluctuations in patients older than 40 years with baseline serum albumin level of 3.50-3.90 g/dl. For patients with any age and baseline serum albumin level of 4.00-4.90 g/dl, this trend was stable in all periods of follow-up. MGB is an effective technique to lose weight. The trend of changes in serum albumin level was affected by its baseline levels and age.
Lightweight MgB2 superconducting 10 MW wind generator
NASA Astrophysics Data System (ADS)
Marino, I.; Pujana, A.; Sarmiento, G.; Sanz, S.; Merino, J. M.; Tropeano, M.; Sun, J.; Canosa, T.
2016-02-01
The offshore wind market demands a higher power rate and more reliable turbines in order to optimize capital and operational costs. The state-of-the-art shows that both geared and direct-drive conventional generators are difficult to scale up to 10 MW and beyond due to their huge size and weight. Superconducting direct-drive wind generators are considered a promising solution to achieve lighter weight machines. This work presents an innovative 10 MW 8.1 rpm direct-drive partial superconducting generator using MgB2 wire for the field coils. It has a warm iron rotor configuration with the superconducting coils working at 20 K while the rotor core and the armature are at ambient temperature. A cooling system based on cryocoolers installed in the rotor extracts the heat from the superconducting coils by conduction. The generator's main parameters are compared against a permanent magnet reference machine, showing a significant weight and size reduction. The 10 MW superconducting generator concept will be experimentally validated with a small-scale magnetic machine, which has innovative components such as superconducting coils, modular cryostats and cooling systems, and will have similar size and characteristics as the 10 MW generator.
NASA Astrophysics Data System (ADS)
Flanigan, D.; Johnson, B. R.; Abitbol, M. H.; Bryan, S.; Cantor, R.; Day, P.; Jones, G.; Mauskopf, P.; McCarrick, H.; Miller, A.; Zmuidzinas, J.
2016-10-01
We present a technique for increasing the internal quality factor of kinetic inductance detectors (KIDs) by nulling ambient magnetic fields with a properly applied magnetic field. The KIDs used in this study are made from thin-film aluminum, they are mounted inside a light-tight package made from bulk aluminum, and they are operated near 150 mK. Since the thin-film aluminum has a slightly elevated critical temperature (Tc = 1.4 K), it therefore transitions before the package (Tc = 1.2 K), which also serves as a magnetic shield. On cooldown, ambient magnetic fields as small as approximately 30 µT can produce vortices in the thin-film aluminum as it transitions because the bulk aluminum package has not yet transitioned and therefore is not yet shielding. These vortices become trapped inside the aluminum package below 1.2 K and ultimately produce low internal quality factors in the thin-film superconducting resonators. We show that by controlling the strength of the magnetic field present when the thin film transitions, we can control the internal quality factor of the resonators. We also compare the noise performance with and without vortices present, and find no evidence for excess noise beyond the increase in amplifier noise, which is expected with increasing loss.
Electronic structure of scandium-doped MgB2
NASA Astrophysics Data System (ADS)
de La Peña, Omar; Agrestini, Stefano
2005-03-01
Recently has been reported the synthesis of a new superconducting alloy based on MgB2, where Mg is partially substituted with Sc. In order to analyze the effect of Sc doping on the structural and superconducting properties of Mg1-xScxB2, we have performed a detailed study of the electronic structure for this new diboride. The calculations have been done using the first-principles LAPW method, within the supercell approach for modeling the doping. In this work we report results for the electronic band structure, Fermi surface, and density of states. The effect of the Sc-d orbitals on the structural and electronic properties of Mg1-xScxB2 is analyzed. Increasing the Sc concentration (x) the σ-band is gradually filled, because Sc have one valence electron more than Mg. Interestingly, the analysis of the band structure shows that even for ScB2 the top of the σ-band remain above the Fermi level, nevertheless the σ-band presents high dispersion and has an important contribution of d states. In this way, in addition to the band filling effect, Sc doping gradually reduces the two-dimensional character of the σ- band in Mg1-xScxB2 as a result of increasing the sp(B)-d(Sc) hybridization. This research was partially supported by Consejo Nacional de Ciencia y Tecnolog'ia (CONACYT, M'exico) under Grant. No. 43830-F
Photoluminescence and cathodoluminescence properties of green emitting SrGa2{S}4 : Eu2+ thin film
NASA Astrophysics Data System (ADS)
Chartier, Céline; Benalloul, Paul; Barthou, Charles; Frigerio, Jean-Marc; Mueller, Gerd O.; Mueller-Mach, Regina; Trottier, Troy
2002-02-01
Photoluminescence and cathodoluminescence properties of SrGa2S4 : Eu2+ thin films prepared by reactive RF magnetron sputtering are investigated. Luminescence performances of the phosphor in the thin film form are compared to those of powder samples: the brightness efficiency of thin films is found to be about 30% of the efficiency of powder at low current density. A ratio higher than 40% is expected at higher current density. Thin film screens for FEDs will become a positive alternative to powder screens provided that film quality and light extraction could be improved by optimization of thickness and deposition parameters.
James S. Meadows; J.C.G. Goelz
1999-01-01
Four thinning treatments were applied to a red oak-sweetgum (Quercus spp.-Liquidambar styraciflua L.) stand on a minor streambottom site in west-central Alabama in 1994: (1) unthinned control; (2) light thinning to 70-75 percent residual stocking; (3) heavy thinning to 50-55 percent residual stocking; and (4) B-line thinning to...
Molecular epidemiology of canine parvovirus in Morocco.
Amrani, Nadia; Desario, Costantina; Kadiri, Ahlam; Cavalli, Alessandra; Berrada, Jaouad; Zro, Khalil; Sebbar, Ghizlane; Colaianni, Maria Loredana; Parisi, Antonio; Elia, Gabriella; Buonavoglia, Canio; Malik, Jamal; Decaro, Nicola
2016-07-01
Since it first emergence in the mid-1970's, canine parvovirus 2 (CPV-2) has evolved giving rise to new antigenic variants termed CPV-2a, CPV-2b and CPV-2c, which have completely replaced the original strain and had been variously distributed worldwide. In Africa limited data are available on epidemiological prevalence of these new types. Hence, the aim of the present study was to determine circulating variants in Morocco. Through TaqMan-based real-time PCR assay, 91 samples, collected from symptomatic dogs originating from various cities between 2011 and 2015, were diagnosed. Positive specimens were characterised by means of minor groove binder (MGB) probe PCR. The results showed that all samples but one (98.9%) were CPV positive, of which 1 (1.1%) was characterised as CPV-2a, 43 (47.7%) as CPV-2b and 39 (43.3%) as CPV-2c. Interestingly, a co-infection with CPV-2b and CPV-2c was detected in 4 (4.4%) samples and 3 (3.3%) samples were not characterised. Sequencing of the full VP2 gene revealed these 3 uncharacterised strains as CPV-2c, displaying a change G4068A responsible for the replacement of aspartic acid with asparagine at residue 427, impacting the MGB probe binding. In this work we provide a better understanding of the current status of prevailing CPV strains in northern Africa. Copyright © 2016 Elsevier B.V. All rights reserved.
A new approach to the current distribution in field cooled superconductors disks
NASA Astrophysics Data System (ADS)
Bernstein, P.; Colson, L.; Dupont, L.; Noudem, J.
2018-01-01
The Bean model considers that in field cooled superconducting cylinders with diameter R, the currents flow over all the thickness of the superconductor along circular paths, the minimum radius of which depends on the magnetizing field and the critical current density. A combination of trapped field and levitation force measurements reported recently has shown, however, that in YBCO and MgB2 disks the current flows in fact in a restricted region with thickness t of the superconductor. In this contribution, from measurements carried out on two YBCO and two MgB2 disks, we report the dependence on temperature of t and J p, the current density in this region, as well as that of the field trapped by the samples. The results confirm that t decreases as the temperature decreases. This behaviour is ascribed to the conservation of the magnetic energy stored in the superconductor, which depends on the magnetizing source and not on the measurement temperature. As a consequence, t behaves as {{J}{{p}}}-2/3, while the field trapped along the axis of the cylinder behaves as {{J}{{p}}}1/3. These claims are substantiated by the experimental results. The possibility that J p is equal to the depairing current is investigated.
Mesoscale Modeling of Kinetic Phase Behaviors in Mg-B-H (Subcontract Report)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, H.; Thornton, K.; Wood, B. C.
Storage of hydrogen on board vehicles is one of the critical enabling technologies for creating hydrogenfueled transportation systems that can reduce oil dependency and mitigate the long-term effects of fossil fuels on climate change. Stakeholders in developing hydrogen infrastructure are currently focused on highpressure storage at 350 bar and 700 bar, in part because no viable solid-phase storage material has emerged. Nevertheless, solid-state materials, including high-density hydrides, remain of interest because of their unique potential to meet all DOE targets and deliver hydrogen at lower pressures and higher on-board densities. A successful solution would significantly reduce costs and ensure themore » economic viability of a U.S. hydrogen infrastructure. The Mg(BH 4) 2-MgB 2 system represents a highly promising solution because of its reasonable reaction enthalpy, high intrinsic capacity, and demonstrated reversibility, yet suffers from poor reaction kinetics. This subcontract aims to deliver a phase-field model for the kinetics of the evolution of the relevant phases within the Mg-B-H system during hydrogenation and dehydrogenation. This model will be used within a broader theory, synthesis, and characterization framework to study the properties of geometry-selected nanoparticles of pristine and doped MgB 2/Mg(BH 4) 2 with two aims: (1) understand the intrinsic limitations in (de)hydrogenation; (2) devise strategies for improving thermodynamics and kinetics through nanostructuring.« less
James S. Meadows; Daniel A., Jr. Skojac
2010-01-01
Stand quality management is a new guiding principle in which thinning prescriptions are based on tree quality rather than on residual stand density. We recently initiated a series of hardwood thinning studies to determine the effects of four stand quality management thinning prescriptions on both stand-level and individual-tree-level growth, quality, and value: (1) no...
de Souza Lucas, Francisco Willian; Welch, Adam W.; Baranowski, Lauryn L.; ...
2016-08-01
CuSbS 2 is a promising nontoxic and earth-abundant photovoltaic absorber that is chemically simpler than the widely studied Cu 2ZnSnS 4. However, CuSbS 2 photovoltaic (PV) devices currently have relatively low efficiency and poor reproducibility, often due to suboptimal material quality and insufficient optoelectronic properties. To address these issues, here we develop a thermochemical treatment (TT) for CuSbS 2 thin films, which consists of annealing in Sb 2S 3 vapor followed by a selective KOH surface chemical etch. The annealed CuSbS 2 films show improved structural quality and optoelectronic properties, such as stronger band-edge photoluminescence and longer photoexcited carrier lifetime.more » These improvements also lead to more reproducible CuSbS 2 PV devices, with performance currently limited by a large cliff-type interface band offset with CdS contact. Altogether, these results point to the potential avenues to further increase the performance of CuSbS 2 thin film solar cell, and the findings can be transferred to other thin film photovoltaic technologies.« less
Qiu, Wenbin; Jie, Hyunseock; Patel, Dipak; Lu, Yao; Luzin, Vladimir; Devred, Arnaud; Somer, Mehmet; Shahabuddin, Mohammed; Kim, Jung Ho; Ma, Zongqing; Dou, Shi Xue; Hossain, Md. Shahriar Al
2016-01-01
Superconducting wires are widely used in fabricating magnetic coils in fusion reactors. In consideration of the stability of 11B against neutron irradiation and lower induced radio-activation properties, MgB2 superconductor with 11B serving as boron source is an alternative candidate to be used in fusion reactor with severe irradiation environment. In present work, a batch of monofilament isotopic Mg11B2 wires with amorphous 11B powder as precursor were fabricated using powder-in-tube (PIT) process at different sintering temperature, and the evolution of their microstructure and corresponding superconducting properties was systemically investigated. Accordingly, the best transport critical current density (Jc) = 2 × 104 A/cm2 was obtained at 4.2 K and 5 T, which is even comparable to multi-filament Mg11B2 isotope wires reported in other work. Surprisingly, transport Jc vanished in our wire which was heat-treated at excessively high temperature (800 °C). Combined with microstructure observation, it was found that lots of big interconnected microcracks and voids that can isolate the MgB2 grains formed in this whole sample, resulting in significant deterioration in inter-grain connectivity. The results can be a constructive guide in fabricating Mg11B2 wires to be used as magnet coils in fusion reactor systems such as ITER-type tokamak magnet. PMID:27824144
Properties of Superconducting Mo, Mo2n and Trilayer Mo2n-Mo-Mo2n Thin Films
NASA Technical Reports Server (NTRS)
Barrentine, E. M.; Stevenson, T. R.; Brown, A. D.; Lowitz, A. E.; Noroozian, O.; U-Yen, K.; Eshan, N.; Hsieh, W. T.; Moseley, S. H.; Wollack, E. J.
2014-01-01
We present measurements of the properties of thin film superconducting Mo, Mo2N and Mo2N/Mo/Mo2N trilayers of interest for microwave kinetic inductance detector (MKID) applications. Using microwave resonator devices, we investigate the transition temperature, energy gaps, kinetic inductance, and internal quality factors of these materials. We present an Usadel-based interpretation of the trilayer transition temperature as a function of trilayer thicknesses, and a 2-gap interpretation to understand the change in kinetic inductance and internal resonance quality factor (Q) as a function of temperature.
Kermansaravi, Mohammad; Abdolhosseini, Mohammad Reza; Kabir, Ali; Pazouki, Abdolreza
2017-01-01
Hypoalbuminemia is an important complication after Mini Gastric Bypass (MGB) and is more frequent in vegetarians, diabetic nephropathy, and alcoholic and liver disease patients. The patients must be followed in regular intervals and serum albumin must be checked in every visit after MGB. Hypoalbuminemia must be prevented by good protein regimes. A 29 years old female was admitted 8 month after Laparoscopic Mini Gastric Bypass with malaise, dyspnea, icter, nausea, vomiting, diarrhea and edema of extremities from 2 weeks before admission. She had become vegetarian autonomously and had not participated in routine postop follow up, and also discontinued her high protein regimen. In para clinictest results, she had severe hypoalbuminemia, anemia, elevated liver enzymes and direct bilirubinemia, metabolic acidosis in Arterial Blood Gas (ABG), and in Core Needle Biopsy (CNB) marked Steatohepatitis was shown. Unfortunately, the patient did not respond to medical care and died. Regular follow up after Mini Gastric Bypass is very important for many reasons such as early diagnosis and treatment of hypoalbuminemia. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
James S. Meadows; Daniel A. Skojac
2006-01-01
Three thinning treatments were applied to an 80- to 90-year-old stand dominated by red oaks (Quercus spp.) and sweetgum (Liquidambar styraciflua L.) along the Neches River in East Texas: (1) unthinned control, (2) light thinning (70 to 75 percent residual stocking), and (3) heavy thinning (50 to 55 percent residual stocking). Three...
Wenstrup, J J
1999-11-01
The auditory cortex of the mustached bat (Pteronotus parnellii) displays some of the most highly developed physiological and organizational features described in mammalian auditory cortex. This study examines response properties and organization in the medial geniculate body (MGB) that may contribute to these features of auditory cortex. About 25% of 427 auditory responses had simple frequency tuning with single excitatory tuning curves. The remainder displayed more complex frequency tuning using two-tone or noise stimuli. Most of these were combination-sensitive, responsive to combinations of different frequency bands within sonar or social vocalizations. They included FM-FM neurons, responsive to different harmonic elements of the frequency modulated (FM) sweep in the sonar signal, and H1-CF neurons, responsive to combinations of the bat's first sonar harmonic (H1) and a higher harmonic of the constant frequency (CF) sonar signal. Most combination-sensitive neurons (86%) showed facilitatory interactions. Neurons tuned to frequencies outside the biosonar range also displayed combination-sensitive responses, perhaps related to analyses of social vocalizations. Complex spectral responses were distributed throughout dorsal and ventral divisions of the MGB, forming a major feature of this bat's analysis of complex sounds. The auditory sector of the thalamic reticular nucleus also was dominated by complex spectral responses to sounds. The ventral division was organized tonotopically, based on best frequencies of singly tuned neurons and higher best frequencies of combination-sensitive neurons. Best frequencies were lowest ventrolaterally, increasing dorsally and then ventromedially. However, representations of frequencies associated with higher harmonics of the FM sonar signal were reduced greatly. Frequency organization in the dorsal division was not tonotopic; within the middle one-third of MGB, combination-sensitive responses to second and third harmonic CF sonar signals (60-63 and 90-94 kHz) occurred in adjacent regions. In the rostral one-third, combination-sensitive responses to second, third, and fourth harmonic FM frequency bands predominated. These FM-FM neurons, thought to be selective for delay between an emitted pulse and echo, showed some organization of delay selectivity. The organization of frequency sensitivity in the MGB suggests a major rewiring of the output of the central nucleus of the inferior colliculus, by which collicular neurons tuned to the bat's FM sonar signals mostly project to the dorsal, not the ventral, division. Because physiological differences between collicular and MGB neurons are minor, a major role of the tecto-thalamic projection in the mustached bat may be the reorganization of responses to provide for cortical representations of sonar target features.
Sol-gel preparation of silica and titania thin films
NASA Astrophysics Data System (ADS)
Thoř, Tomáš; Václavík, Jan
2016-11-01
Thin films of silicon dioxide (SiO2) and titanium dioxide (TiO2) for application in precision optics prepared via the solgel route are being investigated in this paper. The sol-gel process presents a low cost approach, which is capable of tailoring thin films of various materials in optical grade quality. Both SiO2 and TiO2 are materials well known for their application in the field of anti-reflective and also highly reflective optical coatings. For precision optics purposes, thickness control and high quality of such coatings are of utmost importance. In this work, thin films were deposited on microscope glass slides substrates using the dip-coating technique from a solution based on alkoxide precursors of tetraethyl orthosilicate (TEOS) and titanium isopropoxide (TIP) for SiO2 and TiO2, respectively. As-deposited films were studied using spectroscopic ellipsometry to determine their thickness and refractive index. Using a semi-empirical equation, a relationship between the coating speed and the heat-treated film thickness was described for both SiO2 and TiO2 thin films. This allows us to control the final heat-treated thin film thickness by simply adjusting the coating speed. Furthermore, films' surface was studied using the white-light interferometry. As-prepared films exhibited low surface roughness with the area roughness parameter Sq being on average of 0.799 nm and 0.33 nm for SiO2 and TiO2, respectively.
Fabrication of high-quality single-crystal Cu thin films using radio-frequency sputtering.
Lee, Seunghun; Kim, Ji Young; Lee, Tae-Woo; Kim, Won-Kyung; Kim, Bum-Su; Park, Ji Hun; Bae, Jong-Seong; Cho, Yong Chan; Kim, Jungdae; Oh, Min-Wook; Hwang, Cheol Seong; Jeong, Se-Young
2014-08-29
Copper (Cu) thin films have been widely used as electrodes and interconnection wires in integrated electronic circuits, and more recently as substrates for the synthesis of graphene. However, the ultra-high vacuum processes required for high-quality Cu film fabrication, such as molecular beam epitaxy (MBE), restricts mass production with low cost. In this work, we demonstrated high-quality Cu thin films using a single-crystal Cu target and radio-frequency (RF) sputtering technique; the resulting film quality was comparable to that produced using MBE, even under unfavorable conditions for pure Cu film growth. The Cu thin film was epitaxially grown on an Al2O3 (sapphire) (0001) substrate, and had high crystalline orientation along the (111) direction. Despite the 10(-3) Pa vacuum conditions, the resulting thin film was oxygen free due to the high chemical stability of the sputtered specimen from a single-crystal target; moreover, the deposited film had >5× higher adhesion force than that produced using a polycrystalline target. This fabrication method enabled Cu films to be obtained using a simple, manufacturing-friendly process on a large-area substrate, making our findings relevant for industrial applications.
A novel high temperature superconducting magnetic flux pump for MRI magnets
NASA Astrophysics Data System (ADS)
Bai, Zhiming; Yan, Guo; Wu, Chunli; Ding, Shufang; Chen, Chuan
2010-10-01
This paper presents a kind of minitype magnetic flux pump made of high temperature superconductor. This kind of novel high temperature superconducting (HTS) flux pump has not any mechanical revolving parts or thermal switches. The excitation current of copper coils in magnetic pole system is controlled by a singlechip. The structure design and operational principle have been described. The operating performance of the new model magnetic flux pump has been preliminarily tested. The experiments show that the maximum pumping current is approximately 200 A for Bi2223 flux pump and 80 A for MgB 2 flux pump operating at 20 K. By comparison, it is discovered that the operating temperature range is wider, the ripple is smaller and the pumping frequency is higher in Bi2223 flux pump than those in MgB 2 flux pump. These results indicate that the newly developed Bi2223 magnetic flux pump may efficiently compensate the magnetic field decay in HTS magnet and make the magnet operate in persistent current mode, this point is significant to the magnetic resonance imaging (MRI) magnets. This new flux pump is under construction presently. It is expected that the Bi2223 flux pump would be applied to the superconducting MRI magnets by further optimizing structure and improving working process.
Electron-beam-evaporated thin films of hafnium dioxide for fabricating electronic devices
Xiao, Zhigang; Kisslinger, Kim
2015-06-17
Thin films of hafnium dioxide (HfO 2) are widely used as the gate oxide in fabricating integrated circuits because of their high dielectric constants. In this paper, the authors report the growth of thin films of HfO 2 using e-beam evaporation, and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using this HfO 2 thin film as the gate oxide. The authors analyzed the thin films using high-resolution transmission electron microscopy and electron diffraction, thereby demonstrating that the e-beam-evaporation-grown HfO 2 film has a polycrystalline structure and forms an excellent interface with silicon. Accordingly, we fabricated 31-stage CMOS ringmore » oscillator to test the quality of the HfO 2 thin film as the gate oxide, and obtained excellent rail-to-rail oscillation waveforms from it, denoting that the HfO 2 thin film functioned very well as the gate oxide.« less
Transport properties of ultrathin BaFe1.84Co0.16As2 superconducting nanowires
NASA Astrophysics Data System (ADS)
Yuan, Pusheng; Xu, Zhongtang; Li, Chen; Quan, Baogang; Li, Junjie; Gu, Changzhi; Ma, Yanwei
2018-07-01
Superconducting nanowire single-photon detectors (SNSPDs) have an absolute advantage over other types of single-photon detectors, except for the low operating temperature. Therefore, much effort has been devoted to finding high-temperature superconducting materials that are suitable for preparing SNSPDs. Copper-based and MgB2 ultrathin superconducting nanowires have already been reported. However, the transport properties of iron-based ultrathin superconducting nanowires have not been studied. In this work, a 10 nm thick × 200 nm wide × 30 μm long high-quality superconducting nanowire was fabricated from ultrathin BaFe1.84Co0.16As2 films by a lift-off process. The precursor BaFe1.84Co0.16As2 film with a thickness of 10 nm and root-mean-square roughness of 1 nm was grown on CaF2 substrates by pulsed laser deposition. The nanowire shows a high superconducting critical temperature {T}{{c}}{{zero}} = 20 K with a narrow transition width of ΔT = 2.5 K and exhibits a high critical current density J c of 1.8 × 107 A cm-2 at 10 K. These results of ultrathin BaFe1.84Co0.16As2 nanowire will attract interest in electronic applications, including SNSPDs.
Experimental results on MgB2 used as ADR magnetic shields, and comparison to NbTi
NASA Astrophysics Data System (ADS)
Prouvé, T.; Duval, J. M.; Luchier, N.; D'escrivan, S.
2014-11-01
Adiabatic Demagnetization Refrigerator (ADR) is an efficient way to obtain sub-Kelvin temperatures in space environments. The SAFARI instrument for the Japanese spaceborne SPICA mission features detectors which will be cooled down to 50 mK. This cooling will be done by a hybrid cooler comprising a 300 mK sorption stage and a 50 mK ADR stage. For this cooler and ADR in general, the main contribution to the overall mass is in the magnetic system and particularly in the magnetic shielding required to keep the stray field within acceptable values. In order to reduce this mass, superconducting materials can be used as active magnetic shields thanks to un-attenuated eddy currents generated while ramping the magnet current. In this way they could reduce the need of heavy ferromagnetic material shields and increase the shielding efficiency to reach very low parasitic values. In the framework of SAFARI we have built a numerical model of a superconductor magnetic shield. The good results regarding the weight gain lead us to an experimental confirmation. In this paper we present an experimental study on MgB2 and NbTi superconducting materials. 2 pairs of rings of typical diameter of 80 mm have been tested using a superconducting magnet matching closely the dimensions of the SAFARI ADR cooler. The magnetic shielding measurements have been compared to a numerical model.
Forced Mixer Nozzle Optimization
NASA Technical Reports Server (NTRS)
Sheoran, Yogi; Hoover, Robert; Schuster, William; Anderson, Morris; Weir, Donald S.
