Sample records for quality n-polar aln0001

  1. MOVPE growth of N-polar AlN on 4H-SiC: Effect of substrate miscut on layer quality

    NASA Astrophysics Data System (ADS)

    Lemettinen, J.; Okumura, H.; Kim, I.; Kauppinen, C.; Palacios, T.; Suihkonen, S.

    2018-04-01

    We present the effect of miscut angle of SiC substrates on N-polar AlN growth. The N-polar AlN layers were grown on C-face 4H-SiC substrates with a miscut towards 〈 1 bar 1 0 0 〉 by metal-organic vapor phase epitaxy (MOVPE). The optimal V/III ratios for high-quality AlN growth on 1 ° and 4 ° miscut substrates were found to be 20,000 and 1000, respectively. MOVPE grown N-polar AlN layer without hexagonal hillocks or step bunching was achieved using a 4H-SiC substrate with an intentional miscut of 1 ° towards 〈 1 bar 1 0 0 〉 . The 200-nm-thick AlN layer exhibited X-ray rocking curve full width half maximums of 203 arcsec and 389 arcsec for (0 0 2) and (1 0 2) reflections, respectively. The root mean square roughness was 0.4 nm for a 2 μm × 2 μm atomic force microscope scan.

  2. MOVPE growth of nitrogen- and aluminum-polar AlN on 4H-SiC

    NASA Astrophysics Data System (ADS)

    Lemettinen, J.; Okumura, H.; Kim, I.; Rudzinski, M.; Grzonka, J.; Palacios, T.; Suihkonen, S.

    2018-04-01

    We present a comprehensive study on metal-organic vapor phase epitaxy growth of N-polar and Al -polar AlN on 4H-SiC with 4° miscut using constant growth parameters. At a high temperature of 1165 °C, N-polar AlN layers had high crystalline quality whereas the Al-polar AlN surfaces had a high density of etch pits. For N-polar AlN, the V/III ratio below 1000 forms hexagonal hillocks, while the V/III ratio over 1000 yields step bunching without the hillocks. 1-μm-thick N-polar AlN layer grown in optimal conditions exhibited FWHMs of 307, 330 and 337 arcsec for (0 0 2), (1 0 2) and (2 0 1) reflections, respectively.

  3. Nitrogen-Polar (000 1 ¯ ) GaN Grown on c-Plane Sapphire with a High-Temperature AlN Buffer.

    PubMed

    Song, Jie; Han, Jung

    2017-03-02

    We demonstrate growing nitrogen-polar (N-polar) GaN epilayer on c-plane sapphire using a thin AlN buffer layer by metalorganic chemical vapor deposition. We have studied the influence of the AlN buffer layer on the polarity, crystalline quality, and surface morphology of the GaN epilayer and found that the growth temperature of the AlN buffer layer played a critical role in the growth of the GaN epilayer. The low growth temperature of the AlN buffer results in gallium-polar GaN. Even a nitridation process has been conducted. High growth temperature for an AlN buffer layer is required to achieve pure N-polarity, high crystalline quality, and smooth surface morphology for a GaN epilayer.

  4. Polarity inversion of AlN film grown on nitrided a-plane sapphire substrate with pulsed DC reactive sputtering

    NASA Astrophysics Data System (ADS)

    Noorprajuda, Marsetio; Ohtsuka, Makoto; Fukuyama, Hiroyuki

    2018-04-01

    The effect of oxygen partial pressure (PO2) on polarity and crystalline quality of AlN films grown on nitrided a-plane sapphire substrates by pulsed direct current (DC) reactive sputtering was investigated as a fundamental study. The polarity inversion of AlN from nitrogen (-c)-polarity to aluminum (+c)-polarity occurred during growth at a high PO2 of 9.4×103 Pa owing to Al-O octahedral formation at the interface of nitrided layer and AlN sputtered film which reset the polarity of AlN. The top part of the 1300 nm-thick AlN film sputtered at the high PO2 was polycrystallized. The crystalline quality was improved owing to the high kinetic energy of Al sputtered atom in the sputtering phenomena. Thinner AlN films were also fabricated at the high PO2 to eliminate the polycrystallization. For the 200 nm-thick AlN film sputtered at the high PO2, the full width at half-maximum values of the AlN (0002) and (10-12) X-ray diffraction rocking curves were 47 and 637 arcsec, respectively.

  5. Improvement of crystalline quality of N-polar AlN layers on c-plane sapphire by low-pressure flow-modulated MOCVD

    NASA Astrophysics Data System (ADS)

    Takeuchi, M.; Shimizu, H.; Kajitani, R.; Kawasaki, K.; Kumagai, Y.; Koukitu, A.; Aoyagi, Y.

    2007-01-01

    The growth of N-polar AlN layers on c-plane sapphire is reported. Low-temperature AlN (LT-AlN) layers were used as seeding buffer layers with pre-nitridation for sapphire. To avoid strong vapor-phase reaction between trimethylaluminum (TMA) and ammonia (NH 3) and to improve the crystalline quality, low-pressure flow-modulated (FM) metal-organic chemical vapor deposition (MOCVD) technique was introduced with careful optimization of the FM sequence. The surface morphologies and the crystalline quality defined by the X-ray diffraction (XRD) (0 0 2) and (1 0 0) rocking curve measurements strongly depended on the LT-AlN thickness and on the TMA coverage per cycle of the FM growth. The sample showing the best XRD data with a good morphology was almost completely etched in aqueous KOH solution owing to N-polarity. From the plan-view transmission electron microscopy (TEM) observation, the dislocation density was counted to be about 3×10 10 cm -2.

  6. In-situ NC-AFM measurements of high quality AlN(0001) layers grown at low growth rate on 4H-SiC(0001) and Si(111) substrates using ammonia molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaumeton, Florian, E-mail: florian.chaumeton@cemes.fr; Gauthier, Sébastien, E-mail: gauthier@cemes.fr; Martrou, David, E-mail: david.martrou@cemes.fr

    Nitride wide-band-gap semiconductors are used to make high power electronic devices or efficient light sources. The performance of GaN-based devices is directly linked to the initial AlN buffer layer. During the last twenty years of research on nitride growth, only few information on the AlN surface quality have been obtained, mainly by ex-situ characterization techniques. Thanks to a Non Contact Atomic Force Microscope (NC-AFM) connected under ultra high vacuum (UHV) to a dedicated molecular beam epitaxy (MBE) chamber, the surface of AlN(0001) thin films grown on Si(111) and 4H-SiC(0001) substrates has been characterized. These experiments give access to a quantitativemore » determination of the density of screw and edge dislocations at the surface. The layers were also characterized by ex-situ SEM to observe the largest defects such as relaxation dislocations and hillocks. The influence of the growth parameters (substrate temperature, growth speed, III/V ratio) and of the initial substrate preparation on the dislocation density was also investigated. On Si(111), the large in-plane lattice mismatch with AlN(0001) (19%) induces a high dislocation density ranging from 6 to 12×10{sup 10}/cm{sup 2} depending on the growth conditions. On 4H-SiC(0001) (1% mismatch with AlN(0001)), the dislocation density decreases to less than 10{sup 10}/cm{sup 2}, but hillocks appear, depending on the initial SiC(0001) reconstruction. The use of a very low growth rate of 10 nm/h at the beginning of the growth process allows to decrease the dislocation density below 2 × 10{sup 9}/cm{sup 2}.« less

  7. Ab-initio study of boron incorporation and compositional limits at GaN and AlN (0001) surfaces

    NASA Astrophysics Data System (ADS)

    Lymperakis, L.

    2018-06-01

    Density functional theory calculations are employed to investigate B incorporation at the GaN(0001) and AlN(0001) surfaces. It is found that under typical metal-organic chemical vapor deposition (MOCVD) and metal rich molecular beam epitaxy (MBE) conditions, the maximum B contents at the surfaces are in the order of 3% for GaN and 15% for AlN. Under MBE N-rich growth conditions the calculations reveal a rehybridization enhanced solubility mechanism that dominates at the surface. This mechanism offers a promising route to kinetically stabilize B contents above the bulk solubility limit and as high as 25%.

  8. Characterization of N-polar AlN in GaN/AlN/(Al,Ga)N heterostructures grown by metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Li, Haoran; Mazumder, Baishakhi; Bonef, Bastien; Keller, Stacia; Wienecke, Steven; Speck, James S.; Denbaars, Steven P.; Mishra, Umesh K.

    2017-11-01

    In GaN/(Al,Ga)N high-electron-mobility transistors (HEMT), AlN interlayer between GaN channel and AlGaN barrier suppresses alloy scattering and significantly improves the electron mobility of the two-dimensional electron gas. While high concentrations of gallium were previously observed in Al-polar AlN interlayers grown by metal-organic chemical vapor deposition, the N-polar AlN (Al x Ga1-x N) films examined by atom probe tomography in this study exhibited aluminum compositions (x) equal to or higher than 95% over a wide range of growth conditions. The also investigated AlN interlayer in a N-polar GaN/AlN/AlGaN/ S.I. GaN HEMT structure possessed a similarly high x content.

  9. Stabilization of Au Monatomic-High Islands on the (2 ×2 )-Nad Reconstructed Surface of Wurtzite AlN(0001)

    NASA Astrophysics Data System (ADS)

    Eydoux, Benoit; Baris, Bulent; Khoussa, Hassan; Guillermet, Olivier; Gauthier, Sébastien; Bouju, Xavier; Martrou, David

    2017-10-01

    Noncontact atomic force microscopy images show that gold grows on the (2 ×2 )-Nad reconstructed polar (0001) surface of AlN insulating films, in the form of large monatomic islands. High-resolution images and in situ reflection high-energy electron diffraction spectra reveal two moiré patterns from which an atomic model can be built. Density functional theory calculations confirm this model and give insight into the mechanisms that lead to the stabilization of the monolayer. Gold adsorption is accompanied, first, by a global vertical charge transfer from the AlN substrate that fulfills the electrostatic stability criterion for a polar material, and second, by lateral charge transfers that are driven by the local chemical properties of the (2 ×2 )-Nad reconstruction. These results present alternative strategies to grow metal electrodes onto nitride compounds with a better controlled interface, a crucial issue for applications.

  10. Anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using double AlN buffer layers.

    PubMed

    Zhao, Guijuan; Wang, Lianshan; Yang, Shaoyan; Li, Huijie; Wei, Hongyuan; Han, Dongyue; Wang, Zhanguo

    2016-02-10

    We report the anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using a three-step growth method which consisted of a low temperature AlN buffer layer, followed by a high temperature AlN buffer layer and GaN growth. By introducing double AlN buffer layers, we substantially improve the crystal and optical qualities of semi-polar (11-22) GaN, and significantly reduce the density of stacking faults and dislocations. The high resolution x-ray diffraction measurement revealed that the in-plane anisotropic structural characteristics of GaN layer are azimuthal dependent. Transmission electron microscopy analysis showed that the majority of dislocations in the GaN epitaxial layer grown on m-sapphire are the mixed-type and the orientation of GaN layer was rotated 58.4° against the substrate. The room temperature photoluminescence (PL) spectra showed the PL intensity and wavelength have polarization dependence along parallel and perpendicular to the [1-100] axis (polarization degrees ~ 0.63). The realization of a high polarization semi-polar GaN would be useful to achieve III-nitride based lighting emission device for displays and backlighting.

  11. Influence of AlN(0001) Surface Reconstructions on the Wettability of an Al/AlN System: A First-Principle Study.

    PubMed

    Cao, Junhua; Liu, Yang; Ning, Xiao-Shan

    2018-05-11

    A successful application of a hot dip coating process that coats aluminum (Al) on aluminum nitride (AlN) ceramics, revealed that Al had a perfect wettability to the ceramics under specific circumstances, which was different from previous reports. In order to elucidate the mechanism that controlled the supernormal wetting phenomenon during the dip coating, a first-principle calculation of an Al(111)/AlN(0001) interface, based on the density functional theory (DFT), was employed. The wettability of the Al melt on the AlN(0001) surface, as well as the effect that the surface reconstruction of AlN and the oxygen adsorption had on Al for the adhesion and the wettability of the Al/AlN system, were studied. The results revealed that a LCM (laterally contracted monolayer) reconstruction could improve the adhesion and wettability of the system. Oxygen adsorption on the free surface of Al decreased the contact angle, because the adsorption reduced of the surface tension of Al. A prefect wetting was obtained only after some of the oxygen atoms adsorbed on the free surface of Al. The supernormal wetting phenomenon came from the surface reconstruction of the AlN and the adsorption of oxygen atoms on the Al melt surface.

  12. Surfactant effect of gallium during molecular-beam epitaxy of GaN on AlN (0001)

    NASA Astrophysics Data System (ADS)

    Mula, Guido; Adelmann, C.; Moehl, S.; Oullier, J.; Daudin, B.

    2001-11-01

    We study the adsorption of Ga on (0001) GaN surfaces by reflection high-energy electron diffraction. It is shown that a dynamically stable Ga bilayer can be formed on the GaN surface for appropriate Ga fluxes and substrate temperatures. The influence of the presence of this Ga film on the growth mode of GaN on AlN(0001) by plasma-assisted molecular-beam epitaxy is studied. It is demonstrated that under nearly stoichiometric and N-rich conditions, the GaN layer relaxes elastically during the first stages of epitaxy. At high temperatures the growth follows a Stranski-Krastanov mode, whereas at lower temperatures kinetically formed flat platelets are observed. Under Ga-rich conditions-where a Ga bilayer is rapidly formed due to excess Ga accumulating on the surface-the growth follows a Frank-van der Merwe layer-by-layer mode at any growth temperature and no initial elastic relaxation occurs. Hence, it is concluded that excess Ga acts as a surfactant, effectively suppressing both Stranski-Krastanov islanding and platelet formation. It is further demonstrated that the Stranski-Krastanov transition is in competition with elastic relaxation by platelets, and it is only observed when relaxation by platelets is inefficient. As a result, a growth mode phase diagram is outlined for the growth of GaN on AlN(0001).

  13. The electronic structures of AlN and InN wurtzite nanowires

    NASA Astrophysics Data System (ADS)

    Xiong, Wen; Li, Dong-Xiao

    2017-07-01

    We derive the relations between the analogous seven Luttinger-Kohn parameters and six Rashba-Sheka-Pikus parameters for wurtzite semiconductors, which can be used to investigate the electronic structures of some wurtzite semiconductors such as AlN and InN materials, including their low-dimensional structures. As an example, the electronic structures of AlN and InN nanowires are calculated by using the derived relations and six-band effective-mass k · p theory. Interestingly, it is found that the ground hole state of AlN nanowires is always a pure S state whether the radius R is small (1 nm) or large (6 nm), and the ground hole state only contains | Z 〉 Bloch orbital component. Therefore, AlN nanowires is the ideal low-dimensional material for the production of purely linearly polarized π light, unlike ZnO nanowires, which emits plane-polarized σ light. However, the ground hole state of InN nanowires can be tuned from a pure S state to a mixed P state when the radius R is larger than 2.6 nm, which will make the polarized properties of the lowest optical transition changes from linearly polarized π light to plane-polarized σ light. Meanwhile, the valence band structures of InN nanowires will present strong band-crossings when the radius R increases to 6 nm, and through the detail analysis of possible transitions of InN nanowires at the Γ point, we find some of the neighbor optical transitions are almost degenerate, because the spin-orbit splitting energy of InN material is only 0.001 eV. Therefore, it is concluded that the electronic structures and optical properties of InN nanowires present great differences with that of AlN nanowires.

  14. Structures and stabilities of Al(n) (+), Al(n), and Al(n) (-) (n=13-34) clusters.

    PubMed

    Aguado, Andrés; López, José M

    2009-02-14

    Putative global minima of neutral (Al(n)) and singly charged (Al(n) (+) and Al(n) (-)) aluminum clusters with n=13-34 have been located from first-principles density functional theory structural optimizations. The calculations include spin polarization and employ the generalized gradient approximation of Perdew, Burke, and Ernzerhof to describe exchange-correlation electronic effects. Our results show that icosahedral growth dominates the structures of aluminum clusters for n=13-22. For n=23-34, there is a strong competition between decahedral structures, relaxed fragments of a fcc crystalline lattice (some of them including stacking faults), and hexagonal prismatic structures. For such small cluster sizes, there is no evidence yet for a clear establishment of the fcc atomic packing prevalent in bulk aluminum. The global minimum structure for a given number of atoms depends significantly on the cluster charge for most cluster sizes. An explicit comparison is made with previous theoretical results in the range n=13-30: for n=19, 22, 24, 25, 26, 29, 30 we locate a lower energy structure than previously reported. Sizes n=32, 33 are studied here for the first time by an ab initio technique.

  15. Pure AlN layers in metal-polar AlGaN/AlN/GaN and AlN/GaN heterostructures grown by low-temperature ammonia-based molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kaun, Stephen W.; Mazumder, Baishakhi; Fireman, Micha N.; Kyle, Erin C. H.; Mishra, Umesh K.; Speck, James S.

    2015-05-01

    When grown at a high temperature (820 °C) by ammonia-based molecular beam epitaxy (NH3-MBE), the AlN layers of metal-polar AlGaN/AlN/GaN heterostructures had a high GaN mole fraction (∼0.15), as identified by atom probe tomography in a previous study (Mazumder et al 2013 Appl. Phys. Lett. 102 111603). In the study presented here, growth at low temperature (<740 °C) by NH3-MBE yielded metal-polar AlN layers that were essentially pure at the alloy level. The improved purity of the AlN layers grown at low temperature was correlated to a dramatic increase in the sheet density of the two-dimensional electron gas (2DEG) at the AlN/GaN heterointerface. Through application of an In surfactant, metal-polar AlN(3.5 nm)/GaN and AlGaN/AlN(2.5 nm)/GaN heterostructures grown at low temperature yielded low 2DEG sheet resistances of 177 and 285 Ω/□, respectively.

  16. Fabrication and structural properties of AlN submicron periodic lateral polar structures and waveguides for UV-C applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alden, D.; Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin; Guo, W.

    Periodically poled AlN thin films with submicron domain widths were fabricated for nonlinear applications in the UV-VIS region. A procedure utilizing metalorganic chemical vapor deposition growth of AlN in combination with laser interference lithography was developed for making a nanoscale lateral polarity structure (LPS) with domain size down to 600 nm. The Al-polar and N-polar domains were identified by wet etching the periodic LPS in a potassium hydroxide solution and subsequent scanning electron microscopy (SEM) characterization. Fully coalesced and well-defined vertical interfaces between the adjacent domains were established by cross-sectional SEM. AlN LPSs were mechanically polished and surface roughness with amore » root mean square value of ∼10 nm over a 90 μm × 90 μm area was achieved. 3.8 μm wide and 650 nm thick AlN LPS waveguides were fabricated. The achieved domain sizes, surface roughness, and waveguides are suitable for second harmonic generation in the UVC spectrum.« less

  17. Impacts of Thermal Atomic Layer-Deposited AlN Passivation Layer on GaN-on-Si High Electron Mobility Transistors.

    PubMed

    Zhao, Sheng-Xun; Liu, Xiao-Yong; Zhang, Lin-Qing; Huang, Hong-Fan; Shi, Jin-Shan; Wang, Peng-Fei

    2016-12-01

    Thermal atomic layer deposition (ALD)-grown AlN passivation layer is applied on AlGaN/GaN-on-Si HEMT, and the impacts on drive current and leakage current are investigated. The thermal ALD-grown 30-nm amorphous AlN results in a suppressed off-state leakage; however, its drive current is unchanged. It was also observed by nano-beam diffraction method that thermal ALD-amorphous AlN layer barely enhanced the polarization. On the other hand, the plasma-enhanced chemical vapor deposition (PECVD)-deposited SiN layer enhanced the polarization and resulted in an improved drive current. The capacitance-voltage (C-V) measurement also indicates that thermal ALD passivation results in a better interface quality compared with the SiN passivation.

  18. Growth of high-quality AlN epitaxial film by optimizing the Si substrate surface

    NASA Astrophysics Data System (ADS)

    Huang, Liegen; Li, Yuan; Wang, Wenliang; Li, Xiaochan; zheng, Yulin; Wang, Haiyan; Zhang, Zichen; Li, Guoqiang

    2018-03-01

    High-quality AlN epitaxial films have been grown on Si substrates by optimizing the hydrofluoric acid (HF) solution for cleaning of Si substrates. Effect of the Si substrate surface on the surface morphology and structural property of AlN epitaxial films is investigated in detail. It is revealed that as the concentration of HF solution increases from 0 to 2.0%, the surface morphology and the crystalline quality are initially improved and then get worse, and show an optimized value at 1.5%. The as-grown ∼200 nm-thick AlN epitaxial films on Si substrates grown with HF solution of 1.5% reveal the root-mean-square (RMS) surface roughness of 0.49 nm and the full-width at half-maximum for AlN(0002) X-ray rocking curve of 0.35°, indicating the smooth surface morphology and the high crystalline quality. The corresponding mechanism is proposed to interpret the effect of Si substrate surface on surface morphology and structural property of AlN epitaxial films, and provides an effective approach for the perspective fabrication of AlN-based devices.

  19. High-quality AlN grown on a thermally decomposed sapphire surface

    NASA Astrophysics Data System (ADS)

    Hagedorn, S.; Knauer, A.; Brunner, F.; Mogilatenko, A.; Zeimer, U.; Weyers, M.

    2017-12-01

    In this study we show how to realize a self-assembled nano-patterned sapphire surface on 2 inch diameter epi-ready wafer and the subsequent AlN overgrowth both in the same metal-organic vapor phase epitaxial process. For this purpose in-situ annealing in H2 environment was applied prior to AlN growth to thermally decompose the c-plane oriented sapphire surface. By proper AlN overgrowth management misoriented grains that start to grow on non c-plane oriented facets of the roughened sapphire surface could be overcome. We achieved crack-free, atomically flat AlN layers of 3.5 μm thickness. The layers show excellent material quality homogeneously over the whole wafer as proved by the full width at half maximum of X-ray measured ω-rocking curves of 120 arcsec to 160 arcsec for the 002 reflection and 440 arcsec to 550 arcsec for the 302 reflection. The threading dislocation density is 2 ∗ 109 cm-2 which shows that the annealing and overgrowth process investigated in this work leads to cost-efficient AlN templates for UV LED devices.

  20. Structural and electronic properties of AlN(0001) surface under partial N coverage as determined by ab initio approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strak, Pawel; Sakowski, Konrad; Kempisty, Pawel

    2015-09-07

    Properties of bare and nitrogen-covered Al-terminated AlN(0001) surface were determined using density functional theory (DFT) calculations. At a low nitrogen coverage, the Fermi level is pinned by Al broken bond states located below conduction band minimum. Adsorption of nitrogen is dissociative with an energy gain of 6.05 eV/molecule at a H3 site creating an overlap with states of three neighboring Al surface atoms. During this adsorption, electrons are transferred from Al broken bond to topmost N adatom states. Accompanying charge transfer depends on the Fermi level. In accordance with electron counting rule (ECR), the DFT results confirm the Fermi levelmore » is not pinned at the critical value of nitrogen coverage θ{sub N}(1) = 1/4 monolayer (ML), but it is shifted from an Al-broken bond state to Np{sub z} state. The equilibrium thermodynamic potential of nitrogen in vapor depends drastically on the Fermi level pinning being shifted by about 4 eV for an ECR state at 1/4 ML coverage. For coverage above 1/4 ML, adsorption is molecular with an energy gain of 1.5 eV at a skewed on-top position above an Al surface atom. Electronic states of the admolecule are occupied as in the free molecule, no electron transfer occurs and adsorption of a N{sub 2} molecule does not depend on the Fermi level. The equilibrium pressure of molecular nitrogen above an AlN(0001) surface depends critically on the Fermi level position, being very low and very high for low and high coverage, respectively. From this fact, one can conclude that at typical growth conditions, the Fermi level is not pinned, and the adsorption and incorporation of impurities depend on the position of Fermi level in the bulk.« less

  1. A comparative study on magnetism in Zn-doped AlN and GaN from first-principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Liang; Wang, Lingling, E-mail: llwang@hnu.edu.cn, E-mail: xiaowenzhi@hnu.edu.cn; Huang, Weiqing

    2014-09-14

    First-principles calculations have been used to comparatively investigate electronic and magnetic properties of Zn-doped AlN and GaN. A total magnetic moment of 1.0 μ B{sub B} induced by Zn is found in AlN, but not in GaN. Analyses show that the origin of spontaneous polarization not only depend on the localized atomic orbitals of N and sufficient hole concentration, but also the relative intensity of the covalency of matrix. The relatively stronger covalent character of GaN with respect to AlN impedes forming local magnetic moment in GaN matrix. Our study offers a fresh sight of spontaneous spin polarization in d⁰more » magnetism. The much stronger ferromagnetic coupling in c-plane of AlN means that it is feasible to realize long-range ferromagnetic order via monolayer delta-doping. This can apply to other wide band-gap semiconductors in wurtzite structure.« less

  2. C-axis orientated AlN films deposited using deep oscillation magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lin, Jianliang; Chistyakov, Roman

    2017-02-01

    Highly <0001> c-axis orientated aluminum nitride (AlN) films were deposited on silicon (100) substrates by reactive deep oscillation magnetron sputtering (DOMS). No epitaxial favored bond layer and substrate heating were applied for assisting texture growth. The effects of the peak target current density (varied from 0.39 to 0.8 Acm-2) and film thickness (varied from 0.25 to 3.3 μm) on the c-axis orientation, microstructure, residual stress and mechanical properties of the AlN films were investigated by means of X-ray diffraction rocking curve methodology, transmission electron microscopy, optical profilometry, and nanoindentation. All AlN films exhibited a <0001> preferred orientation and compressive residual stresses. At similar film thicknesses, an increase in the peak target current density to 0.53 Acm-2 improved the <0001> orientation. Further increasing the peak target current density to above 0.53 Acm-2 showed limited contribution to the texture development. The study also showed that an increase in the thickness of the AlN films deposited by DOMS improved the c-axis alignment accompanied with a reduction in the residual stress.

  3. Effect of sputtering pressure on crystalline quality and residual stress of AlN films deposited at 823 K on nitrided sapphire substrates by pulsed DC reactive sputtering

    NASA Astrophysics Data System (ADS)

    Ohtsuka, Makoto; Takeuchi, Hiroto; Fukuyama, Hiroyuki

    2016-05-01

    Aluminum nitride (AlN) is a promising material for use in applications such as deep-ultraviolet light-emitting diodes (UV-LEDs) and surface acoustic wave (SAW) devices. In the present study, the effect of sputtering pressure on the surface morphology, crystalline quality, and residual stress of AlN films deposited at 823 K on nitrided a-plane sapphire substrates, which have high-crystalline-quality c-plane AlN thin layers, by pulsed DC reactive sputtering was investigated. The c-axis-oriented AlN films were homoepitaxially grown on nitrided sapphire substrates at sputtering pressures of 0.4-1.5 Pa. Surface damage of the AlN sputtered films increased with increasing sputtering pressure because of arcing (abnormal electrical discharge) during sputtering. The sputtering pressure affected the crystalline quality and residual stress of AlN sputtered films because of a change in the number and energy of Ar+ ions and Al sputtered atoms. The crystalline quality of AlN films was improved by deposition with lower sputtering pressure.

  4. Ti{sub 2}AlN thin films synthesized by annealing of (Ti+Al)/AlN multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabioch, Thierry, E-mail: Thierry.cabioch@univ-poitiers.fr; Alkazaz, Malaz; Beaufort, Marie-France

    2016-08-15

    Highlights: • Epitaxial thin films of the MAX phase Ti{sub 2}AlN are obtained by thermal annealing. • A new metastable (Ti,Al,N) solid solution with the structure of α-T is evidenced. • The formation of the MAX phase occurs at low temperature (600 °C). - Abstract: Single-phase Ti{sub 2}AlN thin films were obtained by annealing in vacuum of (Ti + Al)/AlN multilayers deposited at room temperature by magnetron sputtering onto single-crystalline (0001) 4H-SiC and (0001) Al{sub 2}O{sub 3} substrates. In-situ X-ray diffraction experiments combined with ex-situ cross-sectional transmission electron microscopy observations reveal that interdiffusion processes occur in the multilayer at amore » temperature of ∼400 °C leading to the formation of a (Ti, Al, N) solid solution, having the hexagonal structure of α-Ti, whereas the formation of Ti{sub 2}AlN occurs at 550–600 °C. Highly oriented (0002) Ti{sub 2}AlN thin films can be obtained after an annealing at 750 °C.« less

  5. Improved crystalline quality of AlN epitaxial layer on sapphire by introducing TMGa pulse flow into the nucleation stage

    NASA Astrophysics Data System (ADS)

    Wu, Hualong; Wang, Hailong; Chen, Yingda; Zhang, Lingxia; Chen, Zimin; Wu, Zhisheng; Wang, Gang; Jiang, Hao

    2018-05-01

    The crystalline quality of AlN epitaxial layers on sapphire substrates was improved by introducing trimethylgallium (TMGa) pulse flow into the growth of AlN nucleation layers. It was found that the density of both screw- and edge-type threading dislocations could be significantly reduced by introducing the TMGa pulse flow. With increasing TMGa pulse flow times, the lateral correlation length (i.e. the grain size) increases and the strain in the AlN epilayers changes from tensile state to compressive state. Unstrained AlN with the least dislocations and a smooth surface was obtained by introducing 2-times TMGa pulse flow. The crystalline improvement is attributed to enhanced lateral growth and improved crystalline orientation by the TMGa pulse flow.

  6. First-principles study on stability, and growth strategies of small AlnZr (n=1-9) clusters

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Zhou, Zhonghao; Wang, Hongbin; Li, Shengli; Zhao, Zhen

    2016-09-01

    The geometries, relative stability as well as growth strategies of the AlnZr (n=1-9) clusters are investigated with spin polarized density functional theory: BLYP. The results reveal that the AlnZr clusters are more likely to form the dense accumulation structures than the AlN (N=1-10) clusters. The average binding energies of AlnZr are higher than those of AlN clusters. The AlnZr (n=3, 5, and 7) clusters are more stable than others by the differences of the total binding energies. Mülliken population analysis for the AlnZr clusters shows that the electron's adsorption ability of Zr is slightly lower than that of Al except for AlZr cluster. Local peaks of the HOMO-LUMO gap curve are found at n=3, 5, and 7. The reaction energies of AlnZr are higher, which means that AlnZr clusters are easier to react with Al clusters. Zr atom preferential reacts with Al2 cluster. Local peaks of the magnetic dipole moments are found at n=2, 5, and 8.

  7. High-quality AlN film grown on a nanosized concave-convex surface sapphire substrate by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Akira; Nagatomi, Takaharu; Morishita, Tomohiro; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu

    2017-10-01

    We developed a method for fabricating high-crystal-quality AlN films by combining a randomly distributed nanosized concavo-convex sapphire substrate (NCC-SS) and a three-step growth method optimized for NCC-SS, i.e., a 3-nm-thick nucleation layer (870 °C), a 150-nm-thick high-temperature layer (1250 °C), and a 3.2-μm-thick medium-temperature layer (1110 °C). The NCC-SS is easily fabricated using a conventional metalorganic vapor phase epitaxy reactor equipped with a showerhead plate. The resultant AlN film has a crack-free and single-step surface with a root-mean-square roughness of 0.5 nm. The full-widths at half-maxima of the X-ray rocking curve were 50/250 arcsec for the (0002)/(10-12) planes, revealing that the NCC surface is critical for achieving such a high-quality film. Hexagonal-pyramid-shaped voids at the AlN/NCC-SS interface and confinement of dislocations within the 150-nm-thick high-temperature layer were confirmed. The NCC surface feature and resultant faceted voids play an important role in the growth of high-crystal-quality AlN films, likely via localized and/or disordered growth of AlN at the initial stage, contributing to the alignment of high-crystal-quality nuclei and dislocations.

  8. Improved performance of GaN based light emitting diodes with ex-situ sputtered AlN nucleation layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shuo-Wei; Epistar Corporation, Hsinchu 300, Taiwan; Li, Heng

    The crystal quality, electrical and optical properties of GaN based light emitting diodes (LEDs) with ex-situ sputtered physical vapor deposition (PVD) aluminum nitride (AlN) nucleation layers were investigated. It was found that the crystal quality in terms of defect density and x-ray diffraction linewidth was greatly improved in comparison to LEDs with in-situ low temperature GaN nucleation layer. The light output power was 3.7% increased and the reverse bias voltage of leakage current was twice on LEDs with ex-situ PVD AlN nucleation layers. However, larger compressive strain was discovered in LEDs with ex-situ PVD AlN nucleation layers. The study showsmore » the potential and constrain in applying ex-situ PVD AlN nucleation layers to fabricate high quality GaN crystals in various optoelectronics.« less

  9. Mechanical and physicochemical properties of AlN thin films obtained by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Cibert, C.; Tétard, F.; Djemia, P.; Champeaux, C.; Catherinot, A.; Tétard, D.

    2004-10-01

    AlN thin films have been deposited on Si(100) substrates by a pulsed laser deposition method. The deposition parameters (pressure, temperature, purity of target) play an important role in the mechanical and physicochemical properties. The films have been characterized using X-ray diffraction, atomic force microscopy, Brillouin light scattering, Fourier transform infrared spectroscopy and wettability testing. With a high purity target of AlN and a temperature deposition of 750 ∘C, the measured Rayleigh wave velocity is close to the one previously determined for AlN films grown at high temperature by metal-organic chemical vapour deposition. Growth of nanocrystalline AlN at low temperature and of AlN film with good crystallinity for samples deposited at higher temperature is confirmed by infrared spectroscopy, as it was by atomic force microscopy, in agreement with X-ray diffraction results. A high hydrophobicity has been measured with zero polar contribution for the surface energy. These results confirm that films made by pulsed laser deposition of pure AlN at relatively low temperature have good prospects for microelectromechanical systems applications.

  10. First-principles investigation on the structures, energies, electronic and defective properties of Ti2AlN surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Pei; Han, Xiuli; Sun, Dongli; Wang, Qing

    2018-03-01

    In this research work, the structures, energies, electronic and defective properties of (0001), (10 1 bar 0) , (11 2 bar 0) and (10 1 bar 3) surfaces of Ti2AlN were investigated systematically by the first-principles calculations based on density functional theory. The (0001) and (10 1 bar 0) are polar surfaces and have different kinds of surface terminations, while the (11 2 bar 0) and (10 1 bar 3) are non-polar surfaces. The calculated results show that the Ti(Al)-, Al- terminated (0001) surfaces experience the least relaxation, and N- terminated (0001) surface experiences the greatest relaxation. The calculated surface energies of non-polar surfaces are independent on the constituent element chemical potential, while surface energies of polar surfaces are correlated with the constituent element chemical potential. It is found that the (0001)-Ti(Al), (0001)-Al, (10 1 bar 0) -TiAl and (10 1 bar 3) surface are stable under the condition of Ti- and Al- rich environments, the (0001)-N surface is the most stable one under the Ti- and Al- poor condition. The electronic structures of all the surfaces except (10 1 bar 3) are significantly influenced by structure relaxations. Furthermore, the monovacancy formation energies on the surface layer are lower than that in the bulk, the monovacancies are most difficult to exist on the (10 1 bar 3) surface among all the surfaces.

  11. Homoepitaxial growth of non-polar AlN crystals using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Leathersich, Jeff; Suvarna, Puneet; Tungare, Mihir; Shahedipour-Sandvik, F. (Shadi)

    2013-11-01

    Homoepitaxial growth of AlN on (11-20) a-plane and (1-100) m-plane under varying deposition temperatures and aluminum to nitrogen flux ratios was carried out using molecular dynamics (MD) simulations with a Tersoff based interatomic potential. The results indicate that much thicker overgrown films are obtained on m-plane as compared to the a-plane, for the same temperature, N:Al flux, and number of precursor atoms. Crystallinity of the depositions improves as the temperature is increased above 1000 K, accompanied with a better stoichiometry due to increased adatom mobility. Improvement in crystal quality with a N:Al ratio greater than 1 is seen because N atoms desorb more easily than Al atoms. Increasing the N:Al ratio too high limits Al adatom mobility as well as causes site blocking for Al atoms and degrades the deposition quality. The optimum value for N:Al flux ratio was found to be between 1.2 and 1.8 for the deposition temperatures tested based on crystallinity and stoichiometry.

