Sample records for quality modeling applications

  1. Development and application of air quality models at the US ...

    EPA Pesticide Factsheets

    Overview of the development and application of air quality models at the U.S. EPA, particularly focused on the development and application of the Community Multiscale Air Quality (CMAQ) model developed within the Computation Exposure Division (CED) of the National Exposure Research Laboratory (NERL). This presentation will provide a simple overview of air quality model development and application geared toward a non-technical student audience. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  2. Uncertainty, ensembles and air quality dispersion modeling: applications and challenges

    NASA Astrophysics Data System (ADS)

    Dabberdt, Walter F.; Miller, Erik

    The past two decades have seen significant advances in mesoscale meteorological modeling research and applications, such as the development of sophisticated and now widely used advanced mesoscale prognostic models, large eddy simulation models, four-dimensional data assimilation, adjoint models, adaptive and targeted observational strategies, and ensemble and probabilistic forecasts. Some of these advances are now being applied to urban air quality modeling and applications. Looking forward, it is anticipated that the high-priority air quality issues for the near-to-intermediate future will likely include: (1) routine operational forecasting of adverse air quality episodes; (2) real-time high-level support to emergency response activities; and (3) quantification of model uncertainty. Special attention is focused here on the quantification of model uncertainty through the use of ensemble simulations. Application to emergency-response dispersion modeling is illustrated using an actual event that involved the accidental release of the toxic chemical oleum. Both surface footprints of mass concentration and the associated probability distributions at individual receptors are seen to provide valuable quantitative indicators of the range of expected concentrations and their associated uncertainty.

  3. Development and application of air quality models at the U.S. EPA

    EPA Science Inventory

    Overview of the development and application of air quality models at the U.S. EPA, particularly focused on the development and application of the Community Multiscale Air Quality (CMAQ) model developed within the Computation Exposure Division (CED) of the National Exposure Resear...

  4. Development and application of new quality model for software projects.

    PubMed

    Karnavel, K; Dillibabu, R

    2014-01-01

    The IT industry tries to employ a number of models to identify the defects in the construction of software projects. In this paper, we present COQUALMO and its limitations and aim to increase the quality without increasing the cost and time. The computation time, cost, and effort to predict the residual defects are very high; this was overcome by developing an appropriate new quality model named the software testing defect corrective model (STDCM). The STDCM was used to estimate the number of remaining residual defects in the software product; a few assumptions and the detailed steps of the STDCM are highlighted. The application of the STDCM is explored in software projects. The implementation of the model is validated using statistical inference, which shows there is a significant improvement in the quality of the software projects.

  5. Development and Application of New Quality Model for Software Projects

    PubMed Central

    Karnavel, K.; Dillibabu, R.

    2014-01-01

    The IT industry tries to employ a number of models to identify the defects in the construction of software projects. In this paper, we present COQUALMO and its limitations and aim to increase the quality without increasing the cost and time. The computation time, cost, and effort to predict the residual defects are very high; this was overcome by developing an appropriate new quality model named the software testing defect corrective model (STDCM). The STDCM was used to estimate the number of remaining residual defects in the software product; a few assumptions and the detailed steps of the STDCM are highlighted. The application of the STDCM is explored in software projects. The implementation of the model is validated using statistical inference, which shows there is a significant improvement in the quality of the software projects. PMID:25478594

  6. Measuring the Perceived Quality of an AR-Based Learning Application: A Multidimensional Model

    ERIC Educational Resources Information Center

    Pribeanu, Costin; Balog, Alexandru; Iordache, Dragos Daniel

    2017-01-01

    Augmented reality (AR) technologies could enhance learning in several ways. The quality of an AR-based educational platform is a combination of key features that manifests in usability, usefulness, and enjoyment for the learner. In this paper, we present a multidimensional model to measure the quality of an AR-based application as perceived by…

  7. Software Quality Evaluation Models Applicable in Health Information and Communications Technologies. A Review of the Literature.

    PubMed

    Villamor Ordozgoiti, Alberto; Delgado Hito, Pilar; Guix Comellas, Eva María; Fernandez Sanchez, Carlos Manuel; Garcia Hernandez, Milagros; Lluch Canut, Teresa

    2016-01-01

    Information and Communications Technologies in healthcare has increased the need to consider quality criteria through standardised processes. The aim of this study was to analyse the software quality evaluation models applicable to healthcare from the perspective of ICT-purchasers. Through a systematic literature review with the keywords software, product, quality, evaluation and health, we selected and analysed 20 original research papers published from 2005-2016 in health science and technology databases. The results showed four main topics: non-ISO models, software quality evaluation models based on ISO/IEC standards, studies analysing software quality evaluation models, and studies analysing ISO standards for software quality evaluation. The models provide cost-efficiency criteria for specific software, and improve use outcomes. The ISO/IEC25000 standard is shown as the most suitable for evaluating the quality of ICTs for healthcare use from the perspective of institutional acquisition.

  8. Application of an IRT Polytomous Model for Measuring Health Related Quality of Life

    ERIC Educational Resources Information Center

    Tejada, Antonio J. Rojas; Rojas, Oscar M. Lozano

    2005-01-01

    Background: The Item Response Theory (IRT) has advantages for measuring Health Related Quality of Life (HRQOL) as opposed to the Classical Tests Theory (CTT). Objectives: To present the results of the application of a polytomous model based on IRT, specifically, the Rating Scale Model (RSM), to measure HRQOL with the EORTC QLQ-C30. Methods: 103…

  9. Integrity Model Application: A Quality Support System for Decision-makers on Water Quality Assessment and Improvement

    NASA Astrophysics Data System (ADS)

    Mirauda, D.; Ostoich, M.; Di Maria, F.; Benacchio, S.; Saccardo, I.

    2018-03-01

    In this paper, a mathematical model has been applied to a river in North-East Italy to describe vulnerability scenarios due to environmental pollution phenomena. Such model, based on the influence diagrams theory, allowed identifying the extremely critical factors, such as wastewater discharges, drainage of diffuse pollution from agriculture and climate changes, which might affect the water quality of the river. The obtained results underlined how the water quality conditions have improved thanks to the continuous controls on the territory, following the application of Water Framework Directive 2000/60/EC. Nevertheless, some fluvial stretches did not reach the “good ecological status” by 2015, because of the increasing population in urban areas recorded in the last years and the high presence of tourists during the summer months, not balanced by a treatment plants upgrade.

  10. FINE SCALE AIR QUALITY MODELING USING DISPERSION AND CMAQ MODELING APPROACHES: AN EXAMPLE APPLICATION IN WILMINGTON, DE

    EPA Science Inventory

    Characterization of spatial variability of air pollutants in an urban setting at fine scales is critical for improved air toxics exposure assessments, for model evaluation studies and also for air quality regulatory applications. For this study, we investigate an approach that su...

  11. Production system with process quality control: modelling and application

    NASA Astrophysics Data System (ADS)

    Tsou, Jia-Chi

    2010-07-01

    Over the past decade, there has been a great deal of research dedicated to the study of quality and the economics of production. In this article, we develop a dynamic model which is based on the hypothesis of a traditional economic production quantity model. Taguchi's cost of poor quality is used to evaluate the cost of poor quality in the dynamic production system. A practical case from the automotive industry, which uses the Six-sigma DMAIC methodology, is discussed to verify the proposed model. This study shows that there is an optimal value of quality investment to make the production system reach a reasonable quality level and minimise the production cost. Based on our model, the management can adjust its investment in quality improvement to generate considerable financial return.

  12. The NASA Lightning Nitrogen Oxides Model (LNOM): Application to Air Quality Modeling

    NASA Technical Reports Server (NTRS)

    Koshak, William; Peterson, Harold; Khan, Maudood; Biazar, Arastoo; Wang, Lihua

    2011-01-01

    Recent improvements to the NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) and its application to the Community Multiscale Air Quality (CMAQ) modeling system are discussed. The LNOM analyzes Lightning Mapping Array (LMA) and National Lightning Detection Network(TradeMark)(NLDN) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning NO(x) (= NO + NO2). The latest LNOM estimates of lightning channel length distributions, lightning 1-m segment altitude distributions, and the vertical profile of lightning NO(x) are presented. The primary improvement to the LNOM is the inclusion of non-return stroke lightning NOx production due to: (1) hot core stepped and dart leaders, (2) stepped leader corona sheath, K-changes, continuing currents, and M-components. The impact of including LNOM-estimates of lightning NO(x) for an August 2006 run of CMAQ is discussed.

  13. Application of OMI NO2 for Regional Air Quality Model Evaluation

    NASA Astrophysics Data System (ADS)

    Holloway, T.; Bickford, E.; Oberman, J.; Scotty, E.; Clifton, O. E.

    2012-12-01

    To support the application of satellite data for air quality analysis, we examine how column NO2 measurements from the Ozone Monitoring Instrument (OMI) aboard the NASA Aura satellite relate to ground-based and model estimates of NO2 and related species. Daily variability, monthly mean values, and spatial gradients in OMI NO2 from the Netherlands Royal Meteorological Institute (KNMI) are compared to ground-based measurements of NO2 from the EPA Air Quality System (AQS) database. Satellite data is gridded to two resolutions typical of regional air quality models - 36 km x 36 km over the continental U.S., and 12 km x 12 km over the Upper Midwestern U.S. Gridding is performed using the Wisconsin Horizontal Interpolation Program for Satellites (WHIPS), a publicly available software to support gridding of satellite data to model grids. Comparing daily OMI retrievals (13:45 daytime local overpass time) with ground-based measurements (13:00), we find January and July 2007 correlation coefficients (r-values) generally positive, with values higher in the winter (January) than summer (July) for most sites. Incidences of anti-correlation or low-correlation are evaluated with model simulations from the U.S. EPA Community Multiscale Air Quality Model version 4.7 (CMAQ). OMI NO2 is also used to evaluate CMAQ output, and to compare performance metrics for CMAQ relative to AQS measurements. We compare simulated NO2 across both the U.S. and Midwest study domains with both OMI NO2 (total column CMAQ values, weighted with the averaging kernel) and with ground-based observations (lowest model layer CMAQ values). 2007 CMAQ simulations employ emissions from the Lake Michigan Air Directors Consortium (LADCO) and meteorology from the Weather Research and Forecasting (WRF) model. Over most of the U.S., CMAQ is too high in January relative to OMI NO2, but too low in January relative to AQS NO2. In contrast, CMAQ is too low in July relative to OMI NO2, but too high relative to AQS NO2. These

  14. Innovations in projecting emissions for air quality modeling

    EPA Science Inventory

    Air quality modeling is used in setting air quality standards and in evaluating their costs and benefits. Historically, modeling applications have projected emissions and the resulting air quality only 5 to 10 years into the future. Recognition that the choice of air quality mana...

  15. AIR QUALITY MODELING OF AMMONIA: A REGIONAL MODELING PERSPECTIVE

    EPA Science Inventory

    The talk will address the status of modeling of ammonia from a regional modeling perspective, yet the observations and comments should have general applicability. The air quality modeling system components that are central to modeling ammonia will be noted and a perspective on ...

  16. [Application of entropy-weight TOPSIS model in synthetical quality evaluation of Angelica sinensis growing in Gansu Province].

    PubMed

    Gu, Zhi-rong; Wang, Ya-li; Sun, Yu-jing; Dind, Jun-xia

    2014-09-01

    To investigate the establishment and application methods of entropy-weight TOPSIS model in synthetical quality evaluation of traditional Chinese medicine with Angelica sinensis growing in Gansu Province as an example. The contents of ferulic acid, 3-butylphthalide, Z-butylidenephthalide, Z-ligustilide, linolic acid, volatile oil, and ethanol soluble extractive were used as an evaluation index set. The weights of each evaluation index were determined by information entropy method. The entropyweight TOPSIS model was established to synthetically evaluate the quality of Angelica sinensis growing in Gansu Province by Euclid closeness degree. The results based on established model were in line with the daodi meaning and the knowledge of clinical experience. The established model was simple in calculation, objective, reliable, and can be applied to synthetical quality evaluation of traditional Chinese medicine.

  17. THE EMERGENCE OF NUMERICAL AIR QUALITY FORECASTING MODELS AND THEIR APPLICATION

    EPA Science Inventory

    In recent years the U.S. and other nations have begun programs for short-term local through regional air quality forecasting based upon numerical three-dimensional air quality grid models. These numerical air quality forecast (NAQF) models and systems have been developed and test...

  18. THE EMERGENCE OF NUMERICAL AIR QUALITY FORCASTING MODELS AND THEIR APPLICATIONS

    EPA Science Inventory

    In recent years the U.S. and other nations have begun programs for short-term local through regional air quality forecasting based upon numerical three-dimensional air quality grid models. These numerical air quality forecast (NAQF) models and systems have been developed and test...

  19. Recent Advances in WRF Modeling for Air Quality Applications

    EPA Science Inventory

    The USEPA uses WRF in conjunction with the Community Multiscale Air Quality (CMAQ) for air quality regulation and research. Over the years we have added physics options and geophysical datasets to the WRF system to enhance model capabilities especially for extended retrospective...

  20. Application of a water quality model in the White Cart water catchment, Glasgow, UK.

    PubMed

    Liu, S; Tucker, P; Mansell, M; Hursthouse, A

    2003-03-01

    Water quality models of urban systems have previously focused on point source (sewerage system) inputs. Little attention has been given to diffuse inputs and research into diffuse pollution has been largely confined to agriculture sources. This paper reports on new research that is aimed at integrating diffuse inputs into an urban water quality model. An integrated model is introduced that is made up of four modules: hydrology, contaminant point sources, nutrient cycling and leaching. The hydrology module, T&T consists of a TOPMODEL (a TOPography-based hydrological MODEL), which simulates runoff from pervious areas and a two-tank model, which simulates runoff from impervious urban areas. Linked into the two-tank model, the contaminant point source module simulates the overflow from the sewerage system in heavy rain. The widely known SOILN (SOIL Nitrate model) is the basis of nitrogen cycle module. Finally, the leaching module consists of two functions: the production function and the transfer function. The production function is based on SLIM (Solute Leaching Intermediate Model) while the transfer function is based on the 'flushing hypothesis' which postulates a relationship between contaminant concentrations in the receiving water course and the extent to which the catchment is saturated. This paper outlines the modelling methodology and the model structures that have been developed. An application of this model in the White Cart catchment (Glasgow) is also included.

  1. A Review of Surface Water Quality Models

    PubMed Central

    Li, Shibei; Jia, Peng; Qi, Changjun; Ding, Feng

    2013-01-01

    Surface water quality models can be useful tools to simulate and predict the levels, distributions, and risks of chemical pollutants in a given water body. The modeling results from these models under different pollution scenarios are very important components of environmental impact assessment and can provide a basis and technique support for environmental management agencies to make right decisions. Whether the model results are right or not can impact the reasonability and scientificity of the authorized construct projects and the availability of pollution control measures. We reviewed the development of surface water quality models at three stages and analyzed the suitability, precisions, and methods among different models. Standardization of water quality models can help environmental management agencies guarantee the consistency in application of water quality models for regulatory purposes. We concluded the status of standardization of these models in developed countries and put forward available measures for the standardization of these surface water quality models, especially in developing countries. PMID:23853533

  2. Development of a three dimensional numerical water quality model for continental shelf applications

    NASA Technical Reports Server (NTRS)

    Spaulding, M.; Hunter, D.

    1975-01-01

    A model to predict the distribution of water quality parameters in three dimensions was developed. The mass transport equation was solved using a non-dimensional vertical axis and an alternating-direction-implicit finite difference technique. The reaction kinetics of the constituents were incorporated into a matrix method which permits computation of the interactions of multiple constituents. Methods for the computation of dispersion coefficients and coliform bacteria decay rates were determined. Numerical investigations of dispersive and dissipative effects showed that the three-dimensional model performs as predicted by analysis of simpler cases. The model was then applied to a two dimensional vertically averaged tidal dynamics model for the Providence River. It was also extended to a steady state application by replacing the time step with an iteration sequence. This modification was verified by comparison to analytical solutions and applied to a river confluence situation.

  3. NASA Earth Observation Systems and Applications for Public Health and Air Quality Models and Decisions Support

    NASA Technical Reports Server (NTRS)

    Estes, Sue; Haynes, John; Omar, Ali

    2013-01-01

    Health and Air Quality providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. This presentation will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential of utilizing Earth Observations in studying health. Satellite earth observations present a unique vantage point of the earth's environment from space, which offers a wealth of health applications for the imaginative investigator. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the public health and air quality research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Public Health and Air Quality Models to provide a method for bridging gaps of environmental, spatial, and temporal data for tracking disease. This presentation will provide an overview of projects dealing with infectious diseases, water borne diseases and air quality and how many environmental variables effect human health. This presentation will provide a venue where the results of both research and practice using satellite earth observations to study weather and it's role in public health research.

  4. NASA Earth Observation Systems and Applications for Public Health and Air Quality Models and Decisions Support

    NASA Technical Reports Server (NTRS)

    Estes, Sue; Haynes, John; Omar, Ali

    2012-01-01

    Health and Air Quality providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. This presentation will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential of utilizing Earth Observations in studying health. Satellite earth observations present a unique vantage point of the earth's environment from space, which offers a wealth of health applications for the imaginative investigator. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the public health and air quality research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Public Health and Air Quality Models to provide a method for bridging gaps of environmental, spatial, and temporal data for tracking disease. This presentation will provide an overview of projects dealing with infectious diseases, water borne diseases and air quality and how many environmental variables effect human health. This presentation will provide a venue where the results of both research and practice using satellite earth observations to study weather and it's role in public health research.

  5. Application of water quality models to rivers in Johor

    NASA Astrophysics Data System (ADS)

    Chii, Puah Lih; Rahman, Haliza Abd.

    2017-08-01

    River pollution is one the most common hazard in many countries in the world, which includes Malaysia. Many rivers have been polluted because of the rapid growth in industrialization to support the country's growing population and economy. Domestic and industrial sewage, agricultural wastes have polluted the rivers and will affect the water quality. Based on the Malaysia Environment Quality Report 2007, the Department of Environment (DOE) has described that one of the major pollutants is Biochemical Oxygen Demand (BOD). Data from DOE in 2004, based on BOD, 18 river basins were classified polluted, 37 river basins were slightly polluted and 65 river basins were in clean condition. In this paper, two models are fitted the data of rivers in Johor state namely Streeter-Phelps model and nonlinear regression (NLR) model. The BOD concentration data for the two rivers in Johor state from year 1981 to year 1990 is analyzed. To estimate the parameters for the Streeter-Phelps model and NLR model, this study focuses on the weighted least squares and Gauss-Newton method respectively. Based on the value of Mean Square Error, NLR model is a better model compared to Streeter-Phelps model.

  6. Section 3. The SPARROW Surface Water-Quality Model: Theory, Application and User Documentation

    USGS Publications Warehouse

    Schwarz, G.E.; Hoos, A.B.; Alexander, R.B.; Smith, R.A.

    2006-01-01

    SPARROW (SPAtially Referenced Regressions On Watershed attributes) is a watershed modeling technique for relating water-quality measurements made at a network of monitoring stations to attributes of the watersheds containing the stations. The core of the model consists of a nonlinear regression equation describing the non-conservative transport of contaminants from point and diffuse sources on land to rivers and through the stream and river network. The model predicts contaminant flux, concentration, and yield in streams and has been used to evaluate alternative hypotheses about the important contaminant sources and watershed properties that control transport over large spatial scales. This report provides documentation for the SPARROW modeling technique and computer software to guide users in constructing and applying basic SPARROW models. The documentation gives details of the SPARROW software, including the input data and installation requirements, and guidance in the specification, calibration, and application of basic SPARROW models, as well as descriptions of the model output and its interpretation. The documentation is intended for both researchers and water-resource managers with interest in using the results of existing models and developing and applying new SPARROW models. The documentation of the model is presented in two parts. Part 1 provides a theoretical and practical introduction to SPARROW modeling techniques, which includes a discussion of the objectives, conceptual attributes, and model infrastructure of SPARROW. Part 1 also includes background on the commonly used model specifications and the methods for estimating and evaluating parameters, evaluating model fit, and generating water-quality predictions and measures of uncertainty. Part 2 provides a user's guide to SPARROW, which includes a discussion of the software architecture and details of the model input requirements and output files, graphs, and maps. The text documentation and computer

  7. The Application of Continuous Quality Improvement Models and Methods to Higher Education: Can We Learn from Business?

    ERIC Educational Resources Information Center

    Downey, Thomas E.

    Continuous quality improvement (CQI) models, which were first applied in business, are critical to making new technology-based learning paradigms and flexible learning environments a reality. The following are among the factors that have facilitated CQI's application in education: increased operating costs; increased competition from private…

  8. Evaluating Predictive Models of Software Quality

    NASA Astrophysics Data System (ADS)

    Ciaschini, V.; Canaparo, M.; Ronchieri, E.; Salomoni, D.

    2014-06-01

    Applications from High Energy Physics scientific community are constantly growing and implemented by a large number of developers. This implies a strong churn on the code and an associated risk of faults, which is unavoidable as long as the software undergoes active evolution. However, the necessities of production systems run counter to this. Stability and predictability are of paramount importance; in addition, a short turn-around time for the defect discovery-correction-deployment cycle is required. A way to reconcile these opposite foci is to use a software quality model to obtain an approximation of the risk before releasing a program to only deliver software with a risk lower than an agreed threshold. In this article we evaluated two quality predictive models to identify the operational risk and the quality of some software products. We applied these models to the development history of several EMI packages with intent to discover the risk factor of each product and compare it with its real history. We attempted to determine if the models reasonably maps reality for the applications under evaluation, and finally we concluded suggesting directions for further studies.

  9. Application of Six Sigma Model to Evaluate the Analytical Quality of Four HbA1c Analyzers.

    PubMed

    Maesa, Jos Eacute M; Fern Aacute Ndez-Riejos, Patricia; S Aacute Nchez-Mora, Catalina; Toro-Crespo, Mar Iacute A De; Gonz Aacute Lez-Rodriguez, Concepci Oacute N

    2017-01-01

    The Six Sigma Model is a global quality management system applicable to the determination of glycated hemoglobin (HbA1c). In addition, this model can ensure the three characteristics influencing the patient risk: the correct performance of the analytical method with low inaccuracy and bias, the quality control strategy used by the laboratory, and the necessary quality of the analyte. The aim of this study is to use the Six Sigma Model for evaluating quality criteria in the determination of glycated hemoglobin HbA1c and its application to assess four different HbA1c analyzers. Four HbA1c analyzers were evaluated: HA-8180V®, D-100®, G8®, and Variant II Turbo®. For 20 consecutive days, two levels of quality control (high and low) provided by the manufacturers were measured in each of the instruments. Imprecision (CV), bias, and Sigma values (σ) were calculated with the data obtained and a method decision chart was developed considering a range of quality requirements (allowable total error, TEa). For a TEa = 3%, HA-8180V = 1.54 σ, D-100 = 1.63 σ, G8 = 2.20 σ, and Variant II Turbo = -0.08 σ. For a TEa = 4%, HA-8180V = 2.34 σ, D-100 = 2.32 σ, G8 = 3.74 σ, and Variant II Turbo = 0.16 σ. For a TEa = 10%, HA8180V = 7.12 σ, D-100 = 6.46 σ, G8 = 13.0 σ, and Variant II Turbo = 1.56 σ. Applying the Stockholm consensus and its subsequent Milan review to the results: the maximum level in quality requirements for HbA1c is an allowable total error (TEa) = 3%, G8 is located in region 2 σ (2.20), which is a poor result, and HA-8180V and D-100 are both in region 1 σ (1.54 and 1.63, respectively), which is an unacceptable analytical performance.

  10. A parsimonious dynamic model for river water quality assessment.

    PubMed

    Mannina, Giorgio; Viviani, Gaspare

    2010-01-01

    Water quality modelling is of crucial importance for the assessment of physical, chemical, and biological changes in water bodies. Mathematical approaches to water modelling have become more prevalent over recent years. Different model types ranging from detailed physical models to simplified conceptual models are available. Actually, a possible middle ground between detailed and simplified models may be parsimonious models that represent the simplest approach that fits the application. The appropriate modelling approach depends on the research goal as well as on data available for correct model application. When there is inadequate data, it is mandatory to focus on a simple river water quality model rather than detailed ones. The study presents a parsimonious river water quality model to evaluate the propagation of pollutants in natural rivers. The model is made up of two sub-models: a quantity one and a quality one. The model employs a river schematisation that considers different stretches according to the geometric characteristics and to the gradient of the river bed. Each stretch is represented with a conceptual model of a series of linear channels and reservoirs. The channels determine the delay in the pollution wave and the reservoirs cause its dispersion. To assess the river water quality, the model employs four state variables: DO, BOD, NH(4), and NO. The model was applied to the Savena River (Italy), which is the focus of a European-financed project in which quantity and quality data were gathered. A sensitivity analysis of the model output to the model input or parameters was done based on the Generalised Likelihood Uncertainty Estimation methodology. The results demonstrate the suitability of such a model as a tool for river water quality management.

  11. Meteorological Processes Affecting Air Quality – Research and Model Development Needs

    EPA Science Inventory

    Meteorology modeling is an important component of air quality modeling systems that defines the physical and dynamical environment for atmospheric chemistry. The meteorology models used for air quality applications are based on numerical weather prediction models that were devel...

  12. [Quality assurance of the renal applications software].

    PubMed

    del Real Núñez, R; Contreras Puertas, P I; Moreno Ortega, E; Mena Bares, L M; Maza Muret, F R; Latre Romero, J M

    2007-01-01

    The need for quality assurance of all technical aspects of nuclear medicine studies is widely recognised. However, little attention has been paid to the quality assurance of the applications software. Our work reported here aims at verifying the analysis software for processing of renal nuclear medicine studies (renograms). The software tools were used to build a synthetic dynamic model of renal system. The model consists of two phases: perfusion and function. The organs of interest (kidneys, bladder and aortic artery) were simple geometric forms. The uptake of the renal structures was described by mathematic functions. Curves corresponding to normal or pathological conditions were simulated for kidneys, bladder and aortic artery by appropriate selection of parameters. There was no difference between the parameters of the mathematic curves and the quantitative data produced by the renal analysis program. Our test procedure is simple to apply, reliable, reproducible and rapid to verify the renal applications software.

  13. EVALUATING THE USE OF OUTPUTS FROM COMPREHENSIVE METEOROLOGICAL MODELS IN AIR QUALITY MODELING APPLICATIONS

    EPA Science Inventory

    Currently used dispersion models, such as the AMS/EPA Regulatory Model (AERMOD), process routinely available meteorological observations to construct model inputs. Thus, model estimates of concentrations depend on the availability and quality of Meteorological observations, as we...

  14. [Service quality in health care: the application of the results of marketing research].

    PubMed

    Verheggen, F W; Harteloh, P P

    1993-01-01

    This paper deals with quality assurance in health care and its relation to quality assurance in trade and industry. We present the service quality model--a model of quality from marketing research--and discuss how it can be applied to health care. Traditional quality assurance appears to have serious flaws. It lacks a general theory of the sources of hazards in the complex process of patient care and tends to stagnate, for no real improvement takes place. Departing from this criticism, modern quality assurance in health care is marked by: defining quality in a preferential sense as "fitness for use"; the use of theories and models of trade and industry (process-control); an emphasis on analyzing the process, instead of merely inspecting it; use of the Deming problem solving technique (plan, do, check, act); improvement of the process of care by altering perceptions of parties involved. We present an experience of application and utilization of this method in the University Hospital Maastricht, The Netherlands. The successful application of this model requires a favorable corporate culture and motivation of the health care workers. This model provides a useful framework to uplift the traditional approach to quality assurance in health care.

  15. Application submission date reflects applicant quality.

    PubMed

    Fuhrman, George M; Dada, Stephen; Ehleben, Carole

    2008-01-01

    Applications for general surgery residency are submitted through the Electronic Residency Application Service (ERAS) beginning in early September. The purpose of this study was to determine whether the date of application submission could be used in the screening of an applicant for general surgery residency. The 2007 ERAS data for an independent program that accepts 2 categorical residents per year was evaluated. International medical graduates were excluded because no international applicants were considered for interviews. Applicants for preliminary positions were also excluded. The remaining graduates from medical schools accredited by the Liaison Committee on Medical Education (LCME) who applied for categorical positions were evaluated based on United States Medical Licensing Examination (USMLE) scores and on medical school performance, as well as on the quality of their personal statements and letters of recommendation. Medical school performance was determined from dean's letters and transcript information, and each applicant was classified as outstanding, average, or poor. The date of application submission was compared with USMLE scores and medical school performance. The lag time to submit an application was also evaluated and compared with whether a student was offered an interview and the assessment of the quality of that interview. Results were evaluated using analysis of variance and the Pearson correlation test to evaluate for significance. A total of 155 applications from LCME-accredited schools for categorical positions were received. The mean lag time to application for students with an outstanding medical school performance was 15.2 +/- 15.5 days compared with 37.4 +/- 26.2 days for poorly performing students (p < 0.01). A negative correlation between USMLE score and the lag time to application was noted (p < 0.01 USMLE I and USMLE II). Applicants offered an interview demonstrated a lag time to submit their application of 19.2 days +/- 21

  16. A systematic literature review of open source software quality assessment models.

    PubMed

    Adewumi, Adewole; Misra, Sanjay; Omoregbe, Nicholas; Crawford, Broderick; Soto, Ricardo

    2016-01-01

    Many open source software (OSS) quality assessment models are proposed and available in the literature. However, there is little or no adoption of these models in practice. In order to guide the formulation of newer models so they can be acceptable by practitioners, there is need for clear discrimination of the existing models based on their specific properties. Based on this, the aim of this study is to perform a systematic literature review to investigate the properties of the existing OSS quality assessment models by classifying them with respect to their quality characteristics, the methodology they use for assessment, and their domain of application so as to guide the formulation and development of newer models. Searches in IEEE Xplore, ACM, Science Direct, Springer and Google Search is performed so as to retrieve all relevant primary studies in this regard. Journal and conference papers between the year 2003 and 2015 were considered since the first known OSS quality model emerged in 2003. A total of 19 OSS quality assessment model papers were selected. To select these models we have developed assessment criteria to evaluate the quality of the existing studies. Quality assessment models are classified into five categories based on the quality characteristics they possess namely: single-attribute, rounded category, community-only attribute, non-community attribute as well as the non-quality in use models. Our study reflects that software selection based on hierarchical structures is found to be the most popular selection method in the existing OSS quality assessment models. Furthermore, we found that majority (47%) of the existing models do not specify any domain of application. In conclusion, our study will be a valuable contribution to the community and helps the quality assessment model developers in formulating newer models and also to the practitioners (software evaluators) in selecting suitable OSS in the midst of alternatives.

  17. A priori discretization quality metrics for distributed hydrologic modeling applications

    NASA Astrophysics Data System (ADS)

    Liu, Hongli; Tolson, Bryan; Craig, James; Shafii, Mahyar; Basu, Nandita

    2016-04-01

    In distributed hydrologic modelling, a watershed is treated as a set of small homogeneous units that address the spatial heterogeneity of the watershed being simulated. The ability of models to reproduce observed spatial patterns firstly depends on the spatial discretization, which is the process of defining homogeneous units in the form of grid cells, subwatersheds, or hydrologic response units etc. It is common for hydrologic modelling studies to simply adopt a nominal or default discretization strategy without formally assessing alternative discretization levels. This approach lacks formal justifications and is thus problematic. More formalized discretization strategies are either a priori or a posteriori with respect to building and running a hydrologic simulation model. A posteriori approaches tend to be ad-hoc and compare model calibration and/or validation performance under various watershed discretizations. The construction and calibration of multiple versions of a distributed model can become a seriously limiting computational burden. Current a priori approaches are more formalized and compare overall heterogeneity statistics of dominant variables between candidate discretization schemes and input data or reference zones. While a priori approaches are efficient and do not require running a hydrologic model, they do not fully investigate the internal spatial pattern changes of variables of interest. Furthermore, the existing a priori approaches focus on landscape and soil data and do not assess impacts of discretization on stream channel definition even though its significance has been noted by numerous studies. The primary goals of this study are to (1) introduce new a priori discretization quality metrics considering the spatial pattern changes of model input data; (2) introduce a two-step discretization decision-making approach to compress extreme errors and meet user-specified discretization expectations through non-uniform discretization threshold

  18. NASA Earth Observation Systems and Applications for Health and Air Quality

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.

    2015-01-01

    There is a growing body of evidence that the environment can affect human health in ways that are both complex and global in scope. To address some of these complexities, NASA maintains a diverse constellation of Earth observing research satellites, and sponsors research in developing satellite data applications across a wide spectrum of areas. These include environmental health; infectious disease; air quality standards, policies, and regulations; and the impact of climate change on health and air quality in a number of interrelated efforts. The Health and Air Quality Applications fosters the use of observations, modeling systems, forecast development, application integration, and the research to operations transition process to address environmental health effects. NASA has been a primary partner with Federal operational agencies over the past nine years in these areas. This talk presents the background of the Health and Air Quality Applications program, recent accomplishments, and a plan for the future.

  19. Evaluating Air-Quality Models: Review and Outlook.

    NASA Astrophysics Data System (ADS)

    Weil, J. C.; Sykes, R. I.; Venkatram, A.

    1992-10-01

    Over the past decade, much attention has been devoted to the evaluation of air-quality models with emphasis on model performance in predicting the high concentrations that are important in air-quality regulations. This paper stems from our belief that this practice needs to be expanded to 1) evaluate model physics and 2) deal with the large natural or stochastic variability in concentration. The variability is represented by the root-mean- square fluctuating concentration (c about the mean concentration (C) over an ensemble-a given set of meteorological, source, etc. conditions. Most air-quality models used in applications predict C, whereas observations are individual realizations drawn from an ensemble. For cC large residuals exist between predicted and observed concentrations, which confuse model evaluations.This paper addresses ways of evaluating model physics in light of the large c the focus is on elevated point-source models. Evaluation of model physics requires the separation of the mean model error-the difference between the predicted and observed C-from the natural variability. A residual analysis is shown to be an elective way of doing this. Several examples demonstrate the usefulness of residuals as well as correlation analyses and laboratory data in judging model physics.In general, c models and predictions of the probability distribution of the fluctuating concentration (c), (c, are in the developmental stage, with laboratory data playing an important role. Laboratory data from point-source plumes in a convection tank show that (c approximates a self-similar distribution along the plume center plane, a useful result in a residual analysis. At pmsent,there is one model-ARAP-that predicts C, c, and (c for point-source plumes. This model is more computationally demanding than other dispersion models (for C only) and must be demonstrated as a practical tool. However, it predicts an important quantity for applications- the uncertainty in the very high and

  20. Extending the Community Multiscale Air Quality (CMAQ) Modeling System to Hemispheric Scales: Overview of Process Considerations and Initial Applications

    PubMed Central

    Mathur, Rohit; Xing, Jia; Gilliam, Robert; Sarwar, Golam; Hogrefe, Christian; Pleim, Jonathan; Pouliot, George; Roselle, Shawn; Spero, Tanya L.; Wong, David C.; Young, Jeffrey

    2018-01-01

    The Community Multiscale Air Quality (CMAQ) modeling system is extended to simulate ozone, particulate matter, and related precursor distributions throughout the Northern Hemisphere. Modelled processes were examined and enhanced to suitably represent the extended space and time scales for such applications. Hemispheric scale simulations with CMAQ and the Weather Research and Forecasting (WRF) model are performed for multiple years. Model capabilities for a range of applications including episodic long-range pollutant transport, long-term trends in air pollution across the Northern Hemisphere, and air pollution-climate interactions are evaluated through detailed comparison with available surface, aloft, and remotely sensed observations. The expansion of CMAQ to simulate the hemispheric scales provides a framework to examine interactions between atmospheric processes occurring at various spatial and temporal scales with physical, chemical, and dynamical consistency. PMID:29681922

  1. Application of a sub-specialties management model improves quality control in a central sterile supply department.

    PubMed

    Wang, Li; Cai, Xuejiao; Cheng, Ping

    2018-05-30

    The management of medical devices is crucial to safe, high-quality surgical care, but has received little attention in the medical literature. This study explored the effect of a sub-specialties management model in the Central Sterile Supply Department (CSSD). A traditional routine management model (control) was applied from September 2015 through April 2016, and a newly developed sub-specialties management model (observation) was applied from July 2016 through February 2017. Health personnel from various clinical departments were randomly selected to participate as the control (n = 86) and observation (n = 90) groups, respectively. The groups were compared for rates of personnel satisfaction, complaints regarding device errors, and damage of medical devices. The satisfaction score of the observation group (95.8 ± 1.2) was significantly higher than that of the control (90.2 ± 2.3; P = 0.000). The rate of complaints of the observation group (3.3%) was significantly lower than that of the control (11.6%; P = 0.035). The quality control regarding recycle and packing was significantly higher during the observation period than the control period, which favorably influenced the scores for satisfaction. The rate of damage to specialist medical devices during the observation period (0.40%) was lower than during the control period (0.61%; P = 0.003). The theoretical knowledge and practical skills of the CSSD professionals improved after application of the sub-specialties management model. A management model that considers the requirements of specialist medical devices can improve quality control in the CSSD.

  2. Exploration of OMI Products for Air Quality Applications Through Comparisons with Models and Observations

    NASA Technical Reports Server (NTRS)

    Pickering, K. E.; Ziemke, J.; Bucsela, E.; Gleason, J.; Marufu, L.; Dickerson, R.; Mathur, R.; Davidson, P.; Duncan, B.; Bhartia, P. K.

    2006-01-01

    The Ozone Monitoring Instrument (OMI) on board NASA s Aura satellite was launched in July 2004, and is now providing daily global observations of total column ozone, NO2, and SO2, as well as aerosol information. Algorithms have also been developed to produce daily tropospheric ozone and NO2 products. The tropospheric ozone product reported here is a tropospheric residual computed through use of Aura Microwave Limb Sounder (MLS) ozone profile data to quantify stratospheric ozone. We are investigating the applicability of OMI products for use in air quality modeling, forecasting, and analysis. These investigations include comparison of the OMI tropospheric O3 and NO2 products with global and regional models and with lower tropospheric aircraft observations. Large-scale transport of pollution seen in the OM1 tropospheric O3 data is compared with output from NASA's Global Modeling Initiative global chemistry and transport model. On the regional scale we compare the OMI tropospheric O3 and NO2 with fields from the National Oceanic and Atmospheric Administration and Environmental Protection Agency (NOAA/EPA) operational Eta/CMAQ air quality forecasting model over the eastern United States. This 12-km horizontal resolution model output is roughly of equivalent resolution to the OMI pixel data. Correlation analysis between lower tropospheric aircraft O3 profile data taken by the University of Maryland over the Mid-Atlantic States and OMI tropospheric column mean volume mixing ratio for O3 will be presented. These aircraft data are representative of the lowest 3 kilometers of the atmosphere, the region in which much of the locally-generated and regionally-transported ozone exists.

  3. Effects of Meteorological Data Quality on Snowpack Modeling

    NASA Astrophysics Data System (ADS)

    Havens, S.; Marks, D. G.; Robertson, M.; Hedrick, A. R.; Johnson, M.

    2017-12-01

    Detailed quality control of meteorological inputs is the most time-intensive component of running the distributed, physically-based iSnobal snow model, and the effect of data quality of the inputs on the model is unknown. The iSnobal model has been run operationally since WY2013, and is currently run in several basins in Idaho and California. The largest amount of user input during modeling is for the quality control of precipitation, temperature, relative humidity, solar radiation, wind speed and wind direction inputs. Precipitation inputs require detailed user input and are crucial to correctly model the snowpack mass. This research applies a range of quality control methods to meteorological input, from raw input with minimal cleaning, to complete user-applied quality control. The meteorological input cleaning generally falls into two categories. The first is global minimum/maximum and missing value correction that could be corrected and/or interpolated with automated processing. The second category is quality control for inputs that are not globally erroneous, yet are still unreasonable and generally indicate malfunctioning measurement equipment, such as temperature or relative humidity that remains constant, or does not correlate with daily trends observed at nearby stations. This research will determine how sensitive model outputs are to different levels of quality control and guide future operational applications.

  4. Application-Driven No-Reference Quality Assessment for Dermoscopy Images With Multiple Distortions.

    PubMed

    Xie, Fengying; Lu, Yanan; Bovik, Alan C; Jiang, Zhiguo; Meng, Rusong

    2016-06-01

    Dermoscopy images often suffer from blur and uneven illumination distortions that occur during acquisition, which can adversely influence consequent automatic image analysis results on potential lesion objects. The purpose of this paper is to deploy an algorithm that can automatically assess the quality of dermoscopy images. Such an algorithm could be used to direct image recapture or correction. We describe an application-driven no-reference image quality assessment (IQA) model for dermoscopy images affected by possibly multiple distortions. For this purpose, we created a multiple distortion dataset of dermoscopy images impaired by varying degrees of blur and uneven illumination. The basis of this model is two single distortion IQA metrics that are sensitive to blur and uneven illumination, respectively. The outputs of these two metrics are combined to predict the quality of multiply distorted dermoscopy images using a fuzzy neural network. Unlike traditional IQA algorithms, which use human subjective score as ground truth, here ground truth is driven by the application, and generated according to the degree of influence of the distortions on lesion analysis. The experimental results reveal that the proposed model delivers accurate and stable quality prediction results for dermoscopy images impaired by multiple distortions. The proposed model is effective for quality assessment of multiple distorted dermoscopy images. An application-driven concept for IQA is introduced, and at the same time, a solution framework for the IQA of multiple distortions is proposed.

  5. Storm Water Management Model Applications Manual

    EPA Science Inventory

    The EPA Storm Water Management Model (SWMM) is a dynamic rainfall-runoff simulation model that computes runoff quantity and quality from primarily urban areas. This manual is a practical application guide for new SWMM users who have already had some previous training in hydrolog...

  6. [Review on HSPF model for simulation of hydrology and water quality processes].

    PubMed

    Li, Zhao-fu; Liu, Hong-Yu; Li, Yan

    2012-07-01

    Hydrological Simulation Program-FORTRAN (HSPF), written in FORTRAN, is one ol the best semi-distributed hydrology and water quality models, which was first developed based on the Stanford Watershed Model. Many studies on HSPF model application were conducted. It can represent the contributions of sediment, nutrients, pesticides, conservatives and fecal coliforms from agricultural areas, continuously simulate water quantity and quality processes, as well as the effects of climate change and land use change on water quantity and quality. HSPF consists of three basic application components: PERLND (Pervious Land Segment) IMPLND (Impervious Land Segment), and RCHRES (free-flowing reach or mixed reservoirs). In general, HSPF has extensive application in the modeling of hydrology or water quality processes and the analysis of climate change and land use change. However, it has limited use in China. The main problems with HSPF include: (1) some algorithms and procedures still need to revise, (2) due to the high standard for input data, the accuracy of the model is limited by spatial and attribute data, (3) the model is only applicable for the simulation of well-mixed rivers, reservoirs and one-dimensional water bodies, it must be integrated with other models to solve more complex problems. At present, studies on HSPF model development are still undergoing, such as revision of model platform, extension of model function, method development for model calibration, and analysis of parameter sensitivity. With the accumulation of basic data and imorovement of data sharing, the HSPF model will be applied more extensively in China.

  7. Application of uncertainty and sensitivity analysis to the air quality SHERPA modelling tool

    NASA Astrophysics Data System (ADS)

    Pisoni, E.; Albrecht, D.; Mara, T. A.; Rosati, R.; Tarantola, S.; Thunis, P.

    2018-06-01

    Air quality has significantly improved in Europe over the past few decades. Nonetheless we still find high concentrations in measurements mainly in specific regions or cities. This dimensional shift, from EU-wide to hot-spot exceedances, calls for a novel approach to regional air quality management (to complement EU-wide existing policies). The SHERPA (Screening for High Emission Reduction Potentials on Air quality) modelling tool was developed in this context. It provides an additional tool to be used in support to regional/local decision makers responsible for the design of air quality plans. It is therefore important to evaluate the quality of the SHERPA model, and its behavior in the face of various kinds of uncertainty. Uncertainty and sensitivity analysis techniques can be used for this purpose. They both reveal the links between assumptions and forecasts, help in-model simplification and may highlight unexpected relationships between inputs and outputs. Thus, a policy steered SHERPA module - predicting air quality improvement linked to emission reduction scenarios - was evaluated by means of (1) uncertainty analysis (UA) to quantify uncertainty in the model output, and (2) by sensitivity analysis (SA) to identify the most influential input sources of this uncertainty. The results of this study provide relevant information about the key variables driving the SHERPA output uncertainty, and advise policy-makers and modellers where to place their efforts for an improved decision-making process.

  8. Water quantity and quality model for the evaluation of water-management strategies in the Netherlands: application to the province of Friesland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinkman, J.J.; Griffioen, P.S.; Groot, S.

    1987-03-01

    The Netherlands have a rather complex water-management system consisting of a number of major rivers, canals, lakes and ditches. Water-quantity management on a regional scale is necessary for an effective water-quality policy. To support water management, a computer model was developed that includes both water quality and water quantity, based on three submodels: ABOPOL for the water movement, DELWAQ for the calculation of water quality variables and BLOOM-II for the phytoplankton growth. The northern province of Friesland was chosen as a test case for the integrated model to be developed, where water quality is highly related to the water distributionmore » and the main trade-off is minimizing the intake of (eutrophicated) alien water in order to minimize external nutrient load and maximizing the intake in order to flush channels and lakes. The results of the application of these models to this and to a number of hypothetical future situations are described.« less

  9. Innovations in projecting emissions for air quality modeling ...

    EPA Pesticide Factsheets

    Air quality modeling is used in setting air quality standards and in evaluating their costs and benefits. Historically, modeling applications have projected emissions and the resulting air quality only 5 to 10 years into the future. Recognition that the choice of air quality management strategy has climate change implications is encouraging longer modeling time horizons. However, for multi-decadal time horizons, many questions about future conditions arise. For example, will current population, economic, and land use trends continue, or will we see shifts that may alter the spatial and temporal pattern of emissions? Similarly, will technologies such as building-integrated solar photovoltaics, battery storage, electric vehicles, and CO2 capture emerge as disruptive technologies - shifting how we produce and use energy - or will these technologies achieve only niche markets and have little impact? These are some of the questions that are being evaluated by researchers within the U.S. EPA’s Office of Research and Development. In this presentation, Dr. Loughlin will describe a range of analytical approaches that are being explored. These include: (i) the development of alternative scenarios of the future that can be used to evaluate candidate management strategies over wide-ranging conditions, (ii) the application of energy system models to project emissions decades into the future and to assess the environmental implications of new technologies, (iii) and methodo

  10. Land Surface Process and Air Quality Research and Applications at MSFC

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale; Khan, Maudood

    2007-01-01

    This viewgraph presentation provides an overview of land surface process and air quality research at MSFC including atmospheric modeling and ongoing research whose objective is to undertake a comprehensive spatiotemporal analysis of the effects of accurate land surface characterization on atmospheric modeling results, and public health applications. Land use maps as well as 10 meter air temperature, surface wind, PBL mean difference heights, NOx, ozone, and O3+NO2 plots as well as spatial growth model outputs are included. Emissions and general air quality modeling are also discussed.

  11. Air Quality Response Modeling for Decision Support | Science ...

    EPA Pesticide Factsheets

    Air quality management relies on photochemical models to predict the responses of pollutant concentrations to changes in emissions. Such modeling is especially important for secondary pollutants such as ozone and fine particulate matter which vary nonlinearly with changes in emissions. Numerous techniques for probing pollutant-emission relationships within photochemical models have been developed and deployed for a variety of decision support applications. However, atmospheric response modeling remains complicated by the challenge of validating sensitivity results against observable data. This manuscript reviews the state of the science of atmospheric response modeling as well as efforts to characterize the accuracy and uncertainty of sensitivity results. The National Exposure Research Laboratory′s (NERL′s) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA′s mission to protect human health and the environment. AMAD′s research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the Nation′s air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being use

  12. A software quality model and metrics for risk assessment

    NASA Technical Reports Server (NTRS)

    Hyatt, L.; Rosenberg, L.

    1996-01-01

    A software quality model and its associated attributes are defined and used as the model for the basis for a discussion on risk. Specific quality goals and attributes are selected based on their importance to a software development project and their ability to be quantified. Risks that can be determined by the model's metrics are identified. A core set of metrics relating to the software development process and its products is defined. Measurements for each metric and their usability and applicability are discussed.

  13. Systems Engineering Metrics: Organizational Complexity and Product Quality Modeling

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.

    1997-01-01

    Innovative organizational complexity and product quality models applicable to performance metrics for NASA-MSFC's Systems Analysis and Integration Laboratory (SAIL) missions and objectives are presented. An intensive research effort focuses on the synergistic combination of stochastic process modeling, nodal and spatial decomposition techniques, organizational and computational complexity, systems science and metrics, chaos, and proprietary statistical tools for accelerated risk assessment. This is followed by the development of a preliminary model, which is uniquely applicable and robust for quantitative purposes. Exercise of the preliminary model using a generic system hierarchy and the AXAF-I architectural hierarchy is provided. The Kendall test for positive dependence provides an initial verification and validation of the model. Finally, the research and development of the innovation is revisited, prior to peer review. This research and development effort results in near-term, measurable SAIL organizational and product quality methodologies, enhanced organizational risk assessment and evolutionary modeling results, and 91 improved statistical quantification of SAIL productivity interests.

  14. [Watershed water environment pollution models and their applications: a review].

    PubMed

    Zhu, Yao; Liang, Zhi-Wei; Li, Wei; Yang, Yi; Yang, Mu-Yi; Mao, Wei; Xu, Han-Li; Wu, Wei-Xiang

    2013-10-01

    Watershed water environment pollution model is the important tool for studying watershed environmental problems. Through the quantitative description of the complicated pollution processes of whole watershed system and its parts, the model can identify the main sources and migration pathways of pollutants, estimate the pollutant loadings, and evaluate their impacts on water environment, providing a basis for watershed planning and management. This paper reviewed the watershed water environment models widely applied at home and abroad, with the focuses on the models of pollutants loading (GWLF and PLOAD), water quality of received water bodies (QUAL2E and WASP), and the watershed models integrated pollutant loadings and water quality (HSPF, SWAT, AGNPS, AnnAGNPS, and SWMM), and introduced the structures, principles, and main characteristics as well as the limitations in practical applications of these models. The other models of water quality (CE-QUAL-W2, EFDC, and AQUATOX) and watershed models (GLEAMS and MIKE SHE) were also briefly introduced. Through the case analysis on the applications of single model and integrated models, the development trend and application prospect of the watershed water environment pollution models were discussed.

  15. A Hearing-Based, Frequency Domain Sound Quality Model for Combined Aerodynamic and Power Transmission Response with Application to Rotorcraft Interior Noise

    NASA Astrophysics Data System (ADS)

    Sondkar, Pravin B.

    The severity of combined aerodynamics and power transmission response in high-speed, high power density systems such as a rotorcraft is still a major cause of annoyance in spite of recent advancement in passive, semi-active and active control. With further increase in the capacity and power of this class of machinery systems, the acoustic noise levels are expected to increase even more. To achieve further improvements in sound quality, a more refined understanding of the factors and attributes controlling human perception is needed. In the case of rotorcraft systems, the perceived quality of the interior sound field is a major determining factor of passenger comfort. Traditionally, this sound quality factor is determined by measuring the response of a chosen set of juries who are asked to compare their qualitative reactions to two or more sounds based on their subjective impressions. This type of testing is very time-consuming, costly, often inconsistent, and not useful for practical design purposes. Furthermore, there is no known universal model for sound quality. The primary aim of this research is to achieve significant improvements in quantifying the sound quality of combined aerodynamic and power transmission response in high-speed, high power density machinery systems such as a rotorcraft by applying relevant objective measures related to the spectral characteristics of the sound field. Two models have been proposed in this dissertation research. First, a classical multivariate regression analysis model based on currently known sound quality metrics as well some new metrics derived in this study is presented. Even though the analysis resulted in the best possible multivariate model as a measure of the acoustic noise quality, it lacks incorporation of human judgment mechanism. The regression model can change depending on specific application, nature of the sounds and types of juries used in the study. Also, it predicts only the averaged preference scores and

  16. Atmospheric Boundary Layer Modeling for Combined Meteorology and Air Quality Systems

    EPA Science Inventory

    Atmospheric Eulerian grid models for mesoscale and larger applications require sub-grid models for turbulent vertical exchange processes, particularly within the Planetary Boundary Layer (PSL). In combined meteorology and air quality modeling systems consistent PSL modeling of wi...

  17. Adaptation of Collaborative Applications for Network Quality Variation

    DTIC Science & Technology

    2004-06-01

    collaborative application. 1.1 Quality of Service Quality of Service (QoS) is generally regarded as an end-to-end network application...using the Cloud WAN Emulator [14]. We used qtcp1 to measure end-to-end network service quality between the signal sender and the signal receiver. The...application must be aware of current resource 1 Qtcp measures end-to-end network integrity and service quality for QoS verification. Qtcp sends a

  18. The Cost of Quality--Its Application to Libraries.

    ERIC Educational Resources Information Center

    Franklin, Brinley

    1994-01-01

    Examines the conceptual basis for the cost of quality and its application to libraries. The framework for analysis of this conceptual basis includes definitions of the cost of quality; a brief historical review of the cost of quality; and the application of quality cost to libraries, including an explanation of how quality costs respond to quality…

  19. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in 1976...

  20. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in 1976...

  1. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in 1976...

  2. Towards the Next Generation Air Quality Modeling System ...

    EPA Pesticide Factsheets

    The community multiscale air quality (CMAQ) model of the U.S. Environmental Protection Agency is one of the most widely used air quality model worldwide; it is employed for both research and regulatory applications at major universities and government agencies for improving understanding of the formation and transport of air pollutants. It is noted, however, that air quality issues and climate change assessments need to be addressed globally recognizing the linkages and interactions between meteorology and atmospheric chemistry across a wide range of scales. Therefore, an effort is currently underway to develop the next generation air quality modeling system (NGAQM) that will be based on a global integrated meteorology and chemistry system. The model for prediction across scales-atmosphere (MPAS-A), a global fully compressible non-hydrostatic model with seamlessly refined centroidal Voronoi grids, has been chosen as the meteorological driver of this modeling system. The initial step of adapting MPAS-A for the NGAQM was to implement and test the physics parameterizations and options that are preferred for retrospective air quality simulations (see the work presented by R. Gilliam, R. Bullock, and J. Herwehe at this workshop). The next step, presented herein, would be to link the chemistry from CMAQ to MPAS-A to build a prototype for the NGAQM. Furthermore, the techniques to harmonize transport processes between CMAQ and MPAS-A, methodologies to connect the chemis

  3. Advanced Water Quality Modelling in Marine Systems: Application to the Wadden Sea, the Netherlands

    NASA Astrophysics Data System (ADS)

    Boon, J.; Smits, J. G.

    2006-12-01

    There is an increasing demand for knowledge and models that arise from water management in relation to water quality, sediment quality (ecology) and sediment accumulation (ecomorphology). Recently, models for sediment diagenesis and erosion developed or incorporated by Delft Hydraulics integrates the relevant physical, (bio)chemical and biological processes for the sediment-water exchange of substances. The aim of the diagenesis models is the prediction of both sediment quality and the return fluxes of substances such as nutrients and micropollutants to the overlying water. The resulting so-called DELWAQ-G model is a new, generic version of the water and sediment quality model of the DELFT3D framework. One set of generic water quality process formulations is used to calculate process rates in both water and sediment compartments. DELWAQ-G involves the explicit simulation of sediment layers in the water quality model with state-of-the-art process kinetics. The local conditions in a water layer or sediment layer such as the dissolved oxygen concentration determine if and how individual processes come to expression. New processes were added for sulphate, sulphide, methane and the distribution of the electron-acceptor demand over dissolved oxygen, nitrate, sulphate and carbon dioxide. DELWAQ-G also includes the dispersive and advective transport processes in the sediment and across the sediment-water interface. DELWAQ-G has been applied for the Wadden Sea. A very dynamic tidal and ecologically active estuary with a complex hydrodynamic behaviour located at the north of the Netherlands. The predicted profiles in the sediment reflect the typical interactions of diagenesis processes.

  4. The Application of Satellite-Derived, High-Resolution Land Use/Land Cover Data to Improve Urban Air Quality Model Forecasts

    NASA Technical Reports Server (NTRS)

    Quattrochi, D. A.; Lapenta, W. M.; Crosson, W. L.; Estes, M. G., Jr.; Limaye, A.; Kahn, M.

    2006-01-01

    Local and state agencies are responsible for developing state implementation plans to meet National Ambient Air Quality Standards. Numerical models used for this purpose simulate the transport and transformation of criteria pollutants and their precursors. The specification of land use/land cover (LULC) plays an important role in controlling modeled surface meteorology and emissions. NASA researchers have worked with partners and Atlanta stakeholders to incorporate an improved high-resolution LULC dataset for the Atlanta area within their modeling system and to assess meteorological and air quality impacts of Urban Heat Island (UHI) mitigation strategies. The new LULC dataset provides a more accurate representation of land use, has the potential to improve model accuracy, and facilitates prediction of LULC changes. Use of the new LULC dataset for two summertime episodes improved meteorological forecasts, with an existing daytime cold bias of approx. equal to 3 C reduced by 30%. Model performance for ozone prediction did not show improvement. In addition, LULC changes due to Atlanta area urbanization were predicted through 2030, for which model simulations predict higher urban air temperatures. The incorporation of UHI mitigation strategies partially offset this warming trend. The data and modeling methods used are generally applicable to other U.S. cities.

  5. Multi-year downscaling application of two-way coupled WRF v3.4 and CMAQ v5.0.2 over east Asia for regional climate and air quality modeling: model evaluation and aerosol direct effects

    NASA Astrophysics Data System (ADS)

    Hong, Chaopeng; Zhang, Qiang; Zhang, Yang; Tang, Youhua; Tong, Daniel; He, Kebin

    2017-06-01

    In this study, a regional coupled climate-chemistry modeling system using the dynamical downscaling technique was established by linking the global Community Earth System Model (CESM) and the regional two-way coupled Weather Research and Forecasting - Community Multi-scale Air Quality (WRF-CMAQ) model for the purpose of comprehensive assessments of regional climate change and air quality and their interactions within one modeling framework. The modeling system was applied over east Asia for a multi-year climatological application during 2006-2010, driven with CESM downscaling data under Representative Concentration Pathways 4.5 (RCP4.5), along with a short-term air quality application in representative months in 2013 that was driven with a reanalysis dataset. A comprehensive model evaluation was conducted against observations from surface networks and satellite observations to assess the model's performance. This study presents the first application and evaluation of the two-way coupled WRF-CMAQ model for climatological simulations using the dynamical downscaling technique. The model was able to satisfactorily predict major meteorological variables. The improved statistical performance for the 2 m temperature (T2) in this study (with a mean bias of -0.6 °C) compared with the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-models might be related to the use of the regional model WRF and the bias-correction technique applied for CESM downscaling. The model showed good ability to predict PM2. 5 in winter (with a normalized mean bias (NMB) of 6.4 % in 2013) and O3 in summer (with an NMB of 18.2 % in 2013) in terms of statistical performance and spatial distributions. Compared with global models that tend to underpredict PM2. 5 concentrations in China, WRF-CMAQ was able to capture the high PM2. 5 concentrations in urban areas. In general, the two-way coupled WRF-CMAQ model performed well for both climatological and air quality applications. The coupled

  6. Water quality modelling of an impacted semi-arid catchment using flow data from the WEAP model

    NASA Astrophysics Data System (ADS)

    Slaughter, Andrew R.; Mantel, Sukhmani K.