1999-01-01
Computational fluid dynamic (CFD) and computational acoustic analyses (CAA) were performed for a TFE731-40 compound nozzle, a TFE731-60 mixer nozzle and an Energy Efficient Engine (E(sup 3)) mixer nozzle for comparison with available data. The CFD analyses were performed with a three dimensional, Navier-Stokes solution of the flowfield on an unstructured grid using the RAMPANT program. The CAA analyses were performed with the NASA Glenn MGB program using a structured grid. A successful aerodynamic solution for the TFE731-40 compound nozzle operating statically was obtained, simulating an engine operating on a test stand. Analysis of the CFD results of the TFE731-40 with the MGB program produced predicted sound power levels that agree quite well with the measured data front full-scale static engine tests. Comparison of the predicted sound pressure with the data show good agreement near the jet axis, but the noise levels are overpredicted at angles closer to the inlet. The predicted sound power level for the TFE731-60 did not agree as well with measured static engine data as the TFE731-40. Although a reduction in the predicted noise level due to the mixed flow was observed, the reduction was not as significant as the measured data. The analysis of the V2 mixer from the E(sup 3) study showed that peak temperatures predicted in the mixer exit flowfield were within 5 percent of the values measured by the exit probes. The noise predictions of the V2 mixer nozzle tended to be 3-5 dB higher in peak noise level than the measurements. In addition, the maximum frequency of the noise was also overpredicted. An analysis of the 3 candidate mixer nozzle configurations demonstrated the feasibility of using centerbody lobes and porosity to improve mixing efficiency. A final configuration was designed with a predicted thermal mixing efficiency that was 5 percent higher than the 3 candidate mixers. The results of the MGB noise calculations show that the final design will exceed the design goal of a 3 dB reduction in noise as compared to the baseline TFE731-40.
An Alu-based, MGB Eclipse real-time PCR method for quantitation of human DNA in forensic samples.
Nicklas, Janice A; Buel, Eric
2005-09-01
The forensic community needs quick, reliable methods to quantitate human DNA in crime scene samples to replace the laborious and imprecise slot blot method. A real-time PCR based method has the possibility of allowing development of a faster and more quantitative assay. Alu sequences are primate-specific and are found in many copies in the human genome, making these sequences an excellent target or marker for human DNA. This paper describes the development of a real-time Alu sequence-based assay using MGB Eclipse primers and probes. The advantages of this assay are simplicity, speed, less hands-on-time and automated quantitation, as well as a large dynamic range (128 ng/microL to 0.5 pg/microL).
Pulsed photonic fabrication of nanostructured metal oxide thin films
NASA Astrophysics Data System (ADS)
Bourgeois, Briley B.; Luo, Sijun; Riggs, Brian C.; Adireddy, Shiva; Chrisey, Douglas B.
2017-09-01
Nanostructured metal oxide thin films with a large specific surface area are preferable for practical device applications in energy conversion and storage. Herein, we report instantaneous (milliseconds) photonic synthesis of three-dimensional (3-D) nanostructured metal oxide thin films through the pulsed photoinitiated pyrolysis of organometallic precursor films made by chemical solution deposition. High wall-plug efficiency-pulsed photonic irradiation (xenon flash lamp, pulse width of 1.93 ms, fluence of 7.7 J/cm2 and frequency of 1.2 Hz) is used for scalable photonic processing. The photothermal effect of subsequent pulses rapidly improves the crystalline quality of nanocrystalline metal oxide thin films in minutes. The following paper highlights pulsed photonic fabrication of 3-D nanostructured TiO2, Co3O4, and Fe2O3 thin films, exemplifying a promising new method for the low-cost and high-throughput manufacturing of nanostructured metal oxide thin films for energy applications.
Y1Ba2Cu3O(7-delta) thin film dc SQUIDs (superconducting quantum interference device)
NASA Astrophysics Data System (ADS)
Racah, Daniel
1991-03-01
Direct current superconducting quantum interferometers (SQUIDs) based on HTSC thin films have been measured and characterized. The thin films used were of different quality: (1) Granular films on Sapphire substrates, prepared either by e-gun evaporation, by laser ablation or by MOCVD (metal oxide chemical vapor deposition), (2) Epitaxial films on MgO substrates. Modulations of the voltage on the SQUIDs as a function of the applied flux have been observed in a wide range of temperatures. The nature of the modulation was found to be strongly dependent on the morphology of the film and on its critical current. The SQUIDs based on granular films were relatively noisy, hysteretic and with a complicated V-phi shape. Those devices based on low quality (lowIc) granular films could be measured only at low temperatures (much lower than 77 K). While those of higher quality (granular films with high Ic) could be measured near to the superconductive transition. The SQUID based on high quality epitaxial film was measured near Tc and showed an anomalous, time dependent behavior.
James S. Meadows; Daniel A. Skojac
2012-01-01
Stand quality management is a new management strategy in which thinning prescriptions are based solely on tree quality rather than a quantitative level of residual stand density. As long as residual density falls within fairly broad limits, prescriptions are based on tree quality alone. We applied four thinning prescriptions based on stand quality management, along...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Andrew K. H.; Basran, Parminder S.; Thomas, Steven D.
Purpose: To investigate the effects of brachytherapy seed size on the quality of x-ray computed tomography (CT), ultrasound (US), and magnetic resonance (MR) images and seed localization through comparison of the 6711 and 9011 {sup 125}I sources. Methods: For CT images, an acrylic phantom mimicking a clinical implantation plan and embedded with low contrast regions of interest (ROIs) was designed for both the 0.774 mm diameter 6711 (standard) and the 0.508 mm diameter 9011 (thin) seed models (Oncura, Inc., and GE Healthcare, Arlington Heights, IL). Image quality metrics were assessed using the standard deviation of ROIs between the seeds andmore » the contrast to noise ratio (CNR) within the low contrast ROIs. For US images, water phantoms with both single and multiseed arrangements were constructed for both seed sizes. For MR images, both seeds were implanted into a porcine gel and imaged with pelvic imaging protocols. The standard deviation of ROIs and CNR values were used as metrics of artifact quantification. Seed localization within the CT images was assessed using the automated seed finder in a commercial brachytherapy treatment planning system. The number of erroneous seed placements and the average and maximum error in seed placements were recorded as metrics of the localization accuracy. Results: With the thin seeds, CT image noise was reduced from 48.5 {+-} 0.2 to 32.0 {+-} 0.2 HU and CNR improved by a median value of 74% when compared with the standard seeds. Ultrasound image noise was measured at 50.3 {+-} 17.1 dB for the thin seed images and 50.0 {+-} 19.8 dB for the standard seed images, and artifacts directly behind the seeds were smaller and less prominent with the thin seed model. For MR images, CNR of the standard seeds reduced on average 17% when using the thin seeds for all different imaging sequences and seed orientations, but these differences are not appreciable. Automated seed localization required an average ({+-}SD) of 7.0 {+-} 3.5 manual corrections in seed positions for the thin seed scans and 3.0 {+-} 1.2 manual corrections in seed positions for the standard seed scans. The average error in seed placement was 1.2 mm for both seed types and the maximum error in seed placement was 2.1 mm for the thin seed scans and 1.8 mm for the standard seed scans. Conclusions: The 9011 thin seeds yielded significantly improved image quality for CT and US images but no significant differences in MR image quality.« less
NASA Astrophysics Data System (ADS)
Kopylova, Maya; Bruce, Loryn; Ryder, John
2010-05-01
Diamonds typically are found on Archean cratons entrained by younger Phanerozoic kimberlites. In contrast, Wawa diamonds are hosted in "unconventional", non-kimberlitic rocks that formed contemporaneously with the mafic and sedimentary rocks of the Archean Michipicoten Greenstone Belt (MGB). We studied two diamond suites that occur within the 2.9-2.7 Ga greenschist facies rocks of MGB located in the southwest portion of the Superior Craton (E. Canada). The first diamond suite henceforth referred to as the Wawa breccia diamonds (384 stones), are hosted in the 2618-2744 Ma calc-alkaline lamprophyres and volcaniclastic breccias, contemporaneous with pillow basalts and felsic volcanics of MGB. The second suite, the Wawa conglomerate diamonds (80 crystals), are hosted in the 2697-2700 Ma poorly sorted sedimentary polymictic conglomerate which is interpreted as a proximal alluvial fan debris flow in a fan-delta environment. The majority of the diamonds was found within the matrix of the conglomerate. The diamondiferous breccia occurs 20 km north of the town of Wawa, whereas the conglomerate is found 12 km northeast of Wawa. Diamonds from the 2 occurrences were characterized and described for provenance studies. Both the breccia and conglomerate diamonds show similar crystal habits, with the predominance of octahedral single crystals and ~ 10% of cubes. The conglomerate diamonds are significantly less resorbed (no resorbtion in 43% of the stones) than the breccia diamonds (8% non-resorbed stones). In both suites, only 21-24% show high degrees of resorption. The majority of crystals in both suites are colourless, with some yellow, brown and grey stones. Conglomerate diamonds had a wider variety of colours that were not seen in the breccia diamonds, including green and pink. The breccia diamonds contain 0-740 ppm N and show two modes of N aggregation at 0-30 and 60-95%. Among the breccia diamonds, Type IaA stones comprise 17%, whereas IaAB stones make up 49% of the population. Diamonds from the conglomerate have nitrogen contents below 400 ppm N, with 47% of the suite being Type IaA stones. Approximately one third of the conglomerate and breccia diamonds belongs to Type II having no measurable N. The two suites of Wawa diamonds, according to the morphology and nitrogen studies, are deemed to be different. The conglomerate diamonds are significantly less resorbed and contain less aggregated N. The diamonds that occur in the Wawa breccia and conglomerate have different primary volcanic sources. We suggest that the primary volcanic rock of the conglomerate diamonds may be a kimberlite, as kimberlitic indicator minerals are found in the matrix of the conglomerate. These indicator minerals garnet, Cr diopside and ilmenite are absent from the diamoniferous lamprophyric breccias. The hypothetical kimberlites may have occured in proximity to the conglomerates as suggested by low mechanical abrasion of the conglomerate diamonds and indicator minerals, and the preservation of garnet kelyphitic rims and Cr-diopside. Our study infers an episode of the Archean, pre-2.7 Ga kimberlite magmatism in MGB, which also experienced multiple emplacement episodes of the 2.7 Ga syn-orogenic diamondiferous calc-alkaline lamprophyres. Despite the distinct origins of the breccia and conglomerate diamonds, they all have similar red-orange-green cathodoluminescence colours controlled by the CL emission mainly at 520 nm. This contrasts with the prevalent CL emission at 415-440 nm commonly observed in kimberlitic and detrital diamonds. We ascribe the red-orange-green CL colours of the two diamond suites of Wawa to the late imprint of metamorphism.
NASA Astrophysics Data System (ADS)
Paul Antony, Anish
Renewable energy sources are ubiquitous, wind energy in particular is one of the fastest growing forms of renewable energy, yet the stochastic nature of wind creates fluctuations that threaten the stability of the electrical grid. In addition to stability with increased wind energy, the need for additional load following capability is a major concern hindering increased wind energy penetration. Improvements in power electronics are required to increase wind energy penetration, but these improvements are hindered by a number of limitations. Changes in physical weather conditions, insufficient capacity of the transmission line and inaccurate wind forecasting greatly stymie their effect and ultimately lead to equipment damage. With this background, the overall goal of this research effort is to pitch a case for superconducting magnetic energy storage (SMES) by (1) optimally designing the SMES to be coupled with wind turbines thus reducing wind integration challenges and (2) to help influence decision makers in either increasing superconducting wire length/fill factor or improving superconducting splice technology thereby increasing the storage capacity of the SMES. Chapter 1 outlines the scope of this thesis by answering the following questions (1) why focus on wind energy? (2) What are the problems associated with increasing wind energy on the electric grid? (3) What are the current solutions related to wind integration challenges and (4) why SMES? Chapter 2, presents a detailed report on the study performed on categorizing the challenges associated with integrating wind energy into the electric grid. The conditions under which wind energy affected the electric grid are identified both in terms of voltage stability and excess wind generation. Chapter 3, details a comprehensive literature review on the different superconducting wires. A technology assessment of the five selected superconductors: [Niobium Titanium (NbTi), Niobium Tin (Nb3Sn), Bismuth strontium calcium copper oxide (BSCCO), Yttrium barium copper oxide (YBCO) and Magnesium diboride (MgB 2)] is carried out. The assessed attributes include superconducting transition temperature (Tc), critical current density (Jc ), the irreversibility field (H*) and the superconducting critical field (Hc). Chapter 4 presents the design of a solenoid shaped 1MJ MgB2 SMES. This SMES is used to mitigate the problem of momentary interruptions on a wind turbine. The total length of superconducting wire required for a 1MJ solenoid is calculated to be 21km. The maximum wire lengths currently available are 6km thus we hypothesize that either wire lengths have to be increased or work has to be done on MgB2 superconducting splice technology for multifilament wire. Another design consisting of 8 solenoids storing 120 kJ each is presented. The stress analysis on the proposed coil is performed using finite element analysis exhibiting the safety of the proposed design. Chapter 5 presents the design of a toroid shaped 20MJ MgB2 SMES. This is used to mitigate the problem of sustained interruptions on a wind turbine. The toroid coil is chosen since the magnetic field could be completely contained within the coil, thus reducing stray magnetic fields. A combination of genetic algorithm and nonlinear programming is used in determining the design. In Chapter 6, the different methods of operation of the SMES are examined. The Voltage Source Convertor (VSC) based SMES topology was chosen based on its ease of switching. The VSC switching strategy is based on a sinusoidal pulse width modulation technique. EMTDC/PSCAD software was used to demonstrate the efficacy of the VSC based SMES coupled to a wind turbine. The wind generator was modeled as an induction machine feeding into a load. The simulation results established that SMES connected to wind turbines improved output quality. Although the efficacy of SMES for wind energy has been stated previously in other work, this chapter specifically demonstrates through simulation results the utility of SMES in voltage sag mitigation for momentary interruptions. The 1MJ SMES mitigates voltage sags for a useful duration ~50 seconds. In conclusion (Chapter 7), we believe that in this dissertation, we have documented the design of SMES for both momentary and sustained interruptions in wind turbines. We have put forth some novel and relevant hypotheses, developed and performed suitable simulation studies to validate these hypotheses. By doing so, we have been able to expand our knowledge in our quest to grasp the underlying mechanisms of storage systems in wind energy integration. Although the resulting analysis has allowed us to gain valuable insight, we feel that it is only the tip of the iceberg, and that many yet unknown discoveries are to be made. We remain hopeful that the future of SMES for wind energy will only look brighter from here onward. (Abstract shortened by UMI.).
Lawrence E. Nix
2006-01-01
A 23-year-old, mostly sprout-origin stand in the Congaree river bottom near Columbia, SC, was commercially thinned in 1994 using three methods of thinning: (1) the "Leave tree", (2) âTrainer treeâ, and (3) âCorridorâ methods. The stand was created in 1971 by KG-blade shearing a 90-year-old, heavily cutover bottomland hardwood stand. Before thinning, the stand...
Preparation of high-oriented molybdenum thin films using DC reactive magnetronsputtering
NASA Astrophysics Data System (ADS)
Shang, Zhengguo; Li, Dongling; Yin, She; Wang, Shengqiang
2017-03-01
Since molybdenum (Mo) thin film has been used widely recently, it attracts plenty of attention, like it is a good candidate of back contact material for CuIn1-xGaxSe2-ySy (CIGSeS) solar cells development; thanks to its more conductive and higher adhesive property. Besides, molybdenum thin film is an ideal material for aluminum nitride (AlN) thin film preparation and attributes to the tiny (-1.0%) lattice mismatch between Mo and AlN. As we know that the quality of Mo thin film is mainly dependent on process conditions, it brings a practical significance to study the influence of process parameters on Mo thin film properties. In this work, various sputtering conditions are employed to explore the feasibility of depositing a layer of molybdenum film with good quality by DC reactive magnetron sputtering. The influence of process parameters such as power, gas flow, substrate temperature and process time on the crystallinity and crystal orientation of Mo thin films is investigated. X-ray diffraction (XRD) measurements and atomic force microscope (AFM) are used to characterize the properties and surface roughness, respectively. According to comparative analysis on the results, process parameters are optimized. The full width at half maximum (FWHM) of the rocking curves of the (110) Mo is decreased to 2.7∘, and the (110) Mo peaks reached 1.2 × 105 counts. The grain size and the surface roughness have been measured as 20 Å and 3.8 nm, respectively, at 200∘C.
NASA Astrophysics Data System (ADS)
Saha, B.; Thapa, R.; Jana, S.; Chattopadhyay, K. K.
2010-10-01
Thin films of p-type transparent conducting CuAlO2 have been synthesized through reactive radio frequency magnetron sputtering on silicon and glass substrates at substrate temperature 300°C. Reactive sputtering of a target fabricated from Cu and Al powder (1:1.5) was performed in Ar+O2 atmosphere. The deposition parameters were optimized to obtain phase pure, good quality CuAlO2 thin films. The films were characterized by studying their structural, morphological, optical and electrical properties.
NASA Astrophysics Data System (ADS)
Chaudhari, J. J.; Joshi, U. S.
2018-03-01
Cu2SnS3 (CTS) is an emerging ternery chalcogenide material with great potential application in thin film solar cells. We present here high quality Cu2SnS3 thin films using a facile spin coating method. The as deposited films of CTS were sulphurized in a graphite box using tubular furnace at 520 °C for 60 min at the rate of 2.83 °C min-1 in argon atmosphere. X-ray diffraction (XRD) and Raman spectroscopy studies confirm tetragonal phase and absence of any secondary phase in sulphurized CTS thin films. X-ray photoelectron spectroscopy (XPS) demonstrates that Cu and Sn are in +1 and +4 oxidation state respectively. Surface morphology of CTS films were analyzed by field emission scanning electron microscope and atomic force microscope (AFM), which revealed a smooth surface with roughness (RMS) of 6.32 nm for sulphurized CTS film. Hall measurements confirmed p-type conductivity with hole concentartion of sulphurized CTS thin film is of 6.5348 × 1020 cm-3. UV-vis spectra revealed a direct energy band gap varies from 1.45 eV to 1.01 eV for as-deposited and sulphurized CTS thin film respectively. Such band gap values are optimum for semiconductor material as an absorber layer of thin film solar cell. The CTS thin film solar cell had following structure: SLG/FTO/ZnO/CTS/Al with short circuit current density of (Jsc) of 11.6 mA cm-2, open circuit voltage (Voc) of 0.276 V, active area of 0.16 cm2, fill factor (FF) of 35% and power conversion efficiency of 1.12% under AM 1.5 (100 mW cm-2) illumination in simulated standard test conditions.
The Cu2ZnSnSe4 thin films solar cells synthesized by electrodeposition route
NASA Astrophysics Data System (ADS)
Li, Ji; Ma, Tuteng; Wei, Ming; Liu, Weifeng; Jiang, Guoshun; Zhu, Changfei
2012-06-01
An electrodeposition route for preparing Cu2ZnSnSe4 thin films for thin film solar cell absorber layers is demonstrated. The Cu2ZnSnSe4 thin films are prepared by co-electrodeposition Cu-Zn-Sn metallic precursor and subsequently annealing in element selenium atmosphere. The structure, composition and optical properties of the films were investigated by X-ray diffraction (XRD), Raman spectrometry, energy dispersive spectrometry (EDS) and UV-VIS absorption spectroscopy. The Cu2ZnSnSe4 thin film with high crystalline quality was obtained, the band gap and absorption coefficient were 1.0 eV and 10-4 cm-1, which is quite suitable for solar cells fabrication. A solar cell with the structure of ZnO:Al/i-ZnO/CdS/Cu2ZnSnSe4/Mo/glass was fabricated and achieved an conversion efficiency of 1.7%.
NASA Astrophysics Data System (ADS)
Ghose, Susmita; Rahman, Shafiqur; Hong, Liang; Rojas-Ramirez, Juan Salvador; Jin, Hanbyul; Park, Kibog; Klie, Robert; Droopad, Ravi
2017-09-01
The growth of high quality epitaxial beta-gallium oxide (β-Ga2O3) using a compound source by molecular beam epitaxy has been demonstrated on c-plane sapphire (Al2O3) substrates. The compound source provides oxidized gallium molecules in addition to oxygen when heated from an iridium crucible in a high temperature effusion cell enabling a lower heat of formation for the growth of Ga2O3, resulting in a more efficient growth process. This source also enabled the growth of crystalline β-Ga2O3 without the need for additional oxygen. The influence of the substrate temperatures on the crystal structure and quality, chemical bonding, surface morphology, and optical properties has been systematically evaluated by x-ray diffraction, scanning transmission electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, spectroscopic ellipsometry, and UV-vis spectroscopy. Under optimized growth conditions, all films exhibited pure (" separators="|2 ¯01 ) oriented β-Ga2O3 thin films with six-fold rotational symmetry when grown on a sapphire substrate. The thin films demonstrated significant absorption in the deep-ultraviolet (UV) region with an optical bandgap around 5.0 eV and a refractive index of 1.9. A deep-UV photodetector fabricated on the high quality β-Ga2O3 thin film exhibits high resistance and small dark current (4.25 nA) with expected photoresponse for 254 nm UV light irradiation suggesting that the material grown using the compound source is a potential candidate for deep-ultraviolet photodetectors.
Real-time PCR detection chemistry.
Navarro, E; Serrano-Heras, G; Castaño, M J; Solera, J
2015-01-15
Real-time PCR is the method of choice in many laboratories for diagnostic and food applications. This technology merges the polymerase chain reaction chemistry with the use of fluorescent reporter molecules in order to monitor the production of amplification products during each cycle of the PCR reaction. Thus, the combination of excellent sensitivity and specificity, reproducible data, low contamination risk and reduced hand-on time, which make it a post-PCR analysis unnecessary, has made real-time PCR technology an appealing alternative to conventional PCR. The present paper attempts to provide a rigorous overview of fluorescent-based methods for nucleic acid analysis in real-time PCR described in the literature so far. Herein, different real-time PCR chemistries have been classified into two main groups; the first group comprises double-stranded DNA intercalating molecules, such as SYBR Green I and EvaGreen, whereas the second includes fluorophore-labeled oligonucleotides. The latter, in turn, has been divided into three subgroups according to the type of fluorescent molecules used in the PCR reaction: (i) primer-probes (Scorpions, Amplifluor, LUX, Cyclicons, Angler); (ii) probes; hydrolysis (TaqMan, MGB-TaqMan, Snake assay) and hybridization (Hybprobe or FRET, Molecular Beacons, HyBeacon, MGB-Pleiades, MGB-Eclipse, ResonSense, Yin-Yang or displacing); and (iii) analogues of nucleic acids (PNA, LNA, ZNA, non-natural bases: Plexor primer, Tiny-Molecular Beacon). In addition, structures, mechanisms of action, advantages and applications of such real-time PCR probes and analogues are depicted in this review. Copyright © 2014 Elsevier B.V. All rights reserved.
Strengthening Superconductivity in Macro-Arrays of Nanoclusters and Nanostructures
2015-02-11
general approach for creating superconducting wires based on CNT conducting cores, coated by layered superconductors; • Develop cost-effective...wire 0.5 mm diameter Thermal conductivity 6600 Wm-1K-1 (SWNT) [37] 3600 Wm-1K-1 (SWNT) [35] 640 Wm-1K-1 wet-spun CNT fibers [4] 3320 Wm-1K... conductivity , which can improve thermal stability and enhance heat dissipation of MgB2 wire. Being one-dimensional nanostructures, they can act as
Neural coding of repetitive clicks in the medial geniculate body of cat.
Rouiller, E; de Ribaupierre, Y; Toros-Morel, A; de Ribaupierre, F
1981-09-01
The activity of 418 medial geniculate body (MGB) units was studied in response to repetitive acoustic pulses in 35 nitrous oxide anaesthetized cats. The proportion of MGB neurons insensitive to repetitive clicks was close to 30%. On the basis of their pattern of discharge, the responsive units were divided into three categories. The majority of them (71%), classified as "lockers', showed discharges precisely time-locked to the individual clicks of the train. A few units (8%), called "groupers', had discharges loosely synchronized to low-rate repetitive clicks. When the spikes were not synchronized, the cell had transient or sustained responses for a limited frequency range and was classified as a "special responder' (21%). Responses of "lockers' were time-locked up to a limiting rate, which varied between 10 and 800 Hz; half of the "lockers' had a limiting rate of locking equal to or higher than 100 Hz. The degree of entrainment, defined as the probability that each click evokes at least one spike, regularly decreases for increasing rates; on the other hand, the precision of locking increasing increases with frequency. The time jitter observed at 100 Hz might be as small as 0.2 ms and was 1.2 ms on average. The population of "lockers' can mark with precision the transients of complex sounds and has response properties still compatible with a temporal coding of the fundamental frequency of most animal vocalizations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yuanyuan; Yang, Mengjin; Pang, Shuping
Here we demonstrate a radically different chemical route for the creation of HC(NH2)2PbI3 (FAPbI3) perovskite thin films. This approach entails a simple exposure of as-synthesized CH3NH3PbI3 (MAPbI3) perovskite thin films to HC(=NH)NH2 (formamidine or FA) gas at 150 degrees C, which leads to rapid displacement of the MA+ cations by FA+ cations in the perovskite structure. The resultant FAPbI3 perovskite thin films preserve the microstructural morphology of the original MAPbI3 thin films exceptionally well. Importantly, the myriad processing innovations that have led to the creation of high-quality MAPbI3 perovskite thin films are directly adaptable to FAPbI3 through this simple, rapidmore » chemical-conversion route. Accordingly, we show that efficiencies of perovskite solar cells fabricated with FAPbI3 thin films created using this route can reach -18%.« less
NASA Astrophysics Data System (ADS)
Farid, Sidra; Stroscio, Michael A.; Dutta, Mitra
2018-03-01
Thermal evaporation growth technique is presented as a route to grow cost effective high quality CdS thin films. We have successfully grown high quality CdS thin films on ITO coated glass substrates by thermal evaporation technique and analyzed the effects of annealing and excitation dependent input of CdS thin film using Raman and photoluminescence spectroscopy. LO phonon modes have been analyzed quantitatively considering the contributions due to anneal induced effects on film quality using phonon spatial correlation model, line shape and defect state analysis. Asymmetry in the Raman line shape towards the low frequency side is related to the phonon confinement effects and is modeled by spatial correlation model. Calculations of width (FWHM), integrated intensity, and line shape for the longitudinal (LO) optical phonon modes indicate improved crystalline quality for the annealed films as compared to the as grown films. With increase in laser power, intensity ratio of 2-LO to 1-LO optical phonon modes is found to increase while multiple overtones upto fourth order are observed. Power dependent photoluminescence data indicates direct band-to-band transition in CdS thin films.