  12. Electron microscopy investigations of purity of AlN interlayer in Al{sub x}Ga{sub 1-x}N/GaN heterostructures grown by plasma assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridhara Rao, D. V.; Jain, Anubha; Lamba, Sushil

    2013-05-13

    The electron microscopy was used to characterize the AlN interlayer in Al{sub x}Ga{sub 1-x}N/AlN/GaN heterostructures grown by plasma assisted molecular beam epitaxy (PAMBE). We show that the AlN interlayer grown by PAMBE is without gallium and oxygen incorporation and the interfaces are coherent. The AlN interlayer has the ABAB stacking of lattice planes as expected for the wurtzite phase. High purity of AlN interlayer with the ABAB stacking leads to larger conduction band offset along with stronger polarization effects. Our studies show that the origin of lower sheet resistance obtained by PAMBE is the purity of AlN interlayer.

  13. Growth of high quality AlN films on CVD diamond by RF reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chen, Liang-xian; Liu, Hao; Liu, Sheng; Li, Cheng-ming; Wang, Yi-chao; An, Kang; Hua, Chen-yi; Liu, Jin-long; Wei, Jun-jun; Hei, Li-fu; Lv, Fan-xiu

    2018-02-01

    A highly oriented AlN layer has been successfully grown along the c-axis on a polycrystalline chemical vapor deposited (CVD) diamond by RF reactive magnetron sputtering. Structural, morphological and mechanical properties of the heterostructure were investigated by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), Nano-indentation and Four-probe meter. A compact AlN film was demonstrated on the diamond layer, showing columnar grains and a low surface roughness of 1.4 nm. TEM results revealed a sharp AlN/diamond interface, which was characterized by the presence of a distinct 10 nm thick buffer layer resulting from the initial AlN growth stage. The FWHM of AlN (002) diffraction peak and its rocking curve are as low as 0.41° and 3.35° respectively, indicating a highly preferred orientation along the c-axis. AlN sputtered films deposited on glass substrates show a higher bulk resistivity (up to 3 × 1012 Ω cm), compared to AlN films deposited on diamond (∼1010 Ω cm). Finally, the film hardness and Young's modulus of AlN films on diamond are 25.8 GPa and 489.5 GPa, respectively.

  14. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography.

    PubMed

    Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-11-04

    We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer.

  15. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography

    NASA Astrophysics Data System (ADS)

    Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-11-01

    We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer.

  16. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography

    PubMed Central

    Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-01-01

    We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer. PMID:27812006

  17. Electro-acoustic sensors based on AlN thin film: possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Wingqvist, Gunilla

    2011-06-01

    The non-ferroelectric polar wurtzite aluminium nitride (AlN) material has been shown to have potential for various sensor applications both utilizing the piezoelectric effect directly for pressure sensors or indirectly for acoustic sensing of various physical, chemical and biochemical sensor applications. Especially, sputter deposited AlN thin films have played a central role for successful development of the thin film electro-acoustic technology. The development has been primarily driven by one device - the thin film bulk acoustic resonator (FBAR or TFBAR), with its primary use for high frequency filter applications for the telecom industry. AlN has been the dominating choice for commercial application due to compatibility with the integrated circuit technology, low acoustic and dielectric losses, high acoustic velocity in combination with comparably high (but still for some applications limited) electromechanical coupling. Recently, increased piezoelectric properties (and also electromechanical coupling) in the AlN through the alloying with scandium nitride (ScN) have been identified both experimentally and theoretically. Inhere, the utilization of piezoelectricity in electro-acoustic sensing will be discussed together with expectation on acoustic FBAR sensor performance with variation in piezoelectric material properties in the parameter space around AlN due to alloying, in view of the ScxAl1-xN (0

  18. Growth evolution of AlN films on silicon (111) substrates by pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Haiyan; Wang, Wenliang; Yang, Weijia

    2015-05-14

    AlN films with various thicknesses have been grown on Si(111) substrates by pulsed laser deposition (PLD). The surface morphology and structural property of the as-grown AlN films have been investigated carefully to comprehensively explore the epitaxial behavior. The ∼2 nm-thick AlN film initially grown on Si substrate exhibits an atomically flat surface with a root-mean-square surface roughness of 0.23 nm. As the thickness increases, AlN grains gradually grow larger, causing a relatively rough surface. The surface morphology of ∼120 nm-thick AlN film indicates that AlN islands coalesce together and eventually form AlN layers. The decreasing growth rate from 240 to 180 nm/h is amore » direct evidence that the growth mode of AlN films grown on Si substrates by PLD changes from the islands growth to the layer growth. The evolution of AlN films throughout the growth is studied deeply, and its corresponding growth mechanism is hence proposed. These results are instructional for the growth of high-quality nitride films on Si substrates by PLD, and of great interest for the fabrication of AlN-based devices.« less

  19. Depth-resolved cathodoluminescence of a homoepitaxial AlN thin film

    NASA Astrophysics Data System (ADS)

    Silveira, E.; Freitas, J. A.; Slack, G. A.; Schowalter, L. J.; Kneissl, M.; Treat, D. W.; Johnson, N. M.

    2005-07-01

    In the present work we will report on the optical properties of an AlN film homoepitaxially grown on a high-quality large bulk AlN single crystal. The latter was grown by a sublimation-recondensation technique, while the film was grown by organometallic vapor-phase epitaxy. Cathodoluminescence measurements were performed using electron beam energies between 2 and 10 keV in order to excite the sample and so to probe different sample depths, making it possible to differentiate between different features which originate in the AlN homoepitaxial film. The penetration depth has been determined through the calculation of the Bohr-Bethe maximum range of excitation using the approximation to the Everhart-Hoff expression for the energy loss within a solid.

  20. Compatibility of AlN with liquid lithium

    NASA Astrophysics Data System (ADS)

    Terai, T.; Suzuki, A.; Yoneoka, T.; Mitsuyama, T.

    2000-12-01

    Development of ceramic coatings is one of the most important subjects in liquid blanket research and development. Compatibility of sintered AlN and AlN coatings with liquid lithium, a candidate breeding material, was investigated. Sintered AlN with or without the sintering aid of Y 2O 3 examined in lithium at 773 K for 1390 h showed a slight decrease in electrical resistivity because of a reduction in Al 2O 3 impurity, though AlN and Y 2O 3 components themselves were subject to no severe corrosion. On the other hand, AlN ceramic coatings on SUS430 with high resistivity (> 10 11 Ω m) fabricated by the RF sputtering method disappeared in liquid lithium at 773 K in 56 h. This may be because cracks were formed due to the difference in thermal expansion between the coatings and the substrate or because the oxide formed between the two was removed by liquid lithium.

  1. Effect of post-implantation annealing on Al-N isoelectronic trap formation in silicon: Al-N pair formation and defect recovery mechanisms

    NASA Astrophysics Data System (ADS)

    Mori, Takahiro; Morita, Yukinori; Matsukawa, Takashi

    2018-05-01

    The effect of post-implantation annealing (PIA) on Al-N isoelectronic trap (IET) formation in silicon has been experimentally investigated to discuss the Al-N IET formation and implantation-induced defect recovery mechanisms. We performed a photoluminescence study, which indicated that self-interstitial clusters and accompanying vacancies are generated in the ion implantation process. It is supposed that Al and N atoms move to the vacancy sites and form stable Al-N pairs in the PIA process. Furthermore, the PIA process recovers self-interstitial clusters while transforming their atomic configuration. The critical temperature for the formation/dissociation of Al-N pairs was found to be 450 °C, with which we describe the process integration for devices utilizing Al-N IET technology.

  2. Polarity Control and Growth of Lateral Polarity Structures in AlN

    DTIC Science & Technology

    2013-05-10

    domains. Transmission electron microscopy shows mixed edge-screw type dislocations with polarity-dependent dislocation bending. Raman 1. REPORT DATE (DD-MM...polarity-dependent dislocation bending. Raman spectroscopy reveals compressively strained Al-polar and relaxed N-polar domains. The near band edge...dislocation bending. Raman spectroscopy reveals compressively strained Al-polar and relaxed N-polar domains. The near band edge luminescence consists of

  3. Competitive growth mechanisms of AlN on Si (111) by MOVPE.

    PubMed

    Feng, Yuxia; Wei, Hongyuan; Yang, Shaoyan; Chen, Zhen; Wang, Lianshan; Kong, Susu; Zhao, Guijuan; Liu, Xianglin

    2014-09-18

    To improve the growth rate and crystal quality of AlN, the competitive growth mechanisms of AlN under different parameters were studied. The mass transport limited mechanism was competed with the gas-phase parasitic reaction and became dominated at low reactor pressure. The mechanism of strain relaxation at the AlN/Si interface was studied by transmission electron microscopy (TEM). Improved deposition rate in the mass-transport-limit region and increased adatom mobility were realized under extremely low reactor pressure.

  4. Suppression of gate leakage current in in-situ grown AlN/InAlN/AlN/GaN heterostructures based on the control of internal polarization fields

    NASA Astrophysics Data System (ADS)

    Kotani, Junji; Yamada, Atsushi; Ishiguro, Tetsuro; Yamaguchi, Hideshi; Nakamura, Norikazu

    2017-03-01

    This paper investigates the gate leakage characteristics of in-situ AlN capped InAlN/AlN/GaN heterostructures grown by metal-organic vapor phase epitaxy. It was revealed that the leakage characteristics of AlN capped InAlN/AlN/GaN heterostructures are strongly dependent on the growth temperature of the AlN cap. For an AlN capped structure with an AlN growth temperature of 740 °C, the leakage current even increased although there exists a large bandgap material on InAlN/AlN/GaN heterostructures. On the other hand, a large reduction of the gate leakage current by 4-5 orders of magnitudes was achieved with a very low AlN growth temperature of 430 °C. X-ray diffraction analysis of the AlN cap grown at 740 °C indicated that the AlN layer is tensile-strained. In contrast to this result, the amorphous structure was confirmed for the AlN cap grown at 430 °C by transmission electron microscopy. Furthermore, theoretical analysis based on one-dimensional band simulation was carried out, and the large increase in two-dimensional electron gas (2DEG) observed in Hall measurements was well reproduced by taking into account the spontaneous and piezo-electric polarization in the AlN layer grown at 740 °C. For the AlN capped structure grown at 430 °C, it is believed that the reduced polarization field in the AlN cap suppressed the penetration of 2DEG into the InAlN barrier layer, resulting in a small impact on 2DEG mobility and density. We believe that an in-situ grown AlN cap with a very low growth temperature of 430 °C is a promising candidate for high-frequency/high-power GaN-based devices with low gate leakage current.

  5. Energetics of Mg incorporation at GaN(0001) and GaN(0001¯) surfaces

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Selloni, Annabella; Myers, T. H.; Doolittle, W. Alan

    2006-04-01

    By using density functional calculations in the generalized gradient approximation, we investigate the energetics of Mg adsorption and incorporation at GaN(0001) and GaN(0001¯) surfaces under various Ga and Mg coverage conditions as well as in presence of light or electron beam-induced electronic excitation. We find significant differences in Mg incorporation between Ga- and N-polar surfaces. Mg incorporation is easier at the Ga-polar surface, but high Mg coverages are found to cause important distortions which locally change the polarity from Ga to N polar. At the N-rich and moderately Ga-rich GaN(0001) surface, 0.25 ML of Mg substituting Ga in the top bilayer strongly reduce the surface diffusion barriers of Ga and N adatoms, in agreement with the surfactant effect observed in experiments. As the Mg coverage exceeds 0.5 ML, partial incorporation in the subsurface region (second bilayer) becomes favorable. A surface structure with 0.5 ML of incorporated Mg in the top bilayer and 0.25 ML in the second bilayer is found to be stable over a wide range of Ga chemical potential. At the Ga bilayer-terminated GaN(0001) surface, corresponding to Ga-rich conditions, configurations where Mg is incorporated in the interface region between the metallic Ga bilayer and the underlying GaN bilayer appear to be favored. At the N-polar surface, Mg is not incorporated under N-rich or moderately Ga-rich conditions, whereas incorporation in the adlayer may take place under Ga-rich conditions. In the presence of light or electron beam induced excitation, energy differences between Mg incorporated at the surface and in deeper layers are reduced so that the tendency toward surface segregation is also reduced.

  6. Plasma-assisted Molecular Beam Epitaxy of N-polar InAlN-barrier High-electron-mobility Transistors.

    PubMed

    Hardy, Matthew T; Storm, David F; Katzer, D Scott; Downey, Brian P; Nepal, Neeraj; Meyer, David J

    2016-11-24

    Plasma-assisted molecular beam epitaxy is well suited for the epitaxial growth of III-nitride thin films and heterostructures with smooth, abrupt interfaces required for high-quality high-electron-mobility transistors (HEMTs). A procedure is presented for the growth of N-polar InAlN HEMTs, including wafer preparation and growth of buffer layers, the InAlN barrier layer, AlN and GaN interlayers and the GaN channel. Critical issues at each step of the process are identified, such as avoiding Ga accumulation in the GaN buffer, the role of temperature on InAlN compositional homogeneity, and the use of Ga flux during the AlN interlayer and the interrupt prior to GaN channel growth. Compositionally homogeneous N-polar InAlN thin films are demonstrated with surface root-mean-squared roughness as low as 0.19 nm and InAlN-based HEMT structures are reported having mobility as high as 1,750 cm 2 /V∙sec for devices with a sheet charge density of 1.7 x 10 13 cm -2 .

  7. Optical models for radio-frequency-magnetron reactively sputtered AlN films

    NASA Astrophysics Data System (ADS)

    Easwarakhanthan, T.; Assouar, M. B.; Pigeat, P.; Alnot, P.

    2005-10-01

    The optical properties of aluminum nitrate (AlN) films reactively sputtered on Si substrates using radio-frequency (rf) magnetron have been studied in this work from multiwavelength spectroscopic ellipsometry (SE) measurements performed over the 290-615 nm wavelength range. The SE modeling carried out with care to adhere as much to the ellipsometric fitting qualities is also backed up with atomic force microscopy and x-ray-diffraction measurements taken on these films thus grown to nominal thicknesses from 40 to 150 nm under the same optimized experimental conditions. It follows that the model describing the optical properties of the thicker AlN films should consist at least in three layers on the Si substrate: an almost roughnessless smooth surface overlayer that is presumed essentially of Al2O3, a bulk AlN layer, and an AlN interface layer that has a refractive index dispersion falling in the range from 2.04 [312 nm] to 1.91 [615 nm] on the average and is fairly distinguishable from the slightly higher bulk layer index which drops correspondingly from 2.12 to 1.99. These index values imply that, beneath the partly or mostly oxidized surface AlN layer, the films comprise a polycrystalline-structured bulk AlN layer above a less-microstructurally-ordered interface layer that extends over 40-55 nm from the substrate among thicker films. This ellipsometric evidence indicating the existence of the interface layer is consistent with those interface layers confirmed through electron microscopy in some previous works. However, the ellipsometrically insufficient thinner AlN films may be only modeled with the surface layer and an AlN layer. The film surface oxide layer thickness varies between 5 and 15 nm among samples. The refractive index dispersions, the layer thicknesses, and the lateral thickness variation of the films are given and discussed regarding the optical constitution of these films and the ellipsometric validity of these parameters.

  8. Defect reduction in MBE-grown AlN by multicycle rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Greenlee, Jordan D.; Gunning, Brendan; Feigelson, Boris N.; Anderson, Travis J.; Koehler, Andrew D.; Hobart, Karl D.; Kub, Francis J.; Doolittle, W. Alan

    2016-01-01

    Multicycle rapid thermal annealing (MRTA) is shown to reduce the defect density of molecular beam epitaxially grown AlN films. No damage to the AlN surface occurred after performing the MRTA process at 1520°C. However, the individual grain structure was altered, with the emergence of step edges. This change in grain structure and diffusion of AlN resulted in an improvement in the crystalline structure. The Raman E2 linewidth decreased, confirming an improvement in crystal quality. The optical band edge of the AlN maintained the expected value of 6.2 eV throughout MRTA annealing, and the band edge sharpened after MRTA annealing at increased temperatures, providing further evidence of crystalline improvement. X-ray diffraction shows a substantial improvement in the (002) and (102) rocking curve FWHM for both the 1400 and 1520°C MRTA annealing conditions compared to the as-grown films, indicating that the screw and edge type dislocation densities decreased. Overall, the MRTA post-growth annealing of AlN lowers defect density, and thus will be a key step to improving optoelectronic and power electronic devices. [Figure not available: see fulltext.

  9. Influence of Surface Passivation on AlN Barrier Stress and Scattering Mechanism in Ultra-thin AlN/GaN Heterostructure Field-Effect Transistors.

    PubMed

    Lv, Y J; Song, X B; Wang, Y G; Fang, Y L; Feng, Z H

    2016-12-01

    Ultra-thin AlN/GaN heterostructure field-effect transistors (HFETs) with, and without, SiN passivation were fabricated by the same growth and device processes. Based on the measured DC characteristics, including the capacitance-voltage (C-V) and output current-voltage (I-V) curves, the variation of electron mobility with gate bias was found to be quite different for devices with, and without, SiN passivation. Although the AlN barrier layer is ultra thin (c. 3 nm), it was proved that SiN passivation induces no additional tensile stress and has no significant influence on the piezoelectric polarization of the AlN layer using Hall and Raman measurements. The SiN passivation was found to affect the surface properties, thereby increasing the electron density of the two-dimensional electron gas (2DEG) under the access region. The higher electron density in the access region after SiN passivation enhanced the electrostatic screening for the non-uniform distributed polarization charges, meaning that the polarization Coulomb field scattering has a weaker effect on the electron drift mobility in AlN/GaN-based devices.

  10. Comparison of alloy disorder scatterings in Ga- and N-polar AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Kang, He; Li, Hui-Jie; Yang, Shao-Yan; Zhang, Wei; Zhu, Ming; Liu, Li; Li, Nan

    2018-01-01

    The two-dimensional electron gas (2DEG) mobilities limited by alloy disorder (AD) scattering in both Ga- and N-polar AlGaN/GaN heterostructures are investigated. It was found that the AD scattering limited electron mobility in N-polar heterostructures is on the order of 103-104 cm2/Vs, which is comparable to the optical phonon scattering at room-temperature. In comparison, the AD scattering in Ga-polar samples is much less important. Moreover, the electron mobility decreases with the 2DEG density in the Ga-polar device but shows a reverse trend in the N-polar counterpart. This is found to be caused by the rather different electric field distributions in Ga- and N-polar AlGaN/GaN heterostructures. In addition, we find that an AlN interlayer can effectively reduce the alloy scattering, mainly due to the large band offset between AlN and GaN. The calculated mobilities have been compared with the experiment results and good agreements are found. We believe that our results are important for the design of AlGaN/GaN heterostructure-based devices, especially the N-polar ones.

  11. Selective Epitaxial Graphene Growth on SiC via AlN Capping

    NASA Astrophysics Data System (ADS)

    Zaman, Farhana; Rubio-Roy, Miguel; Moseley, Michael; Lowder, Jonathan; Doolittle, William; Berger, Claire; Dong, Rui; Meindl, James; de Heer, Walt; Georgia Institute of Technology Team

    2011-03-01

    Electronic-quality graphene is epitaxially grown by graphitization of carbon-face silicon carbide (SiC) by the sublimation of silicon atoms from selected regions uncapped by aluminum nitride (AlN). AlN (deposited by molecular beam epitaxy) withstands high graphitization temperatures of 1420o C, hence acting as an effective capping layer preventing the growth of graphene under it. The AlN is patterned and etched to open up windows onto the SiC surface for subsequent graphitization. Such selective epitaxial growth leads to the formation of high-quality graphene in desired patterns without the need for etching and lithographic patterning of graphene itself. No detrimental contact of the graphene with external chemicals occurs throughout the fabrication-process. The impact of process-conditions on the mobility of graphene is investigated. Graphene hall-bars were fabricated and characterized by scanning Raman spectroscopy, ellipsometry, and transport measurements. This controlled growth of graphene in selected regions represents a viable approach to fabrication of high-mobility graphene as the channel material for fast-switching field-effect transistors.

  12. Substrate dependence of TM-polarized light emission characteristics of BAlGaN/AlN quantum wells

    NASA Astrophysics Data System (ADS)

    Park, Seoung-Hwan; Ahn, Doyeol

    2018-06-01

    To study the substrate dependence of light emission characteristics of transverse-magnetic (TM)-polarized light emitted from BAlGaN/AlN quantum wells (QWs) grown on GaN and AlN substrates were investigated theoretically. It is found that the topmost valence subband for QW structures grown on AlN substrate, is heavy hole state (HH1) while that for QW structures grown on GaN substrate is crystal-field split off light hole state (CL1), irrespective of the boron content. Since TM-polarized light emission is associated with the light hole state, the TM-polarized emission peak of BAlGaN/AlN QW structures grown on GaN substrate is expected to be much larger than that of the QW structure grown on AlN substrate. Also, both QW structures show that the spontaneous emission peak of BAlGaN/AlN QW structures would be improved with the inclusion of the boron. However, it rapidly begins to decrease when the boron content exceeds a critical value.

  13. Ab initio modeling of zincblende AlN layer in Al-AlN-TiN multilayers

    DOE PAGES

    Yadav, S. K.; Wang, J.; Liu, X. -Y.

    2016-06-13

    An unusual growth mechanism of metastable zincblende AlN thin film by diffusion of nitrogen atoms into Al lattice is established. Using first-principles density functional theory, we studied the possibility of thermodynamic stability of AlN as a zincblende phase due to epitaxial strains and interface effect, which fails to explain the formation of zincblende AlN. We then compared the formation energetics of rocksalt and zincblende AlN in fcc Al through direct diffusion of nitrogen atoms to Al octahedral and tetrahedral interstitials. Furthermore, the formation of a zincblende AlN thin film is determined to be a kinetically driven process, not a thermodynamicallymore » driven process.« less

  14. Cd ion implantation in AlN

    NASA Astrophysics Data System (ADS)

    Miranda, S. M. C.; Franco, N.; Alves, E.; Lorenz, K.

    2012-10-01

    AlN thin films were implanted with cadmium, to fluences of 1 × 1013 and 8 × 1014 at/cm2. The implanted samples were annealed at 950 °C under flowing nitrogen. Although implantation damage in AlN is known to be extremely stable the crystal could be fully recovered at low fluences. At high fluences the implantation damage was only partially removed. Implantation defects cause an expansion of the c-lattice parameter. For the high fluence sample the lattice site location of the ions was studied by Rutherford Backscattering/Channelling Spectrometry. Cd ions are found to be incorporated in substitutional Al sites in the crystal and no significant diffusion is seen upon thermal annealing. The observed high solubility limit and site stability are prerequisite for using Cd as p-type dopant in AlN.

  15. Influence of the AlN nucleation layer on the properties of AlGaN/GaN heterostructure on Si (1 1 1) substrates

    NASA Astrophysics Data System (ADS)

    Pan, Lei; Dong, Xun; Li, Zhonghui; Luo, Weike; Ni, Jinyu

    2018-07-01

    AlGaN/GaN heterostructures were grown on Si (1 1 1) substrates with different AlN nucleation layers (NL) by metal-organic chemical vapor deposition (MOCVD). The results indicate that the growth temperature of AlN NL has a noticeable influence on the structural, electronic and optical properties of the AlGaN/GaN heterostructures. Optimizing the growth temperature to 1040 °C led to quasi-2D smooth surface of the AlN NL with providing sufficient compressive stress to suppress cracking of the subsequent GaN layer during the cooling process, resulting in improved crystalline quality of GaN layer and superior two-dimensional electron gas (2DEG) performance of the AlGaN/GaN heterostructure.

  16. Observation of stimulated emission from a single Fe-doped AlN triangular fiber at room temperature

    PubMed Central

    Jiang, Liangbao; Jin, Shifeng; Wang, Wenjun; Zuo, Sibin; Li, Zhilin; Wang, Shunchong; Zhu, Kaixing; Wei, Zhiyi; Chen, Xiaolong

    2015-01-01

    Aluminum nitride (AlN) is a well known wide-band gap semiconductor that has been widely used in fabricating various ultraviolet photo-electronic devices. Herein, we demonstrate that a fiber laser can be achieved in Fe-doped AlN fiber where Fe is the active ion and AlN fiber is used as the gain medium. Fe-doped single crystal AlN fibers with a diameter of 20–50 μm and a length of 0.5–1 mm were preparated successfully. Stimulated emission (peak at about 607 nm and FWHM ~0.2 nm) and a long luminescence lifetime (2.5 ms) were observed in the fibers by a 532nm laser excitation at room temperature. The high quality long AlN fibers are also found to be good optical waveguides. This kind of fiber lasers may possess potential advantages over traditional fiber lasers in enhancing power output and extending laser wavelengths from infrared to visible regime. PMID:26647969

  17. High-Temperature Electromechanical Characterization of AlN Single Crystals.

    PubMed

    Kim, Taeyang; Kim, Jinwook; Dalmau, Rafael; Schlesser, Raoul; Preble, Edward; Jiang, Xiaoning

    2015-10-01

    Hexagonal AlN is a non-ferroelectric material and does not have any phase transition up to its melting point (>2000°C), which indicates the potential use of AlN for high-temperature sensing. In this work, the elastic, dielectric, and piezoelectric constants of AlN single crystals were investigated at elevated temperatures up to 1000°C by the resonance method. We used resonators of five different modes to obtain a complete set of material constants of AlN single crystals. The electrical resistivity of AlN at elevated temperature (1000°C) was found to be greater than 5 × 10(10) Ω · cm. The resonance frequency of the resonators, which was mainly determined by the elastic compliances, decreased linearly with increasing temperature, and was characterized by a relatively low temperature coefficient of frequency, in the range of -20 to -36 ppm/°C. For all the investigated resonator modes, the elastic constants and the electromechanical coupling factors exhibited excellent temperature stability, with small variations over the full temperature range, <11.2% and <17%, respectively. Of particular significance is that due to the pyroelectricity of AlN, both the dielectric and the piezoelectric constants had high thermal resistivity even at extreme high temperature (1000°C). Therefore, high electrical resistivity, temperature independence of electromechanical properties, as well as high thermal resistivity of the elastic, dielectric, and piezoelectric properties, suggest that AlN single crystals are a promising candidate for high-temperature piezoelectric sensing applications.

  18. AlN based piezoelectric micromirror.

    PubMed

    Shao, Jian; Li, Qi; Feng, Chuhuan; Li, Wei; Yu, Hongbin

    2018-03-01

    Aiming to pursue a micromirror possessing many desired characteristics, such as linear control, low power consumption, fast response, and easy fabrication, a new piezoelectric actuation strategy is presented. Different from conventional piezoelectric actuation cases, we first propose using AlN film as the active layer for actuating the micromirror. Owing to its good CMOS compatible deposition and patterning techniques, the AlN based piezoelectric micromirror has been successfully fabricated with a modified silicon-on-insulator-based microelectromechanical system (MEMS) process. At the same time, various mirror movement modes operating at high frequencies and excellent linear relationship between the movement and the control signal both have been experimentally demonstrated.

  19. Valence and conduction band offsets of β-Ga2O3/AlN heterojunction

    NASA Astrophysics Data System (ADS)

    Sun, Haiding; Torres Castanedo, C. G.; Liu, Kaikai; Li, Kuang-Hui; Guo, Wenzhe; Lin, Ronghui; Liu, Xinwei; Li, Jingtao; Li, Xiaohang

    2017-10-01

    Both β-Ga2O3 and wurtzite AlN have wide bandgaps of 4.5-4.9 and 6.1 eV, respectively. We calculated the in-plane lattice mismatch between the (-201) plane of β-Ga2O3 and the (0002) plane of AlN, which was found to be 2.4%. This is the smallest mismatch between β-Ga2O3 and binary III-nitrides which is beneficial for the formation of a high quality β-Ga2O3/AlN heterojunction. However, the valence and conduction band offsets (VBO and CBO) at the β-Ga2O3/AlN heterojunction have not yet been identified. In this study, a very thin (less than 2 nm) β-Ga2O3 layer was deposited on an AlN/sapphire template to form the heterojunction by pulsed laser deposition. High-resolution X-ray photoelectron spectroscopy revealed the core-level (CL) binding energies of Ga 3d and Al 2p with respect to the valence band maximum in individual β-Ga2O3 and AlN layers, respectively. The separation between Ga 3d and Al 2p CLs at the β-Ga2O3/AlN interface was also measured. Eventually, the VBO was found to be -0.55 ± 0.05 eV. Consequently, a staggered-gap (type II) heterojunction with a CBO of -1.75 ± 0.05 eV was determined. The identification of the band alignment of the β-Ga2O3/AlN heterojunction could facilitate the design of optical and electronic devices based on these and related alloys.

  20. Electrostatic Self-Assembly of Diamond Nanoparticles onto Al- and N-Polar Sputtered Aluminum Nitride Surfaces.

    PubMed

    Yoshikawa, Taro; Reusch, Markus; Zuerbig, Verena; Cimalla, Volker; Lee, Kee-Han; Kurzyp, Magdalena; Arnault, Jean-Charles; Nebel, Christoph E; Ambacher, Oliver; Lebedev, Vadim

    2016-11-17

    Electrostatic self-assembly of diamond nanoparticles (DNPs) onto substrate surfaces (so-called nanodiamond seeding) is a notable technique, enabling chemical vapor deposition (CVD) of nanocrystalline diamond thin films on non-diamond substrates. In this study, we examine this technique onto differently polarized (either Al- or N-polar) c -axis oriented sputtered aluminum nitride (AlN) film surfaces. This investigation shows that Al-polar films, as compared to N-polar ones, obtain DNPs with higher density and more homogeneously on their surfaces. The origin of these differences in density and homogeneity is discussed based on the hydrolysis behavior of AlN surfaces in aqueous suspensions.

  1. Electrostatic Self-Assembly of Diamond Nanoparticles onto Al- and N-Polar Sputtered Aluminum Nitride Surfaces

    PubMed Central

    Yoshikawa, Taro; Reusch, Markus; Zuerbig, Verena; Cimalla, Volker; Lee, Kee-Han; Kurzyp, Magdalena; Arnault, Jean-Charles; Nebel, Christoph E.; Ambacher, Oliver; Lebedev, Vadim

    2016-01-01

    Electrostatic self-assembly of diamond nanoparticles (DNPs) onto substrate surfaces (so-called nanodiamond seeding) is a notable technique, enabling chemical vapor deposition (CVD) of nanocrystalline diamond thin films on non-diamond substrates. In this study, we examine this technique onto differently polarized (either Al- or N-polar) c-axis oriented sputtered aluminum nitride (AlN) film surfaces. This investigation shows that Al-polar films, as compared to N-polar ones, obtain DNPs with higher density and more homogeneously on their surfaces. The origin of these differences in density and homogeneity is discussed based on the hydrolysis behavior of AlN surfaces in aqueous suspensions. PMID:28335345

  2. Point Defect Identification and Management for Sub-300 nm Light Emitting Diodes and Laser Diodes Grown on Bulk AlN Substrates

    NASA Astrophysics Data System (ADS)

    Bryan, Zachary A.

    defects in the films due to the increase in their formation energies during growth. This method improved the electrical properties of p-type GaN and n-type AlGaN and reduced stress thereby preventing films from cracking. The optical and structural quality of high Al-content AlGaN multiple quantum wells, light emitting diodes (LEDs), and laser diodes (LDs) grown on single crystalline AlN substrates are investigated. The use of bulk AlN substrates enabled the undoubtable distinction between the effect of growth conditions, such as V/III ratio, on the optical quality from the influence of dislocations. At a high V/III ratio and the proper MQW design, a record high IQE of 80% at a carrier density of 1018 cm-3 is achieved at 258 nm. With these structures, true sub-300 nm lasing is realized and distinguished from super luminescence for the first time by the observations of lasing characteristics such as longitudinal cavity modes, 100% polarized emission, and an elliptically shaped far-field pattern. A transverse electric to transverse magnetic polarization crossover at 245 nm is found. Lasing is observed in both asymmetric and symmetric waveguide structures with and without the presence of Si- and Mg-doping in the waveguide layer. The lowest measurable lasing threshold is 50 kW/cm2 and potentially a lower threshold is obtained in a symmetric waveguide structure while the lowest measured lasing wavelength is 237 nm. Gain measurements reveal a net modal gain greater than 100 cm-1 which is the highest reported value for sub-300 nm lasers. Furthermore, a lowest reported FWHM of 0.012 nm is observed indicating the high quality of the laser structure. Finally, electrically injected LED and LD structures are studied showing great potential for the realization of the first sub-300 nm LD.

  3. AlN metal-semiconductor field-effect transistors using Si-ion implantation

    NASA Astrophysics Data System (ADS)

    Okumura, Hironori; Suihkonen, Sami; Lemettinen, Jori; Uedono, Akira; Zhang, Yuhao; Piedra, Daniel; Palacios, Tomás

    2018-04-01

    We report on the electrical characterization of Si-ion implanted AlN layers and the first demonstration of metal-semiconductor field-effect transistors (MESFETs) with an ion-implanted AlN channel. The ion-implanted AlN layers with Si dose of 5 × 1014 cm-2 exhibit n-type characteristics after thermal annealing at 1230 °C. The ion-implanted AlN MESFETs provide good drain current saturation and stable pinch-off operation even at 250 °C. The off-state breakdown voltage is 2370 V for drain-to-gate spacing of 25 µm. These results show the great potential of AlN-channel transistors for high-temperature and high-power applications.

  4. Terahertz characterization of Y2O3-added AlN ceramics

    NASA Astrophysics Data System (ADS)

    Kang, Seung Beom; Chung, Dong Chul; Kim, Sung-Jin; Chung, Jun-Ki; Park, Sang-Yeup; Kim, Ki-Chul; Kwak, Min Hwan

    2016-12-01

    Terahertz optical and dielectric properties of AlN ceramics fabricated by hot pressed sintering are investigated by THz time-domain spectroscopy in the frequency range of 0.2-3.5 THz. The measured properties of the pure AlN ceramic are compared with those of Y2O3-added AlN ceramic. Two prominent resonance modes, which are essentially responsible for the dielectric properties of the Y2O3-added AlN in terahertz regime, are characterized at ωTO1/(2π) = 2.76 THz (92 cm-1) and ωTO2/(2π) = 18.2 THz (605 cm-1) and are well described by the pseudo-harmonic oscillator model through theoretical fitting. The resonance ωTO1 at 2.76 THz is proposed to be due to the formation of a YAG (Y3Al5O12) secondary phase in Y2O3-added AlN ceramic. From the experimental results, good correlation is observed between the prominent peak of YAG secondary phase at 2.76 THz and thermal conductivity. Additionally, there is a high correlation between densification and refractive index of AlN ceramics fabricated by hot pressed sintering.

  5. On compensation in Si-doped AlN

    NASA Astrophysics Data System (ADS)

    Harris, Joshua S.; Baker, Jonathon N.; Gaddy, Benjamin E.; Bryan, Isaac; Bryan, Zachary; Mirrielees, Kelsey J.; Reddy, Pramod; Collazo, Ramón; Sitar, Zlatko; Irving, Douglas L.

    2018-04-01

    Controllable n-type doping over wide ranges of carrier concentrations in AlN, or Al-rich AlGaN, is critical to realizing next-generation applications in high-power electronics and deep UV light sources. Silicon is not a hydrogenic donor in AlN as it is in GaN; despite this, the carrier concentration should be controllable, albeit less efficiently, by increasing the donor concentration during growth. At low doping levels, an increase in the Si content leads to a commensurate increase in free electrons. Problematically, this trend does not persist to higher doping levels. In fact, a further increase in the Si concentration leads to a decrease in free electron concentration; this is commonly referred to as the compensation knee. While the nature of this decrease has been attributed to a variety of compensating defects, the mechanism and identity of the predominant defects associated with the knee have not been conclusively determined. Density functional theory calculations using hybrid exchange-correlation functionals have identified VAl+n SiAl complexes as central to mechanistically understanding compensation in the high Si limit in AlN, while secondary impurities and vacancies tend to dominate compensation in the low Si limit. The formation energies and optical signatures of these defects in AlN are calculated and utilized in a grand canonical charge balance solver to identify carrier concentrations as a function of Si content. The results were found to qualitatively reproduce the experimentally observed compensation knee. Furthermore, these calculations predict a shift in the optical emissions present in the high and low doping limits, which is confirmed with detailed photoluminescence measurements.