    2018-04-01

    The continuous decline in water quality in many regions is forcing a shift from quantity-based water resources management to a greater emphasis on water quality management. Water quality models can act as invaluable tools as they facilitate a conceptual understanding of processes affecting water quality and can be used to investigate the water quality consequences of management scenarios. In South Africa, the Water Quality Systems Assessment Model (WQSAM) was developed as a management-focussed water quality model that is relatively simple to be able to utilise the small amount of available observed data. Importantly, WQSAM explicitly links to systems (yield) models routinely used in water resources management in South Africa by using their flow output to drive water quality simulations. Although WQSAM has been shown to be able to represent the variability of water quality in South African rivers, its focus on management from a South African perspective limits its use to within southern African regions for which specific systems model setups exist. Facilitating the use of WQSAM within catchments outside of southern Africa and within catchments for which these systems model setups to not exist would require WQSAM to be able to link to a simple-to-use and internationally-applied systems model. One such systems model is the Water Evaluation and Planning (WEAP) model, which incorporates a rainfall-runoff component (natural hydrology), and reservoir storage, return flows and abstractions (systems modelling), but within which water quality modelling facilities are rudimentary. The aims of the current study were therefore to: (1) adapt the WQSAM model to be able to use as input the flow outputs of the WEAP model and; (2) provide an initial assessment of how successful this linkage was by application of the WEAP and WQSAM models to the Buffalo River for historical conditions; a small, semi-arid and impacted catchment in the Eastern Cape of South Africa. The simulations of

  7. DEVELOPMENT OF A LAND-SURFACE MODEL PART I: APPLICATION IN A MESOSCALE METEOROLOGY MODEL

    EPA Science Inventory

    Parameterization of land-surface processes and consideration of surface inhomogeneities are very important to mesoscale meteorological modeling applications, especially those that provide information for air quality modeling. To provide crucial, reliable information on the diurn...

  8. 78 FR 20252 - Water Quality Standards; Withdrawal of Certain Federal Water Quality Criteria Applicable to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... aquatic life water quality criteria applicable to waters of New Jersey, Puerto Rico, and California's San Francisco Bay. In 1992, EPA promulgated the National Toxics Rule or NTR to establish numeric water quality... Water Quality Standards; Withdrawal of Certain Federal Water Quality Criteria Applicable to California...

  9. Hyperspectral imaging of water quality - past applications and future directions.

    NASA Astrophysics Data System (ADS)

    Ross, M. R. V.; Pavelsky, T.

    2017-12-01

    Inland waters control the delivery of sediment, carbon, and nutrients from land to ocean by transforming, depositing, and transporting constituents downstream. However, the dominant in situ conditions that control these processes are poorly constrained, especially at larger spatial scales. Hyperspectral imaging, a remote sensing technique that uses reflectance in hundreds of narrow spectral bands, can be used to estimate water quality parameters like sediment and carbon concentration over larger water bodies. Here, we review methods and applications for using hyperspectral imagery to generate near-surface two-dimensional models of water quality in lakes and rivers. Further, we show applications using newly available data from the National Ecological Observation Network aerial observation platform in the Black Warrior and Tombigbee Rivers, Alabama. We demonstrate large spatial variation in chlorophyll, colored dissolved organic matter, and turbidity in each river and uneven mixing of water quality constituents for several kilometers. Finally, we demonstrate some novel techniques using hyperspectral imagery to deconvolve dissolved organic matter spectral signatures to specific organic matter components.

  10. Quality by control: Towards model predictive control of mammalian cell culture bioprocesses.

    PubMed

    Sommeregger, Wolfgang; Sissolak, Bernhard; Kandra, Kulwant; von Stosch, Moritz; Mayer, Martin; Striedner, Gerald

    2017-07-01

    The industrial production of complex biopharmaceuticals using recombinant mammalian cell lines is still mainly built on a quality by testing approach, which is represented by fixed process conditions and extensive testing of the end-product. In 2004 the FDA launched the process analytical technology initiative, aiming to guide the industry towards advanced process monitoring and better understanding of how critical process parameters affect the critical quality attributes. Implementation of process analytical technology into the bio-production process enables moving from the quality by testing to a more flexible quality by design approach. The application of advanced sensor systems in combination with mathematical modelling techniques offers enhanced process understanding, allows on-line prediction of critical quality attributes and subsequently real-time product quality control. In this review opportunities and unsolved issues on the road to a successful quality by design and dynamic control implementation are discussed. A major focus is directed on the preconditions for the application of model predictive control for mammalian cell culture bioprocesses. Design of experiments providing information about the process dynamics upon parameter change, dynamic process models, on-line process state predictions and powerful software environments seem to be a prerequisite for quality by control realization. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Stormwater quality modelling in combined sewers: calibration and uncertainty analysis.

    PubMed

    Kanso, A; Chebbo, G; Tassin, B

    2005-01-01

    Estimating the level of uncertainty in urban stormwater quality models is vital for their utilization. This paper presents the results of application of a Monte Carlo Markov Chain method based on the Bayesian theory for the calibration and uncertainty analysis of a storm water quality model commonly used in available software. The tested model uses a hydrologic/hydrodynamic scheme to estimate the accumulation, the erosion and the transport of pollutants on surfaces and in sewers. It was calibrated for four different initial conditions of in-sewer deposits. Calibration results showed large variability in the model's responses in function of the initial conditions. They demonstrated that the model's predictive capacity is very low.

  12. Sensor-Based Optimization Model for Air Quality Improvement in Home IoT.

    PubMed

    Kim, Jonghyuk; Hwangbo, Hyunwoo

    2018-03-23

    We introduce current home Internet of Things (IoT) technology and present research on its various forms and applications in real life. In addition, we describe IoT marketing strategies as well as specific modeling techniques for improving air quality, a key home IoT service. To this end, we summarize the latest research on sensor-based home IoT, studies on indoor air quality, and technical studies on random data generation. In addition, we develop an air quality improvement model that can be readily applied to the market by acquiring initial analytical data and building infrastructures using spectrum/density analysis and the natural cubic spline method. Accordingly, we generate related data based on user behavioral values. We integrate the logic into the existing home IoT system to enable users to easily access the system through the Web or mobile applications. We expect that the present introduction of a practical marketing application method will contribute to enhancing the expansion of the home IoT market.

  13. Useful measures and models for analytical quality management in medical laboratories.

    PubMed

    Westgard, James O

    2016-02-01

    The 2014 Milan Conference "Defining analytical performance goals 15 years after the Stockholm Conference" initiated a new discussion of issues concerning goals for precision, trueness or bias, total analytical error (TAE), and measurement uncertainty (MU). Goal-setting models are critical for analytical quality management, along with error models, quality-assessment models, quality-planning models, as well as comprehensive models for quality management systems. There are also critical underlying issues, such as an emphasis on MU to the possible exclusion of TAE and a corresponding preference for separate precision and bias goals instead of a combined total error goal. This opinion recommends careful consideration of the differences in the concepts of accuracy and traceability and the appropriateness of different measures, particularly TAE as a measure of accuracy and MU as a measure of traceability. TAE is essential to manage quality within a medical laboratory and MU and trueness are essential to achieve comparability of results across laboratories. With this perspective, laboratory scientists can better understand the many measures and models needed for analytical quality management and assess their usefulness for practical applications in medical laboratories.

  14. Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin.

    PubMed

    Stewart, Devoun R; Saunders, Emily; Perea, Roberto A; Fitzgerald, Rosa; Campbell, David E; Stockwell, William R

    2017-01-01

    Proposed emission control strategies for reducing ozone and particulate matter are evaluated better when air quality and health effects models are used together. The Community Multiscale Air Quality (CMAQ) model is the US Environmental Protection Agency's model for determining public policy and forecasting air quality. CMAQ was used to forecast air quality changes due to several emission control strategies that could be implemented between 2008 and 2030 for the South Coast Air Basin that includes Los Angeles. The Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) was used to estimate health and economic impacts of the different emission control strategies based on CMAQ simulations. BenMAP-CE is a computer program based on epidemiologic studies that link human health and air quality. This modeling approach is better for determining optimum public policy than approaches that only examine concentration changes.

  15. ONE ATMOSPHERE MODELING FOR AIR QUALITY: BUILDING PARTNERSHIPS THAT TRANSITION RESEARCH INTO APPLICATIONS

    EPA Science Inventory

    The Community Miultiscale Air Quality (CMAQ) modeling system is a "one atmosphere" chemical transport model that simulates the transport and fate of air pollutants from urban to continental scales and from daily to annual time intervals.

  16. Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin

    PubMed Central

    Stewart, Devoun R; Saunders, Emily; Perea, Roberto A; Fitzgerald, Rosa; Campbell, David E; Stockwell, William R

    2017-01-01

    Proposed emission control strategies for reducing ozone and particulate matter are evaluated better when air quality and health effects models are used together. The Community Multiscale Air Quality (CMAQ) model is the US Environmental Protection Agency’s model for determining public policy and forecasting air quality. CMAQ was used to forecast air quality changes due to several emission control strategies that could be implemented between 2008 and 2030 for the South Coast Air Basin that includes Los Angeles. The Environmental Benefits Mapping and Analysis Program—Community Edition (BenMAP-CE) was used to estimate health and economic impacts of the different emission control strategies based on CMAQ simulations. BenMAP-CE is a computer program based on epidemiologic studies that link human health and air quality. This modeling approach is better for determining optimum public policy than approaches that only examine concentration changes. PMID:29162976

  17. Space-Time Fusion Under Error in Computer Model Output: An Application to Modeling Air Quality

    EPA Science Inventory

    In the last two decades a considerable amount of research effort has been devoted to modeling air quality with public health objectives. These objectives include regulatory activities such as setting standards along with assessing the relationship between exposure to air pollutan...

  18. Frameworks for Assessing the Quality of Modeling and Simulation Capabilities

    NASA Astrophysics Data System (ADS)

    Rider, W. J.

    2012-12-01

    The importance of assuring quality in modeling and simulation has spawned several frameworks for structuring the examination of quality. The format and content of these frameworks provides an emphasis, completeness and flow to assessment activities. I will examine four frameworks that have been developed and describe how they can be improved and applied to a broader set of high consequence applications. Perhaps the first of these frameworks was known as CSAU [Boyack] (code scaling, applicability and uncertainty) used for nuclear reactor safety and endorsed the United States' Nuclear Regulatory Commission (USNRC). This framework was shaped by nuclear safety practice, and the practical structure needed after the Three Mile Island accident. It incorporated the dominant experimental program, the dominant analysis approach, and concerns about the quality of modeling. The USNRC gave it the force of law that made the nuclear industry take it seriously. After the cessation of nuclear weapons' testing the United States began a program of examining the reliability of these weapons without testing. This program utilizes science including theory, modeling, simulation and experimentation to replace the underground testing. The emphasis on modeling and simulation necessitated attention on the quality of these simulations. Sandia developed the PCMM (predictive capability maturity model) to structure this attention [Oberkampf]. PCMM divides simulation into six core activities to be examined and graded relative to the needs of the modeling activity. NASA [NASA] has built yet another framework in response to the tragedy of the space shuttle accidents. Finally, Ben-Haim and Hemez focus upon modeling robustness and predictive fidelity in another approach. These frameworks are similar, and applied in a similar fashion. The adoption of these frameworks at Sandia and NASA has been slow and arduous because the force of law has not assisted acceptance. All existing frameworks are

  19. Regional Air Quality Model Application of the Aqueous-Phase ...

    EPA Pesticide Factsheets

    In most ecosystems, atmospheric deposition is the primary input of mercury. The total wet deposition of mercury in atmospheric chemistry models is sensitive to parameterization of the aqueous-phase reduction of divalent oxidized mercury (Hg2+). However, most atmospheric chemistry models use a parameterization of the aqueous-phase reduction of Hg2+ that has been shown to be unlikely under normal ambient conditions or use a non mechanistic value derived to optimize wet deposition results. Recent laboratory experiments have shown that Hg2+ can be photochemically reduced to elemental mercury (Hg) in the aqueous-phase by dissolved organic matter and a mechanism and the rate for Hg2+ photochemical reduction by dicarboxylic acids (DCA) has been proposed. For the first time in a regional scale model, the DCA mechanism has been applied. The HO2-Hg2+ reduction mechanism, the proposed DCA reduction mechanism, and no aqueous-phase reduction (NAR) of Hg2+ are evaluated against weekly wet deposition totals, concentrations and precipitation observations from the Mercury Deposition Network (MDN) using the Community Multiscale Air Quality (CMAQ) model version 4.7.1. Regional scale simulations of mercury wet deposition using a DCA reduction mechanism evaluated well against observations, and reduced the bias in model evaluation by at least 13% over the other schemes evaluated, although summertime deposition estimates were still biased by −31.4% against observations. The use of t

  20. Quality Assurance in E-Learning: PDPP Evaluation Model and Its Application

    ERIC Educational Resources Information Center

    Zhang, Weiyuan; Cheng, Y. L.

    2012-01-01

    E-learning has become an increasingly important teaching and learning mode in educational institutions and corporate training. The evaluation of e-learning, however, is essential for the quality assurance of e-learning courses. This paper constructs a four-phase evaluation model for e-learning courses, which includes planning, development,…

  1. SPARROW MODELING - Enhancing Understanding of the Nation's Water Quality

    USGS Publications Warehouse

    Preston, Stephen D.; Alexander, Richard B.; Woodside, Michael D.; Hamilton, Pixie A.

    2009-01-01

    The information provided here is intended to assist water-resources managers with interpretation of the U.S. Geological Survey (USGS) SPARROW model and its products. SPARROW models can be used to explain spatial patterns in monitored stream-water quality in relation to human activities and natural processes as defined by detailed geospatial information. Previous SPARROW applications have identified the sources and transport of nutrients in the Mississippi River basin, Chesapeake Bay watershed, and other major drainages of the United States. New SPARROW models with improved accuracy and interpretability are now being developed by the USGS National Water Quality Assessment (NAWQA) Program for six major regions of the conterminous United States. These new SPARROW models are based on updated geospatial data and stream-monitoring records from local, State, and other federal agencies.

  2. Fuzzy intelligent quality monitoring model for X-ray image processing.

    PubMed

    Khalatbari, Azadeh; Jenab, Kouroush

    2009-01-01

    Today's imaging diagnosis needs to adapt modern techniques of quality engineering to maintain and improve its accuracy and reliability in health care system. One of the main factors that influences diagnostic accuracy of plain film X-ray on detecting pathology is the level of film exposure. If the level of film exposure is not adequate, a normal body structure may be interpretated as pathology and vice versa. This not only influences the patient management but also has an impact on health care cost and patient's quality of life. Therefore, providing an accurate and high quality image is the first step toward an excellent patient management in any health care system. In this paper, we study these techniques and also present a fuzzy intelligent quality monitoring model, which can be used to keep variables from degrading the image quality. The variables derived from chemical activity, cleaning procedures, maintenance, and monitoring may not be sensed, measured, or calculated precisely due to uncertain situations. Therefore, the gamma-level fuzzy Bayesian model for quality monitoring of an image processing is proposed. In order to apply the Bayesian concept, the fuzzy quality characteristics are assumed as fuzzy random variables. Using the fuzzy quality characteristics, the newly developed model calculates the degradation risk for image processing. A numerical example is also presented to demonstrate the application of the model.

  3. Analysis of academic programs: comparing nursing and other university majors in the application of a quality, potential and cost model.

    PubMed

    Booker, Kathy; Hilgenberg, Cheryl

    2010-01-01

    Nursing is often considered expensive in the cost analysis of academic programs. Yet nursing programs have the power to attract many students, and the national nursing shortage has resulted in a high demand for nurses. Methods to systematically assess programs across an entire university academic division are often dissimilar in technique and outcome. At a small, private, Midwestern university, a model for comprehensive program assessment, titled the Quality, Potential and Cost (QPC) model, was developed and applied to each major offered at the university through the collaborative effort of directors, chairs, deans, and the vice president for academic affairs. The QPC model provides a means of equalizing data so that single measures (such as cost) are not viewed in isolation. It also provides a common language to ensure that all academic leaders at an institution apply consistent methods for assessment of individual programs. The application of the QPC model allowed for consistent, fair assessments and the ability to allocate resources to programs according to strategic direction. In this article, the application of the QPC model to School of Nursing majors and other selected university majors will be illustrated. Copyright 2010 Elsevier Inc. All rights reserved.

  4. An expert system for water quality modelling.

    PubMed

    Booty, W G; Lam, D C; Bobba, A G; Wong, I; Kay, D; Kerby, J P; Bowen, G S

    1992-12-01

    The RAISON-micro (Regional Analysis by Intelligent System ON a micro-computer) expert system is being used to predict the effects of mine effluents on receiving waters in Ontario. The potential of this system to assist regulatory agencies and mining industries to define more acceptable effluent limits was shown in an initial study. This system has been further developed so that the expert system helps the model user choose the most appropriate model for a particular application from a hierarchy of models. The system currently contains seven models which range from steady state to time dependent models, for both conservative and nonconservative substances in rivers and lakes. The menu driven expert system prompts the model user for information such as the nature of the receiving water system, the type of effluent being considered, and the range of background data available for use as input to the models. The system can also be used to determine the nature of the environmental conditions at the site which are not available in the textual information database, such as the components of river flow. Applications of the water quality expert system are presented for representative mine sites in the Timmins area of Ontario.

  5. College quality and hourly wages: evidence from the self-revelation model, sibling models and instrumental variables.

    PubMed

    Borgen, Nicolai T

    2014-11-01

    This paper addresses the recent discussion on confounding in the returns to college quality literature using the Norwegian case. The main advantage of studying Norway is the quality of the data. Norwegian administrative data provide information on college applications, family relations and a rich set of control variables for all Norwegian citizens applying to college between 1997 and 2004 (N = 141,319) and their succeeding wages between 2003 and 2010 (676,079 person-year observations). With these data, this paper uses a subset of the models that have rendered mixed findings in the literature in order to investigate to what extent confounding biases the returns to college quality. I compare estimates obtained using standard regression models to estimates obtained using the self-revelation model of Dale and Krueger (2002), a sibling fixed effects model and the instrumental variable model used by Long (2008). Using these methods, I consistently find increasing returns to college quality over the course of students' work careers, with positive returns only later in students' work careers. I conclude that the standard regression estimate provides a reasonable estimate of the returns to college quality. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. APPLICATION OF THE MODELS-3 COMMUNITY MULTI-SCALE AIR QUALITY (CMAQ) MODEL SYSTEM TO SOS/NASHVILLE 1999

    EPA Science Inventory

    The Models-3 Community Multi-scale Air Quality (CMAQ) model, first released by the USEPA in 1999 (Byun and Ching. 1999), continues to be developed and evaluated. The principal components of the CMAQ system include a comprehensive emission processor known as the Sparse Matrix O...

  7. Sensor-Based Optimization Model for Air Quality Improvement in Home IoT

    PubMed Central

    Kim, Jonghyuk

    2018-01-01

    We introduce current home Internet of Things (IoT) technology and present research on its various forms and applications in real life. In addition, we describe IoT marketing strategies as well as specific modeling techniques for improving air quality, a key home IoT service. To this end, we summarize the latest research on sensor-based home IoT, studies on indoor air quality, and technical studies on random data generation. In addition, we develop an air quality improvement model that can be readily applied to the market by acquiring initial analytical data and building infrastructures using spectrum/density analysis and the natural cubic spline method. Accordingly, we generate related data based on user behavioral values. We integrate the logic into the existing home IoT system to enable users to easily access the system through the Web or mobile applications. We expect that the present introduction of a practical marketing application method will contribute to enhancing the expansion of the home IoT market. PMID:29570684

  8. A FEDERATED PARTNERSHIP FOR URBAN METEOROLOGICAL AND AIR QUALITY MODELING

    EPA Science Inventory

    Recently, applications of urban meteorological and air quality models have been performed at resolutions on the order of km grid sizes. This necessitated development and incorporation of high resolution landcover data and additional boundary layer parameters that serve to descri...

  9. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Applicable marine water quality criteria. 227.31 Section 227.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Definitions § 227.31 Applicable marine water quality...

  10. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Applicable marine water quality criteria. 227.31 Section 227.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Definitions § 227.31 Applicable marine water quality...

  11. Water quality modeling in the systems impact assessment model for the Klamath River basin - Keno, Oregon to Seiad Valley, California

    USGS Publications Warehouse

    Hanna, R. Blair; Campbell, Sharon G.

    2000-01-01

    This report describes the water quality model developed for the Klamath River System Impact Assessment Model (SIAM). The Klamath River SIAM is a decision support system developed by the authors and other US Geological Survey (USGS), Midcontinent Ecological Science Center staff to study the effects of basin-wide water management decisions on anadromous fish in the Klamath River. The Army Corps of Engineersa?? HEC5Q water quality modeling software was used to simulate water temperature, dissolved oxygen and conductivity in 100 miles of the Klamath River Basin in Oregon and California. The water quality model simulated three reservoirs and the mainstem Klamath River influenced by the Shasta and Scott River tributaries. Model development, calibration and two validation exercises are described as well as the integration of the water quality model into the SIAM decision support system software. Within SIAM, data are exchanged between the water quantity model (MODSIM), the water quality model (HEC5Q), the salmon population model (SALMOD) and methods for evaluating ecosystem health. The overall predictive ability of the water quality model is described in the context of calibration and validation error statistics. Applications of SIAM and the water quality model are described.

  12. Analysis and Application of Quality Economics Based on Input-Output

    NASA Astrophysics Data System (ADS)

    Lu, Qiang; Li, Xin

    2018-01-01

    Quality economics analysis is an important research area in the current economic frontier, which has a huge role in promoting the quality-benefit type road development in China. Through the study of quality economics analysis and application, economics of quality and quality economics management are summarized, and theoretical framework of quality economics analysis is constructed. Finally, the quality economics analysis of aerospace equipment is taken as an example to carry on the application research.

  13. CHOOSING A CHEMICAL MECHANISM FOR REGULATORY AND RESEARCH AIR QUALITY MODELING APPLICATIONS

    EPA Science Inventory

    There are numerous, different chemical mechanisms currently available for use in air quality models, and new mechanisms and versions of mechanisms are continually being developed. The development of Morphecule-type mechanisms will add a near-infinite number of additional mecha...

  14. Predicting indoor pollutant concentrations, and applications to air quality management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzetti, David M.

    Because most people spend more than 90% of their time indoors, predicting exposure to airborne pollutants requires models that incorporate the effect of buildings. Buildings affect the exposure of their occupants in a number of ways, both by design (for example, filters in ventilation systems remove particles) and incidentally (for example, sorption on walls can reduce peak concentrations, but prolong exposure to semivolatile organic compounds). Furthermore, building materials and occupant activities can generate pollutants. Indoor air quality depends not only on outdoor air quality, but also on the design, maintenance, and use of the building. For example, ''sick building'' symptomsmore » such as respiratory problems and headaches have been related to the presence of air-conditioning systems, to carpeting, to low ventilation rates, and to high occupant density (1). The physical processes of interest apply even in simple structures such as homes. Indoor air quality models simulate the processes, such as ventilation and filtration, that control pollutant concentrations in a building. Section 2 describes the modeling approach, and the important transport processes in buildings. Because advection usually dominates among the transport processes, Sections 3 and 4 describe methods for predicting airflows. The concluding section summarizes the application of these models.« less

  15. THE LAKE MICHIGAN MASS BALANCE PROJECT: QUALITY ASSURANCE PLAN FOR MATHEMATICAL MODELLING

    EPA Science Inventory

    This report documents the quality assurance process for the development and application of the Lake Michigan Mass Balance Models. The scope includes the overall modeling framework as well as the specific submodels that are linked to form a comprehensive synthesis of physical, che...

  16. AQMEII: A New International Initiative on Air Quality Model Evaluation

    EPA Science Inventory

    We provide a conceptual view of the process of evaluating regional-scale three-dimensional numerical photochemical air quality modeling system, based on an examination of existing approached to the evaluation of such systems as they are currently used in a variety of application....

  17. Design guidelines for an umbilical cord blood stem cell therapy quality assessment model

    NASA Astrophysics Data System (ADS)

    Januszewski, Witold S.; Michałek, Krzysztof; Yagensky, Oleksandr; Wardzińska, Marta

    The paper enlists the pivotal guidelines for producing an empirical umbilical cord blood stem cell therapy quality assessment model. The methodology adapted was single equation linear model with domain knowledge derived from MEDAFAR classification. The resulting model is ready for therapeutical application.

  18. APPLICATION OF A WATER QUALITY ASSESSMENT MODELING SYSTEM AT A SUPERFUND SITE

    EPA Science Inventory

    Water quality modeling and related exposure assessments at a Superfund site, Silver Bow Creek-Clark Fork River in Montana, demonstrate the capability to predict the fate of mining waste pollutants in the environment. inked assessment system--consisting of hydrology and erosion, r...

  19. Implications of Modeling Uncertainty for Water Quality Decision Making

    NASA Astrophysics Data System (ADS)

    Shabman, L.

    2002-05-01

    The report, National Academy of Sciences report, "Assessing the TMDL Approach to Water Quality Management" endorsed the "watershed" and "ambient water quality focused" approach" to water quality management called for in the TMDL program. The committee felt that available data and models were adequate to move such a program forward, if the EPA and all stakeholders better understood the nature of the scientific enterprise and its application to the TMDL program. Specifically, the report called for a greater acknowledgement of model prediction uncertinaity in making and implementing TMDL plans. To assure that such uncertinaity was addressed in water quality decision making the committee called for a commitment to "adaptive implementation" of water quality management plans. The committee found that the number and complexity of the interactions of multiple stressors, combined with model prediction uncertinaity means that we need to avoid the temptation to make assurances that specific actions will result in attainment of particular water quality standards. Until the work on solving a water quality problem begins, analysts and decision makers cannot be sure what the correct solutions are, or even what water quality goals a community should be seeking. In complex systems we need to act in order to learn; adaptive implementation is a concurrent process of action and learning. Learning requires (1) continued monitoring of the waterbody to determine how it responds to the actions taken and (2) carefully designed experiments in the watershed. If we do not design learning into what we attempt we are not doing adaptive implementation. Therefore, there needs to be an increased commitment to monitoring and experiments in watersheds that will lead to learning. This presentation will 1) explain the logic for adaptive implementation; 2) discuss the ways that water quality modelers could characterize and explain model uncertinaity to decision makers; 3) speculate on the implications

  20. Comprehensive model for predicting perceptual image quality of smart mobile devices.

    PubMed

    Gong, Rui; Xu, Haisong; Luo, M R; Li, Haifeng

    2015-01-01

    An image quality model for smart mobile devices was proposed based on visual assessments of several image quality attributes. A series of psychophysical experiments were carried out on two kinds of smart mobile devices, i.e., smart phones and tablet computers, in which naturalness, colorfulness, brightness, contrast, sharpness, clearness, and overall image quality were visually evaluated under three lighting environments via categorical judgment method for various application types of test images. On the basis of Pearson correlation coefficients and factor analysis, the overall image quality could first be predicted by its two constituent attributes with multiple linear regression functions for different types of images, respectively, and then the mathematical expressions were built to link the constituent image quality attributes with the physical parameters of smart mobile devices and image appearance factors. The procedure and algorithms were applicable to various smart mobile devices, different lighting conditions, and multiple types of images, and performance was verified by the visual data.

  1. Towards the Next Generation Air Quality Modeling System: Current Progress on Implementing Chemistry into MPAS-A

    EPA Science Inventory

    The community multiscale air quality (CMAQ) model of the U.S. Environmental Protection Agency is one of the most widely used air quality model worldwide; it is employed for both research and regulatory applications at major universities and government agencies for improving under...

  2. Quality models for audiovisual streaming

    NASA Astrophysics Data System (ADS)

    Thang, Truong Cong; Kim, Young Suk; Kim, Cheon Seog; Ro, Yong Man

    2006-01-01

    Quality is an essential factor in multimedia communication, especially in compression and adaptation. Quality metrics can be divided into three categories: within-modality quality, cross-modality quality, and multi-modality quality. Most research has so far focused on within-modality quality. Moreover, quality is normally just considered from the perceptual perspective. In practice, content may be drastically adapted, even converted to another modality. In this case, we should consider the quality from semantic perspective as well. In this work, we investigate the multi-modality quality from the semantic perspective. To model the semantic quality, we apply the concept of "conceptual graph", which consists of semantic nodes and relations between the nodes. As an typical of multi-modality example, we focus on audiovisual streaming service. Specifically, we evaluate the amount of information conveyed by a audiovisual content where both video and audio channels may be strongly degraded, even audio are converted to text. In the experiments, we also consider the perceptual quality model of audiovisual content, so as to see the difference with semantic quality model.

  3. Modeling the Effects of Conservation Tillage on Water Quality at the Field Scale

    USDA-ARS?s Scientific Manuscript database

    The development and application of predictive tools to quantitatively assess the effects of tillage and related management activities should be carefully tested against high quality field data. This study reports on: 1) the calibration and validation of the Root Zone Water Quality Model (RZWQM) to a...

  4. Current status of postnatal depression smartphone applications available on application stores: an information quality analysis.

    PubMed

    Zhang, Melvyn Wb; Ho, Roger Cm; Loh, Alvona; Wing, Tracey; Wynne, Olivia; Chan, Sally Wai Chi; Car, Josip; Fung, Daniel Shuen Sheng

    2017-11-14

    It is the aim of the current research to identify some common functionalities of postnatal application, and to determine the quality of the information content of postnatal depression application using validated scales that have been applied for applications in other specialties. To determine the information quality of the postnatal depression smartphone applications, the two most widely used smartphone application stores, namely Apple iTunes as well as Google Android Play store, were searched between 20May and 31 May. No participants were involved. The inclusion criteria for the application were that it must have been searchable using the keywords 'postnatal', 'pregnancy', 'perinatal', 'postpartum' and 'depression', and must be in English language. The Silberg Scale was used in the assessment of the information quality of the smartphone applications. The information quality score was the primary outcome measure. Our current results highlighted that while there is currently a myriad of applications, only 14 applications are specifically focused on postnatal depression. In addition, the majority of the currently available applications on the store have only disclosed their last date of modification as well as ownership. There remain very limited disclosures about the information of the authors, as well as the references for the information included in the application itself. The average score for the Silberg Scale for the postnatal applications we have analysed is 3.0. There remains a need for healthcare professionals and developers to jointly conceptualise new applications with better information quality and evidence base. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Data-base development for water-quality modeling of the Patuxent River basin, Maryland

    USGS Publications Warehouse

    Fisher, G.T.; Summers, R.M.

    1987-01-01

    Procedures and rationale used to develop a data base and data management system for the Patuxent Watershed Nonpoint Source Water Quality Monitoring and Modeling Program of the Maryland Department of the Environment and the U.S. Geological Survey are described. A detailed data base and data management system has been developed to facilitate modeling of the watershed for water quality planning purposes; statistical analysis; plotting of meteorologic, hydrologic and water quality data; and geographic data analysis. The system is Maryland 's prototype for development of a basinwide water quality management program. A key step in the program is to build a calibrated and verified water quality model of the basin using the Hydrological Simulation Program--FORTRAN (HSPF) hydrologic model, which has been used extensively in large-scale basin modeling. The compilation of the substantial existing data base for preliminary calibration of the basin model, including meteorologic, hydrologic, and water quality data from federal and state data bases and a geographic information system containing digital land use and soils data is described. The data base development is significant in its application of an integrated, uniform approach to data base management and modeling. (Lantz-PTT)

  6. Experiments with data assimilation in comprehensive air quality models: Impacts on model predictions and observation requirements (Invited)

    NASA Astrophysics Data System (ADS)

    Mathur, R.

    2009-12-01

    Emerging regional scale atmospheric simulation models must address the increasing complexity arising from new model applications that treat multi-pollutant interactions. Sophisticated air quality modeling systems are needed to develop effective abatement strategies that focus on simultaneously controlling multiple criteria pollutants as well as use in providing short term air quality forecasts. In recent years the applications of such models is continuously being extended to address atmospheric pollution phenomenon from local to hemispheric spatial scales over time scales ranging from episodic to annual. The need to represent interactions between physical and chemical atmospheric processes occurring at these disparate spatial and temporal scales requires the use of observation data beyond traditional in-situ networks so that the model simulations can be reasonably constrained. Preliminary applications of assimilation of remote sensing and aloft observations within a comprehensive regional scale atmospheric chemistry-transport modeling system will be presented: (1) A methodology is developed to assimilate MODIS aerosol optical depths in the model to represent the impacts long-range transport associated with the summer 2004 Alaskan fires on surface-level regional fine particulate matter (PM2.5) concentrations across the Eastern U.S. The episodic impact of this pollution transport event on PM2.5 concentrations over the eastern U.S. during mid-July 2004, is quantified through the complementary use of the model with remotely-sensed, aloft, and surface measurements; (2) Simple nudging experiments with limited aloft measurements are performed to identify uncertainties in model representations of physical processes and assess the potential use of such measurements in improving the predictive capability of atmospheric chemistry-transport models. The results from these early applications will be discussed in context of uncertainties in the model and in the remote sensing

  7. Application of receptor models on water quality data in source apportionment in Kuantan River Basin

    PubMed Central

    2012-01-01

    Recent techniques in the management of surface river water have been expanding the demand on the method that can provide more representative of multivariate data set. A proper technique of the architecture of artificial neural network (ANN) model and multiple linear regression (MLR) provides an advance tool for surface water modeling and forecasting. The development of receptor model was applied in order to determine the major sources of pollutants at Kuantan River Basin, Malaysia. Thirteen water quality parameters were used in principal component analysis (PCA) and new variables of fertilizer waste, surface runoff, anthropogenic input, chemical and mineral changes and erosion are successfully developed for modeling purposes. Two models were compared in terms of efficiency and goodness-of-fit for water quality index (WQI) prediction. The results show that APCS-ANN model gives better performance with high R2 value (0.9680) and small root mean square error (RMSE) value (2.6409) compared to APCS-MLR model. Meanwhile from the sensitivity analysis, fertilizer waste acts as the dominant pollutant contributor (59.82%) to the basin studied followed by anthropogenic input (22.48%), surface runoff (13.42%), erosion (2.33%) and lastly chemical and mineral changes (1.95%). Thus, this study concluded that receptor modeling of APCS-ANN can be used to solve various constraints in environmental problem that exist between water distribution variables toward appropriate water quality management. PMID:23369363

  8. EPA Supersites Program-related emissions-based particulate matter modeling: initial applications and advances.

    PubMed

    Russell, Armistead G

    2008-02-01

    One objective of the U.S. Environmental Protection Agency's (EPA's) Supersite Program was to provide data that could be used to more thoroughly evaluate and improve air quality models, and then have those models used to address both scientific and policy-related issues dealing with air quality management. In this direction, modeling studies have used Supersites-related data and are reviewed here. Fine temporal resolution data have been used both to test model components (e.g., the inorganic thermodynamic routines) and air quality modeling systems (in particular, Community Multiscale Air Quality [CMAQ] and Comprehensive Air Quality Model with extensions [CAMx] applications). Such evaluations suggest that the inorganic thermodynamic approaches being used are accurate, as well as the description of sulfate production, although there are significant uncertainties in production of nitric acid, biogenic and ammonia emissions, secondary organic aerosol formation, and the ability to follow the formation and evolution of ultrafine particles. Model applications have investigated how PM levels will respond to various emissions controls, suggesting that nitrate will replace some of the reductions in sulfate particulate matter (PM), although the replacement is small in the summer. Although not part of the Supersite program, modeling being conducted by EPA, regional planning organizations, and states for policy purposes has benefited from the detailed data collected, and the PM models have advanced by their more widespread use.

  9. DEVELOPMENT AND APPLICATIONS OF CFD SIMULATIONS SUPPORTING URBAN AIR QUALITY AND HOMELAND SECURITY

    EPA Science Inventory

    Prior to September 11, 2001 developments of Computational Fluid Dynamics (CFD) were begun to support air quality applications. CFD models are emerging as a promising technology for such assessments, in part due to the advancing power of computational hardware and software. CFD si...

  10. Enhancing E-Learning Quality through the Application of the AKUE Procedure Model

    ERIC Educational Resources Information Center

    Bremer, C.

    2012-01-01

    The paper describes the procedure model AKUE, which aims at the improvement and assurance of quality and cost efficiency in the context of the introduction of e-learning and the development of digital learning material. AKUE divides the whole planning and implementation process into four different phases: analysis, conception, implementation, and…

  11. APPLICATION AND EVALUATION OF CMAQ IN THE UNITED STATES: AIR QUALITY FORECASTING AND RETROSPECTIVE MODELING

    EPA Science Inventory

    Presentation slides provide background on model evaluation techniques. Also included in the presentation is an operational evaluation of 2001 Community Multiscale Air Quality (CMAQ) annual simulation, and an evaluation of PM2.5 for the CMAQ air quality forecast (AQF) ...

  12. Application of chemometric methods for assessment and modelling of microbiological quality data concerning coastal bathing water in Greece.

    PubMed

    Papaioannou, Agelos; Rigas, George; Papastergiou, Panagiotis; Hadjichristodoulou, Christos

    2014-12-02

    Worldwide, the aim of managing water is to safeguard human health whilst maintaining sustainable aquatic and associated terrestrial, ecosystems. Because human enteric viruses are the most likely pathogens responsible for waterborne diseases from recreational water use, but detection methods are complex and costly for routine monitoring, it is of great interest to determine the quality of coastal bathing water with a minimum cost and maximum safety. This study handles the assessment and modelling of the microbiological quality data of 2149 seawater bathing areas in Greece over 10-year period (1997-2006) by chemometric methods. Cluster analysis results indicated that the studied bathing beaches are classified in accordance with the seasonality in three groups. Factor analysis was applied to investigate possible determining factors in the groups resulted from the cluster analysis, and also two new parameters were created in each group; VF1 includes E. coli, faecal coliforms and total coliforms and VF2 includes faecal streptococci/enterococci. By applying the cluster analysis in each seasonal group, three new groups of coasts were generated, group A (ultraclean), group B (clean) and group C (contaminated). The above analysis is confirmed by the application of discriminant analysis, and proves that chemometric methods are useful tools for assessment and modeling microbiological quality data of coastal bathing water on a large scale, and thus could attribute to effective and economical monitoring of the quality of coastal bathing water in a country with a big number of bathing coasts, like Greece. Significance for public healthThe microbiological protection of coastal bathing water quality is of great interest for the public health authorities as well as for the economy. The present study proves that this protection can be achieved by monitoring only two microbiological parameters, E. coli and faecal streptococci/enterococci instead four microbiological parameters (the

  13. Prediction of aircraft handling qualities using analytical models of the human pilot

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1982-01-01

    The optimal control model (OCM) of the human pilot is applied to the study of aircraft handling qualities. Attention is focused primarily on longitudinal tasks. The modeling technique differs from previous applications of the OCM in that considerable effort is expended in simplifying the pilot/vehicle analysis. After briefly reviewing the OCM, a technique for modeling the pilot controlling higher order systems is introduced. Following this, a simple criterion for determining the susceptibility of an aircraft to pilot-induced oscillations (PIO) is formulated. Finally, a model-based metric for pilot rating prediction is discussed. The resulting modeling procedure provides a relatively simple, yet unified approach to the study of a variety of handling qualities problems.

  14. Prediction of aircraft handling qualities using analytical models of the human pilot

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1982-01-01

    The optimal control model (OCM) of the human pilot is applied to the study of aircraft handling qualities. Attention is focused primarily on longitudinal tasks. The modeling technique differs from previous applications of the OCM in that considerable effort is expended in simplifying the pilot/vehicle analysis. After briefly reviewing the OCM, a technique for modeling the pilot controlling higher order systems is introduced. Following this, a simple criterion for determining the susceptibility of an aircraft to pilot induced oscillations is formulated. Finally, a model based metric for pilot rating prediction is discussed. The resulting modeling procedure provides a relatively simple, yet unified approach to the study of a variety of handling qualities problems.

  15. IMPLEMENTATION OF AN URBAN CANOPY PARAMETERIZATION IN MM5 FOR MESO-GAMMA-SCALE AIR QUALITY MODELING APPLICATIONS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (U.S. EPA) is extending its Models-3/Community Multiscale Air Quality (CMAQ) Modeling System to provide detailed gridded air quality concentration fields and sub-grid variability characterization at neighborhood scales and in urban areas...

  16. A methodology model for quality management in a general hospital.

    PubMed

    Stern, Z; Naveh, E

    1997-01-01

    A reappraisal is made of the relevance of industrial modes of quality management to the issues of medical care. Analysis of the nature of medical care, which differentiates it from the supplier-client relationships of industry, presents the main intrinsic characteristics, which create problems in application of the industrial quality management approaches to medical care. Several examples are the complexity of the relationship between the medical action and the result obtained, the client's nonacceptance of economic profitability as a value in his medical care, and customer satisfaction biased by variable standards of knowledge. The real problems unique to hospitals are addressed, and a methodology model for their quality management is offered. Included is a sample of indicator vectors, measurements of quality care, cost of medical care, quality of service, and human resources. These are based on the trilogy of planning quality, quality control, and improving quality. The conclusions confirm the inadequacy of industrial quality management approaches for medical institutions and recommend investment in formulation of appropriate concepts.

  17. The Samurai or the Cowboy? Toward an American Model of Quality Management.

    ERIC Educational Resources Information Center

    Beck, Mark W.

    1994-01-01

    The Japanese model of business management and Total Quality Management principles being applied to higher education as well as businesses are often ineffective because of the application of packaged ideas without consideration of the subtleties of individual organizations. The cowboy model of teamwork stresses the individual's role and better fits…

  18. Measuring the value of air quality: application of the spatial hedonic model.

    PubMed

    Kim, Seung Gyu; Cho, Seong-Hoon; Lambert, Dayton M; Roberts, Roland K

    2010-03-01

    This study applies a hedonic model to assess the economic benefits of air quality improvement following the 1990 Clean Air Act Amendment at the county level in the lower 48 United States. An instrumental variable approach that combines geographically weighted regression and spatial autoregression methods (GWR-SEM) is adopted to simultaneously account for spatial heterogeneity and spatial autocorrelation. SEM mitigates spatial dependency while GWR addresses spatial heterogeneity by allowing response coefficients to vary across observations. Positive amenity values of improved air quality are found in four major clusters: (1) in East Kentucky and most of Georgia around the Southern Appalachian area; (2) in a few counties in Illinois; (3) on the border of Oklahoma and Kansas, on the border of Kansas and Nebraska, and in east Texas; and (4) in a few counties in Montana. Clusters of significant positive amenity values may exist because of a combination of intense air pollution and consumer awareness of diminishing air quality.

  19. Aggregative Learning Method and Its Application for Communication Quality Evaluation

    NASA Astrophysics Data System (ADS)

    Akhmetov, Dauren F.; Kotaki, Minoru

    2007-12-01

    In this paper, so-called Aggregative Learning Method (ALM) is proposed to improve and simplify the learning and classification abilities of different data processing systems. It provides a universal basis for design and analysis of mathematical models of wide class. A procedure was elaborated for time series model reconstruction and analysis for linear and nonlinear cases. Data approximation accuracy (during learning phase) and data classification quality (during recall phase) are estimated from introduced statistic parameters. The validity and efficiency of the proposed approach have been demonstrated through its application for monitoring of wireless communication quality, namely, for Fixed Wireless Access (FWA) system. Low memory and computation resources were shown to be needed for the procedure realization, especially for data classification (recall) stage. Characterized with high computational efficiency and simple decision making procedure, the derived approaches can be useful for simple and reliable real-time surveillance and control system design.

  20. Hybrid Air Quality Modeling Approach For Use in the Near ...

    EPA Pesticide Factsheets

    The Near-road EXposures to Urban air pollutant Study (NEXUS) investigated whether children with asthma living in close proximity to major roadways in Detroit, MI, (particularly near roadways with high diesel traffic) have greater health impacts associated with exposure to air pollutants than those living farther away. A major challenge in such health and exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related air pollutants and adverse health outcomes. This paper presents a hybrid air quality modeling approach and its application in NEXUS in order to provide spatial and temporally varying exposure estimates and identification of the mobile source contribution to the total pollutant exposure. Model-based exposure metrics, associated with local variations of emissions and meteorology, were estimated using a combination of the AERMOD and R-LINE dispersion models, local emission source information from the National Emissions Inventory, detailed road network locations and traffic activity, and meteorological data from the Detroit City Airport. The regional background contribution was estimated using a combination of the Community Multiscale Air Quality (CMAQ) model and the Space/Time Ordinary Kriging (STOK) model. To capture the near-road pollutant gradients, refined “mini-grids” of model recep

  1. Effects of pesticides aerial applications on rice quality

    USDA-ARS?s Scientific Manuscript database

    Aerial application of pesticides has become an important research topic in recent years. This research investigated the effects of two types of commercial pesticides on the rice quality under low volume aerial application. It could provide guidance for the pesticide application and choose the right ...

  2. Air Quality Modeling | Air Quality Planning & Standards | US ...

    EPA Pesticide Factsheets

    2016-06-08

    The basic mission of the Office of Air Quality Planning and Standards is to preserve and improve the quality of our nation's air. One facet of accomplishing this goal requires that new and existing air pollution sources be modeled for compliance with the National Ambient Air Quality Standards (NAAQS).

  3. Air Quality Model Evaluation International Initiative (AQMEII) - Utrecht, Netherlands The May 8, 2012

    EPA Science Inventory

    The 4th workshop of the Air Quality Model Evaluation International Initiative (AQMEII) was held on May 8 in Utrecht, The Netherlands, in conjunction with the NATO/SPS International Technical Meeting on Air Pollution Modeling and Its Application. AQMEII was launched in 2009 as a l...

  4. A general health policy model: update and applications.

    PubMed Central

    Kaplan, R M; Anderson, J P

    1988-01-01

    This article describes the development of a General Health Policy Model that can be used for program evaluation, population monitoring, clinical research, and policy analysis. An important component of the model, the Quality of Well-being scale (QWB) combines preference-weighted measures of symptoms and functioning to provide a numerical point-in-time expression of well-being, ranging from 0 for death to 1.0 for asymptomatic optimum functioning. The level of wellness at particular points in time is governed by the prognosis (transition rates or probabilities) generated by the underlying disease or injury under different treatment (control) variables. Well-years result from integrating the level of wellness, or health-related quality of life, over the life expectancy. Several issues relevant to the application of the model are discussed. It is suggested that a quality of life measure need not have separate components for social and mental health. Social health has been difficult to define; social support may be a poor criterion for resource allocation; and some evidence suggests that aspects of mental health are captured by the general measure. Although it has been suggested that measures of child health should differ from those used for adults, we argue that a separate conceptualization of child health creates new problems for policy analysis. After offering several applications of the model for the evaluation of prevention programs, we conclude that many of the advantages of general measures have been overlooked and should be given serious consideration in future studies. PMID:3384669

  5. Higher Education Quality Assessment Model: Towards Achieving Educational Quality Standard

    ERIC Educational Resources Information Center

    Noaman, Amin Y.; Ragab, Abdul Hamid M.; Madbouly, Ayman I.; Khedra, Ahmed M.; Fayoumi, Ayman G.

    2017-01-01

    This paper presents a developed higher education quality assessment model (HEQAM) that can be applied for enhancement of university services. This is because there is no universal unified quality standard model that can be used to assess the quality criteria of higher education institutes. The analytical hierarchy process is used to identify the…

  6. Monitoring Quality Across Home Visiting Models: A Field Test of Michigan's Home Visiting Quality Assurance System.

    PubMed

    Heany, Julia; Torres, Jennifer; Zagar, Cynthia; Kostelec, Tiffany

    2018-06-05

    Introduction In order to achieve the positive outcomes with parents and children demonstrated by many home visiting models, home visiting services must be well implemented. The Michigan Home Visiting Initiative developed a tool and procedure for monitoring implementation quality across models referred to as Michigan's Home Visiting Quality Assurance System (MHVQAS). This study field tested the MHVQAS. This article focuses on one of the study's evaluation questions: Can the MHVQAS be applied across models? Methods Eight local implementing agencies (LIAs) from four home visiting models (Healthy Families America, Early Head Start-Home Based, Parents as Teachers, Maternal Infant Health Program) and five reviewers participated in the study by completing site visits, tracking their time and costs, and completing surveys about the process. LIAs also submitted their most recent review by their model developer. The researchers conducted participant observation of the review process. Results Ratings on the MHVQAS were not significantly different between models. There were some differences in interrater reliability and perceived reliability between models. There were no significant differences between models in perceived validity, satisfaction with the review process, or cost to participate. Observational data suggested that cross-model applicability could be improved by assisting sites in relating the requirements of the tool to the specifics of their model. Discussion The MHVQAS shows promise as a tool and process to monitor implementation quality of home visiting services across models. The results of the study will be used to make improvements before the MHVQAS is used in practice.

  7. The Grand Challenge of Basin-Scale Groundwater Quality Management Modelling

    NASA Astrophysics Data System (ADS)

    Fogg, G. E.

    2017-12-01

    of appropriately upscaling advection-dispersion and reactions at the basin scale (10^2 km). A road map for research and development in groundwater quality management modeling and its application toward securing future groundwater resources will be discussed.

  8. Learning, Behaviour and Reaction Framework: A Model for Training Raters to Improve Assessment Quality

    ERIC Educational Resources Information Center

    Chen, Chung-Yang; Chang, Huiju; Hsu, Wen-Chin; Sheen, Gwo-Ji

    2017-01-01

    This paper proposes a training model for raters, with the goal to improve the intra- and inter-consistency of evaluation quality for higher education curricula. The model, termed the learning, behaviour and reaction (LBR) circular training model, is an interdisciplinary application from the business and organisational training domain. The…

  9. Development of an Aura Chemical Reanalysis in support Air Quality Applications

    NASA Astrophysics Data System (ADS)

    Pierce, R. B.; Lenzen, A.; Schaack, T.

    2015-12-01

    We present results of chemical data assimilation experiments utilizing the NOAA National Environmental Satellite, Data, and Information Service (NESDIS), University of Wisconsin Space Science and Engineering (SSEC) Real-time Air Quality Modeling System (RAQMS) in conjunction with the NOAA National Centers for Environmental Prediction (NCEP) Operational Gridpoint Statistical Interpolation (GSI) 3-dimensional variational data assimilation system. The impact of assimilating NASA Ozone Monitoring Instrument (OMI) total column ozone, OMI tropospheric nitrogen dioxide columns, and Microwave Limb Sounder (MLS) stratospheric ozone profiles on background ozone is assessed using measurements from the 2010 NSF High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observation (HIPPO) and NOAA California Nexus (CalNex) campaigns. Results show that the RAQMS/GSI Chemical Reanalysis is able to provide very good estimates of background ozone and large-scale ozone variability and is suitable for use in constraining regional air quality modeling activities. These experiments are being used to guide the development of a multi-year global chemical and aerosol reanalysis using NASA Aura and A-Train measurements to support air quality applications.

  10. DEVELOPMENT AND APPLICATIONS OF CFD SIMULATIONS IN SUPPORT OF AIR QUALITY STUDIES INVOLVING BUILDINGS

    EPA Science Inventory

    There is a need to properly develop the application of Computational Fluid Dynamics (CFD) methods in support of air quality studies involving pollution sources near buildings at industrial sites. CFD models are emerging as a promising technology for such assessments, in part due ...

  11. Application of Total Quality Management in Education

    ERIC Educational Resources Information Center

    Farooq, M. S.; Akhtar, M. S.; Ullah, S. Zia; Memon, R. A.

    2007-01-01

    The purpose of the paper is to analyzing thoughts of the modern management paradigm "Total Quality Management" (TQM), and its application in the field of education. The basic theme of TQM is participatory approach to address the question(s) of quality in business aswell as in the field of education. Reviewing fresh literature from the internet …

  12. A framework for modeling contaminant impacts on reservoir water quality

    NASA Astrophysics Data System (ADS)

    Jeznach, Lillian C.; Jones, Christina; Matthews, Thomas; Tobiason, John E.; Ahlfeld, David P.

    2016-06-01

    This study presents a framework for using hydrodynamic and water quality models to understand the fate and transport of potential contaminants in a reservoir and to develop appropriate emergency response and remedial actions. In the event of an emergency situation, prior detailed modeling efforts and scenario evaluations allow for an understanding of contaminant plume behavior, including maximum concentrations that could occur at the drinking water intake and contaminant travel time to the intake. A case study assessment of the Wachusett Reservoir, a major drinking water supply for metropolitan Boston, MA, provides an example of an application of the framework and how hydrodynamic and water quality models can be used to quantitatively and scientifically guide management in response to varieties of contaminant scenarios. The model CE-QUAL-W2 was used to investigate the water quality impacts of several hypothetical contaminant scenarios, including hypothetical fecal coliform input from a sewage overflow as well as an accidental railway spill of ammonium nitrate. Scenarios investigated the impacts of decay rates, season, and inter-reservoir transfers on contaminant arrival times and concentrations at the drinking water intake. The modeling study highlights the importance of a rapid operational response by managers to contain a contaminant spill in order to minimize the mass of contaminant that enters the water column, based on modeled reservoir hydrodynamics. The development and use of hydrodynamic and water quality models for surface drinking water sources subject to the potential for contaminant entry can provide valuable guidance for making decisions about emergency response and remediation actions.

  13. Quality By Design: Concept To Applications.

    PubMed

    Swain, Suryakanta; Padhy, Rabinarayan; Jena, Bikash Ranjan; Babu, Sitty Manohar

    2018-03-08

    Quality by Design is associated to the modern, systematic, scientific and novel approach which is concerned with pre-distinct objectives that not only focus on product, process understanding but also leads to process control. It predominantly signifies the design and product improvement and the manufacturing process in order to fulfill the predefined manufactured goods or final products quality characteristics. It is quite essential to identify desire and required product performance report such as Target Product Profile, typical Quality Target Product Profile (QTPP) and Critical Quality attributes (CQA). This review highlighted about the concepts of QbD design space, for critical material attributes (CMAs) as well as the critical process parameters that can totally affect the CQAs within which the process shall be unaffected and consistently manufacture the required product. Risk assessment tools and design of experiments are its prime components. This paper outlines the basic knowledge of QbD, the key elements; steps as well as various tools for QbD implementation in pharmaceutics field are presented briefly. In addition to this, quite a lot of applications of QbD in numerous pharmaceutical related unit operations are discussed and summarized. This article provides a complete data as well as the road map for universal implementation and application of QbD for pharmaceutical products. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Information quality-control model

    NASA Technical Reports Server (NTRS)

    Vincent, D. A.

    1971-01-01

    Model serves as graphic tool for estimating complete product objectives from limited input information, and is applied to cost estimations, product-quality evaluations, and effectiveness measurements for manpower resources allocation. Six product quality levels are defined.

  15. Measurement of Productivity and Quality in Non-Marketable Services: With Application to Schools

    ERIC Educational Resources Information Center

    Fare, R.; Grosskopf, S.; Forsund, F. R.; Hayes, K.; Heshmati, A.

    2006-01-01

    Purpose: This paper seeks to model and compute productivity, including a measure of quality, of a service which does not have marketable outputs--namely public education at the micro level. This application is a case study for Sweden public schools. Design/methodology/approach: A Malmquist productivity index is employed which allows for multiple…

  16. Model-Driven Approach for Body Area Network Application Development.

    PubMed

    Venčkauskas, Algimantas; Štuikys, Vytautas; Jusas, Nerijus; Burbaitė, Renata

    2016-05-12

    This paper introduces the sensor-networked IoT model as a prototype to support the design of Body Area Network (BAN) applications for healthcare. Using the model, we analyze the synergistic effect of the functional requirements (data collection from the human body and transferring it to the top level) and non-functional requirements (trade-offs between energy-security-environmental factors, treated as Quality-of-Service (QoS)). We use feature models to represent the requirements at the earliest stage for the analysis and describe a model-driven methodology to design the possible BAN applications. Firstly, we specify the requirements as the problem domain (PD) variability model for the BAN applications. Next, we introduce the generative technology (meta-programming as the solution domain (SD)) and the mapping procedure to map the PD feature-based variability model onto the SD feature model. Finally, we create an executable meta-specification that represents the BAN functionality to describe the variability of the problem domain though transformations. The meta-specification (along with the meta-language processor) is a software generator for multiple BAN-oriented applications. We validate the methodology with experiments and a case study to generate a family of programs for the BAN sensor controllers. This enables to obtain the adequate measure of QoS efficiently through the interactive adjustment of the meta-parameter values and re-generation process for the concrete BAN application.

  17. Crop model application to soybean irrigation management in the mid-south USA

    USDA-ARS?s Scientific Manuscript database

    Since mid 1990s, there have been a rapid development and application of crop growth models such as APEX (the Agricultural Policy/Environmental eXtender) and RZWQM2 (Root Zone Water Quality Model). Such process-oriented models have been designed to study the interactions of genetypes, weather, soil, ...

  18. Three-dimensional numerical modeling of water quality and sediment-associated processes in natural lakes

    USDA-ARS?s Scientific Manuscript database

    This chapter presents the development and application of a three-dimensional water quality model for predicting the distributions of nutrients, phytoplankton, dissolved oxygen, etc., in natural lakes. In this model, the computational domain was divided into two parts: the water column and the bed se...

  19. Uncertainty analyses of the calibrated parameter values of a water quality model

    NASA Astrophysics Data System (ADS)

    Rode, M.; Suhr, U.; Lindenschmidt, K.-E.

    2003-04-01

    For river basin management water quality models are increasingly used for the analysis and evaluation of different management measures. However substantial uncertainties exist in parameter values depending on the available calibration data. In this paper an uncertainty analysis for a water quality model is presented, which considers the impact of available model calibration data and the variance of input variables. The investigation was conducted based on four extensive flowtime related longitudinal surveys in the River Elbe in the years 1996 to 1999 with varying discharges and seasonal conditions. For the model calculations the deterministic model QSIM of the BfG (Germany) was used. QSIM is a one dimensional water quality model and uses standard algorithms for hydrodynamics and phytoplankton dynamics in running waters, e.g. Michaelis Menten/Monod kinetics, which are used in a wide range of models. The multi-objective calibration of the model was carried out with the nonlinear parameter estimator PEST. The results show that for individual flow time related measuring surveys very good agreements between model calculation and measured values can be obtained. If these parameters are applied to deviating boundary conditions, substantial errors in model calculation can occur. These uncertainties can be decreased with an increased calibration database. More reliable model parameters can be identified, which supply reasonable results for broader boundary conditions. The extension of the application of the parameter set on a wider range of water quality conditions leads to a slight reduction of the model precision for the specific water quality situation. Moreover the investigations show that highly variable water quality variables like the algal biomass always allow a smaller forecast accuracy than variables with lower coefficients of variation like e.g. nitrate.

  20. Chemical application strategies to protect water quality.

    PubMed

    Rice, Pamela J; Horgan, Brian P; Barber, Brian L; Koskinen, William C

    2018-07-30

    Management of turfgrass on golf courses and athletic fields often involves application of plant protection products to maintain or enhance turfgrass health and performance. However, the transport of fertilizer and pesticides with runoff to adjacent surface waters can enhance algal blooms, promote eutrophication and may have negative impacts on sensitive aquatic organisms and ecosystems. Thus, we evaluated the effectiveness of chemical application setbacks to reduce the off-site transport of chemicals with storm runoff. Experiments with water soluble tracer compounds confirmed an increase in application setback distance resulted in a significant increase in the volume of runoff measured before first off-site chemical detection, as well as a significant reduction in the total percentage of applied chemical transported with the storm runoff. For example, implementation of a 6.1 m application setback reduced the total percentage of an applied water soluble tracer by 43%, from 18.5% of applied to 10.5% of applied. Evaluation of chemographs revealed the efficacy of application setbacks could be observed with storms resulting in lesser (e.g. 100 L) and greater (e.g. > 300 L) quantities of runoff. Application setbacks offer turfgrass managers a mitigation approach that requires no additional resources or time inputs and may serve as an alternative practice when buffers are less appropriate for land management objectives or site conditions. Characterizing potential contamination of surface waters and developing strategies to safeguard water quality will help protect the environment and improve water resource security. This information is useful to grounds superintendents for designing chemical application strategies to maximize environmental stewardship. The data will also be useful to scientists and regulators working with chemical transport and risk models. Copyright © 2018. Published by Elsevier Inc.