NASA Astrophysics Data System (ADS)
Chaudhari, J. J.; Joshi, U. S.
2018-05-01
In this study kesterite Cu2ZnSnS4 (CZTS) thin films suitable for absorber layer in thin film solar cells (TFSCs) were successfully fabricated on glass substrate by sol-gel method. The effects of complexing agent on formation of CZTS thin films have been investigated. X-ray diffraction (XRD) analysis confirms formation of polycrystalline CZTS thin films with single phase kesterite structure. XRD and Raman spectroscopy analysis of CZTS thin films with optimized concentration of complexing agent confirmed formation of kesterite phase in CZTS thin films. The direct optical band gap energy of CZTS thin films is found to decrease from 1.82 to 1.50 eV with increase of concentration of complexing agent triethanolamine. Morphological analysis of CZTS thin films shows smooth, uniform and densely packed CZTS grains and increase in the grain size with increase of concentration of complexing agent. Hall measurements revealed that concentration of charge carrier increases and resistivity decreases in CZTS thin films as amount of complexing agent increases.
Superconductivity and the periodic table: from elements to materials.
Simon, Arndt
2015-03-13
Based on the normal-state electronic band structure, the necessary condition for a metal to become a superconductor is the simultaneous occurrence of flat and steep bands at the Fermi level. The sufficient condition at least for conventional superconductors is a strong enough coupling of the flat band states to the lattice, e.g. via phonons. Selected elements (Te) and compounds of the rare earth metals (RE(2)C(3), REC(2), RE(2)X(2)C(2) with X=halogen) and MgB(2) serve as examples to illustrate the idea. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
The structure and magnetic properties of β-(Ga0.96Mn0.04)2O3 thin film
NASA Astrophysics Data System (ADS)
Huang, Yuanqi; Chen, Zhengwei; Zhang, Xiao; Wang, Xiaolong; Zhi, Yusong; Wu, Zhenping; Tang, Weihua
2018-05-01
High quality epitaxial single phase (Ga0.96Mn0.04)2O3 and Ga2O3 thin films have been prepared on sapphire substrates by using laser molecular beam epitaxy (L-MBE). X-ray diffraction results indicate that the thin films have the monoclinic structure with a ≤ft( {\\bar 201} \\right) preferable orientation. Room temperature (RT) ferromagnetism appears and the magnetic properties of β-(Ga0.96Mn0.04)2O3 thin film are enhanced compared with our previous works. Experiments as well as the first principle method are used to explain the role of Mn dopant on the structure and magnetic properties of the thin films. The ferromagnetic properties are explained based on the concentration of transition element and the defects in the thin films. Project supported by the National Natural Science Foundation of China (Nos. 11404029, 51572033, 51172208) and the Fund of State Key Laboratory of Information Photonics and Optical Communications (BUPT).
Effect of magnetic field on the flux pinning mechanisms in Al and SiC co-doped MgB2 superconductor
NASA Astrophysics Data System (ADS)
Kia, N. S.; Ghorbani, S. R.; Arabi, H.; Hossain, M. S. A.
2018-07-01
MgB2 superconductor samples co-doped with 0.02 wt. Al2O3 and 0-0.05 wt. SiC were studied by magnetization - magnetic field (M-H) loop measurements at different temperatures. The critical current density has been calculated by the Bean model, and the irreversibility field, Hirr, has been obtained by the Kramer method. The pinning mechanism of the co-doped sample with 2% Al and 5% SiC was investigated in particular due to its having the highest Hirr. The normalized volume pinning force f = F/Fmax as a function of reduced magnetic field h = H/Hirr has been obtained, and the pinning mechanism was studied by the Dew-Houghes model. It was found that the normal point pinning (NPP), the normal surface pinning (NSP), and the normal volume pinning (NVP) mechanisms play the main roles. The magnetic field and temperature dependence of contributions of the NPP, NSP, and NVP pinning mechanisms were obtained. The results show that the contributions of the pinning mechanisms depend on the temperature and magnetic field. From the temperature dependence of the critical current density within the collective pinning theory, it was found that both the δl pinning due to spatial fluctuations of the charge-carrier mean free path and the δTc pinning due to randomly distributed spatial variations in the transition temperature coexist at zero magnetic field in co-doped samples. Yet, the charge-carrier mean-free-path fluctuation pinning (δl) is the only important pinning mechanism at non-zero magnetic fields.
Rivas-Murias, Beatriz; Manuel Vila-Fungueiriño, José; Rivadulla, Francisco
2015-01-01
Misfit cobaltates ([Bi/Ba/Sr/Ca/CoO]nRS[CoO2]q) constitute the most promising family of thermoelectric oxides for high temperature energy harvesting. However, their complex structure and chemical composition makes extremely challenging their deposition by high-vacuum physical techniques. Therefore, many of them have not been prepared as thin films until now. Here we report the synthesis of high-quality epitaxial thin films of the most representative members of this family of compounds by a water-based chemical solution deposition method. The films show an exceptional crystalline quality, with an electrical conductivity and thermopower comparable to single crystals. These properties are linked to the epitaxial matching of the rock-salt layers of the structure to the substrate, producing clean interfaces free of amorphous phases. This is an important step forward for the integration of these materials with complementary n-type thermoelectric oxides in multilayer nanostructures. PMID:26153533
Superconductor Armature Winding for High Performance Electrical Machines
2016-12-05
Vol. 3, pp.489-507 [Kalsi1] S. S. Kalsi, ‘Superconducting Wind Turbine Generator Employing MgB2 Windings Both on Rotor and Stator’, IEEE Trans. on...Contract Number: N00014-‐14-‐1-‐0272 Contract Title: Superconductor armature winding for high performance electrical...an all-superconducting machine. Superconductor armature windings in electrical machines bring many design challenges that need to be addressed en
Research on ReBCO and MgB2 Wires and Cables at the University of Twente
2015-09-15
unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This is a report of the effect of transverse load and combined tensile/ torsion stress on the current...were subjected to magnetic fields and other tests and various measurements taken. The report includes mechanical performance of cables in strain, AC...and combined controlled tensile and torsion stress on the degradation of the current carrying capability
Materials Data on MgB7 (SG:74) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-09-01
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Gil, M; Esteruelas, M; González, E; Kontoudakis, N; Jiménez, J; Fort, F; Canals, J M; Hermosín-Gutiérrez, I; Zamora, F
2013-05-22
The influence of two treatments for reducing grape yield, cluster thinning and berry thinning, on red wine composition and quality were studied in a Vitis vinifera cv Syrah vineyard in AOC Penedès (Spain). Cluster thinning reduced grape yield per vine by around 40% whereas berry thinning only reduced it by around 20%. Cluster thinning grapes had higher soluble solids content than control grapes, and their resultant wines have greater anthocyanin and polysaccharide concentrations than the control wine. Wine obtained from berry thinning grapes had a higher total phenolic index, greater flavonol, proanthocyanidin, and polysaccharide concentrations, and lower titratable acidity than the control wine. Wines obtained from both treatments were sufficiently different from the control wine to be significantly distinguished by a trained panel in a triangular test. Even though both treatments seem to be effective at improving the quality of wine, berry thinning has the advantage because it has less impact on crop yield reduction.
7 CFR 29.1164 - Cutters (C Group).
Code of Federal Regulations, 2011 CFR
2011-01-01
... injury. Grades, Grade Names, Minimum Specifications, and Tolerances C1L—Choice Quality Lemon Cutters Ripe.... Uniformity, 90 percent, injury tolerance, 5 percent. C2L—Fine Quality Lemon Cutters Ripe, open leaf structure... tolerance, 10 percent. C3L—Good Quality Lemon Cutters Ripe, open leaf structure, thin, oily, strong color...
7 CFR 29.1164 - Cutters (C Group).
Code of Federal Regulations, 2010 CFR
2010-01-01
... injury. Grades, Grade Names, Minimum Specifications, and Tolerances C1L—Choice Quality Lemon Cutters Ripe.... Uniformity, 90 percent, injury tolerance, 5 percent. C2L—Fine Quality Lemon Cutters Ripe, open leaf structure... tolerance, 10 percent. C3L—Good Quality Lemon Cutters Ripe, open leaf structure, thin, oily, strong color...
Karbaschian, Zohreh; Mokhtari, Zeinab; Pazouki, Abdolreza; Kabir, Ali; Hedayati, Mahdi; Moghadam, Somayeh Soleymanzadeh; Mirmiran, Parvin; Hekmatdoost, Azita
2018-05-03
Bariatric surgery is known as one of the most effective treatments for sustainable weight loss; however, it may be associated with some complications. This study was designed to examine the effects of probiotic supplementation on some morbidities related to this surgery. This was a placebo-controlled, double-blind, randomized clinical trial on morbid obese patients referred for One Anastomosis Gastric Bypass- Mini Gastric Bypass (OAGB-MGB) surgery to a tertiary referral center. Patients were assigned to receive a probiotic supplement (Familact®) or placebo from 4 weeks prior to surgery to 12 weeks after surgery. Anthropometric, biochemical, and inflammatory indices were evaluated at the beginning and the end of the study. At the end of study, significant improvements in some serum inflammatory markers, vitamin D status, and anthropometric measurements were observed (p < 0.05), which were significantly more in probiotic group rather than placebo group (p < 0.05). Moreover, significant improvements in glycemic indices and lipid profile were observed in both groups; however, these changes were not significantly different between the groups. There was no significant difference in serum levels of vitamin B 12 , folate, and homocysteine between groups at week 16 of the study. Our results indicate that probiotic supplementation promotes inflammatory markers, body weight loss, and status of vitamin D in patients undergoing OAGB-MGB bypass. Whether these findings will sustain in longer treatment duration remained to be elucidated in future studies. This study has been registered at Clinicaltrial.gov with registration number NCT02708589.
Petra, Anastasia I; Panagiotidou, Smaro; Hatziagelaki, Erifili; Stewart, Julia M; Conti, Pio; Theoharides, Theoharis C
2015-05-01
Gut microbiota regulate intestinal function and health. However, mounting evidence indicates that they can also influence the immune and nervous systems and vice versa. This article reviews the bidirectional relationship between the gut microbiota and the brain, termed the microbiota-gut-brain (MGB) axis, and discusses how it contributes to the pathogenesis of certain disorders that may involve brain inflammation. Articles were identified with a search of Medline (starting in 1980) by using the key words anxiety, attention-deficit hypersensitivity disorder (ADHD), autism, cytokines, depression, gut, hypothalamic-pituitary-adrenal (HPA) axis, inflammation, immune system, microbiota, nervous system, neurologic, neurotransmitters, neuroimmune conditions, psychiatric, and stress. Various afferent or efferent pathways are involved in the MGB axis. Antibiotics, environmental and infectious agents, intestinal neurotransmitters/neuromodulators, sensory vagal fibers, cytokines, and essential metabolites all convey information to the central nervous system about the intestinal state. Conversely, the hypothalamic-pituitary-adrenal axis, the central nervous system regulatory areas of satiety, and neuropeptides released from sensory nerve fibers affect the gut microbiota composition directly or through nutrient availability. Such interactions seem to influence the pathogenesis of a number of disorders in which inflammation is implicated, such as mood disorder, autism-spectrum disorders, attention-deficit hypersensitivity disorder, multiple sclerosis, and obesity. Recognition of the relationship between the MGB axis and the neuroimmune systems provides a novel approach for better understanding and management of these disorders. Appropriate preventive measures early in life or corrective measures such as use of psychobiotics, fecal microbiota transplantation, and flavonoids are discussed. Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.
Biocompatibility and Surface Properties of TiO2 Thin Films Deposited by DC Magnetron Sputtering
López-Huerta, Francisco; Cervantes, Blanca; González, Octavio; Hernández-Torres, Julián; García-González, Leandro; Vega, Rosario; Herrera-May, Agustín L.; Soto, Enrique
2014-01-01
We present the study of the biocompatibility and surface properties of titanium dioxide (TiO2) thin films deposited by direct current magnetron sputtering. These films are deposited on a quartz substrate at room temperature and annealed with different temperatures (100, 300, 500, 800 and 1100 °C). The biocompatibility of the TiO2 thin films is analyzed using primary cultures of dorsal root ganglion (DRG) of Wistar rats, whose neurons are incubated on the TiO2 thin films and on a control substrate during 18 to 24 h. These neurons are activated by electrical stimuli and its ionic currents and action potential activity recorded. Through X-ray diffraction (XRD), the surface of TiO2 thin films showed a good quality, homogeneity and roughness. The XRD results showed the anatase to rutile phase transition in TiO2 thin films at temperatures between 500 and 1100 °C. This phase had a grain size from 15 to 38 nm, which allowed a suitable structural and crystal phase stability of the TiO2 thin films for low and high temperature. The biocompatibility experiments of these films indicated that they were appropriated for culture of living neurons which displayed normal electrical behavior. PMID:28788667
78 FR 67177 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-08
... personal privacy. Name of Committee: Center for Scientific Review Special Emphasis Panel; Molecular Genetics B (MGB). Date: November 25, 2013. Time: 3:00 p.m. to 4:30 p.m. Agenda: To review and evaluate...
NASA Astrophysics Data System (ADS)
Buarque, D. C.; Collischonn, W.; Paiva, R. C. D.
2012-04-01
This study presents the first application and preliminary results of the large scale hydrodynamic/hydrological model MGB-IPH with a new module to predict the spatial distribution of the basin erosion and river sediment transport in a daily time step. The MGB-IPH is a large-scale, distributed and process based hydrological model that uses a catchment based discretization and the Hydrological Response Units (HRU) approach. It uses physical based equations to simulate the hydrological processes, such as the Penman Monteith model for evapotranspiration, and uses the Muskingum Cunge approach and a full 1D hydrodynamic model for river routing; including backwater effects and seasonal flooding. The sediment module of the MGB-IPH model is divided into two components: 1) prediction of erosion over the basin and sediment yield to river network; 2) sediment transport along the river channels. Both MGB-IPH and the sediment module use GIS tools to display relevant maps and to extract parameters from SRTM DEM (a 15" resolution was adopted). Using the catchment discretization the sediment module applies the Modified Universal Soil Loss Equation to predict soil loss from each HRU considering three sediment classes defined according to the soil texture: sand, silt and clay. The effects of topography on soil erosion are estimated by a two-dimensional slope length (LS) factor which using the contributing area approach and a local slope steepness (S), both estimated for each DEM pixel using GIS algorithms. The amount of sediment releasing to the catchment river reach in each day is calculated using a linear reservoir. Once the sediment reaches the river they are transported into the river channel using an advection equation for silt and clay and a sediment continuity equation for sand. A sediment balance based on the Yang sediment transport capacity, allowing to compute the amount of erosion and deposition along the rivers, is performed for sand particles as bed load, whilst no erosion or deposition is allowed for silt and clay. The model was first applied on the Madeira River basin, one of the major tributaries of the Amazon River (~1.4*106 km2) accounting for 35% of the suspended sediment amount annually transported for the Amazon river to the ocean. Model results agree with observed data, mainly for monthly and annual time scales. The spatial distribution of soil erosion within the basin showed a large amount of sediment being delivered from the Andean regions of Bolivia and Peru. Spatial distribution of mean annual sediment along the river showed that Madre de Dios, Mamoré and Beni rivers transport the major amount of sediment. Simulated daily suspended solid discharge agree with observed data. The model is able to provide temporaly and spatialy distributed estimates of soil loss source over the basin, locations with tendency for erosion or deposition along the rivers, and to reproduce long term sediment yield at several locations. Despite model results are encouraging, further effort is needed to validate the model considering the scarcity of data at large scale.
Piezoelectric thin films and their applications for electronics
NASA Astrophysics Data System (ADS)
Yoshino, Yukio
2009-03-01
ZnO and AlN piezoelectric thin films have been studied for applications in bulk acoustic wave (BAW) resonator. This article introduces methods of forming ZnO and AlN piezoelectric thin films by radio frequency sputtering and applications of BAW resonators considering the relationship between the crystallinity of piezoelectric thin films and the characteristics of the BAW resonators. Using ZnO thin films, BAW resonators were fabricated for a contour mode at 3.58 MHz and thickness modes from 200 MHz to 5 GHz. The ZnO thin films were combined with various materials, substrates, and thin films to minimize the temperature coefficient of frequency (TCF). The minimum TCF of BAW resonators was approximately 2 ppm/°C in the range -20 to 80 °C. The electromechanical coupling coefficient (k2) in a 1.9 GHz BAW resonator was 6.9%. Using AlN thin films, 5-20 GHz BAW resonators with an ultrathin membrane were realized. The membrane thickness of a 20 GHz BAW resonator was about 200 nm, k2 was 6.1%, and the quality factor (Q) was about 280. Q decreased with increasing resonant frequency. The value of k2 is almost the same for 5-20 GHz resonators. This result could be obtained by improving the thickness uniformity, by controlling internal stress of thin films, and by controlling the crystallinity of AlN piezoelectric thin film.
Bhattacharya, Raghu N.; Contreras, Miguel A.; Keane, James; Tennant, Andrew L.; Tuttle, John R.; Ramanathan, Kannan; Noufi, Rommel
1998-03-24
High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.
NASA Astrophysics Data System (ADS)
Zhao, Jun; Liang, Guangxing; Zeng, Yang; Fan, Ping; Hu, Juguang; Luo, Jingting; Zhang, Dongping
2017-02-01
The CuZnSn (CZT) precursor thin films are grown by ion-beam sputtering Cu, Zn, Sn targets with different orders and then sputtering Se target to fabricate Cu2ZnSnSe4 (CZTSe) absorber thin films on molybdenum substrates. They are annealed in the same vacuum chamber at 400 °C. The characterization methods of CZTSe thin films include X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and X-ray photoelectron spectra (XPS) in order to study the crystallographic properties, composition, surface morphology, electrical properties and so on. The results display that the CZTSe thin films got the strongest diffraction peak intensity and were with good crystalline quality and its morphology appeared smooth and compact with a sequence of Cu/Zn/Sn/Se, which reveals that the expected states for CZTSe are Cu1+, Zn2+, Sn4+, Se2+. With the good crystalline quality and close to ideal stoichiometric ratio the resistivity of the CZTSe film with the sequence of Cu/Zn/Sn/Se is lower, whose optical band gap is about 1.50 eV. Project supported by the National Natural Science Foundation of China (No. 61404086), the Basical Research Program of Shenzhen (Nos. JCYJ20150324140036866, JCYJ20150324141711581), and the Natural Science Foundation of SZU (No. 2014017).
Very low-refractive-index optical thin films consisting of an array of SiO2 nanorods
NASA Astrophysics Data System (ADS)
Xi, J.-Q.; Kim, Jong Kyu; Schubert, E. F.; Ye, Dexian; Lu, T.-M.; Lin, Shawn-Yu; Juneja, Jasbir S.
2006-03-01
The refractive-index contrast in dielectric multilayer structures, optical resonators, and photonic crystals is an important figure of merit that creates a strong demand for high-quality thin films with a low refractive index. A SiO2 nanorod layer with low refractive index of n=1.08, to our knowledge the lowest ever reported in thin-film materials, is grown by oblique-angle electron-beam deposition of SiO2. A single-pair distributed Bragg reflector employing a SiO2 nanorod layer is demonstrated to have enhanced reflectivity, showing the great potential of low-refractive-index films for applications in photonic structures and devices.
Samson, Maria Cristina; Gullì, Mariolina; Marmiroli, Nelson
2010-07-01
Methodologies that enable the detection of genetically modified organisms (GMOs) (authorized and non-authorized) in food and feed strongly influence the potential for adequate updating and implementation of legislation together with labeling requirements. Quantitative polymerase chain reaction (qPCR) systems were designed to boost the sensitivity and specificity on the identification of GMOs in highly degraded DNA samples; however, such testing will become economically difficult to cope with due to increasing numbers of approved genetically modified (GM) lines. Multiplexing approaches are therefore in development to provide cost-efficient solution. Construct-specific primers and probe were developed for quantitative analysis of Roundup Ready soybean (RRS) event glyphosate-tolerant soybean (GTS) 40-3-2. The lectin gene (Le1) was used as a reference gene, and its specificity was verified. RRS- and Le1-specific quantitative real-time PCR (qRTPCR) were optimized in a duplex platform that has been validated with respect to limit of detection (LOD) and limit of quantification (LOQ), as well as accuracy. The analysis of model processed food samples showed that the degradation of DNA has no adverse or little effects on the performance of quantification assay. In this study, a duplex qRTPCR using TaqMan minor groove binder-non-fluorescent quencher (MGB-NFQ) chemistry was developed for specific detection and quantification of RRS event GTS 40-3-2 that can be used for practical monitoring in processed food products.
Dimitrov, I. K.; Zhang, X.; Solovyov, V. F.; ...
2015-07-07
Recent advances in second-generation (YBCO) high-temperature superconducting wire could potentially enable the design of super high performance energy storage devices that combine the high energy density of chemical storage with the high power of superconducting magnetic storage. However, the high aspect ratio and the considerable filament size of these wires require the concomitant development of dedicated optimization methods that account for the critical current density in type-II superconductors. In this study, we report on the novel application and results of a CPU-efficient semianalytical computer code based on the Radia 3-D magnetostatics software package. Our algorithm is used to simulate andmore » optimize the energy density of a superconducting magnetic energy storage device model, based on design constraints, such as overall size and number of coils. The rapid performance of the code is pivoted on analytical calculations of the magnetic field based on an efficient implementation of the Biot-Savart law for a large variety of 3-D “base” geometries in the Radia package. The significantly reduced CPU time and simple data input in conjunction with the consideration of realistic input variables, such as material-specific, temperature, and magnetic-field-dependent critical current densities, have enabled the Radia-based algorithm to outperform finite-element approaches in CPU time at the same accuracy levels. Comparative simulations of MgB 2 and YBCO-based devices are performed at 4.2 K, in order to ascertain the realistic efficiency of the design configurations.« less
High-quality crystalline yttria-stabilized-zirconia thin layer for photonic applications
NASA Astrophysics Data System (ADS)
Marcaud, Guillaume; Matzen, Sylvia; Alonso-Ramos, Carlos; Le Roux, Xavier; Berciano, Mathias; Maroutian, Thomas; Agnus, Guillaume; Aubert, Pascal; Largeau, Ludovic; Pillard, Valérie; Serna, Samuel; Benedikovic, Daniel; Pendenque, Christopher; Cassan, Eric; Marris-Morini, Delphine; Lecoeur, Philippe; Vivien, Laurent
2018-03-01
Functional oxides are considered as promising materials for photonic applications due to their extraordinary and various optical properties. Especially, yttria-stabilized zirconia (YSZ) has a high refractive index (˜2.15), leading to a good confinement of the optical mode in waveguides. Furthermore, YSZ can also be used as a buffer layer to expand toward a large family of oxides-based thin-films heterostructures. In this paper, we report a complete study of the structural properties of YSZ for the development of integrated optical devices on sapphire in telecom wavelength range. The substrate preparation and the epitaxial growth using pulsed-laser deposition technique have been studied and optimized. High-quality YSZ thin films with remarkably sharp x-ray diffraction rocking curve peaks in 10-3∘ range have then been grown on sapphire (0001). It was demonstrated that a thermal annealing of sapphire substrate before the YSZ growth allowed controlling the out-of-plane orientation of the YSZ thin film. Single-mode waveguides were finally designed, fabricated, and characterized for two different main orientations of high-quality YSZ (001) and (111). Propagation loss as low as 2 dB/cm at a wavelength of 1380 nm has been demonstrated for both orientations. These results pave the way for the development of a functional oxides-based photonics platform for numerous applications including on-chip optical communications and sensing.
Superconductivity of ternary silicide with the AlB(2)-type structure Sr(Ga(0.37),Si(0.63))(2).
Imai, M; Abe, E; Ye, J; Nishida, K; Kimura, T; Honma, K; Abe, H; Kitazawa, H
2001-08-13
A ternary silicide Sr(Ga(0.37),Si(0.63))(2) was synthesized by a floating zone method. Electron diffraction and powder x-ray diffraction measurements indicate that the silicide has the AlB(2)-type structure with the lattice constants of a = 4.1427(6) A and c = 4.7998(9) A, where Si and Ga atoms are arranged in a chemically disordered honeycomb lattice and Sr atoms are inercalated between them. The silicide is isostructural with the high-temperature superconductor MgB(2) reported recently. Electrical resistivity and dc magnetization measurements revealed that it is a type-II superconductor with onset temperature of 3.5 K.