  6. Lateral polarity control of III-nitride thin film and application in GaN Schottky barrier diode

    NASA Astrophysics Data System (ADS)

    Li, Junmei; Guo, Wei; Sheikhi, Moheb; Li, Hongwei; Bo, Baoxue; Ye, Jichun

    2018-05-01

    N-polar and III-polar GaN and AlN epitaxial thin films grown side by side on single sapphire substrate was reported. Surface morphology, wet etching susceptibility and bi-axial strain conditions were investigated and the polarity control scheme was utilized in the fabrication of Schottky barrier diode where ohmic contact and Schottky contact were deposited on N-polar domains and Ga-polar domains, respectively. The influence of N-polarity on on-state resistivity and I–V characteristic was discussed, demonstrating that lateral polarity structure of GaN and AlN can be widely used in new designs of optoelectronic and electronic devices. Project partially supported by the National Key Research and Development Program of China (No. 2016YFB0400802), the National Natural Science Foundation of China (No. 61704176), and the Open project of Zhejiang Key Laboratory for Advanced Microelectronic Intelligent Systems and Applications (No. ZJUAMIS1704).

  7. Structural and optical properties of low temperature grown AlN films on sapphire using helicon sputtering system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Meei-Ru; Chen, Hou-Guang; Kao, Hui-Ling, E-mail: hlkao@cycu.edu.tw

    2015-05-15

    AlN thin films have been deposited directly on c-plane sapphire substrates at low temperatures by a helicon sputtering system. The structural quality of AlN epitaxial films was characterized by x-ray diffractometry and transmission electron microscopy. The films exhibit smooth surface with root-mean-square roughness as small as 0.7 nm evaluated by atomic force microscope. The optical transmittance spectra show a steep absorption edge at the wavelength of 200 nm and a high transmittance of over 80% in the visible range. The band-edge transition (6.30 eV) of AlN film was observed in the cathodoluminescence spectrum recorded at 11 K. The spectral response of metal–semiconductor–metal photodetectors constructedmore » with AlN/sapphire reveals the peak responsivity at 200 nm and a UV/visible rejection ratio of about two orders of magnitude. The results of this low temperature deposition suggest the feasibility of the epitaxial growth of AlN on sapphire substrates and the incorporation of the AlN films in the surface acoustic wave devices and the optical devices at deep ultraviolet region.« less

  8. Hydride vapor phase epitaxy of AlN using a high temperature hot-wall reactor

    NASA Astrophysics Data System (ADS)

    Baker, Troy; Mayo, Ashley; Veisi, Zeinab; Lu, Peng; Schmitt, Jason

    2014-10-01

    Aluminum nitride (AlN) was grown on c-plane sapphire substrates by hydride vapor phase epitaxy (HVPE). The experiments utilized a two zone inductively heated hot-wall reactor. The surface morphology, crystal quality, and growth rate were investigated as a function of growth temperature in the range of 1450-1575 °C. AlN templates grown to a thickness of 1 μm were optimized with double axis X-ray diffraction (XRD) rocking curve full width half maximums (FWHMs) of 135″ for the (002) and 513″ for the (102).

  9. Adsorption properties of AlN on Si(111) surface: A density functional study

    NASA Astrophysics Data System (ADS)

    Yuan, Yinmei; Zuo, Ran; Mao, Keke; Tang, Binlong; Zhang, Zhou; Liu, Jun; Zhong, Tingting

    2018-04-01

    In the process of preparing GaN on Si substrate by MOCVD, an AlN buffer layer is very important. In this study, we conducted density functional theory calculations on the adsorption of AlN molecule on Si(111)-(2 × 2) surface, with the AlN molecule located horizontally or vertically above Si(111) surface at different adsorption sites. The calculations revealed that the lowest adsorption energy was at the N-top-Al-bridge site in the horizontal configuration, with the narrowest band gap, indicating that it was the most preferential adsorption growth status of AlN. In the vertical configurations, N adatom was more reactive and convenient to form bonds with the topmost Si atoms than Al adatom. When the N-end of the AlN molecule was located downward, the hollow site was the preferred adsorption site; when the Al-end was located downward, the bridge site was the most energetically favorable. Moreover, we investigated some electronic properties such as partial density of states, electron density difference, Mulliken populations, etc., revealing the microscale mechanism for AlN adsorption on Si(111) surface and providing theoretical support for adjusting the processing parameters during AlN or GaN production.

  10. Understanding AlN Obtaining Through Computational Thermodynamics Combined with Experimental Investigation

    NASA Astrophysics Data System (ADS)

    Florea, R. M.

    2017-06-01

    Basic material concept, technology and some results of studies on aluminum matrix composite with dispersive aluminum nitride reinforcement was shown. Studied composites were manufactured by „in situ” technique. Aluminum nitride (AlN) has attracted large interest recently, because of its high thermal conductivity, good dielectric properties, high flexural strength, thermal expansion coefficient matches that of Si and its non-toxic nature, as a suitable material for hybrid integrated circuit substrates. AlMg alloys are the best matrix for AlN obtaining. Al2O3-AlMg, AlN-Al2O3, and AlN-AlMg binary diagrams were thermodynamically modelled. The obtained Gibbs free energies of components, solution parameters and stoichiometric phases were used to build a thermodynamic database of AlN- Al2O3-AlMg system. Obtaining of AlN with Liquid-phase of AlMg as matrix has been studied and compared with the thermodynamic results. The secondary phase microstructure has a significant effect on the final thermal conductivity of the obtained AlN. Thermodynamic modelling of AlN-Al2O3-AlMg system provided an important basis for understanding the obtaining behavior and interpreting the experimental results.

  11. Reduction of the Mg acceptor activation energy in GaN, AlN, Al0.83Ga0.17N and MgGa δ-doping (AlN)5/(GaN)1: the strain effect

    NASA Astrophysics Data System (ADS)

    Jiang, Xin-He; Shi, Jun-Jie; Zhang, Min; Zhong, Hong-Xia; Huang, Pu; Ding, Yi-Min; He, Ying-Ping; Cao, Xiong

    2015-12-01

    To resolve the p-type doping problem of Al-rich AlGaN alloys, we investigate the influence of biaxial and hydrostatic strains on the activation energy, formation energy and band gap of Mg-doped GaN, AlN, Al0.83Ga0.17N disorder alloy and (AlN)5/(GaN)1 superlattice based on first-principles calculations by combining the standard DFT and hybrid functional. We find that the Mg acceptor activation energy {{E}\\text{A}} , the formation energy {{E}\\text{f}} and the band gap {{E}\\text{g}} decrease with increasing the strain ɛ. The hydrostatic strain has a more remarkable impact on {{E}\\text{g}} and {{E}\\text{A}} than the biaxial strain. Both {{E}\\text{A}} and {{E}\\text{g}} have a linear dependence on the hydrostatic strain. For the biaxial strain, {{E}\\text{g}} shows a parabolic dependence on ɛ if \\varepsilon ≤slant 0 while it becomes linear if \\varepsilon ≥slant 0 . In GaN and (AlN)5/(GaN)1, {{E}\\text{A}} parabolically depends on the biaxial compressive strain and linearly depends on the biaxial tensible strain. However, the dependence is approximately linear over the whole biaxial strain range in AlN and Al0.83Ga0.17N. The Mg acceptor activation energy in (AlN)5/(GaN)1 can be reduced from 0.26 eV without strain to 0.16 (0.22) eV with the hydrostatic (biaxial) tensible strain 3%.

  12. Development of Field-Controlled Smart Optic Materials (ScN, AlN) with Rare Earth Dopants

    NASA Technical Reports Server (NTRS)

    Kim, Hyun-Jung; Park, Yeonjoon; King, Glen C.; Choi, Sang H.

    2012-01-01

    The purpose of this investigation is to develop the fundamental materials and fabrication technology for field-controlled spectrally active optics that are essential for industry, NASA, and DOD applications such as: membrane optics, filters for LIDARs, windows for sensors, telescopes, spectroscopes, cameras, flat-panel displays, etc. ScN and AlN thin films were fabricated on c-axis Sapphire (0001) or quartz substrate with the RF and DC magnetron sputtering. The crystal structure of AlN in fcc (rocksalt) and hcp (wurtzite) were controlled. Advanced electrical characterizations were performed, including I-V and Hall Effect Measurement. ScN film has a free carrier density of 5.8 x 10(exp 20)/per cubic centimeter and a conductivity of 1.1 x 10(exp 3) per centimeter. The background ntype conductivity of as-grown ScN has enough free electrons that can readily interact with the photons. The high density of free electrons and relatively low mobility indicate that these films contain a high level of shallow donors as well as deep levels. Also, the UV-Vis spectrum of ScN and AlN thin films with rare earth elements (Er or Ho) were measured at room temperature. Their optical band gaps were estimated to be about 2.33eV and 2.24eV, respectively, which are obviously smaller than that of undoped thin film ScN (2.4eV). The red-shifted absorption onset gives direct evidence for the decrease of band gap (Eg) and the energy broadening of valence band states are attributable to the doping. As the doped elements enter the ScN crystal lattices, the localized band edge states form at the doped sites with a reduction of Eg. Using a variable angle spectroscopic ellipsometer, the decrease in refractive index with applied field is observed with a smaller shift in absorption coefficient.

  13. The Oxidation of AlN in Dry and Wet Oxygen

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth; Humphrey, Donald; Jacobson, Nathan; Yoshio, Tetsuo; Oda, Kohei

    1998-01-01

    The oxidation kinetics of AlN containing 3.5 wt% Y2O3 were studied by thermogravimetric analysis in dry oxygen and 10% H2O/balance oxygen at temperatures between 1000 and 1200 C for times between 48 and 100 h. The oxidation kinetics for AlN in dry oxygen were parabolic and of approximately the same magnitude and temperature dependence as other alumina forming materials. In this case, diffusion of oxygen and/or aluminum through the alumina scale is the rate limiting mechanism. The oxidation kinetics for AlN in wet oxygen were nearly linear and much more rapid than rates observed in dry oxygen. Numerous micropores were observed in the alumina formed on AIN in wet oxygen. These pores provide a fast path for oxygen transport. The linear kinetics observed in this case suggest that the interface reaction rate of AlN with wet oxygen is the oxidation rate limiting step.

  14. Berkovich Nanoindentation on AlN Thin Films

    PubMed Central

    2010-01-01

    Berkovich nanoindentation-induced mechanical deformation mechanisms of AlN thin films have been investigated by using atomic force microscopy (AFM) and cross-sectional transmission electron microscopy (XTEM) techniques. AlN thin films are deposited on the metal-organic chemical-vapor deposition (MOCVD) derived Si-doped (2 × 1017 cm−3) GaN template by using the helicon sputtering system. The XTEM samples were prepared by means of focused ion beam (FIB) milling to accurately position the cross-section of the nanoindented area. The hardness and Young’s modulus of AlN thin films were measured by a Berkovich nanoindenter operated with the continuous contact stiffness measurements (CSM) option. The obtained values of the hardness and Young’s modulus are 22 and 332 GPa, respectively. The XTEM images taken in the vicinity regions just underneath the indenter tip revealed that the multiple “pop-ins” observed in the load–displacement curve during loading are due primarily to the activities of dislocation nucleation and propagation. The absence of discontinuities in the unloading segments of load–displacement curve suggests that no pressure-induced phase transition was involved. Results obtained in this study may also have technological implications for estimating possible mechanical damages induced by the fabrication processes of making the AlN-based devices. PMID:20672096

  15. Berkovich Nanoindentation on AlN Thin Films.

    PubMed

    Jian, Sheng-Rui; Chen, Guo-Ju; Lin, Ting-Chun

    2010-03-31

    Berkovich nanoindentation-induced mechanical deformation mechanisms of AlN thin films have been investigated by using atomic force microscopy (AFM) and cross-sectional transmission electron microscopy (XTEM) techniques. AlN thin films are deposited on the metal-organic chemical-vapor deposition (MOCVD) derived Si-doped (2 × 1017 cm-3) GaN template by using the helicon sputtering system. The XTEM samples were prepared by means of focused ion beam (FIB) milling to accurately position the cross-section of the nanoindented area. The hardness and Young's modulus of AlN thin films were measured by a Berkovich nanoindenter operated with the continuous contact stiffness measurements (CSM) option. The obtained values of the hardness and Young's modulus are 22 and 332 GPa, respectively. The XTEM images taken in the vicinity regions just underneath the indenter tip revealed that the multiple "pop-ins" observed in the load-displacement curve during loading are due primarily to the activities of dislocation nucleation and propagation. The absence of discontinuities in the unloading segments of load-displacement curve suggests that no pressure-induced phase transition was involved. Results obtained in this study may also have technological implications for estimating possible mechanical damages induced by the fabrication processes of making the AlN-based devices.

  16. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing.

    PubMed

    Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang

    2017-01-03

    Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future.

  17. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing

    PubMed Central

    Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang

    2017-01-01

    Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future. PMID:28045075

  18. Temperature dependence of the crystalline quality of AlN layer grown on sapphire substrates by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hang; Wei, Yong O.; Wang, Shuo; Xie, Hongen; Kao, Tsung-Ting; Satter, Md. Mahbub; Shen, Shyh-Chiang; Douglas Yoder, P.; Detchprohm, Theeradetch; Dupuis, Russell D.; Fischer, Alec M.; Ponce, Fernando A.

    2015-03-01

    We studied temperature dependence of crystalline quality of AlN layers at 1050-1250 °C with a fine increment step of around 18 °C. The AlN layers were grown on c-plane sapphire substrates by metalorganic chemical vapor deposition (MOCVD) and characterized by X-ray diffraction (XRD) ω-scans and atomic force microscopy (AFM). At 1050-1068 °C, the templates exhibited poor quality with surface pits and higher XRD (002) and (102) full-width at half-maximum (FWHM) because of insufficient Al atom mobility. At 1086 °C, the surface became smooth suggesting sufficient Al atom mobility. Above 1086 °C, the (102) FWHM and thus edge dislocation density increased with temperatures which may be attributed to the shorter growth mode transition from three-dimension (3D) to two-dimension (2D). Above 1212 °C, surface macro-steps were formed due to the longer diffusion length of Al atoms than the expected step terrace width. The edge dislocation density increased rapidly above 1212 °C, indicating this temperature may be a threshold above which the impact of the transition from 3D to 2D is more significant. The (002) FWHM and thus screw dislocation density were insensitive to the temperature change. This study suggests that high-quality AlN/sapphire templates may be potentially achieved at temperatures as low as 1086 °C which is accessible by most of the III-nitride MOCVD systems.

  19. Effects of GaN/AlGaN/Sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes

    PubMed Central

    Hu, Hongpo; Zhou, Shengjun; Liu, Xingtong; Gao, Yilin; Gui, Chengqun; Liu, Sheng

    2017-01-01

    We report on the demonstration of GaN-based ultraviolet light-emitting diodes (UV LEDs) emitting at 375 nm grown on patterned sapphire substrate (PSS) with in-situ low temperature GaN/AlGaN nucleation layers (NLs) and ex-situ sputtered AlN NL. The threading dislocation (TD) densities in GaN-based UV LEDs with GaN/AlGaN/sputtered AlN NLs were determined by high-resolution X-ray diffraction (XRD) and cross-sectional transmission electron microscopy (TEM), which revealed that the TD density in UV LED with AlGaN NL was the highest, whereas that in UV LED with sputtered AlN NL was the lowest. The light output power (LOP) of UV LED with AlGaN NL was 18.2% higher than that of UV LED with GaN NL owing to a decrease in the absorption of 375 nm UV light in the AlGaN NL with a larger bandgap. Using a sputtered AlN NL instead of the AlGaN NL, the LOP of UV LED was further enhanced by 11.3%, which is attributed to reduced TD density in InGaN/AlInGaN active region. In the sputtered AlN thickness range of 10–25 nm, the LOP of UV LED with 15-nm-thick sputtered AlN NL was the highest, revealing that optimum thickness of the sputtered AlN NL is around 15 nm. PMID:28294166

  20. Understanding the growth of micro and nano-crystalline AlN by thermal plasma process

    NASA Astrophysics Data System (ADS)

    Kanhe, Nilesh S.; Nawale, Ashok B.; Gawade, Rupesh L.; Puranik, Vedavati G.; Bhoraskar, Sudha V.; Das, Asoka K.; Mathe, Vikas L.

    2012-01-01

    We report the studies related to the growth of crystalline AlN in a DC thermal plasma reactor, operated by a transferred arc plasma torch. The reactor is capable of producing the nanoparticles of Al and AlN depending on the composition of the reacting gas. Al and AlN micro crystals are formed at the anode placed on the graphite and nano crystalline Al and AlN gets deposited on the inner surface of the plasma reactor. X-ray diffraction, Raman spectroscopy analysis, single crystal X-ray diffraction and TGA-DTA techniques are used to infer the purity of post process crystals as a hexagonal AlN. The average particle size using SEM was found to be around 30 μm. The morphology of nanoparticles of Al and AlN, nucleated by gas phase condensation in a homogeneous medium were studied by transmission electron microscopy analysis. The particle ranged in size between 15 and 80 nm in diameter. The possible growth mechanism of crystalline AlN at the anode has been explained on the basis of non-equilibrium processes in the core of the plasma and steep temperature gradient near its periphery. The gas phase species of AlN and various constituent were computed using Murphy code based on minimization of free energy. The process provides 50% yield of microcrystalline AlN and remaining of Al at anode and that of nanocrystalline h-AlN and c-Al collected from the walls of the chamber is about 33% and 67%, respectively.

  1. Strain modulation-enhanced Mg acceptor activation efficiency of Al0.14Ga0.86N/GaN superlattices with AlN interlayer

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Li, Rui; Li, Ding; Liu, Ningyang; Liu, Lei; Chen, Weihua; Wang, Cunda; Yang, Zhijian; Hu, Xiaodong

    2010-02-01

    AlN layer was grown as interlayer between undoped GaN and Mg doped Al0.14Ga0.86N/GaN superlattices (SLs) epilayer to modulate the strain distribution between Al0.14Ga0.86N barrier and GaN well layers in SLs sample. Strain relaxation was observed in the SLs sample with AlN interlayer by x-ray diffraction reciprocal space mapping method. The measured hole concentration of SLs sample with AlN interlayer at room temperature was over 1.6×1018 cm-3 but that was only 6.6×1016 cm-3 obtained in SLs sample without AlN interlayer. Variable temperature Hall-effect measurement showed that the acceptor activation energy decreased from 150 to 70 meV after inserting the AlN layer, which indicated that the strain modulation of SLs induced by AlN interlayer was beneficial to the Mg acceptor activation and hole concentration enhancement.

  2. Loss of Ductility Caused by AlN Precipitation in Hadfield Steel

    NASA Astrophysics Data System (ADS)

    Radis, Rene; Schlacher, Christian; Kozeschnik, Ernst; Mayr, Peter; Enzinger, Norbert; Schröttner, Hartmuth; Sommitsch, Christof

    2012-04-01

    Two modified X120Mn12 Hadfield steels, differing in the amount of the alloying elements Al and N, are analyzed with respect to AlN precipitation and its effects on ductility. Charpy impact tests are performed, demonstrating the loss of ductility in the one grade containing a high density of AlN precipitates. The characterization of the precipitates is carried out by high-resolution scanning electron microscopy (HRSEM). Depending on chemical composition, primary and secondary AlN precipitates are detected on prior austenite grain boundaries and within the bulk volume. The experimental observations are confirmed by thermokinetic simulations, using the software package MatCalc (Vienna University of Technology, Vienna, Austria).

  3. Cubic GaN quantum dots embedded in zinc-blende AlN microdisks

    NASA Astrophysics Data System (ADS)

    Bürger, M.; Kemper, R. M.; Bader, C. A.; Ruth, M.; Declair, S.; Meier, C.; Förstner, J.; As, D. J.

    2013-09-01

    Microresonators containing quantum dots find application in devices like single photon emitters for quantum information technology as well as low threshold laser devices. We demonstrate the fabrication of 60 nm thin zinc-blende AlN microdisks including cubic GaN quantum dots using dry chemical etching techniques. Scanning electron microscopy analysis reveals the morphology with smooth surfaces of the microdisks. Micro-photoluminescence measurements exhibit optically active quantum dots. Furthermore this is the first report of resonator modes in the emission spectrum of a cubic AlN microdisk.

  4. Polarization engineered enhancement mode GaN HEMT: Design and investigation

    NASA Astrophysics Data System (ADS)

    Verma, Sumit; Loan, Sajad A.; Alharbi, Abdullah G.

    2018-07-01

    In this paper, we propose and perform the experimentally calibrated simulation of a novel structure of a GaN/AlGaN high electron mobility transistor (HEMT). The novelty of the structure is the realization of enhancement mode operation by employing polarization engineering approach. In the proposed polarization engineered HEMT (PE-HEMT) a buried Aluminum Nitride (AlN) box is employed in the GaN layer just below the gate. The AlN box creates a two-dimensional hole gas (2DHG) at the GaN/AlN interface, which creates a conduction band barrier in the path of the already existing two-dimensional electron gas (2DEG) at GaN/AlGaN. Therefore, there is no direct path between the source and drain regions at zero gate voltage due to the barrier created by AIN and the device is initially OFF, an enhancement mode operation. A two dimensional (2D) calibrated simulation study of proposed PE-HEMT shows that the device has a threshold voltage (Vth) of 2.3 V. The PE-HEMT also reduces the electron spillover and thus improves the breakdown voltage by 108% as compared to conventional HEMT. The thermal analysis of the GaN PE-HEMT shows that a hot zone occurs on the drain side gate edge. It has been observed that the drain current in the PE-HEMT structure can be improved by 157% by using AlN heat sink.

  5. Acceptor binding energies in GaN and AlN

    NASA Astrophysics Data System (ADS)

    Mireles, Francisco; Ulloa, Sergio E.

    1998-08-01

    We employ effective-mass theory for degenerate hole bands to calculate the acceptor binding energies for Be, Mg, Zn, Ca, C, and Si substitutional acceptors in GaN and AlN. The calculations are performed through the 6×6 Rashba-Sheka-Pikus and the Luttinger-Kohn matrix Hamiltonians for wurtzite (WZ) and zinc-blende (ZB) crystal phases, respectively. An analytic representation for the acceptor pseudopotential is used to introduce the specific nature of the impurity atoms. The energy shift due to polaron effects is also considered in this approach. The ionization energy estimates are in very good agreement with those reported experimentally in WZ GaN. The binding energies for ZB GaN acceptors are all predicted to be shallower than the corresponding impurities in the WZ phase. The binding-energy dependence upon the crystal-field splitting in WZ GaN is analyzed. Ionization levels in AlN are found to have similar ``shallow'' values to those in GaN, but with some important differences which depend on the band structure parametrizations, especially the value of the crystal-field splitting used.

  6. The influence of point defects on the thermal conductivity of AlN crystals

    NASA Astrophysics Data System (ADS)

    Rounds, Robert; Sarkar, Biplab; Alden, Dorian; Guo, Qiang; Klump, Andrew; Hartmann, Carsten; Nagashima, Toru; Kirste, Ronny; Franke, Alexander; Bickermann, Matthias; Kumagai, Yoshinao; Sitar, Zlatko; Collazo, Ramón

    2018-05-01

    The average bulk thermal conductivity of free-standing physical vapor transport and hydride vapor phase epitaxy single crystal AlN samples with different impurity concentrations is analyzed using the 3ω method in the temperature range of 30-325 K. AlN wafers grown by physical vapor transport show significant variation in thermal conductivity at room temperature with values ranging between 268 W/m K and 339 W/m K. AlN crystals grown by hydride vapor phase epitaxy yield values between 298 W/m K and 341 W/m K at room temperature, suggesting that the same fundamental mechanisms limit the thermal conductivity of AlN grown by both techniques. All samples in this work show phonon resonance behavior resulting from incorporated point defects. Samples shown by optical analysis to contain carbon-silicon complexes exhibit higher thermal conductivity above 100 K. Phonon scattering by point defects is determined to be the main limiting factor for thermal conductivity of AlN within the investigated temperature range.

  7. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsipas, P.; Kassavetis, S.; Tsoutsou, D.

    Ultrathin (sub-monolayer to 12 monolayers) AlN nanosheets are grown epitaxially by plasma assisted molecular beam epitaxy on Ag(111) single crystals. Electron diffraction and scanning tunneling microscopy provide evidence that AlN on Ag adopts a graphite-like hexagonal structure with a larger lattice constant compared to bulk-like wurtzite AlN. This claim is further supported by ultraviolet photoelectron spectroscopy indicating a reduced energy bandgap as expected for hexagonal AlN.

  8. Enhanced Piezoelectric Response of AlN via CrN Alloying

    NASA Astrophysics Data System (ADS)

    Manna, Sukriti; Talley, Kevin R.; Gorai, Prashun; Mangum, John; Zakutayev, Andriy; Brennecka, Geoff L.; Stevanović, Vladan; Ciobanu, Cristian V.

    2018-03-01

    Since AlN has emerged as an important piezoelectric material for a wide variety of applications, efforts have been made to increase its piezoelectric response via alloying with transition metals that can substitute for Al in the wurtzite lattice. We report on density functional theory calculations of structure and properties of the Crx Al1 -x N system for Cr concentrations ranging from zero to beyond the wurtzite-rocksalt transition point. By studying the different contributions to the longitudinal piezoelectric coefficient, we propose that the physical origin of the enhanced piezoelectricity in Crx Al1 -x N alloys is the increase of the internal parameter u of the wurtzite structure upon substitution of Al with the larger Cr ions. Among a set of wurtzite-structured materials, we find that Crx Al1 -x N has the most sensitive piezoelectric coefficient with respect to alloying concentration. Based on these results, we propose that Crx Al1 -x N is a viable piezoelectric material whose properties can be tuned via Cr composition. We support this proposal by combinatorial synthesis experiments, which show that Cr can be incorporated in the AlN lattice up to 30% before a detectable transition to rocksalt occurs. At this Cr content, the piezoelectric modulus d33 is approximately 4 times larger than that of pure AlN. This finding, combined with the relative ease of synthesis under nonequilibrium conditions, may position Crx Al1 -x N as a prime piezoelectric material for applications such as resonators and acoustic wave generators.

  9. Enhanced Piezoelectric Response of AlN via CrN Alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manna, Sukriti; Talley, Kevin R.; Gorai, Prashun

    2018-03-01

    Since AlN has emerged as an important piezoelectric material for a wide variety of applications, efforts have been made to increase its piezoelectric response via alloying with transition metals that can substitute for Al in the wurtzite lattice. We report on density functional theory calculations of structure and properties of the CrxAl1-xN system for Cr concentrations ranging from zero to beyond the wurtzite-rocksalt transition point. By studying the different contributions to the longitudinal piezoelectric coefficient, we propose that the physical origin of the enhanced piezoelectricity in CrxAl1-xN alloys is the increase of the internal parameter u of the wurtzite structuremore » upon substitution of Al with the larger Cr ions. Among a set of wurtzite-structured materials, we find that CrxAl1-xN has the most sensitive piezoelectric coefficient with respect to alloying concentration. Based on these results, we propose that CrxAl1-xN is a viable piezoelectric material whose properties can be tuned via Cr composition. We support this proposal by combinatorial synthesis experiments, which show that Cr can be incorporated in the AlN lattice up to 30% before a detectable transition to rocksalt occurs. At this Cr content, the piezoelectric modulus d33 is approximately 4 times larger than that of pure AlN. This finding, combined with the relative ease of synthesis under nonequilibrium conditions, may position CrxAl1-xN as a prime piezoelectric material for applications such as resonators and acoustic wave generators.« less

  10. Theoretical investigation of Lamb wave characteristics in AlN/3C-SiC composite membranes

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Ming; Chen, Yung-Yu; Pisano, Albert P.

    2010-11-01

    Cubic silicon carbide (3C-SiC) layer can provide advantages of high frequency and high quality factor for Lamb wave devices due to the superior properties of high acoustic velocity and low acoustic loss. In this study, Lamb wave propagation characteristics in composite membranes consisting of a c-axis oriented aluminum nitride (AlN) film and an epitaxial 3C-SiC (100) layer are investigated by theoretical calculation. The lowest symmetric mode Lamb wave propagating along the [011] direction exhibits a phase velocity higher than 10 000 m/s and an electromechanical coupling coefficient above 2% in the AlN/3C-SiC multilayered membranes.

  11. Metalorganic vapor phase epitaxy of AlN on sapphire with low etch pit density

    NASA Astrophysics Data System (ADS)

    Koleske, D. D.; Figiel, J. J.; Alliman, D. L.; Gunning, B. P.; Kempisty, J. M.; Creighton, J. R.; Mishima, A.; Ikenaga, K.

    2017-06-01

    Using metalorganic vapor phase epitaxy, methods were developed to achieve AlN films on sapphire with low etch pit density (EPD). Key to this achievement was using the same AlN growth recipe and only varying the pre-growth conditioning of the quartz-ware. After AlN growth, the quartz-ware was removed from the growth chamber and either exposed to room air or moved into the N2 purged glove box and exposed to H2O vapor. After the quartz-ware was exposed to room air or H2O, the AlN film growth was found to be more reproducible, resulting in films with (0002) and (10-12) x-ray diffraction (XRD) rocking curve linewidths of 200 and 500 arc sec, respectively, and EPDs < 100 cm-2. The EPD was found to correlate with (0002) linewidths, suggesting that the etch pits are associated with open core screw dislocations similar to GaN films. Once reproducible AlN conditions were established using the H2O pre-treatment, it was found that even small doses of trimethylaluminum (TMAl)/NH3 on the quartz-ware surfaces generated AlN films with higher EPDs. The presence of these residual TMAl/NH3-derived coatings in metalorganic vapor phase epitaxy (MOVPE) systems and their impact on the sapphire surface during heating might explain why reproducible growth of AlN on sapphire is difficult.

  12. Deep-UV sensors based on SAW oscillators using low-temperature-grown AlN films on sapphires.

    PubMed

    Laksana, Chipta; Chen, Meei-Ru; Liang, Yen; Tzou, An-Jyeg; Kao, Hui-Ling; Jeng, Erik; Chen, Jyh; Chen, Hou-Guang; Jian, Sheng-Rui

    2011-08-01

    High-quality epitaxial AlN films were deposited on sapphire substrates at low growth temperature using a helicon sputtering system. SAW filters fabricated on the AlN films exhibited excellent characteristics, with center frequency of 354.2 MHz, which corresponds to a phase velocity of 5667 m/s. An oscillator fabricated using AlN-based SAW devices is presented and applied to deep-UV light detection. A frequency downshift of about 43 KHz was observed when the surface of SAW device was illuminated by a UV source with dominant wavelength of around 200 nm. The results indicate the feasibility of developing remote sensors for deep-UV measurement using AlN-based SAW oscillators.

  13. Energy structure and radiative lifetimes of InxGa1-xN /AlN quantum dots

    NASA Astrophysics Data System (ADS)

    Aleksandrov, Ivan A.; Zhuravlev, Konstantin S.

    2018-01-01

    We report calculations of the ground state transition energies and the radiative lifetimes in InxGa1-xN /AlN quantum dots with different size and indium content. The ground state transition energy and the radiative lifetime of the InxGa1-xN /AlN quantum dots can be varied over a wide range by changing the height of the quantum dot and the indium content. The sizes and compositions for quantum dots emitting in the wavelength range for fiber-optic telecommunications have been found. The radiative lifetime of the InxGa1-xN /AlN quantum dots increases with increase in quantum dot height at a constant indium content, and increases with increase in indium content at constant quantum dot height. For quantum dots with constant ground state transition energy the radiative lifetime decreases with increase in indium content.

  14. Ti, Al and N adatom adsorption and diffusion on rocksalt cubic AlN (001) and (011) surfaces: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Mastail, C.; David, M.; Nita, F.; Michel, A.; Abadias, G.

    2017-11-01

    We use ab initio calculations to determine the preferred nucleation sites and migration pathways of Ti, Al and N adatoms on cubic NaCl-structure (B1) AlN surfaces, primary inputs towards a further thin film growth modelling of the TiAlN alloy system. The potential energy landscape is mapped out for both metallic species and nitrogen adatoms for two different AlN surface orientations, (001) and (110), using density functional theory. For all species, the adsorption energies on AlN(011) surface are larger than on AlN(001) surface. Ti and Al adatom adsorption energy landscapes determined at 0 K by ab initio show similar features, with stable binding sites being located in, or near, epitaxial surface positions, with Ti showing a stronger binding compared to Al. In direct contrast, N adatoms (Nad) adsorb preferentially close to N surface atoms (Nsurf), thus forming strong N2-molecule-like bonds on both AlN(001) and (011). Similar to N2 desorption mechanisms reported for other cubic transition metal nitride surfaces, in the present work we investigate Nad/Nsurf desorption on AlN(011) using a drag calculation method. We show that this process leaves a Nsurf vacancy accompanied with a spontaneous surface reconstruction, highlighting faceting formation during growth.

  15. Codoping method for the fabrication of low-resistivity wide band-gap semiconductors in p-type GaN, p-type AlN and n-type diamond: prediction versus experiment

    NASA Astrophysics Data System (ADS)

    Katayama-Yoshida, H.; Nishimatsu, T.; Yamamoto, T.; Orita, N.

    2001-10-01

    We review our new valence control method of a co-doping for the fabrication of low-resistivity p-type GaN, p-type AlN and n-type diamond. The co-doping method is proposed based upon ab initio electronic structure calculation in order to solve the uni-polarity and the compensation problems in the wide band-gap semiconductors. In the co-doping method, we dope both the acceptors and donors at the same time by forming the meta-stable acceptor-donor-acceptor complexes for the p-type or donor-acceptor-donor complexes for the n-type under thermal non-equilibrium crystal growth conditions. We propose the following co-doping method to fabricate the low-resistivity wide band-gap semiconductors; p-type GaN: [Si + 2 Mg (or Be)], [H + 2 Mg (or Be)], [O + 2 Mg (or Be)], p-type AlN: [O + 2 C] and n-type diamond: [B + 2 N], [H + S], [H + 2 P]. We compare our prediction of the co-doping method with the recent successful experiments to fabricate the low-resistivity p-type GaN, p-type AlN and n-type diamond. We show that the co-doping method is the efficient and universal doping method by which to avoid carrier compensation with an increase of the solubility of the dopant, to increase the activation rate by decreasing the ionization energy of acceptors and donors, and to increase the mobility of the carrier.

  16. A first-principles study of the properties of four predicted novel phases of AlN

    NASA Astrophysics Data System (ADS)

    Yang, Ruike; Zhu, Chuanshuai; Wei, Qun; Du, Zheng

    2017-05-01

    Structural, elastic, thermodynamic, electronic and optical properties of four predicted novel AlN phases (Pmn21-AlN, Pbam-AlN, Pbca-AlN and Cmcm-AlN) are calculated using first-principles according to density function theory (DFT). These phases were found using the CALYPSO method but have not yet been synthesized experimentally. Here we predict some of their properties. The properties are analyzed by means of GGA-PBE and PBE0 respectively. The more precision results are obtained by PBE0. Cmcm-AlN owns better plasticity and it's Young's modulus has clearer anisotropy than Pmn21-AlN, Pbam-AlN and Pbca-AlN. The Debye temperature, under higher temperature, shows weak temperature dependence and approach to a constant value. The Dulong-Petit limit of all four novel AlN phases and wz-AlN is about 48 J mol-1 K-1 and they have almost the same temperature law. The band structures show that the four AlN are the wide direct band gap semiconductors, which band gaps are 5.95 (Pmn21-AlN), 5.99 (Pbam-AlN), 5.88 (Pbca-AlN) and 5.59 eV (Cmcm-AlN). The bonding behaviors are the combination of covalent and ionic nature. The dielectric constants, refractive index, reflectivity, absorption, loss spectra, conductivity and Raman spectra are also calculated in detail. All four phases have a lower plasma frequency than of wz-AlN.