  1. Increasing the Use of Earth Science Data and Models in Air Quality Management.

    PubMed

    Milford, Jana B; Knight, Daniel

    2017-04-01

    In 2010, the U.S. National Aeronautics and Space Administration (NASA) initiated the Air Quality Applied Science Team (AQAST) as a 5-year, $17.5-million award with 19 principal investigators. AQAST aims to increase the use of Earth science products in air quality-related research and to help meet air quality managers' information needs. We conducted a Web-based survey and a limited number of follow-up interviews to investigate federal, state, tribal, and local air quality managers' perspectives on usefulness of Earth science data and models, and on the impact AQAST has had. The air quality managers we surveyed identified meeting the National Ambient Air Quality Standards for ozone and particulate matter, emissions from mobile sources, and interstate air pollution transport as top challenges in need of improved information. Most survey respondents viewed inadequate coverage or frequency of satellite observations, data uncertainty, and lack of staff time or resources as barriers to increased use of satellite data by their organizations. Managers who have been involved with AQAST indicated that the program has helped build awareness of NASA Earth science products, and assisted their organizations with retrieval and interpretation of satellite data and with application of global chemistry and climate models. AQAST has also helped build a network between researchers and air quality managers with potential for further collaborations. NASA's Air Quality Applied Science Team (AQAST) aims to increase the use of satellite data and global chemistry and climate models for air quality management purposes, by supporting research and tool development projects of interest to both groups. Our survey and interviews of air quality managers indicate they found value in many AQAST projects and particularly appreciated the connections to the research community that the program facilitated. Managers expressed interest in receiving continued support for their organizations' use of

  2. Development and application of a high resolution hybrid modelling system for the evaluation of urban air quality

    NASA Astrophysics Data System (ADS)

    Pepe, N.; Pirovano, G.; Lonati, G.; Balzarini, A.; Toppetti, A.; Riva, G. M.; Bedogni, M.

    2016-09-01

    A hybrid modelling system (HMS) was developed to provide hourly concentrations at the urban local scale. The system is based on the combination of a meteorological model (WRF), a chemical and transport eulerian model (CAMx), which computes concentration levels over the regional domains, and a lagrangian dispersion model (AUSTAL2000), accounting for dispersion phenomena within the urban area due to local emission sources; a source apportionment algorithm is also included in the HMS in order to avoid the double counting of local emissions. The HMS was applied over a set of nested domains, the innermost covering a 1.6 × 1.6 km2 area in Milan city center with 20 m grid resolution, for NOX simulation in 2010. For this paper the innermost domain was defined as ;local;, excluding usual definition of urban areas. WRF model captured the overall evolution of the main meteorological features, except for some very stagnant situations, thus influencing the subsequent performance of regional scale model CAMx. Indeed, CAMx was able to reproduce the spatial and temporal evolution of NOX concentration over the regional domain, except a few episodes, when observed concentrations were higher than 100 ppb. The local scale model AUSTAL2000 provided high-resolution concentration fields that sensibly mirrored the road and traffic pattern in the urban domain. Therefore, the first important outcome of the work is that the application of the hybrid modelling system allowed a thorough and consistent description of urban air quality. This result represents a relevant starting point for future evaluation of pollution exposure within an urban context. However, the overall performance of the HMS did not provide remarkable improvements with respect to stand-alone CAMx at the two only monitoring sites in Milan city center. HMS results were characterized by a smaller average bias, that improved about 6-8 ppb corresponding to 12-13% of the observed concentration, but by a lower correlation, that

  3. Modeling Applications and Tools

    EPA Pesticide Factsheets

    The U.S. EPA's Air Quality Modeling Group (AQMG) conducts modeling analyses to support policy and regulatory decisions in OAR and provides leadership and direction on the full range of air quality models and other mathematical simulation techniques used in

  4. Heuristic Model Of The Composite Quality Index Of Environmental Assessment

    NASA Astrophysics Data System (ADS)

    Khabarov, A. N.; Knyaginin, A. A.; Bondarenko, D. V.; Shepet, I. P.; Korolkova, L. N.

    2017-01-01

    The goal of the paper is to present the heuristic model of the composite environmental quality index based on the integrated application of the elements of utility theory, multidimensional scaling, expert evaluation and decision-making. The composite index is synthesized in linear-quadratic form, it provides higher adequacy of the results of the assessment preferences of experts and decision-makers.

  5. APPLICATION OF A NEW LAND-SURFACE, DRY DEPOSITION, AND PBL MODEL IN THE MODELS-3 COMMUNITY MULTI-SCALE AIR QUALITY (CMAQ) MODEL SYSTEM

    EPA Science Inventory

    Like most air quality modeling systems, CMAQ divides the treatment of meteorological and chemical/transport processes into separate models run sequentially. A potential drawback to this approach is that it creates the illusion that these processes are minimally interdependent an...

  6. Indicators to support the dynamic evaluation of air quality models

    NASA Astrophysics Data System (ADS)

    Thunis, P.; Clappier, A.

    2014-12-01

    Air quality models are useful tools for the assessment and forecast of pollutant concentrations in the atmosphere. Most of the evaluation process relies on the “operational phase” or in other words the comparison of model results with available measurements which provides insight on the model capability to reproduce measured concentrations for a given application. But one of the key advantages of air quality models lies in their ability to assess the impact of precursor emission reductions on air quality levels. Models are then used in a dynamic mode (i.e. response to a change in a given model input data) for which evaluation of the model performances becomes a challenge. The objective of this work is to propose common indicators and diagrams to facilitate the understanding of model responses to emission changes when models are to be used for policy support. These indicators are shown to be useful to retrieve information on the magnitude of the locally produced impacts of emission reductions on concentrations with respect to the “external to the domain” contribution but also to identify, distinguish and quantify impacts arising from different factors (different precursors). In addition information about the robustness of the model results is provided. As such these indicators might reveal useful as first screening methodology to identify the feasibility of a given action as well as to prioritize the factors on which to act for an increased efficiency. Finally all indicators are made dimensionless to facilitate the comparison of results obtained with different models, different resolutions, or on different geographical areas.

  7. Should we trust build-up/wash-off water quality models at the scale of urban catchments?

    PubMed

    Bonhomme, Céline; Petrucci, Guido

    2017-01-01

    Models of runoff water quality at the scale of an urban catchment usually rely on build-up/wash-off formulations obtained through small-scale experiments. Often, the physical interpretation of the model parameters, valid at the small-scale, is transposed to large-scale applications. Testing different levels of spatial variability, the parameter distributions of a water quality model are obtained in this paper through a Monte Carlo Markov Chain algorithm and analyzed. The simulated variable is the total suspended solid concentration at the outlet of a periurban catchment in the Paris region (2.3 km 2 ), for which high-frequency turbidity measurements are available. This application suggests that build-up/wash-off models applied at the catchment-scale do not maintain their physical meaning, but should be considered as "black-box" models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A real time quality control application for animal production by image processing.

    PubMed

    Sungur, Cemil; Özkan, Halil

    2015-11-01

    Standards of hygiene and health are of major importance in food production, and quality control has become obligatory in this field. Thanks to rapidly developing technologies, it is now possible for automatic and safe quality control of food production. For this purpose, image-processing-based quality control systems used in industrial applications are being employed to analyze the quality of food products. In this study, quality control of chicken (Gallus domesticus) eggs was achieved using a real time image-processing technique. In order to execute the quality control processes, a conveying mechanism was used. Eggs passing on a conveyor belt were continuously photographed in real time by cameras located above the belt. The images obtained were processed by various methods and techniques. Using digital instrumentation, the volume of the eggs was measured, broken/cracked eggs were separated and dirty eggs were determined. In accordance with international standards for classifying the quality of eggs, the class of separated eggs was determined through a fuzzy implication model. According to tests carried out on thousands of eggs, a quality control process with an accuracy of 98% was possible. © 2014 Society of Chemical Industry.

  9. Hybrid modeling for quality by design and PAT-benefits and challenges of applications in biopharmaceutical industry.

    PubMed

    von Stosch, Moritz; Davy, Steven; Francois, Kjell; Galvanauskas, Vytautas; Hamelink, Jan-Martijn; Luebbert, Andreas; Mayer, Martin; Oliveira, Rui; O'Kennedy, Ronan; Rice, Paul; Glassey, Jarka

    2014-06-01

    This report highlights the drivers, challenges, and enablers of the hybrid modeling applications in biopharmaceutical industry. It is a summary of an expert panel discussion of European academics and industrialists with relevant scientific and engineering backgrounds. Hybrid modeling is viewed in its broader sense, namely as the integration of different knowledge sources in form of parametric and nonparametric models into a hybrid semi-parametric model, for instance the integration of fundamental and data-driven models. A brief description of the current state-of-the-art and industrial uptake of the methodology is provided. The report concludes with a number of recommendations to facilitate further developments and a wider industrial application of this modeling approach. These recommendations are limited to further exploiting the benefits of this methodology within process analytical technology (PAT) applications in biopharmaceutical industry. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Model-Driven Approach for Body Area Network Application Development

    PubMed Central

    Venčkauskas, Algimantas; Štuikys, Vytautas; Jusas, Nerijus; Burbaitė, Renata

    2016-01-01

    This paper introduces the sensor-networked IoT model as a prototype to support the design of Body Area Network (BAN) applications for healthcare. Using the model, we analyze the synergistic effect of the functional requirements (data collection from the human body and transferring it to the top level) and non-functional requirements (trade-offs between energy-security-environmental factors, treated as Quality-of-Service (QoS)). We use feature models to represent the requirements at the earliest stage for the analysis and describe a model-driven methodology to design the possible BAN applications. Firstly, we specify the requirements as the problem domain (PD) variability model for the BAN applications. Next, we introduce the generative technology (meta-programming as the solution domain (SD)) and the mapping procedure to map the PD feature-based variability model onto the SD feature model. Finally, we create an executable meta-specification that represents the BAN functionality to describe the variability of the problem domain though transformations. The meta-specification (along with the meta-language processor) is a software generator for multiple BAN-oriented applications. We validate the methodology with experiments and a case study to generate a family of programs for the BAN sensor controllers. This enables to obtain the adequate measure of QoS efficiently through the interactive adjustment of the meta-parameter values and re-generation process for the concrete BAN application. PMID:27187394

  11. Air Quality Forecasts Using the NASA GEOS Model

    NASA Technical Reports Server (NTRS)

    Keller, Christoph A.; Knowland, K. Emma; Nielsen, Jon E.; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Follette-Cook, Melanie; Liu, Junhua; hide

    2018-01-01

    We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.

  12. DEVELOPMENT OF GUIDELINES FOR CALIBRATING, VALIDATING, AND EVALUATING HYDROLOGIC AND WATER QUALITY MODELS: ASABE ENGINEERING PRACTICE 621

    USDA-ARS?s Scientific Manuscript database

    Information to support application of hydrologic and water quality (H/WQ) models abounds, yet modelers commonly use arbitrary, ad hoc methods to conduct, document, and report model calibration, validation, and evaluation. Consistent methods are needed to improve model calibration, validation, and e...

  13. Mesh quality oriented 3D geometric vascular modeling based on parallel transport frame.

    PubMed

    Guo, Jixiang; Li, Shun; Chui, Yim Pan; Qin, Jing; Heng, Pheng Ann

    2013-08-01

    While a number of methods have been proposed to reconstruct geometrically and topologically accurate 3D vascular models from medical images, little attention has been paid to constantly maintain high mesh quality of these models during the reconstruction procedure, which is essential for many subsequent applications such as simulation-based surgical training and planning. We propose a set of methods to bridge this gap based on parallel transport frame. An improved bifurcation modeling method and two novel trifurcation modeling methods are developed based on 3D Bézier curve segments in order to ensure the continuous surface transition at furcations. In addition, a frame blending scheme is implemented to solve the twisting problem caused by frame mismatch of two successive furcations. A curvature based adaptive sampling scheme combined with a mesh quality guided frame tilting algorithm is developed to construct an evenly distributed, non-concave and self-intersection free surface mesh for vessels with distinct radius and high curvature. Extensive experiments demonstrate that our methodology can generate vascular models with better mesh quality than previous methods in terms of surface mesh quality criteria. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. PREDICTIVE UNCERTAINTY IN HYDROLOGIC AND WATER QUALITY MODELING: APPROACHES, APPLICATION TO ENVIRONMENTAL MANAGEMENT, AND FUTURE CHALLENGES

    EPA Science Inventory

    Extant process-based hydrologic and water quality models are indispensable to water resources planning and environmental management. However, models are only approximations of real systems and often calibrated with incomplete and uncertain data. Reliable estimates, or perhaps f...

  15. Environmental Impacts of Large Scale Biochar Application Through Spatial Modeling

    NASA Astrophysics Data System (ADS)

    Huber, I.; Archontoulis, S.

    2017-12-01

    In an effort to study the environmental (emissions, soil quality) and production (yield) impacts of biochar application at regional scales we coupled the APSIM-Biochar model with the pSIMS parallel platform. So far the majority of biochar research has been concentrated on lab to field studies to advance scientific knowledge. Regional scale assessments are highly needed to assist decision making. The overall objective of this simulation study was to identify areas in the USA that have the most gain environmentally from biochar's application, as well as areas which our model predicts a notable yield increase due to the addition of biochar. We present the modifications in both APSIM biochar and pSIMS components that were necessary to facilitate these large scale model runs across several regions in the United States at a resolution of 5 arcminutes. This study uses the AgMERRA global climate data set (1980-2010) and the Global Soil Dataset for Earth Systems modeling as a basis for creating its simulations, as well as local management operations for maize and soybean cropping systems and different biochar application rates. The regional scale simulation analysis is in progress. Preliminary results showed that the model predicts that high quality soils (particularly those common to Iowa cropping systems) do not receive much, if any, production benefit from biochar. However, soils with low soil organic matter ( 0.5%) do get a noteworthy yield increase of around 5-10% in the best cases. We also found N2O emissions to be spatial and temporal specific; increase in some areas and decrease in some other areas due to biochar application. In contrast, we found increases in soil organic carbon and plant available water in all soils (top 30 cm) due to biochar application. The magnitude of these increases (% change from the control) were larger in soil with low organic matter (below 1.5%) and smaller in soils with high organic matter (above 3%) and also dependent on biochar

  16. Air Quality Modeling

    EPA Pesticide Factsheets

    In this technical support document (TSD) EPA describes the air quality modeling performed to support the Environmental Protection Agency’s Transport Rule proposal (now known as the Cross-State Air Pollution Rule).

  17. Spatial Double Generalized Beta Regression Models: Extensions and Application to Study Quality of Education in Colombia

    ERIC Educational Resources Information Center

    Cepeda-Cuervo, Edilberto; Núñez-Antón, Vicente

    2013-01-01

    In this article, a proposed Bayesian extension of the generalized beta spatial regression models is applied to the analysis of the quality of education in Colombia. We briefly revise the beta distribution and describe the joint modeling approach for the mean and dispersion parameters in the spatial regression models' setting. Finally, we motivate…

  18. Satellite Data of Atmospheric Pollution for U.S. Air Quality Applications: Examples of Applications, Summary of Data End-user Resources, Answers to Faqs, and Common Mistakes to Avoid

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan Neal; Prados, Ana; Lamsal, Lok N.; Liu, Yang; Streets, David G.; Gupta, Pawan; Hilsenrath, Ernest; Kahn, Ralph A.; Nielsen, J. Eric; Beyersdorf, Andreas J.; hide

    2014-01-01

    Satellite data of atmospheric pollutants are becoming more widely used in the decision-making and environmental management activities of public, private sector and non-profit organizations. They are employed for estimating emissions, tracking pollutant plumes, supporting air quality forecasting activities, providing evidence for "exceptional event" declarations, monitoring regional long-term trends, and evaluating air quality model output. However, many air quality managers are not taking full advantage of the data for these applications nor has the full potential of satellite data for air quality applications been realized. A key barrier is the inherent difficulties associated with accessing, processing, and properly interpreting observational data. A degree of technical skill is required on the part of the data end-user, which is often problematic for air quality agencies with limited resources. Therefore, we 1) review the primary uses of satellite data for air quality applications, 2) provide some background information on satellite capabilities for measuring pollutants, 3) discuss the many resources available to the end-user for accessing, processing, and visualizing the data, and 4) provide answers to common questions in plain language.

  19. Satellite Data of Atmospheric Pollution for U.S. Air Quality Applications: Examples of Applications, Summary of Data End-User Resources, Answers to FAQs, and Common Mistakes to Avoid

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan; Prados, Ana I.; Lamsal, Lok; Liu, Yang; Streets, David G.; Gupta, Pawan; Hilsenrath, Ernest; Kahn, Ralph A.; Nielsen, J. Eric; Beyersdorf, Andreas J.; hide

    2014-01-01

    Satellite data of atmospheric pollutants are becoming more widely used in the decision-making and environmental management activities of public, private sector and non-profit organizations. They are employed for estimating emissions, tracking pollutant plumes, supporting air quality forecasting activities, providing evidence for "exceptional event" declarations, monitoring regional long-term trends, and evaluating air quality model output. However, many air quality managers are not taking full advantage of the data for these applications nor has the full potential of satellite data for air quality applications been realized. A key barrier is the inherent difficulties associated with accessing, processing, and properly interpreting observational data. A degree of technical skill is required on the part of the data end-user, which is often problematic for air quality agencies with limited resources. Therefore, we 1) review the primary uses of satellite data for air quality applications, 2) provide some background information on satellite capabilities for measuring pollutants, 3) discuss the many resources available to the end-user for accessing, processing, and visualizing the data, and 4) provide answers to common questions in plain language.

  20. ESTIMATION OF EMISSION ADJUSTMENTS FROM THE APPLICATION OF FOUR-DIMENSIONAL DATA ASSIMILATION TO PHOTOCHEMICAL AIR QUALITY MODELING. (R826372)

    EPA Science Inventory

    Four-dimensional data assimilation applied to photochemical air quality modeling is used to suggest adjustments to the emissions inventory of the Atlanta, Georgia metropolitan area. In this approach, a three-dimensional air quality model, coupled with direct sensitivity analys...

  1. Using climate models to estimate the quality of global observational data sets.

    PubMed

    Massonnet, François; Bellprat, Omar; Guemas, Virginie; Doblas-Reyes, Francisco J

    2016-10-28

    Observational estimates of the climate system are essential to monitoring and understanding ongoing climate change and to assessing the quality of climate models used to produce near- and long-term climate information. This study poses the dual and unconventional question: Can climate models be used to assess the quality of observational references? We show that this question not only rests on solid theoretical grounds but also offers insightful applications in practice. By comparing four observational products of sea surface temperature with a large multimodel climate forecast ensemble, we find compelling evidence that models systematically score better against the most recent, advanced, but also most independent product. These results call for generalized procedures of model-observation comparison and provide guidance for a more objective observational data set selection. Copyright © 2016, American Association for the Advancement of Science.

  2. Evaluating, interpreting, and communicating performance of hydrologic/water quality models considering intended use: A review and recommendations

    USDA-ARS?s Scientific Manuscript database

    Previous publications have outlined recommended practices for hydrologic and water quality (H/WQ) modeling, but none have formulated comprehensive guidelines for the final stage of modeling applications, namely evaluation, interpretation, and communication of model results and the consideration of t...

  3. Analysis of augmented aircraft flying qualities through application of the Neal-Smith criterion

    NASA Technical Reports Server (NTRS)

    Bailey, R. E.; Smith, R. E.

    1981-01-01

    The Neal-Smith criterion is examined for possible applications in the evaluation of augmented fighter aircraft flying qualities. Longitudinal and lateral flying qualities are addressed. Based on the application of several longitudinal flying qualities data bases, revisions are proposed to the original criterion. Examples are given which show the revised criterion to be a good discriminator of pitch flying qualities. Initial results of lateral flying qualities evaluation through application of the Neal-Smith criterion are poor. Lateral aircraft configurations whose flying qualities are degraded by roll ratcheting effects map into the Level 1 region of the criterion. A third dimension of the criterion for flying qualities specification is evident. Additional criteria are proposed to incorporate this dimension into the criterion structure for flying qualities analysis.

  4. New Methods for Air Quality Model Evaluation with Satellite Data

    NASA Astrophysics Data System (ADS)

    Holloway, T.; Harkey, M.

    2015-12-01

    Despite major advances in the ability of satellites to detect gases and aerosols in the atmosphere, there remains significant, untapped potential to apply space-based data to air quality regulatory applications. Here, we showcase research findings geared toward increasing the relevance of satellite data to support operational air quality management, focused on model evaluation. Particular emphasis is given to nitrogen dioxide (NO2) and formaldehyde (HCHO) from the Ozone Monitoring Instrument aboard the NASA Aura satellite, and evaluation of simulations from the EPA Community Multiscale Air Quality (CMAQ) model. This work is part of the NASA Air Quality Applied Sciences Team (AQAST), and is motivated by ongoing dialog with state and federal air quality management agencies. We present the response of satellite-derived NO2 to meteorological conditions, satellite-derived HCHO:NO2 ratios as an indicator of ozone production regime, and the ability of models to capture these sensitivities over the continental U.S. In the case of NO2-weather sensitivities, we find boundary layer height, wind speed, temperature, and relative humidity to be the most important variables in determining near-surface NO2 variability. CMAQ agreed with relationships observed in satellite data, as well as in ground-based data, over most regions. However, we find that the southwest U.S. is a problem area for CMAQ, where modeled NO2 responses to insolation, boundary layer height, and other variables are at odds with the observations. Our analyses utilize a software developed by our team, the Wisconsin Horizontal Interpolation Program for Satellites (WHIPS): a free, open-source program designed to make satellite-derived air quality data more usable. WHIPS interpolates level 2 satellite retrievals onto a user-defined fixed grid, in effect creating custom-gridded level 3 satellite product. Currently, WHIPS can process the following data products: OMI NO2 (NASA retrieval); OMI NO2 (KNMI retrieval); OMI

  5. Developing a stochastic conflict resolution model for urban runoff quality management: Application of info-gap and bargaining theories

    NASA Astrophysics Data System (ADS)

    Ghodsi, Seyed Hamed; Kerachian, Reza; Estalaki, Siamak Malakpour; Nikoo, Mohammad Reza; Zahmatkesh, Zahra

    2016-02-01

    In this paper, two deterministic and stochastic multilateral, multi-issue, non-cooperative bargaining methodologies are proposed for urban runoff quality management. In the proposed methodologies, a calibrated Storm Water Management Model (SWMM) is used to simulate stormwater runoff quantity and quality for different urban stormwater runoff management scenarios, which have been defined considering several Low Impact Development (LID) techniques. In the deterministic methodology, the best management scenario, representing location and area of LID controls, is identified using the bargaining model. In the stochastic methodology, uncertainties of some key parameters of SWMM are analyzed using the info-gap theory. For each water quality management scenario, robustness and opportuneness criteria are determined based on utility functions of different stakeholders. Then, to find the best solution, the bargaining model is performed considering a combination of robustness and opportuneness criteria for each scenario based on utility function of each stakeholder. The results of applying the proposed methodology in the Velenjak urban watershed located in the northeastern part of Tehran, the capital city of Iran, illustrate its practical utility for conflict resolution in urban water quantity and quality management. It is shown that the solution obtained using the deterministic model cannot outperform the result of the stochastic model considering the robustness and opportuneness criteria. Therefore, it can be concluded that the stochastic model, which incorporates the main uncertainties, could provide more reliable results.

  6. An Integrated model for Product Quality Development—A case study on Quality functions deployment and AHP based approach

    NASA Astrophysics Data System (ADS)

    Maitra, Subrata; Banerjee, Debamalya

    2010-10-01

    Present article is based on application of the product quality and improvement of design related with the nature of failure of machineries and plant operational problems of an industrial blower fan Company. The project aims at developing the product on the basis of standardized production parameters for selling its products in the market. Special attention is also being paid to the blower fans which have been ordered directly by the customer on the basis of installed capacity of air to be provided by the fan. Application of quality function deployment is primarily a customer oriented approach. Proposed model of QFD integrated with AHP to select and rank the decision criterions on the commercial and technical factors and the measurement of the decision parameters for selection of best product in the compettitive environment. The present AHP-QFD model justifies the selection of a blower fan with the help of the group of experts' opinion by pairwise comparison of the customer's and ergonomy based technical design requirements. The steps invoved in implementation of the QFD—AHP and selection of weighted criterion may be helpful for all similar purpose industries maintaining cost and utility for competitive product.

  7. Real-time video quality monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Narvekar, Niranjan; Wang, Beibei; Ding, Ran; Zou, Dekun; Cash, Glenn; Bhagavathy, Sitaram; Bloom, Jeffrey

    2011-12-01

    The ITU-T Recommendation G.1070 is a standardized opinion model for video telephony applications that uses video bitrate, frame rate, and packet-loss rate to measure the video quality. However, this model was original designed as an offline quality planning tool. It cannot be directly used for quality monitoring since the above three input parameters are not readily available within a network or at the decoder. And there is a great room for the performance improvement of this quality metric. In this article, we present a real-time video quality monitoring solution based on this Recommendation. We first propose a scheme to efficiently estimate the three parameters from video bitstreams, so that it can be used as a real-time video quality monitoring tool. Furthermore, an enhanced algorithm based on the G.1070 model that provides more accurate quality prediction is proposed. Finally, to use this metric in real-world applications, we present an example emerging application of real-time quality measurement to the management of transmitted videos, especially those delivered to mobile devices.

  8. Advanced Computational Methods for High-accuracy Refinement of Protein Low-quality Models

    NASA Astrophysics Data System (ADS)

    Zang, Tianwu

    Predicting the 3-dimentional structure of protein has been a major interest in the modern computational biology. While lots of successful methods can generate models with 3˜5A root-mean-square deviation (RMSD) from the solution, the progress of refining these models is quite slow. It is therefore urgently needed to develop effective methods to bring low-quality models to higher-accuracy ranges (e.g., less than 2 A RMSD). In this thesis, I present several novel computational methods to address the high-accuracy refinement problem. First, an enhanced sampling method, named parallel continuous simulated tempering (PCST), is developed to accelerate the molecular dynamics (MD) simulation. Second, two energy biasing methods, Structure-Based Model (SBM) and Ensemble-Based Model (EBM), are introduced to perform targeted sampling around important conformations. Third, a three-step method is developed to blindly select high-quality models along the MD simulation. These methods work together to make significant refinement of low-quality models without any knowledge of the solution. The effectiveness of these methods is examined in different applications. Using the PCST-SBM method, models with higher global distance test scores (GDT_TS) are generated and selected in the MD simulation of 18 targets from the refinement category of the 10th Critical Assessment of Structure Prediction (CASP10). In addition, in the refinement test of two CASP10 targets using the PCST-EBM method, it is indicated that EBM may bring the initial model to even higher-quality levels. Furthermore, a multi-round refinement protocol of PCST-SBM improves the model quality of a protein to the level that is sufficient high for the molecular replacement in X-ray crystallography. Our results justify the crucial position of enhanced sampling in the protein structure prediction and demonstrate that a considerable improvement of low-accuracy structures is still achievable with current force fields.

  9. Microcomputer pollution model for civilian airports and Air Force Bases. Model application and background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segal, H.M.

    1988-08-01

    This is one of three reports describing the Emissions and Dispersion Modeling System (EDMS). All reports use the same main title--A MICROCOMPUTER MODEL FOR CIVILIAN AIRPORTS AND AIR FORCE BASES--but different subtitles. The subtitles are: (1) USER'S GUIDE - ISSUE 2 (FAA-EE-88-3/ESL-TR-88-54); (2) MODEL DESCRIPTION (FAA-EE-88-4/ESL-TR-88-53); (S) MODEL APPLICATION AND BACKGROUND (FAA-EE-88-5/ESL-TR-88-55). The first and second reports above describe the EDMS model and provide instructions for its use. This is the third report. IT consists of an accumulation of five key documents describing the development and use of the EDMS model. This report is prepared in accordance with discussions withmore » the EPA and requirements outlined in the March 27, 1980 Federal Register for submitting air-quality models to the EPA. Contents: Model Development and Use - Its Chronology and Reports; Monitoring Concorde EMissions; The Influence of Aircraft Operations on Air Quality at Airports; Simplex A - A simplified Atmospheric Dispersion Model for Airport Use -(User's Guide); Microcomputer Graphics in Atmospheric Dispersion Modeling; Pollution from Motor Vehicles and Aircraft at Stapleton International Airport (Abbreviated Report).« less

  10. Assessment of methodological quality of economic evaluations in belgian drug reimbursement applications.

    PubMed

    Simoens, Steven

    2013-01-01

    This paper aims to assess the methodological quality of economic evaluations included in Belgian reimbursement applications for Class 1 drugs. For 19 reimbursement applications submitted during 2011 and Spring 2012, a descriptive analysis assessed the methodological quality of the economic evaluation, evaluated the assessment of that economic evaluation by the Drug Reimbursement Committee and the response to that assessment by the company. Compliance with methodological guidelines issued by the Belgian Healthcare Knowledge Centre was assessed using a detailed checklist of 23 methodological items. The rate of compliance was calculated based on the number of economic evaluations for which the item was applicable. Economic evaluations tended to comply with guidelines regarding perspective, target population, subgroup analyses, comparator, use of comparative clinical data and final outcome measures, calculation of costs, incremental analysis, discounting and time horizon. However, more attention needs to be paid to the description of limitations of indirect comparisons, the choice of an appropriate analytic technique, the expression of unit costs in values for the current year, the estimation and valuation of outcomes, the presentation of results of sensitivity analyses, and testing the face validity of model inputs and outputs. Also, a large variation was observed in the scope and depth of the quality assessment by the Drug Reimbursement Committee. Although general guidelines exist, pharmaceutical companies and the Drug Reimbursement Committee would benefit from the existence of a more detailed checklist of methodological items that need to be reported in an economic evaluation.

  11. Examining the Factors That Contribute to Successful Database Application Implementation Using the Technology Acceptance Model

    ERIC Educational Resources Information Center

    Nworji, Alexander O.

    2013-01-01

    Most organizations spend millions of dollars due to the impact of improperly implemented database application systems as evidenced by poor data quality problems. The purpose of this quantitative study was to use, and extend, the technology acceptance model (TAM) to assess the impact of information quality and technical quality factors on database…

  12. The role of hydrological and water quality models in the application of the ecosystem services framework for the EU Water Framework Directive

    NASA Astrophysics Data System (ADS)

    Hallouin, Thibault; Bruen, Michael; Feeley, Hugh B.; Christie, Michael; Bullock, Craig; Kelly, Fiona; Kelly-Quinn, Mary

    2017-04-01

    The hydrological cycle is intimately linked with environmental processes that are essential for human welfare in many regards including, among others, the provision of safe water from surface and subsurface waterbodies, rain-fed agricultural production, or the provision of aquatic-sourced food. As well as being a receiver of these natural benefits, the human population is also a manager of the water and other natural resources and, as such, can affect their future sustainable provision. With global population growth and climate change, both the dependence of the human population on water resources and the threat they pose to these resources are likely to intensify so that the sustainability of the coupled natural and human system is threatened. In the European Union, the Water Framework Directive is driving policy and encouraging member states to manage their water resources wisely in order to maintain or restore ecological quality. To this end, the ecosystem services framework can be a useful tool to link the requirements in terms of ecological status into more tangible descriptors, that is the ecosystem services. In the ESManage Project, existing environmental system models such as hydrological models and water quality models are used as the basis to quantify the provision of many hydrological and aquatic ecosystem services by constructing indicators for the ecosystem services from the modelled environmental variables. By allowing different management options and policies to be compared, these models can be a valuable source of information for policy makers when they are used for climate and land use scenario analyses. Not all hydrological models developed for flood forecasting are suitable for this application and inappropriate models can lead to questionable conclusions. This paper demonstrates the readily available capabilities of a specially developed catchment hydrological model coupled with a water quality model to quantify a wide range of biophysically

  13. [Application of THz technology to nondestructive detection of agricultural product quality].

    PubMed

    Jiang, Yu-ying; Ge, Hong-yi; Lian, Fei-yu; Zhang, Yuan; Xia, Shan-hong

    2014-08-01

    With recent development of THz sources and detector, applications of THz radiation to nondestructive testing and quality control have expanded in many fields, such as agriculture, safety inspection and quality control, medicine, biochemistry, communication etc. Compared with other detection technique, being a new kind of technique, THz radiation has low energy, good perspectivity, and high signal-to-noise ratio, and thus can obtain physical, chemical and biological information. This paper first introduces the basic concept of THz radiation and the major properties, then gives an extensive review of recent research progress in detection of the quality of agricultural products via THz technique, analyzes the existing shortcomings of THz detection and discusses the outlook of potential application, finally proposes the new application of THz technique to detection of quality of stored grain.

  14. [Feedforward control strategy and its application in quality improvement of ethanol precipitation process of danhong injection].

    PubMed

    Yan, Bin-Jun; Guo, Zheng-Tai; Qu, Hai-Bin; Zhao, Bu-Chang; Zhao, Tao

    2013-06-01

    In this work, a feedforward control strategy basing on the concept of quality by design was established for the manufacturing process of traditional Chinese medicine to reduce the impact of the quality variation of raw materials on drug. In the research, the ethanol precipitation process of Danhong injection was taken as an application case of the method established. Box-Behnken design of experiments was conducted. Mathematical models relating the attributes of the concentrate, the process parameters and the quality of the supernatants produced were established. Then an optimization model for calculating the best process parameters basing on the attributes of the concentrate was built. The quality of the supernatants produced by ethanol precipitation with optimized and non-optimized process parameters were compared. The results showed that using the feedforward control strategy for process parameters optimization can control the quality of the supernatants effectively. The feedforward control strategy proposed can enhance the batch-to-batch consistency of the supernatants produced by ethanol precipitation.

  15. Air Quality Research and Applications Using AURA OMi Data

    NASA Technical Reports Server (NTRS)

    Bhartia, P.K.; Gleason, J.F.; Torres, O.; Levelt, P.; Liu, X.; Ziemke, J.; Chandra, S.; Krotkov, N.

    2007-01-01

    The Ozone Monitoring Instrument (OMI) on EOS Aura is a new generation of satellite remote sensing instrument designed to measure trace gas and aerosol absorption at the UV and blue wavelengths. These measurements are made globally at urban scale resolution with no inter-orbital gaps that make them potentially very useful for air quality research, such as the determination of the sources and processes that affect global and regional air quality, and to develop applications such as air quality forecast. However, the use of satellite data for such applications is not as straight forward as satellite data have been for stratospheric research. There is a need for close interaction between the satellite product developers, in-situ measurement programs, and the air quality research community to overcome some of the inherent difficulties in interpreting data from satellite-based remote sensing instruments. In this talk we will discuss the challenges and opportunities in using OMI products for air quality research and applications. A key conclusion of this work is that to realize the full potential of OMI measurements it will be necessary to combine OMI data with data from instruments such as MLS, MODIS, AIRS, and CALIPSO that are currently flying in the "A-train" satellite constellation. In addition similar data taken by satellites crossing the earth at different local times than the A-train (e.g., the recently MetOp satellite) would need to be processed in a consistent manner to study diurnal variability, and to capture the effects on air quality of rapidly changing events such as wild fires.

  16. Quality Control Analysis of Selected Aspects of Programs Administered by the Bureau of Student Financial Assistance. Error-Prone Model Derived from 1978-1979 Quality Control Study. Data Report. [Task 3.

    ERIC Educational Resources Information Center

    Saavedra, Pedro; Kuchak, JoAnn

    An error-prone model (EPM) to predict financial aid applicants who are likely to misreport on Basic Educational Opportunity Grant (BEOG) applications was developed, based on interviews conducted with a quality control sample of 1,791 students during 1978-1979. The model was designed to identify corrective methods appropriate for different types of…

  17. APPLICATION OF BAYESIAN MONTE CARLO ANALYSIS TO A LAGRANGIAN PHOTOCHEMICAL AIR QUALITY MODEL. (R824792)

    EPA Science Inventory

    Uncertainties in ozone concentrations predicted with a Lagrangian photochemical air quality model have been estimated using Bayesian Monte Carlo (BMC) analysis. Bayesian Monte Carlo analysis provides a means of combining subjective "prior" uncertainty estimates developed ...

  18. COMMUNITY MULTISCALE AIR QUALITY ( CMAQ ) MODEL - QUALITY ASSURANCE AND VERSION CONTROL

    EPA Science Inventory

    This presentation will be given to the EPA Exposure Modeling Workgroup on January 24, 2006. The quality assurance and version control procedures for the Community Multiscale Air Quality (CMAQ) Model are presented. A brief background of CMAQ is given, then issues related to qual...

  19. Measuring health care process quality with software quality measures.

    PubMed

    Yildiz, Ozkan; Demirörs, Onur

    2012-01-01

    Existing quality models focus on some specific diseases, clinics or clinical areas. Although they contain structure, process, or output type measures, there is no model which measures quality of health care processes comprehensively. In addition, due to the not measured overall process quality, hospitals cannot compare quality of processes internally and externally. To bring a solution to above problems, a new model is developed from software quality measures. We have adopted the ISO/IEC 9126 software quality standard for health care processes. Then, JCIAS (Joint Commission International Accreditation Standards for Hospitals) measurable elements were added to model scope for unifying functional requirements. Assessment (diagnosing) process measurement results are provided in this paper. After the application, it was concluded that the model determines weak and strong aspects of the processes, gives a more detailed picture for the process quality, and provides quantifiable information to hospitals to compare their processes with multiple organizations.

  20. Emissions and dispersion modeling system (EDMS). Its development and application at airports and airbases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, M.T.; Segal, H.M.

    1994-06-01

    A new complex source microcomputer model has been developed for use at civil airports and Air Force bases. This paper describes both the key features of this model and its application in evaluating the air quality impact of new construction projects at three airports: one in the United States and two in Canada. The single EDMS model replaces the numerous models previously required to assess the air quality impact of pollution sources at airports. EDMS also employs a commercial data base to reduce the time and manpower required to accurately assess and document the air quality impact of airfield operations.more » On July 20, 1993, the U.S. Environmental Protection Agency (EPA) issued the final rule (Federal Register, 7/20/93, page 38816) to add new models to the Guideline on Air Quality Models. At that time EDMS was incorporated into the Guideline as an Appendix A model. 12 refs., 4 figs., 1 tab.« less

  1. Evaluation of data assimilation techniques for a mesoscale meteorological model and their effects on air quality model results

    NASA Astrophysics Data System (ADS)

    Amicarelli, A.; Gariazzo, C.; Finardi, S.; Pelliccioni, A.; Silibello, C.

    2008-05-01

    Data assimilation techniques are methods to limit the growth of errors in a dynamical model by allowing observations distributed in space and time to force (nudge) model solutions. They have become common for meteorological model applications in recent years, especially to enhance weather forecast and to support air-quality studies. In order to investigate the influence of different data assimilation techniques on the meteorological fields produced by RAMS model, and to evaluate their effects on the ozone and PM10 concentrations predicted by FARM model, several numeric experiments were conducted over the urban area of Rome, Italy, during a summer episode.

  2. Development of Techniques and Data for Evaluating Ride Quality, Volume III : Guidelines for Development of Ride-Quality Models and Their Applications

    DOT National Transportation Integrated Search

    1978-02-01

    Ride-quality models for city buses and intercity trains are presented and discussed in terms of their ability to predict passenger comfort and ride acceptability. The report, the last of three volumes, contains procedural guidelines to be employed by...

  3. Application of Water Quality Model of Jordan River to Evaluate Climate Change Effects on Eutrophication

    NASA Astrophysics Data System (ADS)

    Van Grouw, B.

    2016-12-01

    The Jordan River is a 51 mile long freshwater stream in Utah that provides drinking water to more than 50% of Utah's population. The various point and nonpoint sources introduce an excess of nutrients into the river. This excess induces eutrophication that results in an inhabitable environment for aquatic life is expected to be exacerbated due to climate change. Adaptive measures must be evaluated based on predictions of climate variation impacts on eutrophication and ecosystem processes in the Jordan River. A Water Quality Assessment Simulation Program (WASP) model was created to analyze the data results acquired from a Total Maximum Daily Load (TMDL) study conducted on the Jordan River. Eutrophication is modeled based on levels of phosphates and nitrates from point and nonpoint sources, temperature, and solar radiation. It will simulate the growth of phytoplankton and periphyton in the river. This model will be applied to assess how water quality in the Jordan River is affected by variations in timing and intensity of spring snowmelt and runoff during drought in the valley and the resulting effects on eutrophication in the river.

  4. Grey fuzzy optimization model for water quality management of a river system

    NASA Astrophysics Data System (ADS)

    Karmakar, Subhankar; Mujumdar, P. P.

    2006-07-01

    A grey fuzzy optimization model is developed for water quality management of river system to address uncertainty involved in fixing the membership functions for different goals of Pollution Control Agency (PCA) and dischargers. The present model, Grey Fuzzy Waste Load Allocation Model (GFWLAM), has the capability to incorporate the conflicting goals of PCA and dischargers in a deterministic framework. The imprecision associated with specifying the water quality criteria and fractional removal levels are modeled in a fuzzy mathematical framework. To address the imprecision in fixing the lower and upper bounds of membership functions, the membership functions themselves are treated as fuzzy in the model and the membership parameters are expressed as interval grey numbers, a closed and bounded interval with known lower and upper bounds but unknown distribution information. The model provides flexibility for PCA and dischargers to specify their aspirations independently, as the membership parameters for different membership functions, specified for different imprecise goals are interval grey numbers in place of a deterministic real number. In the final solution optimal fractional removal levels of the pollutants are obtained in the form of interval grey numbers. This enhances the flexibility and applicability in decision-making, as the decision-maker gets a range of optimal solutions for fixing the final decision scheme considering technical and economic feasibility of the pollutant treatment levels. Application of the GFWLAM is illustrated with case study of the Tunga-Bhadra river system in India.

  5. MODELING CONSISTENCY, MODEL QUALITY, AND FOSTERING CONTINUED IMPROVEMENT

    EPA Science Inventory

    We believe that most contributors to and participants of the International Conference, Marine Waste Water Discharges 2000, "MWWD 2000," could agree that the overarching dream of the conference might be to chart a path the will lead to the best, long-term, applicable water quality...

  6. Examining the impacts of increased corn production on groundwater quality using a coupled modeling system

    EPA Science Inventory

    This study demonstrates the value of a coupled chemical transport modeling system for investigating groundwater nitrate contamination responses associated with nitrogen (N) fertilizer application and increased corn production. The coupled Community Multiscale Air Quality Bidirect...

  7. Sequential Sampling Models in Cognitive Neuroscience: Advantages, Applications, and Extensions.

    PubMed

    Forstmann, B U; Ratcliff, R; Wagenmakers, E-J

    2016-01-01

    Sequential sampling models assume that people make speeded decisions by gradually accumulating noisy information until a threshold of evidence is reached. In cognitive science, one such model--the diffusion decision model--is now regularly used to decompose task performance into underlying processes such as the quality of information processing, response caution, and a priori bias. In the cognitive neurosciences, the diffusion decision model has recently been adopted as a quantitative tool to study the neural basis of decision making under time pressure. We present a selective overview of several recent applications and extensions of the diffusion decision model in the cognitive neurosciences.

  8. Evaluation of DeNitrification DeComposition Model to Estimate Ammonia Fluxes from Chemical Fertilizer Application

    NASA Astrophysics Data System (ADS)

    Balasubramanian, S.; Nelson, A. J.; Koloutsou-Vakakis, S.; Lin, J.; Myles, L.; Rood, M. J.

    2016-12-01

    Biogeochemical models such as DeNitrification DeComposition (DNDC) are used to model greenhouse and other trace gas fluxes (e.g., ammonia (NH3)) from agricultural ecosystems. NH3 is of interest to air quality because it is a precursor to ambient particulate matter. NH3 fluxes from chemical fertilizer application are uncertain due to dependence on local weather and soil properties, and farm nitrogen management practices. DNDC can be advantageously implemented to model the underlying spatial and temporal trends to support air quality modeling. However, such implementation, requires a detailed evaluation of model predictions, and model behavior. This is the first study to assess DNDC predictions of NH3 fluxes to/from the atmosphere, from chemical fertilizer application, during an entire crop growing season, in the United States. Relaxed eddy accumulation (REA) measurements over corn in Central Illinois, in year 2014, were used to evaluate magnitude and trends in modeled NH3 fluxes. DNDC was able to replicate both magnitude and trends in measured NH3 fluxes, with greater accuracy during the initial 33 days after application, when NH3 was mostly emitted to the atmosphere. However, poorer performance was observed when depositional fluxes were measured. Sensitivity analysis using Monte Carlo simulations indicated that modeled NH3 fluxes were most sensitive to input air temperature and precipitation, soil organic carbon, field capacity and pH and fertilizer loading rate, timing, and application depth and tilling date. By constraining these inputs for conditions in Central Illinois, uncertainty in annual NH3 fluxes was estimated to vary from -87% to 61%. Results from this study provides insight to further improve DNDC predictions and inform efforts for upscaling site predictions to regional scale for the development of emission inventories for air quality modeling.

  9. Impact of a scholarly track on quality of residency program applicants.

    PubMed

    Celebi, Julie M; Nguyen, Cathina T; Sattler, Amelia L; Stevens, Michael B; Lin, Steven Y

    2016-11-01

    It is generally believed that residency programs offering scholarly tracks attract higher quality applicants, although there is little evidence of this in the literature. We explored the impact of a clinician-educator track on the quality of applicants to our residency program by comparing the volume and characteristics of applicants before (2008-2011) and after (2012-2015) the track was introduced. The total number of applications received was compared between the pre-track and post-track years. Among interviewees, data on United States Medical Licensing Examination (USMLE) Step 1 scores, Step 2 Clinical Knowledge (CK) scores, Medical Student Performance Evaluation (MSPE) scores, and proportion of candidates with an advanced degree (e.g. MPH, PhD) were compared. An online survey was administered to all interviewees in 2014-2015 to measure interest in the track. The total number of applications to the residency program increased significantly from the pre-track to the post-track years. Compared to the pre-track years, interviewees during the post-track years had statistically higher USMLE Step 1 and Step 2 CK scores, better MSPE scores, and were more likely to have an advanced degree. Two-thirds of survey respondents reported that the track increased their interest in the residency program. A residency clinician-educator track may be associated with increased overall interest from applicants, higher application volume, and better measures of applicant quality based on USMLE scores, MSPE scores, and proportion of candidates with an advanced degree. Residency programs may consider a potential increase in the quality of their applicants as an added benefit of offering a scholarly track.

  10. Global sensitivity analysis for urban water quality modelling: Terminology, convergence and comparison of different methods

    NASA Astrophysics Data System (ADS)

    Vanrolleghem, Peter A.; Mannina, Giorgio; Cosenza, Alida; Neumann, Marc B.

    2015-03-01

    Sensitivity analysis represents an important step in improving the understanding and use of environmental models. Indeed, by means of global sensitivity analysis (GSA), modellers may identify both important (factor prioritisation) and non-influential (factor fixing) model factors. No general rule has yet been defined for verifying the convergence of the GSA methods. In order to fill this gap this paper presents a convergence analysis of three widely used GSA methods (SRC, Extended FAST and Morris screening) for an urban drainage stormwater quality-quantity model. After the convergence was achieved the results of each method were compared. In particular, a discussion on peculiarities, applicability, and reliability of the three methods is presented. Moreover, a graphical Venn diagram based classification scheme and a precise terminology for better identifying important, interacting and non-influential factors for each method is proposed. In terms of convergence, it was shown that sensitivity indices related to factors of the quantity model achieve convergence faster. Results for the Morris screening method deviated considerably from the other methods. Factors related to the quality model require a much higher number of simulations than the number suggested in literature for achieving convergence with this method. In fact, the results have shown that the term "screening" is improperly used as the method may exclude important factors from further analysis. Moreover, for the presented application the convergence analysis shows more stable sensitivity coefficients for the Extended-FAST method compared to SRC and Morris screening. Substantial agreement in terms of factor fixing was found between the Morris screening and Extended FAST methods. In general, the water quality related factors exhibited more important interactions than factors related to water quantity. Furthermore, in contrast to water quantity model outputs, water quality model outputs were found to be

  11. Stressor-response modeling using the 2D water quality model and regression trees to predict chlorophyll-a in a reservoir system

    USDA-ARS?s Scientific Manuscript database

    In order to control algal blooms, stressor-response relationships between water quality metrics, environmental variables, and algal growth should be understood and modeled. Machine-learning methods were suggested to express stressor-response relationships found by application of mechanistic water qu...

  12. PREDICTIVE UNCERTAINTY IN HYDROLOGIC AND WATER QUALITY MODELING: APPROACHES, APPLICATION TO ENVIRONMENTAL MANAGEMENT, AND FUTURE CHALLENGES (PRESENTATION)

    EPA Science Inventory

    Extant process-based hydrologic and water quality models are indispensable to water resources planning and environmental management. However, models are only approximations of real systems and often calibrated with incomplete and uncertain data. Reliable estimates, or perhaps f...

  13. A database and tool for boundary conditions for regional air quality modeling: description and evaluation

    NASA Astrophysics Data System (ADS)

    Henderson, B. H.; Akhtar, F.; Pye, H. O. T.; Napelenok, S. L.; Hutzell, W. T.

    2013-09-01

    Transported air pollutants receive increasing attention as regulations tighten and global concentrations increase. The need to represent international transport in regional air quality assessments requires improved representation of boundary concentrations. Currently available observations are too sparse vertically to provide boundary information, particularly for ozone precursors, but global simulations can be used to generate spatially and temporally varying Lateral Boundary Conditions (LBC). This study presents a public database of global simulations designed and evaluated for use as LBC for air quality models (AQMs). The database covers the contiguous United States (CONUS) for the years 2000-2010 and contains hourly varying concentrations of ozone, aerosols, and their precursors. The database is complimented by a tool for configuring the global results as inputs to regional scale models (e.g., Community Multiscale Air Quality or Comprehensive Air quality Model with extensions). This study also presents an example application based on the CONUS domain, which is evaluated against satellite retrieved ozone vertical profiles. The results show performance is largely within uncertainty estimates for the Tropospheric Emission Spectrometer (TES) with some exceptions. The major difference shows a high bias in the upper troposphere along the southern boundary in January. This publication documents the global simulation database, the tool for conversion to LBC, and the fidelity of concentrations on the boundaries. This documentation is intended to support applications that require representation of long-range transport of air pollutants.

  14. Adding spatial flexibility to source-receptor relationships for air quality modeling.

    PubMed

    Pisoni, E; Clappier, A; Degraeuwe, B; Thunis, P

    2017-04-01

    To cope with computing power limitations, air quality models that are used in integrated assessment applications are generally approximated by simpler expressions referred to as "source-receptor relationships (SRR)". In addition to speed, it is desirable for the SRR also to be spatially flexible (application over a wide range of situations) and to require a "light setup" (based on a limited number of full Air Quality Models - AQM simulations). But "speed", "flexibility" and "light setup" do not naturally come together and a good compromise must be ensured that preserves "accuracy", i.e. a good comparability between SRR results and AQM. In this work we further develop a SRR methodology to better capture spatial flexibility. The updated methodology is based on a cell-to-cell relationship, in which a bell-shape function links emissions to concentrations. Maintaining a cell-to-cell relationship is shown to be the key element needed to ensure spatial flexibility, while at the same time the proposed approach to link emissions and concentrations guarantees a "light set-up" phase. Validation has been repeated on different areas and domain sizes (countries, regions, province throughout Europe) for precursors reduced independently or contemporarily. All runs showed a bias around 10% between the full AQM and the SRR. This methodology allows assessing the impact on air quality of emission scenarios applied over any given area in Europe (regions, set of regions, countries), provided that a limited number of AQM simulations are performed for training.

  15. Assessment of Methodological Quality of Economic Evaluations in Belgian Drug Reimbursement Applications

    PubMed Central

    Simoens, Steven

    2013-01-01

    Objectives This paper aims to assess the methodological quality of economic evaluations included in Belgian reimbursement applications for Class 1 drugs. Materials and Methods For 19 reimbursement applications submitted during 2011 and Spring 2012, a descriptive analysis assessed the methodological quality of the economic evaluation, evaluated the assessment of that economic evaluation by the Drug Reimbursement Committee and the response to that assessment by the company. Compliance with methodological guidelines issued by the Belgian Healthcare Knowledge Centre was assessed using a detailed checklist of 23 methodological items. The rate of compliance was calculated based on the number of economic evaluations for which the item was applicable. Results Economic evaluations tended to comply with guidelines regarding perspective, target population, subgroup analyses, comparator, use of comparative clinical data and final outcome measures, calculation of costs, incremental analysis, discounting and time horizon. However, more attention needs to be paid to the description of limitations of indirect comparisons, the choice of an appropriate analytic technique, the expression of unit costs in values for the current year, the estimation and valuation of outcomes, the presentation of results of sensitivity analyses, and testing the face validity of model inputs and outputs. Also, a large variation was observed in the scope and depth of the quality assessment by the Drug Reimbursement Committee. Conclusions Although general guidelines exist, pharmaceutical companies and the Drug Reimbursement Committee would benefit from the existence of a more detailed checklist of methodological items that need to be reported in an economic evaluation. PMID:24386474

  16. Application of miniaturized near-infrared spectroscopy for quality control of extemporaneous orodispersible films.

    PubMed

    Foo, Wen Chin; Widjaja, Effendi; Khong, Yuet Mei; Gokhale, Rajeev; Chan, Sui Yung

    2018-02-20

    Extemporaneous oral preparations are routinely compounded in the pharmacy due to a lack of suitable formulations for special populations. Such small-scale pharmacy preparations also present an avenue for individualized pharmacotherapy. Orodispersible films (ODF) have increasingly been evaluated as a suitable dosage form for extemporaneous oral preparations. Nevertheless, as with all other extemporaneous preparations, safety and quality remain a concern. Although the United States Pharmacopeia (USP) recommends analytical testing of compounded preparations for quality assurance, pharmaceutical assays are typically not routinely performed for such non-sterile pharmacy preparations, due to the complexity and high cost of conventional assay methods such as high performance liquid chromatography (HPLC). Spectroscopic methods including Raman, infrared and near-infrared spectroscopy have been successfully applied as quality control tools in the industry. The state-of-art benchtop spectrometers used in those studies have the advantage of superior resolution and performance, but are not suitable for use in a small-scale pharmacy setting. In this study, we investigated the application of a miniaturized near infrared (NIR) spectrometer as a quality control tool for identification and quantification of drug content in extemporaneous ODFs. Miniaturized near infrared (NIR) spectroscopy is suitable for small-scale pharmacy applications in view of its small size, portability, simple user interface, rapid measurement and real-time prediction results. Nevertheless, the challenge with miniaturized NIR spectroscopy is its lower resolution compared to state-of-art benchtop equipment. We have successfully developed NIR spectroscopy calibration models for identification of ODFs containing five different drugs, and quantification of drug content in ODFs containing 2-10mg ondansetron (OND). The qualitative model for drug identification produced 100% prediction accuracy. The quantitative

  17. Air Quality Dispersion Modeling - Alternative Models

    EPA Pesticide Factsheets

    Models, not listed in Appendix W, that can be used in regulatory applications with case-by-case justification to the Reviewing Authority as noted in Section 3.2, Use of Alternative Models, in Appendix W.

  18. Quality of reporting of multivariable logistic regression models in Chinese clinical medical journals.

    PubMed

    Zhang, Ying-Ying; Zhou, Xiao-Bin; Wang, Qiu-Zhen; Zhu, Xiao-Yan

    2017-05-01

    Multivariable logistic regression (MLR) has been increasingly used in Chinese clinical medical research during the past few years. However, few evaluations of the quality of the reporting strategies in these studies are available.To evaluate the reporting quality and model accuracy of MLR used in published work, and related advice for authors, readers, reviewers, and editors.A total of 316 articles published in 5 leading Chinese clinical medical journals with high impact factor from January 2010 to July 2015 were selected for evaluation. Articles were evaluated according 12 established criteria for proper use and reporting of MLR models.Among the articles, the highest quality score was 9, the lowest 1, and the median 5 (4-5). A total of 85.1% of the articles scored below 6. No significant differences were found among these journals with respect to quality score (χ = 6.706, P = .15). More than 50% of the articles met the following 5 criteria: complete identification of the statistical software application that was used (97.2%), calculation of the odds ratio and its confidence interval (86.4%), description of sufficient events (>10) per variable, selection of variables, and fitting procedure (78.2%, 69.3%, and 58.5%, respectively). Less than 35% of the articles reported the coding of variables (18.7%). The remaining 5 criteria were not satisfied by a sufficient number of articles: goodness-of-fit (10.1%), interactions (3.8%), checking for outliers (3.2%), collinearity (1.9%), and participation of statisticians and epidemiologists (0.3%). The criterion of conformity with linear gradients was applicable to 186 articles; however, only 7 (3.8%) mentioned or tested it.The reporting quality and model accuracy of MLR in selected articles were not satisfactory. In fact, severe deficiencies were noted. Only 1 article scored 9. We recommend authors, readers, reviewers, and editors to consider MLR models more carefully and cooperate more closely with statisticians and

  19. High-quality unsaturated zone hydraulic property data for hydrologic applications

    USGS Publications Warehouse

    Perkins, Kimberlie; Nimmo, John R.

    2009-01-01

    In hydrologic studies, especially those using dynamic unsaturated zone moisture modeling, calculations based on property transfer models informed by hydraulic property databases are often used in lieu of measured data from the site of interest. Reliance on database-informed predicted values has become increasingly common with the use of neural networks. High-quality data are needed for databases used in this way and for theoretical and property transfer model development and testing. Hydraulic properties predicted on the basis of existing databases may be adequate in some applications but not others. An obvious problem occurs when the available database has few or no data for samples that are closely related to the medium of interest. The data set presented in this paper includes saturated and unsaturated hydraulic conductivity, water retention, particle-size distributions, and bulk properties. All samples are minimally disturbed, all measurements were performed using the same state of the art techniques and the environments represented are diverse.

  20. A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Borge, Rafael; Alexandrov, Vassil; José del Vas, Juan; Lumbreras, Julio; Rodríguez, Encarnacion

    Meteorological inputs play a vital role on regional air quality modelling. An extensive sensitivity analysis of the Weather Research and Forecasting (WRF) model was performed, in the framework of the Integrated Assessment Modelling System for the Iberian Peninsula (SIMCA) project. Up to 23 alternative model configurations, including Planetary Boundary Layer schemes, Microphysics, Land-surface models, Radiation schemes, Sea Surface Temperature and Four-Dimensional Data Assimilation were tested in a 3 km spatial resolution domain. Model results for the most significant meteorological variables, were assessed through a series of common statistics. The physics options identified to produce better results (Yonsei University Planetary Boundary Layer, WRF Single-Moment 6-class microphysics, Noah Land-surface model, Eta Geophysical Fluid Dynamics Laboratory longwave radiation and MM5 shortwave radiation schemes) along with other relevant user settings (time-varying Sea Surface Temperature and combined grid-observational nudging) where included in a "best case" configuration. This setup was tested and found to produce more accurate estimation of temperature, wind and humidity fields at surface level than any other configuration for the two episodes simulated. Planetary Boundary Layer height predictions showed a reasonable agreement with estimations derived from routine atmospheric soundings. Although some seasonal and geographical differences were observed, the model showed an acceptable behaviour overall. Despite being useful to define the most appropriate setup of the WRF model for air quality modelling over the Iberian Peninsula, this study provides a general overview of WRF sensitivity and can constitute a reference for future mesoscale meteorological modelling exercises.