Effect of thinning on growth and potential quality of young white oak crop trees
Martin E. Dale; David L. Sonderman
1984-01-01
Relative change in several types of stem defects were studied over a 16-year period to determine the effect of thinning intensity on the development of tree quality. We studied quality changes on sample white oak crop trees that were selected from five density levels created in a 1961 thinning. Branch-related and other stem defects on the butt 16-foot section were...
Fabrication of Cu2SnS3 thin films by ethanol-ammonium solution process by doctor-blade technique
NASA Astrophysics Data System (ADS)
Wang, Yaguang; Li, Jianmin; Xue, Cong; Zhang, Yan; Jiang, Guoshun; Liu, Weifeng; Zhu, Changfei
2017-11-01
In the present study, a low-cost and simple method is applied to fabricate Cu2SnS3 (CTS) thin films. Namely CTS thin films are prepared by a doctor-blade method with a slurry dissolving the Cu2O and SnS powders obtained from CBD reaction solution into ethanol-ammonium solvents. Series of characterization methods including XRD, Raman spectra, SEM and UV-Vis analyses are introduced to investigate the phase structure, morphology and optical properties of CTS thin films. As a result, monoclinic CTS films have been obtained with the disappearance of binary phases CuS and SnS2 while increasing the annealing temperature and time, high quality monoclinic CTS thin films consisting of compact and large grains have been successfully prepared by this ethanol-ammonium method. Moreover, the secondary phase Cu2Sn3S7 is also observed during the annealing process. In addition, the post-annealed CTS film with a band-gap about 0.89 eV shows excellent absorbance between 400 and 1200 nm, which is proper for the bottom layer in multi-junction thin film solar cells.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Lee, Chi Hwan; Kim, Jae-Han; Zou, Chenyu; Cho, In Sun; Weisse, Jeffery M.; Nemeth, William; Wang, Qi; van Duin, Adri C. T.; Kim, Taek-Soo; Zheng, Xiaolin
2013-10-01
Peel-and-stick process, or water-assisted transfer printing (WTP), represents an emerging process for transferring fully fabricated thin-film electronic devices with high yield and fidelity from a SiO2/Si wafer to various non-Si based substrates, including papers, plastics and polymers. This study illustrates that the fundamental working principle of the peel-and-stick process is based on the water-assisted subcritical debonding, for which water reduces the critical adhesion energy of metal-SiO2 interface by 70 ~ 80%, leading to clean and high quality transfer of thin-film electronic devices. Water-assisted subcritical debonding is applicable for a range of metal-SiO2 interfaces, enabling the peel-and-stick process as a general and tunable method for fabricating flexible/transparent thin-film electronic devices.
Lee, Chi Hwan; Kim, Jae-Han; Zou, Chenyu; Cho, In Sun; Weisse, Jeffery M; Nemeth, William; Wang, Qi; van Duin, Adri C T; Kim, Taek-Soo; Zheng, Xiaolin
2013-10-10
Peel-and-stick process, or water-assisted transfer printing (WTP), represents an emerging process for transferring fully fabricated thin-film electronic devices with high yield and fidelity from a SiO2/Si wafer to various non-Si based substrates, including papers, plastics and polymers. This study illustrates that the fundamental working principle of the peel-and-stick process is based on the water-assisted subcritical debonding, for which water reduces the critical adhesion energy of metal-SiO2 interface by 70 ~ 80%, leading to clean and high quality transfer of thin-film electronic devices. Water-assisted subcritical debonding is applicable for a range of metal-SiO2 interfaces, enabling the peel-and-stick process as a general and tunable method for fabricating flexible/transparent thin-film electronic devices.
Evaluating effects of thinning on wood quality in southeast Alaska
Eini C. Lowell; Dennis P. Dykstra; Robert A. Monserud
2012-01-01
We examined the effect of thinning on wood quality of western hemlock (Tsuga heterophylla) and Sitka spruce (Picea sitchensis) located on Prince of Wales and Mitkof Islands in southeast Alaska. Sample trees came from paired plots (thinned versus unthinned) in eight naturally regenerated, mixed stands of young-growth western...
Ito, Tetsufumi; Oliver, Douglas L.
2012-01-01
The inferior colliculus (IC) in the midbrain of the auditory system uses a unique basic circuit to organize the inputs from virtually all of the lower auditory brainstem and transmit this information to the medial geniculate body (MGB) in the thalamus. Here, we review the basic circuit of the IC, the neuronal types, the organization of their inputs and outputs. We specifically discuss the large GABAergic (LG) neurons and how they differ from the small GABAergic (SG) and the more numerous glutamatergic neurons. The somata and dendrites of LG neurons are identified by axosomatic glutamatergic synapses that are lacking in the other cell types and exclusively contain the glutamate transporter VGLUT2. Although LG neurons are most numerous in the central nucleus of the IC (ICC), an analysis of their distribution suggests that they are not specifically associated with one set of ascending inputs. The inputs to ICC may be organized into functional zones with different subsets of brainstem inputs, but each zone may contain the same three neuron types. However, the sources of VGLUT2 axosomatic terminals on the LG neuron are not known. Neurons in the dorsal cochlear nucleus, superior olivary complex, intermediate nucleus of the lateral lemniscus, and IC itself that express the gene for VGLUT2 only are the likely origin of the dense VGLUT2 axosomatic terminals on LG tectothalamic neurons. The IC is unique since LG neurons are GABAergic tectothalamic neurons in addition to the numerous glutamatergic tectothalamic neurons. SG neurons evidently target other auditory structures. The basic circuit of the IC and the LG neurons in particular, has implications for the transmission of information about sound through the midbrain to the MGB. PMID:22855671
50-mJ, 1-kHz Yb:YAG thin-disk regenerative amplifier with 969-nm pulsed pumping
NASA Astrophysics Data System (ADS)
Chyla, Michal; Miura, Taisuke; Smrž, Martin; Severova, Patricie; Novak, Ondrej; Endo, Akira; Mocek, Tomas
2014-02-01
We are developing a 100-mJ Yb:YAG thin-disk regenerative amplifier operating at 1-kHz repetition rate pumped at zero-phonon-line (968.825-nm1) and delivering 1-2 ps pulses for EUV plasma sources applicable in science and industry. Recently we achieved the output energy of nearly 50-mJ from a single laser-head cavity with good beam quality (M2<1.2) as well as stable beam-pointing (<4μrad). Applying pulsed pumping with the pulse duration shorter than the upper state lifetime of Yb:YAG helps to reduce the ASE and thermal loading of the thin-disk.
Improving yield and performance in ZnO thin-film transistors made using selective area deposition.
Nelson, Shelby F; Ellinger, Carolyn R; Levy, David H
2015-02-04
We describe improvements in both yield and performance for thin-film transistors (TFTs) fabricated by spatial atomic layer deposition (SALD). These improvements are shown to be critical in forming high-quality devices using selective area deposition (SAD) as the patterning method. Selective area deposition occurs when the precursors for the deposition are prevented from reacting with some areas of the substrate surface. Controlling individual layer quality and the interfaces between layers is essential for obtaining good-quality thin-film transistors and capacitors. The integrity of the gate insulator layer is particularly critical, and we describe a method for forming a multilayer dielectric using an oxygen plasma treatment between layers that improves crossover yield. We also describe a method to achieve improved mobility at the important interface between the semiconductor and the gate insulator by, conversely, avoiding oxygen plasma treatment. Integration of the best designs results in wide design flexibility, transistors with mobility above 15 cm(2)/(V s), and good yield of circuits.
Powering the High-Luminosity Triplets
NASA Astrophysics Data System (ADS)
Ballarino, A.; Burnet, J. P.
The powering of the magnets in the LHC High-Luminosity Triplets requires production and transfer of more than 150 kA of DC current. High precision power converters will be adopted, and novel High Temperature Superconducting (HTS) current leads and MgB2 based transfer lines will provide the electrical link between the power converters and the magnets. This chapter gives an overview of the systems conceived in the framework of the LHC High-Luminosity upgrade for feeding the superconducting magnet circuits. The focus is on requirements, challenges and novel developments.
Sametsky, Evgeny A; Turner, Jeremy G; Larsen, Deb; Ling, Lynne; Caspary, Donald M
2015-06-24
Accumulating evidence suggests a role for inhibitory neurotransmitter dysfunction in the pathology of tinnitus. Opposing hypotheses proposed either a pathologic decrease or increase of GABAergic inhibition in medial geniculate body (MGB). In thalamus, GABA mediates fast synaptic inhibition via synaptic GABAA receptors (GABAARs) and persistent tonic inhibition via high-affinity extrasynaptic GABAARs. Given that extrasynaptic GABAARs control the firing mode of thalamocortical neurons, we examined tonic GABAAR currents in MGB neurons in vitro, using the following three groups of adult rats: unexposed control (Ctrl); sound exposed with behavioral evidence of tinnitus (Tin); and sound exposed with no behavioral evidence of tinnitus (Non-T). Tonic GABAAR currents were evoked using the selective agonist gaboxadol. Months after a tinnitus-inducing sound exposure, gaboxadol-evoked tonic GABAAR currents showed significant tinnitus-related increases contralateral to the sound exposure. In situ hybridization studies found increased mRNA levels for GABAAR δ-subunits contralateral to the sound exposure. Tin rats showed significant increases in the number of spikes per burst evoked using suprathreshold-injected current steps. In summary, we found little evidence of tinnitus-related decreases in GABAergic neurotransmission. Tinnitus and chronic pain may reflect thalamocortical dysrhythmia, which results from abnormal theta-range resonant interactions between thalamus and cortex, due to neuronal hyperpolarization and the initiation of low-threshold calcium spike bursts (Walton and Llinás, 2010). In agreement with this hypothesis, we found tinnitus-related increases in tonic extrasynaptic GABAAR currents, in action potentials/evoked bursts, and in GABAAR δ-subunit gene expression. These tinnitus-related changes in GABAergic function may be markers for tinnitus pathology in the MGB. Copyright © 2015 the authors 0270-6474/15/359369-12$15.00/0.
Rodríguez-Iglesias, Beatriz; Novella-Maestre, Edurne; Herraiz, Sonia; Díaz-García, César; Pellicer, Nuria; Pellicer, Antonio
2015-12-01
To develop a novel molecular panel of markers to detect breast cancer (BC) disseminated malignant cells in ovarian tissue, and to improve the safety of ovarian tissue transplantation. Experimental study. University hospital. Ten ovarian biopsies from healthy patients, 13 biopsies with diagnosed BC metastasis, and 4 biopsies from primary BC tumor for designing a diagnostic panel of BC cell contamination; 60 ovarian biopsies from BC patients undergoing fertility preservation for validating the panel. Female nude mice. A novel panel for BC malignant cell detection by reverse-transcription polymerase chain reaction (RT-PCR), inmmunohistochemical analysis, in vitro invasion assay and xenotransplantation assayed in ovarian tissue from BC patients. Expression of GCDFP15, MGB1, SBEM, MUC1, WT-1, and NY-BR-01, selected as markers, assessed by quantitative RT-PCR in samples with confirmed BC metastasis. The most sensitive markers were confirmed by immunohistochemistry, and tested in vitro and in vivo. GCDFP15, MGB1, and SBEM were the most sensitive and specific markers to detect BC metastatic cells when at least one was expressed by quantitative RT-PCR. The panel was validated in 60 patients and confirmed in an in vitro invasion assay, where no invasive cells were observed. Samples negative for BC cells cannot develop disease when xenografted. GCDFP15, MGB1, and SBEM were the most sensitive molecules to create a diagnostic panel for BC malignant cell contamination, which may make ovarian tissue cryopreservation and transplantation a safe technique for fertility preservation in BC patients. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Positron lifetime spectroscopy for investigation of thin polymer coatings
NASA Technical Reports Server (NTRS)
Singh, Jag J.; Sprinkle, Danny R.; Eftekhari, Abe
1993-01-01
In the aerospace industry, applications for polymer coatings are increasing. They are now used for thermal control on aerospace structures and for protective insulating layers on optical and microelectronic components. However, the effectiveness of polymer coatings depends strongly on their microstructure and adhesion to the substrates. Currently, no technique exists to adequately monitor the quality of these coatings. We have adapted positron lifetime spectroscopy to investigate the quality of thin coatings. Results of measurements on thin (25-micron) polyurethane coatings on aluminum and steel substrates have been compared with measurements on thicker (0.2-cm) self-standing polyurethane discs. In all cases, we find positron lifetime groups centered around 560 psec, which corresponds to the presence of 0.9-A(exp 3) free-volume cells. However, the number of these free-volume cells in thin coatings is larger than in thick discs. This suggests that some of these cells may be located in the interfacial regions between the coatings and the substrates. These results and their structural implications are discussed in this report.
Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer
NASA Astrophysics Data System (ADS)
Wang, Bin; Lai, Jianjun; Li, Hui; Hu, Haoming; Chen, Sihai
2013-03-01
In order to obtain high quality of thermal sensitive material, VOx thin film of high temperature coefficient of resistance (TCR) of 6.5%/K at room temperature has been deposited by reactive ion beam sputtering and post annealing method. AFM and XRD measurements indicate that the VOx thin film with nanostructured crystalline is composed of VO2 and V2O3. The nanostructured VOx microbolometer has been designed and fabricated. The measurement of the film system with TiN absorbing layer indicates that it has about 92% infrared absorption in the range of 8-14 μm. The performance of this bolometer, comparing with that of bolometer with common VOx, has a better result. At 20 Hz frequency and 10 μA bias current, the bolometer with high TCR has reached detectivity of 1.0 × 109 cm Hz1/2/W. It also indicates that this nanostructured VOx thin film has not only a higher TCR but also a lower noise than common VOx thin film without annealing.
Development of high efficiency thin film polycrystalline silicon solar cells using VEST process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishihara, T.; Arimoto, S.; Morikawa, H.
1998-12-31
Thin film Si solar cell has been developed using Via-hole Etching for the Separation of Thin films (VEST) process. The process is based on SOI technology of zone-melting recrystallization (ZMR) followed by chemical vapor deposition (CVD), separation of thin film, and screen printing. Key points for achieving high efficiency are (1) quality of Si films, (2) back surface emitter (BSE), (3) front surface emitter etch-back process, (4) back surface field (BSF) layer thickness and its resistivity, and (5) defect passivation by hydrogen implantation. As a result of experiments, the authors have achieved 16% efficiency (V{sub oc}:0.589V, J{sub sc}:35.6mA/cm{sup 2}, F,F:0.763)more » with a cell size of 95.8cm{sup 2} and the thickness of 77 {micro}m. It is the highest efficiency ever reported for large area thin film Si solar cells.« less
NASA Astrophysics Data System (ADS)
Nag, Jadupati; Ray, Nirat
2018-05-01
Yttrium Iron Garnet (Y3Fe5O12) was synthesized by solid state/ceramic process. Thin films of YIG were deposited on SiO2 substrate at room temperature(RT) and at substrate temperature (Ts) 700 °C using pulsed laser deposition (PLD) technique. RT deposited thin films are amorphous in nature and non-magnetic. After annealing at temperature 800 ° RT deposited thin films showed X-ray peaks as well as the magnetic order. Magnetic ordering is enhanced by annealing temperature(Ta ≥ 750 °C) and resulted good quality of films with high magnetization value.
Ben Slama, Sonia; Hajji, Messaoud; Ezzaouia, Hatem
2012-08-17
Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications.
2012-01-01
Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications. PMID:22901341
NASA Astrophysics Data System (ADS)
Dey, Anup; Roy, Subhashis; Sarkar, Subir Kumar
2018-03-01
In this paper, an attempt is made to deposit ZnO thin films using sol-gel process followed by dip-coating method on p-silicon (100) substrates for intended application as a hydrogen gas sensor owing to the low toxic nature and thermal stability of ZnO. The thin films are annealed under annealing temperatures of 350, 450 and 550 °C for 25 min. The crystalline quality of the fabricated thin films is then analyzed by field-emission scanning electron microscopy and transmission electron microscope. The gas sensing performance analysis of ZnO thin films is demonstrated at different annealing temperatures and hydrogen gas concentrations ranging from 100 to 3000 ppm. Results obtained show that the sensitivity is significantly improved as annealing temperature increases with maximum sensitivity being achieved at 550 °C annealing temperature and operating temperature of 150 °C. Hence, the modified ZnO thin films can be applicable as H2 gas sensing device showing to the improved performance in comparison with unmodified thin-film sensor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Arjan, Wafa S.; King Faisal University, PO Box 380, Al Hofuf; Algaradah, Mohammed M.F.
Highlights: • Highly adaptable sols are presented for processing of the electroceramic materials BaTiO{sub 3} and Bi{sub 2}Ti{sub 2}O{sub 7}. • High quality thin films are produced by dip coating with good phase control. • Infiltration of cross-linked polystyrene templates led to high quality inverse opals. - Abstract: Barium and bismuth titanate thin films and well-ordered inverse opal films are produced by dip coating from sols containing titanium alkoxides with acetic acid, acetylacetone, methoxyethanol and water. The inverse opal preparations used crosslinked polystyrene opal templates. Heat treatment in air produced tetragonal BaTiO{sub 3} or mixtures of the hexagonal and tetragonalmore » phases, or phase pure Bi{sub 2}Ti{sub 2}O{sub 7}. Good quality films were obtained with a thickness of 5 μm from a single dipping, and the thickness could be increased by dipping multiple times. Inverse opals were well ordered and exhibited opalescence and photonic stop band effects.« less
Characterization of Cu2ZnSnS4 thin films prepared by photo-chemical deposition
NASA Astrophysics Data System (ADS)
Moriya, Katsuhiko; Watabe, Jyunichi; Tanaka, Kunihiko; Uchiki, Hisao
2006-09-01
Cu2ZnSnS4 (CZTS) thin films were prepared by post-annealing films of metal sulfides of Cu2S, ZnS and SnS2 precursors deposited on soda-lime glass substrates by photo-chemical deposition (PCD) from aqueous solution containing CuSO4, ZnSO4, SnSO4 and Na2S2O3. In this study, sulfurization was employed to prepare high quality CZTS thin films. Deposited films of metal sulfides were annealed in a furnace in an atmosphere of N2 or N2+H2S(5%) at the temperature of 300°, 400° or 500 °C. The sulfured films showed X-ray diffraction peaks from (112), (220), and (312) planes of CZTS and the peaks became sharp by an increase in the sulfurization temperature. CZTS thin film annealed in atmosphere of N2 was S-poor. After annealing atmosphere was changed from N2 into N2+H2S(5%), the decrease of a composi- tional ratio of sulfur could be suppressed.
Chemical vapor deposition of high T(sub c) superconducting films in a microgravity environment
NASA Technical Reports Server (NTRS)
Levy, Moises; Sarma, Bimal K.
1994-01-01
Since the discovery of the YBaCuO bulk materials in 1987, Metalorganic Chemical Vapor Deposition (MOCVD) has been proposed for preparing HTSC high T(sub c) films. This technique is now capable of producing high-T(sub c) superconducting thin films comparable in quality to those prepared by any other methods. The MOCVD technique has demonstrated its superior advantage in making large area high quality HTSC thin films and will play a major role in the advance of device applications of HTSC thin films. The organometallic precursors used in the MOCVD preparation of HTSC oxide thin films are most frequently metal beta-diketonates. High T(sub c) superconductors are multi-component oxides which require more than one component source, with each source, containing one kind of precursor. Because the volatility and stability of the precursors are strongly dependent on temperature, system pressure, and carrier gas flow rate, it has been difficult to control the gas phase composition, and hence film stoichiometry. In order circumvent these problems we have built and tested a single source MOCVD reactor in which a specially designed vaporizer was employed. This vaporizer can be used to volatilize a stoichiometric mixture of diketonates of yttrium, barium and copper to produce a mixed vapor in a 1:2:3 ratio respectively of the organometellics. This is accomplished even though the three compounds have significantly different volatilities. We have developed a model which provides insight into the process of vaporizing mixed precursors to produce high quality thin films of Y1Ba2Cu3O7. It shows that under steady state conditions the mixed organometallic vapor must have a stoichiometric ratio of the individual organometallics identical to that in the solid mixture.
Fabrication of high crystalline SnS and SnS2 thin films, and their switching device characteristics.
Choi, Hyeongsu; Lee, Jeongsu; Shin, Seokyoon; Lee, Juhyun; Lee, Seungjin; Park, Hyunwoo; Kwon, Sejin; Lee, Namgue; Bang, Minwook; Lee, Seung-Beck; Jeon, Hyeongtag
2018-05-25
Representative tin sulfide compounds, tin monosulfide (SnS) and tin disulfide (SnS 2 ) are strong candidates for future nanoelectronic devices, based on non-toxicity, low cost, unique structures and optoelectronic properties. However, it is insufficient for synthesizing of tin sulfide thin films using vapor phase deposition method which is capable of fabricating reproducible device and securing high quality films, and their device characteristics. In this study, we obtained highly crystalline SnS thin films by atomic layer deposition and obtained highly crystalline SnS 2 thin films by phase transition of the SnS thin films. The SnS thin film was transformed into SnS 2 thin film by annealing at 450 °C for 1 h in H 2 S atmosphere. This phase transition was confirmed by x-ray diffractometer and x-ray photoelectron spectroscopy, and we studied the cause of the phase transition. We then compared the film characteristics of these two tin sulfide thin films and their switching device characteristics. SnS and SnS 2 thin films had optical bandgaps of 1.35 and 2.70 eV, and absorption coefficients of about 10 5 and 10 4 cm -1 in the visible region, respectively. In addition, SnS and SnS 2 thin films exhibited p-type and n-type semiconductor characteristics. In the images of high resolution-transmission electron microscopy, SnS and SnS 2 directly showed a highly crystalline orthorhombic and hexagonal layered structure. The field effect transistors of SnS and SnS 2 thin films exhibited on-off drain current ratios of 8.8 and 2.1 × 10 3 and mobilities of 0.21 and 0.014 cm 2 V -1 s -1 , respectively. This difference in switching device characteristics mainly depends on the carrier concentration because it contributes to off-state conductance and mobility. The major carrier concentrations of the SnS and SnS 2 thin films were 6.0 × 10 16 and 8.7 × 10 13 cm -3 , respectively, in this experiment.
Fabrication of high crystalline SnS and SnS2 thin films, and their switching device characteristics
NASA Astrophysics Data System (ADS)
Choi, Hyeongsu; Lee, Jeongsu; Shin, Seokyoon; Lee, Juhyun; Lee, Seungjin; Park, Hyunwoo; Kwon, Sejin; Lee, Namgue; Bang, Minwook; Lee, Seung-Beck; Jeon, Hyeongtag
2018-05-01
Representative tin sulfide compounds, tin monosulfide (SnS) and tin disulfide (SnS2) are strong candidates for future nanoelectronic devices, based on non-toxicity, low cost, unique structures and optoelectronic properties. However, it is insufficient for synthesizing of tin sulfide thin films using vapor phase deposition method which is capable of fabricating reproducible device and securing high quality films, and their device characteristics. In this study, we obtained highly crystalline SnS thin films by atomic layer deposition and obtained highly crystalline SnS2 thin films by phase transition of the SnS thin films. The SnS thin film was transformed into SnS2 thin film by annealing at 450 °C for 1 h in H2S atmosphere. This phase transition was confirmed by x-ray diffractometer and x-ray photoelectron spectroscopy, and we studied the cause of the phase transition. We then compared the film characteristics of these two tin sulfide thin films and their switching device characteristics. SnS and SnS2 thin films had optical bandgaps of 1.35 and 2.70 eV, and absorption coefficients of about 105 and 104 cm‑1 in the visible region, respectively. In addition, SnS and SnS2 thin films exhibited p-type and n-type semiconductor characteristics. In the images of high resolution-transmission electron microscopy, SnS and SnS2 directly showed a highly crystalline orthorhombic and hexagonal layered structure. The field effect transistors of SnS and SnS2 thin films exhibited on–off drain current ratios of 8.8 and 2.1 × 103 and mobilities of 0.21 and 0.014 cm2 V‑1 s‑1, respectively. This difference in switching device characteristics mainly depends on the carrier concentration because it contributes to off-state conductance and mobility. The major carrier concentrations of the SnS and SnS2 thin films were 6.0 × 1016 and 8.7 × 1013 cm‑3, respectively, in this experiment.
NASA Astrophysics Data System (ADS)
Shin, Junsoo; Goyal, Amit; Jesse, Stephen; Kim, Dae Ho
2009-06-01
Epitaxial, c-axis oriented BaTiO3 thin films were deposited using pulsed laser ablation on flexible, polycrystalline Ni alloy tape with biaxially textured oxide buffer multilayers. The high quality of epitaxial BaTiO3 thin films with P4mm group symmetry was confirmed by x-ray diffraction. The microscopic ferroelectric domain structure and the piezoelectric domain switching in these films were confirmed via spatially resolved piezoresponse mapping and local hysteresis loops. Macroscopic measurements demonstrate that the films have well-saturated hysteresis loops with a high remanent polarization of ˜11.5 μC/cm2. Such high-quality, single-crystal-like BaTiO3 films on low-cost, polycrystalline, flexible Ni alloy substrates are attractive for applications in flexible lead-free ferroelectric devices.