  17. Growth and stress-induced transformation of zinc blende AlN layers in Al-AlN-TiN multilayers

    DOE PAGES

    Li, Nan; Yadav, Satyesh K.; Wang, Jian; ...

    2015-12-18

    We report that AlN nanolayers in sputter deposited {111}Al/AlN/TiN multilayers exhibit the metastable zinc-blende-structure (z-AlN). Based on density function theory calculations, the growth of the z-AlN is ascribed to the kinetically and energetically favored nitridation of the deposited aluminium layer. In situ nanoindentation of the as-deposited {111}Al/AlN/TiN multilayers in a high-resolution transmission electron microscope revealed the z-AlN to wurzite AlN phase transformation through collective glide of Shockley partial dislocations on every two {111} planes of the z-AlN.

  18. Microscopic potential fluctuations in Si-doped AlGaN epitaxial layers with various AlN molar fractions and Si concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurai, Satoshi, E-mail: kurai@yamaguchi-u.ac.jp; Yamada, Yoichi; Miyake, Hideto

    2016-01-14

    Nanoscopic potential fluctuations of Si-doped AlGaN epitaxial layers with the AlN molar fraction varying from 0.42 to 0.95 and Si-doped Al{sub 0.61}Ga{sub 0.39}N epitaxial layers with Si concentrations of 3.0–37 × 10{sup 17 }cm{sup −3} were investigated by cathodoluminescence (CL) imaging combined with scanning electron microscopy. The spot CL linewidths of AlGaN epitaxial layers broadened as the AlN molar fraction was increased to 0.7, and then narrowed at higher AlN molar fractions. The experimental linewidths were compared with the theoretical prediction from the alloy broadening model. The trends displayed by our spot CL linewidths were consistent with calculated results at AlN molar fractionsmore » of less than about 0.60, but the spot CL linewidths were markedly broader than the calculated linewidths at higher AlN molar fractions. The dependence of the difference between the spot CL linewidth and calculated line broadening on AlN molar fraction was found to be similar to the dependence of reported S values, indicating that the vacancy clusters acted as the origin of additional line broadening at high AlN molar fractions. The spot CL linewidths of Al{sub 0.61}Ga{sub 0.39}N epitaxial layers with the same Al concentration and different Si concentrations were nearly constant in the entire Si concentration range tested. From the comparison of reported S values, the increase of V{sub Al} did not contribute to the linewidth broadening, unlike the case of the V{sub Al} clusters.« less

  19. High free carrier concentration in p-GaN grown on AlN substrates

    NASA Astrophysics Data System (ADS)

    Sarkar, Biplab; Mita, Seiji; Reddy, Pramod; Klump, Andrew; Kaess, Felix; Tweedie, James; Bryan, Isaac; Bryan, Zachary; Kirste, Ronny; Kohn, Erhard; Collazo, Ramon; Sitar, Zlatko

    2017-07-01

    A high free hole concentration in III-nitrides is important for next generation optoelectronic and high power electronic devices. The free hole concentration exceeding 1018 cm-3 and resistivity as low as 0.7 Ω cm are reported for p-GaN layers grown by metalorganic vapor phase epitaxy on single crystal AlN substrates. Temperature dependent Hall measurements confirmed a much lower activation energy, 60-80 mV, for p-GaN grown on AlN as compared to sapphire substrates; the lowering of the activation energy was due to screening of Coulomb potential by free carriers. It is also shown that a higher doping density (more than 5 × 1019 cm-3) can be achieved in p-GaN/AlN without the onset of self-compensation.

  20. Epitaxy of boron phosphide on AlN, 4H-SiC, 3C-SiC and ZrB2 substrates

    NASA Astrophysics Data System (ADS)

    Padavala, Balabalaji

    The semiconductor boron phosphide (BP) has many outstanding features making it attractive for developing various electronic devices, including neutron detectors. In order to improve the efficiency of these devices, BP must have high crystal quality along with the best possible electrical properties. This research is focused on growing high quality crystalline BP films on a variety of superior substrates like AlN, 4H-SiC, 3C-SiC and ZrB2 by chemical vapor deposition. In particular, the influence of various parameters such as temperature, reactant flow rates, and substrate type and its crystalline orientation on the properties of BP films were studied in detail. Twin-free BP films were produced by depositing on off-axis 4H-SiC(0001) substrate tilted 4° toward [11¯00] and crystal symmetry matched zincblende 3C-SiC. BP crystalline quality improved at higher deposition temperature (1200°C) when deposited on AlN, 4H-SiC, whereas increased strain in 3C-SiC and increased boron segregation in ZrB2 at higher temperatures limited the best deposition temperature to below 1200°C. In addition, higher flow ratios of PH 3 to B2H6 resulted in smoother films and improved quality of BP on all substrates. The FWHM of the Raman peak (6.1 cm -1), XRD BP(111) peak FWHM (0.18°) and peak ratios of BP(111)/(200) = 5157 and BP(111)/(220) = 7226 measured on AlN/sapphire were the best values reported in the literature for BP epitaxial films. The undoped films on AlN/sapphire were n-type with a highest electron mobility of 37.8 cm2/V˙s and a lowest carrier concentration of 3.15x1018 cm -3. Raman imaging had lower values of FWHM (4.8 cm-1 ) and a standard deviation (0.56 cm-1) for BP films on AlN/sapphire compared to 4H-SiC, 3C-SiC substrates. X-ray diffraction and Raman spectroscopy revealed residual tensile strain in BP on 4H-SiC, 3C-SiC, ZrB2/4H-SiC, bulk AlN substrates while compressive strain was evident on AlN/sapphire and bulk ZrB2 substrates. Among the substrates studied, AlN

  1. Ab initio molecular dynamics simulations of AlN responding to low energy particle radiation

    NASA Astrophysics Data System (ADS)

    Xi, Jianqi; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2018-01-01

    Ab initio molecular dynamics simulations of low energy recoil events in wurtzite AlN have been performed to determine threshold displacement energies, defect production and evolution mechanisms, role of partial charge transfer during the process, and the influence of irradiation-induced defects on the properties of AlN. The results show that the threshold displacement energies, Ed, along the direction parallel to the basal planes are smaller than those perpendicular to the basal planes. The minimum Ed values are determined to be 19 eV and 55 eV for N and Al atom, respectively, which occur along the [ 1 ¯ 1 ¯ 20 ] direction. In general, the threshold displacement energies for N are smaller than those for Al atom, indicating the N defects would be dominant under irradiation. The defect production mechanisms have been analyzed. It is found that charge transfer and redistribution for both the primary knock-on atom and the subsequent recoil atoms play a significant role in defect production and evolution. Similar to the trend in oxide materials, there is a nearly linear relationship between Ed and the total amount of charge transfer at the potential energy peak in AlN, which provides guidance on the development of charge-transfer interatomic potentials for classic molecular dynamics simulations. Finally, the response behavior of AlN to low energy irradiation is qualitatively investigated. The existence of irradiation-induced defects significantly modifies the electronic structure, and thus affects the magnetic, electronic and optical properties of AlN. These findings further enrich the understanding of defects in the wide bandgap semiconductor of AlN.

  2. DFT study on the adsorption behavior and electronic response of AlN nanotube and nanocage toward toxic halothane gas

    NASA Astrophysics Data System (ADS)

    Mohammadi, R.; Hosseinian, A.; Khosroshahi, E. Saedi; Edjlali, L.; Vessally, E.

    2018-04-01

    We have investigated the adsorption of a halothane molecule on the AlN nanotube, and nanocage using density functional theory calculations. We predicted that the halothane molecule tends to be physically adsorbed on the surface of AlN nanotube with adsorption energy (Ead) of -4.2 kcal/mol. The electronic properties of AlN nanotube are not affected by the halothane, and it is not a sensor. But the AlN nanocage is more reactive than the AlN nanotube because of its higher curvature. The halothane tends to be adsorbed on a hexagonal ring, an Alsbnd N bond, and a tetragonal ring of the AlN nanocage. The adsorption ability order is as follows: tetragonal ring (Ead = -14.7 kcal/mol) > Alsbnd N bond (Ead = -12.3 kcal/mol) > hexagonal ring (Ead = -10.1 kcal/mol). When a halothane molecule is adsorbed on the AlN nanocage, its electrical conductivity is increased, demonstrating that it can yield an electronic signal at the presence of this molecule, and can be employed in chemical sensors. The AlN nanocage benefits from a short recovery time of about 58 ms at room temperature.

  3. Calculated defect levels in GaN and AlN and their pressure coefficients

    NASA Astrophysics Data System (ADS)

    Gorczyca, I.; Svane, A.; Christensen, N. E.

    1997-03-01

    Using the Green's function technique based on the linear muffin-tin orbital method in the atomic-spheres approximation we perform self-consistent calculations of the electronic structure of native defects and other impurities in cubic GaN and AlN. Vacancies, antisites and interstitials and some of the most common dopants such as Zn, Mg, Cd, C and Ge are investigated in different charge states. To examine the lattice relaxation effects the super-cell approach in connection with the full-potential linear muffin-tin-orbital method is applied to the aluminum vacancy and the nitrogen antisite in AlN. The influence of hydrostatic pressure on the energy positions of some defect states is also studied.

  4. Stoichiometric control for heteroepitaxial growth of smooth ɛ-Ga2O3 thin films on c-plane AlN templates by mist chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Tahara, Daisuke; Nishinaka, Hiroyuki; Morimoto, Shota; Yoshimoto, Masahiro

    2017-07-01

    Epitaxial ɛ-Ga2O3 thin films with smooth surfaces were successfully grown on c-plane AlN templates by mist chemical vapor deposition. Using X-ray diffraction 2θ-ω and φ scans, the out-of-plane and in-plane epitaxial relationship was determined to be (0001) ɛ-Ga2O3 [10\\bar{1}0] ∥ (0001)AlN[10\\bar{1}0]. The gallium/oxygen ratio was controlled by varying the gallium precursor concentration in the solution. While scanning electron microscopy showed the presence of large grains on the surfaces of the films formed for low concentrations of oxygen species, no large grains were observed under stoichiometric conditions. Cathodoluminescence measurements showed a deep-level emission ranging from 1.55-3.7 eV; however, no band-edge emission was observed.

  5. Infrared blocking, microwave and terahertz low-loss transmission AlN films grown on flexible polymeric substrates

    NASA Astrophysics Data System (ADS)

    Rudenko, E.; Tsybrii, Z.; Sizov, F.; Korotash, I.; Polotskiy, D.; Skoryk, M.; Vuichyk, M.; Svezhentsova, K.

    2017-04-01

    Aluminum nitride (AlN) film coatings on flexible substrates (polymeric Teflon, Mylar) have been obtained using a hybrid helicon-arc ion-plasma deposition technique with high adhesion of coatings. Studies of optical, morphological, and structural properties of AlN films have been carried out. It was found that AlN coatings on Teflon and Mylar thin-film substrates substantially suppress transmission of infrared (IR) radiation within the spectral range λ ˜ 5-20 μm at certain technological parameters and thickness of AlN. Transmission in THz regions by using quasioptics attains T ≈ 79%-95%, and losses measured in the channels within the microwave region 2 to 36 GHz are <0.06 dB. The obtained composite structures (AlN coatings on Teflon and Mylar thin-film substrates), due to a high thermal conductivity of AlN, could be used as efficient blocking structures in the infrared spectral range ("infrared stealth") withdrawing the heat from filters warmed by IR radiation. At the same time, they can be used as the transparent ones in the microwave and THz regions, which can be important for low-temperature detector components of navigation, positioning, and telecommunication systems due to reducing the background noise.

  6. Control of Defects in Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates

    DTIC Science & Technology

    2013-02-01

    Nord, J.; Albe, K.; Erhart, P.; Nordlund, K. Modelling of Compound Semiconductors: Analytical Bond-order Potential for Gallium , Nitrogen and Gallium ...Control of Defects in Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates by Iskander G. Batyrev, Chi-Chin Wu...Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates Iskander G. Batyrev and N. Scott Weingarten Weapons and

  7. A computational study on the electronic and field emission properties of Mg and Si doped AlN nanocones

    NASA Astrophysics Data System (ADS)

    Saedi, Leila; Soleymanabadi, Hamed; Panahyab, Ataollah

    2018-05-01

    Following an experimental work, we explored the effect of replacing an Al atom of an AlN nanocone by Si or Mg atom on its electronic and field emission properties using density functional theory calculations. We found that both Si-doping and Mg-doping increase the electrical conductivity of AlN nanocone, but their influences on the filed emission properties are significantly different. The Si-doping increases the electron concentration of AlN nanocone and results in a large electron mobility and a low work function, whereas Mg-doping leads to a high hole concentration below the conduction level and increases the work function in agreement with the experimental results. It is predicted that Si-doped AlN nanocones show excellent filed emission performance with higher emitted electron current density compared to the pristine AlN nanocone. But the Mg-doping meaningfully decreases the emitted electron current density from the surface of AlN nanocone. The Mg-doping can increase the work function about 41.9% and the Si-doping can decrease it about 6.3%. The Mg-doping and Si-doping convert the AlN nanocone to a p-type and n-type semiconductors, respectively. Our results explain in a molecular level what observed in the experiment.

  8. Spectral features and voltage effects in high-field electroluminescence of AlN filamentary nanocrystals

    NASA Astrophysics Data System (ADS)

    Weinstein, I. A.; Vokhmintsev, A. S.; Chaikin, D. V.; Afonin, Yu. D.

    2016-11-01

    The high-field electroluminescence (EL) spectra for Al-rich AlN nanowhiskers varying applied voltage were studied. The observed 2.70 eV emission, which can be considered as superposition of two Gaussian bands in 2.75 and 2.53 eV, was analyzed. It was shown that Fowler-Nordheim effect took place in EL mechanism with participation of capturing levels of ON- and VN-centers when AlN nanowhiskers were exposed to an external field of 2.5 ÷ 10 V/μm. Obtained results and made conclusions are in a good agreement with independent electron field emission measurements for different one-dimensional AlN nanostructures.

  9. N-polar InGaN-based LEDs fabricated on sapphire via pulsed sputtering

    NASA Astrophysics Data System (ADS)

    Ueno, Kohei; Kishikawa, Eiji; Ohta, Jitsuo; Fujioka, Hiroshi

    2017-02-01

    High-quality N-polar GaN epitaxial films with an atomically flat surface were grown on sapphire (0001) via pulsed sputtering deposition, and their structural and electrical properties were investigated. The crystalline quality of N-polar GaN improves with increasing film thickness and the full width at half maximum values of the x-ray rocking curves for 0002 and 101 ¯ 2 diffraction were 313 and 394 arcsec, respectively, at the film thickness of 6 μ m . Repeatable p-type doping in N-polar GaN films was achieved using Mg dopant, and their hole concentration and mobility can be controlled in the range of 8 × 1016-2 × 1018 cm-3 and 2-9 cm2V-1s-1, respectively. The activation energy of Mg in N-polar GaN based on a temperature-dependent Hall measurement was estimated to be 161 meV, which is comparable to that of the Ga-polar GaN. Based on these results, we demonstrated the fabrication of N-polar InGaN-based light emitting diodes with the long wavelength up to 609 nm.

  10. Investigation of layered structure SAW devices fabricated using low temperature grown AlN thin film on GaN/sapphire.

    PubMed

    Lin, Hui-Feng; Wu, Chun-Te; Chien, Wei-Cheng; Chen, Sheng-Wen; Kao, Hui-Ling; Chyi, Jen-Inn; Chen, Jyh-Shin

    2005-05-01

    Epitaxial AlN films have been grown on GaN/sapphire using helicon sputtering at 300 degrees C. The surface acoustic wave (SAW) filters fabricated on AlN/GaN/sapphire exhibit more superior characteristics than those made on GaN/sapphire. This composite structure of AlN on GaN may bring about the development of high-frequency components, which integrate and use their semiconducting, optoelectronic, and piezoelectric properties.

  11. Properties of planar structures based on Policluster films of diamond and AlN

    NASA Astrophysics Data System (ADS)

    Belyanin, A. F.; Luchnikov, A. P.; Nalimov, S. A.; Bagdasarian, A. S.

    2018-01-01

    AlN films doped with zinc were grown on Si substrates by RF magnetron reactive sputtering of a compound target. Policluster films of diamond doped with boron were formed on layered Si/AlN substrates from the gas phase hydrogen and methane, activated arc discharge. By electron microscopy, X-ray diffraction and Raman spectroscopy the composition and structure of synthetic policluster films of diamond and AlN films were studied. Photovoltaic devices based on the AlN/PFD layered structure are presented.

  12. The influence of AlN interlayers on the microstructural and electrical properties of p-type AlGaN/GaN superlattices grown on GaN/sapphire templates

    NASA Astrophysics Data System (ADS)

    Li, Lei; Liu, Lei; Wang, Lei; Li, Ding; Song, Jie; Liu, Ningyang; Chen, Weihua; Wang, Yuzhou; Yang, Zhijian; Hu, Xiaodong

    2012-09-01

    AlN with different thicknesses were grown as interlayers (ILs) between GaN and p-type Al0.15Ga0.85N/GaN superlattices (SLs) by metal organic vapor phase epitaxy (MOVPE). It was found that the edge-type threading dislocation density (TDD) increased gradually from the minimum of 2.5×109 cm-2 without AlN IL to the maximum of 1×1010 cm-2 at an AlN thickness of 20 nm, while the screw-type TDD remained almost unchanged due to the interface-related TD suppression and regeneration mechanism. We obtained that the edge-type dislocations acted as acceptors in p-type Al x Ga1- x N/GaN SLs, through the comparison of the edge-type TDD and hole concentration with different thicknesses of AlN IL. The Mg activation energy was significantly decreased from 153 to 70 meV with a 10-nm AlN IL, which was attributed to the strain modulation between AlGaN barrier and GaN well. The large activation efficiency, together with the TDs, led to the enhanced hole concentration. The variation trend of Hall mobility was also observed, which originated from the scattering at TDs.

  13. Towards AlN optical cladding layers for thermal management in hybrid lasers

    NASA Astrophysics Data System (ADS)

    Mathews, Ian; Lei, Shenghui; Nolan, Kevin; Levaufre, Guillaume; Shen, Alexandre; Duan, Guang-Hua; Corbett, Brian; Enright, Ryan

    2015-06-01

    Aluminium Nitride (AlN) is proposed as a dual function optical cladding and thermal spreading layer for hybrid ridge lasers, replacing current benzocyclobutene (BCB) encapsulation. A high thermal conductivity material placed in intimate contact with the Multi-Quantum Well active region of the laser allows rapid heat removal at source but places a number of constraints on material selection. AlN is considered the most suitable due to its high thermal conductivity when deposited at low deposition temperatures, similar co-efficient of thermal expansion to InP, its suitable refractive index and its dielectric nature. We have previously simulated the possible reduction in the thermal resistance of a hybrid ridge laser by replacing the BCB cladding material with a material of higher thermal conductivity of up to 319 W/mK. Towards this goal, we demonstrate AlN thin-films deposited by reactive DC magnetron sputtering on InP.

  14. Microstructural analysis in the depth direction of a heteroepitaxial AlN thick film grown on a trench-patterned template by nanobeam X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Shida, K.; Takeuchi, S.; Tohei, T.; Miyake, H.; Hiramatsu, K.; Sumitani, K.; Imai, Y.; Kimura, S.; Sakai, A.

    2018-04-01

    This work quantitatively assessed the three-dimensional distribution of crystal lattice distortions in an epitaxial AlN thick film grown on a trench-patterned template, using nanobeam X-ray diffraction. Position-dependent ω-2θ-φ mapping clearly demonstrated local tilting, spacing and twisting of lattice planes as well as fluctuations in these phenomena on a sub-micrometer scale comparable to the pitch of the trench-and-terrace patterning. Analysis of the crystal lattice distortion in the depth direction was performed using a newly developed method in which the X-ray nanobeam diffracted from the sample surface to specific depths can be selectively detected by employing a Pt wire profiler. This technique generated depth-resolved ω-2θ-φ maps confirming that fluctuations in lattice plane tilting and spacing greatly depend on the dislocation distribution and the history of the AlN epitaxial growth on the trench-patterned structure. It was also found that both fluctuations were reduced on approaching the AlN surface and, in particular, were sharply reduced at specific depths in the terrace regions. These sharp reductions are attributed to the formation of sacrificial zones with degraded crystal quality around the trenches and possibly lead to raising the crystal quality near the surface of the AlN film.

  15. Ab initio molecular dynamics simulations of AlN responding to low energy particle radiation

    DOE PAGES

    Xi, Jianqi; Liu, Bin; Zhang, Yanwen; ...

    2018-01-30

    Ab initio molecular dynamics simulations of low energy recoil events in wurtzite AlN have been performed to determine threshold displacement energies, defect production and evolution mechanisms, role of partial charge transfer during the process, and the influence of irradiation-induced defects on the properties of AlN. Here, the results show that the threshold displacement energies, E d, along the direction parallel to the basal planes are smaller than those perpendicular to the basal planes. The minimum E d values are determined to be 19 eV and 55 eV for N and Al atom, respectively, which occur along the [more » $$\\overline{11}20$$] direction. In general, the threshold displacement energies for N are smaller than those for Al atom, indicating the N defects would be dominant under irradiation. The defect production mechanisms have been analyzed. It is found that charge transfer and redistribution for both the primary knock-on atom and the subsequent recoil atoms play a significant role in defect production and evolution. Similar to the trend in oxide materials, there is a nearly linear relationship between E d and the total amount of charge transfer at the potential energy peak in AlN, which provides guidance on the development of charge-transfer interatomic potentials for classic molecular dynamics simulations. Finally, the response behavior of AlN to low energy irradiation is qualitatively investigated. The existence of irradiation-induced defects significantly modifies the electronic structure, and thus affects the magnetic, electronic and optical properties of AlN. In conclusion, these findings further enrich the understanding of defects in the wide bandgap semiconductor of AlN.« less

  16. Ab initio molecular dynamics simulations of AlN responding to low energy particle radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Jianqi; Liu, Bin; Zhang, Yanwen

    Ab initio molecular dynamics simulations of low energy recoil events in wurtzite AlN have been performed to determine threshold displacement energies, defect production and evolution mechanisms, role of partial charge transfer during the process, and the influence of irradiation-induced defects on the properties of AlN. Here, the results show that the threshold displacement energies, E d, along the direction parallel to the basal planes are smaller than those perpendicular to the basal planes. The minimum E d values are determined to be 19 eV and 55 eV for N and Al atom, respectively, which occur along the [more » $$\\overline{11}20$$] direction. In general, the threshold displacement energies for N are smaller than those for Al atom, indicating the N defects would be dominant under irradiation. The defect production mechanisms have been analyzed. It is found that charge transfer and redistribution for both the primary knock-on atom and the subsequent recoil atoms play a significant role in defect production and evolution. Similar to the trend in oxide materials, there is a nearly linear relationship between E d and the total amount of charge transfer at the potential energy peak in AlN, which provides guidance on the development of charge-transfer interatomic potentials for classic molecular dynamics simulations. Finally, the response behavior of AlN to low energy irradiation is qualitatively investigated. The existence of irradiation-induced defects significantly modifies the electronic structure, and thus affects the magnetic, electronic and optical properties of AlN. In conclusion, these findings further enrich the understanding of defects in the wide bandgap semiconductor of AlN.« less

  17. Strain relaxation in (0001) AlN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Bourret, Alain; Adelmann, Christoph; Daudin, Bruno; Rouvière, Jean-Luc; Feuillet, Guy; Mula, Guido

    2001-06-01

    The strain-relaxation phenomena during the early stages of plasma-assisted molecular-beam epitaxy growth of lattice-mismatched wurtzite (0001) AlN/GaN heterostructures have been studied by real-time recording of the in situ reflection high-energy electron diffraction (RHEED), ex situ transmission electron microscopy (TEM), and atomic-force microscopy. A pseudo-two-dimensional layer-by-layer growth is observed at substrate temperatures of 640-660 °C, as evidenced by RHEED and TEM. However, the variation of the in-plane lattice parameter during growth and after growth has been found to be complex. Three steps have been seen during the deposition of lattice-mismatched AlN and GaN layers: they were interpreted as the succession of the formation of flat platelets, 3-6 monolayers high (0.8-1.5 nm) and 10-20 nm in diameter, their partial coalescence, and gradual dislocation introduction. Platelet formation leads to elastic relaxation as high as 1.8%, i.e., a considerable part of the AlN/GaN lattice mismatch of 2.4%, and can be reversible. Platelets are always observed during the initial stages of growth and are almost insensitive to the metal/N ratio. In contrast, platelet coalescence and dislocation introduction are very dependent on the metal/N ratio: no coalescence occurs and the dislocation introduction rate is higher under N-rich conditions. In all cases, the misfit dislocation density, as measured by the irreversible relaxation, is initially of the order of 7×1011 cm-2 and decreases exponentially with the layer thickness. These results are interpreted in the framework of a model that emphasizes the important role of the flat platelets for dislocation nucleation.

  18. Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD

    NASA Astrophysics Data System (ADS)

    Bryan, Isaac; Bryan, Zachary; Washiyama, Shun; Reddy, Pramod; Gaddy, Benjamin; Sarkar, Biplab; Breckenridge, M. Hayden; Guo, Qiang; Bobea, Milena; Tweedie, James; Mita, Seiji; Irving, Douglas; Collazo, Ramon; Sitar, Zlatko

    2018-02-01

    In order to understand the influence of dislocations on doping and compensation in Al-rich AlGaN, thin films were grown by metal organic chemical vapor deposition (MOCVD) on different templates on sapphire and low dislocation density single crystalline AlN. AlGaN grown on AlN exhibited the highest conductivity, carrier concentration, and mobility for any doping concentration due to low threading dislocation related compensation and reduced self-compensation. The onset of self-compensation, i.e., the "knee behavior" in conductivity, was found to depend only on the chemical potential of silicon, strongly indicating the cation vacancy complex with Si as the source of self-compensation. However, the magnitude of self-compensation was found to increase with an increase in dislocation density, and consequently, AlGaN grown on AlN substrates demonstrated higher conductivity over the entire doping range.

  19. CVD of SiC and AlN using cyclic organometallic precursors

    NASA Technical Reports Server (NTRS)

    Interrante, L. V.; Larkin, D. J.; Amato, C.

    1992-01-01

    The use of cyclic organometallic molecules as single-source MOCVD precursors is illustrated by means of examples taken from our recent work on AlN and SiC deposition, with particular focus on SiC. Molecules containing (AlN)3 and (SiC)2 rings as the 'core structure' were employed as the source materials for these studies. The organoaluminum amide, (Me2AlNH2)3, was used as the AlN source and has been studied in a molecular beam sampling apparatus in order to determine the gas phase species present in a hot-wall CVD reactor environment. In the case of SiC CVD, a series of disilacyclobutanes (Si(XX')CH2)2 (with X and X' = H, CH3, and CH2SiH2CH3), were examined in a cold-wall, hot-stage CVD reactor in order to compare their relative reactivities and prospective utility as single-source CVD precursors. The parent compound, disilacyclobutane, (SiH2CH2)2, was found to exhibit the lowest deposition temperature (ca. 670 C) and to yield the highest purity SiC films. This precursor gave a highly textured, polycrystalline film on the Si(100) substrates.

  20. Native defect properties and p -type doping efficiency in group-IIA doped wurtzite AlN

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Liu, Wen; Niu, Hanben

    2008-01-01

    Using the first-principles full-potential linearized augmented plane-wave (FPLAPW) method based on density functional theory (DFT), we have investigated the native defect properties and p -type doping efficiency in AlN doped with group-IIA elements such as Be, Mg, and Ca. It is shown that nitrogen vacancies (VN) have low formation energies and introduce deep donor levels in wurtzite AlN, while in zinc blende AlN and GaN, these levels are reported to be shallow. The calculated acceptor levels γ(0/-) for substitutional Be (BeAl) , Mg (MgAl) , and Ca (CaAl) are 0.48, 0.58, and 0.95eV , respectively. In p -type AlN, Be interstitials (Bei) , which act as donors, have low formation energies, making them a likely compensating center in the case of acceptor doping. Whereas, when N-rich growth conditions are applied, Bei are energetically not favorable. It is found that p -type doping efficiency of substitutional Be, Mg, and Ca impurities in w-AlN is affected by atomic size and electronegativity of dopants. Among the three dopants, Be may be the best candidate for p -type w-AlN . N-rich growth conditions help us to increase the concentration of BeAl , MgAl , and CaAl .

  1. Giant increase in piezoelectric coefficient of AlN by Mg-Nb simultaneous addition and multiple chemical states of Nb

    NASA Astrophysics Data System (ADS)

    Uehara, Masato; Shigemoto, Hokuto; Fujio, Yuki; Nagase, Toshimi; Aida, Yasuhiro; Umeda, Keiichi; Akiyama, Morito

    2017-09-01

    Aluminum nitride (AlN) is one of piezoelectric materials, which are eagerly anticipated for use in microelectromechanical systems (MEMS) applications such as communication resonators, sensors, and energy harvesters. AlN is particularly excellent in generated voltage characteristics for the MEMS rather than oxide piezoelectric materials such as lead zirconium titanate Pb(Zr, Ti)O3. However, it is necessary to improve the piezoelectric properties of AlN in order to advance the performance of the MEMS. We dramatically increased the piezoelectric coefficient d33 of AlN films by simultaneously adding magnesium (Mg) and niobium (Nb). The d33 of Mg39.3Nb25.0Al35.7N is 22 pC/N, which is about four times that of AlN. The d33 is increased by Mg and Nb simultaneous addition, and is not increased by Mg or Nb single addition. Interestingly, the Nb has multiple chemical states, and which are influenced by the Mg concentration.

  2. Mass sensing AlN sensors for waste water monitoring

    NASA Astrophysics Data System (ADS)

    Porrazzo, R.; Potter, G.; Lydecker, L.; Foraida, Z.; Gattu, S.; Tokranova, N.; Castracane, J.

    2014-08-01

    Monitoring the presence of nanomaterials in waste water from semiconductor facilities is a critical task for public health organizations. Advanced semiconductor technology allows the fabrication of sensitive piezoelectric-based mass sensors with a detection limit of less than 1.35 ng/cm2 of nanomaterials such as nanoparticles of alumina, amorphous silica, ceria, etc. The interactions between acoustic waves generated by the piezoelectric sensor and nanomaterial mass attached to its surface define the sensing response as a shift in the resonant frequency. In this article the development and characterization of a prototype AlN film bulk acoustic resonator (FBAR) are presented. DC reactive magnetron sputtering was used to create tilted c-axis oriented AlN films to generate shear waves which don't propagate in liquids thus minimizing the acoustic losses. The high acoustic velocity of AlN over quartz allows an increase in resonance frequency in comparison with a quartz crystal microbalance (QCM) and results in a higher frequency shift per mass change, and thus greater sensitivity. The membrane and electrodes were fabricated using state of the art semiconductor technology. The device surface functionalization was performed to demonstrate selectivity towards a specific nanomaterial. As a result, the devices were covered with a "docking" layer that allows the nanomaterials to be selectively attached to the surface. This was achieved using covalent modification of the surface, specifically targeting ZnO nanoparticles. Our functionalization approach was tested using two different types of nanoparticles, and binding specificity was confirmed with various analytical techniques.

  3. Growth of crack-free GaN films on Si(111) substrate by using Al-rich AlN buffer layer

    NASA Astrophysics Data System (ADS)

    Lu, Yuan; Cong, Guangwei; Liu, Xianglin; Lu, Da-Cheng; Zhu, Qinsheng; Wang, Xiaohui; Wu, Jiejun; Wang, Zhanguo

    2004-11-01

    GaN epilayers were grown on Si(111) substrate by metalorganic chemical vapor deposition. By using the Al-rich AlN buffer which contains Al beyond stoichiometry, crack-free GaN epilayers with 1 μm thickness were obtained. Through x-ray diffraction (XRD) and secondary ion mass spectroscopy analyses, it was found that a lot of Al atoms have diffused into the under part of the GaN epilayer from the Al-rich AlN buffer, which results in the formation of an AlxGa1-xN layer at least with 300 nm thickness in the 1 μm thick GaN epilayer. The Al fraction x was estimated by XRD to be about 2.5%. X-ray photoelectron spectroscopy depth analysis was also applied to investigate the stoichiometry in the Al-rich buffer before GaN growth. It is suggested that the underlayer AlxGa1-xN originated from Al diffusion probably provides a compressive stress to the upper part of the GaN epilayer, which counterbalances a part of tensile stress in the GaN epilayer during cooling down and consequently reduces the cracks of the film effectively. The method using the Al diffusion effect to form a thick AlGaN layer is really feasible to achieve the crack-free GaN films and obtain a high crystal quality simultaneously.

  4. Fabrication and characterization of AlN metal-insulator-semiconductor grown Si substrate

    NASA Astrophysics Data System (ADS)

    Mahyuddin, A.; Azrina, A.; Mohd Yusoff, M. Z.; Hassan, Z.

    2017-11-01

    An experimental investigation was conducted to explore the effect of inserting a single AlGaN interlayer between AlN epilayer and GaN/AlN heterostructures on Si (111) grown by molecular beam epitaxy (MBE). It is confirmed from the scanning electron microscopy (SEM) that the AlGaN interlayer has a remarkable effect on reducing the tensile stress and dislocation density in AlN top layer. Capacitance-voltage (C-V) measurements were conducted to study the electrical properties of AlN/GaN heterostructures. While deriving the findings through the calculation it is suggested that the AlGaN interlayer can significantly reduce the value of effective oxide charge density and total effective number of charges per unit area which are 1.37 × 10-6C/cm2 and 8.55 × 1012cm-2, respectively.

  5. AlN grown on Si(1 1 1) by ammonia-molecular beam epitaxy in the 900-1200 °C temperature range

    NASA Astrophysics Data System (ADS)

    Tamariz, Sebastian; Martin, Denis; Grandjean, Nicolas

    2017-10-01

    We present a comprehensive study of AlN growth on Si(1 1 1) substrate by gas source molecular beam epitaxy with ammonia as nitrogen precursor in the high temperature range. We first demonstrate that the observation of the silicon 7 × 7 surface reconstruction by reflection high energy electron diffraction can be misleading as this technique is not sensitive to low density surface defects like SiC crystallites. A careful in situ cleaning procedure with annealing cycles at 1100 °C allows getting rid of any surface defects, as shown by atomic force microscopy imaging. Then, we explore the effect of the growth temperature on the surface morphology and structural properties of 100 nm thick AlN epilayers. At 1200 °C, the growth proceeds with the step flow mode regime, which induces spiral-growth around screw-type dislocations and therefore surface roughening. On the other hand, a smooth surface morphology can be achieved by setting the temperature at 1100 °C, which corresponds to the growth mode transition from two-dimensional nucleation to step flow. A further decrease of the growth temperature to 900 °C leads to surface defects ascribed to polarity inversion domains. Similar defects are observed for growths performed at 1100 °C when the NH3 flow is reduced below 100 sccm. This points out the sensitivity of AlN to the surface stoichiometry.

  6. Mechanical and Thermophysical Properties of Cubic Rock-Salt AlN Under High Pressure

    NASA Astrophysics Data System (ADS)

    Lebga, Noudjoud; Daoud, Salah; Sun, Xiao-Wei; Bioud, Nadhira; Latreche, Abdelhakim

    2018-03-01

    Density functional theory, density functional perturbation theory, and the Debye model have been used to investigate the structural, elastic, sound velocity, and thermodynamic properties of AlN with cubic rock-salt structure under high pressure, yielding the equilibrium structural parameters, equation of state, and elastic constants of this interesting material. The isotropic shear modulus, Pugh ratio, and Poisson's ratio were also investigated carefully. In addition, the longitudinal, transverse, and average elastic wave velocities, phonon contribution to the thermal conductivity, and interesting thermodynamic properties were predicted and analyzed in detail. The results demonstrate that the behavior of the elastic wave velocities under increasing hydrostatic pressure explains the hardening of the corresponding phonons. Based on the elastic stability criteria under pressure, it is found that AlN with cubic rock-salt structure is mechanically stable, even at pressures up to 100 GPa. Analysis of the Pugh ratio and Poisson's ratio revealed that AlN with cubic rock-salt structure behaves in brittle manner.