  1. Water quality modelling of Jadro spring.

    PubMed

    Margeta, J; Fistanic, I

    2004-01-01

    Management of water quality in karst is a specific problem. Water generally moves very fast by infiltration processes but far more by concentrated flows through fissures and openings in karst. This enables the entire surface pollution to be transferred fast and without filtration into groundwater springs. A typical example is the Jadro spring. Changes in water quality at the spring are sudden, but short. Turbidity as a major water quality problem for the karst springs regularly exceeds allowable standards. Former practice in problem solving has been reduced to intensive water disinfection in periods of great turbidity without analyses of disinfection by-products risks for water users. The main prerequisite for water quality control and an optimization of water disinfection is the knowledge of raw water quality and nature of occurrence. The analysis of monitoring data and their functional relationship with hydrological parameters enables establishment of a stochastic model that will help obtain better information on turbidity in different periods of the year. Using the model a great number of average monthly and extreme daily values are generated. By statistical analyses of these data possibility of occurrence of high turbidity in certain months is obtained. This information can be used for designing expert system for water quality management of karst springs. Thus, the time series model becomes a valuable tool in management of drinking water quality of the Jadro spring.

  2. Fox Valley Technical College Quality First Process Model.

    ERIC Educational Resources Information Center

    Fox Valley Technical Coll., Appleton, WI.

    An overview is provided of the Quality First Process Model developed by Fox Valley Technical College (FVTC), Wisconsin, to provide guidelines for quality instruction and service consistent with the highest educational standards. The 16-step model involves activities that should be adaptable to any organization. The steps of the quality model are…

  3. Water quality at a biosolids-application area near Deer Trail, Colorado, 1993-1999

    USGS Publications Warehouse

    Yager, Tracy J.B.

    2014-01-01

    The Metro Wastewater Reclamation District (Metro District) in Denver, Colo., applied biosolids resulting from municipal sewage treatment to farmland in eastern Colorado beginning in December 1993. In mid-1993, the U.S. Geological Survey in cooperation with the Metro District began monitoring water quality at the biosolids-application area about 10 miles east of Deer Trail, Colo., to evaluate baseline water quality and the combined effects of natural processes, land uses, and biosolids applications on water quality of the biosolids application area. Water quality was characterized by baseline and post-biosolids-application sampling for selected inorganic and bacteriological constituents during 1993 through 1998, with some additional specialized sampling in 1999. The study included limited sampling of surface water and the unsaturated zone, but primarily focused on groundwater. See report for complete abstract.

  4. Applications of spatial statistical network models to stream data

    USGS Publications Warehouse

    Isaak, Daniel J.; Peterson, Erin E.; Ver Hoef, Jay M.; Wenger, Seth J.; Falke, Jeffrey A.; Torgersen, Christian E.; Sowder, Colin; Steel, E. Ashley; Fortin, Marie-Josée; Jordan, Chris E.; Ruesch, Aaron S.; Som, Nicholas; Monestiez, Pascal

    2014-01-01

    Streams and rivers host a significant portion of Earth's biodiversity and provide important ecosystem services for human populations. Accurate information regarding the status and trends of stream resources is vital for their effective conservation and management. Most statistical techniques applied to data measured on stream networks were developed for terrestrial applications and are not optimized for streams. A new class of spatial statistical model, based on valid covariance structures for stream networks, can be used with many common types of stream data (e.g., water quality attributes, habitat conditions, biological surveys) through application of appropriate distributions (e.g., Gaussian, binomial, Poisson). The spatial statistical network models account for spatial autocorrelation (i.e., nonindependence) among measurements, which allows their application to databases with clustered measurement locations. Large amounts of stream data exist in many areas where spatial statistical analyses could be used to develop novel insights, improve predictions at unsampled sites, and aid in the design of efficient monitoring strategies at relatively low cost. We review the topic of spatial autocorrelation and its effects on statistical inference, demonstrate the use of spatial statistics with stream datasets relevant to common research and management questions, and discuss additional applications and development potential for spatial statistics on stream networks. Free software for implementing the spatial statistical network models has been developed that enables custom applications with many stream databases.

  5. Quality of Service in Networks Supporting Cultural Multimedia Applications

    ERIC Educational Resources Information Center

    Kanellopoulos, Dimitris N.

    2011-01-01

    Purpose: This paper aims to provide an overview of representative multimedia applications in the cultural heritage sector, as well as research results on quality of service (QoS) mechanisms in internet protocol (IP) networks that support such applications. Design/methodology/approach: The paper's approach is a literature review. Findings: Cultural…

  6. Application of digital profile modeling techniques to ground-water solute transport at Barstow, California

    USGS Publications Warehouse

    Robson, Stanley G.

    1978-01-01

    This study investigated the use of a two-dimensional profile-oriented water-quality model for the simulation of head and water-quality changes through the saturated thickness of an aquifer. The profile model is able to simulate confined or unconfined aquifers with nonhomogeneous anisotropic hydraulic conductivity, nonhomogeneous specific storage and porosity, and nonuniform saturated thickness. An aquifer may be simulated under either steady or nonsteady flow conditions provided that the ground-water flow path along which the longitudinal axis of the model is oriented does not move in the aquifer during the simulation time period. The profile model parameters are more difficult to quantify than are the corresponding parameters for an areal-oriented water-fluality model. However, the sensitivity of the profile model to the parameters may be such that the normal error of parameter estimation will not preclude obtaining acceptable model results. Although the profile model has the advantage of being able to simulate vertical flow and water-quality changes in a single- or multiple-aquifer system, the types of problems to which it can be applied is limited by the requirements that (1) the ground-water flow path remain oriented along the longitudinal axis of the model and (2) any subsequent hydrologic factors to be evaluated using the model must be located along the land-surface trace of the model. Simulation of hypothetical ground-water management practices indicates that the profile model is applicable to problem-oriented studies and can provide quantitative results applicable to a variety of management practices. In particular, simulations of the movement and dissolved-solids concentration of a zone of degraded ground-water quality near Barstow, Calif., indicate that halting subsurface disposal of treated sewage effluent in conjunction with pumping a line of fully penetrating wells would be an effective means of controlling the movement of degraded ground water.

  7. Applications of Quality Management in Language Education

    ERIC Educational Resources Information Center

    Heyworth, Frank

    2013-01-01

    This review examines applications of quality management (QM) in language education. QM approaches have been adapted from methodologies developed in industrial and commercial settings, and these are briefly described. Key aspects of QM in language education are the definition of purpose, descriptions of principles and practice, including various…

  8. Analysis of the Information Quality of Bariatric Surgery Smartphone Applications Using the Silberg Scale.

    PubMed

    Zhang, Melvyn W B; Ho, Roger C M; Hawa, Raed; Sockalingam, Sanjeev

    2016-01-01

    There is a paucity of literature that has evaluated the information quality of the current bariatric and obesity applications. Our objective was to evaluate the quality of currently available smartphone applications for bariatric-patient care using the Silberg scale. The two most widely used smartphone application online stores were searched in June 2014 and a total of 39 applications were evaluated. The average Silberg score of the 39 applications was 4.0 ± 1.76. The current gaps of information quality include the lack of provision of appropriate references, full disclosure of sponsorship, and accurate disclosure whether the application has been modified in the past month.

  9. Air quality modeling for the urban Jackson, Mississippi Region using a high resolution WRF/Chem model.

    PubMed

    Yerramilli, Anjaneyulu; Dodla, Venkata B; Desamsetti, Srinivas; Challa, Srinivas V; Young, John H; Patrick, Chuck; Baham, Julius M; Hughes, Robert L; Yerramilli, Sudha; Tuluri, Francis; Hardy, Mark G; Swanier, Shelton J

    2011-06-01

    In this study, an attempt was made to simulate the air quality with reference to ozone over the Jackson (Mississippi) region using an online WRF/Chem (Weather Research and Forecasting-Chemistry) model. The WRF/Chem model has the advantages of the integration of the meteorological and chemistry modules with the same computational grid and same physical parameterizations and includes the feedback between the atmospheric chemistry and physical processes. The model was designed to have three nested domains with the inner-most domain covering the study region with a resolution of 1 km. The model was integrated for 48 hours continuously starting from 0000 UTC of 6 June 2006 and the evolution of surface ozone and other precursor pollutants were analyzed. The model simulated atmospheric flow fields and distributions of NO2 and O3 were evaluated for each of the three different time periods. The GIS based spatial distribution maps for ozone, its precursors NO, NO2, CO and HONO and the back trajectories indicate that all the mobile sources in Jackson, Ridgeland and Madison contributing significantly for their formation. The present study demonstrates the applicability of WRF/Chem model to generate quantitative information at high spatial and temporal resolution for the development of decision support systems for air quality regulatory agencies and health administrators.

  10. Photovoltaic system criteria documents. Volume 2: Quality assurance criteria for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Koenig, John C.; Billitti, Joseph W.; Tallon, John M.

    1979-01-01

    Quality assurance criteria are described for manufacturers and installers of solar photovoltaic tests and applications. Quality oriented activities are outlined to be pursued by the contractor/subcontractor to assure the physical and operational quality of equipment produced is included. In the broad sense, guidelines are provided for establishing a QA organization if none exists. Mainly, criteria is provided to be considered in any PV quality assurance plan selected as appropriate by the responsible Field Center. A framework is established for a systematic approach to ensure that photovoltaic tests and applications are constructed in a timely and cost effective manner.

  11. Applications of MIDAS regression in analysing trends in water quality

    NASA Astrophysics Data System (ADS)

    Penev, Spiridon; Leonte, Daniela; Lazarov, Zdravetz; Mann, Rob A.

    2014-04-01

    We discuss novel statistical methods in analysing trends in water quality. Such analysis uses complex data sets of different classes of variables, including water quality, hydrological and meteorological. We analyse the effect of rainfall and flow on trends in water quality utilising a flexible model called Mixed Data Sampling (MIDAS). This model arises because of the mixed frequency in the data collection. Typically, water quality variables are sampled fortnightly, whereas the rain data is sampled daily. The advantage of using MIDAS regression is in the flexible and parsimonious modelling of the influence of the rain and flow on trends in water quality variables. We discuss the model and its implementation on a data set from the Shoalhaven Supply System and Catchments in the state of New South Wales, Australia. Information criteria indicate that MIDAS modelling improves upon simplistic approaches that do not utilise the mixed data sampling nature of the data.

  12. Hybrid Air Quality Modeling Approach for use in the Hear-road Exposures to Urban air pollutant Study(NEXUS)

    EPA Science Inventory

    The paper presents a hybrid air quality modeling approach and its application in NEXUS in order to provide spatial and temporally varying exposure estimates and identification of the mobile source contribution to the total pollutant exposure. Model-based exposure metrics, associa...

  13. The Taguchi Method Application to Improve the Quality of a Sustainable Process

    NASA Astrophysics Data System (ADS)

    Titu, A. M.; Sandu, A. V.; Pop, A. B.; Titu, S.; Ciungu, T. C.

    2018-06-01

    Taguchi’s method has always been a method used to improve the quality of the analyzed processes and products. This research shows an unusual situation, namely the modeling of some parameters, considered technical parameters, in a process that is wanted to be durable by improving the quality process and by ensuring quality using an experimental research method. Modern experimental techniques can be applied in any field and this study reflects the benefits of interacting between the agriculture sustainability principles and the Taguchi’s Method application. The experimental method used in this practical study consists of combining engineering techniques with experimental statistical modeling to achieve rapid improvement of quality costs, in fact seeking optimization at the level of existing processes and the main technical parameters. The paper is actually a purely technical research that promotes a technical experiment using the Taguchi method, considered to be an effective method since it allows for rapid achievement of 70 to 90% of the desired optimization of the technical parameters. The missing 10 to 30 percent can be obtained with one or two complementary experiments, limited to 2 to 4 technical parameters that are considered to be the most influential. Applying the Taguchi’s Method in the technique and not only, allowed the simultaneous study in the same experiment of the influence factors considered to be the most important in different combinations and, at the same time, determining each factor contribution.

  14. Application of statistical classification methods for predicting the acceptability of well-water quality

    NASA Astrophysics Data System (ADS)

    Cameron, Enrico; Pilla, Giorgio; Stella, Fabio A.

    2018-06-01

    The application of statistical classification methods is investigated—in comparison also to spatial interpolation methods—for predicting the acceptability of well-water quality in a situation where an effective quantitative model of the hydrogeological system under consideration cannot be developed. In the example area in northern Italy, in particular, the aquifer is locally affected by saline water and the concentration of chloride is the main indicator of both saltwater occurrence and groundwater quality. The goal is to predict if the chloride concentration in a water well will exceed the allowable concentration so that the water is unfit for the intended use. A statistical classification algorithm achieved the best predictive performances and the results of the study show that statistical classification methods provide further tools for dealing with groundwater quality problems concerning hydrogeological systems that are too difficult to describe analytically or to simulate effectively.

  15. A user-oriented and computerized model for estimating vehicle ride quality

    NASA Technical Reports Server (NTRS)

    Leatherwood, J. D.; Barker, L. M.

    1984-01-01

    A simplified empirical model and computer program for estimating passenger ride comfort within air and surface transportation systems are described. The model is based on subjective ratings from more than 3000 persons who were exposed to controlled combinations of noise and vibration in the passenger ride quality apparatus. This model has the capability of transforming individual elements of a vehicle's noise and vibration environment into subjective discomfort units and then combining the subjective units to produce a single discomfort index typifying passenger acceptance of the environment. The computational procedures required to obtain discomfort estimates are discussed, and a user oriented ride comfort computer program is described. Examples illustrating application of the simplified model to helicopter and automobile ride environments are presented.

  16. Quality of Life. Volume II: Application to Persons with Disabilities.

    ERIC Educational Resources Information Center

    Schalock, Robert L., Ed.; Siperstein, Gary N., Ed.

    This volume summarizes current policies and programmatic practices that are influencing the quality of life of persons with mental retardation and developmental disabilities. Part 1, "Service Delivery Application," contains: "Using Person-Centered Planning To Address Personal Quality of Life" (John Butterworth and others); "The Aftermath of…

  17. STREAM WATER QUALITY MODEL

    EPA Science Inventory

    QUAL2K (or Q2K) is a river and stream water quality model that is intended to represent a modernized version of the QUAL2E (or Q2E) model (Brown and Barnwell 1987). Q2K is similar to Q2E in the following respects:

    • One dimensional. The channel is well-mixed vertically a...

    • Hydrodynamics and water quality models applied to Sepetiba Bay

      NASA Astrophysics Data System (ADS)

      Cunha, Cynara de L. da N.; Rosman, Paulo C. C.; Ferreira, Aldo Pacheco; Carlos do Nascimento Monteiro, Teófilo

      2006-10-01

      A coupled hydrodynamic and water quality model is used to simulate the pollution in Sepetiba Bay due to sewage effluent. Sepetiba Bay has a complicated geometry and bottom topography, and is located on the Brazilian coast near Rio de Janeiro. In the simulation, the dissolved oxygen (DO) concentration and biochemical oxygen demand (BOD) are used as indicators for the presence of organic matter in the body of water, and as parameters for evaluating the environmental pollution of the eastern part of Sepetiba Bay. Effluent sources in the model are taken from DO and BOD field measurements. The simulation results are consistent with field observations and demonstrate that the model has been correctly calibrated. The model is suitable for evaluating the environmental impact of sewage effluent on Sepetiba Bay from river inflows, assessing the feasibility of different treatment schemes, and developing specific monitoring activities. This approach has general applicability for environmental assessment of complicated coastal bays.

    • Development of a cloud-based application for the Fracture Liaison Service model of care.

      PubMed

      Holzmueller, C G; Karp, S; Zeldow, D; Lee, D B; Thompson, D A

      2016-02-01

      The aims of this study are to develop a cloud-based application of the Fracture Liaison Service for practitioners to coordinate the care of osteoporotic patients after suffering primary fractures and provide a performance feedback portal for practitioners to determine quality of care. The application provides continuity of care, improved patient outcomes, and reduced medical costs. The purpose of this study is to describe the content development and functionality of a cloud-based application to broadly deploy the Fracture Liaison Service (FLS) to coordinate post-fracture care for osteoporotic patients. The Bone Health Collaborative developed the FLS application in 2013 to support practitioners' access to information and management of patients and provide a feedback portal for practitioners to track their performance in providing quality care. A five-step protocol (identify, inform, initiate, investigate, and iterate) organized osteoporotic post-fracture care-related tasks and timelines for the application. A range of descriptive data about the patient, their medical condition, therapies and care, and current providers can be collected. Seven quality of care measures from the National Quality Forum, The Joint Commission, and the Centers for Medicare and Medicaid Services can be tracked through the application. There are five functional areas including home, tasks, measures, improvement, and data. The home, tasks, and data pages are used to enter patient information and coordinate care using the five-step protocol. Measures and improvement pages are used to enter quality measures and provide practitioners with continuous performance feedback. The application resides within a portal, running on a multitenant, private cloud-based Avedis enterprise registry platform. All data are encrypted in transit and users access the application using a password from any common web browser. The application could spread the FLS model of care across the US health care system, provide

    • Hydraulic modeling development and application in water resources engineering

      USGS Publications Warehouse

      Simoes, Francisco J.; Yang, Chih Ted; Wang, Lawrence K.

      2015-01-01

      The use of modeling has become widespread in water resources engineering and science to study rivers, lakes, estuaries, and coastal regions. For example, computer models are commonly used to forecast anthropogenic effects on the environment, and to help provide advanced mitigation measures against catastrophic events such as natural and dam-break floods. Linking hydraulic models to vegetation and habitat models has expanded their use in multidisciplinary applications to the riparian corridor. Implementation of these models in software packages on personal desktop computers has made them accessible to the general engineering community, and their use has been popularized by the need of minimal training due to intuitive graphical user interface front ends. Models are, however, complex and nontrivial, to the extent that even common terminology is sometimes ambiguous and often applied incorrectly. In fact, many efforts are currently under way in order to standardize terminology and offer guidelines for good practice, but none has yet reached unanimous acceptance. This chapter provides a view of the elements involved in modeling surface flows for the application in environmental water resources engineering. It presents the concepts and steps necessary for rational model development and use by starting with the exploration of the ideas involved in defining a model. Tangible form of those ideas is provided by the development of a mathematical and corresponding numerical hydraulic model, which is given with a substantial amount of detail. The issues of model deployment in a practical and productive work environment are also addressed. The chapter ends by presenting a few model applications highlighting the need for good quality control in model validation.

  1. Quality measures in applications of image restoration.

    PubMed

    Kriete, A; Naim, M; Schafer, L

    2001-01-01

    We describe a new method for the estimation of image quality in image restoration applications. We demonstrate this technique on a simulated data set of fluorescent beads, in comparison with restoration by three different deconvolution methods. Both the number of iterations and a regularisation factor are varied to enforce changes in the resulting image quality. First, the data sets are directly compared by an accuracy measure. These values serve to validate the image quality descriptor, which is developed on the basis of optical information theory. This most general measure takes into account the spectral energies and the noise, weighted in a logarithmic fashion. It is demonstrated that this method is particularly helpful as a user-oriented method to control the output of iterative image restorations and to eliminate the guesswork in choosing a suitable number of iterations.

  2. The Educational Situation Quality Model: Recent Advances.

    PubMed

    Doménech-Betoret, Fernando

    2018-01-01

    The purpose of this work was to present an educational model developed in recent years entitled the "The Educational Situation Quality Model" (MOCSE, acronym in Spanish). MOCSE can be defined as an instructional model that simultaneously considers the teaching-learning process, where motivation plays a central role. It explains the functioning of an educational setting by organizing and relating the most important variables which, according to the literature, contribute to student learning. Besides being a conceptual framework, this model also provides a methodological procedure to guide research and to promote reflection in the classroom. It allows teachers to implement effective research-action programs to improve teacher-students satisfaction and learning outcomes in the classroom context. This work explains the model's characteristics and functioning, recent advances, and how teachers can use it in an educational setting with a specific subject. This proposal integrates approaches from several relevant psycho-educational theories and introduces a new perspective into the existing literature that will allow researchers to make progress in studying educational setting functioning. The initial MOCSE configuration has been refined over time in accordance with the empirical results obtained from previous research, carried out within the MOCSE framework and with the subsequent reflections that derived from these results. Finally, the contribution of the model to improve learning outcomes and satisfaction, and its applicability in the classroom, are also discussed.

  3. Prediction models for Arabica coffee beverage quality based on aroma analyses and chemometrics.

    PubMed

    Ribeiro, J S; Augusto, F; Salva, T J G; Ferreira, M M C

    2012-11-15

    In this work, soft modeling based on chemometric analyses of coffee beverage sensory data and the chromatographic profiles of volatile roasted coffee compounds is proposed to predict the scores of acidity, bitterness, flavor, cleanliness, body, and overall quality of the coffee beverage. A partial least squares (PLS) regression method was used to construct the models. The ordered predictor selection (OPS) algorithm was applied to select the compounds for the regression model of each sensory attribute in order to take only significant chromatographic peaks into account. The prediction errors of these models, using 4 or 5 latent variables, were equal to 0.28, 0.33, 0.35, 0.33, 0.34 and 0.41, for each of the attributes and compatible with the errors of the mean scores of the experts. Thus, the results proved the feasibility of using a similar methodology in on-line or routine applications to predict the sensory quality of Brazilian Arabica coffee. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Quality prediction modeling for sintered ores based on mechanism models of sintering and extreme learning machine based error compensation

    NASA Astrophysics Data System (ADS)

    Tiebin, Wu; Yunlian, Liu; Xinjun, Li; Yi, Yu; Bin, Zhang

    2018-06-01

    Aiming at the difficulty in quality prediction of sintered ores, a hybrid prediction model is established based on mechanism models of sintering and time-weighted error compensation on the basis of the extreme learning machine (ELM). At first, mechanism models of drum index, total iron, and alkalinity are constructed according to the chemical reaction mechanism and conservation of matter in the sintering process. As the process is simplified in the mechanism models, these models are not able to describe high nonlinearity. Therefore, errors are inevitable. For this reason, the time-weighted ELM based error compensation model is established. Simulation results verify that the hybrid model has a high accuracy and can meet the requirement for industrial applications.

  5. One multi-media environmental system with linkage between meteorology/ hydrology/ air quality models and water quality model

    NASA Astrophysics Data System (ADS)

    Tang, C.; Lynch, J. A.; Dennis, R. L.

    2016-12-01

    The biogeochemical processing of nitrogen and associated pollutants is driven by meteorological and hydrological processes in conjunction with pollutant loading. There are feedbacks between meteorology and hydrology that will be affected by land-use change and climate change. Changes in meteorology will affect pollutant deposition. It is important to account for those feedbacks and produce internally consistent simulations of meteorology, hydrology, and pollutant loading to drive the (watershed/water quality) biogeochemical models. In this study, the ecological response to emission reductions in streams in the Potomac watershed was evaluated. Firstly, we simulated the deposition by using the fully coupled Weather Research & Forecasting (WRF) model and the Community Multiscale Air Quality (CAMQ) model; secondly, we created the hydrological data by the offline linked Variable Infiltration Capacity (VIC) model and the WRF model. Lastly, we investigated the water quality by one comprehensive/environment model, namely the linkage of CMAQ, WRF, VIC and the Model of Acidification of Groundwater In Catchment (MAGIC) model from 2002 to 2010.The simulated results (such as NO3, SO4, and SBC) fit well to the observed values. The linkage provides a generally accurate, well-tested tool for evaluating sensitivities to varying meteorology and environmental changes on acidification and other biogeochemical processes, with capability to comprehensively explore strategic policy and management design.

  6. Application of Domain Knowledge to Software Quality Assurance

    NASA Technical Reports Server (NTRS)

    Wild, Christian W.

    1997-01-01

    This work focused on capturing, using, and evolving a qualitative decision support structure across the life cycle of a project. The particular application of this study was towards business process reengineering and the representation of the business process in a set of Business Rules (BR). In this work, we defined a decision model which captured the qualitative decision deliberation process. It represented arguments both for and against proposed alternatives to a problem. It was felt that the subjective nature of many critical business policy decisions required a qualitative modeling approach similar to that of Lee and Mylopoulos. While previous work was limited almost exclusively to the decision capture phase, which occurs early in the project life cycle, we investigated the use of such a model during the later stages as well. One of our significant developments was the use of the decision model during the operational phase of a project. By operational phase, we mean the phase in which the system or set of policies which were earlier decided are deployed and put into practice. By making the decision model available to operational decision makers, they would have access to the arguments pro and con for a variety of actions and can thus make a more informed decision which balances the often conflicting criteria by which the value of action is measured. We also developed the concept of a 'monitored decision' in which metrics of performance were identified during the decision making process and used to evaluate the quality of that decision. It is important to monitor those decision which seem at highest risk of not meeting their stated objectives. Operational decisions are also potentially high risk decisions. Finally, we investigated the use of performance metrics for monitored decisions and audit logs of operational decisions in order to feed an evolutionary phase of the the life cycle. During evolution, decisions are revisisted, assumptions verified or refuted

  7. a Web Api and Web Application Development for Dissemination of Air Quality Information

    NASA Astrophysics Data System (ADS)

    Şahin, K.; Işıkdağ, U.

    2017-11-01

    Various studies have been carried out since 2005 under the leadership of Ministry of Environment and Urbanism of Turkey, in order to observe the quality of air in Turkey, to develop new policies and to develop a sustainable air quality management strategy. For this reason, a national air quality monitoring network has been developed providing air quality indices. By this network, the quality of the air has been continuously monitored and an important information system has been constructed in order to take precautions for preventing a dangerous situation. The biggest handicap in the network is the data access problem for instant and time series data acquisition and processing because of its proprietary structure. Currently, there is no service offered by the current air quality monitoring system for exchanging information with third party applications. Within the context of this work, a web service has been developed to enable location based querying of the current/past air quality data in Turkey. This web service is equipped with up-todate and widely preferred technologies. In other words, an architecture is chosen in which applications can easily integrate. In the second phase of the study, a web-based application was developed to test the developed web service and this testing application can perform location based acquisition of air-quality data. This makes it possible to easily carry out operations such as screening and examination of the area in the given time-frame which cannot be done with the national monitoring network.

  8. Putting people into water quality modelling.

    NASA Astrophysics Data System (ADS)

    Strickert, G. E.; Hassanzadeh, E.; Noble, B.; Baulch, H. M.; Morales-Marin, L. A.; Lindenschmidt, K. E.

    2017-12-01

    Water quality in the Qu'Appelle River Basin, Saskatchewan is under pressure due to nutrient pollution entering the river system from major cities, industrial zones and agricultural areas. Among these stressors, agricultural activities are basin-wide; therefore, they are the largest non-point source of water pollution in this region. The dynamics of agricultural impacts on water quality are complex and stem from decisions and activities of two distinct stakeholder groups, namely grain farmers and cattle producers, which have different business plans, values, and attitudes towards water quality. As a result, improving water quality in this basin requires engaging with stakeholders to: (1) understand their perspectives regarding a range of agricultural Beneficial Management Practices (BMPs) that can improve water quality in the region, (2) show them the potential consequences of their selected BMPs, and (3) work with stakeholders to better understand the barriers and incentives to implement the effective BMPs. In this line, we held a series of workshops in the Qu'Appelle River Basin with both groups of stakeholders to understand stakeholders' viewpoints about alternative agricultural BMPs and their impact on water quality. Workshop participants were involved in the statement sorting activity (Q-sorts), group discussions, as well as mapping activity. The workshop outcomes show that stakeholder had four distinct viewpoints about the BMPs that can improve water quality, i.e., flow and erosion control, fertilizer management, cattle site management, as well as mixed cattle and wetland management. Accordingly, to simulate the consequences of stakeholder selected BMPs, a conceptual water quality model was developed using System Dynamics (SD). The model estimates potential changes in water quality at the farm, tributary and regional scale in the Qu'Appelle River Basin under each and/or combination of stakeholder selected BMPs. The SD model was then used for real

  9. Highway runoff quality models for the protection of environmentally sensitive areas

    NASA Astrophysics Data System (ADS)

    Trenouth, William R.; Gharabaghi, Bahram

    2016-11-01

    This paper presents novel highway runoff quality models using artificial neural networks (ANN) which take into account site-specific highway traffic and seasonal storm event meteorological factors to predict the event mean concentration (EMC) statistics and mean daily unit area load (MDUAL) statistics of common highway pollutants for the design of roadside ditch treatment systems (RDTS) to protect sensitive receiving environs. A dataset of 940 monitored highway runoff events from fourteen sites located in five countries (Canada, USA, Australia, New Zealand, and China) was compiled and used to develop ANN models for the prediction of highway runoff suspended solids (TSS) seasonal EMC statistical distribution parameters, as well as the MDUAL statistics for four different heavy metal species (Cu, Zn, Cr and Pb). TSS EMCs are needed to estimate the minimum required removal efficiency of the RDTS needed in order to improve highway runoff quality to meet applicable standards and MDUALs are needed to calculate the minimum required capacity of the RDTS to ensure performance longevity.

  10. Helicopter mathematical models and control law development for handling qualities research

    NASA Technical Reports Server (NTRS)

    Chen, Robert T. N.; Lebacqz, J. Victor; Aiken, Edwin W.; Tischler, Mark B.

    1988-01-01

    Progress made in joint NASA/Army research concerning rotorcraft flight-dynamics modeling, design methodologies for rotorcraft flight-control laws, and rotorcraft parameter identification is reviewed. Research into these interactive disciplines is needed to develop the analytical tools necessary to conduct flying qualities investigations using both the ground-based and in-flight simulators, and to permit an efficient means of performing flight test evaluation of rotorcraft flying qualities for specification compliance. The need for the research is particularly acute for rotorcraft because of their mathematical complexity, high order dynamic characteristics, and demanding mission requirements. The research in rotorcraft flight-dynamics modeling is pursued along two general directions: generic nonlinear models and nonlinear models for specific rotorcraft. In addition, linear models are generated that extend their utilization from 1-g flight to high-g maneuvers and expand their frequency range of validity for the design analysis of high-gain flight control systems. A variety of methods ranging from classical frequency-domain approaches to modern time-domain control methodology that are used in the design of rotorcraft flight control laws is reviewed. Also reviewed is a study conducted to investigate the design details associated with high-gain, digital flight control systems for combat rotorcraft. Parameter identification techniques developed for rotorcraft applications are reviewed.

  11. Air Quality Modeling for the Urban Jackson, Mississippi Region Using a High Resolution WRF/Chem Model

    PubMed Central

    Yerramilli, Anjaneyulu; Dodla, Venkata B.; Desamsetti, Srinivas; Challa, Srinivas V.; Young, John H.; Patrick, Chuck; Baham, Julius M.; Hughes, Robert L.; Yerramilli, Sudha; Tuluri, Francis; Hardy, Mark G.; Swanier, Shelton J.

    2011-01-01

    In this study, an attempt was made to simulate the air quality with reference to ozone over the Jackson (Mississippi) region using an online WRF/Chem (Weather Research and Forecasting–Chemistry) model. The WRF/Chem model has the advantages of the integration of the meteorological and chemistry modules with the same computational grid and same physical parameterizations and includes the feedback between the atmospheric chemistry and physical processes. The model was designed to have three nested domains with the inner-most domain covering the study region with a resolution of 1 km. The model was integrated for 48 hours continuously starting from 0000 UTC of 6 June 2006 and the evolution of surface ozone and other precursor pollutants were analyzed. The model simulated atmospheric flow fields and distributions of NO2 and O3 were evaluated for each of the three different time periods. The GIS based spatial distribution maps for ozone, its precursors NO, NO2, CO and HONO and the back trajectories indicate that all the mobile sources in Jackson, Ridgeland and Madison contributing significantly for their formation. The present study demonstrates the applicability of WRF/Chem model to generate quantitative information at high spatial and temporal resolution for the development of decision support systems for air quality regulatory agencies and health administrators. PMID:21776240

  12. Quality assessment concept of the World Data Center for Climate and its application to CMIP5 data

    NASA Astrophysics Data System (ADS)

    Stockhause, M.; Höck, H.; Toussaint, F.; Lautenschlager, M.

    2012-08-01

    The preservation of data in a high state of quality which is suitable for interdisciplinary use is one of the most pressing and challenging current issues in long-term archiving. For high volume data such as climate model data, the data and data replica are no longer stored centrally but distributed over several local data repositories, e.g. the data of the Climate Model Intercomparison Project Phase 5 (CMIP5). The most important part of the data is to be archived, assigned a DOI, and published according to the World Data Center for Climate's (WDCC) application of the DataCite regulations. The integrated part of WDCC's data publication process, the data quality assessment, was adapted to the requirements of a federated data infrastructure. A concept of a distributed and federated quality assessment procedure was developed, in which the workload and responsibility for quality control is shared between the three primary CMIP5 data centers: Program for Climate Model Diagnosis and Intercomparison (PCMDI), British Atmospheric Data Centre (BADC), and WDCC. This distributed quality control concept, its pilot implementation for CMIP5, and first experiences are presented. The distributed quality control approach is capable of identifying data inconsistencies and to make quality results immediately available for data creators, data users and data infrastructure managers. Continuous publication of new data versions and slow data replication prevents the quality control from check completion. This together with ongoing developments of the data and metadata infrastructure requires adaptations in code and concept of the distributed quality control approach.

  13. Inland-coastal water interaction: Remote sensing application for shallow-water quality and algal blooms modeling

    NASA Astrophysics Data System (ADS)

    Melesse, Assefa; Hajigholizadeh, Mohammad; Blakey, Tara

    2017-04-01

    In this study, Landsat 8 and Sea-Viewing Wide Field-of-View Sensor (SeaWIFS) sensors were used to model the spatiotemporal changes of four water quality parameters: Landsat 8 (turbidity, chlorophyll-a (chl-a), total phosphate, and total nitrogen) and Sea-Viewing Wide Field-of-View Sensor (SeaWIFS) (algal blooms). The study was conducted in Florda bay, south Florida and model outputs were compared with in-situ observed data. The Landsat 8 based study found that, the predictive models to estimate chl-a and turbidity concentrations, developed through the use of stepwise multiple linear regression (MLR), gave high coefficients of determination in dry season (wet season) (R2 = 0.86(0.66) for chl-a and R2 = 0.84(0.63) for turbidity). Total phosphate and TN were estimated using best-fit multiple linear regression models as a function of Landsat TM and OLI,127 and ground data and showed a high coefficient of determination in dry season (wet season) (R2 = 0.74(0.69) for total phosphate and R2 = 0.82(0.82) for TN). Similarly, the ability of SeaWIFS for chl-a retrieval from optically shallow coastal waters by applying algorithms specific to the pixels' benthic class was evaluated. Benthic class was determined through satellite image-based classification methods. It was found that benthic class based chl-a modeling algorithm was better than the existing regionally-tuned approach. Evaluation of the residuals indicated the potential for further improvement to chl-a estimation through finer characterization of benthic environments. Key words: Landsat, SeaWIFS, water quality, Florida bay, Chl-a, turbidity

  14. Root Zone Water Quality Model (RZWQM2): Model use, calibration, and validation

    USDA-ARS?s Scientific Manuscript database

    The Root Zone Water Quality Model (RZWQM2) has been used widely for simulating agricultural management effects on crop production and soil and water quality. Although it is a one-dimensional model it has many desirable features for the modeling community. This paper outlines the principles of calibr...

  15. [Application of Raman Spectroscopy Technique to Agricultural Products Quality and Safety Determination].

    PubMed

    Liu, Yan-de; Jin, Tan-tan

    2015-09-01

    The quality and safety of agricultural products and people health are inseparable. Using the conventional chemical methods which have so many defects, such as sample pretreatment, complicated operation process and destroying the samples. Raman spectroscopy as a powerful tool of analysing and testing molecular structure, can implement samples quickly without damage, qualitative and quantitative detection analysis. With the continuous improvement and the scope of the application of Raman spectroscopy technology gradually widen, Raman spectroscopy technique plays an important role in agricultural products quality and safety determination, and has wide application prospects. There have been a lot of related research reports based on Raman spectroscopy detection on agricultural product quality safety at present. For the understanding of the principle of detection and the current development situation of Raman spectroscopy, as well as tracking the latest research progress both at home and abroad, the basic principles and the development of Raman spectroscopy as well as the detection device were introduced briefly. The latest research progress of quality and safety determination in fruits and vegetables, livestock and grain by Raman spectroscopy technique were reviewed deeply. Its technical problems for agricultural products quality and safety determination were pointed out. In addition, the text also briefly introduces some information of Raman spectrometer and the application for patent of the portable Raman spectrometer, prospects the future research and application.

  16. Mindcontrol: A web application for brain segmentation quality control.

    PubMed

    Keshavan, Anisha; Datta, Esha; M McDonough, Ian; Madan, Christopher R; Jordan, Kesshi; Henry, Roland G

    2018-04-15

    Tissue classification plays a crucial role in the investigation of normal neural development, brain-behavior relationships, and the disease mechanisms of many psychiatric and neurological illnesses. Ensuring the accuracy of tissue classification is important for quality research and, in particular, the translation of imaging biomarkers to clinical practice. Assessment with the human eye is vital to correct various errors inherent to all currently available segmentation algorithms. Manual quality assurance becomes methodologically difficult at a large scale - a problem of increasing importance as the number of data sets is on the rise. To make this process more efficient, we have developed Mindcontrol, an open-source web application for the collaborative quality control of neuroimaging processing outputs. The Mindcontrol platform consists of a dashboard to organize data, descriptive visualizations to explore the data, an imaging viewer, and an in-browser annotation and editing toolbox for data curation and quality control. Mindcontrol is flexible and can be configured for the outputs of any software package in any data organization structure. Example configurations for three large, open-source datasets are presented: the 1000 Functional Connectomes Project (FCP), the Consortium for Reliability and Reproducibility (CoRR), and the Autism Brain Imaging Data Exchange (ABIDE) Collection. These demo applications link descriptive quality control metrics, regional brain volumes, and thickness scalars to a 3D imaging viewer and editing module, resulting in an easy-to-implement quality control protocol that can be scaled for any size and complexity of study. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Impact of influent data frequency and model structure on the quality of WWTP model calibration and uncertainty.

    PubMed

    Cierkens, Katrijn; Plano, Salvatore; Benedetti, Lorenzo; Weijers, Stefan; de Jonge, Jarno; Nopens, Ingmar

    2012-01-01

    Application of activated sludge models (ASMs) to full-scale wastewater treatment plants (WWTPs) is still hampered by the problem of model calibration of these over-parameterised models. This either requires expert knowledge or global methods that explore a large parameter space. However, a better balance in structure between the submodels (ASM, hydraulic, aeration, etc.) and improved quality of influent data result in much smaller calibration efforts. In this contribution, a methodology is proposed that links data frequency and model structure to calibration quality and output uncertainty. It is composed of defining the model structure, the input data, an automated calibration, confidence interval computation and uncertainty propagation to the model output. Apart from the last step, the methodology is applied to an existing WWTP using three models differing only in the aeration submodel. A sensitivity analysis was performed on all models, allowing the ranking of the most important parameters to select in the subsequent calibration step. The aeration submodel proved very important to get good NH(4) predictions. Finally, the impact of data frequency was explored. Lowering the frequency resulted in larger deviations of parameter estimates from their default values and larger confidence intervals. Autocorrelation due to high frequency calibration data has an opposite effect on the confidence intervals. The proposed methodology opens doors to facilitate and improve calibration efforts and to design measurement campaigns.

  18. Applications of Satellite Remote Sensing Products to Enhance and Evaluate the AIRPACT Regional Air Quality Modeling System

    NASA Astrophysics Data System (ADS)

    Herron-Thorpe, F. L.; Mount, G. H.; Emmons, L. K.; Lamb, B. K.; Jaffe, D. A.; Wigder, N. L.; Chung, S. H.; Zhang, R.; Woelfle, M.; Vaughan, J. K.; Leung, F. T.

    2013-12-01

    The WSU AIRPACT air quality modeling system for the Pacific Northwest forecasts hourly levels of aerosols and atmospheric trace gases for use in determining potential health and ecosystem impacts by air quality managers. AIRPACT uses the WRF/SMOKE/CMAQ modeling framework, derives dynamic boundary conditions from MOZART-4 forecast simulations with assimilated MOPITT CO, and uses the BlueSky framework to derive fire emissions. A suite of surface measurements and satellite-based remote sensing data products across the AIRPACT domain are used to evaluate and improve model performance. Specific investigations include anthropogenic emissions, wildfire simulations, and the effects of long-range transport on surface ozone. In this work we synthesize results for multiple comparisons of AIRPACT with satellite products such as IASI ammonia, AIRS carbon monoxide, MODIS AOD, OMI tropospheric ozone and nitrogen dioxide, and MISR plume height. Features and benefits of the newest version of AIRPACT's web-interface are also presented.

  19. A database and tool for boundary conditions for regional air quality modeling: description and evaluation

    NASA Astrophysics Data System (ADS)

    Henderson, B. H.; Akhtar, F.; Pye, H. O. T.; Napelenok, S. L.; Hutzell, W. T.

    2014-02-01

    Transported air pollutants receive increasing attention as regulations tighten and global concentrations increase. The need to represent international transport in regional air quality assessments requires improved representation of boundary concentrations. Currently available observations are too sparse vertically to provide boundary information, particularly for ozone precursors, but global simulations can be used to generate spatially and temporally varying lateral boundary conditions (LBC). This study presents a public database of global simulations designed and evaluated for use as LBC for air quality models (AQMs). The database covers the contiguous United States (CONUS) for the years 2001-2010 and contains hourly varying concentrations of ozone, aerosols, and their precursors. The database is complemented by a tool for configuring the global results as inputs to regional scale models (e.g., Community Multiscale Air Quality or Comprehensive Air quality Model with extensions). This study also presents an example application based on the CONUS domain, which is evaluated against satellite retrieved ozone and carbon monoxide vertical profiles. The results show performance is largely within uncertainty estimates for ozone from the Ozone Monitoring Instrument and carbon monoxide from the Measurements Of Pollution In The Troposphere (MOPITT), but there were some notable biases compared with Tropospheric Emission Spectrometer (TES) ozone. Compared with TES, our ozone predictions are high-biased in the upper troposphere, particularly in the south during January. This publication documents the global simulation database, the tool for conversion to LBC, and the evaluation of concentrations on the boundaries. This documentation is intended to support applications that require representation of long-range transport of air pollutants.

  20. Burn injury models of care: A review of quality and cultural safety for care of Indigenous children.

    PubMed

    Fraser, Sarah; Grant, Julian; Mackean, Tamara; Hunter, Kate; Holland, Andrew J A; Clapham, Kathleen; Teague, Warwick J; Ivers, Rebecca Q

    2018-05-01

    Safety and quality in the systematic management of burn care is important to ensure optimal outcomes. It is not clear if or how burn injury models of care uphold these qualities, or if they provide a space for culturally safe healthcare for Indigenous peoples, especially for children. This review is a critique of publically available models of care analysing their ability to facilitate safe, high-quality burn care for Indigenous children. Models of care were identified and mapped against cultural safety principles in healthcare, and against the National Health and Medical Research Council standard for clinical practice guidelines. An initial search and appraisal of tools was conducted to assess suitability of the tools in providing a mechanism to address quality and cultural safety. From the 53 documents found, 6 were eligible for review. Aspects of cultural safety were addressed in the models, but not explicitly, and were recorded very differently across all models. There was also limited or no cultural consultation documented in the models of care reviewed. Quality in the documents against National Health and Medical Research Council guidelines was evident; however, description or application of quality measures was inconsistent and incomplete. Gaps concerning safety and quality in the documented care pathways for Indigenous peoples' who sustain a burn injury and require burn care highlight the need for investigation and reform of current practices. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  1. Reduced-form air quality modeling for community-scale ...

    EPA Pesticide Factsheets

    Transportation plays an important role in modern society, but its impact on air quality has been shown to have significant adverse effects on public health. Numerous reviews (HEI, CDC, WHO) summarizing findings of hundreds of studies conducted mainly in the last decade, conclude that exposures to traffic emissions near roads are a public health concern. The Community LINE Source Model (C-LINE) is a web-based model designed to inform the community user of local air quality impacts due to roadway vehicles in their region of interest using a simplified modeling approach. Reduced-form air quality modeling is a useful tool for examining what-if scenarios of changes in emissions, such as those due to changes in traffic volume, fleet mix, or vehicle speed. Examining various scenarios of air quality impacts in this way can identify potentially at-risk populations located near roadways, and the effects that a change in traffic activity may have on them. C-LINE computes dispersion of primary mobile source pollutants using meteorological conditions for the region of interest and computes air-quality concentrations corresponding to these selected conditions. C-LINE functionality has been expanded to model emissions from port-related activities (e.g. ships, trucks, cranes, etc.) in a reduced-form modeling system for local-scale near-port air quality analysis. This presentation describes the Community modeling tools C-LINE and C-PORT that are intended to be used by local gove

  2. Application of the PRECEDE model to understanding mental health promoting behaviors in Hong Kong.

    PubMed

    Mo, Phoenix K H; Mak, Winnie W S

    2008-08-01

    The burdens related to mental illness have been increasingly recognized in many countries. Nevertheless, research in positive mental health behaviors remains scarce. This study utilizes the Predisposing, Reinforcing, and Enabling Causes in Education Diagnosis and Evaluation (PRECEDE) model to identify factors associated with mental health promoting behaviors and to examine the effects of these behaviors on mental well-being and quality of life among 941 adults in Hong Kong. Structural equation modeling shows that sense of coherence (predisposing factor), social support (reinforcing factor), and daily hassles (enabling factor) are significantly related to mental health promoting behaviors, which are associated with mental well-being and quality of life. Results of bootstrap analyses confirm the mediating role of mental health promoting behaviors on well-being and quality of life. The study supports the application of the PRECEDE model in understanding mental health promoting behaviors and demonstrates its relationships with well-being and quality of life.

  3. Reduced-form air quality modeling for community-scale applications

    EPA Science Inventory

    Transportation plays an important role in modern society, but its impact on air quality has been shown to have significant adverse effects on public health. Numerous reviews (HEI, CDC, WHO) summarizing findings of hundreds of studies conducted mainly in the last decade, conclude ...

  4. Data Applicability of Heritage and New Hardware for Launch Vehicle System Reliability Models

    NASA Technical Reports Server (NTRS)

    Al Hassan Mohammad; Novack, Steven

    2015-01-01

    Many launch vehicle systems are designed and developed using heritage and new hardware. In most cases, the heritage hardware undergoes modifications to fit new functional system requirements, impacting the failure rates and, ultimately, the reliability data. New hardware, which lacks historical data, is often compared to like systems when estimating failure rates. Some qualification of applicability for the data source to the current system should be made. Accurately characterizing the reliability data applicability and quality under these circumstances is crucial to developing model estimations that support confident decisions on design changes and trade studies. This presentation will demonstrate a data-source classification method that ranks reliability data according to applicability and quality criteria to a new launch vehicle. This method accounts for similarities/dissimilarities in source and applicability, as well as operating environments like vibrations, acoustic regime, and shock. This classification approach will be followed by uncertainty-importance routines to assess the need for additional data to reduce uncertainty.

  5. The Aura Mission and Its Application to Climate and Air Quality

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest; Schoeberl, Mark; Douglass, Anne

    2003-01-01

    NASA's Aura satellite is scheduled to launch in the second quarter of 2004 into a polar orbit. The Aura mission is designed to collect data to address three high priority environmental science questions: (1) Is the ozone layer recovering as expected? (2) What are the sources and processes that control tropospheric pollutants? And (3) what is the quantitative impact of constituents on climate change? Aura will answer these questions by globally measuring a comprehensive set of trace gases and aerosols in the troposphere and stratosphere. Aura data will also have applications for monitoring and predicting climate and air quality parameters. Aura s observations will continue the TOMS ozone trend record and provide an assessment as to whether the Montreal Protocol is achieving its objective. Aura will measure gases and aerosols in the upper troposphere and lower stratosphere that contribute to climate forcing. These data will be of sufficient coverage, vertical resolution, and accuracy to help constrain climate models. In addition, Aura observations of tropospheric ozone and its precursors will have regional as well as intercontinental coverage, which could improve emission inventories. Near real time data will tested for local air quality forecasts in collaboration with the US's Environmental Protection UV-B forecasts from Aura ozone and cloud cover data. An overview of Aura s instruments, data products, validation, and examples of data applications will be presented.

  6. Satellite Models for Global Environmental Change in the NASA Health and Air Quality Programs

    NASA Astrophysics Data System (ADS)

    Haynes, J.; Estes, S. M.

    2015-12-01

    Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. Health and Air Quality providers and researchers are effective by the global environmental changes that are occurring and they need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. This presentation maintains a diverse constellation of Earth observing research satellites and sponsors research in developing satellite data applications across a wide spectrum of areas including environmental health; infectious disease; air quality standards, policies, and regulations; and the impact of climate change on health and air quality. Successfully providing predictions with the accuracy and specificity required by decision makers will require advancements over current capabilities in a number of interrelated areas. These areas include observations, modeling systems, forecast development, application integration, and the research to operations transition process. This presentation will highlight many projects on which NASA satellites have been a primary partner with local, state, Federal, and international operational agencies over the past twelve years in these areas. Domestic and International officials have increasingly recognized links between environment and health. Health providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the health research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Health Models to provide a method for bridging gaps of environmental

  7. Optimal Non-Invasive Fault Classification Model for Packaged Ceramic Tile Quality Monitoring Using MMW Imaging

    NASA Astrophysics Data System (ADS)

    Agarwal, Smriti; Singh, Dharmendra

    2016-04-01

    Millimeter wave (MMW) frequency has emerged as an efficient tool for different stand-off imaging applications. In this paper, we have dealt with a novel MMW imaging application, i.e., non-invasive packaged goods quality estimation for industrial quality monitoring applications. An active MMW imaging radar operating at 60 GHz has been ingeniously designed for concealed fault estimation. Ceramic tiles covered with commonly used packaging cardboard were used as concealed targets for undercover fault classification. A comparison of computer vision-based state-of-the-art feature extraction techniques, viz, discrete Fourier transform (DFT), wavelet transform (WT), principal component analysis (PCA), gray level co-occurrence texture (GLCM), and histogram of oriented gradient (HOG) has been done with respect to their efficient and differentiable feature vector generation capability for undercover target fault classification. An extensive number of experiments were performed with different ceramic tile fault configurations, viz., vertical crack, horizontal crack, random crack, diagonal crack along with the non-faulty tiles. Further, an independent algorithm validation was done demonstrating classification accuracy: 80, 86.67, 73.33, and 93.33 % for DFT, WT, PCA, GLCM, and HOG feature-based artificial neural network (ANN) classifier models, respectively. Classification results show good capability for HOG feature extraction technique towards non-destructive quality inspection with appreciably low false alarm as compared to other techniques. Thereby, a robust and optimal image feature-based neural network classification model has been proposed for non-invasive, automatic fault monitoring for a financially and commercially competent industrial growth.

  8. Photochemical Modeling Applications

    EPA Pesticide Factsheets

    Provides access to modeling applications involving photochemical models, including modeling of ozone, particulate matter (PM), and mercury for national and regional EPA regulations such as the Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule

  9. The Atlanta Urban Heat Island Mitigation and Air Quality Modeling Project: How High-Resoution Remote Sensing Data Can Improve Air Quality Models

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William L.; Khan, Maudood N.

    2006-01-01

    The Atlanta Urban Heat Island and Air Quality Project had its genesis in Project ATLANTA (ATlanta Land use Analysis: Temperature and Air quality) that began in 1996. Project ATLANTA examined how high-spatial resolution thermal remote sensing data could be used to derive better measurements of the Urban Heat Island effect over Atlanta. We have explored how these thermal remote sensing, as well as other imaged datasets, can be used to better characterize the urban landscape for improved air quality modeling over the Atlanta area. For the air quality modeling project, the National Land Cover Dataset and the local scale Landpro99 dataset at 30m spatial resolutions have been used to derive land use/land cover characteristics for input into the MM5 mesoscale meteorological model that is one of the foundations for the Community Multiscale Air Quality (CMAQ) model to assess how these data can improve output from CMAQ. Additionally, land use changes to 2030 have been predicted using a Spatial Growth Model (SGM). SGM simulates growth around a region using population, employment and travel demand forecasts. Air quality modeling simulations were conducted using both current and future land cover. Meteorological modeling simulations indicate a 0.5 C increase in daily maximum air temperatures by 2030. Air quality modeling simulations show substantial differences in relative contributions of individual atmospheric pollutant constituents as a result of land cover change. Enhanced boundary layer mixing over the city tends to offset the increase in ozone concentration expected due to higher surface temperatures as a result of urbanization.

  10. Application of ion-sensitive sensors in water quality monitoring.

    PubMed

    Winkler, S; Rieger, L; Saracevic, E; Pressl, A; Gruber, G

    2004-01-01

    Within the last years a trend towards in-situ monitoring can be observed, i.e. most new sensors for water quality monitoring are designed for direct installation in the medium, compact in size and use measurement principles which minimise maintenance demand. Ion-sensitive sensors (Ion-Sensitive-Electrode--ISE) are based on a well known measurement principle and recently some manufacturers have released probe types which are specially adapted for application in water quality monitoring. The function principle of ISE-sensors, their advantages, limitations and the different methods for sensor calibration are described. Experiences with ISE-sensors from applications in sewer networks, at different sampling points within wastewater treatment plants and for surface water monitoring are reported. An estimation of investment and operation costs in comparison to other sensor types is given.

  11. Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulation Approaches: A Systematic Review of Published Models, Applications, and Model Verification

    PubMed Central

    Sager, Jennifer E.; Yu, Jingjing; Ragueneau-Majlessi, Isabelle

    2015-01-01

    Modeling and simulation of drug disposition has emerged as an important tool in drug development, clinical study design and regulatory review, and the number of physiologically based pharmacokinetic (PBPK) modeling related publications and regulatory submissions have risen dramatically in recent years. However, the extent of use of PBPK modeling by researchers, and the public availability of models has not been systematically evaluated. This review evaluates PBPK-related publications to 1) identify the common applications of PBPK modeling; 2) determine ways in which models are developed; 3) establish how model quality is assessed; and 4) provide a list of publically available PBPK models for sensitive P450 and transporter substrates as well as selective inhibitors and inducers. PubMed searches were conducted using the terms “PBPK” and “physiologically based pharmacokinetic model” to collect published models. Only papers on PBPK modeling of pharmaceutical agents in humans published in English between 2008 and May 2015 were reviewed. A total of 366 PBPK-related articles met the search criteria, with the number of articles published per year rising steadily. Published models were most commonly used for drug-drug interaction predictions (28%), followed by interindividual variability and general clinical pharmacokinetic predictions (23%), formulation or absorption modeling (12%), and predicting age-related changes in pharmacokinetics and disposition (10%). In total, 106 models of sensitive substrates, inhibitors, and inducers were identified. An in-depth analysis of the model development and verification revealed a lack of consistency in model development and quality assessment practices, demonstrating a need for development of best-practice guidelines. PMID:26296709

  12. INDOOR AIR QUALITY MODELING (CHAPTER 58)

    EPA Science Inventory

    The chapter discussses indoor air quality (IAQ) modeling. Such modeling provides a way to investigate many IAQ problems without the expense of large field experiments. Where experiments are planned, IAQ models can be used to help design experiments by providing information on exp...

  13. A Middleware with Comprehensive Quality of Context Support for the Internet of Things Applications

    PubMed Central

    Gomes, Berto de Tácio Pereira; Muniz, Luiz Carlos Melo; dos Santos, Davi Viana; Lopes, Rafael Fernandes; Coutinho, Luciano Reis; Carvalho, Felipe Oliveira; Endler, Markus

    2017-01-01

    Context aware systems are able to adapt their behavior according to the environment in which the user is. They can be integrated into an Internet of Things (IoT) infrastructure, allowing a better perception of the user’s physical environment by collecting context data from sensors embedded in devices known as smart objects. An IoT extension called the Internet of Mobile Things (IoMT) suggests new scenarios in which smart objects and IoT gateways can move autonomously or be moved easily. In a comprehensive view, Quality of Context (QoC) is a term that can express quality requirements of context aware applications. These requirements can be those related to the quality of information provided by the sensors (e.g., accuracy, resolution, age, validity time) or those referring to the quality of the data distribution service (e.g, reliability, delay, delivery time). Some functionalities of context aware applications and/or decision-making processes of these applications and their users depend on the level of quality of context available, which tend to vary over time for various reasons. Reviewing the literature, it is possible to verify that the quality of context support provided by IoT-oriented middleware systems still has limitations in relation to at least four relevant aspects: (i) quality of context provisioning; (ii) quality of context monitoring; (iii) support for heterogeneous device and technology management; (iv) support for reliable data delivery in mobility scenarios. This paper presents two main contributions: (i) a state-of-the-art survey specifically aimed at analyzing the middleware with quality of context support and; (ii) a new middleware with comprehensive quality of context support for Internet of Things Applications. The proposed middleware was evaluated and the results are presented and discussed in this article, which also shows a case study involving the development of a mobile remote patient monitoring application that was developed using the

  14. A Middleware with Comprehensive Quality of Context Support for the Internet of Things Applications.

    PubMed

    Gomes, Berto de Tácio Pereira; Muniz, Luiz Carlos Melo; da Silva E Silva, Francisco José; Dos Santos, Davi Viana; Lopes, Rafael Fernandes; Coutinho, Luciano Reis; Carvalho, Felipe Oliveira; Endler, Markus

    2017-12-08

    Context aware systems are able to adapt their behavior according to the environment in which the user is. They can be integrated into an Internet of Things (IoT) infrastructure, allowing a better perception of the user's physical environment by collecting context data from sensors embedded in devices known as smart objects. An IoT extension called the Internet of Mobile Things (IoMT) suggests new scenarios in which smart objects and IoT gateways can move autonomously or be moved easily. In a comprehensive view, Quality of Context (QoC) is a term that can express quality requirements of context aware applications. These requirements can be those related to the quality of information provided by the sensors (e.g., accuracy, resolution, age, validity time) or those referring to the quality of the data distribution service (e.g, reliability, delay, delivery time). Some functionalities of context aware applications and/or decision-making processes of these applications and their users depend on the level of quality of context available, which tend to vary over time for various reasons. Reviewing the literature, it is possible to verify that the quality of context support provided by IoT-oriented middleware systems still has limitations in relation to at least four relevant aspects: (i) quality of context provisioning; (ii) quality of context monitoring; (iii) support for heterogeneous device and technology management; (iv) support for reliable data delivery in mobility scenarios. This paper presents two main contributions: (i) a state-of-the-art survey specifically aimed at analyzing the middleware with quality of context support and; (ii) a new middleware with comprehensive quality of context support for Internet of Things Applications. The proposed middleware was evaluated and the results are presented and discussed in this article, which also shows a case study involving the development of a mobile remote patient monitoring application that was developed using the

  15. Quality Assurance Model for Digital Adult Education Materials

    ERIC Educational Resources Information Center

    Dimou, Helen; Kameas, Achilles

    2016-01-01

    Purpose: This paper aims to present a model for the quality assurance of digital educational material that is appropriate for adult education. The proposed model adopts the software quality standard ISO/IEC 9126 and takes into account adult learning theories, Bloom's taxonomy of learning objectives and two instructional design models: Kolb's model…

  16. A model of chromosome aberration induction: applications to space research.

    PubMed

    Ballarini, Francesca; Ottolenghi, Andrea

    2005-10-01

    A mechanistic model and Monte Carlo code simulating chromosome aberration induction in human lymphocytes is presented. The model is based on the assumption that aberrations arise from clustered DNA lesions and that only the free ends of clustered lesions created in neighboring chromosome territories or in the same territory can join and produce exchanges. The lesions are distributed in the cell nucleus according to the radiation track structure. Interphase chromosome territories are modeled as compact intranuclear regions with volumes proportional to the chromosome DNA contents. Both Giemsa staining and FISH painting can be simulated, and background aberrations can be taken into account. The good agreement with in vitro data provides validation of the model in terms of both the assumptions adopted and the simulation techniques. As an application in the field of space research, the model predictions were compared with aberration yields measured among crew members of long-term missions on board Mir and ISS, assuming an average radiation quality factor of 2.4. The agreement obtained also validated the model for in vivo exposure scenarios and suggested possible applications to the prediction of other relevant aberrations, typically translocations.