Synthesis of magnesium diboride by magnesium vapor infiltration process (MVIP)
Serquis, Adriana C.; Zhu, Yuntian T.; Mueller, Frederick M.; Peterson, Dean E.; Liao, Xiao Zhou
2003-01-01
A process of preparing superconducting magnesium diboride powder by heating an admixture of solid magnesium and amorphous boron powder or pellet under an inert atmosphere in a Mg:B ratio of greater than about 0.6:1 at temperatures and for time sufficient to form said superconducting magnesium diboride. The process can further include exposure to residual oxygen at high synthesis temperatures followed by slow cooling. In the cooling process oxygen atoms dissolved into MgB.sub.2 segregated to form nanometer-sized coherent Mg(B,O) precipitates in the MgB.sub.2 matrix, which can act as flux pinning centers.
Park, Seonyoung; Kim, Seong Yeoul; Choi, Yura; Kim, Myungjun; Shin, Hyunjung; Kim, Jiyoung; Choi, Woong
2016-05-11
We report the interface properties of atomic-layer-deposited Al2O3 thin films on ultraviolet/ozone (UV/O3)-treated multilayer MoS2 crystals. The formation of S-O bonds on MoS2 after low-power UV/O3 treatment increased the surface energy, allowing the subsequent deposition of uniform Al2O3 thin films. The capacitance-voltage measurement of Au-Al2O3-MoS2 metal oxide semiconductor capacitors indicated n-type MoS2 with an electron density of ∼10(17) cm(-3) and a minimum interface trap density of ∼10(11) cm(-2) eV(-1). These results demonstrate the possibility of forming a high-quality Al2O3-MoS2 interface by proper UV/O3 treatment, providing important implications for their integration into field-effect transistors.
High-quality vertical light emitting diodes fabrication by mechanical lift-off technique
NASA Astrophysics Data System (ADS)
Tu, Po-Min; Hsu, Shih-Chieh; Chang, Chun-Yen
2011-10-01
We report the fabrication of mechanical lift-off high quality thin GaN with Hexagonal Inversed Pyramid (HIP) structures for vertical light emitting diodes (V-LEDs). The HIP structures were formed at the GaN/sapphire substrate interface under high temperature during KOH wet etching process. The average threading dislocation density (TDD) was estimated by transmission electron microscopy (TEM) and found the reduction from 2×109 to 1×108 cm-2. Raman spectroscopy analysis revealed that the compressive stress of GaN epilayer was effectively relieved in the thin-GaN LED with HIP structures. Finally, the mechanical lift-off process is claimed to be successful by using the HIP structures as a sacrificial layer during wafer bonding process.
Atomically Thin Al2O3 Films for Tunnel Junctions
NASA Astrophysics Data System (ADS)
Wilt, Jamie; Gong, Youpin; Gong, Ming; Su, Feifan; Xu, Huikai; Sakidja, Ridwan; Elliot, Alan; Lu, Rongtao; Zhao, Shiping; Han, Siyuan; Wu, Judy Z.
2017-06-01
Metal-insulator-metal tunnel junctions are common throughout the microelectronics industry. The industry standard AlOx tunnel barrier, formed through oxygen diffusion into an Al wetting layer, is plagued by internal defects and pinholes which prevent the realization of atomically thin barriers demanded for enhanced quantum coherence. In this work, we employ in situ scanning tunneling spectroscopy along with molecular-dynamics simulations to understand and control the growth of atomically thin Al2O3 tunnel barriers using atomic-layer deposition. We find that a carefully tuned initial H2O pulse hydroxylated the Al surface and enabled the creation of an atomically thin Al2O3 tunnel barrier with a high-quality M -I interface and a significantly enhanced barrier height compared to thermal AlOx . These properties, corroborated by fabricated Josephson junctions, show that atomic-layer deposition Al2O3 is a dense, leak-free tunnel barrier with a low defect density which can be a key component for the next generation of metal-insulator-metal tunnel junctions.
NASA Astrophysics Data System (ADS)
Jin, Zhenghe; Kumar, Raj; Hunte, Frank; Narayan, Jay; Kim, Ki Wook; North Carolina State University Team
Bi2SexTe3-x topological insulator thin films were grown on Al2O3 (0001) substrate by pulsed laser deposition (PLD). XRD and other structural characterization measurements confirm the growth of the textured Bi2SexTe3-x thin films on Al2O3 substrate. The magneto-transport properties of thick and thin Þlms were investigated to study the effect of thickness on the topological insulator properties of the Bi2SexTe3 - x films. A pronounced semiconducting behavior with a highly insulating ground state was observed in the resistivity vs. temperature data. The presence of the weak anti-localization (WAL) effect with a sharp cusp in the magnetoresistance measurements confirms the 2-D surface transport originating from the TSS in Bi2SexTe3-x TI films. A high fraction of surface transport is observed in the Bi2SexTe3-x TI thin films which decreases in Bi2SexTe3-x TI thick films. The Cosine (θ) dependence of the WAL effect supports the observation of a high proportion of 2-D surface state contribution to overall transport properties of the Bi2SexTe3-x TI thin films. Our results show promise that high quality Bi2SexTe3-x TI thin films with significant surface transport can be grown by PLD method to exploit the exotic properties of the surface transport in future generation spintronic devices. This work was supported, in part, by National Science Foundation ECCS-1306400 and FAME.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-28
... Corporation- Manufactured (Sikorsky) Model Helicopters (type certificate currently held by Erickson Air-Crane... Corporation-manufactured Model S-64E helicopters (type certificate currently held by Erickson Air-Crane Incorporated (Erickson)). That AD currently requires inspecting and reworking the main gearbox (MGB) assembly...
Electronic Devices Based on Oxide Thin Films Fabricated by Fiber-to-Film Process.
Meng, You; Liu, Ao; Guo, Zidong; Liu, Guoxia; Shin, Byoungchul; Noh, Yong-Young; Fortunato, Elvira; Martins, Rodrigo; Shan, Fukai
2018-05-30
Technical development for thin-film fabrication is essential for emerging metal-oxide (MO) electronics. Although impressive progress has been achieved in fabricating MO thin films, the challenges still remain. Here, we report a versatile and general thermal-induced nanomelting technique for fabricating MO thin films from the fiber networks, briefly called fiber-to-film (FTF) process. The high quality of the FTF-processed MO thin films was confirmed by various investigations. The FTF process is generally applicable to numerous technologically relevant MO thin films, including semiconducting thin films (e.g., In 2 O 3 , InZnO, and InZrZnO), conducting thin films (e.g., InSnO), and insulating thin films (e.g., AlO x ). By optimizing the fabrication process, In 2 O 3 /AlO x thin-film transistors (TFTs) were successfully integrated by fully FTF processes. High-performance TFT was achieved with an average mobility of ∼25 cm 2 /(Vs), an on/off current ratio of ∼10 7 , a threshold voltage of ∼1 V, and a device yield of 100%. As a proof of concept, one-transistor-driven pixel circuit was constructed, which exhibited high controllability over the light-emitting diodes. Logic gates based on fully FTF-processed In 2 O 3 /AlO x TFTs were further realized, which exhibited good dynamic logic responses and voltage amplification by a factor of ∼4. The FTF technique presented here offers great potential in large-area and low-cost manufacturing for flexible oxide electronics.
NASA Astrophysics Data System (ADS)
Lee, Fang-Wei; Ke, Wen-Cheng; Cheng, Chun-Hong; Liao, Bo-Wei; Chen, Wei-Kuo
2016-07-01
This study presents GaN thin films grown on nanoscale-patterned sapphire substrates (NPSSs) with different aspect ratios (ARs) using a homemade metal-organic chemical vapor deposition system. The anodic aluminum oxide (AAO) technique is used to prepare the dry etching mask. The cross-sectional view of the scanning electron microscope image shows that voids exist between the interface of the GaN thin film and the high-AR (i.e. ∼2) NPSS. In contrast, patterns on the low-AR (∼0.7) NPSS are filled full of GaN. The formation of voids on the high-AR NPSS is believed to be due to the enhancement of the lateral growth in the initial growth stage, and the quick-merging GaN thin film blocks the precursors from continuing to supply the bottom of the pattern. The atomic force microscopy images of GaN on bare sapphire show a layer-by-layer surface morphology, which becomes a step-flow surface morphology for GaN on a high-AR NPSS. The edge-type threading dislocation density can be reduced from 7.1 × 108 cm-2 for GaN on bare sapphire to 4.9 × 108 cm-2 for GaN on a high-AR NPSS. In addition, the carrier mobility increases from 85 cm2/Vs for GaN on bare sapphire to 199 cm2/Vs for GaN on a high-AR NPSS. However, the increased screw-type threading dislocation density for GaN on a low-AR NPSS is due to the competition of lateral growth on the flat-top patterns and vertical growth on the bottom of the patterns that causes the material quality of the GaN thin film to degenerate. Thus, the experimental results indicate that the AR of the particular patterning of a NPSS plays a crucial role in achieving GaN thin film with a high crystalline quality.
NASA Astrophysics Data System (ADS)
Kaur, Narinder; Sharma, Sanjeev K.; Kim, Deuk Young; Singh, Narinder
2016-11-01
We prepared highly transparent yttrium-doped ZnO (YZO) thin films on quartz glass by a sol-gel method, and then annealed them at 600 °C in vacuum. All samples showed hexagonal wurtzite structure with a preferential orientation along the (002) direction. We observed the average grain size of Y: 2 at% thin film to be in the range of 15-20 nm. We observed blue shift in the optical bandgap (3.29 eV→3.32 eV) by increasing the Y concentration (0-2 at%), due to increasing the number of electrons, and replacing the di-valent (Zn2+) with tri-valent (Y3+) dopants. Replacing the higher ionic radii (Y3+) with smaller ionic radii (Zn2+) expanded the local volume of the lattice, which reduced the lattice defects, and increased the intensity ratio of NBE/DLE emission (INBE/IDLE). We also observed the lowest (172 meV) Urbach energy of Y: 2 at% thin film, and confirmed the high structural quality. Incorporation of the appropriate Y concentration (2 at%) improved the crystallinity of YZO thin films, which led to less carrier scattering and lower resistivity.
Effect of annealing temperature on the structural and optical properties of CeO{sub 2}:Ni thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murugan, R.; Vijayaprasath, G.; Sakthivel, P.
2016-05-06
High quality Ni-doped CeO{sub 2} (CeO{sub 2}:Ni) thin films were deposited on glass substrates at room temperature by using radio frequency magnetron sputtering. The effect of annealing temperature on structural and optical properties of the CeO{sub 2}:Ni films was investigated. The structural, optical and vibrational properties of the films were determined using X-ray diffraction (XRD), photoluminescence spectrometer (PL) and Raman spectrometer. It was found that the as-deposited film has a fluorite cubic structure. By increasing annealing temperature from 100°C to 300°C, the crystalline quality of the thin films could be improved. The UV and visible band emissions were observed inmore » the photoluminescence spectra, due to exciton, defect related emissions respectively. The micro-Raman results show the characteristic peak of CeO{sub 2} F{sub 2g} at 465 cm{sup −1} and 2L0 at 1142 cm{sup −1}. Defect peaks like D and 0 bands were observed at 641 cm{sup −1} and 548 cm{sup −1} respectively. It is found from the spectra that the peak intensity of the films increased with increase of annealing temperature.« less
NASA Astrophysics Data System (ADS)
Liu, Yang; Zhang, Jian; Pang, Zhicong; Wu, Weihui
2018-04-01
Selective laser melting (SLM) provides a feasible way for manufacturing of complex thin-walled parts directly, however, the energy input during SLM process, namely derived from the laser power, scanning speed, layer thickness and scanning space, etc. has great influence on the thin wall's qualities. The aim of this work is to relate the thin wall's parameters (responses), namely track width, surface roughness and hardness to the process parameters considered in this research (laser power, scanning speed and layer thickness) and to find out the optimal manufacturing conditions. Design of experiment (DoE) was used by implementing composite central design to achieve better manufacturing qualities. Mathematical models derived from the statistical analysis were used to establish the relationships between the process parameters and the responses. Also, the effects of process parameters on each response were determined. Then, a numerical optimization was performed to find out the optimal process set at which the quality features are at their desired values. Based on this study, the relationship between process parameters and SLMed thin-walled structure was revealed and thus, the corresponding optimal process parameters can be used to manufactured thin-walled parts with high quality.
78 FR 54792 - Airworthiness Directives; Eurocopter France (Eurocopter) Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-06
... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 39 [Docket No. FAA-2013... create oscillations in the main rotor which can transfer dynamic loads to the structure, the main gearbox (MGB), and the main servo-control inputs, which could result in subsequent loss of control of the...
78 FR 34288 - Airworthiness Directives; Eurocopter France Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-07
... attaching fittings. If more than a 20 percent tightening torque load loss is discovered, the ASBs require... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 39 [Docket No. FAA-2013... detect the torque loss of the bolts that secure the MGB bar attaching fittings and to prevent cracks that...
Can Human Associated Bacteroides (HF183MGB) be used as a Pathogen Predictor in Urban Watersheds?
The fate and transport dynamics of fecal indicators and pathogenic microorganisms are poorly characterized in urban watersheds. Moreover, very little is understood about the actual relationship between fecal indicator bacteria (FIB) and the risk to public health. In this study we...
Role of microstructures on the M1-M2 phase transition in epitaxial VO2 thin films
Ji, Yanda; Zhang, Yin; Gao, Min; Yuan, Zhen; Xia, Yudong; Jin, Changqing; Tao, Bowan; Chen, Chonglin; Jia, Quanxi; Lin, Yuan
2014-01-01
Vanadium dioxide (VO2) with its unique sharp resistivity change at the metal-insulator transition (MIT) has been extensively considered for the near-future terahertz/infrared devices and energy harvesting systems. Controlling the epitaxial quality and microstructures of vanadium dioxide thin films and understanding the metal-insulator transition behaviors are therefore critical to novel device development. The metal-insulator transition behaviors of the epitaxial vanadium dioxide thin films deposited on Al2O3 (0001) substrates were systematically studied by characterizing the temperature dependency of both Raman spectrum and Fourier transform infrared spectroscopy. Our findings on the correlation between the nucleation dynamics of intermediate monoclinic (M2) phase with microstructures will open a new avenue for the design and integration of advanced heterostructures with controllable multifunctionalities for sensing and imaging system applications. PMID:24798056
NASA Technical Reports Server (NTRS)
Chrzanowski, J.; Meng-Burany, S.; Xing, W. B.; Curzon, A. E.; Heinrich, B.; Irwin, J. C.; Cragg, R. A.; Zhou, H.; Habib, F.; Angus, V.
1995-01-01
Two series of Y1Ba2Cu3O(z) thin films deposited on (001) LaAl03 single crystals by excimer laser ablation under two different protocols have been investigated. The research has yielded well defined deposition conditions in terms of oxygen partial pressure p(O2) and substrate temperature of the deposition process Th, for the growth of high quality epitaxial films of YBCO. The films grown under conditions close to optimal for both j(sub c) and T(sub c) exhibited T(sub c) greater than or equal to 91 K and j(sub c) greater than or equal to 4 x 106 A/sq cm, at 77 K. Close correlations between the structural quality of the film, the growth parameters (p(O2), T(sub h)) and j(sub c) and T(sub c) have been found.
NASA Astrophysics Data System (ADS)
Ali, Ahmad Hadi; Abu Bakar, Ahmad Shuhaimi; Hassan, Zainuriah
2014-10-01
ITO-based transparent conductive electrodes (TCE) with Ag/Ni thin metal under-layer were deposited on Si and glass substrates by thermal evaporator and RF magnetron sputtering system. Ceramic ITO with purity of 99.99% and In2O3:SnO2 weight ratio of 90:10 was used as a target at room temperature. Post-deposition annealing was performed on the TCE at moderate temperature of 500 °C, 600 °C and 700 °C under N2 ambient. It was observed that the structural properties, optical transmittance, electrical characteristics and surface morphology were improved significantly after the post-annealing process. Post-annealed ITO/Ag/Ni at 600 °C shows the best quality of TCE with figure-of-merit (FOM) of 1.5 × 10-2 Ω-1 and high optical transmittance of 83% at 470 nm as well as very low electrical resistivity of 4.3 × 10-5 Ω-cm. The crystalline quality and surface morphological plays an important role in determining the quality of the TCE multilayer thin films properties.
2011-01-01
Background Cluster thinning is an agronomic practice in which a proportion of berry clusters are removed from the vine to increase the source/sink ratio and improve the quality of the remaining berries. Until now no transcriptomic data have been reported describing the mechanisms that underlie the agronomic and biochemical effects of thinning. Results We profiled the transcriptome of Vitis vinifera cv. Sangiovese berries before and after thinning at veraison using a genome-wide microarray representing all grapevine genes listed in the latest V1 gene prediction. Thinning increased the source/sink ratio from 0.6 to 1.2 m2 leaf area per kg of berries and boosted the sugar and anthocyanin content at harvest. Extensive transcriptome remodeling was observed in thinned vines 2 weeks after thinning and at ripening. This included the enhanced modulation of genes that are normally regulated during berry development and the induction of a large set of genes that are not usually expressed. Conclusion Cluster thinning has a profound effect on several important cellular processes and metabolic pathways including carbohydrate metabolism and the synthesis and transport of secondary products. The integrated agronomic, biochemical and transcriptomic data revealed that the positive impact of cluster thinning on final berry composition reflects a much more complex outcome than simply enhancing the normal ripening process. PMID:22192855
Fernando, Sumadhya D; Ihalamulla, Ratnasiri L; Wickremasinghe, Renu; de Silva, Nipun L; Thilakarathne, Janani H; Wijeyaratne, Pandu; Premaratne, Risintha G
2014-03-15
Individuals with fever are screened for malaria in specially-established malaria diagnostic laboratories set up in rural hospitals in the Northern and Eastern Provinces of Sri Lanka. Large numbers of blood smears negative for malaria parasites are being screened daily. Good quality smears are essential to maintain a high diagnostic competency among the technical staff. The modifications made to the World Health Organization (WHO) standard operating procedures to improve the quality of smears have been studied. A blinded, controlled, interventional study was conducted in 22 intervention and 21 control malaria diagnostic laboratories. Changes were made to the WHO standard operating procedure protocols to prepare, stain and examine blood smears for malaria parasite detection which were implemented in intervention laboratories. These included wipe-cleaning slides, preparing both thick and thin smears on the same slide, reversing the order of collecting blood for thick and thin smears, dry fixing thick smear for 20-25 minutes under table lamp, polishing the edge of spreader slide with sand paper and fixing the thin smear with methanol if not stained within four hours. Parameters with respect to quality of the smear as per WHO criteria were studied using randomly selected slides, and time taken for the report to be issued was recorded in both groups before and after the intervention. There were no significant differences observed in the parameters studied at baseline between the two groups or pre and post intervention in the control group. In the intervention group streak formation in thin smears was reduced from 29.4% to 5.0%. The average fixing time of thick smears was reduced from 2.4 hours to 20 minutes. Inappropriate thickness of thick smears reduced from 18.3% to 1.5%. Overall quality of thick smears and thin smears increased from 76.1% to 98.0% and 81.7% to 87.0%, respectively. The quality of slides bearing both thick and thin smears increased from 60.0% to 87.0%. New protocols with amendments to the WHO standard technical procedures ensure that good quality blood smears are prepared rapidly to diagnose malaria and the time required to issue the reports was reduced.
Electrodeposition of near stoichiometric CuInSe2 thin films for photovoltaic applications
NASA Astrophysics Data System (ADS)
Chandran, Ramkumar; Mallik, Archana
2018-03-01
This work investigates on the single step electrodeposition of quality CuInSe2 (CIS) thin film absorber layer for photovoltaics applications. The electrodeposition was carried using an aqueous acidic solution with a pH of 2.25. The deposition was carried using a three electrode system in potentiostatic conditions for 50 minutes. The as-deposited and nitrogen (N2) annealed films were characterized using XRD, FE-SEM and Raman spectroscopy. It has been observed that the SDS has the tendency to suppress the copper selenide (CuxSe) secondary phase which is detrimental to the device performance.
Ion Beam Assisted Deposition of Thin Epitaxial GaN Films.
Rauschenbach, Bernd; Lotnyk, Andriy; Neumann, Lena; Poppitz, David; Gerlach, Jürgen W
2017-06-23
The assistance of thin film deposition with low-energy ion bombardment influences their final properties significantly. Especially, the application of so-called hyperthermal ions (energy <100 eV) is capable to modify the characteristics of the growing film without generating a large number of irradiation induced defects. The nitrogen ion beam assisted molecular beam epitaxy (ion energy <25 eV) is used to deposit GaN thin films on (0001)-oriented 6H-SiC substrates at 700 °C. The films are studied in situ by reflection high energy electron diffraction, ex situ by X-ray diffraction, scanning tunnelling microscopy, and high-resolution transmission electron microscopy. It is demonstrated that the film growth mode can be controlled by varying the ion to atom ratio, where 2D films are characterized by a smooth topography, a high crystalline quality, low biaxial stress, and low defect density. Typical structural defects in the GaN thin films were identified as basal plane stacking faults, low-angle grain boundaries forming between w-GaN and z-GaN and twin boundaries. The misfit strain between the GaN thin films and substrates is relieved by the generation of edge dislocations in the first and second monolayers of GaN thin films and of misfit interfacial dislocations. It can be demonstrated that the low-energy nitrogen ion assisted molecular beam epitaxy is a technique to produce thin GaN films of high crystalline quality.
Composite Yb:YAG/SiC-prism thin disk laser.
Newburgh, G A; Michael, A; Dubinskii, M
2010-08-02
We report the first demonstration of a Yb:YAG thin disk laser wherein the gain medium is intracavity face-cooled through bonding to an optical quality SiC prism. Due to the particular design of the composite bonded Yb:YAG/SiC-prism gain element, the laser beam impinges on all refractive index interfaces inside the laser cavity at Brewster's angles. The laser beam undergoes total internal reflection (TIR) at the bottom of the Yb(10%):YAG thin disk layer in a V-bounce cavity configuration. Through the use of TIR and Brewster's angles, no optical coatings, either anti-reflective (AR) or highly reflective (HR), are required inside the laser cavity. In this first demonstration, the 936.5-nm diode pumped laser performed with approximately 38% slope efficiency at 12 W of quasi-CW (Q-CW) output power at 1030 nm with a beam quality measured at M(2) = 1.5. This demonstration opens up a viable path toward novel thin disk laser designs with efficient double-sided room-temperature heatsinking via materials with the thermal conductivity of copper on both sides of the disk.
Xiao Chen; Deborah Page-Dumroese; Ruiheng Lv; Weiwei Wang; Guolei Li; Yong Liu
2014-01-01
Thinning alters litter quality and microclimate under forests. Both of these two changes after thinning induce alterations of litter decomposition rates and nutrient cycling. However, a possible interaction between these two changes remains unclear. We placed two types of litter (LN, low N concentration litter; HN, high N concentration litter) in a Chinese pine (Pinus...
Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices
Repins, Ingrid L.; Kuciauskas, Darius
2015-07-07
A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.
NASA Astrophysics Data System (ADS)
Sankar, M. S. Ravi; Gangineni, R. B.
2018-04-01
This work aims at understanding the solvent influence upon the throughput and structure of poly vinyledene fluoride (PVDF)nano-patterned films. The PVDF thin films are deposited by spin coating method using Dimethylsulfoxide (DMSO), Tetrahydrofuran (THF) and 2-butanone solvents. The nano-patterns are realized by imprinting SONY 700 MB CD aluminum constructions on PVDF thin filmsusing imprint lithography technique under ambient annealing temperature and pressure. Surface morphology &imprint pattern transfer quality is evaluated with Atomic force microscopy (AFM). Raman spectroscopy is used for evaluating the structural evolutions with respect to solvent & patterning.
Kim, Ki Seok; Kim, Ki Hyun; Ji, You Jin; Park, Jin Woo; Shin, Jae Hee; Ellingboe, Albert Rogers; Yeom, Geun Young
2017-10-19
Depositing a barrier film for moisture protection without damage at a low temperature is one of the most important steps for organic-based electronic devices. In this study, the authors investigated depositing thin, high-quality SiN x film on organic-based electronic devices, specifically, very high-frequency (162 MHz) plasma-enhanced chemical vapor deposition (VHF-PECVD) using a multi-tile push-pull plasma source with a gas mixture of NH 3 /SiH 4 at a low temperature of 80 °C. The thin deposited SiN x film exhibited excellent properties in the stoichiometry, chemical bonding, stress, and step coverage. Thin film quality and plasma damage were investigated by the water vapor transmission rate (WVTR) and by electrical characteristics of organic light-emitting diode (OLED) devices deposited with SiN x , respectively. The thin deposited SiN x film exhibited a low WVTR of 4.39 × 10 -4 g (m 2 · day) -1 for a single thin (430 nm thick) film SiN x and the electrical characteristics of OLED devices before and after the thin SiN x film deposition on the devices did not change, which indicated no electrical damage during the deposition of SiN x on the OLED device.