  7. AlGaN-based ultraviolet light-emitting diodes on sputter-deposited AlN templates with epitaxial AlN/AlGaN superlattices

    NASA Astrophysics Data System (ADS)

    Zhao, Lu; Zhang, Shuo; Zhang, Yun; Yan, Jianchang; Zhang, Lian; Ai, Yujie; Guo, Yanan; Ni, Ruxue; Wang, Junxi; Li, Jinmin

    2018-01-01

    We demonstrate AlGaN-based ultraviolet light-emitting diodes (UV-LEDs) grown by metalorganic chemical vapor deposition (MOCVD) on sputter-deposited AlN templates upon sapphire substrates. An AlN/AlGaN superlattices structure is inserted as a dislocation filter between the LED structure and the AlN template. The full width at half maximum values for (0002) and (10 1 bar 2) X-ray rocking curves of the n-type Al0.56Ga0.44N layer are 513 and 1205 arcsec, respectively, with the surface roughness of 0.52 nm. The electron concentration and mobility measured by Hall measurement are 9.3 × 1017cm-3 and 54 cm2/V·s at room temperature, respectively. The light output power of a 282-nm LED reaches 0.28 mW at 20 mA with an external quantum efficiency of 0.32%. And the values of leakage current and forward voltage of the LEDs are ∼3 nA at -10 V and 6.9 V at 20 mA, respectively, showing good electrical performance. It is expected that the cost of the UV-LED can be reduced by using sputter-deposited AlN template.

  8. A Comparative Study of Thermal Conductivity and Tribological Behavior of Squeeze Cast A359/AlN and A359/SiC Composites

    NASA Astrophysics Data System (ADS)

    Shalaby, Essam. A. M.; Churyumov, Alexander. Yu.; Besisa, Dina. H. A.; Daoud, A.; Abou El-khair, M. T.

    2017-07-01

    A comparative study of thermal and wear behavior of squeeze cast A359 alloy and composites containing 5, 10 and 15 wt.% AlN and SiC particulates was investigated. It was pointed out that A359/AlN composites have a superior thermal conductivity as compared to A359 alloy or even to A359/SiC composites. Composites wear characteristics were achieved by pins-on-disk instrument over a load range of 20-60 N and a sliding speed of 2.75 m/s. Results showed that A359/AlN and A359/SiC composites exhibited higher wear resistance values compared to A359 alloy. Moreover, A359/AlN composites showed superior values of wear resistance than A359/SiC composites at relatively high loads. Friction coefficients and contact surface temperature for A359/AlN specimens decreased as AlN content increased, while they increased for A359/SiC. Investigations of worn surfaces revealed that A359/AlN composites were covered up by aluminum nitrides and iron oxides, which acted as smooth layers. However, A359/SiC composites were mainly covered only by iron oxides. The superior thermal conductivity and the significant wear resistance of the developed A359/AlN composites provided a high durable material suitable for industrial applications.

  9. Growth of GaN nanostructures with polar and semipolar orientations for the fabrication of UV LEDs

    NASA Astrophysics Data System (ADS)

    Brault, Julien; Damilano, Benjamin; Courville, Aimeric; Leroux, Mathieu; Kahouli, Abdelkarim; Korytov, Maxim; Vennéguès, Philippe; Randazzo, Gaetano; Chenot, Sébastien; Vinter, Borge; De Mierry, Philippe; Massies, Jean; Rosales, Daniel; Bretagnon, Thierry; Gil, Bernard

    2014-03-01

    (Al,Ga)N light emitting diodes (LEDs), emitting over a large spectral range from 360 nm (GaN) down to 210 nm (AlN), have been successfully fabricated over the last decade. Clear advantages compared to the traditional mercury lamp technology (e.g. compactness, low-power operation, lifetime) have been demonstrated. However, LED efficiencies still need to be improved. The main problems are related to the structural quality and the p-type doping efficiency of (Al,Ga)N. Among the current approaches, GaN nanostructures, which confine carriers along both the growth direction and the growth plane, are seen as a solution for improving the radiative recombination efficiency by strongly reducing the impact of surrounding defects. Our approach, based on a 2D - 3D growth mode transition in molecular beam epitaxy, can lead to the spontaneous formation of GaN nanostructures on (Al,Ga)N over a broad range of Al compositions. Furthermore, the versatility of the process makes it possible to fabricate nanostructures on both (0001) oriented "polar" and (11 2 2) oriented "semipolar" materials. We show that the change in the crystal orientation has a strong impact on the morphological and optical properties of the nanostructures. The influence of growth conditions are also investigated by combining microscopy (SEM, TEM) and photoluminescence techniques. Finally, their potential as UV emitters will be discussed and the performances of GaN / (Al,Ga)N nanostructure-based LED demonstrators are presented.

  10. Growth and Comparison of Residual Stress of AlN Films on Silicon (100), (110) and (111) Substrates

    NASA Astrophysics Data System (ADS)

    Pandey, Akhilesh; Dutta, Shankar; Prakash, Ravi; Raman, R.; Kapoor, Ashok Kumar; Kaur, Davinder

    2018-02-01

    This paper reports on the comparison of residual stresses in AlN thin films sputter-deposited in identical conditions on Si (100) (110) and (111) substrates. The deposited films are of polycrystalline wurtzite structure with preferred orientation along the (002) direction. AlN film on the Si (111) substrate showed a vertical columnar structure, whereas films on Si (100) and (110) showed tilted columnar structures. Residual stress in the AlN films is estimated by x-ray diffraction (XRD), infra-red absorption method and wafer curvature technique. Films residual stress are found compressive and values are in the range of - 650 (± 50) MPa, - 730 (± 50) MPa and - 300 (± 50) MPa for the AlN films grown on Si (100), (110) and (111) substrates, respectively, with different techniques. The difference in residual stresses can be attributed to the microstructure of the films and mismatch between in plane atomic arrangements of the film and substrates.

  11. Broadband tunable microwave photonic phase shifter with low RF power variation in a high-Q AlN microring.

    PubMed

    Liu, Xianwen; Sun, Changzheng; Xiong, Bing; Wang, Jian; Wang, Lai; Han, Yanjun; Hao, Zhibiao; Li, Hongtao; Luo, Yi; Yan, Jianchang; Wei, Tong Bo; Zhang, Yun; Wang, Junxi

    2016-08-01

    An all-optically tunable microwave photonic phase shifter is demonstrated based on an epitaxial aluminum nitride (AlN) microring with an intrinsic quality factor of 3.2×106. The microring adopts a pedestal structure, which allows overcoupling with 700 nm gap size and facilitates the fabrication process. A phase shift for broadband signals from 4 to 25 GHz is demonstrated by employing the thermo-optic effect and the separate carrier tuning technique. A phase tuning range of 0°-332° is recorded with a 3 dB radio frequency (RF) power variation and 48 mW optical power consumption. In addition, AlN exhibits intrinsic second-order optical nonlinearity. Thus, our work presents a novel platform with a low propagation loss and the capability of electro-optic modulation for applications in integrated microwave photonics.

  12. Spin injection in epitaxial MnGa(111)/GaN(0001) heterostructures

    NASA Astrophysics Data System (ADS)

    Zube, Christian; Malindretos, Joerg; Watschke, Lars; Zamani, Reza R.; Disterheft, David; Ulbrich, Rainer G.; Rizzi, Angela; Iza, Michael; Keller, Stacia; DenBaars, Steven P.

    2018-01-01

    Ferromagnetic MnGa(111) layers were grown on GaN(0001) by molecular beam epitaxy. MnGa/GaN Schottky diodes with a doping level of around n = 7 × 1018 cm-3 were fabricated to achieve single step tunneling across the metal/semiconductor junction. Below the GaN layer, a thin InGaN quantum well served as optical spin detector ("spin-LED"). For electron spin injection from MnGa into GaN and subsequent spin transport through a 45 nm (70 nm) thick GaN layer, we observe a circular polarization of 0.3% (0.2%) in the electroluminescence at 80 K. Interface mixing, spin polarization losses during electrical transport in the GaN layer, and spin relaxation in the InGaN quantum well are discussed in relation with the low value of the optically detected spin polarization.

  13. Improved Gate Dielectric Deposition and Enhanced Electrical Stability for Single-Layer MoS2 MOSFET with an AlN Interfacial Layer

    PubMed Central

    Qian, Qingkai; Li, Baikui; Hua, Mengyuan; Zhang, Zhaofu; Lan, Feifei; Xu, Yongkuan; Yan, Ruyue; Chen, Kevin J.

    2016-01-01

    Transistors based on MoS2 and other TMDs have been widely studied. The dangling-bond free surface of MoS2 has made the deposition of high-quality high-k dielectrics on MoS2 a challenge. The resulted transistors often suffer from the threshold voltage instability induced by the high density traps near MoS2/dielectric interface or inside the gate dielectric, which is detrimental for the practical applications of MoS2 metal-oxide-semiconductor field-effect transistor (MOSFET). In this work, by using AlN deposited by plasma enhanced atomic layer deposition (PEALD) as an interfacial layer, top-gate dielectrics as thin as 6 nm for single-layer MoS2 transistors are demonstrated. The AlN interfacial layer not only promotes the conformal deposition of high-quality Al2O3 on the dangling-bond free MoS2, but also greatly enhances the electrical stability of the MoS2 transistors. Very small hysteresis (ΔVth) is observed even at large gate biases and high temperatures. The transistor also exhibits a low level of flicker noise, which clearly originates from the Hooge mobility fluctuation instead of the carrier number fluctuation. The observed superior electrical stability of MoS2 transistor is attributed to the low border trap density of the AlN interfacial layer, as well as the small gate leakage and high dielectric strength of AlN/Al2O3 dielectric stack. PMID:27279454

  14. Improved Gate Dielectric Deposition and Enhanced Electrical Stability for Single-Layer MoS2 MOSFET with an AlN Interfacial Layer.

    PubMed

    Qian, Qingkai; Li, Baikui; Hua, Mengyuan; Zhang, Zhaofu; Lan, Feifei; Xu, Yongkuan; Yan, Ruyue; Chen, Kevin J

    2016-06-09

    Transistors based on MoS2 and other TMDs have been widely studied. The dangling-bond free surface of MoS2 has made the deposition of high-quality high-k dielectrics on MoS2 a challenge. The resulted transistors often suffer from the threshold voltage instability induced by the high density traps near MoS2/dielectric interface or inside the gate dielectric, which is detrimental for the practical applications of MoS2 metal-oxide-semiconductor field-effect transistor (MOSFET). In this work, by using AlN deposited by plasma enhanced atomic layer deposition (PEALD) as an interfacial layer, top-gate dielectrics as thin as 6 nm for single-layer MoS2 transistors are demonstrated. The AlN interfacial layer not only promotes the conformal deposition of high-quality Al2O3 on the dangling-bond free MoS2, but also greatly enhances the electrical stability of the MoS2 transistors. Very small hysteresis (ΔVth) is observed even at large gate biases and high temperatures. The transistor also exhibits a low level of flicker noise, which clearly originates from the Hooge mobility fluctuation instead of the carrier number fluctuation. The observed superior electrical stability of MoS2 transistor is attributed to the low border trap density of the AlN interfacial layer, as well as the small gate leakage and high dielectric strength of AlN/Al2O3 dielectric stack.

  15. Oxygen adsorption and incorporation at irradiated GaN(0001) and GaN(0001¯) surfaces: First-principles density-functional calculations

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Selloni, Annabella; Myers, T. H.; Doolittle, W. Alan

    2006-11-01

    Density functional theory calculations of oxygen adsorption and incorporation at the polar GaN(0001) and GaN(0001¯) surfaces have been carried out to explain the experimentally observed reduced oxygen concentration in GaN samples grown by molecular beam epitaxy in the presence of high energy (˜10keV) electron beam irradiation [Myers , J. Vac. Sci. Technol. B 18, 2295 (2000)]. Using a model in which the effect of the irradiation is to excite electrons from the valence to the conduction band, we find that both the energy cost of incorporating oxygen impurities in deeper layers and the oxygen adatom diffusion barriers are significantly reduced in the presence of the excitation. The latter effect leads to a higher probability for two O adatoms to recombine and desorb, and thus to a reduced oxygen concentration in the irradiated samples, consistent with experimental observations.

  16. Acoustic resonator with Al electrodes on an AlN layer and using a GaAs substrate

    DOEpatents

    Kline, Gerald R.; Lakin, Kenneth M.

    1985-12-03

    A method of fabricating an acoustic wave resonator wherein all processing steps are accomplished from a single side of said substrate. The method involves deposition of a multi-layered Al/AlN structure on a GaAs substrate followed by a series of fabrication steps to define a resonator from said composite. The resulting resonator comprises an AlN layer between two Al layers and another layer of AlN on an exterior of one of said Al layers.

  17. AlN and Al oxy-nitride gate dielectrics for reliable gate stacks on Ge and InGaAs channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Y.; Li, H.; Robertson, J.

    2016-05-28

    AlN and Al oxy-nitride dielectric layers are proposed instead of Al{sub 2}O{sub 3} as a component of the gate dielectric stacks on higher mobility channels in metal oxide field effect transistors to improve their positive bias stress instability reliability. It is calculated that the gap states of nitrogen vacancies in AlN lie further away in energy from the semiconductor band gap than those of oxygen vacancies in Al{sub 2}O{sub 3}, and thus AlN might be less susceptible to charge trapping and have a better reliability performance. The unfavourable defect energy level distribution in amorphous Al{sub 2}O{sub 3} is attributed tomore » its larger coordination disorder compared to the more symmetrically bonded AlN. Al oxy-nitride is also predicted to have less tendency for charge trapping.« less

  18. A conduction model for contacts to Si-doped AlGaN grown on sapphire and single-crystalline AlN

    NASA Astrophysics Data System (ADS)

    Haidet, Brian B.; Bryan, Isaac; Reddy, Pramod; Bryan, Zachary; Collazo, Ramón; Sitar, Zlatko

    2015-06-01

    Ohmic contacts to AlGaN grown on sapphire substrates have been previously demonstrated for various compositions of AlGaN, but contacts to AlGaN grown on native AlN substrates are more difficult to obtain. In this paper, a model is developed that describes current flow through contacts to Si-doped AlGaN. This model treats the current through reverse-biased Schottky barriers as a consequence of two different tunneling-dependent conduction mechanisms in parallel, i.e., Fowler-Nordheim emission and defect-assisted Frenkel-Poole emission. At low bias, the defect-assisted tunneling dominates, but as the potential across the depletion region increases, tunneling begins to occur without the assistance of defects, and the Fowler-Nordheim emission becomes the dominant conduction mechanism. Transfer length method measurements and temperature-dependent current-voltage (I-V) measurements of Ti/Al-based contacts to Si-doped AlGaN grown on sapphire and AlN substrates support this model. Defect-assisted tunneling plays a much larger role in the contacts to AlGaN on sapphire, resulting in nearly linear I-V characteristics. In contrast, contacts to AlGaN on AlN show limited defect-assisted tunneling appear to be only semi-Ohmic.

  19. Frequency response improvement of a two-port surface acoustic wave device based on epitaxial AlN thin film

    NASA Astrophysics Data System (ADS)

    Gao, Junning; Hao, Zhibiao; Luo, Yi; Li, Guoqiang

    2018-01-01

    This paper presents an exploration on improving the frequency response of the symmetrical two-port AlN surface acoustic wave (SAW) device, using epitaxial AlN thin film on (0001) sapphire as the piezoelectric substrate. The devices were fabricated by lift-off processes with Ti/Al composite electrodes as interleaved digital transducers (IDT). The impact of DL and the number of the IDT finger pairs on the frequency response was carefully investigated. The overall properties of the device are found to be greatly improved with DL elongation, indicated by the reduced pass band ripple and increased stop band rejection ratio. The rejection increases by 8.3 dB when DL elongates from 15.5λ to 55.5λ and 4.4 dB further accompanying another 50λ elongation. This is because larger DL repels the stray acoustic energy out of the propagation path and provides a cleaner traveling channel for functional SAW, and at the same time restrains electromagnetic feedthrough. It is also found that proper addition of the IDT finger pairs is beneficial for the device response, indicated by the ripple reduction and the insertion loss drop.

  20. Synthesis of Nano-Size AlN Powders by Carbothermal Reduction from Plasma-Assisted Ball Milling Precursor

    NASA Astrophysics Data System (ADS)

    Liu, Zhijie; Wang, Wenchun; Yang, Dezheng; Wang, Sen; Dai, Leyang

    2016-07-01

    Nano-size aluminum nitride (AlN) powders have been successfully synthesized with a high efficiency method through annealing from milling assisted by discharge plasma (p-milling) alumina (Al2O3) precursors. The characterization of the p-milling Al2O3 powders and the synthesized AlN are investigated. Compared to conventional ball milling (c-milling), it can be found that the precursors by p-milling have a finer grain size with a higher specific surface area, which lead to a faster reaction efficiency and higher conversion to AlN at lower temperatures. The activation energy of p-milling Al2O3 is found to be 371.5 kJ/mol, a value that is much less than the reported value of the unmilled and the conventional milled Al2O3. Meanwhile, the synthesized AlN powders have unique features, such as an irregular lamp-like morphology with uniform particle distribution and fine average particle size. The results are attributed to the unique synergistic effect of p-milling, which is the effect of deformation, fracture, and cold welding of Al2O3 powders resulting from ball milling, that will be enhanced due to the introduction of discharge plasma. supported by National Natural Science Foundation of China (No. 51177008)

  1. Tuning the polarization-induced free hole density in nanowires graded from GaN to AlN

    NASA Astrophysics Data System (ADS)

    Golam Sarwar, A. T. M.; Carnevale, Santino D.; Kent, Thomas F.; Yang, Fan; McComb, David W.; Myers, Roberto C.

    2015-01-01

    We report a systematic study of p-type polarization-induced doping in graded AlGaN nanowire light emitting diodes grown on silicon wafers by plasma-assisted molecular beam epitaxy. The composition gradient in the p-type base is varied in a set of samples from 0.7%Al/nm to 4.95%Al/nm corresponding to negative bound polarization charge densities of 2.2 × 1018 cm-3 to 1.6 × 1019 cm-3. Capacitance measurements and energy band modeling reveal that for gradients greater than or equal to 1.30%Al/nm, the deep donor concentration is negligible and free hole concentrations roughly equal to the bound polarization charge density are achieved up to 1.6 × 1019 cm-3 at a gradient of 4.95%Al/nm. Accurate grading lengths in the p- and n-side of the pn-junction are extracted from scanning transmission electron microscopy images and are used to support energy band calculation and capacitance modeling. These results demonstrate the robust nature of p-type polarization doping in nanowires and put an upper bound on the magnitude of deep donor compensation.

  2. Effect of quantum-well thickness on the optical polarization of AlGaN-based ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Zhang, Jing

    2018-02-01

    Optical polarization from AlGaN quantum well (QW) is crucial for realizing high-efficiency deep-ultraviolet (UV) light-emitting diodes (LEDs) because it determines the light emission patterns and light extraction mechanism of the devices. As the Al-content of AlGaN QW increases, the valence bands order changes and consequently the light polarization switches from transverse-electric (TE) to transverse-magnetic (TM) owing to the different sign and the value of the crystal field splitting energy between AlN (-169meV) and GaN (10meV). Several groups have reported that the ordering of the bands and the TE/TM crossover Al-content could be influenced by the strain state and the quantum confinement from the AlGaN QW system. In this work, we investigate the influence of QW thickness on the optical polarization switching point from AlGaN QW with AlN barriers by using 6-band k•p model. The result presents a decreasing trend of the critical Al-content where the topmost valence band switches from heave hole (HH) to crystal field spilt-off (CH) with increasing QW thicknesses due to the internal electric field and the strain state from the AlGaN QW. Instead, the TE- and TM-polarized spontaneous emission rates switching Al-content rises first and falls later because of joint consequence of the band mixing effect and the Quantum Confined Stark Effect. The reported optical polarization from AlGaN QW emitters in the UV spectral range is assessed in this work and the tendency of the polarization switching point shows great consistency with the theoretical results, which deepens the understanding of the physics from AlGaN QW UV LEDs.

  3. Deposition of Cubic AlN Films on MgO (100) Substrates by Laser Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Mo, Z. K.; Yang, W. J.; Weng, Y.; Fu, Y. C.; He, H.; Shen, X. M.

    2017-12-01

    Cubic AlN (c-AlN) films were deposited on MgO (100) substrates by laser molecular beam epitaxy (LMBE) technique. The crystal structure and surface morphology of deposited films with various laser pulse energy and substrate temperature were investigated. The results indicate that c-AlN films exhibit the (200) preferred orientation, showing a good epitaxial relationship with the substrate. The surface roughness of c-AlN films increases when the laser pulse energy and substrate temperature increase. The film grown at laser pulse energy of 150 mJ and substrate temperature of 700 °C shows the best crystalline quality and relatively smooth surface.

  4. Improving the light output power of DUV-LED by introducing an intrinsic last quantum barrier interlayer on the high-quality AlN template

    NASA Astrophysics Data System (ADS)

    Tsai, Chia-Lung; Liu, Hsueh-Hsing; Chen, Jun-Wei; Lu, Chien-Pin; Ikenaga, Kazutada; Tabuchi, Toshiya; Matsumoto, Koh; Fu, Yi-Keng

    2017-12-01

    We demonstrate that the light output power of deep ultraviolet light-emitting diodes (DUV-LEDs) can be improved by introducing an intrinsic last quantum barrier interlayer to a high quality AlN template. The light output power of the DUV-LEDs can be doubled by substituting the last quantum barrier with an intrinsic last quantum barrier (u-LQB)/Mg-doped LQB for only pure u-LQB in the same thickness with a 35 A/cm2 injection current. It is believed that the improved performance of the DUV LED could be attributed to the decreased diffusion of Mg tunneling into MQW and the reduction of sub-band parasitic emissions.

  5. Polarity determination of polar and semipolar (112¯2) InN and GaN layers by valence band photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Skuridina, D.; Dinh, D. V.; Lacroix, B.; Ruterana, P.; Hoffmann, M.; Sitar, Z.; Pristovsek, M.; Kneissl, M.; Vogt, P.

    2013-11-01

    We demonstrate that the polarity of polar (0001), (0001¯) and semipolar (112¯2) InN and GaN thin layers can be determined by valence band X-ray photoemission spectroscopy (XPS). The polarity of the layers has been confirmed by wet etching and convergent beam electron diffraction. Unlike these two techniques, XPS is a non-destructive method and unaffected by surface oxidation or roughness. Different intensities of the valence band states in spectra recorded by using AlKα X-ray radiation are observed for N-polar and group-III-polar layers. The highest intensity of the valence band state at ≈3.5 eV for InN and ≈5.2 eV for GaN correlates with the group-III polarity, while the highest intensity at ≈6.7 eV for InN and ≈9.5 eV for GaN correlates with the N-polarity. The difference between the peaks for the group-III- and N-polar orientations was found to be statistically significant at the 0.05 significance level. The polarity of semipolar (112¯2) InN and GaN layers can be determined by recording valence band photoelectrons emitted along the [000 ± 1] direction.

  6. Design and Optimization of AlN based RF MEMS Switches

    NASA Astrophysics Data System (ADS)

    Hasan Ziko, Mehadi; Koel, Ants

    2018-05-01

    Radio frequency microelectromechanical system (RF MEMS) switch technology might have potential to replace the semiconductor technology in future communication systems as well as communication satellites, wireless and mobile phones. This study is to explore the possibilities of RF MEMS switch design and optimization with aluminium nitride (AlN) thin film as the piezoelectric actuation material. Achieving low actuation voltage and high contact force with optimal geometry using the principle of piezoelectric effect is the main motivation for this research. Analytical and numerical modelling of single beam type RF MEMS switch used to analyse the design parameters and optimize them for the minimum actuation voltage and high contact force. An analytical model using isotropic AlN material properties used to obtain the optimal parameters. The optimized geometry of the device length, width and thickness are 2000 µm, 500 µm and 0.6 µm respectively obtained for the single beam RF MEMS switch. Low actuation voltage and high contact force with optimal geometry are less than 2 Vand 100 µN obtained by analytical analysis. Additionally, the single beam RF MEMS switch are optimized and validated by comparing the analytical and finite element modelling (FEM) analysis.

  7. Radiative Properties of Ceramic Al2O3, AlN and Si3N4—II: Modeling

    NASA Astrophysics Data System (ADS)

    Yang, Peiyan; Cheng, Qiang; Zhang, Zhuomin

    2017-08-01

    In Part I of this study (Cheng et al. in Int J Thermophys 37: 62, 2016), the reflectance and transmittance of dense ceramic plates were measured at wavelengths from 0.4 μm to about 20 μm. The samples of Al2O3 and AlN are semitransparent in the wavelength region from 0.4 μm to about 7 μm, where volume scattering dominates the absorption and scattering behaviors. On the other hand, the Si3N4 plate is opaque in the whole wavelength region. In the mid-infrared region, all samples show phonon vibration bands and surface reflection appears to be strong. The present study focuses on modeling the radiative properties and uses an inverse method to obtain the scattering and absorption coefficients of Al2O3 and AlN in the semitransparent region from the measured directional-hemispherical reflectance and transmittance. The scattering coefficient is also predicted using Mie theory for comparison. The Lorentz oscillator model is applied to fit the reflectance spectra of AlN and Si3N4 from 1.6 μm to 20 μm in order to obtain their optical constants. It is found that the phonon modes for Si3N4 are much stronger in the polycrystalline sample studied here than in amorphous films reported previously.

  8. Al{sub x}Ga{sub 1−x}N-based solar-blind ultraviolet photodetector based on lateral epitaxial overgrowth of AlN on Si substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cicek, E.; McClintock, R.; Cho, C. Y.

    2013-10-28

    We report on Al{sub x}Ga{sub 1−x}N-based solar-blind ultraviolet (UV) photodetector (PD) grown on Si(111) substrate. First, Si(111) substrate is patterned, and then metalorganic chemical vapor deposition is implemented for a fully-coalesced ∼8.5 μm AlN template layer via a pulsed atomic layer epitaxial growth technique. A back-illuminated p-i-n PD structure is subsequently grown on the high quality AlN template layer. After processing and implementation of Si(111) substrate removal, the optical and electrical characteristic of PDs are studied. Solar-blind operation is observed throughout the array; at the peak detection wavelength of 290 nm, 625 μm{sup 2} area PD showed unbiased peak externalmore » quantum efficiency and responsivity of ∼7% and 18.3 mA/W, respectively, with a UV and visible rejection ratio of more than three orders of magnitude. Electrical measurements yielded a low-dark current density below 1.6 × 10{sup −8} A/cm{sup 2} at 10 V reverse bias.« less

  9. Mechanically controlling the reversible phase transformation from zinc blende to wurtzite in AlN

    DOE PAGES

    Li, Zhen; Yadav, Satyesh; Chen, Youxing; ...

    2017-04-10

    III–V and other binary octet semiconductors often take two phase forms—wurtzite (wz) and zinc blende (zb) crystal structures—with distinct functional performance at room temperature. Here, we investigate how to control the synthesized phase structure to either wz or zb phase by tuning the interfacial strain by taking AlN as a representative III–V compound. Furthermore, by applying in situ mechanical tests at atomic scale in a transmission electron microscope, we observed the reversible phase transformation from zb to wz, and characterized the transition path—the collective glide of Shockley partials on every two {111} planes of the zb AlN.

  10. Emerging methanol-tolerant AlN nanowire oxygen reduction electrocatalyst for alkaline direct methanol fuel cell.

    PubMed

    Lei, M; Wang, J; Li, J R; Wang, Y G; Tang, H L; Wang, W J

    2014-08-11

    Replacing precious and nondurable Pt catalysts with cheap materials is a key issue for commercialization of fuel cells. In the case of oxygen reduction reaction (ORR) catalysts for direct methanol fuel cell (DMFC), the methanol tolerance is also an important concern. Here, we develop AlN nanowires with diameters of about 100-150 nm and the length up to 1 mm through crystal growth method. We find it is electrochemically stable in methanol-contained alkaline electrolyte. This novel material exhibits pronounced electrocatalytic activity with exchange current density of about 6.52 × 10(-8) A/cm(2). The single cell assembled with AlN nanowire cathodic electrode achieves a power density of 18.9 mW cm(-2). After being maintained at 100 mA cm(-2) for 48 h, the AlN nanowire-based single cell keeps 92.1% of the initial performance, which is in comparison with 54.5% for that assembled with Pt/C cathode. This discovery reveals a new type of metal nitride ORR catalyst that can be cheaply produced from crystal growth method.

  11. Depth profiling and morphological characterization of AlN thin films deposited on Si substrates using a reactive sputter magnetron

    NASA Astrophysics Data System (ADS)

    Macchi, Carlos; Bürgi, Juan; García Molleja, Javier; Mariazzi, Sebastiano; Piccoli, Mattia; Bemporad, Edoardo; Feugeas, Jorge; Sennen Brusa, Roberto; Somoza, Alberto

    2014-08-01

    It is well-known that the characteristics of aluminum nitride thin films mainly depend on their morphologies, the quality of the film-substrate interfaces and the open volume defects. A study of the depth profiling and morphological characterization of AlN thin films deposited on two types of Si substrates is presented. Thin films of thicknesses between 200 and 400 nm were deposited during two deposition times using a reactive sputter magnetron. These films were characterized by means of X-ray diffraction and imaging techniques (SEM and TEM). To analyze the composition of the films, energy dispersive X-ray spectroscopy was applied. Positron annihilation spectroscopy, specifically Doppler broadening spectroscopy, was used to gather information on the depth profiling of open volume defects inside the films and the AlN films-Si substrate interfaces. The results are interpreted in terms of the structural changes induced in the films as a consequence of changes in the deposition time (i.e., thicknesses) and of the orientation of the substrates.

  12. Growth dynamics of reactive-sputtering-deposited AlN films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auger, M.A.; Vazquez, L.; Sanchez, O.

    2005-06-15

    We have studied the surface kinetic roughening of AlN films grown on Si(100) substrates by dc reactive sputtering within the framework of the dynamic scaling theory. Films deposited under the same experimental conditions for different growth times were analyzed by atomic force microscopy and x-ray diffraction. The AlN films display a (002) preferred orientation. We have found two growth regimes with a crossover time of 36 min. In the first regime, the growth dynamics is unstable and the films present two types of textured domains, well textured and randomly oriented, respectively. In contrast, in the second regime the films aremore » homogeneous and well textured, leading to a relative stabilization of the surface roughness characterized by a growth exponent {beta}=0.37{+-}0.03. In this regime a superrough scaling behavior is found with the following exponents: (i) Global exponents: roughness exponent {alpha}=1.2{+-}0.2 and {beta}=0.37{+-}0.03 and coarsening exponent 1/z=0.32{+-}0.05; (ii) local exponents: {alpha}{sub loc}=1, {beta}{sub loc}=0.32{+-}0.01. The differences between the growth modes are found to be related to the different main growth mechanisms dominating their growth dynamics: sticking anisotropy and shadowing, respectively.« less

  13. Effect of the nand p-type Si(100) substrates with a SiC buffer layer on the growth mechanism and structure of epitaxial layers of semipolar AlN and GaN

    NASA Astrophysics Data System (ADS)

    Bessolov, V. N.; Grashchenko, A. S.; Konenkova, E. V.; Myasoedov, A. V.; Osipov, A. V.; Red'kov, A. V.; Rodin, S. N.; Rubets, V. P.; Kukushkin, S. A.

    2015-10-01

    A new effect of the n-and p-type doping of the Si(100) substrate with a SiC film on the growth mechanism and structure of AlN and GaN epitaxial layers has been revealed. It has been experimentally shown that the mechanism of AlN and GaN layer growth on the surface of a SiC layer synthesized by substituting atoms on n- and p-Si substrates is fundamentally different. It has been found that semipolar AlN and GaN layers on the SiC/Si(100) surface grow in the epitaxial and polycrystalline structures on p-Si and n-Si substrates, respectively. A new method for synthesizing epitaxial semipolar AlN and GaN layers by chloride-hydride epitaxy on silicon substrates has been proposed.

  14. High-Quality GaN Epilayers Achieved by Facet-Controlled Epitaxial Lateral Overgrowth on Sputtered AlN/PSS Templates.

    PubMed

    He, Chenguang; Zhao, Wei; Zhang, Kang; He, Longfei; Wu, Hualong; Liu, Ningyang; Zhang, Shan; Liu, Xiaoyan; Chen, Zhitao

    2017-12-13

    It is widely believed that the lack of high-quality GaN wafers severely hinders the progress in GaN-based devices, especially for defect-sensitive devices. Here, low-cost AlN buffer layers were sputtered on cone-shaped patterned sapphire substrates (PSSs) to obtain high-quality GaN epilayers. Without any mask or regrowth, facet-controlled epitaxial lateral overgrowth was realized by metal-organic chemical vapor deposition. The uniform coating of the sputtered AlN buffer layer and the optimized multiple modulation guaranteed high growth selectivity and uniformity of the GaN epilayer. As a result, an extremely smooth surface was achieved with an average roughness of 0.17 nm over 3 × 3 μm 2 . It was found that the sputtered AlN buffer layer could significantly suppress dislocations on the cones. Moreover, the optimized three-dimensional growth process could effectively promote dislocation bending. Therefore, the threading dislocation density (TDD) of the GaN epilayer was reduced to 4.6 × 10 7 cm -2 , which is about an order of magnitude lower than the case of two-step GaN on the PSS. In addition, contamination and crack in the light-emitting diode fabricated on the obtained GaN were also effectively suppressed by using the sputtered AlN buffer layer. All of these advantages led to a high output power of 116 mW at 500 mA with an emission wavelength of 375 nm. This simple, yet effective growth technique is believed to have great application prospects in high-performance TDD-sensitive optoelectronic and electronic devices.

  15. Far-infrared transmission in GaN, AlN, and AlGaN thin films grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibanez, J.; Hernandez, S.; Alarcon-Llado, E.

    2008-08-01

    We present a far-infrared transmission study on group-III nitride thin films. Cubic GaN and AlN layers and c-oriented wurtzite GaN, AlN, and Al{sub x}Ga{sub 1-x}N (x<0.3) layers were grown by molecular beam epitaxy on GaAs and Si(111) substrates, respectively. The Berreman effect allows us to observe simultaneously the transverse optic and the longitudinal optic phonons of both the cubic and the hexagonal films as transmission minima in the infrared spectra acquired with obliquely incident radiation. We discuss our results in terms of the relevant electromagnetic theory of infrared transmission in cubic and wurtzite thin films. We compare the infrared resultsmore » with visible Raman-scattering measurements. In the case of films with low scattering volumes and/or low Raman efficiencies and also when the Raman signal of the substrate material obscures the weaker peaks from the nitride films, we find that the Berreman technique is particularly useful to complement Raman spectroscopy.« less

  16. Comparative study on nitridation and oxidation plasma interface treatment for AlGaN/GaN MIS-HEMTs with AlN gate dielectric

    NASA Astrophysics Data System (ADS)

    Zhu, Jie-Jie; Ma, Xiao-Hua; Hou, Bin; Chen, Li-Xiang; Zhu, Qing; Hao, Yue

    2017-02-01

    This paper demonstrated the comparative study on interface engineering of AlN/AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs) by using plasma interface pre-treatment in various ambient gases. The 15 nm AlN gate dielectric grown by plasma-enhanced atomic layer deposition significantly suppressed the gate leakage current by about two orders of magnitude and increased the peak field-effect mobility by more than 50%. NH3/N2 nitridation plasma treatment (NPT) was used to remove the 3 nm poor-quality interfacial oxide layer and N2O/N2 oxidation plasma treatment (OPT) to improve the quality of interfacial layer, both resulting in improved dielectric/barrier interface quality, positive threshold voltage (V th) shift larger than 0.9 V, and negligible dispersion. In comparison, however, NPT led to further decrease in interface charges by 3.38 × 1012 cm-2 and an extra positive V th shift of 1.3 V. Analysis with fat field-effect transistors showed that NPT resulted in better sub-threshold characteristics and transconductance linearity for MIS-HEMTs compared with OPT. The comparative study suggested that direct removing the poor interfacial oxide layer by nitridation plasma was superior to improving the quality of interfacial layer by oxidation plasma for the interface engineering of GaN-based MIS-HEMTs.