  17. Validation, Edits, and Application Processing Phase II and Error-Prone Model Report.

    ERIC Educational Resources Information Center

    Gray, Susan; And Others

    The impact of quality assurance procedures on the correct award of Basic Educational Opportunity Grants (BEOGs) for 1979-1980 was assessed, and a model for detecting error-prone applications early in processing was developed. The Bureau of Student Financial Aid introduced new comments into the edit system in 1979 and expanded the pre-established…

  18. Extending the Community Multiscale Air Quality (CMAQ) Modeling System to Hemispheric Scales: Overview of Process Considerations and Initial Applications

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) modeling system is extended to simulate ozone, particulate matter, and related precursor distributions throughout the Northern Hemisphere. Modeled processes were examined and enhanced to suitably represent the extended space and timesca...

  19. Application of Kolomogorov-Zurbenko Filter and the decoupled direct 3D method for the dynamic evaluation of a regional air quality model

    EPA Science Inventory

    Regional air quality models are being used in a policy-setting to estimate the response of air pollutant concentrations to changes in emissions and meteorology. Dynamic evaluation entails examination of a retrospective case(s) to assess whether an air quality model has properly p...

  20. Random Forest Application for NEXRAD Radar Data Quality Control

    NASA Astrophysics Data System (ADS)

    Keem, M.; Seo, B. C.; Krajewski, W. F.

    2017-12-01

    Identification and elimination of non-meteorological radar echoes (e.g., returns from ground, wind turbines, and biological targets) are the basic data quality control steps before radar data use in quantitative applications (e.g., precipitation estimation). Although WSR-88Ds' recent upgrade to dual-polarization has enhanced this quality control and echo classification, there are still challenges to detect some non-meteorological echoes that show precipitation-like characteristics (e.g., wind turbine or anomalous propagation clutter embedded in rain). With this in mind, a new quality control method using Random Forest is proposed in this study. This classification algorithm is known to produce reliable results with less uncertainty. The method introduces randomness into sampling and feature selections and integrates consequent multiple decision trees. The multidimensional structure of the trees can characterize the statistical interactions of involved multiple features in complex situations. The authors explore the performance of Random Forest method for NEXRAD radar data quality control. Training datasets are selected using several clear cases of precipitation and non-precipitation (but with some non-meteorological echoes). The model is structured using available candidate features (from the NEXRAD data) such as horizontal reflectivity, differential reflectivity, differential phase shift, copolar correlation coefficient, and their horizontal textures (e.g., local standard deviation). The influence of each feature on classification results are quantified by variable importance measures that are automatically estimated by the Random Forest algorithm. Therefore, the number and types of features in the final forest can be examined based on the classification accuracy. The authors demonstrate the capability of the proposed approach using several cases ranging from distinct to complex rain/no-rain events and compare the performance with the existing algorithms (e

  1. USE OF REMOTE SENSING AIR QUALITY INFORMATION IN REGIONAL SCALE AIR POLLUTION MODELING: CURRENT USE AND REQUIREMENTS

    EPA Science Inventory

    In recent years the applications of regional air quality models are continuously being extended to address atmospheric pollution phenomenon from local to hemispheric spatial scales over time scales ranging from episodic to annual. The need to represent interactions between physic...

  2. DockQ: A Quality Measure for Protein-Protein Docking Models

    PubMed Central

    Basu, Sankar

    2016-01-01

    The state-of-the-art to assess the structural quality of docking models is currently based on three related yet independent quality measures: Fnat, LRMS, and iRMS as proposed and standardized by CAPRI. These quality measures quantify different aspects of the quality of a particular docking model and need to be viewed together to reveal the true quality, e.g. a model with relatively poor LRMS (>10Å) might still qualify as 'acceptable' with a descent Fnat (>0.50) and iRMS (<3.0Å). This is also the reason why the so called CAPRI criteria for assessing the quality of docking models is defined by applying various ad-hoc cutoffs on these measures to classify a docking model into the four classes: Incorrect, Acceptable, Medium, or High quality. This classification has been useful in CAPRI, but since models are grouped in only four bins it is also rather limiting, making it difficult to rank models, correlate with scoring functions or use it as target function in machine learning algorithms. Here, we present DockQ, a continuous protein-protein docking model quality measure derived by combining Fnat, LRMS, and iRMS to a single score in the range [0, 1] that can be used to assess the quality of protein docking models. By using DockQ on CAPRI models it is possible to almost completely reproduce the original CAPRI classification into Incorrect, Acceptable, Medium and High quality. An average PPV of 94% at 90% Recall demonstrating that there is no need to apply predefined ad-hoc cutoffs to classify docking models. Since DockQ recapitulates the CAPRI classification almost perfectly, it can be viewed as a higher resolution version of the CAPRI classification, making it possible to estimate model quality in a more quantitative way using Z-scores or sum of top ranked models, which has been so valuable for the CASP community. The possibility to directly correlate a quality measure to a scoring function has been crucial for the development of scoring functions for protein structure

  3. Community Multiscale Air Quality Modeling System (CMAQ)

    EPA Pesticide Factsheets

    CMAQ is a computational tool used for air quality management. It models air pollutants including ozone, particulate matter and other air toxics to help determine optimum air quality management scenarios.

  4. The Educational Situation Quality Model: Recent Advances

    PubMed Central

    Doménech-Betoret, Fernando

    2018-01-01

    The purpose of this work was to present an educational model developed in recent years entitled the “The Educational Situation Quality Model” (MOCSE, acronym in Spanish). MOCSE can be defined as an instructional model that simultaneously considers the teaching-learning process, where motivation plays a central role. It explains the functioning of an educational setting by organizing and relating the most important variables which, according to the literature, contribute to student learning. Besides being a conceptual framework, this model also provides a methodological procedure to guide research and to promote reflection in the classroom. It allows teachers to implement effective research-action programs to improve teacher–students satisfaction and learning outcomes in the classroom context. This work explains the model’s characteristics and functioning, recent advances, and how teachers can use it in an educational setting with a specific subject. This proposal integrates approaches from several relevant psycho-educational theories and introduces a new perspective into the existing literature that will allow researchers to make progress in studying educational setting functioning. The initial MOCSE configuration has been refined over time in accordance with the empirical results obtained from previous research, carried out within the MOCSE framework and with the subsequent reflections that derived from these results. Finally, the contribution of the model to improve learning outcomes and satisfaction, and its applicability in the classroom, are also discussed. PMID:29593623

  5. Reflexion on linear regression trip production modelling method for ensuring good model quality

    NASA Astrophysics Data System (ADS)

    Suprayitno, Hitapriya; Ratnasari, Vita

    2017-11-01

    Transport Modelling is important. For certain cases, the conventional model still has to be used, in which having a good trip production model is capital. A good model can only be obtained from a good sample. Two of the basic principles of a good sampling is having a sample capable to represent the population characteristics and capable to produce an acceptable error at a certain confidence level. It seems that this principle is not yet quite understood and used in trip production modeling. Therefore, investigating the Trip Production Modelling practice in Indonesia and try to formulate a better modeling method for ensuring the Model Quality is necessary. This research result is presented as follows. Statistics knows a method to calculate span of prediction value at a certain confidence level for linear regression, which is called Confidence Interval of Predicted Value. The common modeling practice uses R2 as the principal quality measure, the sampling practice varies and not always conform to the sampling principles. An experiment indicates that small sample is already capable to give excellent R2 value and sample composition can significantly change the model. Hence, good R2 value, in fact, does not always mean good model quality. These lead to three basic ideas for ensuring good model quality, i.e. reformulating quality measure, calculation procedure, and sampling method. A quality measure is defined as having a good R2 value and a good Confidence Interval of Predicted Value. Calculation procedure must incorporate statistical calculation method and appropriate statistical tests needed. A good sampling method must incorporate random well distributed stratified sampling with a certain minimum number of samples. These three ideas need to be more developed and tested.

  6. Modelling of catchment nitrogen concentrations response to observed varying fertilizer application intensities

    NASA Astrophysics Data System (ADS)

    Jomaa, Seifeddine; Jiang, Sanyuan; Yang, Xiaoqiang; Rode, Michael

    2016-04-01

    Eutrophication is a serious environmental problem. Despite numerous experimental and modelling efforts, understanding of the effect of land use and agriculture practices on in-stream nitrogen fluxes is still not fully achieved. This study combined intensive field monitoring and numerical modelling using 30 years of surface water quality data of a drinking water reservoir catchment in central Germany. The Weida catchment (99.5 km2) is part of the Elbe river basin and has a share of 67% of agricultural land use with significant changes in agricultural practices within the investigation period. The geology of the Weida catchment is characterized by clay schists and eruptive rocks, where rocks have low permeability. The semi-distributed hydrological water quality HYPE (Hydrological Predictions for the Environment) model was used to reproduce the measured data. First, the model was calibrated for discharge and nitrate-N concentrations (NO3-N) during the period 1997-2000. Then, the HYPE model was validated successfully for three different periods 1983-1987, 1989-1996 and 2000-2003, which are charaterized by different fertilizer application rates (with lowest discharge prediction performance of NSE = 0.78 and PBIAS = 3.74%, considering calibration and validation periods). Results showed that the measured as well as simulated in-stream nitrate-N concentration respond quickly to fertilizer application changes (increase/decrease). This rapid response can be explained with short residence times of interflow and baseflow runoff components due to the hardrock geological properties of the catchment. Results revealed that the surface runoff and interflow are the most dominant runoff components. HYPE model could reproduce reasonably well the NO3-N daily loads for varying fertilizer application, when detailed input data in terms of crop management (field-specific survey) are considered.

  7. Photochemical grid model implementation and application of ...

    EPA Pesticide Factsheets

    For the purposes of developing optimal emissions control strategies, efficient approaches are needed to identify the major sources or groups of sources that contribute to elevated ozone (O3) concentrations. Source-based apportionment techniques implemented in photochemical grid models track sources through the physical and chemical processes important to the formation and transport of air pollutants. Photochemical model source apportionment has been used to track source impacts of specific sources, groups of sources (sectors), sources in specific geographic areas, and stratospheric and lateral boundary inflow on O3. The implementation and application of a source apportionment technique for O3 and its precursors, nitrogen oxides (NOx) and volatile organic compounds (VOCs), for the Community Multiscale Air Quality (CMAQ) model are described here. The Integrated Source Apportionment Method (ISAM) O3 approach is a hybrid of source apportionment and source sensitivity in that O3 production is attributed to precursor sources based on O3 formation regime (e.g., for a NOx-sensitive regime, O3 is apportioned to participating NOx emissions). This implementation is illustrated by tracking multiple emissions source sectors and lateral boundary inflow. NOx, VOC, and O3 attribution to tracked sectors in the application are consistent with spatial and temporal patterns of precursor emissions. The O3 ISAM implementation is further evaluated through comparisons of apportioned am

  8. ISO 9000 Quality Systems: Application to Higher Education.

    ERIC Educational Resources Information Center

    Clery, Roger G.

    This paper describes and explains the 20 elements of the International Organization for Standards 9000 (ISO 9000) series, a model for quality assurance in the business processes of design/development, production, installation and servicing. The standards were designed in 1987 to provide a common denominator for business quality particularly to…

  9. Capturing nonlocal interaction effects in the Hubbard model: Optimal mappings and limits of applicability

    NASA Astrophysics Data System (ADS)

    van Loon, E. G. C. P.; Schüler, M.; Katsnelson, M. I.; Wehling, T. O.

    2016-10-01

    We investigate the Peierls-Feynman-Bogoliubov variational principle to map Hubbard models with nonlocal interactions to effective models with only local interactions. We study the renormalization of the local interaction induced by nearest-neighbor interaction and assess the quality of the effective Hubbard models in reproducing observables of the corresponding extended Hubbard models. We compare the renormalization of the local interactions as obtained from numerically exact determinant quantum Monte Carlo to approximate but more generally applicable calculations using dual boson, dynamical mean field theory, and the random phase approximation. These more approximate approaches are crucial for any application with real materials in mind. Furthermore, we use the dual boson method to calculate observables of the extended Hubbard models directly and benchmark these against determinant quantum Monte Carlo simulations of the effective Hubbard model.

  10. Extending the Applicability of the Community Multiscale Air Quality Model to Hemispheric Scales: Motivation, Challenges, and Progress

    EPA Science Inventory

    The adaptation of the Community Multiscale Air Quality (CMAQ) modeling system to simulate O3, particulate matter, and related precursor distributions over the northern hemisphere is presented. Hemispheric simulations with CMAQ and the Weather Research and Forecasting (...

  11. Evaluation Methodology for UML and GML Application Schemas Quality

    NASA Astrophysics Data System (ADS)

    Chojka, Agnieszka

    2014-05-01

    INSPIRE Directive implementation in Poland has caused the significant increase of interest in making spatial data and services available, particularly among public administration and private institutions. This entailed a series of initiatives that aim to harmonise different spatial data sets, so to ensure their internal logical and semantic coherence. Harmonisation lets to reach the interoperability of spatial databases, then among other things enables joining them together. The process of harmonisation requires either working out new data structures or adjusting existing data structures of spatial databases to INSPIRE guidelines and recommendations. Data structures are described with the use of UML and GML application schemas. Although working out accurate and correct application schemas isn't an easy task. There should be considered many issues, for instance recommendations of ISO 19100 series of Geographic Information Standards, appropriate regulations for given problem or topic, production opportunities and limitations (software, tools). In addition, GML application schema is deeply connected with UML application schema, it should be its translation. Not everything that can be expressed in UML, though can be directly expressed in GML, and this can have significant influence on the spatial data sets interoperability, and thereby the ability to valid data exchange. For these reasons, the capability to examine and estimate UML and GML application schemas quality, therein also the capability to explore their entropy, would be very important. The principal subject of this research is to propose an evaluation methodology for UML and GML application schemas quality prepared in the Head Office of Geodesy and Cartography in Poland within the INSPIRE Directive implementation works.

  12. COMMUNITY MULTISCALE AIR QUALITY MODELING SYSTEM (ONE ATMOSPHERE)

    EPA Science Inventory

    This task supports ORD's strategy by providing responsive technical support of EPA's mission and provides credible state of the art air quality models and guidance. This research effort is to develop and improve the Community Multiscale Air Quality (CMAQ) modeling system, a mu...

  13. An Application of Six Sigma to Reduce Supplier Quality Cost

    NASA Astrophysics Data System (ADS)

    Gaikwad, Lokpriya Mohanrao; Teli, Shivagond Nagappa; Majali, Vijay Shashikant; Bhushi, Umesh Mahadevappa

    2016-01-01

    This article presents an application of Six Sigma to reduce supplier quality cost in manufacturing industry. Although there is a wider acceptance of Six Sigma in many organizations today, there is still a lack of in-depth case study of Six Sigma. For the present research the case study methodology was used. The company decided to reduce quality cost and improve selected processes using Six Sigma methodologies. Regarding the fact that there is a lack of case studies dealing with Six Sigma especially in individual manufacturing organization this article could be of great importance also for the practitioners. This paper discusses the quality and productivity improvement in a supplier enterprise through a case study. The paper deals with an application of Six Sigma define-measure-analyze-improve-control methodology in an industry which provides a framework to identify, quantify and eliminate sources of variation in an operational process in question, to optimize the operation variables, improve and sustain performance viz. process yield with well-executed control plans. Six Sigma improves the process performance (process yield) of the critical operational process, leading to better utilization of resources, decreases variations and maintains consistent quality of the process output.

  14. Research and Application of an Air Quality Early Warning System Based on a Modified Least Squares Support Vector Machine and a Cloud Model.

    PubMed

    Wang, Jianzhou; Niu, Tong; Wang, Rui

    2017-03-02

    The worsening atmospheric pollution increases the necessity of air quality early warning systems (EWSs). Despite the fact that a massive amount of investigation about EWS in theory and practicality has been conducted by numerous researchers, studies concerning the quantification of uncertain information and comprehensive evaluation are still lacking, which impedes further development in the area. In this paper, firstly a comprehensive warning system is proposed, which consists of two vital indispensable modules, namely effective forecasting and scientific evaluation, respectively. For the forecasting module, a novel hybrid model combining the theory of data preprocessing and numerical optimization is first developed to implement effective forecasting for air pollutant concentration. Especially, in order to further enhance the accuracy and robustness of the warning system, interval forecasting is implemented to quantify the uncertainties generated by forecasts, which can provide significant risk signals by using point forecasting for decision-makers. For the evaluation module, a cloud model, based on probability and fuzzy set theory, is developed to perform comprehensive evaluations of air quality, which can realize the transformation between qualitative concept and quantitative data. To verify the effectiveness and efficiency of the warning system, extensive simulations based on air pollutants data from Dalian in China were effectively implemented, which illustrate that the warning system is not only remarkably high-performance, but also widely applicable.

  15. Research and Application of an Air Quality Early Warning System Based on a Modified Least Squares Support Vector Machine and a Cloud Model

    PubMed Central

    Wang, Jianzhou; Niu, Tong; Wang, Rui

    2017-01-01

    The worsening atmospheric pollution increases the necessity of air quality early warning systems (EWSs). Despite the fact that a massive amount of investigation about EWS in theory and practicality has been conducted by numerous researchers, studies concerning the quantification of uncertain information and comprehensive evaluation are still lacking, which impedes further development in the area. In this paper, firstly a comprehensive warning system is proposed, which consists of two vital indispensable modules, namely effective forecasting and scientific evaluation, respectively. For the forecasting module, a novel hybrid model combining the theory of data preprocessing and numerical optimization is first developed to implement effective forecasting for air pollutant concentration. Especially, in order to further enhance the accuracy and robustness of the warning system, interval forecasting is implemented to quantify the uncertainties generated by forecasts, which can provide significant risk signals by using point forecasting for decision-makers. For the evaluation module, a cloud model, based on probability and fuzzy set theory, is developed to perform comprehensive evaluations of air quality, which can realize the transformation between qualitative concept and quantitative data. To verify the effectiveness and efficiency of the warning system, extensive simulations based on air pollutants data from Dalian in China were effectively implemented, which illustrate that the warning system is not only remarkably high-performance, but also widely applicable. PMID:28257122

  16. Modeling subjective evaluation of soundscape quality in urban open spaces: An artificial neural network approach.

    PubMed

    Yu, Lei; Kang, Jian

    2009-09-01

    This research aims to explore the feasibility of using computer-based models to predict the soundscape quality evaluation of potential users in urban open spaces at the design stage. With the data from large scale field surveys in 19 urban open spaces across Europe and China, the importance of various physical, behavioral, social, demographical, and psychological factors for the soundscape evaluation has been statistically analyzed. Artificial neural network (ANN) models have then been explored at three levels. It has been shown that for both subjective sound level and acoustic comfort evaluation, a general model for all the case study sites is less feasible due to the complex physical and social environments in urban open spaces; models based on individual case study sites perform well but the application range is limited; and specific models for certain types of location/function would be reliable and practical. The performance of acoustic comfort models is considerably better than that of sound level models. Based on the ANN models, soundscape quality maps can be produced and this has been demonstrated with an example.

  17. [Development and application of a multi-species water quality model for water distribution systems with EPANET-MSX].

    PubMed

    Sun, Fu; Chen, Ji-ning; Zeng, Si-yu

    2008-12-01

    A conceptual multi-species water quality model for water distribution systems was developed on the basis of the toolkit of the EPANET-MSX software. The model divided the pipe segment into four compartments including pipe wall, biofilm, boundary layer and bulk liquid. The involved processes were substrate utilization and microbial growth, decay and inactivation of microorganisms, mass transfer of soluble components through the boundary layer, adsorption and desorption of particular components between bulk liquid and biofilm, oxidation and halogenation of organic matter by residual chlorine, and chlorine consumption by pipe wall. The fifteen simulated variables included the seven common variables both in the biofilm and in the bulk liquid, i.e. soluble organic matter, particular organic matter, ammonia nitrogen, residual chlorine, heterotrophic bacteria, autotrophic bacteria and inert solids, as well as biofilm thickness on the pipe wall. The model was validated against the data from a series of pilot experiments, and the simulation accuracy for residual chlorine and turbidity were 0.1 mg/L and 0.3 NTU respectively. A case study showed that the model could reasonably reflect the dynamic variation of residual chlorine and turbidity in the studied water distribution system, while Monte Carlo simulation, taking into account both the variability of finished water from the waterworks and the uncertainties of model parameters, could be performed to assess the violation risk of water quality in the water distribution system.

  18. EVALUATION OF THE REAL-TIME AIR-QUALITY MODEL USING THE RAPS (REGIONAL AIR POLLUTION STUDY) DATA BASE. VOLUME 1. OVERVIEW

    EPA Science Inventory

    The theory and programming of statistical tests for evaluating the Real-Time Air-Quality Model (RAM) using the Regional Air Pollution Study (RAPS) data base are fully documented in four report volumes. Moreover, the tests are generally applicable to other model evaluation problem...

  19. Application of Data Assimilation with the Root Zone Water Quality Model for Soil Moisture Profile Estimation

    USDA-ARS?s Scientific Manuscript database

    The Ensemble Kalman Filter (EnKF), a popular data assimilation technique for non-linear systems was applied to the Root Zone Water Quality Model. Measured soil moisture data at four different depths (5cm, 20cm, 40cm and 60cm) from two agricultural fields (AS1 and AS2) in northeastern Indiana were us...

  20. Improved model quality assessment using ProQ2.

    PubMed

    Ray, Arjun; Lindahl, Erik; Wallner, Björn

    2012-09-10

    Employing methods to assess the quality of modeled protein structures is now standard practice in bioinformatics. In a broad sense, the techniques can be divided into methods relying on consensus prediction on the one hand, and single-model methods on the other. Consensus methods frequently perform very well when there is a clear consensus, but this is not always the case. In particular, they frequently fail in selecting the best possible model in the hard cases (lacking consensus) or in the easy cases where models are very similar. In contrast, single-model methods do not suffer from these drawbacks and could potentially be applied on any protein of interest to assess quality or as a scoring function for sampling-based refinement. Here, we present a new single-model method, ProQ2, based on ideas from its predecessor, ProQ. ProQ2 is a model quality assessment algorithm that uses support vector machines to predict local as well as global quality of protein models. Improved performance is obtained by combining previously used features with updated structural and predicted features. The most important contribution can be attributed to the use of profile weighting of the residue specific features and the use features averaged over the whole model even though the prediction is still local. ProQ2 is significantly better than its predecessors at detecting high quality models, improving the sum of Z-scores for the selected first-ranked models by 20% and 32% compared to the second-best single-model method in CASP8 and CASP9, respectively. The absolute quality assessment of the models at both local and global level is also improved. The Pearson's correlation between the correct and local predicted score is improved from 0.59 to 0.70 on CASP8 and from 0.62 to 0.68 on CASP9; for global score to the correct GDT_TS from 0.75 to 0.80 and from 0.77 to 0.80 again compared to the second-best single methods in CASP8 and CASP9, respectively. ProQ2 is available at http://proq2

  1. Urban Air Quality Modelling with AURORA: Prague and Bratislava

    NASA Astrophysics Data System (ADS)

    Veldeman, N.; Viaene, P.; De Ridder, K.; Peelaerts, W.; Lauwaet, D.; Muhammad, N.; Blyth, L.

    2012-04-01

    The European Commission, in its strategy to protect the health of the European citizens, states that in order to assess the impact of air pollution on public health, information on long-term exposure to air pollution should be available. Currently, indicators of air quality are often being generated using measured pollutant concentrations. While air quality monitoring stations data provide accurate time series information at specific locations, air quality models have the advantage of being able to assess the spatial variability of air quality (for different resolutions) and predict air quality in the future based on different scenarios. When running such air quality models at a high spatial and temporal resolution, one can simulate the actual situation as closely as possible, allowing for a detailed assessment of the risk of exposure to citizens from different pollutants. AURORA (Air quality modelling in Urban Regions using an Optimal Resolution Approach), a prognostic 3-dimensional Eulerian chemistry-transport model, is designed to simulate urban- to regional-scale atmospheric pollutant concentration and exposure fields. The AURORA model also allows to calculate the impact of changes in land use (e.g. planting of trees) or of emission reduction scenario's on air quality. AURORA is currently being applied within the ESA atmospheric GMES service, PASODOBLE (http://www.myair-eu.org), that delivers information on air quality, greenhouse gases, stratospheric ozone, … At present there are two operational AURORA services within PASODOBLE. Within the "Air quality forecast service" VITO delivers daily air quality forecasts for Belgium at a resolution of 5 km and for the major Belgian cities: Brussels, Ghent, Antwerp, Liege and Charleroi. Furthermore forecast services are provided for Prague, Czech Republic and Bratislava, Slovakia, both at a resolution of 1 km. The "Urban/regional air quality assessment service" provides urban- and regional-scale maps (hourly resolution

  2. Probabilistic choice models in health-state valuation research: background, theories, assumptions and applications.

    PubMed

    Arons, Alexander M M; Krabbe, Paul F M

    2013-02-01

    Interest is rising in measuring subjective health outcomes, such as treatment outcomes that are not directly quantifiable (functional disability, symptoms, complaints, side effects and health-related quality of life). Health economists in particular have applied probabilistic choice models in the area of health evaluation. They increasingly use discrete choice models based on random utility theory to derive values for healthcare goods or services. Recent attempts have been made to use discrete choice models as an alternative method to derive values for health states. In this article, various probabilistic choice models are described according to their underlying theory. A historical overview traces their development and applications in diverse fields. The discussion highlights some theoretical and technical aspects of the choice models and their similarity and dissimilarity. The objective of the article is to elucidate the position of each model and their applications for health-state valuation.

  3. Model-based monitoring of stormwater runoff quality.

    PubMed

    Birch, Heidi; Vezzaro, Luca; Mikkelsen, Peter Steen

    2013-01-01

    Monitoring of micropollutants (MP) in stormwater is essential to evaluate the impacts of stormwater on the receiving aquatic environment. The aim of this study was to investigate how different strategies for monitoring of stormwater quality (combining a model with field sampling) affect the information obtained about MP discharged from the monitored system. A dynamic stormwater quality model was calibrated using MP data collected by automatic volume-proportional sampling and passive sampling in a storm drainage system on the outskirts of Copenhagen (Denmark) and a 10-year rain series was used to find annual average (AA) and maximum event mean concentrations. Use of this model reduced the uncertainty of predicted AA concentrations compared to a simple stochastic method based solely on data. The predicted AA concentration, obtained by using passive sampler measurements (1 month installation) for calibration of the model, resulted in the same predicted level but with narrower model prediction bounds than by using volume-proportional samples for calibration. This shows that passive sampling allows for a better exploitation of the resources allocated for stormwater quality monitoring.

  4. The Attributive Theory of Quality: A Model for Quality Measurement in Higher Education.

    ERIC Educational Resources Information Center

    Afshar, Arash

    A theoretical basis for defining and measuring the quality of institutions of higher education, namely for accreditation purposes, is developed. The theory, the Attributive Theory of Quality, is illustrated using a calculation model that is based on general systems theory. The theory postulates that quality only exists in relation to the…

  5. Collaborative problem solving with a total quality model.

    PubMed

    Volden, C M; Monnig, R

    1993-01-01

    A collaborative problem-solving system committed to the interests of those involved complies with the teachings of the total quality management movement in health care. Deming espoused that any quality system must become an integral part of routine activities. A process that is used consistently in dealing with problems, issues, or conflicts provides a mechanism for accomplishing total quality improvement. The collaborative problem-solving process described here results in quality decision-making. This model incorporates Ishikawa's cause-and-effect (fishbone) diagram, Moore's key causes of conflict, and the steps of the University of North Dakota Conflict Resolution Center's collaborative problem solving model.

  6. Rocket exhaust effluent modeling for tropospheric air quality and environmental assessments

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Stewart, R. B.

    1977-01-01

    The various techniques for diffusion predictions to support air quality predictions and environmental assessments for aerospace applications are discussed in terms of limitations imposed by atmospheric data. This affords an introduction to the rationale behind the selection of the National Aeronautics and Space Administration (NASA)/Marshall Space Flight Center (MSFC) Rocket Exhaust Effluent Diffusion (REED) program. The models utilized in the NASA/MSFC REED program are explained. This program is then evaluated in terms of some results from a joint MSFC/Langley Research Center/Kennedy Space Center Titan Exhaust Effluent Prediction and Monitoring Program.

  7. Evaluating Regional-Scale Air Quality Models

    EPA Science Inventory

    Numerical air quality models are being used to understand the complex interplay among emission loading meteorology, and atmospheric chemistry leading to the formation and accumulation of pollutants in the atmosphere. A model evaluation framework is presented here that considers ...

  8. AQA - Air Quality model for Austria - Evaluation and Developments

    NASA Astrophysics Data System (ADS)

    Hirtl, M.; Krüger, B. C.; Baumann-Stanzer, K.; Skomorowski, P.

    2009-04-01

    The regional weather forecast model ALADIN of the Central Institute for Meteorology and Geodynamics (ZAMG) is used in combination with the chemical transport model CAMx (www.camx.com) to conduct forecasts of gaseous and particulate air pollution over Europe. The forecasts which are done in cooperation with the University of Natural Resources and Applied Life Sciences in Vienna (BOKU) are supported by the regional governments since 2005 with the main interest on the prediction of tropospheric ozone. The daily ozone forecasts are evaluated for the summer 2008 with the observations of about 150 air quality stations in Austria. In 2008 the emission-model SMOKE was integrated into the modelling system to calculate the biogenic emissions. The anthropogenic emissions are based on the newest EMEP data set as well as on regional inventories for the core domain. The performance of SMOKE is shown for a summer period in 2007. In the frame of the COST-action 728 „Enhancing mesoscale meteorological modelling capabilities for air pollution and dispersion applications", multi-model ensembles are used to conduct an international model evaluation. The model calculations of meteorological- and concentration fields are compared to measurements on the ensemble platform at the Joint Research Centre (JRC) in Ispra. The results for 2 episodes in 2006 show the performance of the different models as well as of the model ensemble.

  9. Application of the GRC Stirling Convertor System Dynamic Model

    NASA Technical Reports Server (NTRS)

    Regan, Timothy F.; Lewandowski, Edward J.; Schreiber, Jeffrey G. (Technical Monitor)

    2004-01-01

    The GRC Stirling Convertor System Dynamic Model (SDM) has been developed to simulate dynamic performance of power systems incorporating free-piston Stirling convertors. This paper discusses its use in evaluating system dynamics and other systems concerns. Detailed examples are provided showing the use of the model in evaluation of off-nominal operating conditions. The many degrees of freedom in both the mechanical and electrical domains inherent in the Stirling convertor and the nonlinear dynamics make simulation an attractive analysis tool in conjunction with classical analysis. Application of SDM in studying the relationship of the size of the resonant circuit quality factor (commonly referred to as Q) in the various resonant mechanical and electrical sub-systems is discussed.

  10. Anatomic modeling using 3D printing: quality assurance and optimization.

    PubMed

    Leng, Shuai; McGee, Kiaran; Morris, Jonathan; Alexander, Amy; Kuhlmann, Joel; Vrieze, Thomas; McCollough, Cynthia H; Matsumoto, Jane

    2017-01-01

    The purpose of this study is to provide a framework for the development of a quality assurance (QA) program for use in medical 3D printing applications. An interdisciplinary QA team was built with expertise from all aspects of 3D printing. A systematic QA approach was established to assess the accuracy and precision of each step during the 3D printing process, including: image data acquisition, segmentation and processing, and 3D printing and cleaning. Validation of printed models was performed by qualitative inspection and quantitative measurement. The latter was achieved by scanning the printed model with a high resolution CT scanner to obtain images of the printed model, which were registered to the original patient images and the distance between them was calculated on a point-by-point basis. A phantom-based QA process, with two QA phantoms, was also developed. The phantoms went through the same 3D printing process as that of the patient models to generate printed QA models. Physical measurement, fit tests, and image based measurements were performed to compare the printed 3D model to the original QA phantom, with its known size and shape, providing an end-to-end assessment of errors involved in the complete 3D printing process. Measured differences between the printed model and the original QA phantom ranged from -0.32 mm to 0.13 mm for the line pair pattern. For a radial-ulna patient model, the mean distance between the original data set and the scanned printed model was -0.12 mm (ranging from -0.57 to 0.34 mm), with a standard deviation of 0.17 mm. A comprehensive QA process from image acquisition to completed model has been developed. Such a program is essential to ensure the required accuracy of 3D printed models for medical applications.

  11. Modelling End-User of Electronic-Government Service: The Role of Information quality, System Quality and Trust

    NASA Astrophysics Data System (ADS)

    Witarsyah Jacob, Deden; Fudzee, Mohd Farhan Md; Aizi Salamat, Mohamad; Kasim, Shahreen; Mahdin, Hairulnizam; Azhar Ramli, Azizul

    2017-08-01

    Many governments around the world increasingly use internet technologies such as electronic government to provide public services. These services range from providing the most basic informational website to deploying sophisticated tools for managing interactions between government agencies and beyond government. Electronic government (e-government) aims to provide a more accurate, easily accessible, cost-effective and time saving for the community. In this study, we develop a new model of e-government adoption service by extending the Unified Theory of Acceptance and Use of Technology (UTAUT) through the incorporation of some variables such as System Quality, Information Quality and Trust. The model is then tested using a large-scale, multi-site survey research of 237 Indonesian citizens. This model will be validated by using Structural Equation Modeling (SEM). The result indicates that System Quality, Information Quality and Trust variables proven to effect user behavior. This study extends the current understanding on the influence of System Quality, Information Quality and Trust factors to researchers, practitioners, and policy makers.

  12. Conceptual Models, Choices, and Benchmarks for Building Quality Work Cultures.

    ERIC Educational Resources Information Center

    Acker-Hocevar, Michele

    1996-01-01

    The two models in Florida's Educational Quality Benchmark System represent a new way of thinking about developing schools' work culture. The Quality Performance System Model identifies nine dimensions of work within a quality system. The Change Process Model provides a theoretical framework for changing existing beliefs, attitudes, and behaviors…

  13. A Summary of OMI NO2 Data for Air Quality Applications

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan N.; Lamsal, Lok N.; Yoshida, Yasuko; Thompson, Anne M.

    2016-01-01

    As a member of NASA's Air Quality Applied Sciences Team (AQAST), I will update air quality managers on the status of various NASA satellite datasets that are relevant for air quality applications. I will also present a new website that contains NASA Aura OMI nitrogen dioxide data and shows US city trends and comparisons to EPA surface monitor data. Since this is the final AQAST meeting, I will summarize my contributions to AQAST over the last five years.

  14. The impact of working memory and the "process of process modelling" on model quality: Investigating experienced versus inexperienced modellers.

    PubMed

    Martini, Markus; Pinggera, Jakob; Neurauter, Manuel; Sachse, Pierre; Furtner, Marco R; Weber, Barbara

    2016-05-09

    A process model (PM) represents the graphical depiction of a business process, for instance, the entire process from online ordering a book until the parcel is delivered to the customer. Knowledge about relevant factors for creating PMs of high quality is lacking. The present study investigated the role of cognitive processes as well as modelling processes in creating a PM in experienced and inexperienced modellers. Specifically, two working memory (WM) functions (holding and processing of information and relational integration) and three process of process modelling phases (comprehension, modelling, and reconciliation) were related to PM quality. Our results show that the WM function of relational integration was positively related to PM quality in both modelling groups. The ratio of comprehension phases was negatively related to PM quality in inexperienced modellers and the ratio of reconciliation phases was positively related to PM quality in experienced modellers. Our research reveals central cognitive mechanisms in process modelling and has potential practical implications for the development of modelling software and teaching the craft of process modelling.

  15. Educational Quality in Economic Development: Ten Propositions and an Application to the South Pacific.

    ERIC Educational Resources Information Center

    Gannicott, Ken; Throsby, C. David

    1992-01-01

    Reviews recent research on educational quality and its application to South Pacific island economies. Demonstrates the pervasive nature of school quality problems in the region despite national variations. Influences on educational quality include teacher quality, learning material availability, initial instruction in mother tongues, management…

  16. Prediction of pilot opinion ratings using an optimal pilot model. [of aircraft handling qualities in multiaxis tasks

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1977-01-01

    A brief review of some of the more pertinent applications of analytical pilot models to the prediction of aircraft handling qualities is undertaken. The relative ease with which multiloop piloting tasks can be modeled via the optimal control formulation makes the use of optimal pilot models particularly attractive for handling qualities research. To this end, a rating hypothesis is introduced which relates the numerical pilot opinion rating assigned to a particular vehicle and task to the numerical value of the index of performance resulting from an optimal pilot modeling procedure as applied to that vehicle and task. This hypothesis is tested using data from piloted simulations and is shown to be reasonable. An example concerning a helicopter landing approach is introduced to outline the predictive capability of the rating hypothesis in multiaxis piloting tasks.

  17. Design and Establishment of Quality Model of Fundamental Geographic Information Database

    NASA Astrophysics Data System (ADS)

    Ma, W.; Zhang, J.; Zhao, Y.; Zhang, P.; Dang, Y.; Zhao, T.

    2018-04-01

    In order to make the quality evaluation for the Fundamental Geographic Information Databases(FGIDB) more comprehensive, objective and accurate, this paper studies and establishes a quality model of FGIDB, which formed by the standardization of database construction and quality control, the conformity of data set quality and the functionality of database management system, and also designs the overall principles, contents and methods of the quality evaluation for FGIDB, providing the basis and reference for carry out quality control and quality evaluation for FGIDB. This paper designs the quality elements, evaluation items and properties of the Fundamental Geographic Information Database gradually based on the quality model framework. Connected organically, these quality elements and evaluation items constitute the quality model of the Fundamental Geographic Information Database. This model is the foundation for the quality demand stipulation and quality evaluation of the Fundamental Geographic Information Database, and is of great significance on the quality assurance in the design and development stage, the demand formulation in the testing evaluation stage, and the standard system construction for quality evaluation technology of the Fundamental Geographic Information Database.

  18. A non-linear optimization programming model for air quality planning including co-benefits for GHG emissions.

    PubMed

    Turrini, Enrico; Carnevale, Claudio; Finzi, Giovanna; Volta, Marialuisa

    2018-04-15

    This paper introduces the MAQ (Multi-dimensional Air Quality) model aimed at defining cost-effective air quality plans at different scales (urban to national) and assessing the co-benefits for GHG emissions. The model implements and solves a non-linear multi-objective, multi-pollutant decision problem where the decision variables are the application levels of emission abatement measures allowing the reduction of energy consumption, end-of pipe technologies and fuel switch options. The objectives of the decision problem are the minimization of tropospheric secondary pollution exposure and of internal costs. The model assesses CO 2 equivalent emissions in order to support decision makers in the selection of win-win policies. The methodology is tested on Lombardy region, a heavily polluted area in northern Italy. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A component-based, integrated spatially distributed hydrologic/water quality model: AgroEcoSystem-Watershed (AgES-W) overview and application

    USDA-ARS?s Scientific Manuscript database

    AgroEcoSystem-Watershed (AgES-W) is a modular, Java-based spatially distributed model which implements hydrologic/water quality simulation components. The AgES-W model was previously evaluated for streamflow and recently has been enhanced with the addition of nitrogen (N) and sediment modeling compo...

  20. Quality Analysis on 3d Buidling Models Reconstructed from Uav Imagery

    NASA Astrophysics Data System (ADS)

    Jarzabek-Rychard, M.; Karpina, M.

    2016-06-01

    Recent developments in UAV technology and structure from motion techniques have effected that UAVs are becoming standard platforms for 3D data collection. Because of their flexibility and ability to reach inaccessible urban parts, drones appear as optimal solution for urban applications. Building reconstruction from the data collected with UAV has the important potential to reduce labour cost for fast update of already reconstructed 3D cities. However, especially for updating of existing scenes derived from different sensors (e.g. airborne laser scanning), a proper quality assessment is necessary. The objective of this paper is thus to evaluate the potential of UAV imagery as an information source for automatic 3D building modeling at LOD2. The investigation process is conducted threefold: (1) comparing generated SfM point cloud to ALS data; (2) computing internal consistency measures of the reconstruction process; (3) analysing the deviation of Check Points identified on building roofs and measured with a tacheometer. In order to gain deep insight in the modeling performance, various quality indicators are computed and analysed. The assessment performed according to the ground truth shows that the building models acquired with UAV-photogrammetry have the accuracy of less than 18 cm for the plannimetric position and about 15 cm for the height component.

  1. Models and Frameworks: A Synergistic Association for Developing Component-Based Applications

    PubMed Central

    Sánchez-Ledesma, Francisco; Sánchez, Pedro; Pastor, Juan A.; Álvarez, Bárbara

    2014-01-01

    The use of frameworks and components has been shown to be effective in improving software productivity and quality. However, the results in terms of reuse and standardization show a dearth of portability either of designs or of component-based implementations. This paper, which is based on the model driven software development paradigm, presents an approach that separates the description of component-based applications from their possible implementations for different platforms. This separation is supported by automatic integration of the code obtained from the input models into frameworks implemented using object-oriented technology. Thus, the approach combines the benefits of modeling applications from a higher level of abstraction than objects, with the higher levels of code reuse provided by frameworks. In order to illustrate the benefits of the proposed approach, two representative case studies that use both an existing framework and an ad hoc framework, are described. Finally, our approach is compared with other alternatives in terms of the cost of software development. PMID:25147858

  2. Models and frameworks: a synergistic association for developing component-based applications.

    PubMed

    Alonso, Diego; Sánchez-Ledesma, Francisco; Sánchez, Pedro; Pastor, Juan A; Álvarez, Bárbara

    2014-01-01

    The use of frameworks and components has been shown to be effective in improving software productivity and quality. However, the results in terms of reuse and standardization show a dearth of portability either of designs or of component-based implementations. This paper, which is based on the model driven software development paradigm, presents an approach that separates the description of component-based applications from their possible implementations for different platforms. This separation is supported by automatic integration of the code obtained from the input models into frameworks implemented using object-oriented technology. Thus, the approach combines the benefits of modeling applications from a higher level of abstraction than objects, with the higher levels of code reuse provided by frameworks. In order to illustrate the benefits of the proposed approach, two representative case studies that use both an existing framework and an ad hoc framework, are described. Finally, our approach is compared with other alternatives in terms of the cost of software development.

  3. Statistical Methods for Quality Control of Steel Coils Manufacturing Process using Generalized Linear Models

    NASA Astrophysics Data System (ADS)

    García-Díaz, J. Carlos

    2009-11-01

    Fault detection and diagnosis is an important problem in process engineering. Process equipments are subject to malfunctions during operation. Galvanized steel is a value added product, furnishing effective performance by combining the corrosion resistance of zinc with the strength and formability of steel. Fault detection and diagnosis is an important problem in continuous hot dip galvanizing and the increasingly stringent quality requirements in automotive industry has also demanded ongoing efforts in process control to make the process more robust. When faults occur, they change the relationship among these observed variables. This work compares different statistical regression models proposed in the literature for estimating the quality of galvanized steel coils on the basis of short time histories. Data for 26 batches were available. Five variables were selected for monitoring the process: the steel strip velocity, four bath temperatures and bath level. The entire data consisting of 48 galvanized steel coils was divided into sets. The first training data set was 25 conforming coils and the second data set was 23 nonconforming coils. Logistic regression is a modeling tool in which the dependent variable is categorical. In most applications, the dependent variable is binary. The results show that the logistic generalized linear models do provide good estimates of quality coils and can be useful for quality control in manufacturing process.

  4. Development of an Instructional Quality Assurance Model in Nursing Science

    ERIC Educational Resources Information Center

    Ajpru, Haruthai; Pasiphol, Shotiga; Wongwanich, Suwimon

    2011-01-01

    The purpose of this study was to develop an instructional quality assurance model in nursing science. The study was divided into 3 phases; (1) to study the information for instructional quality assurance model development (2) to develop an instructional quality assurance model in nursing science and (3) to audit and the assessment of the developed…

  5. EPA RESEARCH HIGHLIGHTS -- MODELS-3/CMAQ OFFERS COMPREHENSIVE APPROACH TO AIR QUALITY MODELING

    EPA Science Inventory

    Regional and global coordinated efforts are needed to address air quality problems that are growing in complexity and scope. Models-3 CMAQ contains a community multi-scale air quality modeling system for simulating urban to regional scale pollution problems relating to troposphe...

  6. Quality Concerns in Technical Education in India: A Quantifiable Quality Enabled Model

    ERIC Educational Resources Information Center

    Gambhir, Victor; Wadhwa, N. C.; Grover, Sandeep

    2016-01-01

    Purpose: The paper aims to discuss current Technical Education scenarios in India. It proposes modelling the factors affecting quality in a technical institute and then applying a suitable technique for assessment, comparison and ranking. Design/methodology/approach: The paper chose graph theoretic approach for quantification of quality-enabled…

  7. EVALUATION OF THE REAL-TIME AIR-QUALITY MODEL USING THE RAPS (REGIONAL AIR POLLUTION STUDY) DATA BASE. VOLUME 4. EVALUATION GUIDE

    EPA Science Inventory

    The theory and programming of statistical tests for evaluating the Real-Time Air-Quality Model (RAM) using the Regional Air Pollution Study (RAPS) data base are fully documented in four volumes. Moreover, the tests are generally applicable to other model evaluation problems. Volu...

  8. Improving the Quality of Positive Datasets for the Establishment of Machine Learning Models for pre-microRNA Detection.

    PubMed

    Demirci, Müşerref Duygu Saçar; Allmer, Jens

    2017-07-28

    MicroRNAs (miRNAs) are involved in the post-transcriptional regulation of protein abundance and thus have a great impact on the resulting phenotype. It is, therefore, no wonder that they have been implicated in many diseases ranging from virus infections to cancer. This impact on the phenotype leads to a great interest in establishing the miRNAs of an organism. Experimental methods are complicated which led to the development of computational methods for pre-miRNA detection. Such methods generally employ machine learning to establish models for the discrimination between miRNAs and other sequences. Positive training data for model establishment, for the most part, stems from miRBase, the miRNA registry. The quality of the entries in miRBase has been questioned, though. This unknown quality led to the development of filtering strategies in attempts to produce high quality positive datasets which can lead to a scarcity of positive data. To analyze the quality of filtered data we developed a machine learning model and found it is well able to establish data quality based on intrinsic measures. Additionally, we analyzed which features describing pre-miRNAs could discriminate between low and high quality data. Both models are applicable to data from miRBase and can be used for establishing high quality positive data. This will facilitate the development of better miRNA detection tools which will make the prediction of miRNAs in disease states more accurate. Finally, we applied both models to all miRBase data and provide the list of high quality hairpins.

  9. Utilizing Operational and Improved Remote Sensing Measurements to Assess Air Quality Monitoring Model Forecasts

    NASA Astrophysics Data System (ADS)

    Gan, Chuen-Meei

    Air quality model forecasts from Weather Research and Forecast (WRF) and Community Multiscale Air Quality (CMAQ) are often used to support air quality applications such as regulatory issues and scientific inquiries on atmospheric science processes. In urban environments, these models become more complex due to the inherent complexity of the land surface coupling and the enhanced pollutants emissions. This makes it very difficult to diagnose the model, if the surface parameter forecasts such as PM2.5 (particulate matter with aerodynamic diameter less than 2.5 microm) are not accurate. For this reason, getting accurate boundary layer dynamic forecasts is as essential as quantifying realistic pollutants emissions. In this thesis, we explore the usefulness of vertical sounding measurements on assessing meteorological and air quality forecast models. In particular, we focus on assessing the WRF model (12km x 12km) coupled with the CMAQ model for the urban New York City (NYC) area using multiple vertical profiling and column integrated remote sensing measurements. This assessment is helpful in probing the root causes for WRF-CMAQ overestimates of surface PM2.5 occurring both predawn and post-sunset in the NYC area during the summer. In particular, we find that the significant underestimates in the WRF PBL height forecast is a key factor in explaining this anomaly. On the other hand, the model predictions of the PBL height during daytime when convective heating dominates were found to be highly correlated to lidar derived PBL height with minimal bias. Additional topics covered in this thesis include mathematical method using direct Mie scattering approach to convert aerosol microphysical properties from CMAQ into optical parameters making direct comparisons with lidar and multispectral radiometers feasible. Finally, we explore some tentative ideas on combining visible (VIS) and mid-infrared (MIR) sensors to better separate aerosols into fine and coarse modes.

  10. MQAPRank: improved global protein model quality assessment by learning-to-rank.

    PubMed

    Jing, Xiaoyang; Dong, Qiwen

    2017-05-25

    Protein structure prediction has achieved a lot of progress during the last few decades and a greater number of models for a certain sequence can be predicted. Consequently, assessing the qualities of predicted protein models in perspective is one of the key components of successful protein structure prediction. Over the past years, a number of methods have been developed to address this issue, which could be roughly divided into three categories: single methods, quasi-single methods and clustering (or consensus) methods. Although these methods achieve much success at different levels, accurate protein model quality assessment is still an open problem. Here, we present the MQAPRank, a global protein model quality assessment program based on learning-to-rank. The MQAPRank first sorts the decoy models by using single method based on learning-to-rank algorithm to indicate their relative qualities for the target protein. And then it takes the first five models as references to predict the qualities of other models by using average GDT_TS scores between reference models and other models. Benchmarked on CASP11 and 3DRobot datasets, the MQAPRank achieved better performances than other leading protein model quality assessment methods. Recently, the MQAPRank participated in the CASP12 under the group name FDUBio and achieved the state-of-the-art performances. The MQAPRank provides a convenient and powerful tool for protein model quality assessment with the state-of-the-art performances, it is useful for protein structure prediction and model quality assessment usages.

  11. Effect of double-layer application on bond quality of adhesive systems.

    PubMed

    Fujiwara, Satoshi; Takamizawa, Toshiki; Barkmeier, Wayne W; Tsujimoto, Akimasa; Imai, Arisa; Watanabe, Hidehiko; Erickson, Robert L; Latta, Mark A; Nakatsuka, Toshiyuki; Miyazaki, Masashi

    2018-01-01

    The aim of this study was to determine the effect of double-layer application of universal adhesives on the bond quality and compare to other adhesive systems. Two universal adhesives used were in this study: Scotchbond Universal (SU), [3M ESPE] and Prime & Bond elect (PE), [Dentsply Caulk]. The conventional single-step self-etch adhesives G-ӕnial Bond (GB), [GC Corporation.] and BeautiBond (BB), [Shofu Inc.], and a two-step self-etch adhesive, Optibond XTR (OX), [Kerr Corporation], were used as comparison adhesives. Shear bond strengths (SBS) and shear fatigue strengths (SFS) to human enamel and dentin were measured in single application mode and double application mode. For each test condition, 15 specimens were prepared for SBS testing and 30 specimens for SFS testing. Enamel and dentin SBS of the universal adhesives in the double application mode were significantly higher than those of the single application mode. In addition, the universal adhesives in the double application mode had significantly higher dentin SFS values than those of the single application mode. The two-step self-etch adhesive OX tended to have lower bond strengths in the double application mode, regardless of the test method or adherent substrate. The double application mode is effective in enhancing SBS and SFS of universal adhesives, but not conventional two-step self-etch adhesives. These results suggest that, although the double application mode may enhance the bonding quality of a universal adhesive, it may be counter-productive for two-step self-etch adhesives in clinical use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The Triangle Model for evaluating the effect of health information technology on healthcare quality and safety

    PubMed Central

    Kern, Lisa M; Abramson, Erika; Kaushal, Rainu

    2011-01-01

    With the proliferation of relatively mature health information technology (IT) systems with large numbers of users, it becomes increasingly important to evaluate the effect of these systems on the quality and safety of healthcare. Previous research on the effectiveness of health IT has had mixed results, which may be in part attributable to the evaluation frameworks used. The authors propose a model for evaluation, the Triangle Model, developed for designing studies of quality and safety outcomes of health IT. This model identifies structure-level predictors, including characteristics of: (1) the technology itself; (2) the provider using the technology; (3) the organizational setting; and (4) the patient population. In addition, the model outlines process predictors, including (1) usage of the technology, (2) organizational support for and customization of the technology, and (3) organizational policies and procedures about quality and safety. The Triangle Model specifies the variables to be measured, but is flexible enough to accommodate both qualitative and quantitative approaches to capturing them. The authors illustrate this model, which integrates perspectives from both health services research and biomedical informatics, with examples from evaluations of electronic prescribing, but it is also applicable to a variety of types of health IT systems. PMID:21857023

  13. Klang River water quality modelling using music

    NASA Astrophysics Data System (ADS)

    Zahari, Nazirul Mubin; Zawawi, Mohd Hafiz; Muda, Zakaria Che; Sidek, Lariyah Mohd; Fauzi, Nurfazila Mohd; Othman, Mohd Edzham Fareez; Ahmad, Zulkepply

    2017-09-01

    Water is an essential resource that sustains life on earth; changes in the natural quality and distribution of water have ecological impacts that can sometimes be devastating. Recently, Malaysia is facing many environmental issues regarding water pollution. The main causes of river pollution are rapid urbanization, arising from the development of residential, commercial, industrial sites, infrastructural facilities and others. The purpose of the study was to predict the water quality of the Connaught Bridge Power Station (CBPS), Klang River. Besides that, affects to the low tide and high tide and. to forecast the pollutant concentrations of the Biochemical Oxygen Demand (BOD) and Total Suspended Solid (TSS) for existing land use of the catchment area through water quality modeling (by using the MUSIC software). Besides that, to identifying an integrated urban stormwater treatment system (Best Management Practice or BMPs) to achieve optimal performance in improving the water quality of the catchment using the MUSIC software in catchment areas having tropical climates. Result from MUSIC Model such as BOD5 at station 1 can be reduce the concentration from Class IV to become Class III. Whereas, for TSS concentration from Class III to become Class II at the station 1. The model predicted a mean TSS reduction of 0.17%, TP reduction of 0.14%, TN reduction of 0.48% and BOD5 reduction of 0.31% for Station 1 Thus, from the result after purposed BMPs the water quality is safe to use because basically water quality monitoring is important due to threat such as activities are harmful to aquatic organisms and public health.

  14. Environmental Fate and Bioaccumulation Modelling at the US Environmental Protection Agency: Application to Inform Decision-Making

    EPA Science Inventory

    This chapter reviews the regulatory background and policy applications driving the use of various types of environmental fate and bioaccumulation models at US EPA (air quality, surface water and watersheds, contaminated sites). Comparing current research frontiers with contempora...

  15. Genetic demographic networks: Mathematical model and applications.

    PubMed

    Kimmel, Marek; Wojdyła, Tomasz

    2016-10-01

    Recent improvement in the quality of genetic data obtained from extinct human populations and their ancestors encourages searching for answers to basic questions regarding human population history. The most common and successful are model-based approaches, in which genetic data are compared to the data obtained from the assumed demography model. Using such approach, it is possible to either validate or adjust assumed demography. Model fit to data can be obtained based on reverse-time coalescent simulations or forward-time simulations. In this paper we introduce a computational method based on mathematical equation that allows obtaining joint distributions of pairs of individuals under a specified demography model, each of them characterized by a genetic variant at a chosen locus. The two individuals are randomly sampled from either the same or two different populations. The model assumes three types of demographic events (split, merge and migration). Populations evolve according to the time-continuous Moran model with drift and Markov-process mutation. This latter process is described by the Lyapunov-type equation introduced by O'Brien and generalized in our previous works. Application of this equation constitutes an original contribution. In the result section of the paper we present sample applications of our model to both simulated and literature-based demographies. Among other we include a study of the Slavs-Balts-Finns genetic relationship, in which we model split and migrations between the Balts and Slavs. We also include another example that involves the migration rates between farmers and hunters-gatherers, based on modern and ancient DNA samples. This latter process was previously studied using coalescent simulations. Our results are in general agreement with the previous method, which provides validation of our approach. Although our model is not an alternative to simulation methods in the practical sense, it provides an algorithm to compute pairwise

  16. Application of ESE Data and Tools to Air Quality Management: Services for Helping the Air Quality Community use ESE Data (SHAirED)

    NASA Technical Reports Server (NTRS)

    Falke, Stefan; Husar, Rudolf

    2011-01-01

    The goal of this REASoN applications and technology project is to deliver and use Earth Science Enterprise (ESE) data and tools in support of air quality management. Its scope falls within the domain of air quality management and aims to develop a federated air quality information sharing network that includes data from NASA, EPA, US States and others. Project goals were achieved through a access of satellite and ground observation data, web services information technology, interoperability standards, and air quality community collaboration. In contributing to a network of NASA ESE data in support of particulate air quality management, the project will develop access to distributed data, build Web infrastructure, and create tools for data processing and analysis. The key technologies used in the project include emerging web services for developing self describing and modular data access and processing tools, and service oriented architecture for chaining web services together to assemble customized air quality management applications. The technology and tools required for this project were developed within DataFed.net, a shared infrastructure that supports collaborative atmospheric data sharing and processing web services. Much of the collaboration was facilitated through community interactions through the Federation of Earth Science Information Partners (ESIP) Air Quality Workgroup. The main activities during the project that successfully advanced DataFed, enabled air quality applications and established community-oriented infrastructures were: develop access to distributed data (surface and satellite), build Web infrastructure to support data access, processing and analysis create tools for data processing and analysis foster air quality community collaboration and interoperability.

  17. Amperometric Gas Sensors as a Low Cost Emerging Technology Platform for Air Quality Monitoring Applications: A Review.

    PubMed

    Baron, Ronan; Saffell, John

    2017-11-22

    This review examines the use of amperometric electrochemical gas sensors for monitoring inorganic gases that affect urban air quality. First, we consider amperometric gas sensor technology including its development toward specifically designed air quality sensors. We then review recent academic and research organizations' studies where this technology has been trialed for air quality monitoring applications: early studies showed the potential of electrochemical gas sensors when colocated with reference Air Quality Monitoring (AQM) stations. Spatially dense networks with fast temporal resolution provide information not available from sparse AQMs with longer recording intervals. We review how this technology is being offered as commercial urban air quality networks and consider the remaining challenges. Sensors must be sensitive, selective, and stable; air quality monitors/nodes must be electronically and mechanically well designed. Data correction is required and models with differing levels of sophistication are being designed. Data analysis and validation is possibly the biggest remaining hurdle needed to deliver reliable concentration readings. Finally, this review also considers the roles of companies, urban infrastructure requirements, and public research in the development of this technology.

  18. Quality control of the RMS US flood model

    NASA Astrophysics Data System (ADS)

    Jankowfsky, Sonja; Hilberts, Arno; Mortgat, Chris; Li, Shuangcai; Rafique, Farhat; Rajesh, Edida; Xu, Na; Mei, Yi; Tillmanns, Stephan; Yang, Yang; Tian, Ye; Mathur, Prince; Kulkarni, Anand; Kumaresh, Bharadwaj Anna; Chaudhuri, Chiranjib; Saini, Vishal

    2016-04-01

    The RMS US flood model predicts the flood risk in the US with a 30 m resolution for different return periods. The model is designed for the insurance industry to estimate the cost of flood risk for a given location. Different statistical, hydrological and hydraulic models are combined to develop the flood maps for different return periods. A rainfall-runoff and routing model, calibrated with observed discharge data, is run with 10 000 years of stochastic simulated precipitation to create time series of discharge and surface runoff. The 100, 250 and 500 year events are extracted from these time series as forcing for a two-dimensional pluvial and fluvial inundation model. The coupling of all the different models which are run on the large area of the US implies a certain amount of uncertainty. Therefore, special attention is paid to the final quality control of the flood maps. First of all, a thorough quality analysis of the Digital Terrain model and the river network was done, as the final quality of the flood maps depends heavily on the DTM quality. Secondly, the simulated 100 year discharge in the major river network (600 000 km) is compared to the 100 year discharge derived using extreme value distribution of all USGS gauges with more than 20 years of peak values (around 11 000 gauges). Thirdly, for each gauge the modelled flood depth is compared to the depth derived from the USGS rating curves. Fourthly, the modelled flood depth is compared to the base flood elevation given in the FEMA flood maps. Fifthly, the flood extent is compared to the FEMA flood extent. Then, for historic events we compare flood extents and flood depths at given locations. Finally, all the data and spatial layers are uploaded on geoserver to facilitate the manual investigation of outliers. The feedback from the quality control is used to improve the model and estimate its uncertainty.