Chemical bath deposition of II-VI compound thin films
NASA Astrophysics Data System (ADS)
Oladeji, Isaiah Olatunde
II-VI compounds are direct bandgap semiconductors with great potentials in optoelectronic applications. Solar cells, where these materials are in greater demand, require a low cost production technology that will make the final product more affordable. Chemical bath deposition (CBD) a low cost growth technique capable of producing good quality thin film semiconductors over large area and at low temperature then becomes a suitable technology of choice. Heterogeneous reaction in a basic aqueous solution that is responsible for the II-VI compound film growth in CBD requires a metal complex. We have identified the stability constant (k) of the metal complex compatible with CBD growth mechanism to be about 106.9. This value is low enough to ensure that the substrate adsorbed complex relax for subsequent reaction with the chalcogen precursor to take place. It is also high enough to minimize the metal ion concentration in the bath participating in the precipitation of the bulk compounds. Homogeneous reaction that leads to precipitation in the reaction bath takes place because the solubility products of bulk II-VI compounds are very low. This reaction quickly depletes the bath of reactants, limit the film thickness, and degrade the film quality. While ZnS thin films are still hard to grow by CBD because of lack of suitable complexing agent, the homogeneous reaction still limits quality and thickness of both US and ZnS thin films. In this study, the zinc tetraammine complex ([Zn(NH3) 4]2+) with k = 108.9 has been forced to acquire its unsaturated form [Zn(NH3)3]2+ with a moderate k = 106.6 using hydrazine and nitrilotriacetate ion as complementary complexing agents and we have successfully grown ZnS thin films. We have also, minimized or eliminated the homogeneous reaction by using ammonium salt as a buffer and chemical bath with low reactant concentrations. These have allowed us to increase the saturation thickness of ZnS thin film by about 400% and raise that of US film form 0.2 to 0.5 mum with improved quality. A novel chemical activated diffusion of Cd into ZnS thin film at temperature lower than 100°C is also developed. This in conjunction with thermal activated diffusion at 400°C has enabled us to synthesize Cd1-xZn xS thin films suitable for solar cells from CBD grown CdS/ZnS multilayer. The potential application of the new Cd1-xZnxS/CdS/CdTe solar cell structure is also demonstrated. The unoptimized structure grown on transparent conducting oxide coated soda lime glass of 3mm thickness with no antireflection coating yielded a 10% efficiency. This efficiency is the highest ever recorded in any Cd1-xZnxS film containing CdTe solar cells.
NASA Astrophysics Data System (ADS)
Shibata, Yosei; Tsutsumi, Jun'ya; Matsuoka, Satoshi; Matsubara, Koji; Yoshida, Yuji; Chikamatsu, Masayuki; Hasegawa, Tatsuo
2015-04-01
We report the fabrication of high quality thin films for semiconducting organic donor-acceptor charge-transfer (CT) compounds, (diC8BTBT)(FnTCNQ) (diC8BTBT = 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene and FnTCNQ [n = 0,2,4] = fluorinated derivatives of 7,7,8,8,-tetracyanoquinodimethane), which have a high degree of layered crystallinity. Single-phase and uniaxially oriented polycrystalline thin films of the compounds were obtained by co-evaporation of the component donor and acceptor molecules. Organic thin-film transistors (OTFTs) fabricated with the compound films exhibited n-type field-effect characteristics, showing a mobility of 6.9 × 10-2 cm2/V s, an on/off ratio of 106, a sub-threshold swing of 0.8 V/dec, and an excellent stability in air. We discuss the suitability of strong intermolecular donor-acceptor interaction and the narrow CT gap nature in compounds for stable n-type OTFT operation.
Hybrid Physical-Chemical Vapor Deposition of Bi2Se3 Thin films on Sapphire
NASA Astrophysics Data System (ADS)
Brom, Joseph; Ke, Yue; Du, Renzhong; Gagnon, Jarod; Li, Qi; Redwing, Joan
2012-02-01
High quality thin films of topological insulators continue to garner much interest. We report on the growth of highly-oriented thin films of Bi2Se3 on c-plane sapphire using hybrid physical-chemical vapor deposition (HPCVD). The HPCVD process utilizes the thermal decomposition of trimethyl bismuth (TMBi) and evaporation of elemental selenium in a hydrogen ambient to deposit Bi2Se3. Growth parameters including TMBi flow rate and decomposition temperature and selenium evaporation temperature were optimized, effectively changing the Bi:Se ratio, to produce high quality films. Glancing angle x- ray diffraction measurements revealed that the films were c-axis oriented on sapphire. Trigonal crystal planes were observed in atomic force microscopy images with an RMS surface roughness of 1.24 nm over an area of 2μmx2μm. Variable temperature Hall effect measurements were also carried out on films that were nominally 50-70 nm thick. Over the temperature range from 300K down to 4.2K, the carrier concentration remained constant at approximately 6x10^18 cm-3 while the mobility increased from 480 cm^2/Vs to 900 cm^2/Vs. These results demonstrate that the HPCVD technique can be used to deposit Bi2Se3 films with structural and electrical properties comparable to films produced by molecular beam epitaxy.
Performance enhancement in Sb doped Cu(InGa)Se2 thin film solar cell by e-beam evaporation
NASA Astrophysics Data System (ADS)
Chen, Jieyi; Shen, Honglie; Zhai, Zihao; Li, Yufang; Yi, Yunge
2018-03-01
To investigate the effects of Sb doping on the structural and electrical properties of Cu(InGa)Se2 (CIGS) thin films and solar cells, CIGS thin films, prepared by e-beam evaporation on soda-lime glass, were doped with lower and upper Sb layers in the precursor stacks respectively. Change of structure and introduction of stress were observed in the CIGS thin films with upper Sb layer in stack through XRD and Raman measurement. Both crystalline quality and compactness of CIGS thin films were improved by the doping of upper Sb layer in stack and the CIGS thin film showed an optimal structural property with 20 nm Sb layer. Movement of Fermi level of the surface of CIGS thin film after doping of upper Sb layer in stack and electrons transfer between Cu/Cu+ redox couple and CIGS thin films, which provided probability for the substitution of Sb for Cu sites at the surface of CIGS thin films, were proposed to explain the migration of Cu from the surface to the bulk of CIGS thin films. The larger barrier at the CIGS/CdS interface after doping of upper Sb layer in stack made contribution to the increase of VOC of CIGS solar cells. The efficiency of CIGS solar cell was improved from 3.3% to 7.2% after doping with 20 nm upper Sb. Compared to the CIGS solar cell with lower Sb layer in stack, in which an additional Cu2-xSe phase was found, the CIGS solar cell with upper Sb layer in stack possessed a higher efficiency.
Yu, Jung-Hoon; Nam, Sang-Hun; Lee, Ji Won; Boo, Jin-Hyo
2016-01-01
This paper presents the preparation of high-quality vanadium dioxide (VO2) thermochromic thin films with enhanced visible transmittance (Tvis) via radio frequency (RF) sputtering and plasma enhanced chemical vapor deposition (PECVD). VO2 thin films with high Tvis and excellent optical switching efficiency (Eos) were successfully prepared by employing SiO2 as a passivation layer. After SiO2 deposition, the roughness of the films was decreased 2-fold and a denser structure was formed. These morphological changes corresponded to the results of optical characterization including the haze, reflectance and absorption spectra. In spite of SiO2 coating, the phase transition temperature (Tc) of the prepared films was not affected. Compared with pristine VO2, the total layer thickness after SiO2 coating was 160 nm, which is an increase of 80 nm. Despite the thickness change, the VO2 thin films showed a higher Tvis value (λ 650 nm, 58%) compared with the pristine samples (λ 650 nm, 43%). This enhancement of Tvis while maintaining high Eos is meaningful for VO2-based smart window applications. PMID:28773679
Silicon surface passivation by polystyrenesulfonate thin films
NASA Astrophysics Data System (ADS)
Chen, Jianhui; Shen, Yanjiao; Guo, Jianxin; Chen, Bingbing; Fan, Jiandong; Li, Feng; Liu, Haixu; Xu, Ying; Mai, Yaohua
2017-02-01
The use of polystyrenesulfonate (PSS) thin films in a high-quality passivation scheme involving the suppression of minority carrier recombination at the silicon surface is presented. PSS has been used as a dispersant for aqueous poly-3,4-ethylenedioxythiophene. In this work, PSS is coated as a form of thin film on a Si surface. A millisecond level minority carrier lifetime on a high resistivity Si wafer is obtained. The film thickness, oxygen content, and relative humidity are found to be important factors affecting the passivation quality. While applied to low resistivity silicon wafers, which are widely used for photovoltaic cell fabrication, this scheme yields relatively shorter lifetime, for example, 2.40 ms on n-type and 2.05 ms on p-type wafers with a resistivity of 1-5 Ω.cm. However, these lifetimes are still high enough to obtain high implied open circuit voltages (Voc) of 708 mV and 697 mV for n-type and p-type wafers, respectively. The formation of oxides at the PSS/Si interface is suggested to be responsible for the passivation mechanism.
Huang, Cai Zhi; Zhang, Wen Hui; Li, Gang; Yu, Shi Chuan; You, Jian Jian
2016-11-18
In order to clarify the impact of thinning intensities on fruiting regularity of Quercus liaotungensis forests, we took the Q. liaotungensis half-mature forests in Huanglong and Qiaoshan mountains on south of the Loess Plateau as the object of study, which were under close-to-natural management of different thinning intensities (CK, 10%, 20% and 30%). An analysis was made on stand density and percent of seed trees, seed number of sample tree and unit area, seed spatial distributions, seed characteristics of the Q. liaotungensis forests after 5 years of thinning. The results showed that, percent of seed trees, seed number per sample tree and percent of developed seeds of Q. liaotungensis forests increased with the increasing intensity, and showed a pattern of 30%>20%>10%>CK. Seed number per area reached the maximum number under 20% thinning, and showed a pattern of 20%>30%>CK>10%. From the seed spatial distribution in the canopy, the upper accounted for 73.6%, while the lower had 26.4%. The sunny side of canopy layer set relatively the most fruits of 65.8%, shady side only had 34.2%. Under thinning, further improving was geater under lower canopy than under upper canopy and so was on shady side than on sunny side. The seed long diameter, seed short diameter and 1000-seed mass of Q. liaotungensis forests increased with the increasing intensity, which reached the maximum under 30% thinning. 10% thinning did not significantly impact Q. liaotungensis fruiting, the thinning intensity of 20% was most conducive to the seed quantity and quality improvement of Q. liaotungensis, while the thinning intensity of 30% did not improve the fruiting, and lowered the total number of seeds. It was proposed that 20% thinning should be chosen (canopy density of 0.7) to effectively improve fruiting and quality of Q. liaotungensis.
Optoelectronic properties and Seebeck coefficient in SnSe thin films
NASA Astrophysics Data System (ADS)
Urmila, K. S.; Namitha, T. A.; Rajani, J.; Philip, R. R.; Pradeep, B.
2016-09-01
SnSe thin films of thickness 180 nm have been deposited on glass substrates by reactive evaporation at an optimized substrate temperature of 523 ± 5 K and pressure of 10-5 mbar. The as-prepared SnSe thin films are characterized for their structural, optical and electrical properties by various experimental techniques. The p-type conductivity, near-optimum direct band gap, high absorption coefficient and good photosensitivity of the SnSe thin film indicate its suitability for photovoltaic applications. The optical constants, loss factor, quality factor and optical conductivity of the films are evaluated. The results of Hall and thermoelectric power measurements are correlated to determine the density of states, Fermi energy and effective mass of carriers and are obtained as 2.8 × 1017 cm-3, 0.03 eV and 0.05m 0 respectively. The high Seebeck coefficient ≈ 7863 μV/K, reasonably good power factor ≈ 7.2 × 10-4 W/(m·K2) and thermoelectric figure of merit ≈ 1.2 observed at 42 K suggests that, on further work, the prepared SnSe thin films can also be considered as a possible candidate for cryogenic thermoelectric applications.
Xiong, Yongliang; Kirkes, Leslie Dawn; Knox, Jandi; ...
2018-02-03
In this work, solubility measurements regarding boracite [Mg 3B 7O 13Cl(cr)] and aksaite [MgB 6O 7(OH) 6·2H 2O(cr)] from the direction of supersaturation were conducted at 22.5 ± 0.5 °C. The equilibrium constant (log 10K 0) for boracite in terms of the following reaction, Mg 3B 7O 13Cl(cr) + 15H 2O(l) ⇌ 3Mg 2+ + 7B(OH) 4 – + Cl – + 2H + is determined as -29.49 ± 0.39 (2σ) in this study. The equilibrium constant for aksaite according to the following reaction, MgB 6O 7(OH) 6•2H 2O(cr) + 9H 2O(l) ⇌ Mg 2+ + 6B(OH) 4 – + 4H + is determined as -44.41 ± 0.41 (2σ) in this work. This work recommends a set of thermodynamic properties for aksaite at 25 °C and 1 bar as follows: ΔHmore » $$0\\atop{f}$$ =-6063.70 ± 4.85 kJ·mol -1, ΔG =-5492.55 ± 2.32 kJ·mol -1, and S 0 = 344.62 ± 1.85 J·mol -1·K -1. Among them, ΔG$$0\\atop{f}$$ is derived from the equilibrium constant for aksaite determined by this study; ΔH$$0\\atop{f}$$ is from the literature, determined by calorimetry; and S 0 is computed in the present work from ΔG$$0\\atop{f}$$ and ΔH$$0\\atop{f}$$. This investigation also recommends a set of thermodynamic properties for boracite at 25 °C and 1 bar as follows: ΔH$$0\\atop{f}$$ =-6575.02 ± 2.25 kJ·mol -1, ΔG$$0\\atop{f}$$ =-6178.35 ± 2.25 kJ·mol -1, and S 0 = 253.6 ± 0.5 J·mol -1·K -1. Among them, ΔG$$0\\atop{f}$$ is derived from the equilibrium constant for boracite determined by this study; S 0 is from the literature, determined by calorimetry; and ΔH$$0\\atop{f}$$ is computed in this work from ΔG$$0\\atop{f}$$ and S 0. The thermodynamic properties determined in this study can find applications in many fields. For instance, in the field of material science, boracite has many useful properties including ferroelectric and ferroelastic properties. The equilibrium constant of boracite determined in this work will provide guidance for economic synthesis of boracite in an aqueous medium. Similarly, in the field of nuclear waste management, iodide boracite [Mg 3B 7O 13I(cr)] is proposed as a waste form for radioactive 129I. Therefore, the solubility constant for chloride boracite [Mg 3B 7O 13Cl(cr)] will provide the guidance for the performance of iodide boracite in geological repositories. Boracite/aksaite themselves in geological repositories in salt formations may be solubility-controlling phase(s) for borate. Finally, solubility constants of boracite and aksaite will enable researchers to predict borate concentrations in equilibrium with boracite/aksaite in salt formations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Yongliang; Kirkes, Leslie Dawn; Knox, Jandi
In this work, solubility measurements regarding boracite [Mg 3B 7O 13Cl(cr)] and aksaite [MgB 6O 7(OH) 6·2H 2O(cr)] from the direction of supersaturation were conducted at 22.5 ± 0.5 °C. The equilibrium constant (log 10K 0) for boracite in terms of the following reaction, Mg 3B 7O 13Cl(cr) + 15H 2O(l) ⇌ 3Mg 2+ + 7B(OH) 4 – + Cl – + 2H + is determined as -29.49 ± 0.39 (2σ) in this study. The equilibrium constant for aksaite according to the following reaction, MgB 6O 7(OH) 6•2H 2O(cr) + 9H 2O(l) ⇌ Mg 2+ + 6B(OH) 4 – + 4H + is determined as -44.41 ± 0.41 (2σ) in this work. This work recommends a set of thermodynamic properties for aksaite at 25 °C and 1 bar as follows: ΔHmore » $$0\\atop{f}$$ =-6063.70 ± 4.85 kJ·mol -1, ΔG =-5492.55 ± 2.32 kJ·mol -1, and S 0 = 344.62 ± 1.85 J·mol -1·K -1. Among them, ΔG$$0\\atop{f}$$ is derived from the equilibrium constant for aksaite determined by this study; ΔH$$0\\atop{f}$$ is from the literature, determined by calorimetry; and S 0 is computed in the present work from ΔG$$0\\atop{f}$$ and ΔH$$0\\atop{f}$$. This investigation also recommends a set of thermodynamic properties for boracite at 25 °C and 1 bar as follows: ΔH$$0\\atop{f}$$ =-6575.02 ± 2.25 kJ·mol -1, ΔG$$0\\atop{f}$$ =-6178.35 ± 2.25 kJ·mol -1, and S 0 = 253.6 ± 0.5 J·mol -1·K -1. Among them, ΔG$$0\\atop{f}$$ is derived from the equilibrium constant for boracite determined by this study; S 0 is from the literature, determined by calorimetry; and ΔH$$0\\atop{f}$$ is computed in this work from ΔG$$0\\atop{f}$$ and S 0. The thermodynamic properties determined in this study can find applications in many fields. For instance, in the field of material science, boracite has many useful properties including ferroelectric and ferroelastic properties. The equilibrium constant of boracite determined in this work will provide guidance for economic synthesis of boracite in an aqueous medium. Similarly, in the field of nuclear waste management, iodide boracite [Mg 3B 7O 13I(cr)] is proposed as a waste form for radioactive 129I. Therefore, the solubility constant for chloride boracite [Mg 3B 7O 13Cl(cr)] will provide the guidance for the performance of iodide boracite in geological repositories. Boracite/aksaite themselves in geological repositories in salt formations may be solubility-controlling phase(s) for borate. Finally, solubility constants of boracite and aksaite will enable researchers to predict borate concentrations in equilibrium with boracite/aksaite in salt formations.« less
Vortex motion and flux-flow resistivity in dirty multiband superconductors
NASA Astrophysics Data System (ADS)
Silaev, Mihail; Vargunin, Artjom
2016-12-01
The conductivity of vortex lattices in multiband superconductors with high concentration of impurities is calculated based on microscopic kinetic theory at temperatures significantly smaller than the critical one. Both the limits of high and low fields are considered, when the magnetic induction is close to or much smaller than the critical field strength Hc 2, respectively. It is shown that in contrast to single-band superconductors, the resistive properties are not universal but depend on the pairing constants and ratios of diffusivities in different bands. The low-field magnetoresistance can strongly exceed the Bardeen-Stephen estimation in a quantitative agreement with experimental data for the two-band superconductor MgB2.
Focus on superconducting properties of iron chalcogenides
NASA Astrophysics Data System (ADS)
Takano, Yoshihiko
2012-10-01
Since the discovery of iron-based superconductors, much attention has been given to the exploration of new superconducting compounds. Numerous superconducting iron compounds have been found and categorized into five groups: LnFeAsO (Ln = lanthanide), BaFe2As2, KFeAs, FeSe and FeAs with perovskite blocking layers. Among them, FeSe has the simplest crystal structure. Since the crystal structure is composed of only superconducting Fe layers, the FeSe family must be the best material to investigate the mechanism of iron-based superconductivity. FeSe shows very strong pressure effects. The superconducting transition temperature (Tc) of FeSe is approximately 8 K at ambient pressure. However Tc dramatically increases up to 37 K under applied pressure of 4-6 GPa. This is the third highest Tc value among binary superconductors, surpassed only by CsC60 under pressure (Tc = 38 K) and MgB2 (Tc = 39 K). On the other hand, despite FeTe having a crystal structure analogous to that of FeSe, FeTe shows antiferromagnetic properties without superconductivity. Doping of small ions, either Se or S, however, can induce superconductivity in FeTe1-xSex or FeTe1-xSx . The superconductivity is very weak for small x values, and annealing under certain conditions is required to obtain strong superconductivity, for instance annealing in oxygen or alcoholic beverages such as red wine. The following selection of papers describe many important experimental and theoretical studies on iron chalcogenide superconductors including preparation of single crystals, bulk samples and thin films; NMR measurements; photoemission spectroscopy; high-pressure studies; annealing effects and research on new BiS2-based superconductors. I hope this focus issue will help researchers understand the frontiers of iron chalcogenide superconductors and assist in the discovery of new phenomena related to iron-based superconductivity.
Charles Essien; Qingzheng Cheng; Brian K. Via; Edward F. Loewenstein; Xiping Wang
2016-01-01
There is currently a request from landowners in southeastern USA to provide a non-destructive tool that can differentiate the quality between stands of 25 and 30 years of age subjected to different thinning treatments. A typical site with various thinning regimes was used to vary the wood quality and to determine whether acoustics had the ability to seperate for...
Quality response of even-aged 80-year-old white oak trees after thinning
David L. Sonderman
1984-01-01
Stem defects were studied over an 18-year period to determine the effect of thinning intensity on quality development of 80-year-old white oak trees. Seventy-nine white oak trees from a thinning study in Kentucky were analyzed from stereo photographs taken in 1960 and 1978. Stem-related defects were measured on the butt 8-foot and second 8-foot sections of each tree....
Preparation Of Copper Indium Gallium Diselenide Films For Solar Cells
Bhattacharya, Raghu N.; Contreras, Miguel A.; Keane, James; Tennant, Andrew L. , Tuttle, John R.; Ramanathan, Kannan; Noufi, Rommel
1998-08-08
High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.
NASA Astrophysics Data System (ADS)
Chen, Kai-Huang; Chang, Ting-Chang; Chang, Guan-Chang; Hsu, Yung-En; Chen, Ying-Chung; Xu, Hong-Quan
2010-04-01
To improve the electrical properties of as-deposited BZ1T9 ferroelectric thin films, the supercritical carbon dioxide fluid (SCF) process were used by a low temperature treatment. In this study, the BZ1T9 ferroelectric thin films were post-treated by SCF process which mixed with propyl alcohol and pure H2O. After SCF process treatment, the remnant polarization increased in hysteresis curves, and the passivation of oxygen vacancy and defect in leakage current density curves were found. Additionally, the improvement qualities of as-deposited BZ1T9 thin films after SCF process treatment were carried out XPS, C- V, and J- E measurements.
NASA Astrophysics Data System (ADS)
Stegemann, Bert; Gad, Karim M.; Balamou, Patrice; Sixtensson, Daniel; Vössing, Daniel; Kasemann, Martin; Angermann, Heike
2017-02-01
Six advanced oxidation techniques were analyzed, evaluated and compared with respect to the preparation of high-quality ultra-thin oxide layers on crystalline silicon. The resulting electronic and chemical SiO2/Si interface properties were determined by a combined x-ray photoemission (XPS) and surface photovoltage (SPV) investigation. Depending on the oxidation technique, chemically abrupt SiO2/Si interfaces with low densities of interface states were fabricated on c-Si either at low temperatures, at short times, or in wet-chemical environment, resulting in each case in excellent interface passivation. Moreover, the beneficial effect of a subsequent forming gas annealing (FGA) step for the passivation of the SiO2/Si interface of ultra-thin oxide layers has been proven. Chemically abrupt SiO2/Si interfaces have been shown to generate less interface defect states.
Metal-insulator transition characteristics of VO2 thin films grown on Ge(100) single crystals
NASA Astrophysics Data System (ADS)
Yang, Z.; Ko, C.; Ramanathan, S.
2010-10-01
Phase transitions exhibited by correlated oxides could be of potential relevance to the emerging field of oxide electronics. We report on the synthesis of high-quality VO2 thin films grown on single crystal Ge(100) substrates by physical vapor deposition and their metal-insulator transition (MIT) properties. Thermally triggered MIT is demonstrated with nearly three orders of magnitude resistance change across the MIT with transition temperatures of 67 °C (heating) and 61 °C (cooling). Voltage-triggered hysteretic MIT is observed at room temperature at threshold voltage of ˜2.1 V for ˜100 nm thickness VO2 films. Activation energies for electron transport in the insulating and conducting states are obtained from variable temperature resistance measurements. We further compare the properties of VO2 thin films grown under identical conditions on Si(100) single crystals. The VO2 thin films grown on Ge substrate show higher degree of crystallinity, slightly reduced compressive strain, larger resistance change across MIT compared to those grown on Si. Depth-dependent x-ray photoelectron spectroscopy measurements were performed to provide information on compositional variation trends in the two cases. These results suggest Ge could be a suitable substrate for further explorations of switching phenomena and devices for thin film functional oxides.
Out-of-plane easy-axis in thin films of diluted magnetic semiconductor Ba1-xKx(Zn1-yMny)2As2
NASA Astrophysics Data System (ADS)
Wang, R.; Huang, Z. X.; Zhao, G. Q.; Yu, S.; Deng, Z.; Jin, C. Q.; Jia, Q. J.; Chen, Y.; Yang, T. Y.; Jiang, X. M.; Cao, L. X.
2017-04-01
Single-phased, single-oriented thin films of Mn-doped ZnAs-based diluted magnetic semiconductor (DMS) Ba1-xKx(Zn1-yMny)2As2 (x = 0.03, 0.08; y = 0.15) have been deposited on Si, SrTiO3, LaAlO3, (La,Sr)(Al,Ta)O3, and MgAl2O4 substrates, respectively. Utilizing a combined synthesis and characterization system excluding the air and further optimizing the deposition parameters, high-quality thin films could be obtained and be measured showing that they can keep inactive-in-air up to more than 90 hours characterized by electrical transport measurements. In comparison with films of x = 0.03 which possess relatively higher resistivity, weaker magnetic performances, and larger energy gap, thin films of x = 0.08 show better electrical and magnetic performances. Strong magnetic anisotropy was found in films of x = 0.08 grown on (La,Sr)(Al,Ta)O3 substrate with their magnetic polarization aligned almost solely on the film growth direction.
Fedele, C. G.; Negredo, A.; Molero, F.; Sánchez-Seco, M. P.; Tenorio, A.