  17. An AlGaN/GaN high-electron-mobility transistor with an AlN sub-buffer layer

    NASA Astrophysics Data System (ADS)

    Shealy, J. R.; Kaper, V.; Tilak, V.; Prunty, T.; Smart, J. A.; Green, B.; Eastman, L. F.

    2002-04-01

    The AlGaN/GaN high-electron-mobility transistor requires a thermally conducting, semi-insulating substrate to achieve the best possible microwave performance. The semi-insulating SiC substrate is currently the best choice for this device technology; however, fringing fields which penetrate the GaN buffer layer at pinch-off introduce significant substrate conduction at modest drain bias if channel electrons are not well confined to the nitride structure. The addition of an insulating AlN sub-buffer on the semi-insulating SiC substrate suppresses this parasitic conduction, which results in dramatic improvements in the AlGaN/GaN transistor performance. A pronounced reduction in both the gate-lag and the gate-leakage current are observed for structures with the AlN sub-buffer layer. These structures operate up to 50 V drain bias under drive, corresponding to a peak voltage of 80 V, for a 0.30 µm gate length device. The devices have achieved high-efficiency operation at 10 GHz (>70% power-added efficiency in class AB mode at 15 V drain bias) and the highest output power density observed thus far (11.2 W mm-1). Large-periphery devices (1.5 mm gate width) deliver 10 W (continuous wave) of maximum saturated output power at 10 GHz. The growth, processing, and performance of these devices are briefly reviewed.

  18. Reflectivity of the AL-N coating: results of mechanical and environmental tests

    NASA Astrophysics Data System (ADS)

    Anisimov, Vladimir P.; Anisimova, Irina A.; Kashirin, Victor A.; Moldosanov, Kamil A.; Skrynnikov, Alexander M.

    2002-09-01

    This paper concerns a behavior of the total hemispherical reflectance (THR) of the Al-N coating in the course of mechanical and environmental tests. The Al-N coating has been designed to reduce the stray sunlight background in the satellite-borne optical instruments and charge-particles-analyzing apparatus operating in open space under intensive solar radiation. Usually, this problem arises when a density of instruments installed on the satellite is high and it is difficult to avoid getting to instrument the light reflected by neighboring devices. Resolution of this problem is also important in connection with development of the extra-atmosphere Far UV astronomy. The THR measurement results are presented for 10 wavelengths wihtin a range from 400 to 927 nm, and also at 121.6 nm, the most intensive line of the solar UV spectrum able to result in considerable contribution to the detector noise in space devices. The samples of the Al-N coating were exposed to standard mechanical loads including the vibratory loads, linear overloads, and impacts, to which the space equipment may be subjected when shipping to the space-vehicle launching site and also when lauching. The samples were also exposed to environmental tests simulating the vacuum, humidity, and cyclic temperature conditions, which may influence the space instruments while shipping, storing, launching, in flight, and under operating conditions. The THR measurements of the samples were made following exposure to each test. The THRs of tested samples at the wavelength of 121.6 nm were as low as 1.5-2%.

  19. Low-Temperature Sintering of AlN Ceramics by Sm2O3-Y2O3-CaO Sintering Additives Formed via Decomposition of Nitrate Solutions

    NASA Astrophysics Data System (ADS)

    Zhan, Jun; Cao, Ye; Zhang, Hao; Guo, Jun; Zhang, Jianhua; Geng, Chunlei; Shi, Changdong; Cui, Song; Tang, Wenming

    2017-01-01

    The Sm, Y and Ca anhydrous nitrates were mixed with the AlN powder in ethanol and then decomposed into the Sm2O3-Y2O3-CaO sintering additives via calcining. Low-temperature sintering of the AlN ceramics was carried out at temperature range from 1675 to 1750 °C. Effects of the composition and adding amount of the sintering additives on the phases, microstructures and properties of the AlN ceramics were investigated. During sintering the AlN ceramics, main secondary phases of CaYAl3O7 and CaSmAl3O7 form. The relative density, bending strength and thermal conductivity of the AlN ceramics increase with the increase in the rare-earth oxides in them. The thermal conductivity of the sintered AlN ceramics is also greatly affected by the distribution of the secondary phases. As sintered at 1750 °C, the AlN ceramics by adding the sintering additives of 2 wt.% Sm2O3, 2 wt.% Y2O3 and 1 wt.% CaO formed via decomposition of their nitrates is fully dense and have the optimal bending strength and thermal conductivity of 402.1 MPa and 153.7 W/(m K), respectively.

  20. Superconductivity and tunneling-junctions in epitaxial Nb2N/AlN/GaN heterojunctions

    NASA Astrophysics Data System (ADS)

    Yan, Rusen; Han, Yimo; Khalsa, Guru; Vishwanath, Suresh; Katzer, Scott; Nepal, Neeraj; Downey, Brian; Muller, David; Meyer, David; Xing, Grace; Jena, Debdeep; ECE Collaboration; AEP Collaboration; MSE Collaboration; NRL Collaboration

    We have discovered that ultrathin highly crystalline Nb2N layers grown epitaxially (by MBE) on SiC and integrated with AlN and GaN heterostructures are high-quality superconductors with transition temperatures from 9-13 K. The out-of-plane critical magnetic fields are found to be 14 Tesla range, and the critical current density is 4*1E5 A/cm2 at 5 K. Preliminary in-plane magnetotransport measurements on 4 nm thin films indicate a significantly high critical magnetic field exceeding 40 T. Since Nb2N superconducting layers can be epitaxially integrated with GaN, AlN, and AlGaN, we also demonstrate Nb2N superconductivity in a layer located beneath an N-polar GaN high-electron-mobility transistor (HEMT) heterostructure that uses a 2DEG channel as a microwave amplifier; such a demonstration illustrates the potential emergence of a new paradigm where an all-epitaxial III-N/Nb2N platform could serve as the basis for microwave qubits to power quantum computation as well as quantum communications.

  1. An array of Eiffel-tower-shape AlN nanotips and its field emission properties

    NASA Astrophysics Data System (ADS)

    Tang, Yongbing; Cong, Hongtao; Chen, Zhigang; Cheng, Huiming

    2005-06-01

    An array of Eiffel-tower-shape AlN nanotips has been synthesized and assembled vertically with Si substrate by a chemical vapor deposition method at 700 °C. The single-crystalline AlN nanotips along [001] direction, including sharp tips with 10-100 nm in diameter and submicron-sized bases, are distributed uniformly with density of 106-107tips/cm2. Field emission (FE) measurements show that its turn on field is 4.7 V/μm, which is comparable to that of carbon nanotubes, and the fluctuation of FE current is as small as 0.74% for 4 h. It is revealed this nanostructure is available to optimize the FE properties and make the array a promising field emitter.

  2. Indium hexagonal island as seed-layer to boost a-axis orientation of AlN thin films

    NASA Astrophysics Data System (ADS)

    Redjdal, N.; Salah, H.; Azzaz, M.; Menari, H.; Manseri, A.; Guedouar, B.; Garcia-Sanchez, A.; Chérif, S. M.

    2018-06-01

    Highly a-axis oriented aluminum nitride films have been grown on Indium coated (100) Si substrate by DC reactive magnetron sputtering. It is shown that In incorporated layer improve the extent of preferential growth along (100) axis and form dense AlN films with uniform surface and large grains, devoid of micro-cracks. As revealed by SEM cross section images, AlN structure consists of oriented columnar grains perpendicular to the Si surface, while AlN/In structure results in uniformely tilted column. SEM images also revealed the presence of In hexagonal islands persistent throughout the entire growth. Micro -Raman spectroscopy of the surface and the cross section of the AlN/In grown films evidenced their high degree of homogeneity and cristallinity.

  3. Alendronate (ALN) combined with Osteoprotegerin (OPG) significantly improves mechanical properties of long bone than the single use of ALN or OPG in the ovariectomized rats

    PubMed Central

    2011-01-01

    Background Alendronate (ALN) is the most common form of bisphosphonates used for the treatment of osteoporosis. Osteoprotegerin (OPG) has also been shown to reduce osteoporotic changes in both humans and experimental animals after systemic administration. The aim of this current study was to test if the anti-resorption effects of ALN may be enhanced when used in combination with OPG. Objectives To investigate the effects of ALN, OPG or combined on bone mass and bone mechanical properties in ovariectomized (OVX) rats. Methods OVX rats were treated with ALN, OPG-Fc, or OPG-Fc and ALN. Biochemical markers, trabecular bone mass, biomechanics, histomorphometry and RANKL expression in the bone tissues were examined following the treatments. Results The treatment of ALN, OPG-Fc and ALN+OPG-Fc all prevented bone loss in the OVX-rats, there was no statistical difference among the three treatment groups in terms of vertebrae BMD, mineralizing surfaces, mineral apposition rate, BFR/BS. The ALN+OPG-Fc treatment group had significantly increased the mechanical strength of lumber vertebral bodies and femoral shafts when compared to the ALN and OPG-Fc treatment groups. The RANKL protein expression in the vertebral bones was significantly decreased in the ALN and ALN+OPG-Fc treatment groups, suggesting the combined use of OPG-Fc and ALN might have amplified inhibition of bone resorption through inhibiting RANKL-dependent osteoclastogenesis. Conclusion The combined use of OPG-Fc and ALN may be a new treatment strategy for reversing bone loss and restoring bone quality in osteoprotic disorders. PMID:21752290

  4. Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique

    NASA Astrophysics Data System (ADS)

    Wang, Zhenyu; Liu, Jingzhou; Wang, Li; Li, Xiaowei; Ke, Peiling; Wang, Aiying

    2017-02-01

    Ti2AlN belongs to a family of ternary nano-laminate alloys known as the MAX phases, which exhibit a unique combination of metallic and ceramic properties. In the present work, the dense and high-stability Ti2AlN coating has been successfully prepared through the combined cathodic arc/sputter deposition, followed by heat post-treatment. It was found that the as-deposited Ti-Al-N coating behaved a multilayer structure, where (Ti, N)-rich layer and Al-rich layer grew alternately, with a mixed phase constitution of TiN and TiAlx. After annealing at 800 °C under vacuum condition for 1.5 h, although the multilayer structure still was found, part of multilayer interfaces became indistinct and disappeared. In particular, the thickness of the Al-rich layer decreased in contrast to that of as-deposited coating due to the inner diffusion of the Al element. Moreover, the Ti2AlN MAX phase emerged as the major phase in the annealed coatings and its formation mechanism was also discussed in this study. The vacuum thermal analysis indicated that the formed Ti2AlN MAX phase exhibited a high-stability, which was mainly benefited from the large thickness and the dense structure. This advanced technique based on the combined cathodic arc/sputter method could be extended to deposit other MAX phase coatings with tailored high performance like good thermal stability, high corrosion and oxidation resistance etc. for the next protective coating materials.

  5. AlN Surface Passivation of GaN-Based High Electron Mobility Transistors by Plasma-Enhanced Atomic Layer Deposition.

    PubMed

    Tzou, An-Jye; Chu, Kuo-Hsiung; Lin, I-Feng; Østreng, Erik; Fang, Yung-Sheng; Wu, Xiao-Peng; Wu, Bo-Wei; Shen, Chang-Hong; Shieh, Jia-Ming; Yeh, Wen-Kuan; Chang, Chun-Yen; Kuo, Hao-Chung

    2017-12-01

    We report a low current collapse GaN-based high electron mobility transistor (HEMT) with an excellent thermal stability at 150 °C. The AlN was grown by N 2 -based plasma enhanced atomic layer deposition (PEALD) and shown a refractive index of 1.94 at 633 nm of wavelength. Prior to deposit AlN on III-nitrides, the H 2 /NH 3 plasma pre-treatment led to remove the native gallium oxide. The X-ray photoelectron spectroscopy (XPS) spectroscopy confirmed that the native oxide can be effectively decomposed by hydrogen plasma. Following the in situ ALD-AlN passivation, the surface traps can be eliminated and corresponding to a 22.1% of current collapse with quiescent drain bias (V DSQ ) at 40 V. Furthermore, the high temperature measurement exhibited a shift-free threshold voltage (V th ), corresponding to a 40.2% of current collapse at 150 °C. The thermal stable HEMT enabled a breakdown voltage (BV) to 687 V at high temperature, promising a good thermal reliability under high power operation.

  6. Oxygen induced strain field homogenization in AlN nucleation layers and its impact on GaN grown by metal organic vapor phase epitaxy on sapphire: An x-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Bläsing, J.; Krost, A.; Hertkorn, J.; Scholz, F.; Kirste, L.; Chuvilin, A.; Kaiser, U.

    2009-02-01

    This paper presents an x-ray study of GaN, which is grown on nominally undoped and oxygen-doped AlN nucleation layers on sapphire substrates by metal organic vapor phase epitaxy. Without additional oxygen doping a trimodal nucleation distribution of AlN is observed leading to inhomogeneous in-plane strain fields, whereas in oxygen-doped layers a homogeneous distribution of nucleation centers is observed. In both types of nucleation layers extremely sharp correlation peaks occur in transverse ω-scans which are attributed to a high density of edge-type dislocations having an in-plane Burgers vector. The correlation peaks are still visible in the (0002) ω-scans of 500 nm GaN which might mislead an observer to conclude incorrectly that there exists an extremely high structural quality. For the undoped nucleation layers depth-sensitive measurements in grazing incidence geometry reveal a strong thickness dependence of the lattice parameter a, whereas no such dependence is observed for doped samples. For oxygen-doped nucleation layers, in cross-sectional transmission electron microscopy images a high density of stacking faults parallel to the substrate surface is found in contrast to undoped nucleation layers where a high density of threading dislocations is visible. GaN of 2.5 μm grown on top of 25 nm AlN nucleation layers with an additional in situ SiN mask show full widths at half maximum of 160″ and 190″ in (0002) and (10-10) high-resolution x-ray diffraction ω-scans, respectively.

  7. Hexagonal AlN Layers Grown on Sulfided Si(100) Substrate

    NASA Astrophysics Data System (ADS)

    Bessolov, V. N.; Gushchina, E. V.; Konenkova, E. V.; L'vova, T. V.; Panteleev, V. N.; Shcheglov, M. P.

    2018-01-01

    We have studied the influence of sulfide passivation on the initial stages of aluminum nitride (AlN)-layer nucleation and growth by hydride vapor-phase epitaxy (HVPE) on (100)-oriented single-crystalline silicon substrates. It is established that the substrate pretreatment in (NH4)2S aqueous solution leads to the columnar nucleation of hexagonal AlN crystals of two modifications rotated by 30° relative to each other. Based on the sulfide treatment, a simple method of oxide removal from and preparation of Si(100) substrate surface is developed that can be used for the epitaxial growth of group-III nitride layers.

  8. Influence of metallic surface states on electron affinity of epitaxial AlN films

    NASA Astrophysics Data System (ADS)

    Mishra, Monu; Krishna, Shibin; Aggarwal, Neha; Gupta, Govind

    2017-06-01

    The present article investigates surface metallic states induced alteration in the electron affinity of epitaxial AlN films. AlN films grown by plasma-assisted molecular beam epitaxy system with (30% and 16%) and without metallic aluminium on the surface were probed via photoemission spectroscopic measurements. An in-depth analysis exploring the influence of metallic aluminium and native oxide on the electronic structure of the films is performed. It was observed that the metallic states pinned the Fermi Level (FL) near valence band edge and lead to the reduction of electron affinity (EA). These metallic states initiated charge transfer and induced changes in surface and interface dipoles strength. Therefore, the EA of the films varied between 0.6-1.0 eV due to the variation in contribution of metallic states and native oxide. However, the surface barrier height (SBH) increased (4.2-3.5 eV) adversely due to the availability of donor-like surface states in metallic aluminium rich films.

  9. Spin polarization of graphene and h -BN on Co(0001) and Ni(111) observed by spin-polarized surface positronium spectroscopy

    NASA Astrophysics Data System (ADS)

    Miyashita, A.; Maekawa, M.; Wada, K.; Kawasuso, A.; Watanabe, T.; Entani, S.; Sakai, S.

    2018-05-01

    In spin-polarized surface positronium annihilation measurements, the spin polarizations of graphene and h -BN on Co(0001) were higher than those on Ni(111), while no significant differences were seen between graphene and h -BN on the same metal. The obtained spin polarizations agreed with those expected from first-principles calculations considering the positron wave function and the electron density of states from the first surface layer to the vacuum region. The higher spin polarizations of graphene and h -BN on Co(0001) as compared to Ni(111) simply reflect the spin polarizations of these metals. The comparable spin polarizations of graphene and h -BN on the same metal are attributed to the creation of similar electronic states due to the strong influence of the metals: the Dirac cone of graphene and the band gap of h -BN disappear as a consequence of d -π hybridization.

  10. The atomic structure of polar and non-polar InGaN quantum wells and the green gap problem.

    PubMed

    Humphreys, C J; Griffiths, J T; Tang, F; Oehler, F; Findlay, S D; Zheng, C; Etheridge, J; Martin, T L; Bagot, P A J; Moody, M P; Sutherland, D; Dawson, P; Schulz, S; Zhang, S; Fu, W Y; Zhu, T; Kappers, M J; Oliver, R A

    2017-05-01

    We have used high resolution transmission electron microscopy (HRTEM), aberration-corrected quantitative scanning transmission electron microscopy (Q-STEM), atom probe tomography (APT) and X-ray diffraction (XRD) to study the atomic structure of (0001) polar and (11-20) non-polar InGaN quantum wells (QWs). This paper provides an overview of the results. Polar (0001) InGaN in QWs is a random alloy, with In replacing Ga randomly. The InGaN QWs have atomic height interface steps, resulting in QW width fluctuations. The electrons are localised at the top QW interface by the built-in electric field and the well-width fluctuations, with a localisation energy of typically 20meV. The holes are localised near the bottom QW interface, by indium fluctuations in the random alloy, with a localisation energy of typically 60meV. On the other hand, the non-polar (11-20) InGaN QWs contain nanometre-scale indium-rich clusters which we suggest localise the carriers and produce longer wavelength (lower energy) emission than from random alloy non-polar InGaN QWs of the same average composition. The reason for the indium-rich clusters in non-polar (11-20) InGaN QWs is not yet clear, but may be connected to the lower QW growth temperature for the (11-20) InGaN QWs compared to the (0001) polar InGaN QWs. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Initial growth, refractive index, and crystallinity of thermal and plasma-enhanced atomic layer deposition AlN films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Bui, Hao, E-mail: H.VanBui@utwente.nl; Wiggers, Frank B.; Gupta, Anubha

    2015-01-01

    The authors have studied and compared the initial growth and properties of AlN films deposited on Si(111) by thermal and plasma-enhanced atomic layer deposition (ALD) using trimethylaluminum and either ammonia or a N{sub 2}-H{sub 2} mixture as precursors. In-situ spectroscopic ellipsometry was employed to monitor the growth and measure the refractive index of the films during the deposition. The authors found that an incubation stage only occurred for thermal ALD. The linear growth for plasma-enhanced ALD (PEALD) started instantly from the beginning due to the higher nuclei density provided by the presence of plasma. The authors observed the evolution ofmore » the refractive index of AlN during the growth, which showed a rapid increase up to a thickness of about 30 nm followed by a saturation. Below this thickness, higher refractive index values were obtained for AlN films grown by PEALD, whereas above that the refractive index was slightly higher for thermal ALD films. X-ray diffraction characterization showed a wurtzite crystalline structure with a (101{sup ¯}0) preferential orientation obtained for all the layers with a slightly better crystallinity for films grown by PEALD.« less

  12. First principles study of neutral and anionic (medium-size) aluminum nitride clusters: AlnNn, n=7-16.

    PubMed

    Costales, Aurora; Blanco, M A; Francisco, E; Pendas, A Martín; Pandey, Ravindra

    2006-03-09

    We report the results of a theoretical study of AlnNn (n=7-16) clusters that is based on density functional theory. We will focus on the evolution of structural and electronic properties with the cluster size in the stoichiometric AlN clusters considered. The results reveal that the structural and electronic properties tend to evolve toward their respective bulk limits. The rate of evolution is, however, slow due to the hollow globular shape exhibited by the clusters, which introduces large surface effects that dominate the properties studied. We will also discuss the changes induced upon addition of an extra electron to the respective neutral clusters.

  13. Defect related electrical and optical properties of AlN bulk crystals grown by physical vapor transport

    NASA Astrophysics Data System (ADS)

    Irmscher, Klaus

    AlN crystallizes thermodynamically stable in the wurtzite structure and possesses a direct band gap of about 6 eV. It is the ideal substrate for the epitaxial growth of Al-rich AlxGa1-xN films that enable deep ultraviolet (UV) emitters. Appropriate AlN bulk crystals can be grown by physical vapor transport (PVT). Besides high structural perfection, such substrate crystals should be highly UV transparent and ideally, electrically conductive. It is well known that point defects like impurities and intrinsic defects may introduce electronic energy levels within the bandgap, which lead to additional optical absorption or electrical compensation. Among the impurities, which may be incorporated into the AlN crystals during PVT growth at well above 2000 ° C, oxygen, carbon, and silicon play the major role. Based on our own experimental data as well as on experimental and theoretical results reported in literature, we discuss energy levels, charge states and possible negative-U behavior of these impurities and of vacancy-type defects. In particular, we develop a model that explains the absorption behavior of the crystals in dependence on the Fermi level that can be controlled by the growth conditions, including intentional doping. Further, we pay attention on spectroscopic investigations giving direct evidence for the chemical nature and atomic arrangement of the involved point defects. As examples local vibrational mode (LVM) spectroscopy of carbon related defects and recent reports of electron paramagnetic resonance (EPR) spectroscopy are discussed.

  14. The impact of electrode materials on 1/f noise in piezoelectric AlN contour mode resonators

    NASA Astrophysics Data System (ADS)

    Kim, Hoe Joon; Jung, Soon In; Segovia-Fernandez, Jeronimo; Piazza, Gianluca

    2018-05-01

    This paper presents a detailed analysis on the impact of electrode materials and dimensions on flicker frequency (1/f) noise in piezoelectric aluminum nitride (AlN) contour mode resonators (CMRs). Flicker frequency noise is a fundamental noise mechanism present in any vibrating mechanical structure, whose sources are not generally well understood. 1 GHz AlN CMRs with three different top electrode materials (Al, Au, and Pt) along with various electrode lengths and widths are fabricated to control the overall damping acting on the device. Specifically, the use of different electrode materials allows control of thermoelastic damping (TED), which is the dominant damping mechanism for high frequency AlN CMRs and largely depends on the thermal properties (i.e. thermal diffusivities and expansion coefficients) of the metal electrode rather than the piezoelectric film. We have measured Q and 1/f noise of 68 resonators and the results show that 1/f noise decreases with increasing Q, with a power law dependence that is about 1/Q4. Interestingly, the noise level also depends on the type of electrode materials. Devices with Pt top electrode demonstrate the best noise performance. Our results help unveiling some of the sources of 1/f noise in these resonators, and indicate that a careful selection of the electrode material and dimensions could reduce 1/f noise not only in AlN-CMRs, but also in various classes of resonators, and thus enable ultra-low noise mechanical resonators for sensing and radio frequency applications.

  15. First-principles investigation of CO adsorption on pristine, C-doped and N-vacancy defected hexagonal AlN nanosheets

    NASA Astrophysics Data System (ADS)

    Ouyang, Tianhong; Qian, Zhao; Ahuja, Rajeev; Liu, Xiangfa

    2018-05-01

    The optimized atomic structures, energetics and electronic structures of toxic gas CO adsorption systems on pristine, C-doped and N-vacancy defected h-AlN nanosheets respectively have been investigated using Density functional theory (DFT-D2 method) to explore their potential gas detection or sensing capabilities. It is found that both the C-doping and the N-vacancy defect improve the CO adsorption energies of AlN nanosheet (from pure -3.847 eV to -5.192 eV and -4.959 eV). The absolute value of the system band gap change induced by adsorption of CO can be scaled up to 2.558 eV or 1.296 eV after C-doping or N-vacancy design respectively, which is evidently larger than the value of 0.350 eV for pristine material and will benefit the robustness of electronic signals in potential gas detection. Charge transfer mechanisms between CO and the AlN nanosheet have been presented by the Bader charge and differential charge density analysis to explore the deep origin of the underlying electronic structure changes. This theoretical study is proposed to predict and understand the CO adsorption properties of the pristine and defected h-AlN nanosheets and would help to guide experimentalists to develop better AlN-based two-dimensional materials for efficient gas detection or sensing applications in the future.

  16. The structure of crystallographic damage in GaN formed during rare earth ion implantation with and without an ultrathin AlN capping layer

    NASA Astrophysics Data System (ADS)

    Gloux, F.; Ruterana, P.; Wojtowicz, T.; Lorenz, K.; Alves, E.

    2006-10-01

    The crystallographic nature of the damage created in GaN implanted by rare earth ions at 300 keV and room temperature has been investigated by transmission electron microscopy versus the fluence, from 7×10 13 to 2×10 16 at/cm 2, using Er, Eu or Tm ions. The density of point defect clusters was seen to increase with the fluence. From about 3×10 15 at/cm 2, a highly disordered 'nanocrystalline layer' (NL) appears on the GaN surface. Its structure exhibits a mixture of voids and misoriented nanocrystallites. Basal stacking faults (BSFs) of I 1, E and I 2 types have been noticed from the lowest fluence, they are I 1 in the majority. Their density increases and saturates when the NL is observed. Many prismatic stacking faults (PSFs) with Drum atomic configuration have been identified. The I 1 BSFs are shown to propagate easily through GaN by folding from basal to prismatic planes thanks to the PSFs. When implanting through a 10 nm AlN cap, the NL threshold goes up to about 3×10 16 at/cm 2. The AlN cap plays a protective role against the dissociation of the GaN up to the highest fluences. The flat surface after implantation and the absence of SFs in the AlN cap indicate its high resistance to the damage formation.

  17. Development of AlN and TiB2 Composites with Nb2O5, Y2O3 and ZrO2 as Sintering Aids

    PubMed Central

    González, José C.; Rodríguez, Miguel Á.; Figueroa, Ignacio A.; Villafuerte-Castrejón, María-Elena; Díaz, Gerardo C.

    2017-01-01

    The synthesis of AlN and TiB2 by spark plasma sintering (SPS) and the effect of Nb2O5, Y2O3 and ZrO2 additions on the mechanical properties and densification of the produced composites is reported and discussed. After the SPS process, dense AlN and TiB2 composites with Nb2O5, Y2O3 and ZrO2 were successfully prepared. X-ray diffraction analysis showed that in the AlN composites, the addition of Nb2O5 gives rise to Nb4N3 during sintering. The compound Y3Al5O12 (YAG) was observed as precipitate in the sample with Y2O3. X-ray diffraction analysis of the TiB2 composites showed TiB2 as a single phase in these materials. The maximum Vickers and toughness values were 14.19 ± 1.43 GPa and 27.52 ± 1.75 GPa for the AlN and TiB2 composites, respectively. PMID:28772681

  18. The Peculiarities of Strain Relaxation in GaN/AlN Superlattices Grown on Vicinal GaN (0001) Substrate: Comparative XRD and AFM Study.

    PubMed

    Kuchuk, Andrian V; Kryvyi, Serhii; Lytvyn, Petro M; Li, Shibin; Kladko, Vasyl P; Ware, Morgan E; Mazur, Yuriy I; Safryuk, Nadiia V; Stanchu, Hryhorii V; Belyaev, Alexander E; Salamo, Gregory J

    2016-12-01

    Superlattices (SLs) consisting of symmetric layers of GaN and AlN have been investigated. Detailed X-ray diffraction and reflectivity measurements demonstrate that the relaxation of built-up strain in the films generally increases with an increasing number of repetitions; however, an apparent relaxation for subcritical thickness SLs is explained through the accumulation of Nagai tilt at each interface of the SL. Additional atomic force microscopy measurements reveal surface pit densities which appear to correlate with the amount of residual strain in the films along with the appearance of cracks for SLs which have exceeded the critical thickness for plastic relaxation. These results indicate a total SL thickness beyond which growth may be limited for the formation of high-quality coherent crystal structures; however, they may indicate a growth window for the reduction of threading dislocations by controlled relaxation of the epilayers.

  19. Observation of positive and small electron affinity of Si-doped AlN films grown by metalorganic chemical vapor deposition on n-type 6H-SiC

    NASA Astrophysics Data System (ADS)

    Feng, Liang; Ping, Chen; De-Gang, Zhao; De-Sheng, Jiang; Zhi-Juan, Zhao; Zong-Shun, Liu; Jian-Jun, Zhu; Jing, Yang; Wei, Liu; Xiao-Guang, He; Xiao-Jing, Li; Xiang, Li; Shuang-Tao, Liu; Hui, Yang; Li-Qun, Zhang; Jian-Ping, Liu; Yuan-Tao, Zhang; Guo-Tong, Du

    2016-05-01

    We have investigated the electron affinity of Si-doped AlN films (N Si = 1.0 × 1018-1.0 × 1019 cm-3) with thicknesses of 50, 200, and 400 nm, synthesized by metalorganic chemical vapor deposition (MOCVD) under low pressure on the n-type (001)6H-SiC substrates. The positive and small electron affinity of AlN films was observed through the ultraviolet photoelectron spectroscopy (UPS) analysis, where an increase in electron affinity appears with the thickness of AlN films increasing, i.e., 0.36 eV for the 50-nm-thick one, 0.58 eV for the 200-nm-thick one, and 0.97 eV for the 400-nm-thick one. Accompanying the x-ray photoelectron spectroscopy (XPS) analysis on the surface contaminations, it suggests that the difference of electron affinity between our three samples may result from the discrepancy of surface impurity contaminations. Project supported by the National Natural Science Foundation of China (Grant Nos. 61574135, 61574134, 61474142, 61474110, 61377020, 61376089, 61223005, and 61321063), the One Hundred Person Project of the Chinese Academy of Sciences, and the Basic Research Project of Jiangsu Province, China (Grant No. BK20130362).

  20. Nitridation of an unreconstructed and reconstructed (√31 ×√31)R ± 9° (0001) sapphire surface in an ammonia flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milakhina, D. S., E-mail: denironman@mail.ru; Malin, T. V.; Mansurov, V. G.

    This paper is devoted to the study of the nitridation of unreconstructed and reconstructed (√31 ×√31)R ± 9° (0001) sapphire surfaces in an ammonia flow by reflection high-energy electron diffraction (RHEED). The experimental results show that sapphire nitridation occurs on the unreconstructed (1 × 1) surface, which results in AlN phase formation on the substrate surface. However, if sapphire nitridation is preceded by high-temperature annealing (1150°C) resulting in sapphire surface reconstruction with formation of the (√31 ×√31)R ± 9° surface, the crystalline AlN phase on the sapphire surface is not formed during surface exposure to an ammonia flow.

  1. Time-resolved photoluminescence characterization of oxygen-related defect centers in AlN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genji, Kumihiro; Uchino, Takashi, E-mail: uchino@kobe-u.ac.jp

    2016-07-11

    Time-resolved photoluminescence (PL) spectroscopy has been employed to investigate the emission characteristics of oxygen-related defects in AlN in the temperature region from 77 to 500 K. Two PL components with different decay constants are observed in the near-ultraviolet to visible regions. One is the PL component with decay time of <10 ns and its peak position shifts to longer wavelengths from ∼350 to ∼500 nm with increasing temperature up to 500 K. This PL component is attributed to the radiative relaxation of photoexcited electrons from the band-edge states to the ground state of the oxygen-related emission centers. In the time region from tens tomore » hundreds of nanoseconds, the second PL component emerges in the wavelength region from 300 to 400 nm. The spectral shape and the decay profiles are hardly dependent on temperature. This temperature-independent PL component most likely results from the transfer of photoexcited electrons from the band-edge states to the localized excited state of the oxygen-related emission centers. These results provide a detailed insight into the radiative relaxation processes of the oxygen-related defect centers in AlN immediately after the photoexcitation process.« less

  2. Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources

    PubMed Central

    Zhao, S.; Connie, A. T.; Dastjerdi, M. H. T.; Kong, X. H.; Wang, Q.; Djavid, M.; Sadaf, S.; Liu, X. D.; Shih, I.; Guo, H.; Mi, Z.

    2015-01-01

    Despite broad interest in aluminum gallium nitride (AlGaN) optoelectronic devices for deep ultraviolet (DUV) applications, the performance of conventional Al(Ga)N planar devices drastically decays when approaching the AlN end, including low internal quantum efficiencies (IQEs) and high device operation voltages. Here we show that these challenges can be addressed by utilizing nitrogen (N) polar Al(Ga)N nanowires grown directly on Si substrate. By carefully tuning the synthesis conditions, a record IQE of 80% can be realized with N-polar AlN nanowires, which is nearly ten times higher compared to high quality planar AlN. The first 210 nm emitting AlN nanowire light emitting diodes (LEDs) were achieved, with a turn on voltage of about 6 V, which is significantly lower than the commonly observed 20 – 40 V. This can be ascribed to both efficient Mg doping by controlling the nanowire growth rate and N-polarity induced internal electrical field that favors hole injection. In the end, high performance N-polar AlGaN nanowire LEDs with emission wavelengths covering the UV-B/C bands were also demonstrated. PMID:25684335

  3. Structural and optical studies of GaN pn-junction with AlN buffer layer grown on Si (111) by RF plasma enhanced MBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusoff, Mohd Zaki Mohd; Hassan, Zainuriah; Woei, Chin Che

    2012-06-29

    GaN pn-junction grown on silicon substrates have been the focus in a number of recent reports and further effort is still necessary to improve its crystalline quality for practical applications. GaN has the high n-type background carrier concentration resulting from native defects commonly thought to be nitrogen vacancies. In this work, we present the growth of pn-junction of GaN on Si (111) substrate using RF plasma-enhanced molecular beam epitaxy (MBE). Both of the layers show uniformity with an average thickness of 0.709 {mu}m and 0.095 {mu}m for GaN and AlN layers, respectively. The XRD spectra indicate that no sign ofmore » cubic phase of GaN are found, so it is confirmed that the sample possessed hexagonal structure. It was found that all the allowed Raman optical phonon modes of GaN, i.e. the E2 (low), E1 (high) and A1 (LO) are clearly visible.« less

  4. Waveguide-coupled resonator filters on AlN on silicon

    NASA Technical Reports Server (NTRS)

    Liaw, H. M.; Cameron, T. P.; Hunt, W. D.; Hickernell, F. S.

    1994-01-01

    In the effort to continually reduce the size and cost of wireless communications products the level of integration has improved dramatically in recent years. In order to reduce future generations of wireless systems to single chip form, there is a need for on-chip filtering capabilities. In this paper, the first report of an experimental waveguide-coupled resonator filter for cellular radio applications is presented. Measured results indicate a typical insertion loss of 26 dB at a center frequency of 132 MHz using a 2 um AlN film on (001) less than 110 greater than Si. In addition, a laser probe analysis has been conducted and a theoretical analysis of the first order reflection coefficients is presented.

  5. Tuning the piezoelectric and mechanical properties of the AlN system via alloying with YN and BN

    NASA Astrophysics Data System (ADS)

    Manna, Sukriti; Brennecka, Geoff L.; Stevanović, Vladan; Ciobanu, Cristian V.

    2017-09-01

    Recent advances in microelectromechanical systems often require multifunctional materials, which are designed so as to optimize more than one property. Using density functional theory calculations for alloyed nitride systems, we illustrate how co-alloying a piezoelectric material (AlN) with different nitrides helps tune both its piezoelectric and mechanical properties simultaneously. Wurtzite AlN-YN alloys display increased piezoelectric response with YN concentration, accompanied by mechanical softening along the crystallographic c direction. Both effects increase the electromechanical coupling coefficients relevant for transducers and actuators. Resonator applications, however, require superior stiffness, thus leading to the need to decouple the increased piezoelectric response from the softened lattice. We show that co-alloying of AlN with YN and BN results in improved elastic properties while retaining some of the piezoelectric enhancements from YN alloying. This finding may lead to new avenues for tuning the design properties of piezoelectrics through composition-property maps.