  19. On Regional Modeling to Support Air Quality Policies

    EPA Science Inventory

    We examine the use of the Community Multiscale Air Quality (CMAQ) model in simulating the changes in the extreme values of air quality that are of interest to the regulatory agencies. Year-to-year changes in ozone air quality are attributable to variations in the prevailing mete...

  20. An integrated system dynamics model developed for managing lake water quality at the watershed scale.

    PubMed

    Liu, Hui; Benoit, Gaboury; Liu, Tao; Liu, Yong; Guo, Huaicheng

    2015-05-15

    A reliable system simulation to relate socioeconomic development with water environment and to comprehensively represent a watershed's dynamic features is important. In this study, after identifying lake watershed system processes, we developed a system dynamics modeling framework for managing lake water quality at the watershed scale. Two reinforcing loops (Development and Investment Promotion) and three balancing loops (Pollution, Resource Consumption, and Pollution Control) were constituted. Based on this work, we constructed Stock and Flow Diagrams that embedded a pollutant load model and a lake water quality model into a socioeconomic system dynamics model. The Dianchi Lake in Yunnan Province, China, which is the sixth largest and among the most severely polluted freshwater lakes in China, was employed as a case study to demonstrate the applicability of the model. Water quality parameters considered in the model included chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP). The business-as-usual (BAU) scenario and three alternative management scenarios on spatial adjustment of industries and population (S1), wastewater treatment capacity construction (S2), and structural adjustment of agriculture (S3), were simulated to assess the effectiveness of certain policies in improving water quality. Results showed that S2 is most effective scenario, and the COD, TN, and TP concentrations in Caohai in 2030 are 52.5, 10.9, and 0.8 mg/L, while those in Waihai are 9.6, 1.2, and 0.08 mg/L, with sustained development in the watershed. Thus, the model can help support the decision making required in development and environmental protection strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The Model for Understanding Success in Quality (MUSIQ): building a theory of context in healthcare quality improvement.

    PubMed

    Kaplan, Heather C; Provost, Lloyd P; Froehle, Craig M; Margolis, Peter A

    2012-01-01

    BACKGROUND Quality improvement (QI) efforts have become widespread in healthcare, however there is significant variability in their success. Differences in context are thought to be responsible for some of the variability seen. To develop a conceptual model that can be used by organisations and QI researchers to understand and optimise contextual factors affecting the success of a QI project. 10 QI experts were provided with the results of a systematic literature review and then participated in two rounds of opinion gathering to identify and define important contextual factors. The experts subsequently met in person to identify relationships among factors and to begin to build the model. The Model for Understanding Success in Quality (MUSIQ) is organised based on the level of the healthcare system and identifies 25 contextual factors likely to influence QI success. Contextual factors within microsystems and those related to the QI team are hypothesised to directly shape QI success, whereas factors within the organisation and external environment are believed to influence success indirectly. The MUSIQ framework has the potential to guide the application of QI methods in healthcare and focus research. The specificity of MUSIQ and the explicit delineation of relationships among factors allows a deeper understanding of the mechanism of action by which context influences QI success. MUSIQ also provides a foundation to support further studies to test and refine the theory and advance the field of QI science.

  2. Development of Water Quality Modeling in the United States

    EPA Science Inventory

    This presentation describes historical trends in water quality model development in the United States, reviews current efforts, and projects promising future directions. Water quality modeling has a relatively long history in the United States. While its origins lie in the work...

  3. U.S. EPA MODELS-3/CMAQ - STATUS AND APPLICATIONS

    EPA Science Inventory

    An advanced third-generation air quality modeling system has been developed by the Atmospheric Modeling Division of the U.S. EPA. The air quality simulation model at the heart of the system is known as the Community Multiscale Air Quality (CMAQ) Model. It is comprehensive in ...

  4. Application of the Rasch Rating Scale Model to the Assessment of Quality of Life of Persons with Intellectual Disability

    ERIC Educational Resources Information Center

    Gomez, Laura E.; Arias, Benito; Verdugo, Miguel Angel; Navas, Patricia

    2012-01-01

    Background: Most instruments that assess quality of life have been validated by means of the classical test theory (CTT). However, CTT limitations have resulted in the development of alternative models, such as the Rasch rating scale model (RSM). The main goal of this paper is testing and improving the psychometric properties of the INTEGRAL…

  5. An Overview of Atmospheric Chemistry and Air Quality Modeling

    NASA Technical Reports Server (NTRS)

    Johnson, Matthew S.

    2017-01-01

    This presentation will include my personal research experience and an overview of atmospheric chemistry and air quality modeling to the participants of the NASA Student Airborne Research Program (SARP 2017). The presentation will also provide examples on ways to apply airborne observations for chemical transport (CTM) and air quality (AQ) model evaluation. CTM and AQ models are important tools in understanding tropospheric-stratospheric composition, atmospheric chemistry processes, meteorology, and air quality. This presentation will focus on how NASA scientist currently apply CTM and AQ models to better understand these topics. Finally, the importance of airborne observation in evaluating these topics and how in situ and remote sensing observations can be used to evaluate and improve CTM and AQ model predictions will be highlighted.

  6. Development and application of a statistical quality assessment method for dense-graded mixes.

    DOT National Transportation Integrated Search

    2004-08-01

    This report describes the development of the statistical quality assessment method and the procedure for mapping the measures obtained from the quality assessment method to a composite pay factor. The application to dense-graded mixes is demonstrated...

  7. Modeling individualized coefficient alpha to measure quality of test score data.

    PubMed

    Liu, Molei; Hu, Ming; Zhou, Xiao-Hua

    2018-05-23

    Individualized coefficient alpha is defined. It is item and subject specific and is used to measure the quality of test score data with heterogenicity among the subjects and items. A regression model is developed based on 3 sets of generalized estimating equations. The first set of generalized estimating equation models the expectation of the responses, the second set models the response's variance, and the third set is proposed to estimate the individualized coefficient alpha, defined and used to measure individualized internal consistency of the responses. We also use different techniques to extend our method to handle missing data. Asymptotic property of the estimators is discussed, based on which inference on the coefficient alpha is derived. Performance of our method is evaluated through simulation study and real data analysis. The real data application is from a health literacy study in Hunan province of China. Copyright © 2018 John Wiley & Sons, Ltd.

  8. THE ATMOSPHERIC MODEL EVALUATION TOOL (AMET); AIR QUALITY MODULE

    EPA Science Inventory

    This presentation reviews the development of the Atmospheric Model Evaluation Tool (AMET) air quality module. The AMET tool is being developed to aid in the model evaluation. This presentation focuses on the air quality evaluation portion of AMET. Presented are examples of the...

  9. AIR QUALITY SIMULATION MODEL PERFORMANCE FOR ONE-HOUR AVERAGES

    EPA Science Inventory

    If a one-hour standard for sulfur dioxide were promulgated, air quality dispersion modeling in the vicinity of major point sources would be an important air quality management tool. Would currently available dispersion models be suitable for use in demonstrating attainment of suc...

  10. Development and evaluation of an ammonia bidirectional flux parameterization for air quality models

    NASA Astrophysics Data System (ADS)

    Pleim, Jonathan E.; Bash, Jesse O.; Walker, John T.; Cooter, Ellen J.

    2013-05-01

    is an important contributor to particulate matter in the atmosphere and can significantly impact terrestrial and aquatic ecosystems. Surface exchange between the atmosphere and biosphere is a key part of the ammonia cycle. New modeling techniques are being developed for use in air quality models that replace current ammonia emissions from fertilized crops and ammonia dry deposition with a bidirectional surface flux model including linkage to a detailed biogeochemical and farm management model. Recent field studies involving surface flux measurements over crops that predominate in North America have been crucial for extending earlier bidirectional flux models toward more realistic treatment of NH3 fluxes for croplands. Comparisons of the ammonia bidirection flux algorithm to both lightly fertilized soybeans and heavily fertilized corn demonstrate that the model can capture the magnitude and dynamics of observed ammonia fluxes, both net deposition and evasion, over a range of conditions with overall biases on the order of the uncertainty of the measurements. However, successful application to the field experiment in heavily fertilized corn required substantial modification of the model to include new parameterizations for in-soil diffusion resistance, ground quasi-laminar boundary layer resistance, and revised cuticular resistance that is dependent on in-canopy NH3 concentration and RH at the leaf surface. This new bidirectional flux algorithm has been incorporated in an air quality modeling system, which also includes an implementation of a soil nitrification model.

  11. EVALUATION OF THE REAL-TIME AIR-QUALITY MODEL USING THE RAPS (REGIONAL AIR POLLUTION STUDY) DATA BASE. VOLUME 3. PROGRAM USER'S GUIDE

    EPA Science Inventory

    The theory and programming of statistical tests for evaluating the Real-Time Air-Quality Model (RAM) using the Regional Air Pollution Study (RAPS) data base are fully documented in four volumes. Moreover, the tests are generally applicable to other model evaluation problems. Volu...

  12. A communication library for the parallelization of air quality models on structured grids

    NASA Astrophysics Data System (ADS)

    Miehe, Philipp; Sandu, Adrian; Carmichael, Gregory R.; Tang, Youhua; Dăescu, Dacian

    PAQMSG is an MPI-based, Fortran 90 communication library for the parallelization of air quality models (AQMs) on structured grids. It consists of distribution, gathering and repartitioning routines for different domain decompositions implementing a master-worker strategy. The library is architecture and application independent and includes optimization strategies for different architectures. This paper presents the library from a user perspective. Results are shown from the parallelization of STEM-III on Beowulf clusters. The PAQMSG library is available on the web. The communication routines are easy to use, and should allow for an immediate parallelization of existing AQMs. PAQMSG can also be used for constructing new models.

  13. Community Multiscale Air Quality Model

    EPA Science Inventory

    The U.S. EPA developed the Community Multiscale Air Quality (CMAQ) system to apply a “one atmosphere” multiscale and multi-pollutant modeling approach based mainly on the “first principles” description of the atmosphere. The multiscale capability is supported by the governing di...

  14. A spatially distributed model for assessment of the effects of changing land use and climate on urban stream quality: Development of a Spatially Distributed Urban Water Quality Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ning; Yearsley, John; Baptiste, Marisa

    While the effects of land use change in urban areas have been widely examined, the combined effects of climate and land use change on the quality of urban and urbanizing streams have received much less attention. We describe a modeling framework that is applicable to the evaluation of potential changes in urban water quality and associated hydrologic changes in response to ongoing climate and landscape alteration. The grid-based spatially distributed model, DHSVM-WQ, is an outgrowth of the Distributed Hydrology-Soil-Vegetation Model (DHSVM) that incorporates modules for assessing hydrology and water quality in urbanized watersheds at a high spatial and temporal resolution.more » DHSVM-WQ simulates surface runoff quality and in-stream processes that control the transport of nonpoint-source (NPS) pollutants into urban streams. We configure DHSVM-WQ for three partially urbanized catchments in the Puget Sound region to evaluate the water quality responses to current conditions and projected changes in climate and/or land use over the next century. Here we focus on total suspended solids (TSS) and total phosphorus (TP) from nonpoint sources (runoff), as well as stream temperature. The projection of future land use is characterized by a combination of densification in existing urban or partially urban areas, and expansion of the urban footprint. The climate change scenarios consist of individual and concurrent changes in temperature and precipitation. Future precipitation is projected to increase in winter and decrease in summer, while future temperature is projected to increase throughout the year. Our results show that urbanization has a much greater effect than climate change on both the magnitude and seasonal variability of streamflow, TSS and TP loads largely due to substantially increased streamflow, and particularly winter flow peaks. Water temperature is more sensitive to climate warming scenarios than to urbanization and precipitation changes. Future

  15. A Procedure for Extending Input Selection Algorithms to Low Quality Data in Modelling Problems with Application to the Automatic Grading of Uploaded Assignments

    PubMed Central

    Otero, José; Palacios, Ana; Suárez, Rosario; Junco, Luis

    2014-01-01

    When selecting relevant inputs in modeling problems with low quality data, the ranking of the most informative inputs is also uncertain. In this paper, this issue is addressed through a new procedure that allows the extending of different crisp feature selection algorithms to vague data. The partial knowledge about the ordinal of each feature is modelled by means of a possibility distribution, and a ranking is hereby applied to sort these distributions. It will be shown that this technique makes the most use of the available information in some vague datasets. The approach is demonstrated in a real-world application. In the context of massive online computer science courses, methods are sought for automatically providing the student with a qualification through code metrics. Feature selection methods are used to find the metrics involved in the most meaningful predictions. In this study, 800 source code files, collected and revised by the authors in classroom Computer Science lectures taught between 2013 and 2014, are analyzed with the proposed technique, and the most relevant metrics for the automatic grading task are discussed. PMID:25114967

  16. Development of the Next Generation Air Quality Modeling System

    EPA Science Inventory

    A next generation air quality modeling system is being developed at the U.S. EPA to enable modeling of air quality from global to regional to (eventually) local scales. We envision that the system will have three configurations: 1. Global meteorology with seamless mesh refinemen...

  17. A Total Quality Leadership Process Improvement Model

    DTIC Science & Technology

    1993-12-01

    Leadership Process Improvement Model by Archester Houston, Ph.D. and Steven L. Dockstader, Ph.D. DTICS ELECTE tleaese oand sale itsFeat ben proe 94-12058...tTl ’AND SIATE COVERID0 Z lits Z40 uerI’Ll12/93 IFinalS.FNR IM F A Total Quality Leadership Process Improvement Model M ARRhOW~ Archester Houston, Ph.D...and Steven L. Dockstader, Ph.D. ?. 7PEJORMING ORG-AN1:AION NAMEIS) AND 00-RESS(ES) L PERFORMIN4 ORAINIZATION Total Quality Leadership OfficeREOTNMR

  18. Voice Quality Modelling for Expressive Speech Synthesis

    PubMed Central

    Socoró, Joan Claudi

    2014-01-01

    This paper presents the perceptual experiments that were carried out in order to validate the methodology of transforming expressive speech styles using voice quality (VoQ) parameters modelling, along with the well-known prosody (F 0, duration, and energy), from a neutral style into a number of expressive ones. The main goal was to validate the usefulness of VoQ in the enhancement of expressive synthetic speech in terms of speech quality and style identification. A harmonic plus noise model (HNM) was used to modify VoQ and prosodic parameters that were extracted from an expressive speech corpus. Perception test results indicated the improvement of obtained expressive speech styles using VoQ modelling along with prosodic characteristics. PMID:24587738

  19. Epidemiology and quality assurance: applications at farm level.

    PubMed

    Noordhuizen, J P; Frankena, K

    1999-03-29

    Animal production is relevant with respect to farm income and the position of the sector in the market, but also with respect to the quality and safety of products of animal origin, related to public health. Animal production is part of a chain of food production. Therefore, producers have to take consumer expectations and demands in the domains of animal health, welfare and environment into account. A different attitude for production has to be adopted; this attitude can be visualized in good farming practice, GFP, codes. Farmers who focused on quality in its broadest sense need a system supporting them in their management and control of quality risks. Generally speaking, there are three systems for that purpose: GFP, ISO and HACCP. When the hypothesis followed relates to animal health being a feature of quality, or else welfare and environmental issues, then animal health care can be executed following quality control principles. The HACCP concept is well suited for quality control at farm level, involving risk identification and risk management. The on-farm monitoring and surveillance system of critical control points in the animal production process is the most important tool in this procedure. Principles for HACCP application as well as certification fitness of HACCP are elaborated upon. They are illustrated by using salmonellosis in meat-pig farms as objective for an HACCP approach. It is further discussed that, in addition to animal health and quality, animal welfare and environmental issues could also be covered by an HACCP-like system in an integrated manner. Ultimately, the HACCP modules could end up in an overall ISO certification.

  20. Atmospheric Model Evaluation Tool for meteorological and air quality simulations

    EPA Pesticide Factsheets

    The Atmospheric Model Evaluation Tool compares model predictions to observed data from various meteorological and air quality observation networks to help evaluate meteorological and air quality simulations.

  1. An introduction to tree-structured modeling with application to quality of life data.

    PubMed

    Su, Xiaogang; Azuero, Andres; Cho, June; Kvale, Elizabeth; Meneses, Karen M; McNees, M Patrick

    2011-01-01

    Investigators addressing nursing research are faced increasingly with the need to analyze data that involve variables of mixed types and are characterized by complex nonlinearity and interactions. Tree-based methods, also called recursive partitioning, are gaining popularity in various fields. In addition to efficiency and flexibility in handling multifaceted data, tree-based methods offer ease of interpretation. The aims of this study were to introduce tree-based methods, discuss their advantages and pitfalls in application, and describe their potential use in nursing research. In this article, (a) an introduction to tree-structured methods is presented, (b) the technique is illustrated via quality of life (QOL) data collected in the Breast Cancer Education Intervention study, and (c) implications for their potential use in nursing research are discussed. As illustrated by the QOL analysis example, tree methods generate interesting and easily understood findings that cannot be uncovered via traditional linear regression analysis. The expanding breadth and complexity of nursing research may entail the use of new tools to improve efficiency and gain new insights. In certain situations, tree-based methods offer an attractive approach that help address such needs.

  2. Using LiDAR datasets to improve HSPF water quality modeling in the Red River of the North Basin

    NASA Astrophysics Data System (ADS)

    Burke, M. P.; Foreman, C. S.

    2013-12-01

    The Red River of the North Basin (RRB), located in the lakebed of ancient glacial Lake Agassiz, comprises one of the flattest landscapes in North America. The topography of the basin, coupled with the Red River's direction of flow from south to north results in a system that is highly susceptible to flooding. The magnitude and frequency of flood events in the RRB has prompted several multijurisdictional projects and mitigation efforts. In response to the devastating 1997 flood, an International Joint Commission sponsored task force established the need for accurate elevation data to help improve flood forecasting and better understand risks. This led to the International Water Institute's Red River Basin Mapping Initiative, and the acquisition LiDAR Data for the entire US portion of the RRB. The resulting 1 meter bare earth digital elevation models have been used to improve hydraulic and hydrologic modeling within the RRB, with focus on flood prediction and mitigation. More recently, these LiDAR datasets have been incorporated into Hydrological Simulation Program-FORTRAN (HSPF) model applications to improve water quality predictions in the MN portion of the RRB. RESPEC is currently building HSPF model applications for five of MN's 8-digit HUC watersheds draining to the Red River, including: the Red Lake River, Clearwater River, Sandhill River, Two Rivers, and Tamarac River watersheds. This work is being conducted for the Minnesota Pollution Control Agency (MPCA) as part of MN's statewide watershed approach to restoring and protecting water. The HSPF model applications simulate hydrology (discharge, stage), as well as a number of water quality constituents (sediment, temperature, organic and inorganic nitrogen, total ammonia, organic and inorganic phosphorus, dissolved oxygen and biochemical oxygen demand, and algae) continuously for the period 1995-2009 and are formulated to provide predictions at points of interest within the watersheds, such as observation gages

  3. Application of experimental design for the optimization of artificial neural network-based water quality model: a case study of dissolved oxygen prediction.

    PubMed

    Šiljić Tomić, Aleksandra; Antanasijević, Davor; Ristić, Mirjana; Perić-Grujić, Aleksandra; Pocajt, Viktor

    2018-04-01

    This paper presents an application of experimental design for the optimization of artificial neural network (ANN) for the prediction of dissolved oxygen (DO) content in the Danube River. The aim of this research was to obtain a more reliable ANN model that uses fewer monitoring records, by simultaneous optimization of the following model parameters: number of monitoring sites, number of historical monitoring data (expressed in years), and number of input water quality parameters used. Box-Behnken three-factor at three levels experimental design was applied for simultaneous spatial, temporal, and input variables optimization of the ANN model. The prediction of DO was performed using a feed-forward back-propagation neural network (BPNN), while the selection of most important inputs was done off-model using multi-filter approach that combines a chi-square ranking in the first step with a correlation-based elimination in the second step. The contour plots of absolute and relative error response surfaces were utilized to determine the optimal values of design factors. From the contour plots, two BPNN models that cover entire Danube flow through Serbia are proposed: an upstream model (BPNN-UP) that covers 8 monitoring sites prior to Belgrade and uses 12 inputs measured in the 7-year period and a downstream model (BPNN-DOWN) which covers 9 monitoring sites and uses 11 input parameters measured in the 6-year period. The main difference between the two models is that BPNN-UP utilizes inputs such as BOD, P, and PO 4 3- , which is in accordance with the fact that this model covers northern part of Serbia (Vojvodina Autonomous Province) which is well-known for agricultural production and extensive use of fertilizers. Both models have shown very good agreement between measured and predicted DO (with R 2  ≥ 0.86) and demonstrated that they can effectively forecast DO content in the Danube River.

  4. Impact of inherent meteorology uncertainty on air quality model predictions

    EPA Science Inventory

    It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is impor...

  5. Development of the Next Generation Air Quality Modeling System (20th Joint Conference on the Applications of Air Pollution Meteorology with the A&WMA)

    EPA Science Inventory

    A next generation air quality modeling system is being developed at the U.S. EPA to enable modeling of air quality from global to regional to (eventually) local scales. We envision that the system will have three configurations: 1. Global meteorology with seamless mesh refinemen...

  6. TU-AB-207A-03: Image Quality, Dose, and Clinical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, F.

    Practicing medical physicists are often time charged with the tasks of evaluating and troubleshooting complex image quality issues related to CT scanners. This course will equip them with a solid and practical understanding of common CT imaging chain and its major components with emphasis on acquisition physics and hardware, reconstruction, artifacts, image quality, dose, and advanced clinical applications. The core objective is to explain the effects of these major system components on the image quality. This course will not focus on the rapid-changing advanced technologies given the two-hour time limit, but the fundamental principles discussed in this course may facilitatemore » better understanding of those more complicated technologies. The course will begin with an overview of CT acquisition physics and geometry. X-ray tube and CT detector are important acquisition hardware critical to the overall image quality. Each of these two subsystems consists of several major components. An in-depth description of the function and failure modes of these components will be provided. Examples of artifacts related to these failure modes will be presented: off-focal radiation, tube arcing, heel effect, oil bubble, offset drift effect, cross-talk effect, and bad pixels. The fundamentals of CT image reconstruction will first be discussed on an intuitive level. Approaches that do not require rigorous derivation of mathematical formulations will be presented. This is followed by a detailed derivation of the Fourier slice theorem: the foundation of the FBP algorithm. FBP for parallel-beam, fan-beam, and cone-beam geometries will be discussed. To address the issue of radiation dose related to x-ray CT, recent advances in iterative reconstruction, their advantages, and clinical applications will also be described. Because of the nature of fundamental physics and mathematics, limitations in data acquisition, and non-ideal conditions of major system components, image artifact

  7. Indoor Air Quality Building Education and Assessment Model

    EPA Pesticide Factsheets

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM), released in 2002, is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  8. Response in the water quality of the Salton Sea, California, to changes in phosphorus loading: An empirical modeling approach

    USGS Publications Warehouse

    Robertson, Dale M.; Schladow, S.G.

    2008-01-01

    Salton Sea, California, like many other lakes, has become eutrophic because of excessive nutrient loading, primarily phosphorus (P). A Total Maximum Daily Load (TMDL) is being prepared for P to reduce the input of P to the Sea. In order to better understand how P-load reductions should affect the average annual water quality of this terminal saline lake, three different eutrophication programs (BATHTUB, WiLMS, and the Seepage Lake Model) were applied. After verifying that specific empirical models within these programs were applicable to this saline lake, each model was calibrated using water-quality and nutrient-loading data for 1999 and then used to simulate the effects of specific P-load reductions. Model simulations indicate that a 50% decrease in external P loading would decrease near-surface total phosphorus concentrations (TP) by 25-50%. Application of other empirical models demonstrated that this decrease in loading should decrease near-surface chlorophyll a concentrations (Chl a) by 17-63% and increase Secchi depths (SD) by 38-97%. The wide range in estimated responses in Chl a and SD were primarily caused by uncertainty in how non-algal turbidity would respond to P-load reductions. If only the models most applicable to the Salton Sea are considered, a 70-90% P-load reduction is required for the Sea to be classified as moderately eutrophic (trophic state index of 55). These models simulate steady-state conditions in the Sea; therefore, it is difficult to ascertain how long it would take for the simulated changes to occur after load reductions. ?? 2008 Springer Science+Business Media B.V.

  9. [Application of Markov model in post-marketing pharmacoeconomic evaluation of traditional Chinese medicine].

    PubMed

    Wang, Xin; Su, Xia; Sun, Wentao; Xie, Yanming; Wang, Yongyan

    2011-10-01

    In post-marketing study of traditional Chinese medicine (TCM), pharmacoeconomic evaluation has an important applied significance. However, the economic literatures of TCM have been unable to fully and accurately reflect the unique overall outcomes of treatment with TCM. For the special nature of TCM itself, we recommend that Markov model could be introduced into post-marketing pharmacoeconomic evaluation of TCM, and also explore the feasibility of model application. Markov model can extrapolate the study time horizon, suit with effectiveness indicators of TCM, and provide measurable comprehensive outcome. In addition, Markov model can promote the development of TCM quality of life scale and the methodology of post-marketing pharmacoeconomic evaluation.

  10. Green Pea and Garlic Puree Model Food Development for Thermal Pasteurization Process Quality Evaluation.

    PubMed

    Bornhorst, Ellen R; Tang, Juming; Sablani, Shyam S; Barbosa-Cánovas, Gustavo V; Liu, Fang

    2017-07-01

    Development and selection of model foods is a critical part of microwave thermal process development, simulation validation, and optimization. Previously developed model foods for pasteurization process evaluation utilized Maillard reaction products as the time-temperature integrators, which resulted in similar temperature sensitivity among the models. The aim of this research was to develop additional model foods based on different time-temperature integrators, determine their dielectric properties and color change kinetics, and validate the optimal model food in hot water and microwave-assisted pasteurization processes. Color, quantified using a * value, was selected as the time-temperature indicator for green pea and garlic puree model foods. Results showed 915 MHz microwaves had a greater penetration depth into the green pea model food than the garlic. a * value reaction rates for the green pea model were approximately 4 times slower than in the garlic model food; slower reaction rates were preferred for the application of model food in this study, that is quality evaluation for a target process of 90 °C for 10 min at the cold spot. Pasteurization validation used the green pea model food and results showed that there were quantifiable differences between the color of the unheated control, hot water pasteurization, and microwave-assisted thermal pasteurization system. Both model foods developed in this research could be utilized for quality assessment and optimization of various thermal pasteurization processes. © 2017 Institute of Food Technologists®.

  11. Applicability of aquifer impact models to support decisions at CO2 sequestration sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keating, Elizabeth; Bacon, Diana; Carroll, Susan

    2016-09-01

    The National Risk Assessment Partnership has developed a suite of tools to assess and manage risk at CO2 sequestration sites (www.netldoe.gov/nrap). This capability includes polynomial or look-up table based reduced-order models (ROMs) that predict the impact of CO2 and brine leaks on overlying aquifers. The development of these computationally-efficient models and the underlying reactive transport simulations they emulate has been documented elsewhere (Carroll et al., 2014, Dai et al., 2014, Keating et al., 2015). The ROMs reproduce the ensemble behavior of large numbers of simulations and are well-suited to applications that consider a large number of scenarios to understand parametermore » sensitivity and uncertainty on the risk of CO2 leakage to groundwater quality. In this paper, we seek to demonstrate applicability of ROM-based ensemble analysis by considering what types of decisions and aquifer types would benefit from the ROM analysis. We present four hypothetical four examples where applying ROMs, in ensemble mode, could support decisions in the early stages in a geologic CO2 sequestration project. These decisions pertain to site selection, site characterization, monitoring network evaluation, and health impacts. In all cases, we consider potential brine/CO2 leak rates at the base of the aquifer to be uncertain. We show that derived probabilities provide information relevant to the decision at hand. Although the ROMs were developed using site-specific data from two aquifers (High Plains and Edwards), the models accept aquifer characteristics as variable inputs and so they may have more broad applicability. We conclude that pH and TDS predictions are the most transferable to other aquifers based on the analysis of the nine water quality metrics (pH, TDS, 4 trace metals, 3 organic compounds). Guidelines are presented for determining the aquifer types for which the ROMs should be applicable.« less

  12. Using "big data" to optimally model hydrology and water quality across expansive regions

    USGS Publications Warehouse

    Roehl, E.A.; Cook, J.B.; Conrads, P.A.

    2009-01-01

    This paper describes a new divide and conquer approach that leverages big environmental data, utilizing all available categorical and time-series data without subjectivity, to empirically model hydrologic and water-quality behaviors across expansive regions. The approach decomposes large, intractable problems into smaller ones that are optimally solved; decomposes complex signals into behavioral components that are easier to model with "sub- models"; and employs a sequence of numerically optimizing algorithms that include time-series clustering, nonlinear, multivariate sensitivity analysis and predictive modeling using multi-layer perceptron artificial neural networks, and classification for selecting the best sub-models to make predictions at new sites. This approach has many advantages over traditional modeling approaches, including being faster and less expensive, more comprehensive in its use of available data, and more accurate in representing a system's physical processes. This paper describes the application of the approach to model groundwater levels in Florida, stream temperatures across Western Oregon and Wisconsin, and water depths in the Florida Everglades. ?? 2009 ASCE.

  13. ONE-ATMOSPHERE DYNAMICS DESCRIPTION IN THE MODELS-3 COMMUNITY MULTI-SCALE QUALITY (CMAQ) MODELING SYSTEM

    EPA Science Inventory

    This paper proposes a general procedure to link meteorological data with air quality models, such as U.S. EPA's Models-3 Community Multi-scale Air Quality (CMAQ) modeling system. CMAQ is intended to be used for studying multi-scale (urban and regional) and multi-pollutant (ozon...

  14. Measurement of Health Care Quality in Atopic Dermatitis - Development and Application of a Set of Quality Indicators.

    PubMed

    Steinke, S; Beikert, F C; Langenbruch, A; Fölster-Holst, R; Ring, J; Schmitt, J; Werfel, T; Hintzen, S; Franzke, N; Augustin, M

    2018-05-15

    Quality indicators are essential tools for the assessment of health care, in particular for guideline-based procedures. 1) Development of a set of indicators for the evaluation of process and outcomes quality in atopic dermatitis (AD) care. 2) Application of the indicators to a cross-sectional study and creation of a global process quality index. An expert committee consisting of 10 members of the German guideline group on atopic dermatitis condensed potential quality indicators to a final set of 5 outcomes quality and 12 process quality indicators using a Delphi panel. The outcomes quality and 7 resp. 8 process quality indicators were retrospectively applied to a nationwide study on 1,678 patients with atopic dermatitis (AtopicHealth). Each individual process quality indicator score was then summed up to a global index (ranges from 0 (no quality achieved) to 100 (full quality achieved)) displaying the quality of health care. In total, the global process quality index revealed a median value of 62.5 and did not or only slightly correlate to outcome indicators as the median SCORAD (SCORing Atopic Dermatitis; rp =0.08), Dermatology Life Quality Index (DLQI; rp = 0.256), and Patient Benefit Index (PBI; rp = -0.151). Process quality of AD care is moderate to good. The health care process quality index does not substantially correlate to the health status of AD patients measured by 5 different outcomes quality indicators. Further research should include the investigation of reliability, responsiveness, and feasibility of the proposed quality indicators for AD. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Review of nitrogen fate models applicable to forest landscapes in the Southern U.S.

    Treesearch

    D. M. Amatya; C. G. Rossi; A. Saleh; Z. Dai; M. A. Youssef; R. G. Williams; D. D. Bosch; G. M. Chescheir; G. Sun; R. W. Skaggs; C. C. Trettin; E. D. Vance; J. E. Nettles; S. Tian

    2013-01-01

    Assessing the environmental impacts of fertilizer nitrogen (N) used to increase productivity in managed forests is complex due to a wide range of abiotic and biotic factors affecting its forms and movement. Models developed to predict fertilizer N fate (e.g., cycling processes) and water quality impacts vary widely in their design, scope, and potential application. We...

  16. Development and testing of a fast conceptual river water quality model.

    PubMed

    Keupers, Ingrid; Willems, Patrick

    2017-04-15

    Modern, model based river quality management strongly relies on river water quality models to simulate the temporal and spatial evolution of pollutant concentrations in the water body. Such models are typically constructed by extending detailed hydrodynamic models with a component describing the advection-diffusion and water quality transformation processes in a detailed, physically based way. This approach is too computational time demanding, especially when simulating long time periods that are needed for statistical analysis of the results or when model sensitivity analysis, calibration and validation require a large number of model runs. To overcome this problem, a structure identification method to set up a conceptual river water quality model has been developed. Instead of calculating the water quality concentrations at each water level and discharge node, the river branch is divided into conceptual reservoirs based on user information such as location of interest and boundary inputs. These reservoirs are modelled as Plug Flow Reactor (PFR) and Continuously Stirred Tank Reactor (CSTR) to describe advection and diffusion processes. The same water quality transformation processes as in the detailed models are considered but with adjusted residence times based on the hydrodynamic simulation results and calibrated to the detailed water quality simulation results. The developed approach allows for a much faster calculation time (factor 10 5 ) without significant loss of accuracy, making it feasible to perform time demanding scenario runs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Applications notice for participation in the LANDSAT-D image data quality analysis program

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The applications notice for the LANDSAT 4 image data quality analysis program is presented. The objectives of the program are to qualify LANDSAT 4 sensor and systems performance from a user applications point of view, and to identify any malfunctions that may impact data applications. Guidelines for preparing proposals and background information are provided.

  18. Osteopathic postdoctoral training institutions: a decentralized model for facilitating accreditation and program quality.

    PubMed

    Peska, Don N; Opipari, Michael I; Watson, D Keith

    2009-06-01

    Osteopathic medicine has experienced significant growth in the number of accredited colleges and graduates over the past decade. Anticipating that growth and recognizing a responsibility to provide sufficient opportunities for quality postdoctoral training, the American Osteopathic Association created a national network of educational consortia to meet the needs of those graduates. These osteopathic postdoctoral training institutions (OPTIs) were to provide enhanced capability for the development and accreditation of new programs, quality oversight, and access to academic resources for their members. The plan reached full implementation in 1999 when all graduate training programs were required to become members of one of these consortia. Although several contributing factors can be considered, an increase in the rate at which training programs have obtained approval by the American Osteopathic Association has occurred under the OPTI model. Quality indicators are more elusive. Each OPTI provides peer-driven oversight to curriculum and faculty development and closely monitors outcomes such as in-service examination scores, certification board passage rates, and resident evaluations of programs.The strategy has enabled a much-sought-after transformation in osteopathic graduate medical education that has provided both strength and accountability to the preexisting infrastructure. As a decentralized accreditation model, OPTI is still evolving and warrants continued application and study.

  19. 40 CFR 52.60 - Significant deterioration of air quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. 52.60 Section 52.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) All applications and other information required pursuant to § 52.21 from... “Guideline on Air Quality Models (Revised)” or other models approved by EPA. [42 FR 22869, May 5, 1977, as...

  20. 40 CFR 52.60 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quality. 52.60 Section 52.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) All applications and other information required pursuant to § 52.21 from... “Guideline on Air Quality Models (Revised)” or other models approved by EPA. [42 FR 22869, May 5, 1977, as...

  1. 40 CFR 52.60 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality. 52.60 Section 52.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) All applications and other information required pursuant to § 52.21 from... “Guideline on Air Quality Models (Revised)” or other models approved by EPA. [42 FR 22869, May 5, 1977, as...

  2. 40 CFR 52.60 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality. 52.60 Section 52.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) All applications and other information required pursuant to § 52.21 from... “Guideline on Air Quality Models (Revised)” or other models approved by EPA. [42 FR 22869, May 5, 1977, as...

  3. 40 CFR 52.60 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality. 52.60 Section 52.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... deterioration of air quality. (a) All applications and other information required pursuant to § 52.21 from... “Guideline on Air Quality Models (Revised)” or other models approved by EPA. [42 FR 22869, May 5, 1977, as...

  4. A linked hydrodynamic and water quality model for the Salton Sea

    USGS Publications Warehouse

    Chung, E.G.; Schladow, S.G.; Perez-Losada, J.; Robertson, Dale M.

    2008-01-01

    A linked hydrodynamic and water quality model was developed and applied to the Salton Sea. The hydrodynamic component is based on the one-dimensional numerical model, DLM. The water quality model is based on a new conceptual model for nutrient cycling in the Sea, and simulates temperature, total suspended sediment concentration, nutrient concentrations, including PO4-3, NO3-1 and NH4+1, DO concentration and chlorophyll a concentration as functions of depth and time. Existing water temperature data from 1997 were used to verify that the model could accurately represent the onset and breakup of thermal stratification. 1999 is the only year with a near-complete dataset for water quality variables for the Salton Sea. The linked hydrodynamic and water quality model was run for 1999, and by adjustment of rate coefficients and other water quality parameters, a good match with the data was obtained. In this article, the model is fully described and the model results for reductions in external phosphorus load on chlorophyll a distribution are presented. ?? 2008 Springer Science+Business Media B.V.

  5. Quality and Quantity of Applicants for Teacher Education Rapidly Diminishing.

    ERIC Educational Resources Information Center

    Starr, Nina K.

    1983-01-01

    Identifies two societal factors contributing to the decrease in quantity/quality of applicants for teacher education programs: range of career options now available for females and the "tunnel vision" mind set of schools, departments, and colleges of education. Suggests generic pedagogy as a solution. (MH)

  6. EVALUATING AND USING AIR QUALITY MODELS

    EPA Science Inventory

    Grid-based models are being used to assess the magnitude of the pollution problem and to design emission control strategies to achieve compliance with the relevant air quality standards in the United States.

  7. Spatial Allocator for air quality modeling

    EPA Pesticide Factsheets

    The Spatial Allocator is a set of tools that helps users manipulate and generate data files related to emissions and air quality modeling without requiring the use of a commercial Geographic Information System.

  8. An assessment model for quality management

    NASA Astrophysics Data System (ADS)

    Völcker, Chr.; Cass, A.; Dorling, A.; Zilioli, P.; Secchi, P.

    2002-07-01

    SYNSPACE together with InterSPICE and Alenia Spazio is developing an assessment method to determine the capability of an organisation in the area of quality management. The method, sponsored by the European Space Agency (ESA), is called S9kS (SPiCE- 9000 for SPACE). S9kS is based on ISO 9001:2000 with additions from the quality standards issued by the European Committee for Space Standardization (ECSS) and ISO 15504 - Process Assessments. The result is a reference model that supports the expansion of the generic process assessment framework provided by ISO 15504 to nonsoftware areas. In order to be compliant with ISO 15504, requirements from ISO 9001 and ECSS-Q-20 and Q-20-09 have been turned into process definitions in terms of Purpose and Outcomes, supported by a list of detailed indicators such as Practices, Work Products and Work Product Characteristics. In coordination with this project, the capability dimension of ISO 15504 has been revised to be consistent with ISO 9001. As contributions from ISO 9001 and the space quality assurance standards are separable, the stripped down version S9k offers organisations in all industries an assessment model based solely on ISO 9001, and is therefore interesting to all organisations, which intend to improve their quality management system based on ISO 9001.

  9. [Integrated Quality Management System (IQMS): a model for improving the quality of reproductive health care in rural Kenya].

    PubMed

    Herrler, Claudia; Bramesfeld, Anke; Brodowski, Marc; Prytherch, Helen; Marx, Irmgard; Nafula, Maureen; Richter-Aairijoki, Heide; Musyoka, Lucy; Marx, Michael; Szecsenyi, Joachim

    2015-01-01

    To develop a model aiming to improve the quality of services for reproductive health care in rural Kenya and designed to measure the quality of reproductive health services in such a way that allows these services to identify measures for improving their performance. The Integrated Quality Management System (IQMS) was developed on the basis of a pre-existing and validated model for quality promotion, namely the European Practice Assessment (EPA). The methodology for quality assessment and feedback of assessment results to the service teams was adopted from the EPA model. Quality assessment methodology included data assessment through staff, patient surveys and service visitation. Quality is assessed by indicators, and so indicators had to be developed that were appropriate for assessing reproductive health care in rural Kenya. A search of the Kenyan and international literature was conducted to identify potential indicators. These were then rated for their relevance and clarity by a panel of Kenyan experts. 260 indicators were rated as relevant and assigned to 29 quality dimensions and 5 domains. The implementation of IQMS in ten facilities showed that IQMS is a feasible model for assessing the quality of reproductive health services in rural Kenya. IQMS enables these services to identify quality improvement targets and necessary improvement measures. Both strengths and limitations of IQMS will be discussed. Copyright © 2015. Published by Elsevier GmbH.

  10. Chronic care model strategies in the United States and Germany deliver patient-centered, high-quality diabetes care.

    PubMed

    Stock, Stephanie; Pitcavage, James M; Simic, Dusan; Altin, Sibel; Graf, Christian; Feng, Wen; Graf, Thomas R

    2014-09-01

    Improving the quality of care for chronic diseases is an important issue for most health care systems in industrialized nations. One widely adopted approach is the Chronic Care Model (CCM), which was first developed in the late 1990s. In this article we present the results from two large surveys in the United States and Germany that report patients' experiences in different models of patient-centered diabetes care, compared to the experiences of patients who received routine diabetes care in the same systems. The study populations were enrolled in either Geisinger Health System in Pennsylvania or Barmer, a German sickness fund that provides medical insurance nationwide. Our findings suggest that patients with type 2 diabetes who were enrolled in the care models that exhibited key features of the CCM were more likely to receive care that was patient-centered, high quality, and collaborative, compared to patients who received routine care. This study demonstrates that quality improvement can be realized through the application of the Chronic Care Model, regardless of the setting or distinct characteristics of the program. Project HOPE—The People-to-People Health Foundation, Inc.

  11. Private healthcare quality: applying a SERVQUAL model.

    PubMed

    Butt, Mohsin Muhammad; de Run, Ernest Cyril

    2010-01-01

    This paper seeks to develop and test the SERVQUAL model scale for measuring Malaysian private health service quality. The study consists of 340 randomly selected participants visiting a private healthcare facility during a three-month data collection period. Data were analyzed using means, correlations, principal component and confirmatory factor analysis to establish the modified SERVQUAL scale's reliability, underlying dimensionality and convergent, discriminant validity. Results indicate a moderate negative quality gap for overall Malaysian private healthcare service quality. Results also indicate a moderate negative quality gap on each service quality scale dimension. However, scale development analysis yielded excellent results, which can be used in wider healthcare policy and practice. Respondents were skewed towards a younger population, causing concern that the results might not represent all Malaysian age groups. The study's major contribution is that it offers a way to assess private healthcare service quality. Second, it successfully develops a scale that can be used to measure health service quality in Malaysian contexts.

  12. Application of a short term air quality action plan in Madrid (Spain) under a high-pollution episode - Part II: Assessment from multi-scale modelling.

    PubMed

    Borge, Rafael; Santiago, Jose Luis; de la Paz, David; Martín, Fernando; Domingo, Jessica; Valdés, Cristina; Sánchez, Beatriz; Rivas, Esther; Rozas, Mª Teresa; Lázaro, Sonia; Pérez, Javier; Fernández, Álvaro

    2018-05-05

    Air pollution continues to be one of the main issues in urban areas. In addition to air quality plans and emission abatement policies, additional measures for high pollution episodes are needed to avoid exceedances of hourly limit values under unfavourable meteorological conditions such as the Madrid's short-term action NO 2 protocol. In December 2016 there was a strong atmospheric stability episode that turned out in generalized high NO 2 levels, causing the stage 3 of the NO 2 protocol to be triggered for the first time in Madrid (29th December). In addition to other traffic-related measures, this involves access restrictions to the city centre (50% to private cars). We simulated the episode with and without measures under a multi-scale modelling approach. A 1 km 2 resolution modelling system based on WRF-SMOKE-CMAQ was applied to assess city-wide effects while the Star-CCM+ (RANS CFD model) was used to investigate the effect at street level in a microscale domain in the city centre, focusing on Gran Vía Avenue. Changes in road traffic were simulated with the mesoscale VISUM model, incorporating real flux measurements during those days. The corresponding simulations suggest that the application of the protocol during this particular episode may have prevented concentrations to increase by 24 μg·m -3 (14% respect to the hypothetical no action scenario) downtown although it may have cause NO 2 to slightly increase in the city outskirts due to traffic redistribution. Speed limitation and parking restrictions alone (stages 1 and 2 respectively) have a very limited effect. The microscale simulation provides consistent results but shows an important variability at street level, with reduction above 100 μg·m -3 in some spots inside Gran Vía. Although further research is needed, these results point out the need to implement short-term action plans and to apply a consistent multi-scale modelling assessment to optimize urban air quality abatement strategies

  13. Mobility Device Quality Affects Participation Outcomes for People With Disabilities: A Structural Equation Modeling Analysis.

    PubMed

    Magasi, Susan; Wong, Alex; Miskovic, Ana; Tulsky, David; Heinemann, Allen W

    2018-01-01

    To test the effect that indicators of mobility device quality have on participation outcomes in community-dwelling adults with spinal cord injury, traumatic brain injury, and stroke by using structural equation modeling. Survey, cross-sectional study, and model testing. Clinical research space at 2 academic medical centers and 1 free-standing rehabilitation hospital. Community-dwelling adults (N=250; mean age, 48±14.3y) with spinal cord injury, traumatic brain injury, and stroke. Not applicable. The Mobility Device Impact Scale, Patient-Reported Outcomes Measurement Information System Social Function (version 2.0) scale, including Ability to Participate in Social Roles and Activities and Satisfaction with Social Roles and Activities, and the 2 Community Participation Indicators' enfranchisement scales. Details about device quality (reparability, reliability, ease of maintenance) and device type were also collected. Respondents used ambulation aids (30%), manual (34%), and power wheelchairs (30%). Indicators of device quality had a moderating effect on participation outcomes, with 3 device quality variables (repairability, ease of maintenance, device reliability) accounting for 20% of the variance in participation. Wheelchair users reported lower participation enfranchisement than did ambulation aid users. Mobility device quality plays an important role in participation outcomes. It is critical that people have access to mobility devices and that these devices be reliable. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  14. Persistence of initial conditions in continental scale air quality simulations

    EPA Science Inventory

    This study investigates the effect of initial conditions (IC) for pollutant concentrations in the atmosphere and soil on simulated air quality for two continental-scale Community Multiscale Air Quality (CMAQ) model applications. One of these applications was performed for springt...

  15. Quality assessment of protein model-structures using evolutionary conservation.

    PubMed

    Kalman, Matan; Ben-Tal, Nir

    2010-05-15

    Programs that evaluate the quality of a protein structural model are important both for validating the structure determination procedure and for guiding the model-building process. Such programs are based on properties of native structures that are generally not expected for faulty models. One such property, which is rarely used for automatic structure quality assessment, is the tendency for conserved residues to be located at the structural core and for variable residues to be located at the surface. We present ConQuass, a novel quality assessment program based on the consistency between the model structure and the protein's conservation pattern. We show that it can identify problematic structural models, and that the scores it assigns to the server models in CASP8 correlate with the similarity of the models to the native structure. We also show that when the conservation information is reliable, the method's performance is comparable and complementary to that of the other single-structure quality assessment methods that participated in CASP8 and that do not use additional structural information from homologs. A perl implementation of the method, as well as the various perl and R scripts used for the analysis are available at http://bental.tau.ac.il/ConQuass/. nirb@tauex.tau.ac.il Supplementary data are available at Bioinformatics online.

  16. Comparative evaluation of urban storm water quality models

    NASA Astrophysics Data System (ADS)

    Vaze, J.; Chiew, Francis H. S.

    2003-10-01

    The estimation of urban storm water pollutant loads is required for the development of mitigation and management strategies to minimize impacts to receiving environments. Event pollutant loads are typically estimated using either regression equations or "process-based" water quality models. The relative merit of using regression models compared to process-based models is not clear. A modeling study is carried out here to evaluate the comparative ability of the regression equations and process-based water quality models to estimate event diffuse pollutant loads from impervious surfaces. The results indicate that, once calibrated, both the regression equations and the process-based model can estimate event pollutant loads satisfactorily. In fact, the loads estimated using the regression equation as a function of rainfall intensity and runoff rate are better than the loads estimated using the process-based model. Therefore, if only estimates of event loads are required, regression models should be used because they are simpler and require less data compared to process-based models.

  17. A pilot modeling technique for handling-qualities research

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1980-01-01

    A brief survey of the more dominant analysis techniques used in closed-loop handling-qualities research is presented. These techniques are shown to rely on so-called classical and modern analytical models of the human pilot which have their foundation in the analysis and design principles of feedback control. The optimal control model of the human pilot is discussed in some detail and a novel approach to the a priori selection of pertinent model parameters is discussed. Frequency domain and tracking performance data from 10 pilot-in-the-loop simulation experiments involving 3 different tasks are used to demonstrate the parameter selection technique. Finally, the utility of this modeling approach in handling-qualities research is discussed.

  18. QMEANclust: estimation of protein model quality by combining a composite scoring function with structural density information.

    PubMed

    Benkert, Pascal; Schwede, Torsten; Tosatto, Silvio Ce

    2009-05-20

    ) and compare it to a new local consensus-based approach. Improved model selection is obtained by using a composite scoring function operating on single models in order to enrich higher quality models which are subsequently used to calculate the structural consensus. The performance of consensus-based methods such as QMEANclust highly depends on the composition and quality of the model ensemble to be analysed. Therefore, performance estimates for consensus methods based on large meta-datasets (e.g. CASP) might overrate their applicability in more realistic modelling situations with smaller sets of models based on individual methods.

  19. Integration of Satellite, Modeled, and Ground Based Aerosol Data for use in Air Quality and Public Health Applications

    NASA Astrophysics Data System (ADS)

    Garcia, V.; Kondragunta, S.; Holland, D.; Dimmick, F.; Boothe, V.; Szykman, J.; Chu, A.; Kittaka, C.; Al-Saadi, J.; Engel-Cox, J.; Hoff, R.; Wayland, R.; Rao, S.; Remer, L.

    2006-05-01

    Advancements in remote sensing over the past decade have been recognized by governments around the world and led to the development of the international Global Earth Observation System of Systems 10-Year Implementation Plan. The plan for the U.S. contribution to GEOSS has been put forth in The Strategic Plan for the U.S. Integrated Earth Observation System (IEOS) developed under IWGEO-CENR. The approach for the development of the U.S. IEOS is to focus on specific societal benefits that can be achieved by integrating the nation's Earth observation capabilities. One such challenge is our ability to understand the impact of poor air quality on human health and well being. Historically, the air monitoring networks put in place for the Nations air quality programs provided the only aerosol air quality data on an ongoing and systematic basis at national levels. However, scientific advances in the remote sensing of aerosols from space have improved dramatically. The MODIS sensor and GOES Imager aboard NASA and NOAA satellites, respectively, provide synoptic-scale measurements of aerosol optical depth (AOD) which have been demonstrated to correlate with high levels of PM10 and PM2.5 at the surface. The MODIS sensor has been shown to be capable of a 1 km x 1 km (at nadir) AOD product, while the GOES Imager can provide AOD at 4 km x 4 km every 30 minutes. Within the next several years NOAA and EPA will begin to issue PM2.5 air quality forecasts over the entire domain of the eastern United States, eventually extending to national coverage. These forecasts will provide continuous estimated values of PM2.5 on a daily basis. A multi-agency collaborative project among government and academia is underway to improve the spatial prediction of fine particulate matter through the integration of multi-sensor and multi-platform aerosol observations (MODIS and GOES), numerical model output, and air monitoring data. By giving more weight to monitoring data in monitored areas and relying

  20. Optimum profit model considering production, quality and sale problem

    NASA Astrophysics Data System (ADS)

    Chen, Chung-Ho; Lu, Chih-Lun

    2011-12-01

    Chen and Liu ['Procurement Strategies in the Presence of the Spot Market-an Analytical Framework', Production Planning and Control, 18, 297-309] presented the optimum profit model between the producers and the purchasers for the supply chain system with a pure procurement policy. However, their model with a simple manufacturing cost did not consider the used cost of the customer. In this study, the modified Chen and Liu's model will be addressed for determining the optimum product and process parameters. The authors propose a modified Chen and Liu's model under the two-stage screening procedure. The surrogate variable having a high correlation with the measurable quality characteristic will be directly measured in the first stage. The measurable quality characteristic will be directly measured in the second stage when the product decision cannot be determined in the first stage. The used cost of the customer will be measured by adopting Taguchi's quadratic quality loss function. The optimum purchaser's order quantity, the producer's product price and the process quality level will be jointly determined by maximising the expected profit between them.

  1. Defining quality in radiology.

    PubMed

    Blackmore, C Craig

    2007-04-01

    The introduction of pay for performance in medicine represents an opportunity for radiologists to define quality in radiology. Radiology quality can be defined on the basis of the production model that currently drives reimbursement, codifying the role of radiologists as being limited to the production of timely and accurate radiology reports produced in conditions of maximum patient safety and communicated in a timely manner. Alternately, quality in radiology can also encompass the professional role of radiologists as diagnostic imaging specialists responsible for the appropriate use, selection, interpretation, and application of imaging. Although potentially challenging to implement, the professional model for radiology quality is a comprehensive assessment of the ways in which radiologists add value to patient care. This essay is a discussion of the definition of radiology quality and the implications of that definition.

  2. Towards Application of NASA Standard for Models and Simulations in Aeronautical Design Process

    NASA Astrophysics Data System (ADS)

    Vincent, Luc; Dunyach, Jean-Claude; Huet, Sandrine; Pelissier, Guillaume; Merlet, Joseph

    2012-08-01

    Even powerful computational techniques like simulation endure limitations in their validity domain. Consequently using simulation models requires cautions to avoid making biased design decisions for new aeronautical products on the basis of inadequate simulation results. Thus the fidelity, accuracy and validity of simulation models shall be monitored in context all along the design phases to build confidence in achievement of the goals of modelling and simulation.In the CRESCENDO project, we adapt the Credibility Assessment Scale method from NASA standard for models and simulations from space programme to the aircraft design in order to assess the quality of simulations. The proposed eight quality assurance metrics aggregate information to indicate the levels of confidence in results. They are displayed in management dashboard and can secure design trade-off decisions at programme milestones.The application of this technique is illustrated in aircraft design context with specific thermal Finite Elements Analysis. This use case shows how to judge the fitness- for-purpose of simulation as Virtual testing means and then green-light the continuation of Simulation Lifecycle Management (SLM) process.

  3. A comparison of different functions for predicted protein model quality assessment.

    PubMed

    Li, Juan; Fang, Huisheng

    2016-07-01

    In protein structure prediction, a considerable number of models are usually produced by either the Template-Based Method (TBM) or the ab initio prediction. The purpose of this study is to find the critical parameter in assessing the quality of the predicted models. A non-redundant template library was developed and 138 target sequences were modeled. The target sequences were all distant from the proteins in the template library and were aligned with template library proteins on the basis of the transformation matrix. The quality of each model was first assessed with QMEAN and its six parameters, which are C_β interaction energy (C_beta), all-atom pairwise energy (PE), solvation energy (SE), torsion angle energy (TAE), secondary structure agreement (SSA), and solvent accessibility agreement (SAE). Finally, the alignment score (score) was also used to assess the quality of model. Hence, a total of eight parameters (i.e., QMEAN, C_beta, PE, SE, TAE, SSA, SAE, score) were independently used to assess the quality of each model. The results indicate that SSA is the best parameter to estimate the quality of the model.

  4. Evaluation of regional climate simulations for air quality modelling purposes

    NASA Astrophysics Data System (ADS)

    Menut, Laurent; Tripathi, Om P.; Colette, Augustin; Vautard, Robert; Flaounas, Emmanouil; Bessagnet, Bertrand

    2013-05-01

    In order to evaluate the future potential benefits of emission regulation on regional air quality, while taking into account the effects of climate change, off-line air quality projection simulations are driven using weather forcing taken from regional climate models. These regional models are themselves driven by simulations carried out using global climate models (GCM) and economical scenarios. Uncertainties and biases in climate models introduce an additional "climate modeling" source of uncertainty that is to be added to all other types of uncertainties in air quality modeling for policy evaluation. In this article we evaluate the changes in air quality-related weather variables induced by replacing reanalyses-forced by GCM-forced regional climate simulations. As an example we use GCM simulations carried out in the framework of the ERA-interim programme and of the CMIP5 project using the Institut Pierre-Simon Laplace climate model (IPSLcm), driving regional simulations performed in the framework of the EURO-CORDEX programme. In summer, we found compensating deficiencies acting on photochemistry: an overestimation by GCM-driven weather due to a positive bias in short-wave radiation, a negative bias in wind speed, too many stagnant episodes, and a negative temperature bias. In winter, air quality is mostly driven by dispersion, and we could not identify significant differences in either wind or planetary boundary layer height statistics between GCM-driven and reanalyses-driven regional simulations. However, precipitation appears largely overestimated in GCM-driven simulations, which could significantly affect the simulation of aerosol concentrations. The identification of these biases will help interpreting results of future air quality simulations using these data. Despite these, we conclude that the identified differences should not lead to major difficulties in using GCM-driven regional climate simulations for air quality projections.

  5. Effective Application of a Quality System in the Donation Process at Hospital Level.

    PubMed

    Trujnara, M; Czerwiński, J; Osadzińska, J

    2016-06-01

    This article describes the application of a quality system at the hospital level at the Multidisciplinary Hospital in Warsaw-Międzylesie in Poland. A quality system of hospital procedures (in accordance with the ISO system 9001:2008) regarding the donation process, from the identification of a possible donor to the retrieval of organs, was applied there in 2014. Seven independent documents about hospital procedures, were designed to cover the entire process of donation. The number of donors identified increased after the application of the quality system. The reason for this increase is, above all, the cooperation of the well-trained team of specialists who have been engaged in the process of donation for many years, but formal procedures certainly organize the process and make it easier. Copyright © 2016. Published by Elsevier Inc.

  6. Simulation of Streamflow and Selected Water-Quality Constituents through a Model of the Onondaga Lake Basin, Onondaga County, New York - A Guide to Model Application

    USGS Publications Warehouse

    Coon, William F.

    2008-01-01

    A computer model of hydrologic and water-quality processes of the Onondaga Lake basin in Onondaga County, N.Y., was developed during 2003-07 to assist water-resources managers in making basin-wide management decisions that could affect peak flows and the water quality of tributaries to Onondaga Lake. The model was developed with the Hydrological Simulation Program-Fortran (HSPF) and was designed to allow simulation of proposed or hypothetical land-use changes, best-management practices (BMPs), and instream stormwater-detention basins such that their effects on flows and loads of suspended sediment, orthophosphate, total phosphorus, ammonia, organic nitrogen, and nitrate could be analyzed. Extreme weather conditions, such as intense storms and prolonged droughts, can be simulated through manipulation of the precipitation record. Model results obtained from different scenarios can then be compared and analyzed through an interactive computer program known as Generation and Analysis of Model Simulation Scenarios for Watersheds (GenScn). Background information on HSPF and GenScn is presented to familiarize the user with these two programs. Step-by-step examples are provided on (1) the creation of land-use, BMP, and stormflow-detention scenarios for simulation by the HSPF model, and (2) the analysis of simulation results through GenScn.

  7. The choices, choosing model of quality of life: description and rationale.

    PubMed

    Gurland, Barry J; Gurland, Roni V

    2009-01-01

    This introductory paper offers a critical review of current models and measures of quality of life, and describes a choices and choosing (c-c) process as a new model of quality of life. Criteria are proposed for judging the relative merits of models of quality of life with preference being given to explicit mechanisms, linkages to a science base, a means of identifying deficits amenable to rational restorative interventions, and with embedded values of the whole person. A conjectured model, based on the processes of gaining access to choices and choosing among them, matches the proposed criteria. The c-c process is an evolved adaptive mechanism dedicated to the pursuit of quality of life, driven by specific biological and psychological systems, and influenced by social and environmental forces. This model strengthens the science base for the field of quality of life, unifies approaches to concept and measurement, and guides the evaluation of impairments of quality of life. Corresponding interventions can be aimed at relieving restrictions or distortions of the c-c process; thus helping people to preserve and improve their quality of life. RELATED WORK: Companion papers detail relevant aspects of the science base, present methods of identifying deficits and distortions of the c-c model so as to open opportunities for rational restorative interventions, and explore empirical analyses of the relationship between health imposed restrictions of c-c and conventional indicators of diminished quality of life. [corrected] (c) 2008 John Wiley & Sons, Ltd.