2006-01-01
Smallpox, once a devastating disease caused by Variola virus, a member of the Orthopoxvirus genus, was eradicated in 1980. However, the importance of variola virus infections has been stressed widely in the last few years, particularly following recent social events in the world. Today, variola virus is considered to be one of the most significant agents with potential use as a biological weapon. In this study we developed an internally controlled real-time PCR assay for rapid detection and simultaneous differentiation of variola virus from other orthopoxviruses. The assay is based on TaqMan 3′-minor groove binder (MGB) chemistry and uses generic primers, designed in highly conserved genomic regions of the crmB gene, and three TaqMan MGB probes designed to identify orthopoxviruses, variola virus, and an internal control. The results obtained suggest that the assay is rapid, sensitive, specific, and suitable for the generic detection of orthopoxviruses and the identification of variola virus and avoids false-negative results in a single reaction tube. PMID:17065259
Fedele, C G; Negredo, A; Molero, F; Sánchez-Seco, M P; Tenorio, A
2006-12-01
Smallpox, once a devastating disease caused by Variola virus, a member of the Orthopoxvirus genus, was eradicated in 1980. However, the importance of variola virus infections has been stressed widely in the last few years, particularly following recent social events in the world. Today, variola virus is considered to be one of the most significant agents with potential use as a biological weapon. In this study we developed an internally controlled real-time PCR assay for rapid detection and simultaneous differentiation of variola virus from other orthopoxviruses. The assay is based on TaqMan 3'-minor groove binder (MGB) chemistry and uses generic primers, designed in highly conserved genomic regions of the crmB gene, and three TaqMan MGB probes designed to identify orthopoxviruses, variola virus, and an internal control. The results obtained suggest that the assay is rapid, sensitive, specific, and suitable for the generic detection of orthopoxviruses and the identification of variola virus and avoids false-negative results in a single reaction tube.
Thinning and mounting a Texas Instruments 3-phase CCD
NASA Technical Reports Server (NTRS)
Lesser, M. P.; Leach, R. W.; Angel, J. R. P.
1986-01-01
Thin CCDs with precise control of thickness and surface quality allow astronomers to optimize chips for specific applications. A means of mechanically thinning a TI 800 x 800 CCD with an abrasive slurry of aluminum oxide is presented. Using the same techniques, the abrasives can be replaced with a chemical solution to eliminate subsurface damage. A technique of mounting the CCD which retains the high quality surface generated during thinning is also demonstrated. This requires the backside of the chip to be bonded to a glass window which closely matches silicon's thermal expansion properties. Thinned CCDs require backside treatment to enhance blue and UV quantum efficiency. Two methods are discussed which may be effective with this mounting system.
NASA Astrophysics Data System (ADS)
Pradeesh, K.; Baumberg, J. J.; Prakash, G. Vijaya
2009-07-01
Thin films of self-organized quantum wells of inorganic-organic hybrid perovskites of (C6H9C2H4NH3)2PbI4 are formed from a simple intercalation strategy to yield well-ordered uniform films over centimeter-size scales. These films compare favorably with traditional solution-chemistry-synthesized thin films. The hybrid films show strong room-temperature exciton-related absorption and photoluminescence, which shift with fabrication protocol. We demonstrate the potential of this method for electronic and photonic device applications.
Effect of growth temperature on the epitaxial growth of ZnO on GaN by ALD
NASA Astrophysics Data System (ADS)
Särkijärvi, Suvi; Sintonen, Sakari; Tuomisto, Filip; Bosund, Markus; Suihkonen, Sami; Lipsanen, Harri
2014-07-01
We report on the epitaxial growth of ZnO on GaN template by atomic layer deposition (ALD). Diethylzinc (DEZn) and water vapour (H2O) were used as precursors. The structure and the quality of the grown ZnO layers were studied with scanning electron microscope (SEM), X-ray diffraction (XRD), photoluminescence (PL) measurements and positron annihilation spectroscopy. The ZnO films were confirmed epitaxial, and the film quality was found to improve with increasing deposition temperature in the vicinity of the threshold temperature of two dimensional growth. We conclude that high quality ZnO thin films can be grown by ALD. Interestingly only separate Zn-vacancies were observed in the films, although ZnO thin films typically contain fairly high density of surface pits and vacancy clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jincheng; Shi, Chengwu, E-mail: shicw506@foxmail.com; Chen, Junjun
2016-06-15
In this paper, the ultra-thin and high-quality WO{sub 3} compact layers were successfully prepared by spin-coating-pyrolysis method using the tungsten isopropoxide solution in isopropanol. The influence of WO{sub 3} and TiO{sub 2} compact layer thickness on the photovoltaic performance of planar perovskite solar cells was systematically compared, and the interface charge transfer and recombination in planar perovskite solar cells with TiO{sub 2} compact layer was analyzed by electrochemical impedance spectroscopy. The results revealed that the optimum thickness of WO{sub 3} and TiO{sub 2} compact layer was 15 nm and 60 nm. The planar perovskite solar cell with 15 nm WO{submore » 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. - Graphical abstract: The planar perovskite solar cell with 15 nm WO{sub 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. Display Omitted - Highlights: • Preparation of ultra-thin and high-quality WO{sub 3} compact layers. • Perovskite solar cell with 15 nm-thick WO{sub 3} compact layer achieved PCE of 10.14%. • Perovskite solar cell with 60 nm-thick TiO{sub 2} compact layer achieved PCE of 12.64%.« less
Lai, Fang-I; Yang, Jui-Fu; Chen, Wei-Chun; Kuo, Shou-Yi
2017-11-22
In this study, we proposed a new method for the synthesis of the target material used in a two stage process for preparation of a high quality CZTSe thin film. The target material consisting of a mixture of Cu x Se and Zn x Sn 1-x alloy was synthesized, providing a quality CZTSe precursor layer for highly efficient CZTSe thin film solar cells. The CZTSe thin film can be obtained by annealing the precursor layers through a 30 min selenization process under a selenium atmosphere at 550 °C. The CZTSe thin films prepared by using the new precursor thin film were investigated and characterized using X-ray diffraction, Raman scattering, and photoluminescence spectroscopy. It was found that diffusion of Sn occurred and formed the CTSe phase and Cu x Se phase in the resultant CZTSe thin film. By selective area electron diffraction transmission electron microscopy images, the crystallinity of the CZTSe thin film was verified to be single crystal. By secondary ion mass spectroscopy measurements, it was confirmed that a double-gradient band gap profile across the CZTSe absorber layer was successfully achieved. The CZTSe solar cell with the CZTSe absorber layer consisting of the precursor stack exhibited a high efficiency of 5.46%, high short circuit current (J SC ) of 37.47 mA/cm 2 , open circuit voltage (V OC ) of 0.31 V, and fill factor (F.F.) of 47%, at a device area of 0.28 cm 2 . No crossover of the light and dark current-voltage (I-V) curves of the CZTSe solar cell was observed, and also, no red kink was observed under red light illumination, indicating a low defect concentration in the CZTSe absorber layer. Shunt leakage current with a characteristic metal/CZTSe/metal leakage current model was observed by temperature-dependent I-V curves, which led to the discovery of metal incursion through the CdS buffer layer on the CZTSe absorber layer. This leakage current, also known as space charge-limited current, grew larger as the measurement temperature increased and completely overwhelmed the diode current at a measurement temperature of 200 °C. This is due to interlayer diffusion of metal that increases the shunt leakage current and decreases the efficiency of the CZTSe thin film solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chrzanowski, J.; Meng-Burany, S.; Xing, W.B.
1994-12-31
Two series of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub z} thin films deposited on (001) LaAlO{sub 3} single crystals by excimer laser ablation under two different protocols have been investigated. The research has yielded well defined deposition conditions in terms of oxygen partial pressure p(O{sub 2}) and substrate temperature of the deposition process T{sub h}, for the growth of high quality epitaxial films of YBCO. The films grown under conditions close to optimal for both j{sub c} and T{sub c} exhibited T{sub c}{ge}91 K and j{sub c}{ge}4 x 10{sup 6} A/cm{sup 2}, at 77 K. Close correlations between the structural quality ofmore » the film, the growth parameters (p(O{sub 2}), T{sub h}) and j{sub c} and T{sub c} have been found.« less
Superconductors Enable Lower Cost MRI Systems
NASA Technical Reports Server (NTRS)
2013-01-01
The future looks bright, light, and green, especially where aircraft are concerned. The division of NASA s Fundamental Aeronautics Program called the Subsonic Fixed Wing Project is aiming to reach new heights by 2025-2035, improving the efficiency and environmental impact of air travel by developing new capabilities for cleaner, quieter, and more fuel efficient aircraft. One of the many ways NASA plans to reach its aviation goals is by combining new aircraft configurations with an advanced turboelectric distributed propulsion (TeDP) system. Jeff Trudell, an engineer at Glenn Research Center, says, "The TeDP system consists of gas turbines generating electricity to power a large number of distributed motor-driven fans embedded into the airframe." The combined effect increases the effective bypass ratio and reduces drag to meet future goals. "While room temperature components may help reduce emissions and noise in a TeDP system, cryogenic superconducting electric motors and generators are essential to reduce fuel burn," says Trudell. Superconductors provide significantly higher current densities and smaller and lighter designs than room temperature equivalents. Superconductors are also able to conduct direct current without resistance (loss of energy) below a critical temperature and applied field. Unfortunately, alternating current (AC) losses represent the major part of the heat load and depend on the frequency of the current and applied field. A refrigeration system is necessary to remove the losses and its weight increases with decreasing temperature. In 2001, a material called magnesium diboride (MgB2) was discovered to be superconducting. The challenge, however, has been learning to manufacture MgB2 inexpensively and in long lengths to wind into large coils while meeting the application requirements.
Badali, D. S.; Gengler, R. Y. N.; Miller, R. J. D.
2016-01-01
A compact electron source specifically designed for time-resolved diffraction studies of free-standing thin films and monolayers is presented here. The sensitivity to thin samples is achieved by extending the established technique of ultrafast electron diffraction to the “medium” energy regime (1–10 kV). An extremely compact design, in combination with low bunch charges, allows for high quality diffraction in a lensless geometry. The measured and simulated characteristics of the experimental system reveal sub-picosecond temporal resolution, while demonstrating the ability to produce high quality diffraction patterns from atomically thin samples. PMID:27226978
NASA Astrophysics Data System (ADS)
Tue, Phan Trong; Inoue, Satoshi; Takamura, Yuzuru; Shimoda, Tatsuya
2016-06-01
We report combustion solution synthesized (SCS) indium-tin-oxide (ITO) thin film, which is a well-known transparent conductive oxide, for source/drain (S/D) electrodes in solution-processed amorphous zirconium-indium-zinc-oxide TFT. A redox-based combustion synthetic approach is applied to ITO thin film using acetylacetone as a fuel and metal nitrate as oxidizer. The structural and electrical properties of SCS-ITO precursor solution and thin films were systematically investigated with changes in tin concentration, indium metal precursors, and annealing conditions such as temperature, time, and ambient. It was found that at optimal conditions the SCS-ITO thin film exhibited high crystalline quality, atomically smooth surface (RMS ~ 4.1 Å), and low electrical resistivity (4.2 × 10-4 Ω cm). The TFT using SCS-ITO film as the S/D electrodes showed excellent electrical properties with negligible hysteresis. The obtained "on/off" current ratio, subthreshold swing factor, subthreshold voltage, and field-effect mobility were 5 × 107, 0.43 V/decade, 0.7 V, and 2.1 cm2/V s, respectively. The performance and stability of the SCS-ITO TFT are comparable to those of the sputtered-ITO TFT, emphasizing that the SCS-ITO film is a promising candidate for totally solution-processed oxide TFTs.
Defect-mediated room temperature ferromagnetism in vanadium dioxide thin films
NASA Astrophysics Data System (ADS)
Yang, Tsung-Han; Nori, Sudhakar; Zhou, Honghui; Narayan, Jagdish
2009-09-01
High quality epitaxial undoped vanadium oxide (VO2) thin films on c-plane sapphire (0001) substrate have been grown using pulsed laser deposition technique. The as-grown films exhibited excellent structural and transport properties without requiring further annealing treatments for these oxygen-deficient oxide films. The epitaxial growth has been achieved via domain matching epitaxy, where matching of integral multiples of planes occurs across the film-substrate interface. The magnetic properties of vanadium oxide (VO2) films investigated at different temperatures in the range of 10-360 K showed significant magnetic hysteresis as well as saturation of the magnetic moment. The origin of ferromagnetic properties with an estimated Curie temperature above 500 K is discussed in the absence of magnetic impurities in VO2 thin films as determined by x-ray photoelectron spectroscopy, x-ray diffraction, and transmission electron microscopy.
Diao, Chien-Chen; Kuo, Hsin-Hui; Tzou, Wen-Cheng; Chen, Yen-Lin; Yang, Cheng-Fu
2014-01-01
In this study, a new thin-film deposition process, spray coating method (SPM), was investigated to deposit the high-densified CuInSe2 absorber layers. The spray coating method developed in this study was a non-vacuum process, based on dispersed nano-scale CuInSe2 precursor and could offer a simple, inexpensive, and alternative formation technology for CuInSe2 absorber layers. After spraying on Mo/glass substrates, the CuInSe2 thin films were annealed at 550 °C by changing the annealing time from 5 min to 30 min in a selenization furnace, using N2 as atmosphere. When the CuInSe2 thin films were annealed, without extra Se or H2Se gas used as the compensation source during the annealing process. The aim of this project was to investigate the influence of annealing time on the densification and crystallization of the CuInSe2 absorber layers to optimize the quality for cost effective solar cell production. The thickness of the CuInSe2 absorber layers could be controlled as the volume of used dispersed CuInSe2-isopropyl alcohol solution was controlled. In this work, X-ray diffraction patterns, field emission scanning electron microscopy, and Hall parameter measurements were performed in order to verify the quality of the CuInSe2 absorber layers obtained by the Spray Coating Method. PMID:28788451
Beaulieu, John C; Ingber, Bruce F; Lea, Jeanne M
2011-09-01
Previous research examined sanitation treatments on cut cantaloupe tissue to deliver germicidal and food safety effects. However, an apparent compromise between volatile loss and treatment/sampling efficacy appeared. Subsequently, a physiological and volatile reassessment of thinly sliced tissue against cubes was performed in cantaloupe tissue. Thin sliced cantaloupe L* decreased 27.5%, 40.5%, and 52.9% in 3, 2, and 1 mm thickness, respectively, compared with cut cubes after 3 d. Overall color (C) decreased in freshly prepared cubes (2.4%) and slices (14.4%) that were washed in cold water. Surface area per unit volume (SA: vol) in slices was 4.1 times greater than typical cubes, as reflected by substantial water loss (20.4%, 9.5%, and 6.7% in 1, 2 and 3-mm slices, respectively) after 1 d at 5 °C. Rinsing cubes and thin-slices with 5 °C deionized water resulted in roughly 15% soluble solids loss. SEM indicated 65.4% reduced cell size in 1-d old thin slices, evidenced by excessive cell damage and desiccation compared with stored fresh-cut cubes. In thin-sliced tissue exposed 15 min to an open atmosphere (mimic sanitation treatments), total esters decreased 92.8% and 95.8%, respectively, after 1 and 3 d storage at 5 °C. Washing tissue provided a boundary layer that reduced short-term ester losses in slices and cubes. Excessive cutting, sanitation treatment regimes, and storage can radically alter the desirable volatile profile of cut cantaloupe. Reduction of tissue size to maximize food-safety sanitation efficacy or delivering items to a niche market will need substantial work to engineer equipment and develop protocols to insure that product quality and volatiles are not compromised. We have demonstrated that cutting method and sampling protocol are critically important when using volatiles as a means by which to assess or interpret stress response and ascribe fresh-cut quality. Reduction of tissue size to maximize food-safety sanitation efficacy (for example, thin slices) will need substantial work to engineer equipment and design protocols to insure product quality and volatile profiles are not compromised. Journal of Food Science © 2011 Institute of Food Technologists® No claim to original US government works.
Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells
Pathi, Prathap; Peer, Akshit; Biswas, Rana
2017-01-01
Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a dense mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. This architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping. PMID:28336851
Burmistrova, Polina V.; Zakharov, Dmitri N.; Favaloro, Tela; ...
2015-03-14
Four epitaxial ScN(001) thin films were successfully deposited on MgO(001) substrates by dc reactive magnetron sputtering at 2, 5, 10, and 20 mTorr in an Ar/N2 ambient atmosphere at 650 °C. The microstructure of the resultant films was analyzed by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Electrical resistivity, electron mobility and concentration were measured using the room temperature Hall technique, and temperature dependent in-plain measurements of the thermoelectric properties of the ScN thin films were performed. The surface morphology and film crystallinity significantly degrade with increasing deposition pressure. The ScN thin film deposited at 20 mTorr exhibitsmore » the presence of <221> oriented secondary grains resulting in decreased electric properties and a low thermoelectric power factor of 0.5 W/m-K² at 800 K. ScN thin films grown at 5 and 10 mTorr are single crystalline, yielding the power factor of approximately 2.5 W/m-K² at 800 K. The deposition performed at 2 mTorr produces the highest quality ScN thin film with the electron mobility of 98 cm² V⁻¹ s⁻¹ and the power factor of 3.3 W/m-K² at 800 K.« less
Nano-photonic structures for light trapping in ultra-thin crystalline silicon solar cells
Pathi, Prathap; Peer, Akshit; Biswas, Rana
2017-01-13
Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a densemore » mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. Furthermore, this architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.« less
Nano-photonic structures for light trapping in ultra-thin crystalline silicon solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pathi, Prathap; Peer, Akshit; Biswas, Rana
Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a densemore » mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. Furthermore, this architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.« less
NASA Astrophysics Data System (ADS)
Ma, Xu; Liu, Xinkun; Li, Haizhu; Zhang, Angran; Huang, Mingju
2017-03-01
High-quality vanadium oxide ( VO2) films have been fabricated on Si (111) substrates by radio frequency (RF) magnetron sputtering deposition method. The sheet resistance of VO2 has a significant change (close to 5 orders of magnitude) in the process of the metal-insulator phase transition (MIT). The field emission-scanning electron microscope (FE-SEM) results show the grain size of VO2 thin films is larger with the increase of oxygen flow. The X-ray diffraction (XRD) results indicate the thin films fabricated at different oxygen flow rates grow along the (011) crystalline orientation. As the oxygen flow rate increases from 3 sccm to 6 sccm, the phase transition temperature of the films reduces from 341 to 320 K, the width of the thermal hysteresis loop decreases from 32 to 9 K. The thin films fabricated in the condition of 5 sccm have a high temperature coefficient of resistance (TCR) -3.455%/K with a small resistivity of 2.795 ρ/Ω cm.
Effect of K-doping on structural and optical properties of ZnO thin films
NASA Astrophysics Data System (ADS)
Xu, Linhua; Li, Xiangyin; Yuan, Jun
2008-09-01
In this work, K-doped ZnO thin films were prepared by a sol-gel method on Si(111) and glass substrates. The effect of different K-doping concentrations on structural and optical properties of the ZnO thin films was studied. The results showed that the 1 at.% K-doped ZnO thin film had the best crystallization quality and the strongest ultraviolet emission ability. When the concentration of K was above 1 at.%, the crystallization quality and ultraviolet emission ability dropped. For the K-doped ZnO thin films, there was not only ultraviolet emission, but also a blue emission signal in their photoluminescent spectra. The blue emission might be connected with K impurity or/and the intrinsic defects (Zn interstitial and Zn vacancy) of the ZnO thin films.
Valera, Maria José; Torija, Maria Jesús; Mas, Albert; Mateo, Estibaliz
2015-04-01
Acetic acid bacteria (AAB) usually develop biofilm on the air-liquid interface of the vinegar elaborated by traditional method. This is the first study in which the AAB microbiota present in a biofilm of vinegar obtained by traditional method was detected by pyrosequencing. Direct genomic DNA extraction from biofilm was set up to obtain suitable quality of DNA to apply in culture-independent molecular techniques. The set of primers and TaqMan--MGB probe designed in this study to enumerate the total AAB population by Real Time--PCR detected between 8 × 10(5) and 1.2 × 10(6) cells/g in the biofilm. Pyrosequencing approach reached up to 10 AAB genera identification. The combination of culture-dependent and culture-independent molecular techniques provided a broader view of AAB microbiota from the strawberry biofilm, which was dominated by Ameyamaea, Gluconacetobacter, and Komagataeibacter genera. Culture-dependent techniques allowed isolating only one genotype, which was assigned into the Ameyamaea genus and which required more analysis for a correct species identification. Furthermore, biofilm visualization by laser confocal microscope and scanning electronic microscope showed different dispositions and cell morphologies in the strawberry vinegar biofilm compared with a grape vinegar biofilm. Copyright © 2014 Elsevier Ltd. All rights reserved.
Simulation experiments of the effect of space environment on bacteriophage and DNA thin films
NASA Astrophysics Data System (ADS)
Fekete, A.; Rontó, G.; Hegedûs, M.; Módos, K.; Bérces, A.; Kovács, G.; Lammer, H.
PUR experiment (phage and uracil response) is part of the ROSE consortium selected for the first mission on the ISS and its main goal to examine and quantify the effect of specific space parameters such as VUV, UV radiation, dehydration effects, non-oxidative environments etc. related to space vacuum conditions on nucleic acid models. An improved method for the preparation of DNA thin films (NaDNA and LiDNA) was elaborated and the homogeneity of the films were controlled by spectroscopy and phase contrast microscopy. The complete recovery of the amount of DNA from the thin film was found after dissolution. Electrophoresis of the dissolved DNA indicated an intact DNA structure, while successful PCR amplification an intact function of the molecule, so they are likely candidates for the flight on the EXPOSE facility. A new method for preparation of bacteriophage T7 thin layer has been developed, the quality was controlled by spectroscopy and microscopy. After dissolution almost 90% of the viability of the phage particles remained, and the intactness of DNA structure was checked by PCR. DNA and phage thin films were produced in sandwich form as well, and stored in an atmosphere containing a mixture of N2 and H2 , by quality control of the samples no change has been found. They were tested under simulated space conditions at IWF space simulation facility in Graz. DNA thin films and bacteriophage T7 thin layers at different r.h. values have been irradiated in sandwich form in normal atmospheric conditions by using a low pressure Mercury lamp and high power (300W) Deuterium lamp containing short wavelength ( < 240 nm) UVC components simulating theextraterrestrial solar radiation. Characteristic change in the absorption spectrum and the decrease of the amount of PCR products have been detected indicating the photodamage of isolated and intraphage DNA.
High quality nitrogen-doped zinc oxide thin films grown on ITO by sol-gel method
NASA Astrophysics Data System (ADS)
Pathak, Trilok Kumar; Kumar, Vinod; Purohit, L. P.
2015-11-01
Highly transparent N-doped ZnO thin films were deposited on ITO coated corning glass substrate by sol-gel method. Ammonium nitrate was used as a dopant source of N with varying the doping concentration 0, 0.5, 1.0, 2.0 and 3.0 at%. The DSC analysis of prepared NZO sols is observed a phase transition at 150 °C. X-ray diffraction pattern showed the preferred (002) peak of ZnO, which was deteriorated with increased N concentrations. The transmittance of NZO thin films was observed to be ~88%. The bandgap of NZO thin films increased from 3.28 to 3.70 eV with increased N concentration from 0 to 3 at%. The maximum carrier concentration 8.36×1017 cm-3 and minimum resistivity 1.64 Ω cm was observed for 3 at% N doped ZnO thin films deposited on glass substrate. These highly transparent ZnO thin films can be used as a window layer in solar cells and optoelectronic devices.
NASA Astrophysics Data System (ADS)
Che, L.; Halvorsen, E.; Chen, X.
2011-10-01
The existence of insoluble residues as intermediate products produced during the wet etching process is the main quality-reducing and structure-patterning issue for lead zirconate titanate (PZT) thin films. A one-step wet etching process using the solutions of buffered HF (BHF) and HNO3 acid was developed for patterning PZT thin films for microelectomechanical system (MEMS) applications. PZT thin films with 1 µm thickness were prepared on the Pt/Ti/SiO2/Si substrate by the sol-gel process for compatibility with Si micromachining. Various compositions of the etchant were investigated and the patterns were examined to optimize the etching process. The optimal result is demonstrated by a high etch rate (3.3 µm min-1) and low undercutting (1.1: 1). The patterned PZT thin film exhibits a remnant polarization of 24 µC cm-2, a coercive field of 53 kV cm-1, a leakage current density of 4.7 × 10-8 A cm-2 at 320 kV cm-1 and a dielectric constant of 1100 at 1 KHz.
Ultra-wide bandgap beta-Ga2O3 for deep-UV solar blind photodetectors(Conference Presentation)
NASA Astrophysics Data System (ADS)
Rafique, Subrina; Han, Lu; Zhao, Hongping
2017-03-01
Deep-ultraviolet (DUV) photodetectors based on wide bandgap (WB) semiconductor materials have attracted strong interest because of their broad applications in military surveillance, fire detection and ozone hole monitoring. Monoclinic β-Ga2O3 with ultra-wide bandgap of 4.9 eV is a promising candidate for such application because of its high optical transparency in UV and visible wavelength region, and excellent thermal and chemical stability at elevated temperatures. Synthesis of high qualityβ-Ga2O3 thin films is still at its early stage and knowledge on the origins of defects in this material is lacking. The conventional epitaxy methods used to grow β-Ga2O3 thin films such as molecular beam epitaxy (MBE) and metal organic chemical vapor deposition (MOCVD) still face great challenges such as limited growth rate and relatively high defects levels. In this work, we present the growth of β-Ga2O3 thin films on c-plane (0001) sapphire substrate by our recently developed low pressure chemical vapor deposition (LPCVD) method. The β-Ga2O3 thin films synthesized using high purity metallic gallium and oxygen as the source precursors and argon as carrier gas show controllable N-type doping and high carrier mobility. Metal-semiconductor-metal (MSM) photodetectors (PDs) were fabricated on the as-grown β-Ga2O3 thin films. Au/Ti thin films deposited by e-beam evaporation served as the contact metals. Optimization of the thin film growth conditions and the effects of thermal annealing on the performance of the PDs were investigated. The responsivity of devices under 250 nm UV light irradiation as well as dark light will be characterized and compared.