  6. Comparative study of (0001) and (11\\bar{2}2) InGaN based light emitting diodes

    NASA Astrophysics Data System (ADS)

    Pristovsek, Markus; Humphreys, Colin J.; Bauer, Sebastian; Knab, Manuel; Thonke, Klaus; Kozlowski, Grzegorz; O'Mahony, Donagh; Maaskant, Pleun; Corbett, Brian

    2016-05-01

    We have systematically investigated the doping of (11\\bar{2}2) with Si and Mg by metal-organic vapour phase epitaxy for light emitting diodes (LEDs). By Si doping of GaN we reached electron concentrations close to 1020 cm-3, but the topography degrades above mid 1019 cm-3. By Mg doping we reached hole concentrations close to 5 × 1017 cm-3, using Mg partial pressures about 3× higher than those for (0001). Exceeding the maximum Mg partial pressure led to a quick degradation of the sample. Low resistivities as well as high hole concentrations required a growth temperature of 900 °C or higher. At optimised conditions the electrical properties as well as the photoluminescence of (11\\bar{2}2) p-GaN were similar to (0001) p-GaN. The best ohmic p-contacts were achieved by NiAg metallisation. A single quantum well LED emitting at 465 nm was realised on (0001) and (11\\bar{2}2). Droop (sub-linear increase of the light output power) occurred at much higher current densities on (11\\bar{2}2). However, the light output of the (0001) LED was higher than that of (11\\bar{2}2) until deep in the droop regime. Our LEDs as well as those in the literature indicate a reduction in efficiency from (0001) over semi-polar to non-polar orientations. We propose that reduced fields open a loss channel for carriers.

  7. Polarity Control and Doping in Aluminum Gallium Nitride

    DTIC Science & Technology

    2013-06-01

    cooled quartz tube and a radio frequency (RF-)induction heated SiC coated graphite susceptor. Growth temperatures of 500–1250°C can be attained. The...will be discussed in the following. Lateral polar structures used in Chapter 4 for second harmonic generation were patterned into microns-wide stripes ...lateral polar structures. The second step included the patterning of the AlN nucleation layer into periodic stripes or circles by lithography and

  8. Effect of AlN layer on the bipolar resistive switching behavior in TiN thin film based ReRAM device for non-volatile memory application

    NASA Astrophysics Data System (ADS)

    Prakash, Ravi; Kaur, Davinder

    2018-05-01

    The effect of an additional AlN layer in the Cu/TiN/AlN/Pt stack configuration deposited using sputtering has been investigated. The Cu/TiN/AlN/Pt device shows a tristate resistive switching. Multilevel switching is facilitated by ionic and metallic filament formation, and the nature of the filaments formed is confirmed by performing a resistance vs. temperature measurement. Ohmic behaviour and trap controlled space charge limited current (SCLC) conduction mechanisms are confirmed as dominant conduction mechanism at low resistance state (LRS) and high resistance state (HRS). High resistance ratio (102) corresponding to HRS and LRS, good write/erase endurance (105) and non-volatile long retention (105s) are also observed. Higher thermal conductivity of the AlN layer is the main reasons for the enhancement of resistive switching performance in Cu/TiN/AlN/Pt cell. The above result suggests the feasibility of Cu/TiN/AlN/Pt devices for multilevel nonvolatile ReRAM application.

  9. Elimination of surface band bending on N-polar InN with thin GaN capping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzmík, J., E-mail: Jan.Kuzmik@savba.sk; Haščík, Š.; Kučera, M.

    2015-11-09

    0.5–1 μm thick InN (0001) films grown by molecular-beam epitaxy with N- or In-polarity are investigated for the presence of native oxide, surface energy band bending, and effects introduced by 2 to 4 monolayers of GaN capping. Ex situ angle-resolved x-ray photo-electron spectroscopy is used to construct near-surface (GaN)/InN energy profiles, which is combined with deconvolution of In3d signal to trace the presence of InN native oxide for different types of polarity and capping. Downwards surface energy band bending was observed on bare samples with native oxide, regardless of the polarity. It was found that the In-polar InN surface is mostmore » readily oxidized, however, with only slightly less band bending if compared with the N-polar sample. On the other hand, InN surface oxidation was effectively mitigated by GaN capping. Still, as confirmed by ultra-violet photo-electron spectroscopy and by energy band diagram calculations, thin GaN cap layer may provide negative piezoelectric polarization charge at the GaN/InN hetero-interface of the N-polar sample, in addition to the passivation effect. These effects raised the band diagram up by about 0.65 eV, reaching a flat-band profile.« less

  10. Efficient reduction of defects in (1120) non-polar and (1122) semi-polar GaN grown on nanorod templates

    NASA Astrophysics Data System (ADS)

    Bai, J.; Gong, Y.; Xing, K.; Yu, X.; Wang, T.

    2013-03-01

    (1120) non-polar and (1122) semi-polar GaNs with a low defect density have been achieved by means of an overgrowth on nanorod templates, where a quick coalescence with a thickness even below 1 μm occurs. On-axis and off-axis X-ray rocking curve measurements have shown a massive reduction in the linewidth for our overgrown GaN in comparison with standard GaN films grown on sapphire substrates. Transmission electron microscope observation demonstrates that the overgrowth on the nanorod templates takes advantage of an omni-directional growth around the sidewalls of the nanostructures. The dislocations redirect in basal planes during the overgrowth, leading to their annihilation and termination at voids formed due to a large lateral growth rate. In the non-polar GaN, the priority <0001> lateral growth from vertical sidewalls of nanorods allows basal plane stacking faults (BSFs) to be blocked in the nanorod gaps; while for semi-polar GaN, the propagation of BSFs starts to be impeded when the growth front is changed to be along inclined <0001> direction above the nanorods.

  11. Inclined dislocation arrays in AlGaN/AlGaN quantum well structures emitting at 290 nm

    NASA Astrophysics Data System (ADS)

    Chang, T. Y.; Moram, M. A.; McAleese, C.; Kappers, M. J.; Humphreys, C. J.

    2010-12-01

    We report on the structural and optical properties of deep ultraviolet emitting AlGaN/AlGaN multiple quantum wells (MQWs) grown on (0001) sapphire by metal-organic vapor phase epitaxy using two different buffer layer structures, one containing a thin (1 μm) AlN layer combined with a GaN interlayer and the other a thick (4 μm) AlN layer. Transmission electron microscopy analysis of both structures showed inclined arrays of dislocations running through the AlGaN layers at an angle of ˜30°, originating at bunched steps at the AlN surface and terminating at bunched steps at the surface of the MQW structure. In all layers, these inclined dislocation arrays are surrounded by AlGaN with a relatively higher Ga content, consistent with plan-view cathodoluminescence maps in which the bunched surface steps are associated with longer emission wavelengths. The structure with the 4 μm-thick AlN buffer layer had a dislocation density lower by a factor of 2 (at (1.7±0.1)×109 cm-2) compared to the structure with the 1 μm thick AlN buffer layer, despite the presence of the inclined dislocation arrays.

  12. Dual optical marker Raman characterization of strained GaN-channels on AlN using AlN/GaN/AlN quantum wells and {sup 15}N isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Meng; Li, Guowang; Protasenko, Vladimir

    2015-01-26

    This work shows that the combination of ultrathin highly strained GaN quantum wells embedded in an AlN matrix, with controlled isotopic concentrations of Nitrogen enables a dual marker method for Raman spectroscopy. By combining these techniques, we demonstrate the effectiveness in studying strain in the vertical direction. This technique will enable the precise probing of properties of buried active layers in heterostructures, and can be extended in the future to vertical devices such as those used for optical emitters and for power electronics.

  13. P-n junction diodes with polarization induced p-type graded InxGa1-xN layer

    NASA Astrophysics Data System (ADS)

    Enatsu, Yuuki; Gupta, Chirag; Keller, Stacia; Nakamura, Shuji; Mishra, Umesh K.

    2017-10-01

    In this study, p-n junction diodes with polarization induced p-type layer are demonstrated on Ga polar (0001) bulk GaN substrates. A quasi-p-type region is obtained by linearly grading the indium composition in un-doped InxGa1-xN layers from 0% to 5%, taking advantage of the piezoelectric and spontaneous polarization fields which exist in group III-nitride heterostructures grown in the typical (0001) or c-direction. The un-doped graded InxGa1-xN layers needed to be capped with a thin Mg-doped InxGa1-xN layer to make good ohmic contacts and to reduce the on-resistance of the p-n diodes. The Pol-p-n junction diodes exhibited similar characteristics compared to reference samples with traditional p-GaN:Mg layers. A rise in breakdown voltage from 30 to 110 V was observed when the thickness of the graded InGaN layer was increased from 100 to 600 nm at the same grade composition.

  14. CIP (cleaning-in-place) stability of AlGaN/GaN pH sensors.

    PubMed

    Linkohr, St; Pletschen, W; Schwarz, S U; Anzt, J; Cimalla, V; Ambacher, O

    2013-02-20

    The CIP stability of pH sensitive ion-sensitive field-effect transistors based on AlGaN/GaN heterostructures was investigated. For epitaxial AlGaN/GaN films with high structural quality, CIP tests did not degrade the sensor surface and pH sensitivities of 55-58 mV/pH were achieved. Several different passivation schemes based on SiO(x), SiN(x), AlN, and nanocrystalline diamond were compared with special attention given to compatibility to standard microelectronic device technologies as well as biocompatibility of the passivation films. The CIP stability was evaluated with a main focus on the morphological stability. All stacks containing a SiO₂ or an AlN layer were etched by the NaOH solution in the CIP process. Reliable passivations withstanding the NaOH solution were provided by stacks of ICP-CVD grown and sputtered SiN(x) as well as diamond reinforced passivations. Drift levels about 0.001 pH/h and stable sensitivity over several CIP cycles were achieved for optimized sensor structures. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Evaluation of resonating Si cantilevers sputter-deposited with AlN piezoelectric thin films for mass sensing applications

    NASA Astrophysics Data System (ADS)

    Sökmen, Ü.; Stranz, A.; Waag, A.; Ababneh, A.; Seidel, H.; Schmid, U.; Peiner, E.

    2010-06-01

    We report on a micro-machined resonator for mass sensing applications which is based on a silicon cantilever excited with a sputter-deposited piezoelectric aluminium nitride (AlN) thin film actuator. An inductively coupled plasma (ICP) cryogenic dry etching process was applied for the micro-machining of the silicon substrate. A shift in resonance frequency was observed, which was proportional to a mass deposited in an e-beam evaporation process on top. We had a mass sensing limit of 5.2 ng. The measurements from the cantilevers of the two arrays revealed a quality factor of 155-298 and a mass sensitivity of 120.34 ng Hz-1 for the first array, and a quality factor of 130-137 and a mass sensitivity of 104.38 ng Hz-1 for the second array. Furthermore, we managed to fabricate silicon cantilevers, which can be improved for the detection in the picogram range due to a reduction of the geometrical dimensions.

  16. Efficient reduction of defects in (1120) non-polar and (1122) semi-polar GaN grown on nanorod templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, J.; Gong, Y.; Xing, K.

    2013-03-11

    (1120) non-polar and (1122) semi-polar GaNs with a low defect density have been achieved by means of an overgrowth on nanorod templates, where a quick coalescence with a thickness even below 1 {mu}m occurs. On-axis and off-axis X-ray rocking curve measurements have shown a massive reduction in the linewidth for our overgrown GaN in comparison with standard GaN films grown on sapphire substrates. Transmission electron microscope observation demonstrates that the overgrowth on the nanorod templates takes advantage of an omni-directional growth around the sidewalls of the nanostructures. The dislocations redirect in basal planes during the overgrowth, leading to their annihilationmore » and termination at voids formed due to a large lateral growth rate. In the non-polar GaN, the priority <0001> lateral growth from vertical sidewalls of nanorods allows basal plane stacking faults (BSFs) to be blocked in the nanorod gaps; while for semi-polar GaN, the propagation of BSFs starts to be impeded when the growth front is changed to be along inclined <0001> direction above the nanorods.« less

  17. Structural and electrical properties of AlN layers grown on silicon by reactive RF magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazlov, N., E-mail: n.bazlov@spbu.ru; Pilipenko, N., E-mail: nelly.pilipenko@gmail.com; Vyvenko, O.

    2016-06-17

    AlN films of different thicknesses were deposited on n-Si (100) substrates by reactive radio frequency (rf) magnetron sputtering. Dependences of structure and electrical properties on thickness of deposited films were researched. The structures of the films were analyzed with scanning electron microscopy (SEM) and with transmitting electron microscopy (TEM). Electrical properties of the films were investigated on Au-AlN-(n-Si) structures by means of current-voltage (I-V), capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) techniques. Electron microscopy investigations had shown that structure and chemical composition of the films were thickness stratified. Near silicon surface layer was amorphous aluminum oxide one contained trapsmore » of positive charges with concentration of about 4 × 10{sup 18} cm{sup −3}. Upper layers were nanocrystalline ones consisted of both wurzite AlN and cubic AlON nanocrystals. They contained traps both positive and negative charges which were situated within 30 nm distance from silicon surface. Surface densities of these traps were about 10{sup 12} cm{sup −2}. Electron traps with activation energies of (0.2 ÷ 0.4) eV and densities of about 10{sup 10} cm{sup −2} were revealed on interface between aluminum oxide layer and silicon substrate. Their densities varied weakly with the film thickness.« less

  18. Nanoscale Electrostructural Characterization of Compositionally Graded Al(x)Ga(1-x)N Heterostructures on GaN/Sapphire (0001) Substrate.

    PubMed

    Kuchuk, Andrian V; Lytvyn, Petro M; Li, Chen; Stanchu, Hryhorii V; Mazur, Yuriy I; Ware, Morgan E; Benamara, Mourad; Ratajczak, Renata; Dorogan, Vitaliy; Kladko, Vasyl P; Belyaev, Alexander E; Salamo, Gregory G

    2015-10-21

    We report on AlxGa1-xN heterostructures resulting from the coherent growth of a positive then a negative gradient of the Al concentration on a [0001]-oriented GaN substrate. These polarization-doped p-n junction structures were characterized at the nanoscale by a combination of averaging as well as depth-resolved experimental techniques including: cross-sectional transmission electron microscopy, high-resolution X-ray diffraction, Rutherford backscattering spectrometry, and scanning probe microscopy. We observed that a small miscut in the substrate orientation along with the accumulated strain during growth led to a change in the mosaic structure of the AlxGa1-xN film, resulting in the formation of macrosteps on the surface. Moreover, we found a lateral modulation of charge carriers on the surface which were directly correlated with these steps. Finally, using nanoscale probes of the charge density in cross sections of the samples, we have directly measured, semiquantitatively, both n- and p-type polarization doping resulting from the gradient concentration of the AlxGa1-xN layers.

  19. Modeling of Lithium Niobate (LiNbO3) and Aluminum Nitride (AlN) Nanowires Using Comsol Multiphysics Software: The Case of Pressure Sensor

    NASA Astrophysics Data System (ADS)

    Ahmad, A. A.; Alsaad, A.; Al-Bataineh, Q. M.; Al-Naafa, M. A.

    2018-02-01

    In this study, Lithium niobate (LiNbO3) and Aluminum nitride (AlN) nanostructures were designed and investigated using the COMSOL Multiphysics software for pressure sensing applications. The Finite Element Method (FEM) was used for solving the differential equations with various parameters such as size, length, force, etc. The variation of the total maximum displacement as a function of applied force for various NWs lengths and the variation of the voltage as a function of applied force were plotted and discussed. AlN nanowires exhibit a better piezoelectric response than LiNbO3 nanowires do.

  20. Dominant transverse-electric polarized emission from 298 nm MBE-grown AlN-delta-GaN quantum well ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Ooi, Yu Kee; Islam, S. M.; Xing, Huili Grace; Jena, Debdeep; Zhang, Jing

    2017-02-01

    III-nitride based ultraviolet (UV) light emitting diodes (LEDs) are of considerable interest in replacing gas lasers and mercury lamps for numerous applications. Specifically, AlGaN quantum well (QW) based LEDs have been developed extensively but the external quantum efficiencies of which remain less than 10% for wavelengths <300 nm due to high dislocation density, difficult p-type doping and most importantly, the physics and band structure from the three degeneration valence subbands. One solution to address this issue at deep UV wavelengths is by the use of the AlGaN-delta-GaN QW where the insertion of the delta-GaN layer can ensure the dominant conduction band (C) - heavyhole (HH) transition, leading to large transverse-electric (TE) optical output. Here, we proposed and investigated the physics and polarization-dependent optical characterizations of AlN-delta- GaN QW UV LED at 300 nm. The LED structure is grown by Molecular Beam Epitaxy (MBE) where the delta-GaN layer is 3-4 monolayer (QW-like) sandwiched by 2.5-nm AlN sub-QW layers. The physics analysis shows that the use of AlN-delta-GaN QW ensures a larger separation between the top HH subband and lower-energy bands, and strongly localizes the electron and HH wave functions toward the QW center and hence resulting in 30-time enhancement in TEpolarized spontaneous emission rate, compared to that of a conventional Al0.35Ga0.65N QW. The polarization-dependent electroluminescence measurements confirm our theoretical analysis; a dominant TE-polarized emission was obtained at 298 nm with a minimum transverse-magnetic (TM) polarized emission, indicating the feasibility of high-efficiency TEpolarized UV emitters based on our proposed QW structure.

  1. Molecular dynamics studies of defect formation during heteroepitaxial growth of InGaN alloys on (0001) GaN surfaces

    NASA Astrophysics Data System (ADS)

    Gruber, J.; Zhou, X. W.; Jones, R. E.; Lee, S. R.; Tucker, G. J.

    2017-05-01

    We investigate the formation of extended defects during molecular-dynamics (MD) simulations of GaN and InGaN growth on (0001) and ( 11 2 ¯ 0 ) wurtzite-GaN surfaces. The simulated growths are conducted on an atypically large scale by sequentially injecting nearly a million individual vapor-phase atoms towards a fixed GaN surface; we apply time-and-position-dependent boundary constraints that vary the ensemble treatments of the vapor-phase, the near-surface solid-phase, and the bulk-like regions of the growing layer. The simulations employ newly optimized Stillinger-Weber In-Ga-N-system potentials, wherein multiple binary and ternary structures are included in the underlying density-functional-theory training sets, allowing improved treatment of In-Ga-related atomic interactions. To examine the effect of growth conditions, we study a matrix of >30 different MD-growth simulations for a range of InxGa1-xN-alloy compositions (0 ≤ x ≤ 0.4) and homologous growth temperatures [0.50 ≤ T/T*m(x) ≤ 0.90], where T*m(x) is the simulated melting point. Growths conducted on polar (0001) GaN substrates exhibit the formation of various extended defects including stacking faults/polymorphism, associated domain boundaries, surface roughness, dislocations, and voids. In contrast, selected growths conducted on semi-polar ( 11 2 ¯ 0 ) GaN, where the wurtzite-phase stacking sequence is revealed at the surface, exhibit the formation of far fewer stacking faults. We discuss variations in the defect formation with the MD growth conditions, and we compare the resulting simulated films to existing experimental observations in InGaN/GaN. While the palette of defects observed by MD closely resembles those observed in the past experiments, further work is needed to achieve truly predictive large-scale simulations of InGaN/GaN crystal growth using MD methodologies.

  2. Metal-organic chemical vapor deposition of high quality, high indium composition N-polar InGaN layers for tunnel devices

    NASA Astrophysics Data System (ADS)

    Lund, Cory; Romanczyk, Brian; Catalano, Massimo; Wang, Qingxiao; Li, Wenjun; DiGiovanni, Domenic; Kim, Moon J.; Fay, Patrick; Nakamura, Shuji; DenBaars, Steven P.; Mishra, Umesh K.; Keller, Stacia

    2017-05-01

    In this study, the growth of high quality N-polar InGaN films by metalorganic chemical vapor deposition is presented with a focus on growth process optimization for high indium compositions and the structural and tunneling properties of such films. Uniform InGaN/GaN multiple quantum well stacks with indium compositions up to 0.46 were grown with local compositional analysis performed by energy-dispersive X-ray spectroscopy within a scanning transmission electron microscope. Bright room-temperature photoluminescence up to 600 nm was observed for films with indium compositions up to 0.35. To study the tunneling behavior of the InGaN layers, N-polar GaN/In0.35Ga0.65N/GaN tunnel diodes were fabricated which reached a maximum current density of 1.7 kA/cm2 at 5 V reverse bias. Temperature-dependent measurements are presented and confirm tunneling behavior under reverse bias.

  3. Growth and characterization of a-axis oriented Cr-doped AlN films by DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Panda, Padmalochan; Ramaseshan, R.; Krishna, Nanda Gopala; Dash, S.

    2016-05-01

    Wurtzite type Cr-doped AlN thin films were grown on Si (100) substrates using DC reactive magnetron sputtering with a function of N2 concentration (15 to 25%). Evolution of crystal structure of these films was studied by GIXRD where a-axis preferred orientation was observed. The electronic binding energy and concentration of Cr in these films were estimated by X-ray photoemission spectroscopy (XPS). We have observed indentation hardness (HIT) of around 28.2 GPa for a nitrogen concentration of 25%.

  4. Single layers and multilayers of GaN and AlN in square-octagon structure: Stability, electronic properties, and functionalization

    NASA Astrophysics Data System (ADS)

    Gürbüz, E.; Cahangirov, S.; Durgun, E.; Ciraci, S.

    2017-11-01

    Further to planar single-layer hexagonal structures, GaN and AlN can also form free-standing, single-layer structures constructed from squares and octagons. We performed an extensive analysis of dynamical and thermal stability of these structures in terms of ab initio finite-temperature molecular dynamics and phonon calculations together with the analysis of Raman and infrared active modes. These single-layer square-octagon structures of GaN and AlN display directional mechanical properties and have wide, indirect fundamental band gaps, which are smaller than their hexagonal counterparts. These density functional theory band gaps, however, increase and become wider upon correction. Under uniaxial and biaxial tensile strain, the fundamental band gaps decrease and can be closed. The electronic and magnetic properties of these single-layer structures can be modified by adsorption of various adatoms, or by creating neutral cation-anion vacancies. The single-layer structures attain magnetic moment by selected adatoms and neutral vacancies. In particular, localized gap states are strongly dependent on the type of vacancy. The energetics, binding, and resulting electronic structure of bilayer, trilayer, and three-dimensional (3D) layered structures constructed by stacking the single layers are affected by vertical chemical bonds between adjacent layers. In addition to van der Waals interaction, these weak vertical bonds induce buckling in planar geometry and enhance their binding, leading to the formation of stable 3D layered structures. In this respect, these multilayers are intermediate between van der Waals solids and wurtzite crystals, offering a wide range of tunability.

  5. Correct implementation of polarization constants in wurtzite materials and impact on III-nitrides

    DOE PAGES

    Dreyer, Cyrus E.; Janotti, Anderson; Van de Walle, Chris G.; ...

    2016-06-20

    Here, accurate values for polarization discontinuities between pyroelectric materials are critical for understanding and designing the electronic properties of heterostructures. For wurtzite materials, the zincblende structure has been used in the literature as a reference to determine the effective spontaneous polarization constants. We show that, because the zincblende structure has a nonzero formal polarization, this method results in a spurious contribution to the spontaneous polarization differences between materials. In addition, we address the correct choice of "improper" versus "proper" piezoelectric constants. For the technologically important III-nitride materials GaN, AlN, and InN, we determine polarization discontinuities using a consistent reference basedmore » on the layered hexagonal structure and the correct choice of piezoelectric constants, and discuss the results in light of available experimental data.« less

  6. Solvent polarity effect on quality of n-octadecanethiol self-assembled monolayers on copper and oxidized copper

    NASA Astrophysics Data System (ADS)

    Zhang, Yaozhong; Zhou, Jun; Zhang, Xiaoli; Hu, Jun; Gao, Han

    2014-11-01

    This article reports the effect of solvent polarity on the formation of n-octadecanethiol self-assembled monolayers (C18SH-SAMs) on pure copper surface and oxidized copper surface. The quality of SAMs prepared in different solvents (n-hexane, toluene, trichloroethylene, chloroform, acetone, acetonitrile, ethanol) was monitored by EIS, RAIRS and XPS. The results indicated that C18SH-SAMs formed in these solvents were in good barrier properties on pure copper surface and the structures of monolayers formed in high polarity solvents were more compact and orderly than that formed in low polarity solvents. For comparison, C18SH adsorbed on the surface of oxidized copper in these solvents were studied and the results indicated that C18SH could be adsorbed on oxidized copper surface after the reduction of copper oxide layer by thiols. Compared with high polarity solvents, a limited reduction process of oxidized copper by thiols led to the incompletely formation of monolayers in low polarity solvents. This can be interpreted that the generated water on solid-liquid interface and a smaller reaction force restrict the continuous reduction reaction in low polarity solvents

  7. A Microstructural Analysis of Orientation Variation in Epitaxial AlN on Si, Its Probable Origin, and Effect on Subsequent GaN Growth

    NASA Technical Reports Server (NTRS)

    Beye, R.; George, T.; Yang, J. W.; Khan, M. A.

    1996-01-01

    A structural examination of aluminum nitride growth on [111] silicon was carried out using transmission electron microscopy. Electron diffraction indicates that the basal planes of the wurtzitic overlayer mimic the orientation of the close-packed planes of the substrate. However, considerable, random rotation in the basal plane and random out-of-plane tilts were evident. This article examines these issues with a structural examination of AlN and GaN/AlN on silicon and compares the findings to those reported in the literature.

  8. Growth and characterization of a-axis oriented Cr-doped AlN films by DC magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, Padmalochan; Ramaseshan, R., E-mail: seshan@igcar.gov.in; Dash, S.

    2016-05-23

    Wurtzite type Cr-doped AlN thin films were grown on Si (100) substrates using DC reactive magnetron sputtering with a function of N{sub 2} concentration (15 to 25%). Evolution of crystal structure of these films was studied by GIXRD where a-axis preferred orientation was observed. The electronic binding energy and concentration of Cr in these films were estimated by X-ray photoemission spectroscopy (XPS). We have observed indentation hardness (H{sub IT}) of around 28.2 GPa for a nitrogen concentration of 25%.

  9. Structural properties and glass transition in Aln clusters

    NASA Astrophysics Data System (ADS)

    Sun, D. Y.; Gong, X. G.

    1998-02-01

    We have studied the structural and dynamical properties of several Aln clusters by the molecular-dynamics method combined with simulated annealing. The well-fitted glue potential is used to describe the interatomic interaction. The obtained atomic structures for n=13, 55, and 147 are in agreement with results from ab initio calculations. Our results have demonstrated that the disordered cluster Al43 can be considered as a glass cluster. The obtained thermal properties of glass cluster Al43 are clearly different from the results for high-symmetry clusters, its melting behavior has properties similar to those of a glass solid. The present studies also show that the surface melting behavior does not exist in the studied Aln clusters.

  10. The Electronic Structure of the Cs/ n-GaN(0001) Nano-Interface

    NASA Astrophysics Data System (ADS)

    Benemanskaya, G. V.; Lapushkin, M. N.; Marchenko, D. E.; Timoshnev, S. N.

    2018-03-01

    Electronic structures of the n-GaN(0001) surface and Cs/ n-GaN(0001) interface with submonolayer Cs coverages were studied for the first time in situ by the photoelectron spectroscopy (PES) method. The spectra of photoemission from the valence band, surface electron states, and core levels (Ga 3 d, Cs 4 d, Cs 5 p) under synchrotron excitation were measured in a range of photon energies within 50-150 eV. Evolution of the spectrum of surface states near the valence-band maximum was revealed by PES during the adsorption of Cs atoms. A metallic character of the Cs/ n-GaN(0001) nano-interface is demonstrated.

  11. Molecular dynamics studies of defect formation during heteroepitaxial growth of InGaN alloys on (0001) GaN surfaces

    DOE PAGES

    Gruber, J.; Zhou, X. W.; Jones, R. E.; ...

    2017-05-15

    Here, we investigate the formation of extended defects during molecular-dynamics (MD) simulations of GaN and InGaN growth on (0001) and (11more » $$\\bar{2}$$0) wurtzite-GaN surfaces. The simulated growths are conducted on an atypically large scale by sequentially injecting nearly a million individual vapor-phase atoms towards a fixed GaN surface; we apply time-and-position-dependent boundary constraints that vary the ensemble treatments of the vapor-phase, the near-surface solid-phase, and the bulk-like regions of the growing layer. The simulations employ newly optimized Stillinger-Weber In-Ga-N-system potentials, wherein multiple binary and ternary structures are included in the underlying density-functional-theory training sets, allowing improved treatment of In-Ga-related atomic interactions. To examine the effect of growth conditions, we study a matrix of >30 different MD-growth simulations for a range of InxGa1-xN-alloy compositions (0 ≤ x ≤ 0.4) and homologous growth temperatures [0.50 ≤ T/T* m(x) ≤ 0.90], where T* m(x) is the simulated melting point. Growths conducted on polar (0001) GaN substrates exhibit the formation of various extended defects including stacking faults/polymorphism, associated domain boundaries, surface roughness, dislocations, and voids. In contrast, selected growths conducted on semi-polar (11$$\\bar{2}$$0) GaN, where the wurtzite-phase stacking sequence is revealed at the surface, exhibit the formation of far fewer stacking faults. We discuss variations in the defect formation with the MD growth conditions, and we compare the resulting simulated films to existing experimental observations in InGaN/GaN. Finally, while the palette of defects observed by MD closely resembles those observed in the past experiments, further work is needed to achieve truly predictive large-scale simulations of InGaN/GaN crystal growth using MD methodologies.« less

  12. Molecular dynamics studies of defect formation during heteroepitaxial growth of InGaN alloys on (0001) GaN surfaces.

    PubMed

    Gruber, J; Zhou, X W; Jones, R E; Lee, S R; Tucker, G J

    2017-05-21

    We investigate the formation of extended defects during molecular-dynamics (MD) simulations of GaN and InGaN growth on (0001) and ([Formula: see text]) wurtzite-GaN surfaces. The simulated growths are conducted on an atypically large scale by sequentially injecting nearly a million individual vapor-phase atoms towards a fixed GaN surface; we apply time-and-position-dependent boundary constraints that vary the ensemble treatments of the vapor-phase, the near-surface solid-phase, and the bulk-like regions of the growing layer. The simulations employ newly optimized Stillinger-Weber In-Ga-N-system potentials, wherein multiple binary and ternary structures are included in the underlying density-functional-theory training sets, allowing improved treatment of In-Ga-related atomic interactions. To examine the effect of growth conditions, we study a matrix of >30 different MD-growth simulations for a range of In x Ga 1-x N-alloy compositions (0 ≤  x  ≤ 0.4) and homologous growth temperatures [0.50 ≤  T/T * m ( x ) ≤ 0.90], where T * m ( x ) is the simulated melting point. Growths conducted on polar (0001) GaN substrates exhibit the formation of various extended defects including stacking faults/polymorphism, associated domain boundaries, surface roughness, dislocations, and voids. In contrast, selected growths conducted on semi-polar ([Formula: see text]) GaN, where the wurtzite-phase stacking sequence is revealed at the surface, exhibit the formation of far fewer stacking faults. We discuss variations in the defect formation with the MD growth conditions, and we compare the resulting simulated films to existing experimental observations in InGaN/GaN. While the palette of defects observed by MD closely resembles those observed in the past experiments, further work is needed to achieve truly predictive large-scale simulations of InGaN/GaN crystal growth using MD methodologies.

  13. Origin and effective reduction of inversion domains in aluminum nitride grown by a sublimation method

    NASA Astrophysics Data System (ADS)

    Shigetoh, Keisuke; Horibuchi, Kayo; Nakamura, Daisuke

    2017-11-01

    Owing to the large differences in the chemical properties between Al and N polarities in aluminum nitride (AlN), the choice of the polar direction for crystal growth strongly affects not only the quality but also the shape (facet formation) of the grown crystal. In particular, N-polar (0 0 0 -1) has been considered to be a more preferable direction than Al-polar (0 0 0 1) for sublimation growth because compared to Al-polar (0 0 0 1), N-polar (0 0 0 -1) exhibits better stability at high growth rate (high supersaturation) conditions and enables easier lateral enlargement of the crystal. However, some critical growth conditions induce polarity inversion and hinder stable N-polar growth. Furthermore, the origin of the polarity inversion in AlN growth by the sublimation method is still unclear. To ensure stable N-polar growth without polarity inversion, the formation mechanism of the inversion domain during AlN sublimation growth must be elucidated. Therefore, herein, we demonstrate homoepitaxial growth on an N-polar seed and carefully investigate the obtained crystal that shows polarity inversion. Annular bright-field scanning transmission electron microscopy reveals that polarity is completely converted to the Al polarity via the formation of a 30 nm thick mixed polar layer (MPL) just above the seed. Moreover, three-dimensional atom probe tomography shows the segregation of the oxygen impurities in the MPL with a high concentration of about 3 atom%. Finally, by avoiding the incorporation of oxygen impurity into the crystal at the initial stage of the growth, we demonstrate an effective reduction (seven orders of magnitude) of the inversion domain boundary formation.

  14. Evidence from EELS of oxygen in the nucleation layer of a MBE grown III-N HEMT[Electron Energy Loss Spectroscopy, Molecular Beam Epitaxy, High Electron Mobility Transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eustis, T.J.; Silcox, J.; Murphy, M.J.

    The presence of oxygen throughout the nominally AlN nucleation layer of a RF assisted MBE grown III-N HEMT was revealed upon examination by Electron Energy Loss Spectroscopy (EELS) in a Scanning Transmission Electron Microscope (STEM). The nucleation layer generates the correct polarity (gallium face) required for producing a piezoelectric induced high mobility two dimensional electron gas at the AlGaN/GaN heterojunction. Only AlN or AlGaN nucleation layers have provided gallium face polarity in RF assisted MBE grown III-N's on sapphire. The sample was grown at Cornell University in a Varian GenII MBE using an EPI Uni-Bulb nitrogen plasma source. The nucleationmore » layer was examined in the Cornell University STEM using Annular Dark Field (ADF) imaging and Parallel Electron Energy Loss Spectroscopy (PEELS). Bright Field TEM reveals a relatively crystallographically sharp interface, while the PEELS reveal a chemically diffuse interface. PEELS of the nitrogen and oxygen K-edges at approximately 5-Angstrom steps across the GaN/AlN/sapphire interfaces reveals the presence of oxygen in the AlN nucleation layer. The gradient suggests that the oxygen has diffused into the nucleation region from the sapphire substrate forming this oxygen containing AlN layer. Based on energy loss near edge structure (ELNES), oxygen is in octahedral interstitial sites in the AlN and Al is both tetrahedrally and octahedrally coordinated in the oxygen rich region of the AlN.« less

  15. Suitability of surface acoustic wave oscillators fabricated using low temperature-grown AlN films on GaN/sapphire as UV sensors.

    PubMed

    Chen, Tzu Chieh; Lin, Yueh Ting; Lin, Chung Yi; Chen, W C; Chen, Meei Ru; Kao, Hui-Ling; Chyi, J I; Hsu, C H

    2008-02-01

    Epitaxial AlN films were prepared on GaN/sapphire using a helicon sputtering system at the low temperature of 300 degrees C. Surface acoustic wave (SAW) devices fabricated on AlN/GaN/sapphire exhibited superior characteristics compared with those made on GaN/sapphire. An oscillator using an AlN/GaN/sapphirebased SAW device is presented. The oscillation frequency decreased when the device was illuminated by ultraviolet (UV) radiation, and the downshift of the oscillation frequency increased with the illuminating UV power density. The results showed that the AlN/GaN/sapphire-layered structure SAW oscillators are suitable for visible blind UV detection and opened up the feasibility of developing remote UV sensors for different ranges of wavelengths on the III-nitrides.

  16. Self-organization of dislocation-free, high-density, vertically aligned GaN nanocolumns involving InGaN quantum wells on graphene/SiO2 covered with a thin AlN buffer layer.