  8. Improved protein model quality assessments by changing the target function.

    PubMed

    Uziela, Karolis; Menéndez Hurtado, David; Shu, Nanjiang; Wallner, Björn; Elofsson, Arne

    2018-06-01

    Protein modeling quality is an important part of protein structure prediction. We have for more than a decade developed a set of methods for this problem. We have used various types of description of the protein and different machine learning methodologies. However, common to all these methods has been the target function used for training. The target function in ProQ describes the local quality of a residue in a protein model. In all versions of ProQ the target function has been the S-score. However, other quality estimation functions also exist, which can be divided into superposition- and contact-based methods. The superposition-based methods, such as S-score, are based on a rigid body superposition of a protein model and the native structure, while the contact-based methods compare the local environment of each residue. Here, we examine the effects of retraining our latest predictor, ProQ3D, using identical inputs but different target functions. We find that the contact-based methods are easier to predict and that predictors trained on these measures provide some advantages when it comes to identifying the best model. One possible reason for this is that contact based methods are better at estimating the quality of multi-domain targets. However, training on the S-score gives the best correlation with the GDT_TS score, which is commonly used in CASP to score the global model quality. To take the advantage of both of these features we provide an updated version of ProQ3D that predicts local and global model quality estimates based on different quality estimates. © 2018 Wiley Periodicals, Inc.

  9. Assessment and prediction of air quality using fuzzy logic and autoregressive models

    NASA Astrophysics Data System (ADS)

    Carbajal-Hernández, José Juan; Sánchez-Fernández, Luis P.; Carrasco-Ochoa, Jesús A.; Martínez-Trinidad, José Fco.

    2012-12-01

    In recent years, artificial intelligence methods have been used for the treatment of environmental problems. This work, presents two models for assessment and prediction of air quality. First, we develop a new computational model for air quality assessment in order to evaluate toxic compounds that can harm sensitive people in urban areas, affecting their normal activities. In this model we propose to use a Sigma operator to statistically asses air quality parameters using their historical data information and determining their negative impact in air quality based on toxicity limits, frequency average and deviations of toxicological tests. We also introduce a fuzzy inference system to perform parameter classification using a reasoning process and integrating them in an air quality index describing the pollution levels in five stages: excellent, good, regular, bad and danger, respectively. The second model proposed in this work predicts air quality concentrations using an autoregressive model, providing a predicted air quality index based on the fuzzy inference system previously developed. Using data from Mexico City Atmospheric Monitoring System, we perform a comparison among air quality indices developed for environmental agencies and similar models. Our results show that our models are an appropriate tool for assessing site pollution and for providing guidance to improve contingency actions in urban areas.

  10. Mobile Applications Improve Quality of Life on Citizens with Disorientation: The 'NeverLost App' Paradigm.

    PubMed

    Fotiou, Sotirios; Vlamos, Panayiotis

    2017-01-01

    Mobile technology has been evolved as an important tool in healthcare. Mobile applications are being designed in order to assist patients in their everyday life and also to play a vital role on the improvement of their everyday activities and quality of life. Meanwhile students use advanced techniques in order to design and implement high quality applications that aim to introduce them to the advantages of the mobile technology. In this paper we present the steps for the creation of the application NeverLost that was inspired, designed, created and tested by students of the Secondary Education. NeverLost is an Android application that helps individuals (mainly children) with disabilities, as well as older patients with lack of orientation manage their day-to-day activities. A research of the general benefits that students using this app is presented, as well as their future proposals for the evolution of the app in other aspects of healthcare and quality of life of senior citizens or patients with neurodegenerative diseases.

  11. Quality assurance of weather data for agricultural system model input

    USDA-ARS?s Scientific Manuscript database

    It is well known that crop production and hydrologic variation on watersheds is weather related. Rarely, however, is meteorological data quality checks reported for agricultural systems model research. We present quality assurance procedures for agricultural system model weather data input. Problems...

  12. MODELED MESOSCALE METEOROLOGICAL FIELDS WITH FOUR-DIMENSIONAL DATA ASSIMILATION IN REGIONAL SCALE AIR QUALITY MODELS

    EPA Science Inventory

    This paper addresses the need to increase the temporal and spatial resolution of meteorological data currently used in air quality simulation models, AQSMs. ransport and diffusion parameters including mixing heights and stability used in regulatory air quality dispersion models a...

  13. ROLE OF MODELS IN AIR QUALITY MANAGEMENT DECISIONS

    EPA Science Inventory

    Within the frame of the US-India bilateral agreement on environmental cooperation, a team of US scientists have been helping India in designing emission control policies to address urban air quality problems. This presentation discusses how air quality models need to be used for ...

  14. ENHANCED STREAM WATER QUALITY MODEL (QUAL2EU)

    EPA Science Inventory

    The enhanced stream water quality model QUAL2E and QUAL2E-UNCAS (37) permits simulation of several water quality constituents in a branching stream system using a finite difference solution to the one-dimensional advective-dispersive mass transport and reaction equation. The con...

  15. Valuing improved wetland quality using choice modeling

    NASA Astrophysics Data System (ADS)

    Morrison, Mark; Bennett, Jeff; Blamey, Russell

    1999-09-01

    The main stated preference technique used for estimating environmental values is the contingent valuation method. In this paper the results of an application of an alternative technique, choice modeling, are reported. Choice modeling has been developed in the marketing and transport applications but has only been used in a handful of environmental applications, most of which have focused on use values. The case study presented here involves the estimation of the nonuse environmental values provided by the Macquarie Marshes, a major wetland in New South Wales, Australia. Estimates of the nonuse value the community places on preventing job losses are also presented. The reported models are robust, having high explanatory power and variables that are statistically significant and consistent with expectations. These results provide support for the hypothesis that choice modeling can be used to estimate nonuse values for both environmental and social consequences of resource use changes.

  16. Coordinating standards and applications for optical water quality sensor networks

    USGS Publications Warehouse

    Bergamaschi, B.; Pellerin, B.

    2011-01-01

    Joint USGS-CUAHSI Workshop: In Situ Optical Water Quality Sensor Networks; Shepherdstown, West Virginia, 8-10 June 2011; Advanced in situ optical water quality sensors and new techniques for data analysis hold enormous promise for advancing scientific understanding of aquatic systems through measurements of important biogeochemical parameters at the time scales over which they vary. High-frequency and real-time water quality data also provide the opportunity for early warning of water quality deterioration, trend detection, and science-based decision support. However, developing networks of optical sensors in freshwater systems that report reliable and comparable data across and between sites remains a challenge to the research and monitoring community. To address this, the U.S. Geological Survey (USGS) and the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI), convened a 3-day workshop to explore ways to coordinate development of standards and applications for optical sensors, as well as handling, storage, and analysis of the continuous data they produce.

  17. Objective Video Quality Assessment Based on Machine Learning for Underwater Scientific Applications

    PubMed Central

    Moreno-Roldán, José-Miguel; Luque-Nieto, Miguel-Ángel; Poncela, Javier; Otero, Pablo

    2017-01-01

    Video services are meant to be a fundamental tool in the development of oceanic research. The current technology for underwater networks (UWNs) imposes strong constraints in the transmission capacity since only a severely limited bitrate is available. However, previous studies have shown that the quality of experience (QoE) is enough for ocean scientists to consider the service useful, although the perceived quality can change significantly for small ranges of variation of video parameters. In this context, objective video quality assessment (VQA) methods become essential in network planning and real time quality adaptation fields. This paper presents two specialized models for objective VQA, designed to match the special requirements of UWNs. The models are built upon machine learning techniques and trained with actual user data gathered from subjective tests. Our performance analysis shows how both of them can successfully estimate quality as a mean opinion score (MOS) value and, for the second model, even compute a distribution function for user scores. PMID:28333123

  18. [Virtual audiovisual talking heads: articulatory data and models--applications].

    PubMed

    Badin, P; Elisei, F; Bailly, G; Savariaux, C; Serrurier, A; Tarabalka, Y

    2007-01-01

    In the framework of experimental phonetics, our approach to the study of speech production is based on the measurement, the analysis and the modeling of orofacial articulators such as the jaw, the face and the lips, the tongue or the velum. Therefore, we present in this article experimental techniques that allow characterising the shape and movement of speech articulators (static and dynamic MRI, computed tomodensitometry, electromagnetic articulography, video recording). We then describe the linear models of the various organs that we can elaborate from speaker-specific articulatory data. We show that these models, that exhibit a good geometrical resolution, can be controlled from articulatory data with a good temporal resolution and can thus permit the reconstruction of high quality animation of the articulators. These models, that we have integrated in a virtual talking head, can produce augmented audiovisual speech. In this framework, we have assessed the natural tongue reading capabilities of human subjects by means of audiovisual perception tests. We conclude by suggesting a number of other applications of talking heads.

  19. [Autism: educational models for a quality life].

    PubMed

    Tamarit, J

    2005-01-15

    Our aim is to describe the change that is taking place in the field of education in developmental disabilities from models centred on the clinical symptoms and on the limitations in the adaptive skills to models that focus on valuable personal results in terms of quality of life. In order to understand these changes, we outline some of the key points that have given rise to a particular cultural construction of disability and we also discuss how the situation is changing towards models aimed at achieving important personal results. In autism, as in the other developmental disorders, special emphasis has traditionally been placed on an education focusing on symptoms and on skills, and, although things are now beginning to head in that direction, little attention has been given to education based on the person and his or her quality of life. These changes imply new roles for the professionals attending these people. These roles involve combining technique with empathy and ethics, and they are more firmly based on the active role of individuals with autism, together with their rights, interests and opinions. Models of intervention must pay special attention to the pursuit of valuable personal results, which are oriented towards living a quality life and must involve the active participation of the individuals themselves as well as their relatives.

  20. Statistical quality assessment criteria for a linear mixing model with elliptical t-distribution errors

    NASA Astrophysics Data System (ADS)

    Manolakis, Dimitris G.

    2004-10-01

    The linear mixing model is widely used in hyperspectral imaging applications to model the reflectance spectra of mixed pixels in the SWIR atmospheric window or the radiance spectra of plume gases in the LWIR atmospheric window. In both cases it is important to detect the presence of materials or gases and then estimate their amount, if they are present. The detection and estimation algorithms available for these tasks are related but they are not identical. The objective of this paper is to theoretically investigate how the heavy tails observed in hyperspectral background data affect the quality of abundance estimates and how the F-test, used for endmember selection, is robust to the presence of heavy tails when the model fits the data.

  1. Modeling Phosphorous Losses from Seasonal Manure Application Schemes

    NASA Astrophysics Data System (ADS)

    Menzies, E.; Walter, M. T.

    2015-12-01

    Excess nutrient loading, especially nitrogen and phosphorus, to surface waters is a common and significant problem throughout the United States. While pollution remediation efforts are continuously improving, the most effective treatment remains to limit the source. Appropriate timing of fertilizer application to reduce nutrient losses is currently a hotly debated topic in the Northeastern United States; winter spreading of manure is under special scrutiny. We plan to evaluate the loss of phosphorous to surface waters from agricultural systems under varying seasonal fertilization schemes in an effort to determine the impacts of fertilizers applied throughout the year. The Cayuga Lake basin, located in the Finger Lakes region of New York State, is a watershed dominated by agriculture where a wide array of land management strategies can be found. The evaluation will be conducted on the Fall Creek Watershed, a large sub basin in the Cayuga Lake Watershed. The Fall Creek Watershed covers approximately 33,000 ha in central New York State with approximately 50% of this land being used for agriculture. We plan to use the Soil and Water Assessment Tool (SWAT) to model a number of seasonal fertilization regimes such as summer only spreading and year round spreading (including winter applications), as well as others. We will use the model to quantify the phosphorous load to surface waters from these different fertilization schemes and determine the impacts of manure applied at different times throughout the year. More detailed knowledge about how seasonal fertilization schemes impact phosphorous losses will provide more information to stakeholders concerning the impacts of agriculture on surface water quality. Our results will help farmers and extensionists make more informed decisions about appropriate timing of manure application for reduced phosphorous losses and surface water degradation as well as aid law makers in improving policy surrounding manure application.

  2. George M. Low trophy NASA's quality and excellence award, 1992. Application guidelines: Large business

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The George M. Low Trophy is awarded to current NASA contractors, subcontractors, and suppliers in the aerospace industry who have demonstrated sustained excellence and outstanding achievements in quality and productivity for three or more years. The objectives of the award are to increase public awareness of the importance of quality and productivity to the Nation's aerospace program and industry in general; encourage domestic business to continue efforts to enhance quality, increase productivity, and thereby strengthen competitiveness; and provide the means for sharing the successful methods and techniques used by the applicants with other American enterprises. Information is given on candidate eligibility for large businesses, the selection process, the nomination letter, and the application report.

  3. Early experiences building a software quality prediction model

    NASA Technical Reports Server (NTRS)

    Agresti, W. W.; Evanco, W. M.; Smith, M. C.

    1990-01-01

    Early experiences building a software quality prediction model are discussed. The overall research objective is to establish a capability to project a software system's quality from an analysis of its design. The technical approach is to build multivariate models for estimating reliability and maintainability. Data from 21 Ada subsystems were analyzed to test hypotheses about various design structures leading to failure-prone or unmaintainable systems. Current design variables highlight the interconnectivity and visibility of compilation units. Other model variables provide for the effects of reusability and software changes. Reported results are preliminary because additional project data is being obtained and new hypotheses are being developed and tested. Current multivariate regression models are encouraging, explaining 60 to 80 percent of the variation in error density of the subsystems.

  4. Fast Geometric Consensus Approach for Protein Model Quality Assessment

    PubMed Central

    Adamczak, Rafal; Pillardy, Jaroslaw; Vallat, Brinda K.

    2011-01-01

    Abstract Model quality assessment (MQA) is an integral part of protein structure prediction methods that typically generate multiple candidate models. The challenge lies in ranking and selecting the best models using a variety of physical, knowledge-based, and geometric consensus (GC)-based scoring functions. In particular, 3D-Jury and related GC methods assume that well-predicted (sub-)structures are more likely to occur frequently in a population of candidate models, compared to incorrectly folded fragments. While this approach is very successful in the context of diversified sets of models, identifying similar substructures is computationally expensive since all pairs of models need to be superimposed using MaxSub or related heuristics for structure-to-structure alignment. Here, we consider a fast alternative, in which structural similarity is assessed using 1D profiles, e.g., consisting of relative solvent accessibilities and secondary structures of equivalent amino acid residues in the respective models. We show that the new approach, dubbed 1D-Jury, allows to implicitly compare and rank N models in O(N) time, as opposed to quadratic complexity of 3D-Jury and related clustering-based methods. In addition, 1D-Jury avoids computationally expensive 3D superposition of pairs of models. At the same time, structural similarity scores based on 1D profiles are shown to correlate strongly with those obtained using MaxSub. In terms of the ability to select the best models as top candidates 1D-Jury performs on par with other GC methods. Other potential applications of the new approach, including fast clustering of large numbers of intermediate structures generated by folding simulations, are discussed as well. PMID:21244273

  5. Integrating microbial physiology and enzyme traits in the quality model

    NASA Astrophysics Data System (ADS)

    Sainte-Marie, Julien; Barrandon, Matthieu; Martin, Francis; Saint-André, Laurent; Derrien, Delphine

    2017-04-01

    Microbe activity plays an undisputable role in soil carbon storage and there have been many calls to integrate microbial ecology in soil carbon (C) models. With regard to this challenge, a few trait-based microbial models of C dynamics have emerged during the past decade. They parameterize specific traits related to decomposer physiology (substrate use efficiency, growth and mortality rates...) and enzyme properties (enzyme production rate, catalytic properties of enzymes…). But these models are built on the premise that organic matter (OM) can be represented as one single entity or are divided into a few pools, while organic matter exists as a continuum of many different compounds spanning from intact plant molecules to highly oxidised microbial metabolites. In addition, a given molecule may also exist in different forms, depending on its stage of polymerization or on its interactions with other organic compounds or mineral phases of the soil. Here we develop a general theoretical model relating the evolution of soil organic matter, as a continuum of progressively decomposing compounds, with decomposer activity and enzyme traits. The model is based on the notion of quality developed by Agren and Bosatta (1998), which is a measure of molecule accessibility to degradation. The model integrates three major processes: OM depolymerisation by enzyme action, OM assimilation and OM biotransformation. For any enzyme, the model reports the quality range where this enzyme selectively operates and how the initial quality distribution of the OM subset evolves into another distribution of qualities under the enzyme action. The model also defines the quality range where the OM can be uptaken and assimilated by microbes. It finally describes how the quality of the assimilated molecules is transformed into another quality distribution, corresponding to the decomposer metabolites signature. Upon decomposer death, these metabolites return to the substrate. We explore here the how

  6. Evaluation of XV-15 tilt rotor aircraft for flying qualities research application

    NASA Technical Reports Server (NTRS)

    Radford, R. C.; Schelhorn, A. E.; Siracuse, R. J.; Till, R. D.; Wasserman, R.

    1976-01-01

    The results of a design review study and evaluation of the XV-15 Tilt Rotor Research Aircraft for flying qualities research application are presented. The objectives of the program were to determine the capability of the XV-15 aircraft and the V/STOLAND system as a safe, inflight facility to provide meaningful research data on flying qualities, flight control systems, and information display systems.

  7. The Total Quality Management Model Department of Personnel State of Colorado,

    DTIC Science & Technology

    A panel of three members will present the Total Quality Management model recently designed for the Department of Personnel, State of Colorado. This model was selected to increase work quality and productivity of the Department and to exemplify Governor Romer’s commitment to quality work within state government.

  8. Implementing resilience engineering for healthcare quality improvement using the CARE model: a feasibility study protocol.

    PubMed

    Anderson, J E; Ross, A J; Back, J; Duncan, M; Snell, P; Walsh, K; Jaye, P

    2016-01-01

    Resilience engineering (RE) is an emerging perspective on safety in complex adaptive systems that emphasises how outcomes emerge from the complexity of the clinical environment. Complexity creates the need for flexible adaptation to achieve outcomes. RE focuses on understanding the nature of adaptations, learning from success and increasing adaptive capacity. Although the philosophy is clear, progress in applying the ideas to quality improvement has been slow. The aim of this study is to test the feasibility of translating RE concepts into practical methods to improve quality by designing, implementing and evaluating interventions based on RE theory. The CARE model operationalises the key concepts and their relationships to guide the empirical investigation. The settings are the Emergency Department and the Older Person's Unit in a large London teaching hospital. Phases 1 and 2 of our work, leading to the development of interventions to improve the quality of care, are described in this paper. Ethical approval has been granted for these phases. Phase 1 will use ethnographic methods, including observation of work practices and interviews with staff, to understand adaptations and outcomes. The findings will be used to collaboratively design, with clinical staff in interactive design workshops, interventions to improve the quality of care. The evaluation phase will be designed and submitted for ethical approval when the outcomes of phases 1 and 2 are known. Study outcomes will be knowledge about the feasibility of applying RE to improve quality, the development of RE theory and a validated model of resilience in clinical work which can be used to guide other applications. Tools, methods and practical guidance for practitioners will also be produced, as well as specific knowledge of the potential effectiveness of the implemented interventions in emergency and older people's care. Further studies to test the application of RE at a larger scale will be required

  9. Mathematical modeling and simulation in animal health - Part II: principles, methods, applications, and value of physiologically based pharmacokinetic modeling in veterinary medicine and food safety assessment.

    PubMed

    Lin, Z; Gehring, R; Mochel, J P; Lavé, T; Riviere, J E

    2016-10-01

    This review provides a tutorial for individuals interested in quantitative veterinary pharmacology and toxicology and offers a basis for establishing guidelines for physiologically based pharmacokinetic (PBPK) model development and application in veterinary medicine. This is important as the application of PBPK modeling in veterinary medicine has evolved over the past two decades. PBPK models can be used to predict drug tissue residues and withdrawal times in food-producing animals, to estimate chemical concentrations at the site of action and target organ toxicity to aid risk assessment of environmental contaminants and/or drugs in both domestic animals and wildlife, as well as to help design therapeutic regimens for veterinary drugs. This review provides a comprehensive summary of PBPK modeling principles, model development methodology, and the current applications in veterinary medicine, with a focus on predictions of drug tissue residues and withdrawal times in food-producing animals. The advantages and disadvantages of PBPK modeling compared to other pharmacokinetic modeling approaches (i.e., classical compartmental/noncompartmental modeling, nonlinear mixed-effects modeling, and interspecies allometric scaling) are further presented. The review finally discusses contemporary challenges and our perspectives on model documentation, evaluation criteria, quality improvement, and offers solutions to increase model acceptance and applications in veterinary pharmacology and toxicology. © 2016 John Wiley & Sons Ltd.

  10. Operation quality assessment model for video conference system

    NASA Astrophysics Data System (ADS)

    Du, Bangshi; Qi, Feng; Shao, Sujie; Wang, Ying; Li, Weijian

    2018-01-01

    Video conference system has become an important support platform for smart grid operation and management, its operation quality is gradually concerning grid enterprise. First, the evaluation indicator system covering network, business and operation maintenance aspects was established on basis of video conference system's operation statistics. Then, the operation quality assessment model combining genetic algorithm with regularized BP neural network was proposed, which outputs operation quality level of the system within a time period and provides company manager with some optimization advice. The simulation results show that the proposed evaluation model offers the advantages of fast convergence and high prediction accuracy in contrast with regularized BP neural network, and its generalization ability is superior to LM-BP neural network and Bayesian BP neural network.

  11. Adjustment of regional regression models of urban-runoff quality using data for Chattanooga, Knoxville, and Nashville, Tennessee

    USGS Publications Warehouse

    Hoos, Anne B.; Patel, Anant R.

    1996-01-01

    Model-adjustment procedures were applied to the combined data bases of storm-runoff quality for Chattanooga, Knoxville, and Nashville, Tennessee, to improve predictive accuracy for storm-runoff quality for urban watersheds in these three cities and throughout Middle and East Tennessee. Data for 45 storms at 15 different sites (five sites in each city) constitute the data base. Comparison of observed values of storm-runoff load and event-mean concentration to the predicted values from the regional regression models for 10 constituents shows prediction errors, as large as 806,000 percent. Model-adjustment procedures, which combine the regional model predictions with local data, are applied to improve predictive accuracy. Standard error of estimate after model adjustment ranges from 67 to 322 percent. Calibration results may be biased due to sampling error in the Tennessee data base. The relatively large values of standard error of estimate for some of the constituent models, although representing significant reduction (at least 50 percent) in prediction error compared to estimation with unadjusted regional models, may be unacceptable for some applications. The user may wish to collect additional local data for these constituents and repeat the analysis, or calibrate an independent local regression model.

  12. Institutional Response to the Swedish Model of Quality Assurance.

    ERIC Educational Resources Information Center

    Nilsson, Karl-Axel; Wahlen, Staffan

    2000-01-01

    Evaluates the Swedish model of quality assurance of higher education by examining the response of institutions to 27 quality audits and 19 follow-up interviews. Discusses the relationship between top-down and bottom-up approaches to internal quality assurance and suggests that, with growing professionalization, more limited result-oriented audits…

  13. Assessment of the Quality Management Models in Higher Education

    ERIC Educational Resources Information Center

    Basar, Gulsun; Altinay, Zehra; Dagli, Gokmen; Altinay, Fahriye

    2016-01-01

    This study involves the assessment of the quality management models in Higher Education by explaining the importance of quality in higher education and by examining the higher education quality assurance system practices in other countries. The qualitative study was carried out with the members of the Higher Education Planning, Evaluation,…

  14. Application and evaluation of two air quality models for particulate matter for a southeastern U.S. episode.

    PubMed

    Zhang, Yang; Pun, Betty; Wu, Shiang-Yuh; Vijayaraghavan, Krish; Seigneur, Christian

    2004-12-01

    The Models-3 Community Multiscale Air Quality (CMAQ) Modeling System and the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAMx) were applied to simulate the period June 29-July 10, 1999, of the Southern Oxidants Study episode with two nested horizontal grid sizes: a coarse resolution of 32 km and a fine resolution of 8 km. The predicted spatial variations of ozone (O3), particulate matter with an aerodynamic diameter less than or equal to 2.5 microm (PM2.5), and particulate matter with an aerodynamic diameter less than or equal to 10 microm (PM10) by both models are similar in rural areas but differ from one another significantly over some urban/suburban areas in the eastern and southern United States, where PMCAMx tends to predict higher values of O3 and PM than CMAQ. Both models tend to predict O3 values that are higher than those observed. For observed O3 values above 60 ppb, O3 performance meets the U.S. Environmental Protection Agency's criteria for CMAQ with both grids and for PMCAMx with the fine grid only. It becomes unsatisfactory for PMCAMx and marginally satisfactory for CMAQ for observed O3 values above 40 ppb. Both models predict similar amounts of sulfate (SO4(2-)) and organic matter, and both predict SO4(2-) to be the largest contributor to PM2.5. PMCAMx generally predicts higher amounts of ammonium (NH4+), nitrate (NO3-), and black carbon (BC) than does CMAQ. PM performance for CMAQ is generally consistent with that of other PM models, whereas PMCAMx predicts higher concentrations of NO3-, NH4+, and BC than observed, which degrades its performance. For PM10 and PM2.5 predictions over the southeastern U.S. domain, the ranges of mean normalized gross errors (MNGEs) and mean normalized bias are 37-43% and -33-4% for CMAQ and 50-59% and 7-30% for PMCAMx. Both models predict the largest MNGEs for NO3- (98-104% for CMAQ 138-338% for PMCAMx). The inaccurate NO3- predictions by both models may be caused by the inaccuracies in the

  15. Improving sediment-quality guidelines for nickel: development and application of predictive bioavailability models to assess chronic toxicity of nickel in freshwater sediments

    USGS Publications Warehouse

    Vangheluwe, Marnix L. U.; Verdonck, Frederik A. M.; Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.; Schlekat, Christan E.; Rogevich Garman, Emily

    2013-01-01

    Within the framework of European Union chemical legislations an extensive data set on the chronic toxicity of sediment nickel has been generated. In the initial phase of testing, tests were conducted with 8 taxa of benthic invertebrates in 2 nickel-spiked sediments, including 1 reasonable worst-case sediment with low concentrations of acid-volatile sulfide (AVS) and total organic carbon. The following species were tested: amphipods (Hyalella azteca, Gammarus pseudolimnaeus), mayflies (Hexagenia sp.), oligochaetes (Tubifex tubifex, Lumbriculus variegatus), mussels (Lampsilis siliquoidea), and midges (Chironomus dilutus, Chironomus riparius). In the second phase, tests were conducted with the most sensitive species in 6 additional spiked sediments, thus generating chronic toxicity data for a total of 8 nickel-spiked sediments. A species sensitivity distribution was elaborated based on 10% effective concentrations yielding a threshold value of 94 mg Ni/kg dry weight under reasonable worst-case conditions. Data from all sediments were used to model predictive bioavailability relationships between chronic toxicity thresholds (20% effective concentrations) and AVS and Fe, and these models were used to derive site-specific sediment-quality criteria. Normalization of toxicity values reduced the intersediment variability in toxicity values significantly for the amphipod species Hyalella azteca and G. pseudolimnaeus, but these relationships were less clearly defined for the mayfly Hexagenia sp. Application of the models to prevailing local conditions resulted in threshold values ranging from 126 mg to 281 mg Ni/kg dry weight, based on the AVS model, and 143 mg to 265 mg Ni/kg dry weight, based on the Fe model

  16. Indoor Air Quality Building Education and Assessment Model Forms

    EPA Pesticide Factsheets

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM) is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  17. Image quality assessment by preprocessing and full reference model combination

    NASA Astrophysics Data System (ADS)

    Bianco, S.; Ciocca, G.; Marini, F.; Schettini, R.

    2009-01-01

    This paper focuses on full-reference image quality assessment and presents different computational strategies aimed to improve the robustness and accuracy of some well known and widely used state of the art models, namely the Structural Similarity approach (SSIM) by Wang and Bovik and the S-CIELAB spatial-color model by Zhang and Wandell. We investigate the hypothesis that combining error images with a visual attention model could allow a better fit of the psycho-visual data of the LIVE Image Quality assessment Database Release 2. We show that the proposed quality assessment metric better correlates with the experimental data.

  18. Protein single-model quality assessment by feature-based probability density functions.

    PubMed

    Cao, Renzhi; Cheng, Jianlin

    2016-04-04

    Protein quality assessment (QA) has played an important role in protein structure prediction. We developed a novel single-model quality assessment method-Qprob. Qprob calculates the absolute error for each protein feature value against the true quality scores (i.e. GDT-TS scores) of protein structural models, and uses them to estimate its probability density distribution for quality assessment. Qprob has been blindly tested on the 11th Critical Assessment of Techniques for Protein Structure Prediction (CASP11) as MULTICOM-NOVEL server. The official CASP result shows that Qprob ranks as one of the top single-model QA methods. In addition, Qprob makes contributions to our protein tertiary structure predictor MULTICOM, which is officially ranked 3rd out of 143 predictors. The good performance shows that Qprob is good at assessing the quality of models of hard targets. These results demonstrate that this new probability density distribution based method is effective for protein single-model quality assessment and is useful for protein structure prediction. The webserver of Qprob is available at: http://calla.rnet.missouri.edu/qprob/. The software is now freely available in the web server of Qprob.

  19. Evaluation of the Community Multiscale Air Quality model version 5.1

    EPA Science Inventory

    The Community Multiscale Air Quality model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Atmospheric Modeling and Analysis Division (AMAD) of the U.S. Environment...

  20. [Hyperspectral Remote Sensing Estimation Models for Pasture Quality].

    PubMed

    Ma, Wei-wei; Gong, Cai-lan; Hu, Yong; Wei, Yong-lin; Li, Long; Liu, Feng-yi; Meng, Peng

    2015-10-01

    Crude protein (CP), crude fat (CFA) and crude fiber (CFI) are key indicators for evaluation of the quality and feeding value of pasture. Hence, identification of these biological contents is an essential practice for animal husbandry. As current approaches to pasture quality estimation are time-consuming and costly, and even generate hazardous waste, a real-time and non-destructive method is therefore developed in this study using pasture canopy hyperspectral data. A field campaign was carried out in August 2013 around Qinghai Lake in order to obtain field spectral properties of 19 types of natural pasture using the ASD Field Spec 3, a field spectrometer that works in the optical region (350-2 500 nm) of the electromagnetic spectrum. In additional to the spectral data, pasture samples were also collected from the field and examined in laboratory to measure the relative concentration of CP (%), CFA (%) and CFI (%). After spectral denoising and smoothing, the relationship of pasture quality parameters with the reflectance spectrum, the first derivatives of reflectance (FDR), band ratio and the wavelet coefficients (WCs) was analyzed respectively. The concentration of CP, CFA and CFI of pasture was found closely correlated with FDR with wavebands centered at 424, 1 668, and 918 nm as well as with the low-scale (scale = 2, 4) Morlet, Coiflets and Gassian WCs. Accordingly, the linear, exponential, and polynomial equations between each pasture variable and FDR or WCs were developed. Validation of the developed equations indicated that the polynomial model with an independent variable of Coiflets WCs (scale = 4, wavelength =1 209 nm), the polynomial model with an independent variable of FDR, and the exponential model with an independent variable of FDR were the optimal model for prediction of concentration of CP, CFA and CFI of pasture, respectively. The R2 of the pasture quality estimation models was between 0.646 and 0.762 at the 0.01 significance level. Results suggest

  1. Researches of fruit quality prediction model based on near infrared spectrum

    NASA Astrophysics Data System (ADS)

    Shen, Yulin; Li, Lian

    2018-04-01

    With the improvement in standards for food quality and safety, people pay more attention to the internal quality of fruits, therefore the measurement of fruit internal quality is increasingly imperative. In general, nondestructive soluble solid content (SSC) and total acid content (TAC) analysis of fruits is vital and effective for quality measurement in global fresh produce markets, so in this paper, we aim at establishing a novel fruit internal quality prediction model based on SSC and TAC for Near Infrared Spectrum. Firstly, the model of fruit quality prediction based on PCA + BP neural network, PCA + GRNN network, PCA + BP adaboost strong classifier, PCA + ELM and PCA + LS_SVM classifier are designed and implemented respectively; then, in the NSCT domain, the median filter and the SavitzkyGolay filter are used to preprocess the spectral signal, Kennard-Stone algorithm is used to automatically select the training samples and test samples; thirdly, we achieve the optimal models by comparing 15 kinds of prediction model based on the theory of multi-classifier competition mechanism, specifically, the non-parametric estimation is introduced to measure the effectiveness of proposed model, the reliability and variance of nonparametric estimation evaluation of each prediction model to evaluate the prediction result, while the estimated value and confidence interval regard as a reference, the experimental results demonstrate that this model can better achieve the optimal evaluation of the internal quality of fruit; finally, we employ cat swarm optimization to optimize two optimal models above obtained from nonparametric estimation, empirical testing indicates that the proposed method can provide more accurate and effective results than other forecasting methods.

  2. Quality assessment of protein model-structures based on structural and functional similarities

    PubMed Central

    2012-01-01

    Background Experimental determination of protein 3D structures is expensive, time consuming and sometimes impossible. A gap between number of protein structures deposited in the World Wide Protein Data Bank and the number of sequenced proteins constantly broadens. Computational modeling is deemed to be one of the ways to deal with the problem. Although protein 3D structure prediction is a difficult task, many tools are available. These tools can model it from a sequence or partial structural information, e.g. contact maps. Consequently, biologists have the ability to generate automatically a putative 3D structure model of any protein. However, the main issue becomes evaluation of the model quality, which is one of the most important challenges of structural biology. Results GOBA - Gene Ontology-Based Assessment is a novel Protein Model Quality Assessment Program. It estimates the compatibility between a model-structure and its expected function. GOBA is based on the assumption that a high quality model is expected to be structurally similar to proteins functionally similar to the prediction target. Whereas DALI is used to measure structure similarity, protein functional similarity is quantified using standardized and hierarchical description of proteins provided by Gene Ontology combined with Wang's algorithm for calculating semantic similarity. Two approaches are proposed to express the quality of protein model-structures. One is a single model quality assessment method, the other is its modification, which provides a relative measure of model quality. Exhaustive evaluation is performed on data sets of model-structures submitted to the CASP8 and CASP9 contests. Conclusions The validation shows that the method is able to discriminate between good and bad model-structures. The best of tested GOBA scores achieved 0.74 and 0.8 as a mean Pearson correlation to the observed quality of models in our CASP8 and CASP9-based validation sets. GOBA also obtained the best

  3. Quality assessment of protein model-structures based on structural and functional similarities.

    PubMed

    Konopka, Bogumil M; Nebel, Jean-Christophe; Kotulska, Malgorzata

    2012-09-21

    Experimental determination of protein 3D structures is expensive, time consuming and sometimes impossible. A gap between number of protein structures deposited in the World Wide Protein Data Bank and the number of sequenced proteins constantly broadens. Computational modeling is deemed to be one of the ways to deal with the problem. Although protein 3D structure prediction is a difficult task, many tools are available. These tools can model it from a sequence or partial structural information, e.g. contact maps. Consequently, biologists have the ability to generate automatically a putative 3D structure model of any protein. However, the main issue becomes evaluation of the model quality, which is one of the most important challenges of structural biology. GOBA--Gene Ontology-Based Assessment is a novel Protein Model Quality Assessment Program. It estimates the compatibility between a model-structure and its expected function. GOBA is based on the assumption that a high quality model is expected to be structurally similar to proteins functionally similar to the prediction target. Whereas DALI is used to measure structure similarity, protein functional similarity is quantified using standardized and hierarchical description of proteins provided by Gene Ontology combined with Wang's algorithm for calculating semantic similarity. Two approaches are proposed to express the quality of protein model-structures. One is a single model quality assessment method, the other is its modification, which provides a relative measure of model quality. Exhaustive evaluation is performed on data sets of model-structures submitted to the CASP8 and CASP9 contests. The validation shows that the method is able to discriminate between good and bad model-structures. The best of tested GOBA scores achieved 0.74 and 0.8 as a mean Pearson correlation to the observed quality of models in our CASP8 and CASP9-based validation sets. GOBA also obtained the best result for two targets of CASP8, and

  4. Application of Time-series Model to Predict Groundwater Quality Parameters for Agriculture: (Plain Mehran Case Study)

    NASA Astrophysics Data System (ADS)

    Mehrdad Mirsanjari, Mir; Mohammadyari, Fatemeh

    2018-03-01

    Underground water is regarded as considerable water source which is mainly available in arid and semi arid with deficient surface water source. Forecasting of hydrological variables are suitable tools in water resources management. On the other hand, time series concepts is considered efficient means in forecasting process of water management. In this study the data including qualitative parameters (electrical conductivity and sodium adsorption ratio) of 17 underground water wells in Mehran Plain has been used to model the trend of parameters change over time. Using determined model, the qualitative parameters of groundwater is predicted for the next seven years. Data from 2003 to 2016 has been collected and were fitted by AR, MA, ARMA, ARIMA and SARIMA models. Afterward, the best model is determined using information criterion or Akaike (AIC) and correlation coefficient. After modeling parameters, the map of agricultural land use in 2016 and 2023 were generated and the changes between these years were studied. Based on the results, the average of predicted SAR (Sodium Adsorption Rate) in all wells in the year 2023 will increase compared to 2016. EC (Electrical Conductivity) average in the ninth and fifteenth holes and decreases in other wells will be increased. The results indicate that the quality of groundwater for Agriculture Plain Mehran will decline in seven years.

  5. The Feasibility of Quality Function Deployment (QFD) as an Assessment and Quality Assurance Model

    ERIC Educational Resources Information Center

    Matorera, D.; Fraser, W. J.

    2016-01-01

    Business schools are globally often seen as structured, purpose-driven, multi-sector and multi-perspective organisations. This article is based on the response of a graduate school to an innovative industrial Quality Function Deployment-based model (QFD), which was to be adopted initially in a Master's degree programme for quality assurance…

  6. Perceptual video quality assessment in H.264 video coding standard using objective modeling.

    PubMed

    Karthikeyan, Ramasamy; Sainarayanan, Gopalakrishnan; Deepa, Subramaniam Nachimuthu

    2014-01-01

    Since usage of digital video is wide spread nowadays, quality considerations have become essential, and industry demand for video quality measurement is rising. This proposal provides a method of perceptual quality assessment in H.264 standard encoder using objective modeling. For this purpose, quality impairments are calculated and a model is developed to compute the perceptual video quality metric based on no reference method. Because of the shuttle difference between the original video and the encoded video the quality of the encoded picture gets degraded, this quality difference is introduced by the encoding process like Intra and Inter prediction. The proposed model takes into account of the artifacts introduced by these spatial and temporal activities in the hybrid block based coding methods and an objective modeling of these artifacts into subjective quality estimation is proposed. The proposed model calculates the objective quality metric using subjective impairments; blockiness, blur and jerkiness compared to the existing bitrate only calculation defined in the ITU G 1070 model. The accuracy of the proposed perceptual video quality metrics is compared against popular full reference objective methods as defined by VQEG.

  7. McCook Reservoir Water Quality Model. Numerical Model Investigation

    DTIC Science & Technology

    1991-09-01

    REPT TYPE AND DATES COVERED ad September Cana Final report . LEAND SUBTITLE S. FUNDING NUERS Spinfild VA2261 ThcCook Reservoir Water Quality Model...oxygen injected by the aeration system Manufacturers of diffusers supply OTE information specific to gas flow rate and depth. The depths at which most

  8. APOLLO: a quality assessment service for single and multiple protein models.

    PubMed

    Wang, Zheng; Eickholt, Jesse; Cheng, Jianlin

    2011-06-15

    We built a web server named APOLLO, which can evaluate the absolute global and local qualities of a single protein model using machine learning methods or the global and local qualities of a pool of models using a pair-wise comparison approach. Based on our evaluations on 107 CASP9 (Critical Assessment of Techniques for Protein Structure Prediction) targets, the predicted quality scores generated from our machine learning and pair-wise methods have an average per-target correlation of 0.671 and 0.917, respectively, with the true model quality scores. Based on our test on 92 CASP9 targets, our predicted absolute local qualities have an average difference of 2.60 Å with the actual distances to native structure. http://sysbio.rnet.missouri.edu/apollo/. Single and pair-wise global quality assessment software is also available at the site.

  9. Quality circles and their potential application to rural health care in Papua New Guinea.

    PubMed

    Cibulskis, R E; Edwards, K N

    1993-06-01

    A quality circle is a group of service providers who meet regularly to solve problems relating to the quality of their work. This is an example of bottom-up rather than top-down management which has found considerable success in the industries of the developed world. This article describes the principles which govern the operation of quality circles, the expected benefits and how best to introduce them. The problems relating to the provision of quality health care in rural areas and the potential application of the quality circle methodology are discussed.

  10. A Study on the Potential Applications of Satellite Data in Air Quality Monitoring and Forecasting

    NASA Technical Reports Server (NTRS)

    Li, Can; Hsu, N. Christina; Tsay, Si-Chee

    2011-01-01

    In this study we explore the potential applications of MODIS (Moderate Resolution Imaging Spectroradiometer) -like satellite sensors in air quality research for some Asian regions. The MODIS aerosol optical thickness (AOT), NCEP global reanalysis meteorological data, and daily surface PM(sub 10) concentrations over China and Thailand from 2001 to 2009 were analyzed using simple and multiple regression models. The AOT-PM(sub 10) correlation demonstrates substantial seasonal and regional difference, likely reflecting variations in aerosol composition and atmospheric conditions, Meteorological factors, particularly relative humidity, were found to influence the AOT-PM(sub 10) relationship. Their inclusion in regression models leads to more accurate assessment of PM(sub 10) from space borne observations. We further introduced a simple method for employing the satellite data to empirically forecast surface particulate pollution, In general, AOT from the previous day (day 0) is used as a predicator variable, along with the forecasted meteorology for the following day (day 1), to predict the PM(sub 10) level for day 1. The contribution of regional transport is represented by backward trajectories combined with AOT. This method was evaluated through PM(sub 10) hindcasts for 2008-2009, using ohservations from 2005 to 2007 as a training data set to obtain model coefficients. For five big Chinese cities, over 50% of the hindcasts have percentage error less than or equal to 30%. Similar performance was achieved for cities in northern Thailand. The MODIS AOT data are responsible for at least part of the demonstrated forecasting skill. This method can be easily adapted for other regions, but is probably most useful for those having sparse ground monitoring networks or no access to sophisticated deterministic models. We also highlight several existing issues, including some inherent to a regression-based approach as exemplified by a case study for Beijing, Further studies will be

  11. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ) Model-I: building an emissions data base

    NASA Astrophysics Data System (ADS)

    Smith, S. N.; Mueller, S. F.

    2010-05-01

    A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ) Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE) emissions processing system) currently estimates non-methane volatile organic compound (NMVOC) emissions from biogenic sources, nitrogen oxide (NOx) emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, windblown dust particulate, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide), 44% of total NOx, 80% of reactive carbonaceous gases (NMVOCs and carbon monoxide), 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride), and 84% of fine particles (i.e., those smaller than 2.5 μm in size) released into the atmosphere

  12. Cost-effective water quality assessment through the integration of monitoring data and modeling results

    NASA Astrophysics Data System (ADS)

    Lobuglio, Joseph N.; Characklis, Gregory W.; Serre, Marc L.

    2007-03-01

    Sparse monitoring data and error inherent in water quality models make the identification of waters not meeting regulatory standards uncertain. Additional monitoring can be implemented to reduce this uncertainty, but it is often expensive. These costs are currently a major concern, since developing total maximum daily loads, as mandated by the Clean Water Act, will require assessing tens of thousands of water bodies across the United States. This work uses the Bayesian maximum entropy (BME) method of modern geostatistics to integrate water quality monitoring data together with model predictions to provide improved estimates of water quality in a cost-effective manner. This information includes estimates of uncertainty and can be used to aid probabilistic-based decisions concerning the status of a water (i.e., impaired or not impaired) and the level of monitoring needed to characterize the water for regulatory purposes. This approach is applied to the Catawba River reservoir system in western North Carolina as a means of estimating seasonal chlorophyll a concentration. Mean concentration and confidence intervals for chlorophyll a are estimated for 66 reservoir segments over an 11-year period (726 values) based on 219 measured seasonal averages and 54 model predictions. Although the model predictions had a high degree of uncertainty, integration of modeling results via BME methods reduced the uncertainty associated with chlorophyll estimates compared with estimates made solely with information from monitoring efforts. Probabilistic predictions of future chlorophyll levels on one reservoir are used to illustrate the cost savings that can be achieved by less extensive and rigorous monitoring methods within the BME framework. While BME methods have been applied in several environmental contexts, employing these methods as a means of integrating monitoring and modeling results, as well as application of this approach to the assessment of surface water monitoring networks

  13. Creating Learning Organizations: The Deming Management Method Applied to Instruction (Quality Teaching & Quality Learning). A Paradigm Application.

    ERIC Educational Resources Information Center

    Loehr, Peter

    This paper presents W. Edwards Deming's 14 management points, 7 deadly diseases, and 4 obstacles that thwart productivity, and discusses how these principles relate to teaching and learning. Application of these principles is expected to increase the quality of learning in classrooms from kindergarten through graduate level. Examples of the…

  14. Development of a Next Generation Air Quality Modeling System

    EPA Science Inventory

    In the presentation we will describe our modifications to MPAS to improve its suitability for retrospective air quality applications and show evaluations of global and regional meterological simulations. Our modifications include addition of physics schemes that we developed for...

  15. Influence of daily versus monthly fire emissions on atmospheric model applications in the tropics

    NASA Astrophysics Data System (ADS)

    Marlier, M. E.; Voulgarakis, A.; Faluvegi, G.; Shindell, D. T.; DeFries, R. S.

    2012-12-01

    Fires are widely used throughout the tropics to create and maintain areas for agriculture, but are also significant contributors to atmospheric trace gas and aerosol concentrations. However, the timing and magnitude of fire activity can vary strongly by year and ecosystem type. For example, frequent, low intensity fires dominate in African savannas whereas Southeast Asian peatland forests are susceptible to huge pulses of emissions during regional El Niño droughts. Despite the potential implications for modeling interactions with atmospheric chemistry and transport, fire emissions have commonly been input into global models at a monthly resolution. Recognizing the uncertainty that this can introduce, several datasets have parsed fire emissions to daily and sub-daily scales with satellite active fire detections. In this study, we explore differences between utilizing the monthly and daily Global Fire Emissions Database version 3 (GFED3) products as inputs into the NASA GISS-E2 composition climate model. We aim to understand how the choice of the temporal resolution of fire emissions affects uncertainty with respect to several common applications of global models: atmospheric chemistry, air quality, and climate. Focusing our analysis on tropical ozone, carbon monoxide, and aerosols, we compare modeled concentrations with available ground and satellite observations. We find that increasing the temporal frequency of fire emissions from monthly to daily can improve correlations with observations, predominately in areas or during seasons more heavily affected by fires. Differences between the two datasets are more evident with public health applications: daily resolution fire emissions increases the number of days exceeding World Health Organization air quality targets.

  16. River water quality management considering agricultural return flows: application of a nonlinear two-stage stochastic fuzzy programming.

    PubMed

    Tavakoli, Ali; Nikoo, Mohammad Reza; Kerachian, Reza; Soltani, Maryam

    2015-04-01

    In this paper, a new fuzzy methodology is developed to optimize water and waste load allocation (WWLA) in rivers under uncertainty. An interactive two-stage stochastic fuzzy programming (ITSFP) method is utilized to handle parameter uncertainties, which are expressed as fuzzy boundary intervals. An iterative linear programming (ILP) is also used for solving the nonlinear optimization model. To accurately consider the impacts of the water and waste load allocation strategies on the river water quality, a calibrated QUAL2Kw model is linked with the WWLA optimization model. The soil, water, atmosphere, and plant (SWAP) simulation model is utilized to determine the quantity and quality of each agricultural return flow. To control pollution loads of agricultural networks, it is assumed that a part of each agricultural return flow can be diverted to an evaporation pond and also another part of it can be stored in a detention pond. In detention ponds, contaminated water is exposed to solar radiation for disinfecting pathogens. Results of applying the proposed methodology to the Dez River system in the southwestern region of Iran illustrate its effectiveness and applicability for water and waste load allocation in rivers. In the planning phase, this methodology can be used for estimating the capacities of return flow diversion system and evaporation and detention ponds.

  17. Remote Sensing Applications to Water Quality Management in Florida

    NASA Astrophysics Data System (ADS)

    Lehrter, J. C.; Schaeffer, B. A.; Hagy, J.; Spiering, B.; Barnes, B.; Hu, C.; Le, C.; McEachron, L.; Underwood, L. W.; Ellis, C.; Fisher, B.

    2013-12-01

    Optical datasets from estuarine and coastal systems are increasingly available for remote sensing algorithm development, validation, and application. With validated algorithms, the data streams from satellite sensors can provide unprecedented spatial and temporal data for local and regional coastal water quality management. Our presentation will highlight two recent applications of optical data and remote sensing to water quality decision-making in coastal regions of the state of Florida; (1) informing the development of estuarine and coastal nutrient criteria for the state of Florida and (2) informing the rezoning of the Florida Keys National Marine Sanctuary. These efforts involved building up the underlying science to demonstrate the applicability of satellite data as well as an outreach component to educate decision-makers about the use, utility, and uncertainties of remote sensing data products. Scientific developments included testing existing algorithms and generating new algorithms for water clarity and chlorophylla in case II (CDOM or turbidity dominated) estuarine and coastal waters and demonstrating the accuracy of remote sensing data products in comparison to traditional field based measurements. Including members from decision-making organizations on the research team and interacting with decision-makers early and often in the process were key factors for the success of the outreach efforts and the eventual adoption of satellite data into the data records and analyses used in decision-making. Florida coastal water bodies (black boxes) for which remote sensing imagery were applied to derive numeric nutrient criteria and in situ observations (black dots) used to validate imagery. Florida ocean color applied to development of numeric nutrient criteria

  18. Modelling biogas production of solid waste: application of the BGP model to a synthetic landfill

    NASA Astrophysics Data System (ADS)

    Rodrigo-Ilarri, Javier; Segura-Sobrino, Francisco

    2013-04-01

    Production of biogas as a result of the decomposition of organic matter included on solid waste landfills is still an issue to be understood. Reports on this matter are rarely included on the engineering construction projects of solid waste landfills despite it can be an issue of critical importance while operating the landfill and after its closure. This paper presents an application of BGP (Bio-Gas-Production) model to a synthetic landfill. The evolution in time of the concentrations of the different chemical compounds of biogas is studied. Results obtained show the impact on the air quality of different management alternatives which are usually performed in real landfills.

  19. A study on the applicability of the ecosystem model on water quality prediction in urban river outer moats of Yedo Castle, Nihonbashi River

    NASA Astrophysics Data System (ADS)

    Kakinuma, Daiki; Tsushima, Yuki; Ohdaira, Kazunori; Yamada, Tadashi

    2015-04-01

    The objective of the study is to elucidate the waterside environment in the outer moats of Yedo Castle and the downstream of Nihonbashi River in Tokyo. Scince integrated sewage system has been installed in the area around the outer moats of Yedo Castle and the Nihon River basin, when rainfall exceeds more than the sewage treatment capacity, overflowed untreated wastewater is released into the moats and the river. Because the moats is a closed water body, pollutants are deposited to the bottom without outflowing. While reeking offensive odors due to the decomposition, blue-green algae outbreaks affected by the residence time and eluted nutrient causes problems. Scince the Nihonbashi River is a typical tidal river in urban area, the water pollution problems in the river is complicated. This study clarified the characteristics of the water quality in terms of dissolved oxygen saturation through on-site observations. In particular, dissolved oxygen saturation in summer, it is clarified that variations from a supersaturated state due to the variations of horizontal insolation intensity and water temperature up to hypoxic water conditions in the moats. According to previous studies on the water quality of Nihonbashi River, it is clarified that there are three types of variations of dissolved oxygen which desided by rainfall scale. The mean value of dissolved oxygen saturation of all layers has decreased by about 20% at the spring tide after dredging, then it recoveres gradually and become the value before dredging during about a year. Further more, in places where sewage inflows, it is important to developed a ecosystem medel and the applicability of the model. 9 variables including cell quota (intracellular nutrients of phytoplankton) of phosphorus and nitrogen with considerring the nitrification of ammonia nitrogen are used in the model. This model can grasp the sections (such as oxygen production by photosynthesis of phytoplankton, oxygen consumption by respiration of

  20. [Application of quality by design in granulation process for ginkgo leaf tablet (Ⅱ): identification of critical quality attributes].

    PubMed

    Xu, Bing; Cui, Xiang-Long; Yang, Chan; Wang, Xin; Shi, Xin-Yuan; Qiao, Yan-Jiang

    2017-03-01

    Quality by design (QbD) highlights the concept of "begin with the end", which means to thoroughly understand the target product quality first, and then guide pharmaceutical process development and quality control throughout the whole manufacturing process. In this paper, the Ginkgo biloba granules intermediates were taken as the research object, and the requirements of the tensile strength of tablets were treated as the goals to establish the methods for identification of granules' critical quality attributes (CQAs) and establishment of CQAs' limits. Firstly, the orthogonal partial least square (OPLS) model was adopted to build the relationship between the micromeritic properties of 29 batches of granules and the tensile strength of ginkgo leaf tablets, and thereby the potential critical quality attributes (pCQAs) were screened by variable importance in the projection (VIP) indexes. Then, a series of OPLS models were rebuilt by reducing pCQAs variables one by one in view of the rule of VIP values from low to high in sequence. The model performance results demonstrated that calibration and predictive performance of the model had no decreasing trend after variables reduction. In consideration of the results from variables selection as well as the collinearity test and testability of the pCQAs, the median particle size (D₅₀) and the bulk density (Da) were identified as critical quality attributes (CQAs). The design space of CQAs was developed based on a multiple linear regression model established between the CQAs (D₅₀ and Da) and the tensile strength. The control constraints of the CQAs were determined as 170 μm< D₅₀<500 μm and 0.30 g•cm⁻³

  1. Application of data assimilation to solar wind forecasting models

    NASA Astrophysics Data System (ADS)

    Innocenti, M.; Lapenta, G.; Vrsnak, B.; Temmer, M.; Veronig, A.; Bettarini, L.; Lee, E.; Markidis, S.; Skender, M.; Crespon, F.; Skandrani, C.; Soteria Space-Weather Forecast; Data Assimilation Team

    2010-12-01

    Data Assimilation through Kalman filtering [1,2] is a powerful statistical tool which allows to combine modeling and observations to increase the degree of knowledge of a given system. We apply this technique to the forecast of solar wind parameters (proton speed, proton temperature, absolute value of the magnetic field and proton density) at 1 AU, using the model described in [3] and ACE data as observations. The model, which relies on GOES 12 observations of the percentage of the meridional slice of the sun covered by coronal holes, grants 1-day and 6-hours in advance forecasts of the aforementioned quantities in quiet times (CMEs are not taken into account) during the declining phase of the solar cycle and is tailored for specific time intervals. We show that the application of data assimilation generally improves the quality of the forecasts during quiet times and, more notably, extends the periods of applicability of the model, which can now provide reliable forecasts also in presence of CMEs and for periods other than the ones it was designed for. Acknowledgement: The research leading to these results has received funding from the European Commission’s Seventh Framework Programme (FP7/2007-2013) under the grant agreement N. 218816 (SOTERIA project: http://www.soteria-space.eu). References: [1] R. Kalman, J. Basic Eng. 82, 35 (1960); [2] G. Welch and G. Bishop, Technical Report TR 95-041, University of North Carolina, Department of Computer Science (2001); [3] B. Vrsnak, M. Temmer, and A. Veronig, Solar Phys. 240, 315 (2007).

  2. APPLICATION OF BIAS AND ADJUSTMENT TECHNIQUES TO THE ETA-CMAQ AIR QUALITY FORECAST

    EPA Science Inventory

    The current air quality forecast system, based on linking NOAA's Eta meteorological model with EPA's Community Multiscale Air Quality (CMAQ) model, consistently overpredicts surface ozone concentrations, but simulates its day-to-day variability quite well. The ability of bias cor...

  3. MS-QI: A Modulation Spectrum-Based ECG Quality Index for Telehealth Applications.

    PubMed

    Tobon V, Diana P; Falk, Tiago H; Maier, Martin

    2016-08-01

    As telehealth applications emerge, the need for accurate and reliable biosignal quality indices has increased. One typical modality used in remote patient monitoring is the electrocardiogram (ECG), which is inherently susceptible to several different noise sources, including environmental (e.g., powerline interference), experimental (e.g., movement artifacts), and physiological (e.g., muscle and breathing artifacts). Accurate measurement of ECG quality can allow for automated decision support systems to make intelligent decisions about patient conditions. This is particularly true for in-home monitoring applications, where the patient is mobile and the ECG signal can be severely corrupted by movement artifacts. In this paper, we propose an innovative ECG quality index based on the so-called modulation spectral signal representation. The representation quantifies the rate of change of ECG spectral components, which are shown to be different from the rate of change of typical ECG noise sources. The proposed modulation spectral-based quality index, MS-QI, was tested on 1) synthetic ECG signals corrupted by varying levels of noise, 2) single-lead recorded data using the Hexoskin garment during three activity levels (sitting, walking, running), 3) 12-lead recorded data using conventional ECG machines (Computing in Cardiology 2011 dataset), and 4) two-lead ambulatory ECG recorded from arrhythmia patients (MIT-BIH Arrhythmia Database). Experimental results showed the proposed index outperforming two conventional benchmark quality measures, particularly in the scenarios involving recorded data in real-world environments.

  4. Water quality assessment and meta model development in Melen watershed - Turkey.

    PubMed

    Erturk, Ali; Gurel, Melike; Ekdal, Alpaslan; Tavsan, Cigdem; Ugurluoglu, Aysegul; Seker, Dursun Zafer; Tanik, Aysegul; Ozturk, Izzet

    2010-07-01

    Istanbul, being one of the highly populated metropolitan areas of the world, has been facing water scarcity since the past decade. Water transfer from Melen Watershed was considered as the most feasible option to supply water to Istanbul due to its high water potential and relatively less degraded water quality. This study consists of two parts. In the first part, water quality data covering 26 parameters from 5 monitoring stations were analyzed and assessed due to the requirements of the "Quality Required of Surface Water Intended for the Abstraction of Drinking Water" regulation. In the second part, a one-dimensional stream water quality model with simple water quality kinetics was developed. It formed a basic design for more advanced water quality models for the watershed. The reason for assessing the water quality data and developing a model was to provide information for decision making on preliminary actions to prevent any further deterioration of existing water quality. According to the water quality assessment at the water abstraction point, Melen River has relatively poor water quality with regard to NH(4)(+), BOD(5), faecal streptococcus, manganese and phenol parameters, and is unsuitable for drinking water abstraction in terms of COD, PO(4)(3-), total coliform, total suspended solids, mercury and total chromium parameters. The results derived from the model were found to be consistent with the water quality assessment. It also showed that relatively high inorganic nitrogen and phosphorus concentrations along the streams are related to diffuse nutrient loads that should be managed together with municipal and industrial wastewaters. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Subjective Quality Assessment of Underwater Video for Scientific Applications.