Sinusoidal nanotextures for light management in silicon thin-film solar cells.
Köppel, G; Rech, B; Becker, C
2016-04-28
Recent progresses in liquid phase crystallization enabled the fabrication of thin wafer quality crystalline silicon layers on low-cost glass substrates enabling conversion efficiencies up to 12.1%. Because of its indirect band gap, a thin silicon absorber layer demands for efficient measures for light management. However, the combination of high quality crystalline silicon and light trapping structures is still a critical issue. Here, we implement hexagonal 750 nm pitched sinusoidal and pillar shaped nanostructures at the sun-facing glass-silicon interface into 10 μm thin liquid phase crystallized silicon thin-film solar cell devices on glass. Both structures are experimentally studied regarding their optical and optoelectronic properties. Reflection losses are reduced over the entire wavelength range outperforming state of the art anti-reflective planar layer systems. In case of the smooth sinusoidal nanostructures these optical achievements are accompanied by an excellent electronic material quality of the silicon absorber layer enabling open circuit voltages above 600 mV and solar cell device performances comparable to the planar reference device. For wavelengths smaller than 400 nm and higher than 700 nm optical achievements are translated into an enhanced quantum efficiency of the solar cell devices. Therefore, sinusoidal nanotextures are a well-balanced compromise between optical enhancement and maintained high electronic silicon material quality which opens a promising route for future optimizations in solar cell designs for silicon thin-film solar cells on glass.
NASA Technical Reports Server (NTRS)
Zugrav, M. Ittu; Carswell, William E.; Haulenbeek, Glen B.; Wessling, Francis C.
2001-01-01
This work is specifically focused on explaining previous results obtained for the crystal growth of an organic material in a reduced gravity environment. On STS-59, in April 1994, two experiments were conducted with N,N-dimethyl-p-(2,2-dicyanovinyl) aniline (DCVA), a promising nonlinear optical (NLO) material. The space experiments were set to reproduce laboratory experiments that yielded small, bulk crystals of DCVA. The results of the flight experiment, however, were surprising. Rather than producing a bulk single crystal, the result was the production of two high quality, single crystalline thin films. This result was even more intriguing when it is considered that thin films are more desirable for NLO applications than are bulk single crystals. Repeated attempts on the ground to reproduce these results were fruitless. A second set of flight experiments was conducted on STS-69 in September 1995. This time eight DCVA experiments were flown, with each of seven experiments containing a slight change from the first reference experiment. The reference experiment was programmed with growth conditions identical to those of the STS-59 mission. The slight variations in each of the other seven were an attempt to understand what particular parameter was responsible for the preference of thin film growth over bulk crystal growth in microgravity. Once again the results were surprising. In all eight cases thin films were grown again, albeit with varying quality. So now we were faced with a phenomenon that not only takes place in microgravity, but also is very robust, resisting all attempts to force the growth of bulk single crystals.
NASA Astrophysics Data System (ADS)
Oyanagi, H.; Tsukada, A.; Naito, M.; Saini, N. L.; Zhang, C.
2007-02-01
A Ge pixel array detector (PAD) with 100 segments was used in fluorescence x-ray absorption spectroscopy (XAS) study, probing local structure of high temperature superconducting thin film single crystals. Independent monitoring of individual pixel outputs allows real-time inspection of interference of substrates which has long been a major source of systematic error. By optimizing grazing-incidence angle and azimuthal orientation, smooth extended x-ray absorption fine structure (EXAFS) oscillations were obtained, demonstrating that strain effects can be studied using high-quality data for thin film single crystals grown by molecular beam epitaxy (MBE). The results of (La,Sr)2CuO4 thin film single crystals under strain are related to the strain dependence of the critical temperature of superconductivity.
75 FR 5684 - Airworthiness Directives; Sikorsky Aircraft Corporation Model S-92A Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-04
... pad and rib for a crack and corrosion. If you do not find a crack, the AD requires applying a corrosion preventive compound. If you find a crack, the AD requires replacing the MGB before further flight. If you find corrosion, bubbled paint, or paint discoloration, the AD also requires you to repair the...
YBa2Cu3O7 thin films on nanocrystalline diamond films for HTSC bolometer
NASA Technical Reports Server (NTRS)
Cui, G.; Beetz, C. P., Jr.; Boerstler, R.; Steinbeck, J.
1993-01-01
Superconducting YBa2Cu3O(7-x) films on nanocrystalline diamond thin films have been fabricated. A composite buffer layer system consisting of diamond/Si3N4/YSZ/YBCO was explored for this purpose. The as-deposited YBCO films were superconducting with Tc of about 84 K and a relatively narrow transition width of about 8 K. SEM cross sections of the films showed very sharp interfaces between diamond/Si3N4 and between Si3N4/YSZ. The deposited YBCO film had a surface roughness of about 1000 A, which is suitable for high-temperature superconductive (HTSC) bolometer fabrication. It was also found that preannealing of the nanocrystalline diamond thin films at high temperature was very important for obtaining high-quality YBCO films.
Annealing temperature effect on electrical properties of MEH-PPV thin film via spin coating method
NASA Astrophysics Data System (ADS)
Azhar, N. E. A.; Shariffudin, S. S.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.
2018-05-01
Organic semiconductor has been discovered in different application devices such as organic light emitting diodes (OLEDs). Poly [2-methoxy-5(2' -ethylhexyloxy)-1, 4-phenylenevinylene), MEH-PPV widely used in this device because its ability to produce a good optical quality films. The MEH-PPV was prepared on glass substrate by spin coating method. The thin film was investigated at different annealing temperatures. The scanning electron micrographs (SEM) revealed that sample annealed at 50°C showed uniformity and less aggregation on morphology polymer thin film. Optical properties showed the intensities of visible emission increased as temperatures increased. The current-voltage (I-V) measurement revealed that the temperature of 50°C showed high conductive and it is suitable for optoelectronic device.
NASA Astrophysics Data System (ADS)
Pathan, H. M.; Lokhande, C. D.; Amalnerkar, D. P.; Seth, T.
2003-09-01
Copper telluride thin films were deposited using modified chemical method using copper(II) sulphate; pentahydrate [CuSO 4·5H 2O] and sodium tellurite [Na 2TeO 3] as cationic and anionic sources, respectively. Modified chemical method is based on the immersion of the substrate into separately placed cationic and anionic precursors. The preparative conditions such as concentration, pH, immersion time, immersion cycles, etc. were optimized to get good quality copper telluride thin films at room temperature. The films have been characterized for structural, compositional, optical and electrical transport properties by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Rutherford back scattering (RBS), optical absorption/transmission, electrical resistivity and thermoemf measurement techniques.
Effect of thinning on mixed-oak stem quality
David L. Sonderman; Everette D. Rast; Everette D. Rast
1988-01-01
Changes in limb-;elated stem defect were studied from 1977 to 1982 on 595 mixed-oak trees fbllowing a schedule of thinnings dating back to 1962. All of the thinnings were controlled by stocking goals rather than predetermined time intervals. Results show that heavy and moderate thinnings, as opposed to light thinnings,lhad an adverse effect on the number and size of...
Chemical bath deposited ZnS buffer layer for Cu(In,Ga)Se2 thin film solar cell
NASA Astrophysics Data System (ADS)
Hong, Jiyeon; Lim, Donghwan; Eo, Young-Joo; Choi, Changhwan
2018-02-01
The dependence of Zn precursors using zinc sulfate (ZnSO4), zinc acetate (Zn(CH3COO)2), and zinc chloride (ZnCl2) on the characteristics of the chemical bath deposited ZnS thin film used as a buffer layer of Cu(In,Ga)Se2 (CIGS) thin film solar cell was studied. It is found that the ZnS film deposition rate increases with higher stability constant during decomplexation reaction of zinc ligands, which affects the crack formation and the amount of sulfur and oxygen contents within the film. The band gap energies of all deposited films are in the range of 3.40-3.49 eV, which is lower than that of the bulk ZnS film due to oxygen contents within the films. Among the CIGS solar cells having ZnS buffer layers prepared by different Zn precursors, the best cell efficiency with 9.4% was attained using Zn(CH3COO)2 precursor due to increased Voc mainly. This result suggests that [Zn(NH3)4]2+ complex formation should be well controlled to attain the high quality ZnS thin films.
Structure and enhanced thermochromic performance of low-temperature fabricated VO2/V2O3 thin film
NASA Astrophysics Data System (ADS)
Sun, Guangyao; Cao, Xun; Gao, Xiang; Long, Shiwei; Liang, Mengshi; Jin, Ping
2016-10-01
For VO2-based smart window manufacture, it is a long-standing demand for high-quality thin films deposited at low temperature. Here, the thermochromic films of VO2 were deposited by a magnetron sputtering method at a fairly low temperature of 250 °C without subsequent annealing by embedding a V2O3 interlayer. V2O3 acts as a seed layer to lower the depositing temperature and buffer layer to epitaxial grow VO2 film. The VO2/V2O3 films display high solar modulating ability and narrow hysteresis loop. Our data can serve as a promising point for industrial production with high degree of crystallinity at a low temperature.
NASA Technical Reports Server (NTRS)
Pearson, Earl F.
1994-01-01
Organic compounds offer the possibility of molecular engineering in order to optimize the nonlinearity and minimize damage due to the high-power lasers used in nonlinear optical devices. Recently dicyanovinylanisole (DIVA), ((2-methoxyphenyl) methylenepropanedinitrile) has been shown to have a second order nonlinearity 40 times that of alpha-quartz. Debe et. al. have shown that a high degree of orientational order exists for thin films of phthalocyanine grown by physical vapor transport in microgravity. The microgravity environment eliminates convective flow and was critical to the formation of highly ordered dense continuous films in these samples. This work seeks to discover the parameters necessary for the production of thin continuous films of high optical quality in Earth gravity. These parameters must be known before the experiment can be planned for growing DIVA in a microgravity environment. The microgravity grown films are expected to be denser and of better optical quality than the unit gravity films as was observed in the phthalocyanine films.
Physics and chemistry in the process of hot-wire deposition of thin film silicon
NASA Astrophysics Data System (ADS)
Zheng, Wengang
Hotwire Chemical Vapor Deposition (CVD) has been used in preparing high quality low hydrogen content hydrogenated amorphous or polycrystalline silicon thin film in recent years. Comparing to the most commonly used glow discharge method, Hotwire CVD has the potential of high speed deposition avoiding the damage caused by ion bombardment associated with plasma. Although device quality thin films have been prepared by this method, and some empirical optimized deposition conditions have been established, the mechanisms controlling this technique are not clear. A homebuild threshold ionization mass spectrometer was constructed in this lab, allowing the radicals to be observed with high sensitivity. Hydrogen dissociation on the hot metal surface was studied first both by the direct detection of hydrogen atoms from the hot surface and the temperature change due to the hydrogen dissociation, it was confirmed that the activation energy of this process is around 2.25eV, the same as the dissociation in the gas phase. Further, we observed a first order dependence of hydrogen dissociation probability on the hydrogen pressure. This observation contradicts previously reported models of second order desorption. The monosilicon radicals Si and SiH3 were observed. It was observed that the silane decomposition on the hot surface is mainly a function of filament temperature, but the species released from that surface also depend on the surface condition, and thus on the silane exposure history of that piece of filament. Si is believed to deteriorate the film quality, by comparing the depleted silane and the Si flux, it is observed that Si experienced a lot of gas phase reactions before reaching the substrate, which leads to less reactive precursors. This observation is consistence with Molenbroek's study on the optimization of deposition condition. The dominant disilicon radical is identified as Si2H2, which in the form of lowest energy isomer, is suppose to be much less reactive than Si, and thus contributes to good quality thin film deposition. The corresponding Si insert reaction Si + SiH4 was also studied and an effective reaction coefficient of KSeff = 5 x 10-12( cm3/s was established.
Prediction of phonon-mediated superconductivity in hole-doped black phosphorus.
Feng, Yanqing; Sun, Hongyi; Sun, Junhui; Lu, Zhibin; You, Yong
2018-01-10
We study the conventional electron-phonon mediated superconducting properties of hole-doped black phosphorus by density functional calculations and get quite a large electron-phonon coupling (EPC) constant λ ~ 1.0 with transition temperature T C ~ 10 K, which is comparable to MgB 2 when holes are doped into the degenerate and nearly flat energy bands around the Fermi level. We predict that the softening of low-frequency [Formula: see text] optical mode and its phonon displacement, which breaks the lattice nonsymmorphic symmetry of gliding plane and lifts the band double degeneracy, lead to a large EPC. These factors are favorable for BCS superconductivity.
Prediction of phonon-mediated superconductivity in hole-doped black phosphorus
NASA Astrophysics Data System (ADS)
Feng, Yanqing; Sun, Hongyi; Sun, Junhui; Lu, Zhibin; You, Yong
2018-01-01
We study the conventional electron-phonon mediated superconducting properties of hole-doped black phosphorus by density functional calculations and get quite a large electron-phonon coupling (EPC) constant λ ~ 1.0 with transition temperature T C ~ 10 K, which is comparable to MgB2 when holes are doped into the degenerate and nearly flat energy bands around the Fermi level. We predict that the softening of low-frequency B3g1 optical mode and its phonon displacement, which breaks the lattice nonsymmorphic symmetry of gliding plane and lifts the band double degeneracy, lead to a large EPC. These factors are favorable for BCS superconductivity.
Cation disorder and gas phase equilibrium in an YBa 2Cu 3O 7- x superconducting thin film
NASA Astrophysics Data System (ADS)
Shin, Dong Chan; Ki Park, Yong; Park, Jong-Chul; Kang, Suk-Joong L.; Yong Yoon, Duk
1997-02-01
YBa 2Cu 3O 7- x superconducting thin films have been grown by in situ off-axis rf sputtering with varying oxygen pressure, Ba/Y ratio in a target, and deposition temperature. With decreasing oxygen pressure, increasing Ba/Y ratio, increasing deposition temperature, the critical temperature of the thin films decreased and the c-axis length increased. The property change of films with the variation of deposition variables has been explained by a gas phase equilibrium of the oxidation reaction of Ba and Y. Applying Le Chatelier's principle to the oxidation reaction, we were able to predict the relation of deposition variables and the resultant properties of thin films; the prediction was in good agreement with the experimental results. From the relation between the three deposition variables and gas phase equilibrium, a 3-dimensional processing diagram was introduced. This diagram has shown that the optimum deposition condition of YBa 2Cu 3O 7- x thin films is not a fixed point but can be varied. The gas phase equilibrium can also be applied to the explanation of previous results that good quality films were obtained at low deposition temperature using active species, such as O, O 3, and O 2+.
Low temperature aluminum nitride thin films for sensory applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarar, E.; Zamponi, C.; Piorra, A.
2016-07-15
A low-temperature sputter deposition process for the synthesis of aluminum nitride (AlN) thin films that is attractive for applications with a limited temperature budget is presented. Influence of the reactive gas concentration, plasma treatment of the nucleation surface and film thickness on the microstructural, piezoelectric and dielectric properties of AlN is investigated. An improved crystal quality with respect to the increased film thickness was observed; where full width at half maximum (FWHM) of the AlN films decreased from 2.88 ± 0.16° down to 1.25 ± 0.07° and the effective longitudinal piezoelectric coefficient (d{sub 33,f}) increased from 2.30 ± 0.32 pm/Vmore » up to 5.57 ± 0.34 pm/V for film thicknesses in the range of 30 nm to 2 μm. Dielectric loss angle (tan δ) decreased from 0.626% ± 0.005% to 0.025% ± 0.011% for the same thickness range. The average relative permittivity (ε{sub r}) was calculated as 10.4 ± 0.05. An almost constant transversal piezoelectric coefficient (|e{sub 31,f}|) of 1.39 ± 0.01 C/m{sup 2} was measured for samples in the range of 0.5 μm to 2 μm. Transmission electron microscopy (TEM) investigations performed on thin (100 nm) and thick (1.6 μm) films revealed an (002) oriented AlN nucleation and growth starting directly from the AlN-Pt interface independent of the film thickness and exhibit comparable quality with the state-of-the-art AlN thin films sputtered at much higher substrate temperatures.« less
Murata, Tsuyoshi; Ishizawa, Hitoshi; Tanaka, Akira
2008-05-01
We have successfully developed a process to form high quality MgF(2) thin films with ultralow refractive indices from autoclaved sols prepared from magnesium acetate and hydrofluoric acid. And we have confirmed that our porous MgF(2) coatings have not only high transmittance in the UV region but also high uniformity of film thickness. They can be uniformly formed on phiv 300 mm substrates as a single coating and as a hybrid coating with sublayers formed by physical vapor deposition. They are expected to be applied to various optics that need high transmittance in the UV region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liang; Luo, Miao; Qin, Sikai
2015-10-05
Antimony selenide (Sb{sub 2}Se{sub 3}) is appealing as a promising light absorber because of its intrinsically benign grain boundaries, suitable band gap (∼1.1 eV), strong absorption coefficient, and relatively environmentally friendly constituents. Recently, we achieved a certified 5.6% efficiency Sb{sub 2}Se{sub 3} thin film solar cell with the assistance of ambient CdCl{sub 2} treatment on the CdS buffer layer. Here, we focused on investigating the underlying mechanism from a combined materials and device physics perspective applying current density-voltage (J-V) fitting analysis, atomic force microscope, X-ray photoelectron spectroscopy, fluorescence, and UV–Vis transmission spectroscopy. Our results indicated that ambient CdCl{sub 2} treatment onmore » CdS film not only improved CdS grain size and quality, but also incorporated Cl and more O into the film, both of which can significantly improve the heterojunction quality and device performance of CdS/Sb{sub 2}Se{sub 3} solar cells.« less
Ablon, Glynis
2016-12-01
Male pattern baldness, or androgenetic alopecia, affects approximately 50% of the adult population and can cause poor self-image, low self-esteem and have a significant negative impact on the quality of life. An oral nutraceutical supplement based on a marine complex formulation has previously been reported to significantly increase the number of terminal hairs in women with thinning hair. The objective of this double-blind, placebo-controlled study was to confirm the beneficial effects of a similar marine complex supplement in adult male subjects with thinning hair (Viviscal ® Man; Lifes2good, Inc., Chicago, IL, USA). Healthy adult male subjects with thinning hair associated with clinically diagnosed male pattern hair loss were enrolled and randomized to receive study drug or placebo twice daily. At Day 90, subjects indicated a significant improvement in three of six quality of life measures as well as a significant overall improvement in quality of life. After 180 days, significant increases were observed for total hair count, total hair density, and terminal hair density (for each, P = 0.001). The investigator assessments revealed significant improvements in terminal and vellus hair count and terminal hair density. Hair pull test results were significantly lower (fewer hairs removed) for study drug vs. placebo at Days 90 (P < 0.05) and 180 (P < 0.01). There were no reports of treatment-emergent adverse events. The results of this study showed for the first time that a dietary supplement containing a marine complex and other ingredients can decrease hair shedding and promote hair growth in men with thinning hair. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Okoth, Obila Jorim; Domtau, Dinfa Luka; Marina, Mukabi; John, Onyatta; Awuor, Ogacho Alex
Copper indium gallium selenide (CIGS) is currently most efficient thin film solar technology in use but it is faced with problems of material scarcity and toxicity. An alternative earth abundant and non-toxic materials consisting of Cu2ZnSnS4 (CZTS) have been investigated as a replacement for CIGS. In this work, CZTS thin films deposited by low cost co-electrodeposition, at a potential of -1.2V, coupled with chemical bath techniques at room temperature and then annealed under sulphur rich atmosphere were investigated. CZTS thin film quality determination was carried out using Raman spectroscopy which confirmed formation of quality CZTS film, main Raman peaks at 288cm-1 and 338cm-1 were observed. Electrical characterization was carried out using four-point probe instrument and the resistivity was in the order of ˜10-4Ω-cm. The optical characterization was done using UV-VIS-NIR spectrophotometer. The bandgaps of the annealed CZTS film ranged from 1.45 to 1.94eV with absorption coefficient of order ˜104cm-1 in the visible and near infrared range of the solar spectrum were observed.
Deposition of thin insulation layers from the gas phase
NASA Technical Reports Server (NTRS)
Behn, R.; Hagedorn, H.; Kammermaier, J.; Kobale, M.; Packonik, H.; Ristow, D.; Seebacher, G.
1981-01-01
The continuous deposition of thin organic dielectric films on metallized carrier foils by glow discharge in monomeric gases is described. Depending on the applied monomers, the films had a dissipation factor of .001 to .003 (1 kHz), a relative permittivity of 2.3 to 2.5 and a resistivity of about 10 to the 17th power omega cm. Additionally, they proved to have a high mechanical homogeneity. Self-healing rolled capacitors with a very high capacitance per volume and of consistently high quality were fabricated from the metallized carrier foils covered with the dielectric film.
NASA Astrophysics Data System (ADS)
Khun, K.; Ibupoto, Z. H.; Chey, C. O.; Lu, Jun.; Nur, O.; Willander, M.
2013-03-01
In this study, the comparative study of ZnO nanorods and ZnO thin films were performed regarding the chemical and biosensing properties and also ZnO nanorods based strontium ion sensor is proposed. ZnO nanorods were grown on gold coated glass substrates by the hydrothermal growth method and the ZnO thin films were deposited by electro deposition technique. ZnO nanorods and thin films were characterised by field emission electron microscopy [FESEM] and X-ray diffraction [XRD] techniques and this study has shown that the grown nanostructures are highly dense, uniform and exhibited good crystal quality. Moreover, transmission electron microscopy [TEM] was used to investigate the quality of ZnO thin film and we observed that ZnO thin film was comprised of nano clusters. ZnO nanorods and thin films were functionalised with selective strontium ionophore salicylaldehyde thiosemicarbazone [ST] membrane, galactose oxidase, and lactate oxidase for the detection of strontium ion, galactose and L-lactic acid, respectively. The electrochemical response of both ZnO nanorods and thin films sensor devices was measured by using the potentiometric method. The strontium ion sensor has exhibited good characteristics with a sensitivity of 28.65 ± 0.52 mV/decade, for a wide range of concentrations from 1.00 × 10-6 to 5.00 × 10-2 M, selectivity, reproducibility, stability and fast response time of 10.00 s. The proposed strontium ion sensor was used as indicator electrode in the potentiometric titration of strontium ion versus ethylenediamine tetra acetic acid [EDTA]. This comparative study has shown that ZnO nanorods possessed better performance with high sensitivity and low limit of detection due to high surface area to volume ratio as compared to the flat surface of ZnO thin films.
Grain sorghum stillage recycling: Effect on ethanol yield and stillage quality.
Egg, R P; Sweeten, J M; Coble, C G
1985-12-01
Stillage obtained from ethanol production of grain sorghum was separated into two fractions: thin stillage and wet solids. A portion of the thin stillage was recycled as cooking water in subsequent fermentation runs using both bench- and full-scale ethanol production plants. When thin stillage replaced 50-75% of the cooking water, large increases occurred in solids content, COD, and EC of the resulting thin stillage. It was found that while the volume of thin stillage requiring treatment or disposal was reduced, there was little reduction in the total pollutant load. Stillage rcycling had little effect on the quality of the stillage wet solids fraction. At the high levels of stillage recycle used, ethanol yield was reduced after three to five runs of consecutive recycling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obaidulla, Sk. Md.; Giri, P. K., E-mail: giri@iitg.ernet.in; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039
2015-11-30
The evolution of surface morphology and scaling behavior of tin (IV) phthalocyanine dichloride (SnCl{sub 2}Pc) thin films grown on Si(100) and glass substrates have been studied using atomic force microscopy (AFM) and height-height correlation function analysis. X-ray diffraction measurement confirms the crystalline nature of the SnCl{sub 2}Pc thin film on glass substrate, while no crystallographic ordering is present for the film grown on Si substrate. The growth exponent β is found to be much larger for the film on glass substrate (0.48 ± 0.07) as compared to that on Si substrate (0.21 ± 0.08), which may be due to the high step-edge barrier, so-calledmore » Ehrlich-Schwöbel barrier, resulting in the upward dominant growth on glass substrate. From the 2D fast Fourier transform of AFM images and derived scaling exponents, we conclude that the surface evolution follows a mound like growth. These results imply the superiority of glass substrate over the Si substrate for the growth of device quality SnCl{sub 2}Pc thin film.« less
Janneck, Robby; Vercesi, Federico; Heremans, Paul; Genoe, Jan; Rolin, Cedric
2016-09-01
A model that describes solvent evaporation dynamics in meniscus-guided coating techniques is developed. In combination with a single fitting parameter, it is shown that this formula can accurately predict a processing window for various coating conditions. Organic thin-film transistors (OTFTs), fabricated by a zone-casting setup, indeed show the best performance at the predicted coating speeds with mobilities reaching 7 cm 2 V -1 s -1 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.