    PubMed

    Moreno-Roldán, José-Miguel; Luque-Nieto, Miguel-Ángel; Poncela, Javier; Díaz-del-Río, Víctor; Otero, Pablo

    2015-12-15

    Underwater video services could be a key application in the better scientific knowledge of the vast oceanic resources in our planet. However, limitations in the capacity of current available technology for underwater networks (UWSNs) raise the question of the feasibility of these services. When transmitting video, the main constraints are the limited bandwidth and the high propagation delays. At the same time the service performance depends on the needs of the target group. This paper considers the problems of estimations for the Mean Opinion Score (a standard quality measure) in UWSNs based on objective methods and addresses the topic of quality assessment in potential underwater video services from a subjective point of view. The experimental design and the results of a test planned according standardized psychometric methods are presented. The subjects used in the quality assessment test were ocean scientists. Video sequences were recorded in actual exploration expeditions and were processed to simulate conditions similar to those that might be found in UWSNs. Our experimental results show how videos are considered to be useful for scientific purposes even in very low bitrate conditions.

  6. A model for predicting air quality along highways.

    DOT National Transportation Integrated Search

    1973-01-01

    The subject of this report is an air quality prediction model for highways, AIRPOL Version 2, July 1973. AIRPOL has been developed by modifying the basic Gaussian approach to gaseous dispersion. The resultant model is smooth and continuous throughout...

  7. Regional models of the gravity field from terrestrial gravity data of heterogeneous quality and density

    NASA Astrophysics Data System (ADS)

    Talvik, Silja; Oja, Tõnis; Ellmann, Artu; Jürgenson, Harli

    2014-05-01

    Gravity field models in a regional scale are needed for a number of applications, for example national geoid computation, processing of precise levelling data and geological modelling. Thus the methods applied for modelling the gravity field from surveyed gravimetric information need to be considered carefully. The influence of using different gridding methods, the inclusion of unit or realistic weights and indirect gridding of free air anomalies (FAA) are investigated in the study. Known gridding methods such as kriging (KRIG), least squares collocation (LSCO), continuous curvature (CCUR) and optimal Delaunay triangulation (ODET) are used for production of gridded gravity field surfaces. As the quality of data collected varies considerably depending on the methods and instruments available or used in surveying it is important to somehow weigh the input data. This puts additional demands on data maintenance as accuracy information needs to be available for each data point participating in the modelling which is complicated by older gravity datasets where the uncertainties of not only gravity values but also supplementary information such as survey point position are not always known very accurately. A number of gravity field applications (e.g. geoid computation) demand foran FAA model, the acquisition of which is also investigated. Instead of direct gridding it could be more appropriate to proceed with indirect FAA modelling using a Bouguer anomaly grid to reduce the effect of topography on the resulting FAA model (e.g. near terraced landforms). The inclusion of different gridding methods, weights and indirect FAA modelling helps to improve gravity field modelling methods. It becomes possible to estimate the impact of varying methodical approaches on the gravity field modelling as statistical output is compared. Such knowledge helps assess the accuracy of gravity field models and their effect on the aforementioned applications.

  8. Human mobility: Models and applications

    NASA Astrophysics Data System (ADS)

    Barbosa, Hugo; Barthelemy, Marc; Ghoshal, Gourab; James, Charlotte R.; Lenormand, Maxime; Louail, Thomas; Menezes, Ronaldo; Ramasco, José J.; Simini, Filippo; Tomasini, Marcello

    2018-03-01

    Recent years have witnessed an explosion of extensive geolocated datasets related to human movement, enabling scientists to quantitatively study individual and collective mobility patterns, and to generate models that can capture and reproduce the spatiotemporal structures and regularities in human trajectories. The study of human mobility is especially important for applications such as estimating migratory flows, traffic forecasting, urban planning, and epidemic modeling. In this survey, we review the approaches developed to reproduce various mobility patterns, with the main focus on recent developments. This review can be used both as an introduction to the fundamental modeling principles of human mobility, and as a collection of technical methods applicable to specific mobility-related problems. The review organizes the subject by differentiating between individual and population mobility and also between short-range and long-range mobility. Throughout the text the description of the theory is intertwined with real-world applications.

  9. Stochastic Models of Quality Control on Test Misgrading.

    ERIC Educational Resources Information Center

    Wang, Jianjun

    Stochastic models are developed in this article to examine the rate of test misgrading in educational and psychological measurement. The estimation of inadvertent grading errors can serve as a basis for quality control in measurement. Limitations of traditional Poisson models have been reviewed to highlight the need to introduce new models using…

  10. Modeling Aircraft Emissions for Regional-scale Air Quality: Adapting a New Global Aircraft Emissions Database for the U.S

    NASA Astrophysics Data System (ADS)

    Arunachalam, S.; Baek, B. H.; Vennam, P. L.; Woody, M. C.; Omary, M.; Binkowski, F.; Fleming, G.

    2012-12-01

    Commercial aircraft emit substantial amounts of pollutants during their complete activity cycle that ranges from landing-and-takeoff (LTO) at airports to cruising in upper elevations of the atmosphere, and affect both air quality and climate. Since these emissions are not uniformly emitted over the earth, and have substantial temporal and spatial variability, it is vital to accurately evaluate and quantify the relative impacts of aviation emissions on ambient air quality. Regional-scale air quality modeling applications do not routinely include these aircraft emissions from all cycles. Federal Aviation Administration (FAA) has developed the Aviation Environmental Design Tool (AEDT), a software system that dynamically models aircraft performance in space and time to calculate fuel burn and emissions from gate-to-gate for all commercial aviation activity from all airports globally. To process in-flight aircraft emissions and to provide a realistic representation of these for treatment in grid-based air quality models, we have developed an interface processor called AEDTproc that accurately distributes full-flight chorded emissions in time and space to create gridded, hourly model-ready emissions input data. Unlike the traditional emissions modeling approach of treating aviation emissions as ground-level sources or processing emissions only from the LTO cycles in regional-scale air quality studies, AEDTproc distributes chorded inventories of aircraft emissions during LTO cycles and cruise activities into a time-variant 3-D gridded structure. We will present results of processed 2006 global emissions from AEDT over a continental U.S. modeling domain to support a national-scale air quality assessment of the incremental impacts of aircraft emissions on surface air quality. This includes about 13.6 million flights within the U.S. out of 31.2 million flights globally. We will focus on assessing spatio-temporal variability of these commercial aircraft emissions, and

  11. A proposed defect tracking model for classifying the inserted defect reports to enhance software quality control.

    PubMed

    Sultan, Torky; Khedr, Ayman E; Sayed, Mostafa

    2013-01-01

    NONE DECLARED Defect tracking systems play an important role in the software development organizations as they can store historical information about defects. There are many research in defect tracking models and systems to enhance their capabilities to be more specifically tracking, and were adopted with new technology. Furthermore, there are different studies in classifying bugs in a step by step method to have clear perception and applicable method in detecting such bugs. This paper shows a new proposed defect tracking model for the purpose of classifying the inserted defects reports in a step by step method for more enhancement of the software quality.

  12. A manufacturing quality assessment model based-on two stages interval type-2 fuzzy logic

    NASA Astrophysics Data System (ADS)

    Purnomo, Muhammad Ridwan Andi; Helmi Shintya Dewi, Intan

    2016-01-01

    This paper presents the development of an assessment models for manufacturing quality using Interval Type-2 Fuzzy Logic (IT2-FL). The proposed model is developed based on one of building block in sustainable supply chain management (SSCM), which is benefit of SCM, and focuses more on quality. The proposed model can be used to predict the quality level of production chain in a company. The quality of production will affect to the quality of product. Practically, quality of production is unique for every type of production system. Hence, experts opinion will play major role in developing the assessment model. The model will become more complicated when the data contains ambiguity and uncertainty. In this study, IT2-FL is used to model the ambiguity and uncertainty. A case study taken from a company in Yogyakarta shows that the proposed manufacturing quality assessment model can work well in determining the quality level of production.

  13. Development of a high-resolution emission inventory and its evaluation and application through air quality modeling for Jiangsu Province, China

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Zhou, Yaduan; Mao, Pan; Zhang, Jie

    2017-04-01

    Improved emission inventories combining detailed source information are crucial for better understanding the atmospheric chemistry and effectively making emission control policies using air quality simulation, particularly at regional or local scales. With the downscaled inventories directly applied, chemical transport model might not be able to reproduce the authentic evolution of atmospheric pollution processes at small spatial scales. Using the bottom-up approach, a high-resolution emission inventory was developed for Jiangsu China, including SO2, NOx, CO, NH3, volatile organic compounds (VOCs), total suspended particulates (TSP), PM10, PM2.5, black carbon (BC), organic carbon (OC), and CO2. The key parameters relevant to emission estimation for over 6000 industrial sources were investigated, compiled and revised at plant level based on various data sources and on-site survey. As a result, the emission fractions of point sources were significantly elevated for most species. The improvement of this provincial inventory was evaluated through comparisons with other inventories at larger spatial scales, using satellite observation and air quality modeling. Compared to the downscaled Multi-resolution Emission Inventory for China (MEIC), the spatial distribution of NOX emissions in our provincial inventory was more consistent with summer tropospheric NO2 VCDs observed from OMI, particularly for the grids with moderate emission levels, implying the improved emission estimation for small and medium industrial plants by this work. Three inventories (national, regional, and provincial by this work) were applied in the Models-3/Community Multi-scale Air Quality (CMAQ) system for southern Jiangsu October 2012, to evaluate the model performances with different emission inputs. The best agreement between available ground observation and simulation was found when the provincial inventory was applied, indicated by the smallest normalized mean bias (NMB) and normalized mean

  14. WATER QUALITY MODELING IN THE RIO CHONE ESTUARY

    EPA Science Inventory

    Water quality in the Rio Chone Estuary, a seasonally inverse, tropical estuary, in Ecuador was characterized by modeling the distribution of biochemical oxygen demand (BOD) and dissolved inorganic nitrogen (DIN) within the water column. These two variables are modeled using modif...

  15. Aircraft model prototypes which have specified handling-quality time histories

    NASA Technical Reports Server (NTRS)

    Johnson, S. H.

    1976-01-01

    Several techniques for obtaining linear constant-coefficient airplane models from specified handling-quality time histories are discussed. One technique, the pseudodata method, solves the basic problem, yields specified eigenvalues, and accommodates state-variable transfer-function zero suppression. The method is fully illustrated for a fourth-order stability-axis small-motion model with three lateral handling-quality time histories specified. The FORTRAN program which obtains and verifies the model is included and fully documented.

  16. Advances and applications of occupancy models

    USGS Publications Warehouse

    Bailey, Larissa; MacKenzie, Darry I.; Nichols, James D.

    2013-01-01

    Summary: The past decade has seen an explosion in the development and application of models aimed at estimating species occurrence and occupancy dynamics while accounting for possible non-detection or species misidentification. We discuss some recent occupancy estimation methods and the biological systems that motivated their development. Collectively, these models offer tremendous flexibility, but simultaneously place added demands on the investigator. Unlike many mark–recapture scenarios, investigators utilizing occupancy models have the ability, and responsibility, to define their sample units (i.e. sites), replicate sampling occasions, time period over which species occurrence is assumed to be static and even the criteria that constitute ‘detection’ of a target species. Subsequent biological inference and interpretation of model parameters depend on these definitions and the ability to meet model assumptions. We demonstrate the relevance of these definitions by highlighting applications from a single biological system (an amphibian–pathogen system) and discuss situations where the use of occupancy models has been criticized. Finally, we use these applications to suggest future research and model development.

  17. Decline in Soluble Phosphorus Mobility from Land-Applied Dairy Manure - Modeling and Practical Applications

    NASA Astrophysics Data System (ADS)

    Archibald, J. A.; Walter, M. T.; Peterson, M.; Richards, B. K.; Giri, S. K.

    2014-12-01

    Non-point source transport of soluble-reactive phosphorus (SRP) from agricultural systems to freshwater ecosystems is a significant water quality concern. Although farmers are encouraged to avoid manure or fertilizer application before runoff events, the implications of these management choices remain largely unquantified. We conducted soil box experiments to test how manure application timing and temperature or moisture conditions impact SRP concentration in runoff. We found that SRP concentrations dropped off exponentially over time, and that higher temperatures accelerated the decline in SRP in overland runoff over time. During the first runoff events after manure application, infiltration depth prior to runoff was not a primary driver of SRP concentrations. This research has implications for incorporating manure spreading timing into watershed models.

  18. Remote Sensing of Water Quality in Multipurpose Reservoirs: Case Study Applications in Indonesia, Mexico, and Uruguay

    NASA Astrophysics Data System (ADS)

    Miralles-Wilhelm, F.; Serrat-Capdevila, A.; Rodriguez, D.

    2017-12-01

    This research is focused on development of remote sensing methods to assess surface water pollution issues, particularly in multipurpose reservoirs. Three case study applications are presented to comparatively analyze remote sensing techniquesforo detection of nutrient related pollution, i.e., Nitrogen, Phosphorus, Chlorophyll, as this is a major water quality issue that has been identified in terms of pollution of major water sources around the country. This assessment will contribute to a better understanding of options for nutrient remote sensing capabilities and needs and assist water agencies in identifying the appropriate remote sensing tools and devise an application strategy to provide information needed to support decision-making regarding the targeting and monitoring of nutrient pollution prevention and mitigation measures. A detailed review of the water quality data available from ground based measurements was conducted in order to determine their suitability for a case study application of remote sensing. In the first case study, the Valle de Bravo reservoir in Mexico City reservoir offers a larger database of water quality which may be used to better calibrate and validate the algorithms required to obtain water quality data from remote sensing raw data. In the second case study application, the relatively data scarce Lake Toba in Indonesia can be useful to illustrate the value added of remote sensing data in locations where water quality data is deficient or inexistent. The third case study in the Paso Severino reservoir in Uruguay offers a combination of data scarcity and persistent development of harmful algae blooms. Landsat-TM data was obteined for the 3 study sites and algorithms for three key water quality parameters that are related to nutrient pollution: Chlorophyll-a, Total Nitrogen, and Total Phosphorus were calibrated and validated at the study sites. The three case study applications were developed into capacity building/training workshops

  19. Modelling the effect of wildfire on forested catchment water quality using the SWAT model

    NASA Astrophysics Data System (ADS)

    Yu, M.; Bishop, T.; van Ogtrop, F. F.; Bell, T.

    2016-12-01

    Wildfire removes the surface vegetation, releases ash, increase erosion and runoff, and therefore effects the hydrological cycle of a forested water catchment. It is important to understand chnage and how the catchment recovers. These processes are spatially sensitive and effected by interactions between fire severity and hillslope, soil type and surface vegetation conditions. Thus, a distributed hydrological modelling approach is required. In this study, the Soil and Water Analysis Tool (SWAT) is used to predict the effect of 2001/02 Sydney wild fire on catchment water quality. 10 years pre-fire data is used to create and calibrate the SWAT model. The calibrated model was then used to simulate the water quality for the 10 years post-fire period without fire effect. The simulated water quality data are compared with recorded water quality data provided by Sydney catchment authority. The mean change of flow, total suspended solid, total nitrate and total phosphate are compare on monthly, three month, six month and annual basis. Two control catchment and three burn catchment were analysed.

  20. Modeling quality of life in patients with rheumatic diseases: the role of pain catastrophizing, fear-avoidance beliefs, physical disability, and depression.

    PubMed

    Shim, Eun-Jung; Hahm, Bong-Jin; Go, Dong Jin; Lee, Kwang-Min; Noh, Hae Lim; Park, Seung-Hee; Song, Yeong Wook

    2018-06-01

    To examine factors in the fear-avoidance model, such as pain, pain catastrophizing, fear-avoidance beliefs, physical disability, and depression and their relationships with physical and psychological quality of life in patients with rheumatic diseases. The data were obtained from 360 patients with rheumatic diseases who completed self-report measures assessing study variables. Structural equation modeling was used to examine the hypothesized relationships among factors specified in the fear-avoidance model predicting physical and psychological quality of life. Final models fit the data well, explaining 96% and 82% of the variance in physical and psychological quality of life, respectively. Higher pain catastrophizing was related to stronger fear-avoidance beliefs that had a direct negative association with physical disability and depression, which, in turn, negatively affected physical quality of life. Pain severity was also directly related to physical disability. Physical disability also affected physical quality of life indirectly through depression. The hypothesized relationships specified in the model were also confirmed for psychological quality of life. However, physical disability had an indirect association with psychological quality of life via depression. The current results underscore the significant role of cognitive, affective, and behavioral factors in perceived physical disability and their mediated detrimental effect on physical and psychological quality of life in patients with rheumatic diseases. Implications for rehabilitation The fear-avoidance model is applicable to the prediction of quality of life in patients with rheumatic diseases. As pain-catastrophizing and fear-avoidance beliefs are important factors linked to physical disability and depression, intervening these cognitive factors is necessary to improve physical function and depression in patients with rheumatic diseases. Considering the strong association between depression and

  1. Chemistry Teachers' Knowledge and Application of Models

    ERIC Educational Resources Information Center

    Wang, Zuhao; Chi, Shaohui; Hu, Kaiyan; Chen, Wenting

    2014-01-01

    Teachers' knowledge and application of model play an important role in students' development of modeling ability and scientific literacy. In this study, we investigated Chinese chemistry teachers' knowledge and application of models. Data were collected through test questionnaire and analyzed quantitatively and qualitatively. The result indicated…

  2. A simple parametric model observer for quality assurance in computer tomography

    NASA Astrophysics Data System (ADS)

    Anton, M.; Khanin, A.; Kretz, T.; Reginatto, M.; Elster, C.

    2018-04-01

    Model observers are mathematical classifiers that are used for the quality assessment of imaging systems such as computer tomography. The quality of the imaging system is quantified by means of the performance of a selected model observer. For binary classification tasks, the performance of the model observer is defined by the area under its ROC curve (AUC). Typically, the AUC is estimated by applying the model observer to a large set of training and test data. However, the recording of these large data sets is not always practical for routine quality assurance. In this paper we propose as an alternative a parametric model observer that is based on a simple phantom, and we provide a Bayesian estimation of its AUC. It is shown that a limited number of repeatedly recorded images (10–15) is already sufficient to obtain results suitable for the quality assessment of an imaging system. A MATLAB® function is provided for the calculation of the results. The performance of the proposed model observer is compared to that of the established channelized Hotelling observer and the nonprewhitening matched filter for simulated images as well as for images obtained from a low-contrast phantom on an x-ray tomography scanner. The results suggest that the proposed parametric model observer, along with its Bayesian treatment, can provide an efficient, practical alternative for the quality assessment of CT imaging systems.

  3. Preparing the Model for Prediction Across Scales (MPAS) for global retrospective air quality modeling

    EPA Science Inventory

    The US EPA has a plan to leverage recent advances in meteorological modeling to develop a "Next-Generation" air quality modeling system that will allow consistent modeling of problems from global to local scale. The meteorological model of choice is the Model for Predic...

  4. Value-added strategy models to provide quality services in senior health business.

    PubMed

    Yang, Ya-Ting; Lin, Neng-Pai; Su, Shyi; Chen, Ya-Mei; Chang, Yao-Mao; Handa, Yujiro; Khan, Hafsah Arshed Ali; Elsa Hsu, Yi-Hsin

    2017-06-20

    The rapid population aging is now a global issue. The increase in the elderly population will impact the health care industry and health enterprises; various senior needs will promote the growth of the senior health industry. Most senior health studies are focused on the demand side and scarcely on supply. Our study selected quality enterprises focused on aging health and analyzed different strategies to provide excellent quality services to senior health enterprises. We selected 33 quality senior health enterprises in Taiwan and investigated their excellent quality services strategies by face-to-face semi-structured in-depth interviews with CEO and managers of each enterprise in 2013. A total of 33 senior health enterprises in Taiwan. Overall, 65 CEOs and managers of 33 enterprises were interviewed individually. None. Core values and vision, organization structure, quality services provided, strategies for quality services. This study's results indicated four type of value-added strategy models adopted by senior enterprises to offer quality services: (i) residential care and co-residence model, (ii) home care and living in place model, (iii) community e-business experience model and (iv) virtual and physical portable device model. The common part in these four strategy models is that the services provided are elderly centered. These models offer virtual and physical integrations, and also offer total solutions for the elderly and their caregivers. Through investigation of successful strategy models for providing quality services to seniors, we identified opportunities to develop innovative service models and successful characteristics, also policy implications were summarized. The observations from this study will serve as a primary evidenced base for enterprises developing their senior market and, also for promoting the value co-creation possibility through dialogue between customers and those that deliver service. © The Author 2017. Published by Oxford

  5. Documentation of quality improvement exposure by internal medicine residency applicants.

    PubMed

    Kolade, Victor O; Sethi, Anuradha

    2016-01-01

    Quality improvement (QI) has become an essential component of medical care in the United States. In residency programs, QI is a focus area of the Clinical Learning Environment Review visits conducted by the Accreditation Council for Graduate Medical Education. The readiness of applicants to internal medicine residency to engage in QI on day one is unknown. To document the reporting of QI training or experience in residency applications. Electronic Residency Application Service applications to a single internal medicine program were reviewed individually looking for reported QI involvement or actual projects in the curriculum vitae (CVs), personal statements (PSs), and letters of recommendation (LORs). CVs were also reviewed for evidence of education in QI such as completion of Institute for Healthcare Improvement (IHI) modules. Of 204 candidates shortlisted for interview, seven had QI items on their CVs, including one basic IHI certificate. Three discussed their QI work in their PSs, and four had recommendation letters describing their involvement in QI. One applicant had both CV and LOR evidence, so that 13 (6%) documented QI engagement. Practice of or instruction in QI is rarely mentioned in application documents of prospective internal medicine interns.

  6. [Application of fingerprint chromatogram in quality control of Shen-Mai injection].

    PubMed

    Shi, Xian-zhe; Yang, Jun; Zhao, Chun-xia; Xiong, Jian-hui; Xu, Guo-wang

    2002-07-01

    The theory and practice of traditional Chinese medicine require some comprehensive methods to assess quality of the Chinese herbal medication. Fingerprint chromatogram is one of the feasible approaches to evaluate the quality of Chinese herbal medication. So the fingerprint chromatogram of Shen-Mai injection was established by using reversed-phase high performance liquid chromatography. The chromatographic conditions were as follows: a Hypersil C18 column was used; the mobile phase was composed of water (A) and acetontrile (B) with linear gradient elution (0-50 min, 5%-95% B, volume fraction); the flow rate was 1.0 mL/min and the UV absorbance detection was set at 202 nm. The peak-area ratios of twenty-three fingerprint peaks and internal standard (diphenyl) were taken as the criteria for quality control. The quality differences in various batches and various manufacturers of Shen-Mai injections were investigated by projection discriminance based on principal component analysis. The results show the method developed is convenient, reliable and applicable for the quality control analysis of Shen-Mai injection.

  7. CMAQ Involvement in Air Quality Model Evaluation International Initiative

    EPA Pesticide Factsheets

    Description of Air Quality Model Evaluation International Initiative (AQMEII). Different chemical transport models are applied by different groups over North America and Europe and evaluated against observations.

  8. Four-dimensional evaluation of regional air quality models

    EPA Science Inventory

    We present highlights of the results obtained in the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3). Activities in AQMEII3 were focused on evaluating the performance of global, hemispheric and regional modeling systems over Europe and North Ame...

  9. Application of flowmeter and depth-dependent water quality data for improved production well construction.

    PubMed

    Gossell, M A; Nishikawa, T; Hanson, R T; Izbicki, J A; Tabidian, M A; Bertine, K

    1999-01-01

    Ground water production wells commonly are designed to maximize well yield and, therefore, may be screened over several water-bearing zones. These water-bearing zones usually are identified, and their hydrogeologic characteristics and water quality are inferred, on the basis of indirect data such as geologic and geophysical logs. Production well designs based on these data may result in wells that are drilled deeper than necessary and are screened through zones having low permeability or poor-quality ground water. In this study, we examined the application of flowmeter logging and depth-dependent water quality samples for the improved design of production wells in a complex hydrogeologic setting. As a demonstration of these techniques, a flowmeter log and depth-dependent water quality data were collected from a long-screened production well within a multilayered coastal aquifer system in the Santa Clara-Calleguas Basin, Ventura County, California. Results showed that the well yields most of its water from four zones that constitute 58% of the screened interval. The importance of these zones to well yield was not readily discernible from indirect geologic or geophysical data. The flowmeter logs and downhole water quality data also show that small quantities of poor-quality water could degrade the overall quality of water from the well. The data obtained from one well can be applied to other proposed wells in the same hydrologic basin. The application of flowmeter and depth-dependent water quality data to well design can reduce installation costs and improve the quantity and quality of water produced from wells in complex multiple-aquifer systems.

  10. Application of flowmeter and depth-dependent water quality data for improved production well construction

    USGS Publications Warehouse

    Gossell, M.A.; Nishikawa, Tracy; Hanson, Randall T.; Izbicki, John A.; Tabidian, M.A.; Bertine, K.

    1999-01-01

    Ground water production wells commonly are designed to maximize well yield and, therefore, may be screened over several water-bearing zones. These water-bearing zones usually are identified, and their hydrogeologic characteristics and water quality are inferred, on the basis of indirect data such as geologic and geophysical logs. Production well designs based on these data may result in wells that are drilled deeper than necessary and are screened through zones having low permeability or poor-quality ground water. In this study, we examined the application of flowmeter logging and depth-dependent water quality samples for the improved design of production wells in a complex hydrogeologic setting. As a demonstration of these techniques, a flowmeter log and depth-dependent water quality data were collected from a long-screened production well within a multilayered coastal aquifer system in the Santa Clara-Calleguas Basin, Ventura County, California. Results showed that the well yields most of its water from four zones that constitute 58% of the screened interval. The importance of these zones to well yield was not readily discernible from indirect geologic or geophysical data. The flowmeter logs and downhole water quality data also show that small quantities of poor-quality water could degrade the overall quality of water from the well. The data obtained from one well can be applied to other proposed wells in the same hydrologic basin. The application of flowmeter and depth-dependent water quality data to well design can reduce installation costs and improve the quantity and quality of water produced from wells in complex multiple-aquifer systems.

  11. On Regional Modeling to Support Air Quality Policies (book chapter)

    EPA Science Inventory

    We examine the use of the Community Multiscale Air Quality (CMAQ) model in simulating the changes in the extreme values of air quality that are of interest to the regulatory agencies. Year-to-year changes in ozone air quality are attributable to variations in the prevailing meteo...

  12. Developing a Holistic Model for Quality in Higher Education.

    ERIC Educational Resources Information Center

    Srikanthan, G.; Dalrymple, John F.

    2002-01-01

    Proposes a holistic model for quality management in higher education which incorporates both service and academic functions. Discusses the crucial role played by organizational culture in implementation of any quality strategy, and asserts that ideal organizational behavior embodies the "learning communities" concept. (EV)

  13. Systems Modeling to Improve River, Riparian, and Wetland Habitat Quality and Area

    NASA Astrophysics Data System (ADS)

    Alafifi, A.

    2016-12-01

    The suitability of watershed habitat to support the livelihood of its biota primarily depends on managing flow. Ecological restoration requires finding opportunities to reallocate available water in a watershed to increase ecological benefits and maintain other beneficial uses. We present the Watershed Area of Suitable Habitat (WASH) systems model that recommends reservoir releases, streamflows, and water allocations throughout a watershed to maximize the ecosystem habitat quality. WASH embeds and aggregates area-weighted metrics for aquatic, floodplain, and wetland habitat components as an ecosystem objective to maximize, while maintaining water deliveries for domestic and agricultural uses, mass balance, and available budget for restoration actions. The metrics add spatial and temporal functionality and area coverage to traditional habitat quality indexes and can accommodate multiple species of concern. We apply the WASH model to the Utah portion of the Bear River watershed which includes 8 demand sites, 5 reservoirs and 37 nodes between the Utah-Idaho state line and the Great Salt Lake. We recommend water allocations to improve current conservation efforts and show tradeoffs between human and ecosystem uses of water. WASH results are displayed on an open-source web mapping application that allows stakeholders to access, visualize, and interact with the model data and results and compare current and model-recommended operations. Results show that the Bear River is largely developed and appropriated for human water uses. However, increasing reservoirs winter and early spring releases and minimizing late spring spill volumes can significantly improve habitat quality without harming agricultural or urban water users. The spatial and temporal reallocation of spring spills to environmental uses creates additional 70 thousand acres of suitable habitat in the watershed without harming human users. WASH also quantifies the potential environmental gains and losses from

  14. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ) model - Part 1: Building an emissions data base

    NASA Astrophysics Data System (ADS)

    Smith, S. N.; Mueller, S. F.

    2010-01-01

    A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ) Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE) emissions processing system) currently estimates volatile organic compound (VOC) emissions from biogenic sources, nitrogen oxide (NOx) emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as windblown dust and sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide), 44% of total NOx, 80% of reactive carbonaceous gases (VOCs and carbon monoxide), 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride), and 84% of fine particles (i.e., those smaller than 2.5 μm in size) released into the atmosphere. The seasonality and

  15. Modeling in the quality by design environment: Regulatory requirements and recommendations for design space and control strategy appointment.

    PubMed

    Djuris, Jelena; Djuric, Zorica

    2017-11-30

    Mathematical models can be used as an integral part of the quality by design (QbD) concept throughout the product lifecycle for variety of purposes, including appointment of the design space and control strategy, continual improvement and risk assessment. Examples of different mathematical modeling techniques (mechanistic, empirical and hybrid) in the pharmaceutical development and process monitoring or control are provided in the presented review. In the QbD context, mathematical models are predominantly used to support design space and/or control strategies. Considering their impact to the final product quality, models can be divided into the following categories: high, medium and low impact models. Although there are regulatory guidelines on the topic of modeling applications, review of QbD-based submission containing modeling elements revealed concerns regarding the scale-dependency of design spaces and verification of models predictions at commercial scale of manufacturing, especially regarding real-time release (RTR) models. Authors provide critical overview on the good modeling practices and introduce concepts of multiple-unit, adaptive and dynamic design space, multivariate specifications and methods for process uncertainty analysis. RTR specification with mathematical model and different approaches to multivariate statistical process control supporting process analytical technologies are also presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Free web-based modelling platform for managed aquifer recharge (MAR) applications

    NASA Astrophysics Data System (ADS)

    Stefan, Catalin; Junghanns, Ralf; Glaß, Jana; Sallwey, Jana; Fatkhutdinov, Aybulat; Fichtner, Thomas; Barquero, Felix; Moreno, Miguel; Bonilla, José; Kwoyiga, Lydia

    2017-04-01

    Managed aquifer recharge represents a valuable instrument for sustainable water resources management. The concept implies purposeful infiltration of surface water into underground for later recovery or environmental benefits. Over decades, MAR schemes were successfully installed worldwide for a variety of reasons: to maximize the natural storage capacity of aquifers, physical aquifer management, water quality management, and ecological benefits. The INOWAS-DSS platform provides a collection of free web-based tools for planning, management and optimization of main components of MAR schemes. The tools are grouped into 13 specific applications that cover most relevant challenges encountered at MAR sites, both from quantitative and qualitative perspectives. The applications include among others the optimization of MAR site location, the assessment of saltwater intrusion, the restoration of groundwater levels in overexploited aquifers, the maximization of natural storage capacity of aquifers, the improvement of water quality, the design and operational optimization of MAR schemes, clogging development and risk assessment. The platform contains a collection of about 35 web-based tools of various degrees of complexity, which are either included in application specific workflows or used as standalone modelling instruments. Among them are simple tools derived from data mining and empirical equations, analytical groundwater related equations, as well as complex numerical flow and transport models (MODFLOW, MT3DMS and SEAWAT). Up to now, the simulation core of the INOWAS-DSS, which is based on the finite differences groundwater flow model MODFLOW, is implemented and runs on the web. A scenario analyser helps to easily set up and evaluate new management options as well as future development such as land use and climate change and compare them to previous scenarios. Additionally simple tools such as analytical equations to assess saltwater intrusion are already running online

  17. Take the Reins on Model Quality with ModelCHECK and Gatekeeper

    NASA Technical Reports Server (NTRS)

    Jones, Corey

    2012-01-01

    Model quality and consistency has been an issue for us due to the diverse experience level and imaginative modeling techniques of our users. Fortunately, setting up ModelCHECK and Gatekeeper to enforce our best practices has helped greatly, but it wasn't easy. There were many challenges associated with setting up ModelCHECK and Gatekeeper including: limited documentation, restrictions within ModelCHECK, and resistance from end users. However, we consider ours a success story. In this presentation we will describe how we overcame these obstacles and present some of the details of how we configured them to work for us.

  18. MODELS-3 COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL AEROSOL COMPONENT 1: MODEL DESCRIPTION

    EPA Science Inventory

    The aerosol component of the Community Multiscale Air Quality (CMAQ) model is designed to be an efficient and economical depiction of aerosol dynamics in the atmosphere. The approach taken represents the particle size distribution as the superposition of three lognormal subdis...

  19. Application of a theoretical model to evaluate COPD disease management.

    PubMed

    Lemmens, Karin M M; Nieboer, Anna P; Rutten-Van Mölken, Maureen P M H; van Schayck, Constant P; Asin, Javier D; Dirven, Jos A M; Huijsman, Robbert

    2010-03-26

    Disease management programmes are heterogeneous in nature and often lack a theoretical basis. An evaluation model has been developed in which theoretically driven inquiries link disease management interventions to outcomes. The aim of this study is to methodically evaluate the impact of a disease management programme for patients with chronic obstructive pulmonary disease (COPD) on process, intermediate and final outcomes of care in a general practice setting. A quasi-experimental research was performed with 12-months follow-up of 189 COPD patients in primary care in the Netherlands. The programme included patient education, protocolised assessment and treatment of COPD, structural follow-up and coordination by practice nurses at 3, 6 and 12 months. Data on intermediate outcomes (knowledge, psychosocial mediators, self-efficacy and behaviour) and final outcomes (dyspnoea, quality of life, measured by the CRQ and CCQ, and patient experiences) were obtained from questionnaires and electronic registries. Implementation of the programme was associated with significant improvements in dyspnoea (p < 0.001) and patient experiences (p < 0.001). No significant improvement was found in mean quality of life scores. Improvements were found in several intermediate outcomes, including investment beliefs (p < 0.05), disease-specific knowledge (p < 0.01; p < 0.001) and medication compliance (p < 0.01). Overall, process improvement was established. The model showed associations between significantly improved intermediate outcomes and improvements in quality of life and dyspnoea. The application of a theory-driven model enhances the design and evaluation of disease management programmes aimed at improving health outcomes. This study supports the notion that a theoretical approach strengthens the evaluation designs of complex interventions. Moreover, it provides prudent evidence that the implementation of COPD disease management programmes can positively influence outcomes of care.

  20. Application of a theoretical model to evaluate COPD disease management

    PubMed Central

    2010-01-01

    Background Disease management programmes are heterogeneous in nature and often lack a theoretical basis. An evaluation model has been developed in which theoretically driven inquiries link disease management interventions to outcomes. The aim of this study is to methodically evaluate the impact of a disease management programme for patients with chronic obstructive pulmonary disease (COPD) on process, intermediate and final outcomes of care in a general practice setting. Methods A quasi-experimental research was performed with 12-months follow-up of 189 COPD patients in primary care in the Netherlands. The programme included patient education, protocolised assessment and treatment of COPD, structural follow-up and coordination by practice nurses at 3, 6 and 12 months. Data on intermediate outcomes (knowledge, psychosocial mediators, self-efficacy and behaviour) and final outcomes (dyspnoea, quality of life, measured by the CRQ and CCQ, and patient experiences) were obtained from questionnaires and electronic registries. Results Implementation of the programme was associated with significant improvements in dyspnoea (p < 0.001) and patient experiences (p < 0.001). No significant improvement was found in mean quality of life scores. Improvements were found in several intermediate outcomes, including investment beliefs (p < 0.05), disease-specific knowledge (p < 0.01; p < 0.001) and medication compliance (p < 0.01). Overall, process improvement was established. The model showed associations between significantly improved intermediate outcomes and improvements in quality of life and dyspnoea. Conclusions The application of a theory-driven model enhances the design and evaluation of disease management programmes aimed at improving health outcomes. This study supports the notion that a theoretical approach strengthens the evaluation designs of complex interventions. Moreover, it provides prudent evidence that the implementation of COPD disease management programmes can

  1. Gaia: automated quality assessment of protein structure models.

    PubMed

    Kota, Pradeep; Ding, Feng; Ramachandran, Srinivas; Dokholyan, Nikolay V

    2011-08-15

    Increasing use of structural modeling for understanding structure-function relationships in proteins has led to the need to ensure that the protein models being used are of acceptable quality. Quality of a given protein structure can be assessed by comparing various intrinsic structural properties of the protein to those observed in high-resolution protein structures. In this study, we present tools to compare a given structure to high-resolution crystal structures. We assess packing by calculating the total void volume, the percentage of unsatisfied hydrogen bonds, the number of steric clashes and the scaling of the accessible surface area. We assess covalent geometry by determining bond lengths, angles, dihedrals and rotamers. The statistical parameters for the above measures, obtained from high-resolution crystal structures enable us to provide a quality-score that points to specific areas where a given protein structural model needs improvement. We provide these tools that appraise protein structures in the form of a web server Gaia (http://chiron.dokhlab.org). Gaia evaluates the packing and covalent geometry of a given protein structure and provides quantitative comparison of the given structure to high-resolution crystal structures. dokh@unc.edu Supplementary data are available at Bioinformatics online.

  2. Urban Landscape Characterization Using Remote Sensing Data For Input into Air Quality Modeling

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William; Khan, Maudood

    2005-01-01

    The urban landscape is inherently complex and this complexity is not adequately captured in air quality models that are used to assess whether urban areas are in attainment of EPA air quality standards, particularly for ground level ozone. This inadequacy of air quality models to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well these models predict ozone pollutant levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban growth projections as improved inputs to meteorological and air quality models focusing on the Atlanta, Georgia metropolitan area as a case study. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the Community Multiscale Air Quality (CMAQ) modeling schemes. Use of these data have been found to better characterize low density/suburban development as compared with USGS 1 km land use/land cover data that have traditionally been used in modeling. Air quality prediction for future scenarios to 2030 is being facilitated by land use projections using a spatial growth model. Land use projections were developed using the 2030 Regional Transportation Plan developed by the Atlanta Regional Commission. This allows the State Environmental Protection agency to evaluate how these transportation plans will affect future air quality.

  3. Evolution of Air Quality Model at the US EPA

    EPA Science Inventory

    At the US EPA, we have developed an air quality model, CMAQ, in the past 20+ years. Throughout the years, the model has been upgraded with respect to advancement of science. We have extended the model from regional to hemispheric. We have coupled it with meteorological model, WR...

  4. Better Insight Into Water Resources Management With Integrated Hydrodynamic And Water Quality Models

    NASA Astrophysics Data System (ADS)

    Debele, B.; Srinivasan, R.; Parlange, J.

    2004-12-01

    Models have long been used in water resources management to guide decision making and improve understanding of the system. Numerous models of different scales -spatial and temporal - are available. Yet, very few models manage to bridge simulations of hydrological and water quality parameters from both upland watershed and riverine system. Most water quality models, such as QUAL2E and EPD-RIV1 concentrate on the riverine system while CE-QUAL-W2 and WASP models focus on larger waterbodies, such as lakes and reservoirs. On the other hand, the original SWAT model, HSPF and other upland watershed hydrological models simulate agricultural (diffuse) pollution sources with limited number of processes incorporated to handle point source pollutions that emanate from industrial sectors. Such limitations, which are common in most hydrodynamic and water quality models undermine better understanding that otherwise could be uncovered by employing integrated hydrological and water quality models for both upland watershed and riverine system. The SWAT model is a well documented and verified hydrological and water quality model that has been developed to simulate the effects of various management scenarios on the health of the environment in terms of water quantity and quality. Recently, the SWAT model has been extended to include the simulation of hydrodynamic and water quality parameters in the river system. The extended SWAT model (ESWAT) has been further extended to run using diurnally varying (hourly) weather data and produce outputs at hourly timescales. This and other improvements in the ESWAT model have been documented in the current work. Besides, the results from two case studies in Texas will be reported.

  5. Using aircraft and satellite observations to improve regulatory air quality models

    NASA Astrophysics Data System (ADS)

    Canty, T. P.; Vinciguerra, T.; Anderson, D. C.; Carpenter, S. F.; Goldberg, D. L.; Hembeck, L.; Montgomery, L.; Liu, X.; Salawitch, R. J.; Dickerson, R. R.

    2014-12-01

    Federal and state agencies rely on EPA approved models to develop attainment strategies that will bring states into compliance with the National Ambient Air Quality Standards (NAAQS). We will describe modifications to the Community Multi-Scale Air Quality (CMAQ) model and Comprehensive Air Quality Model with Extensions (CAMx) frameworks motivated by analysis of NASA satellite and aircraft measurements. Observations of tropospheric column NO2 from OMI have already led to the identification of an important deficiency in the chemical mechanisms used by models; data collected during the DISCOVER-AQ field campaign has been instrumental in devising an improved representation of the chemistry of nitrogen species. Our recent work has focused on the use of: OMI observations of tropospheric O3 to assess and improve the representation of boundary conditions used by AQ models, OMI NO2 to derive a top down NOx emission inventory from commercial shipping vessels that affect air quality in the Eastern U.S., and OMI HCHO to assess the C5H8 emission inventories provided by bioegenic emissions models. We will describe how these OMI-driven model improvements are being incorporated into the State Implementation Plans (SIPs) being prepared for submission to EPA in summer 2015 and how future modeling efforts may be impacted by our findings.

  6. Model My Watershed and BiG CZ Data Portal: Interactive geospatial analysis and hydrological modeling web applications that leverage the Amazon cloud for scientists, resource managers and students

    NASA Astrophysics Data System (ADS)

    Aufdenkampe, A. K.; Mayorga, E.; Tarboton, D. G.; Sazib, N. S.; Horsburgh, J. S.; Cheetham, R.

    2016-12-01

    The Model My Watershed Web app (http://wikiwatershed.org/model/) was designed to enable citizens, conservation practitioners, municipal decision-makers, educators, and students to interactively select any area of interest anywhere in the continental USA to: (1) analyze real land use and soil data for that area; (2) model stormwater runoff and water-quality outcomes; and (3) compare how different conservation or development scenarios could modify runoff and water quality. The BiG CZ Data Portal is a web application for scientists for intuitive, high-performance map-based discovery, visualization, access and publication of diverse earth and environmental science data via a map-based interface that simultaneously performs geospatial analysis of selected GIS and satellite raster data for a selected area of interest. The two web applications share a common codebase (https://github.com/WikiWatershed and https://github.com/big-cz), high performance geospatial analysis engine (http://geotrellis.io/ and https://github.com/geotrellis) and deployment on the Amazon Web Services (AWS) cloud cyberinfrastructure. Users can use "on-the-fly" rapid watershed delineation over the national elevation model to select their watershed or catchment of interest. The two web applications also share the goal of enabling the scientists, resource managers and students alike to share data, analyses and model results. We will present these functioning web applications and their potential to substantially lower the bar for studying and understanding our water resources. We will also present work in progress, including a prototype system for enabling citizen-scientists to register open-source sensor stations (http://envirodiy.org/mayfly/) to stream data into these systems, so that they can be reshared using Water One Flow web services.

  7. Air Pollution Data for Model Evaluation and Application

    EPA Science Inventory

    One objective of designing an air pollution monitoring network is to obtain data for evaluating air quality models that are used in the air quality management process and scientific discovery.1.2 A common use is to relate emissions to air quality, including assessing ...

  8. Testing a pharmacist-patient relationship quality model among older persons with diabetes.

    PubMed

    Worley, Marcia M

    2006-03-01

    Considering recent changes to the Medicare program, pharmacists will have unique opportunities to be reimbursed for providing Medication Therapy Management Services to older persons with diabetes. A high-quality pharmacist-patient relationship can lay the foundation for effective provision of Medication Therapy Management Services and improved care in this cohort. To test a pharmacist-patient relationship quality model in a group of older persons with diabetes from the patient's perspective. Antecedents to relationship quality were pharmacist participative behavior/patient-centeredness of relationship, patient participative behavior, and pharmacist-patient interpersonal communication. Pharmacist-patient relationship commitment was the outcome of relationship quality studied. Data were collected via mailed questionnaire from a random sample of 600 community-dwelling adults in the United States who (1) were 65 years of age and older, (2) had type 1 or type 2 diabetes, (3) used at least one prescription medication to treat their diabetes, and (4) used some type of nonmail order pharmacy as their primary source of obtaining prescription medications. Model relationships were tested using path analysis. The adjusted response rate was 41.6% (221/531). The models explained 47% and 49% of the variance in relationship quality and relationship commitment, respectively. In the relationship quality model, pharmacist participative behavior/patient-centeredness of relationship (beta=.51, P<.001) and pharmacist-patient interpersonal communication (beta=.17, P=.008) had direct effects on relationship quality. In the relationship commitment model, relationship quality had a direct effect on relationship commitment (beta=.60, P<.001). Pharmacist participative behavior/patient-centeredness and pharmacist-patient interpersonal communication had indirect effects on relationship commitment through their effects on relationship quality, which is a mediator in the model. Results affirm

  9. Joint space-time geostatistical model for air quality surveillance

    NASA Astrophysics Data System (ADS)

    Russo, A.; Soares, A.; Pereira, M. J.

    2009-04-01

    Air pollution and peoples' generalized concern about air quality are, nowadays, considered to be a global problem. Although the introduction of rigid air pollution regulations has reduced pollution from industry and power stations, the growing number of cars on the road poses a new pollution problem. Considering the characteristics of the atmospheric circulation and also the residence times of certain pollutants in the atmosphere, a generalized and growing interest on air quality issues led to research intensification and publication of several articles with quite different levels of scientific depth. As most natural phenomena, air quality can be seen as a space-time process, where space-time relationships have usually quite different characteristics and levels of uncertainty. As a result, the simultaneous integration of space and time is not an easy task to perform. This problem is overcome by a variety of methodologies. The use of stochastic models and neural networks to characterize space-time dispersion of air quality is becoming a common practice. The main objective of this work is to produce an air quality model which allows forecasting critical concentration episodes of a certain pollutant by means of a hybrid approach, based on the combined use of neural network models and stochastic simulations. A stochastic simulation of the spatial component with a space-time trend model is proposed to characterize critical situations, taking into account data from the past and a space-time trend from the recent past. To identify near future critical episodes, predicted values from neural networks are used at each monitoring station. In this paper, we describe the design of a hybrid forecasting tool for ambient NO2 concentrations in Lisbon, Portugal.

  10. Learning a No-Reference Quality Assessment Model of Enhanced Images With Big Data.

    PubMed

    Gu, Ke; Tao, Dacheng; Qiao, Jun-Fei; Lin, Weisi

    2018-04-01

    In this paper, we investigate into the problem of image quality assessment (IQA) and enhancement via machine learning. This issue has long attracted a wide range of attention in computational intelligence and image processing communities, since, for many practical applications, e.g., object detection and recognition, raw images are usually needed to be appropriately enhanced to raise the visual quality (e.g., visibility and contrast). In fact, proper enhancement can noticeably improve the quality of input images, even better than originally captured images, which are generally thought to be of the best quality. In this paper, we present two most important contributions. The first contribution is to develop a new no-reference (NR) IQA model. Given an image, our quality measure first extracts 17 features through analysis of contrast, sharpness, brightness and more, and then yields a measure of visual quality using a regression module, which is learned with big-data training samples that are much bigger than the size of relevant image data sets. The results of experiments on nine data sets validate the superiority and efficiency of our blind metric compared with typical state-of-the-art full-reference, reduced-reference and NA IQA methods. The second contribution is that a robust image enhancement framework is established based on quality optimization. For an input image, by the guidance of the proposed NR-IQA measure, we conduct histogram modification to successively rectify image brightness and contrast to a proper level. Thorough tests demonstrate that our framework can well enhance natural images, low-contrast images, low-light images, and dehazed images. The source code will be released at https://sites.google.com/site/guke198701/publications.

  11. Development of a high-resolution emission inventory and its evaluation and application through air quality modeling for Jiangsu Province, China

    NASA Astrophysics Data System (ADS)

    Zhou, Yaduan; Zhao, Yu; Mao, Pan; Zhang, Qiang; Zhang, Jie; Qiu, Liping; Yang, Yang

    2017-01-01

    Improved emission inventories combining detailed source information are crucial for better understanding of the atmospheric chemistry and effectively making emission control policies using air quality simulation, particularly at regional or local scales. With the downscaled inventories directly applied, chemical transport models might not be able to reproduce the authentic evolution of atmospheric pollution processes at small spatial scales. Using the bottom-up approach, a high-resolution emission inventory was developed for Jiangsu China, including SO2, NOx, CO, NH3, volatile organic compounds (VOCs), total suspended particulates (TSP), PM10, PM2.5, black carbon (BC), organic carbon (OC), and CO2. The key parameters relevant to emission estimation for over 6000 industrial sources were investigated, compiled, and revised at plant level based on various data sources and on-site surveys. As a result, the emission fractions of point sources were significantly elevated for most species. The improvement of this provincial inventory was evaluated through comparisons with other inventories at larger spatial scales, using satellite observation and air quality modeling. Compared to the downscaled Multi-resolution Emission Inventory for China (MEIC), the spatial distribution of NOx emissions in our provincial inventory was more consistent with summer tropospheric NO2 VCDs observed from OMI, particularly for the grids with moderate emission levels, implying the improved emission estimation for small and medium industrial plants by this work. Three inventories (national, regional, and provincial by this work) were applied in the Models-3 Community Multi-scale Air Quality (CMAQ) system for southern Jiangsu October 2012, to evaluate the model performances with different emission inputs. The best agreement between available ground observation and simulation was found when the provincial inventory was applied, indicated by the smallest normalized mean bias (NMB) and normalized

  12. Modeling of episodic particulate matter events using a 3-D air quality model with fine grid: Applications to a pair of cities in the US/Mexico border

    NASA Astrophysics Data System (ADS)

    Choi, Yu-Jin; Hyde, Peter; Fernando, H. J. S.

    High (episodic) particulate matter (PM) events over the sister cities of Douglas (AZ) and Agua Prieta (Sonora), located in the US-Mexico border, were simulated using the 3D Eulerian air quality model, MODELS-3/CMAQ. The best available input information was used for the simulations, with pollution inventory specified on a fine grid. In spite of inherent uncertainties associated with the emission inventory as well as the chemistry and meteorology of the air quality simulation tool, model evaluations showed acceptable PM predictions, while demonstrating the need for including the interaction between meteorology and emissions in an interactive mode in the model, a capability currently unavailable in MODELS-3/CMAQ when dealing with PM. Sensitivity studies on boundary influence indicate an insignificant regional (advection) contribution of PM to the study area. The contribution of secondary particles to the occurrence of high PM events was trivial. High PM episodes in the study area, therefore, are purely local events that largely depend on local meteorological conditions. The major PM emission sources were identified as vehicular activities on unpaved/paved roads and wind-blown dust. The results will be of immediate utility in devising PM mitigation strategies for the study area, which is one of the US EPA-designated non-attainment areas with respect to PM.

  13. Aircraft model prototypes which have specified handling-quality time histories

    NASA Technical Reports Server (NTRS)

    Johnson, S. H.

    1978-01-01

    Several techniques for obtaining linear constant-coefficient airplane models from specified handling-quality time histories are discussed. The pseudodata method solves the basic problem, yields specified eigenvalues, and accommodates state-variable transfer-function zero suppression. The algebraic equations to be solved are bilinear, at worst. The disadvantages are reduced generality and no assurance that the resulting model will be airplane like in detail. The method is fully illustrated for a fourth-order stability-axis small motion model with three lateral handling quality time histories specified. The FORTRAN program which obtains and verifies the model is included and fully documented.

  14. Relationship between soybean yield/quality and soil quality in a major soybean-producing area based on a 2D-QSAR model

    NASA Astrophysics Data System (ADS)

    Gao, Ming; Li, Shiwei

    2017-05-01

    Based on experimental data of the soybean yield and quality from 30 sampling points, a quantitative structure-activity relationship model (2D-QSAR) was established using the soil quality (elements, pH, organic matter content and cation exchange capacity) as independent variables and soybean yield or quality as the dependent variable, with SPSS software. During the modeling, the full data set (30 and 14 compounds) was divided into a training set (24 and 11 compounds) for model generation and a test set (6 and 3 compounds) for model validation. The R2 values of the resulting models and data were 0.826 and 0.808 for soybean yield and quality, respectively, and all regression coefficients were significant (P < 0.05). The correlation coefficient R2pred of observed values and predicted values of the soybean yield and soybean quality in the test set were 0.961 and 0.956, respectively, indicating that the models had a good predictive ability. Moreover, the Mo, Se, K, N and organic matter contents and the cation exchange capacity of soil had a positive effect on soybean production, and the B, Mo, Se, K and N contents and cation exchange coefficient had a positive effect on soybean quality. The results are instructive for enhancing soils to improve the yield and quality of soybean, and this method can also be used to study other crops or regions, providing a theoretical basis to improving the yield and quality of crops.

  15. Performance Evaluation Model for Application Layer Firewalls.

    PubMed

    Xuan, Shichang; Yang, Wu; Dong, Hui; Zhang, Jiangchuan

    2016-01-01

    Application layer firewalls protect the trusted area network against information security risks. However, firewall performance may affect user experience. Therefore, performance analysis plays a significant role in the evaluation of application layer firewalls. This paper presents an analytic model of the application layer firewall, based on a system analysis to evaluate the capability of the firewall. In order to enable users to improve the performance of the application layer firewall with limited resources, resource allocation was evaluated to obtain the optimal resource allocation scheme in terms of throughput, delay, and packet loss rate. The proposed model employs the Erlangian queuing model to analyze the performance parameters of the system with regard to the three layers (network, transport, and application layers). Then, the analysis results of all the layers are combined to obtain the overall system performance indicators. A discrete event simulation method was used to evaluate the proposed model. Finally, limited service desk resources were allocated to obtain the values of the performance indicators under different resource allocation scenarios in order to determine the optimal allocation scheme. Under limited resource allocation, this scheme enables users to maximize the performance of the application layer firewall.

  16. DeepQA: improving the estimation of single protein model quality with deep belief networks.

    PubMed

    Cao, Renzhi; Bhattacharya, Debswapna; Hou, Jie; Cheng, Jianlin

    2016-12-05

    Protein quality assessment (QA) useful for ranking and selecting protein models has long been viewed as one of the major challenges for protein tertiary structure prediction. Especially, estimating the quality of a single protein model, which is important for selecting a few good models out of a large model pool consisting of mostly low-quality models, is still a largely unsolved problem. We introduce a novel single-model quality assessment method DeepQA based on deep belief network that utilizes a number of selected features describing the quality of a model from different perspectives, such as energy, physio-chemical characteristics, and structural information. The deep belief network is trained on several large datasets consisting of models from the Critical Assessment of Protein Structure Prediction (CASP) experiments, several publicly available datasets, and models generated by our in-house ab initio method. Our experiments demonstrate that deep belief network has better performance compared to Support Vector Machines and Neural Networks on the protein model quality assessment problem, and our method DeepQA achieves the state-of-the-art performance on CASP11 dataset. It also outperformed two well-established methods in selecting good outlier models from a large set of models of mostly low quality generated by ab initio modeling methods. DeepQA is a useful deep learning tool for protein single model quality assessment and protein structure prediction. The source code, executable, document and training/test datasets of DeepQA for Linux is freely available to non-commercial users at http://cactus.rnet.missouri.edu/DeepQA/ .

  17. The NASA Lightning Nitrogen Oxides Model (LNOM): Recent Updates and Applications

    NASA Technical Reports Server (NTRS)

    Koshak, William; Peterson, Harold; Biazar, Arastoo; Khan, Maudood; Wang, Lihua; Park, Yee-Hun

    2011-01-01

    Improvements to the NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) and its application to the Community Multiscale Air Quality (CMAQ) modeling system are presented. The LNOM analyzes Lightning Mapping Array (LMA) and National Lightning Detection Network(tm) (NLDN) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning NOx (= NO + NO2). Lightning channel length distributions and lightning 10-m segment altitude distributions are also provided. In addition to NOx production from lightning return strokes, the LNOM now includes non-return stroke lightning NOx production due to: hot core stepped and dart leaders, stepped leader corona sheath, K-changes, continuing currents, and M-components. The impact of including LNOM-estimates of lightning NOx for an August 2006 run of CMAQ is discussed.

  18. Pesticide fate at regional scale: Development of an integrated model approach and application

    NASA Astrophysics Data System (ADS)

    Herbst, M.; Hardelauf, H.; Harms, R.; Vanderborght, J.; Vereecken, H.

    As a result of agricultural practice many soils and aquifers are contaminated with pesticides. In order to quantify the side-effects of these anthropogenic impacts on groundwater quality at regional scale, a process-based, integrated model approach was developed. The Richards’ equation based numerical model TRACE calculates the three-dimensional saturated/unsaturated water flow. For the modeling of regional scale pesticide transport we linked TRACE with the plant module SUCROS and with 3DLEWASTE, a hybrid Lagrangian/Eulerian approach to solve the convection/dispersion equation. We used measurements, standard methods like pedotransfer-functions or parameters from literature to derive the model input for the process model. A first-step application of TRACE/3DLEWASTE to the 20 km 2 test area ‘Zwischenscholle’ for the period 1983-1993 reveals the behaviour of the pesticide isoproturon. The selected test area is characterised by an intense agricultural use and shallow groundwater, resulting in a high vulnerability of the groundwater to pesticide contamination. The model results stress the importance of the unsaturated zone for the occurrence of pesticides in groundwater. Remarkable isoproturon concentrations in groundwater are predicted for locations with thin layered and permeable soils. For four selected locations we used measured piezometric heads to validate predicted groundwater levels. In general, the model results are consistent and reasonable. Thus the developed integrated model approach is seen as a promising tool for the quantification of the agricultural practice impact on groundwater quality.

  19. Subjective Quality Assessment of Underwater Video for Scientific Applications

    PubMed Central

    Moreno-Roldán, José-Miguel; Luque-Nieto, Miguel-Ángel; Poncela, Javier; Díaz-del-Río, Víctor; Otero, Pablo

    2015-01-01

    Underwater video services could be a key application in the better scientific knowledge of the vast oceanic resources in our planet. However, limitations in the capacity of current available technology for underwater networks (UWSNs) raise the question of the feasibility of these services. When transmitting video, the main constraints are the limited bandwidth and the high propagation delays. At the same time the service performance depends on the needs of the target group. This paper considers the problems of estimations for the Mean Opinion Score (a standard quality measure) in UWSNs based on objective methods and addresses the topic of quality assessment in potential underwater video services from a subjective point of view. The experimental design and the results of a test planned according standardized psychometric methods are presented. The subjects used in the quality assessment test were ocean scientists. Video sequences were recorded in actual exploration expeditions and were processed to simulate conditions similar to those that might be found in UWSNs. Our experimental results show how videos are considered to be useful for scientific purposes even in very low bitrate conditions. PMID:26694400

  20. An open-source software package for multivariate modeling and clustering: applications to air quality management.

    PubMed

    Wang, Xiuquan; Huang, Guohe; Zhao, Shan; Guo, Junhong

    2015-09-01

    This paper presents an open-source software package, rSCA, which is developed based upon a stepwise cluster analysis method and serves as a statistical tool for modeling the relationships between multiple dependent and independent variables. The rSCA package is efficient in dealing with both continuous and discrete variables, as well as nonlinear relationships between the variables. It divides the sample sets of dependent variables into different subsets (or subclusters) through a series of cutting and merging operations based upon the theory of multivariate analysis of variance (MANOVA). The modeling results are given by a cluster tree, which includes both intermediate and leaf subclusters as well as the flow paths from the root of the tree to each leaf subcluster specified by a series of cutting and merging actions. The rSCA package is a handy and easy-to-use tool and is freely available at http://cran.r-project.org/package=rSCA . By applying the developed package to air quality management in an urban environment, we demonstrate its effectiveness in dealing with the complicated relationships among multiple variables in real-world problems.