    PubMed

    Hayashi, Hiroaki; Konno, Yuta; Kishino, Katsumi

    2016-02-05

    We demonstrated the self-organization of high-density GaN nanocolumns on multilayer graphene (MLG)/SiO2 covered with a thin AlN buffer layer by RF-plasma-assisted molecular beam epitaxy. MLG/SiO2 substrates were prepared by the transfer of CVD graphene onto thermally oxidized SiO2/Si [100] substrates. Employing the MLG with an AlN buffer layer enabled the self-organization of high-density and vertically aligned nanocolumns. Transmission electron microscopy observation revealed that no threading dislocations, stacking faults, or twinning defects were included in the self-organized nanocolumns. The photoluminescence (PL) peak intensities of the self-organized GaN nanocolumns were 2.0-2.6 times higher than those of a GaN substrate grown by hydride vapor phase epitaxy. Moreover, no yellow luminescence or ZB-phase GaN emission was observed from the nanocolumns. An InGaN/GaN MQW and p-type GaN were integrated into GaN nanocolumns grown on MLG, displaying a single-peak PL emission at a wavelength of 533 nm. Thus, high-density nitride p-i-n nanocolumns were fabricated on SiO2/Si using the transferred MLG interlayer, indicating the possibility of developing visible nanocolumn LEDs on graphene/SiO2.

  17. Electrical properties of GaAs metal–oxide–semiconductor structure comprising Al{sub 2}O{sub 3} gate oxide and AlN passivation layer fabricated in situ using a metal–organic vapor deposition/atomic layer deposition hybrid system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Takeshi, E-mail: aokit@sc.sumitomo-chem.co.jp; Fukuhara, Noboru; Osada, Takenori

    2015-08-15

    This paper presents a compressive study on the fabrication and optimization of GaAs metal–oxide–semiconductor (MOS) structures comprising a Al{sub 2}O{sub 3} gate oxide, deposited via atomic layer deposition (ALD), with an AlN interfacial passivation layer prepared in situ via metal–organic chemical vapor deposition (MOCVD). The established protocol afforded self-limiting growth of Al{sub 2}O{sub 3} in the atmospheric MOCVD reactor. Consequently, this enabled successive growth of MOCVD-formed AlN and ALD-formed Al{sub 2}O{sub 3} layers on the GaAs substrate. The effects of AlN thickness, post-deposition anneal (PDA) conditions, and crystal orientation of the GaAs substrate on the electrical properties of the resultingmore » MOS capacitors were investigated. Thin AlN passivation layers afforded incorporation of optimum amounts of nitrogen, leading to good capacitance–voltage (C–V) characteristics with reduced frequency dispersion. In contrast, excessively thick AlN passivation layers degraded the interface, thereby increasing the interfacial density of states (D{sub it}) near the midgap and reducing the conduction band offset. To further improve the interface with the thin AlN passivation layers, the PDA conditions were optimized. Using wet nitrogen at 600 °C was effective to reduce D{sub it} to below 2 × 10{sup 12} cm{sup −2} eV{sup −1}. Using a (111)A substrate was also effective in reducing the frequency dispersion of accumulation capacitance, thus suggesting the suppression of traps in GaAs located near the dielectric/GaAs interface. The current findings suggest that using an atmosphere ALD process with in situ AlN passivation using the current MOCVD system could be an efficient solution to improving GaAs MOS interfaces.« less

  18. Nial-base composite containing high volume fraction of AlN for advanced engines

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G. (Inventor); Whittenberger, John D. (Inventor); Lowell, Carl E. (Inventor)

    1997-01-01

    A particulate reinforced NiAl-AlN composite alloy has a NiAl matrix and greater than about 13 volume percent fine particles of AlN within the matrix. The particles preferably have a diameter from about 15 nanometers to about 50 nanometers. The particulate reinforced NiAl-AlN composite alloy may be prepared by cryomilling prealloyed NiAl in liquid nitrogen using grinding media having a diameter of from about 2 mm to about 6 mm at an impeller speed of from about 450 RPM to about 800 RPM. The cryomilling may be done for a duration of from about 4 hours to about 20 hours to obtain a cryomilled powder. The cryomilled powder may be consolidated to form the particulate reinforced NiAl-AlN composite alloy. The particulate reinforced alloy can further include a toughening alloy. The toughening alloy may include NiCrAlY, FeCrAY and FeAl.

  19. Structure and magnetic properties of FeSiAl-based soft magnetic composite with AlN and Al2O3 insulating layer prepared by selective nitridation and oxidation

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaoxi; Liu, Ying; Li, Jun; Wang, Yiwei

    2012-08-01

    FeSiAl is widely used in switching power supply, filter inductors and pulse transformers. But when used under higher frequencies in some particular condition, it is required to reduce its high-frequency loss. Preparing a homogeneous insulating coating with good heat resistance and high resistivity, such as AlN and Al2O3, is supposed to be an effective way to reduce eddy current loss, which is less focused on. In this project, mixed AlN and Al2O3 insulating layers were prepared on the surface of FeSiAl powders after 30 min exposure at 1100 °C in high purity nitrogen atmosphere, by means of surface nitridation and oxidation. The results revealed that the insulating layers increase the electrical resistivity, and hence decrease the loss factor, improve the frequency stability and increase the quality factor, especially in the high-frequency range. The morphologies, microstructure and compositions of the oxidized and nitrided products on the surface were characterized by Scanning Electron Microscopy/Energy Disperse Spectroscopy, X-Ray Diffraction, Transmission Electron Microscopy, Selected Area Electron Diffraction and X-ray Photoelectron Spectroscopy.

  20. Ab initio calculations on the initial stages of GaN and ZnO growth on lattice-matched ScAlMgO4 (0001) substrates

    NASA Astrophysics Data System (ADS)

    Guo, Yao; Wang, Yanfei; Li, Chengbo; Li, Xianchang; Niu, Yongsheng; Hou, Shaogang

    2016-12-01

    The initial stages of GaN and ZnO epitaxial growth on lattice-matched ScAlMgO4 substrates have been investigated by ab initio calculation. The geometrical parameters and electronic structure of ScAlMgO4 bulk and (0001) surface have been investigated by density-functional first-principles study. The effects of different surface terminations have been examined through surface energy and relaxation calculations. The O-Mg-O termination is more favorable than other terminations by comparing the calculated surface energies. It should be accepted as the appropriate surface structure in subsequent calculation. The initial stages of GaN and ZnO epitaxial growths are discussed based on the adsorption and diffusion of the adatoms on reconstructed ScAlMgO4 (0001) surface. According to theoretical characterizations, N adatom on the surface is more stable than Ga. O adatom is more favorable than Zn. These observations lead to the formation of GaN and ZnO epilayer and explain experimentally-confirmed in-plane alignment mechanisms of GaN and ZnO on ScAlMgO4 substrates. Furthermore, the polarity of GaN and ZnO surfaces on ScAlMgO4 (0001) at the initial growth stage have been explored by ab initio calculation. Theoretical studies indicate that the predominant growths of Ga-polar GaN and Zn-polar ZnO are determined by the initial growth stage.

  1. Polarization of stacking fault related luminescence in GaN nanorods

    NASA Astrophysics Data System (ADS)

    Pozina, G.; Forsberg, M.; Serban, E. A.; Hsiao, C.-L.; Junaid, M.; Birch, J.; Kaliteevski, M. A.

    2017-01-01

    Linear polarization properties of light emission are presented for GaN nanorods (NRs) grown along [0001] direction on Si(111) substrates by direct-current magnetron sputter epitaxy. The near band gap photoluminescence (PL) measured at low temperature for a single NR demonstrated an excitonic line at ˜3.48 eV and the stacking faults (SFs) related transition at ˜3.43 eV. The SF related emission is linear polarized in direction perpendicular to the NR growth axis in contrast to a non-polarized excitonic PL. The results are explained in the frame of the model describing basal plane SFs as polymorphic heterostructure of type II, where anisotropy of chemical bonds at the interfaces between zinc blende and wurtzite GaN subjected to in-built electric field is responsible for linear polarization parallel to the interface planes.

  2. Formation of (Ti,Al)N/Ti{sub 2}AlN multilayers after annealing of TiN/TiAl(N) multilayers deposited by ion beam sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolique, V.; Jaouen, M.; Cabioc'h, T.

    2008-04-15

    By using ion beam sputtering, TiN/TiAl(N) multilayers of various modulation wavelengths ({lambda}=8, 13, and 32 nm) were deposited onto silicon substrates at room temperature. After annealing at 600 deg. C in vacuum, one obtains for {lambda}=13 nm a (Ti,Al)N/Ti{sub 2}AlN multilayer as it is evidenced from x-ray diffraction, high resolution transmission electron microscopy, and energy filtered electron imaging experiments. X-ray photoelectron spectroscopy (XPS) experiments show that the as-deposited TiAl sublayers contain a noticeable amount of nitrogen atoms which mean concentration varies with the period {lambda}. They also evidenced the diffusion of aluminum into TiN sublayers after annealing. Deduced from thesemore » observations, we propose a model to explain why this solid-state phase transformation depends on the period {lambda} of the multilayer.« less

  3. Heterocyclic Acene-Diketopyrrolopyrrole Molecular Semiconductors for Efficient Solution-Processed Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Loser, Stephen C.

    (Al,Ga,In)N semiconductor materials are widely used in high-frequency, high-power electronics due to their wide bandgaps. Both metal- and N-polar AlGaN/GaN high-electron-mobility transistors (HEMTs) demonstrated excellent performances as high-frequency signal amplifiers. While the majority of today's III-N transistors are based on metal-polar heterostructures, N-polar materials have gained attention following the breakthrough in the deposition of high quality films. Compared to their metal-polar counterparts, N-polar HEMT structures improve the scalability of devices, increase the electron confinement and reduce contact resistance, exhibiting great potentials in high-frequency device fabrications. In order to suppress alloy scattering in the HEMT structures, a thin AlN interlayer is usually introduced between the AlGaN barrier and the GaN channel. However, a significant amount of unintentional Ga incorporation was observed in AlN films grown by metal-organic chemical vapor deposition (MOCVD), one of the major techniques to produce the HEMT epi structures. In the first part of my thesis, the impact of impure AlN interlayers on HEMTs was examined, explaining the significant improvement in electron mobility despite of the high Ga concentration of ˜ 50%. Moreover, both metal-polar and N-polar AlN films grown by MOCVD under various conditions were investigated, the results of which indicated that the major source of unintentional Ga was the former Ga deposition on the susceptor in the same run. It was also observed that N-polar AlN films contained less Ga compared to metal-polar ones when they were grown under same conditions. Methods to suppress the Ga were also discussed. In addition, the morphological and electrical properties of the GaN/AlN/GaN heterostructures with AlN films grown under different conditions were analyzed by atomic force microscopy (AFM) and room temperature Van der Pauw hall measurement. Following the study of AlN interlayers in the HEMT

  4. AlN/GaN heterostructures grown by metal organic vapor phase epitaxy with in situ Si 3N 4 passivation

    NASA Astrophysics Data System (ADS)

    Cheng, Kai; Degroote, S.; Leys, M.; Medjdoub, F.; Derluyn, J.; Sijmus, B.; Germain, M.; Borghs, G.

    2011-01-01

    AlN/GaN heterostructures are very attractive because their theoretical two-dimensional electron gas (2DEG) density may exceed 5×10 13/cm 2[1]. However, there are very few reports on AlN/GaN heterostructures grown by MOVPE. In this work, we show that good quality AlN layers can be grown on GaN at a relatively low growth temperature when TMIn is added to the carrier gas flow as a surfactant. Analysis by RBS revealed that at a growth temperature of 900 °C or higher no Indium is actually incorporated. Various thicknesses of AlN are grown, from 2 to 8 nm. Finally, 2-3 nm in situ Si 3N 4 is deposited in order to protect the AlN surface and thus prevent stress relaxation. AFM revealed that the root-mean-square (RMS) roughness in a 1×1 μm 2 area is 0.25 nm. When the AlN thickness reaches 8 nm, the sheet resistance can be as low as 186±3 Ω/□. Van der Pauw-Hall measurements show that the electron density is about 2.5×10 13/cm 2 with electron mobility exceeding 1140 cm 2/V s when extra 50 nm PECVD SiN is deposited.

  5. 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators.

    PubMed

    Zuo, Chengjie; Van der Spiegel, Jan; Piazza, Gianluca

    2010-01-01

    This paper reports on the first demonstration of a 1.05-GHz microelectromechanical (MEMS) oscillator based on lateral-field-excited (LFE) piezoelectric AlN contourmode resonators. The oscillator shows a phase noise level of -81 dBc/Hz at 1-kHz offset frequency and a phase noise floor of -146 dBc/Hz, which satisfies the global system for mobile communications (GSM) requirements for ultra-high frequency (UHF) local oscillators (LO). The circuit was fabricated in the AMI semiconductor (AMIS) 0.5-microm complementary metaloxide- semiconductor (CMOS) process, with the oscillator core consuming only 3.5 mW DC power. The device overall performance has the best figure-of-merit (FoM) when compared with other gigahertz oscillators that are based on film bulk acoustic resonator (FBAR), surface acoustic wave (SAW), and CMOS on-chip inductor and capacitor (CMOS LC) technologies. A simple 2-mask process was used to fabricate the LFE AlN resonators operating between 843 MHz and 1.64 GHz with simultaneously high Q (up to 2,200) and kt 2 (up to 1.2%). This process further relaxes manufacturing tolerances and improves yield. All these advantages make these devices suitable for post-CMOS integrated on-chip direct gigahertz frequency synthesis in reconfigurable multiband wireless communications.

  6. Electron microscopy of AlN-SiC interfaces and solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentley, J.; Tanaka, S.; Davis, R.F.

    In a 2H AlN-SiC solid solution grown by MBE on {alpha}(6H)-SiC (3{degrees} from [0001]), the epilayer contained a high density of basal faults related to {approximately}5 nm steps on the growth surface: no compositional inhomogeneity was detected by PEELS. In diffusion couples of polycrystalline, sintered AlN on SiC annealed at 1600 and 1700{degrees}C. 8H sialon [nominally (AlN){sub 2}Al{sub 2}O{sub 3}] formed at the interface of SiC and recrystallized epitactic AlN grains, and Si{sub 3}N{sub 4}-rich {beta}{prime} sialon particles formed in the SiC. No interdiffusion was detected by PEELS in diffusion couples of MBE-grown AlN on SiC annealed at 1700 andmore » 1850{degrees}C. Irregular epilayer thickness explains companion Auger depth profile results.« less

  7. Improving p-type doping efficiency in Al0.83Ga0.17N alloy substituted by nanoscale (AlN)5/(GaN)1 superlattice with MgGa-ON δ-codoping: Role of O-atom in GaN monolayer

    NASA Astrophysics Data System (ADS)

    Zhong, Hong-xia; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Huang, Pu; Ding, Yi-min

    2015-01-01

    We calculate Mg-acceptor activation energy EA and investigate the influence of O-atom, occupied the Mg nearest-neighbor, on EA in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al0.83Ga0.17N disorder alloy, using first-principles calculations. We find that the N-atom bonded with Ga-atom is more easily substituted by O-atom and nMgGa-ON (n = 1-3) complexes are favorable and stable in the SL. The O-atom plays a dominant role in reducing EA. The shorter the Mg-O bond is, the smaller the EA is. The Mg-acceptor activation energy can be reduced significantly by nMgGa-ON δ-codoping. Our calculated EA for 2MgGa-ON is 0.21 eV, and can be further reduced to 0.13 eV for 3MgGa-ON, which results in a high hole concentration in the order of 1020 cm-3 at room temperature in (AlN)5/(GaN)1 SL. Our results prove that nMgGa-ON (n = 2,3) δ-codoping in AlN/GaN SL with ultrathin GaN-layer is an effective way to improve p-type doping efficiency in Al-rich AlGaN.

  8. Polar and semipolar GaN/Al0.5Ga0.5N nanostructures for UV light emitters

    NASA Astrophysics Data System (ADS)

    Brault, J.; Rosales, D.; Damilano, B.; Leroux, M.; Courville, A.; Korytov, M.; Chenot, S.; Vennéguès, P.; Vinter, B.; De Mierry, P.; Kahouli, A.; Massies, J.; Bretagnon, T.; Gil, B.

    2014-06-01

    AlxGa1-xN-based ultra-violet (UV) light emitting diodes (LEDs) are seen as the best solution for the replacement of traditional mercury lamp technology. By adjusting the Al concentration, a large emission spectrum range from 360 nm (GaN) down to 200 nm (AlN) can be covered. Owing to the large density of defects typically present in AlxGa1-xN materials usually grown on sapphire substrates, LED efficiencies still need to be improved. Taking advantage of the 3D carrier confinement, quantum dots (QDs) are among the solutions currently under investigation to improve the performances of UV LEDs. The objectives of this work are to present and discuss the morphological and optical properties of GaN nanostructures grown by molecular beam epitaxy on the (0 0 0 1) and the (11-22) orientations of Al0.5Ga0.5N. In particular, the dependence of the morphological properties of the nanostructures on the growth conditions and the surface orientation will be presented. The optical characteristics as a function of the nanostructure design (size, shape and dimensionality) will also be shown and discussed. The electroluminescence characteristics of a first series of QD-based GaN/Al0.5Ga0.5N LEDs grown on the polar (0 0 0 1) plane will be investigated.

  9. Growth Optimization of Metal-polar III-Nitride High-electron-mobility Transistor Structures by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Kaun, Stephen William

    GaN-based high-electron-mobility transistors (HEMTs) will play an important role in the next generation of high-frequency amplifiers and power-switching devices. Since parasitic conduction (leakage) through the GaN buffer layer and (Al,Ga,In)N barrier reduces the efficiency of operation, HEMT performance hinges on the epitaxial quality of these layers. Increasing the sheet charge density and mobility of the two-dimensional electron gas (2DEG) is also essential for reducing the channel resistance and improving output. The growth conditions applied in plasma-assisted molecular beam epitaxy (PAMBE) and ammonia-based molecular beam epitaxy (NH3-MBE) that result in high-quality metal-polar HEMT structures are described. The effects of threading dislocations on the gate leakage and channel conductivity of AlGaN/GaN HEMTs were studied in detail. For this purpose, a series of HEMT structures were grown on GaN templates with threading dislocation densities (TDDs) that spanned three orders of magnitude. There was a clear trend of reduced gate leakage with reduced TDD for HEMTs grown by Ga-rich PAMBE; however, a reduction in TDD also entailed an increase in buffer leakage. By reducing the unintentionally doped (UID) GaN buffer thickness and including an AlGaN back barrier, a HEMT regrown by Ga-rich PAMBE on low-TDD free-standing (FS) GaN (~5 x 107 cm-2 TDD) yielded a three-terminal breakdown voltage greater than 50 V and a power output (power-added efficiency) of 6.7 W/mm (50 %) at 4 GHz with a 40 V drain bias. High TDD was then shown to severely degrade the 2DEG mobility of AlxGa1-xN/GaN (x = 0.24, 0.12, 0.06) and AlGaN/AlN/GaN heterostructures grown by Ga-rich PAMBE. By regrowing on low-TDD FS GaN and including a 2.5 nm AlN interlayer, an Al0.24Ga0.76N/AlN/GaN heterostructure achieved a room temperature (RT) 2DEG sheet resistance of 169 Ω/□. As evidenced by atom probe tomography, the AlN interlayer grown by Ga-rich PAMBE was pure with abrupt interfaces. The pure AlN

  10. NiAl-base composite containing high volume fraction of AlN for advanced engines

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan (Inventor); Whittenbeger, John D. (Inventor); Lowell, Carl F. (Inventor)

    1994-01-01

    A particulate reinforced NiAl-AlN composite alloy has a NiAl matrix and greater than about 13 volume percent fine particles of AlN within the matrix. The particles preferably have a diameter from about 15 nanometers to about 50 nanometers. The particulate reinforced NiAl-AlN composite alloy may be prepared by cryomilling prealloyed NiAl in liquid nitrogen using grinding media having a diameter of from about 2 to 6 mm at an impeller speed of from about 450 RPM to about 800 RPM. The cryomilling may be done for a duration of from about 4 hours to about 20 hours to obtain a cryomilled powder. The cryomilled powder may be consolidated to form the particulate reinforced NiAl-AlN composite alloy. The particulate reinforced alloy can further include a toughening alloy. The toughening alloy may include NiCrAlY, FeCrAlY, and FeAl.

  11. Reducing Mg Acceptor Activation-Energy in Al0.83Ga0.17N Disorder Alloy Substituted by Nanoscale (AlN)5/(GaN)1 Superlattice Using MgGa δ-Doping: Mg Local-Structure Effect

    NASA Astrophysics Data System (ADS)

    Zhong, Hong-Xia; Shi, Jun-Jie; Zhang, Min; Jiang, Xin-He; Huang, Pu; Ding, Yi-Min

    2014-10-01

    Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al0.83Ga0.17N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al0.83Ga0.17N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 1019 cm-3 can be obtained in (AlN)5/(GaN)1 SL by MgGa δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN.

  12. Reducing Mg Acceptor Activation-Energy in Al0.83Ga0.17N Disorder Alloy Substituted by Nanoscale (AlN)5/(GaN)1 Superlattice Using MgGa δ-Doping: Mg Local-Structure Effect

    PubMed Central

    Zhong, Hong-xia; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Huang, Pu; Ding, Yi-min

    2014-01-01

    Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al0.83Ga0.17N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al0.83Ga0.17N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 1019 cm−3 can be obtained in (AlN)5/(GaN)1 SL by MgGa δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN. PMID:25338639

  13. Absolute surface energy calculations of Wurtzite (0001)/(000-1): a study of ZnO and GaN

    NASA Astrophysics Data System (ADS)

    Zhang, Jingzhao; Zhang, Yiou; Tse, Kinfai; Deng, Bei; Xu, Hu; Zhu, Junyi

    The accurate absolute surface energies of (0001)/(000-1) surfaces of wurtzite structures are crucial in determining the thin film growth mode of important energy materials. However, the surface energies still remain to be solved due to the intrinsic difficulty of calculating dangling bond energy of asymmetrically bonded surface atoms. We used a pseudo-hydrogen passivation method to estimate the dangling bond energy and calculate the polar surfaces of ZnO and GaN. The calculations were based on the pseudo chemical potentials obtained from a set of tetrahedral clusters or simple pseudo-molecules, using density functional theory approaches, for both GGA and HSE. And the surface energies of (0001)/(000-1) surfaces of wurtzite ZnO and GaN we obtained showed relatively high self-consistencies. A wedge structure calculation with a new bottom surface passivation scheme of group I and group VII elements was also proposed and performed to show converged absolute surface energy of wurtzite ZnO polar surfaces. Part of the computing resources was provided by the High Performance Cluster Computing Centre, Hong Kong Baptist University. This work was supported by the start-up funding and direct Grant with the Project code of 4053134 at CUHK.

  14. Exciton transitions and oxygen as a donor in m-plane AlN homoepitaxial films

    NASA Astrophysics Data System (ADS)

    Bryan, Zachary; Bryan, Isaac; Bobea, Milena; Hussey, Lindsay; Kirste, Ronny; Sitar, Zlatko; Collazo, Ramón

    2014-04-01

    High-resolution photoluminescence studies on m-plane (1-100) homoepitaxial films grown by metalorganic chemical vapor deposition on AlN revealed several sharp donor-bound exciton (DBX) peaks with a full width at half maximum as narrow as 550 μeV. Power dependent photoluminescence distinguished DBXs tied to the Γ5 free exciton (FX) from those tied to the Γ1 FX. Both the n = 2 and n = 1 excited states of the Γ5 and Γ1 were resolved, giving binding energies of 52 meV and 55 meV, respectively. The DBX transition at 6.006 eV was identified as originating from the neutral-donor-oxygen (O0X). This assignment was based on secondary ion mass spectroscopy measurements, peak position with respect to the Si0X, and deep defect luminescence peaks located at 3.25 eV and 3.58 eV.

  15. Characterization of a smartphone size haptic rendering system based on thin-film AlN actuators on glass substrates

    NASA Astrophysics Data System (ADS)

    Bernard, F.; Casset, F.; Danel, J. S.; Chappaz, C.; Basrour, S.

    2016-08-01

    This paper presents for the first time the characterization of a smartphone-size haptic rendering system based on the friction modulation effect. According to previous work and finite element modeling, the homogeneous flexural modes are needed to get the haptic feedback effect. The device studied consists of a thin film AlN transducers deposited on an 110  ×  65 mm2 glass substrate. The transducer’s localization on the glass plate allows a transparent central area of 90  ×  49 mm2. Electrical and mechanical parameters of the system are extracted from measurement. From this extraction, the electrical impedance matching reduced the applied voltage to 17.5 V AC and the power consumption to 1.53 W at the resonance frequency of the vibrating system to reach the haptic rendering specification. Transient characterizations of the actuation highlight a delay under the dynamic tactile detection. The characterization of the AlN transducers used as sensors, including the noise rejection, the delay or the output charge amplitude allows detections with high accuracy of any variation due to external influences. Those specifications are the first step to a low-power-consumption feedback-looped system.

  16. Polynitrogen/Nanoaluminum Surface Interactions

    DTIC Science & Technology

    2009-05-12

    atomic and molecular oxygen and of other energetic species like nitromethane (CH3NO2) with AlN(0001) and AlN )1(000 surfaces have been analyzed. 15...molecular oxygen and of other energetic species like nitromethane (CH3NO2) with AlN(0001) and AlN )1(000 surfaces have been analyzed. For these...materials. For this set of compounds we have analyzed several high explosive salts containing the CN7 - anion, namely the hydrazinium ([N2H5][CN7

  17. Growth mechanism and microstructure of low defect density InN (0001) In-face thin films on Si (111) substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kehagias, Th.; Dimitrakopulos, G. P.; Koukoula, T.

    2013-10-28

    Transmission electron microscopy has been employed to analyze the direct nucleation and growth, by plasma-assisted molecular beam epitaxy, of high quality InN (0001) In-face thin films on (111) Si substrates. Critical steps of the heteroepitaxial growth process are InN nucleation at low substrate temperature under excessively high N-flux conditions and subsequent growth of the main InN epilayer at the optimum conditions, namely, substrate temperature 400–450 °C and In/N flux ratio close to 1. InN nucleation occurs in the form of a very high density of three dimensional (3D) islands, which coalesce very fast into a low surface roughness InN film.more » The reduced reactivity of Si at low temperature and its fast coverage by InN limit the amount of unintentional Si nitridation by the excessively high nitrogen flux and good bonding/adhesion of the InN film directly on the Si substrate is achieved. The subsequent overgrowth of the main InN epilayer, in a layer-by-layer growth mode that enhances the lateral growth of InN, reduces significantly the crystal mosaicity and the density of threading dislocations is about an order of magnitude less compared to InN films grown using an AlN/GaN intermediate nucleation/buffer layer on Si. The InN films exhibit the In-face polarity and very smooth atomically stepped surfaces.« less

  18. Hydride vapor phase epitaxy of high structural perfection thick AlN layers on off-axis 6H-SiC

    NASA Astrophysics Data System (ADS)

    Volkova, Anna; Ivantsov, Vladimir; Leung, Larry

    2011-01-01

    The employment of more than 10 μm thick AlN epilayers on SiC substrates for AlGaN/GaN high-electron-mobility transistors (HEMTs) substantially raises their performance in high-power energy-efficient amplifiers for 4G wireless mobile stations. In this paper, structural properties and surface morphology of thick AlN epilayers deposited by hydride vapor phase epitaxy (HVPE) on off-axis conductive 6H-SiC substrates are reported. The epilayers were examined in detail by high-resolution X-ray diffraction (XRD), atomic force microscopy (AFM), Nomarski differential interference contrast (DIC), scanning electron microscopy (SEM), and selective wet chemical etching. At optimal substrate preparation and growth conditions, a full width at half-maximum (FWHM) of the XRD rocking curve (RC) for the symmetric (00.2) reflex was very close to that of the substrate (less than 40 arcsec) suggesting low screw dislocation density in the epilayer (˜10 6 cm -2) and small in-plane tilt misorientation. Reciprocal space mapping around asymmetric reflexes and measured lattice parameters indicated a fully relaxed state of the epilayers. The unit-cell-high stepped areas of the epilayers with 0.5 nm root mean square (RMS) roughness over 1×1 μm 2 scan were alternated with step-bunching instabilities up to 350 nm in height. Low warp of the substrates makes them suitable for precise epitaxy of HEMT structures.

  19. Metasurface integrated high energy efficient and high linearly polarized InGaN/GaN light emitting diode.

    PubMed

    Wang, Miao; Xu, Fuyang; Lin, Yu; Cao, Bing; Chen, Linghua; Wang, Chinhua; Wang, Jianfeng; Xu, Ke

    2017-07-06

    We proposed and demonstrated an integrated high energy efficient and high linearly polarized InGaN/GaN green LED grown on (0001) oriented sapphire with combined metasurface polarizing converter and polarizer system. It is different from those conventional polarized light emissions generated with plasmonic metallic grating in which at least 50% high energy loss occurs inherently due to high reflection of the transverse electric (TE) component of an electric field. A reflecting metasurface, with a two dimensional elliptic metal cylinder array (EMCA) that functions as a half-wave plate, was integrated at the bottom of a LED such that the back-reflected TE component, that is otherwise lost by a dielectric/metal bi-layered wire grids (DMBiWG) polarizer on the top emitting surface of the LED, can be converted to desired transverse magnetic (TM) polarized emission after reflecting from the metasurface. This significantly enhances the polarized light emission efficiency. Experimental results show that extraction efficiency of the polarized emission can be increased by 40% on average in a wide angle of ±60° compared to that with the naked bottom of sapphire substrate, or 20% compared to reflecting Al film on the bottom of a sapphire substrate. An extinction ratio (ER) of average value 20 dB within an angle of ±60° can be simultaneously obtained directly from an InGaN/GaN LED. Our results show the possibility of simultaneously achieving a high degree of polarization and high polarization extraction efficiency at the integrated device level. This advances the field of GaN LED toward energy efficiency, multi-functional applications in illumination, display, medicine, and light manipulation.

  20. Quantum state engineering with ultra-short-period (AlN)m/(GaN)n superlattices for narrowband deep-ultraviolet detection.

    PubMed

    Gao, Na; Lin, Wei; Chen, Xue; Huang, Kai; Li, Shuping; Li, Jinchai; Chen, Hangyang; Yang, Xu; Ji, Li; Yu, Edward T; Kang, Junyong

    2014-12-21

    Ultra-short-period (AlN)m/(GaN)n superlattices with tunable well and barrier atomic layer numbers were grown by metal-organic vapour phase epitaxy, and employed to demonstrate narrowband deep ultraviolet photodetection. High-resolution transmission electron microscopy and X-ray reciprocal space mapping confirm that superlattices containing well-defined, coherently strained GaN and AlN layers as thin as two atomic layers (∼ 0.5 nm) were grown. Theoretical and experimental results demonstrate that an optical absorption band as narrow as 9 nm (210 meV) at deep-ultraviolet wavelengths can be produced, and is attributable to interband transitions between quantum states along the [0001] direction in ultrathin GaN atomic layers isolated by AlN barriers. The absorption wavelength can be precisely engineered by adjusting the thickness of the GaN atomic layers because of the quantum confinement effect. These results represent a major advance towards the realization of wavelength selectable and narrowband photodetectors in the deep-ultraviolet region without any additional optical filters.

  1. Asymmetric metal-insulator-metal (MIM) structure formed by pulsed Nd:YAG laser deposition with titanium nitride (TiN) and aluminum nitride (AlN)

    NASA Astrophysics Data System (ADS)

    Oshikane, Yasushi

    2017-08-01

    A novel nanostructured end cap for a truncated conical apex of optical fiber has been studied experimental and numerically. The peculiar cap is composed of asymmetric metal-insulator-metal (MIM) structure coupled with subwavelength holes. The MIM structure may act as reflective band cut filter or generator of surface plasmon polariton (SPP). And nano holes in the thicker metal layer could extract the SPP from the MIM structure and lead it to outer surface of the metal layer. For the purpose, the author has started to create the asymmetric MIM structure with TiN and AlN by pulsed laser deposition (PLD). The resultant structure was diagnosed by spectroscopic analyses.

  2. Establishment of design space for high current gain in III-N hot electron transistors

    NASA Astrophysics Data System (ADS)

    Gupta, Geetak; Ahmadi, Elaheh; Suntrup, Donald J., III; Mishra, Umesh K.

    2018-01-01

    This paper establishes the design space of III-N hot electron transistors (HETs) for high current gain by designing and fabricating HETs with scaled base thickness. The device structure consists of GaN-based emitter, base and collector regions where emitter and collector barriers are implemented using AlN and InGaN layers, respectively, as polarization-dipoles. Electrons tunnel through the AlN layer to be injected into the base at a high energy where they travel in a quasi-ballistic manner before being collected. Current gain increases from 1 to 3.5 when base thickness is reduced from 7 to 4 nm. The extracted mean free path (λ mfp) is 5.8 nm at estimated injection energy of 1.5 eV.

  3. Electronic structure and optical properties of N vacancy and O filling on n-GaN (0001) surface

    NASA Astrophysics Data System (ADS)

    Lu, Feifei; Liu, Lei; Xia, Sihao; Diao, Yu; Feng, Shu

    2018-06-01

    In the X-ray photoelectron spectroscopy experiment, we observed that the valence band spectrum of the n-GaN (0001) surface appeared a bump near 1.9 eV after Ar etching and the N/Ga ratio became smaller, while the bump disappeared upon exposure to air. In order to analyze this phenomenon theoretically, we mainly study the electronic structure and optical properties of n-GaN (0001) surface with N vacancy and filled with O atom based on the first principles of density functional theory. The results suggest that the n-GaN (0001) surface exhibits semi-metallic property. The introduction of N vacancy reduces the n-type conductivity, whereas the filling of O atom enhances conductivity. The density of state near -1.9eV shows a good agreement between the clean n-type surface and the O-atom-filled surface, while the N vacancy surface has a higher density of states, which is similar to the experimentally observed phenomenon. It is also found that the existence of N vacancy reduces the photoemission properties of the n-GaN (0001) surface and the filling of O atom alleviates the defect caused by vacancy. This study shows that N vacancy increases the doping difficulty of n-type GaN films, however, the filling of O atom may compensate for the diminished photoelectric properties induced by N vacancy and be conducive to prepare high-performance optoelectronic devices with the contact of n-GaN and metal.

  4. MOCVD growth and study of thin films of indium nitride

    NASA Astrophysics Data System (ADS)

    Jain, Abhishek

    This thesis is focused on a study of MOCVD growth of InN with the goal of providing new information on the effects of growth conditions and buffer/substrate materials on InN film properties. Initial studies, using both (111) Si and (0001) sapphire substrates, identified an optimum growth temperature window of 540--560°C for the formation of stable InN films. When attempting to grow InN films on sapphire with thicknesses greater than approximately 150 nanometers using an AlN buffer layer, the InN films were observed to delaminate from the buffer/substrate at growth temperature. The combined effect of compressive stress due to high lattice mismatch between InN and AlN (˜14%) and tensile stress due to grain coalescence along with the relatively weak bond strength of InN compared to GaN and AlN, is believed to cause the InN film to crack along the interface and delaminate. To further investigate the effect of the buffer layer on InN growth, studies were carried out using GaN films grown on sapphire as the growth template. Recent MBE results had indicated a significant difference in the thermal stability and growth mode of In-polar and N-polar InN, with improved properties reported for N-polar material grown on N-polar GaN. MOCVD growth of N-polar GaN is very difficult; consequently, all of the results reported in the literature for InN growth on GaN were likely carried out on Ga-polar material resulting in films with a high surface roughness. By utilizing N-polar and Ga-polar GaN films, it was possible to produce N-polar and In-polar InN films by MOCVD, as determined by convergent beam electron diffraction (CBED) analysis. Furthermore, the polarity was found to dramatically alter the surface roughness and growth mode of the InN films with enhanced lateral growth and reduced surface roughness obtained for N-polar InN. A qualitative model was proposed to explain the different growth mechanisms observed for In-polar and N-polar InN. In spite of the improvements in

  5. Piezotronic Effect in Polarity-Controlled GaN Nanowires.

    PubMed

    Zhao, Zhenfu; Pu, Xiong; Han, Changbao; Du, Chunhua; Li, Linxuan; Jiang, Chunyan; Hu, Weiguo; Wang, Zhong Lin

    2015-08-25

    Using high-quality and polarity-controlled GaN nanowires (NWs), we studied the piezotronic effect in crystal orientation defined wurtzite structures. By applying a normal compressive force on c-plane GaN NWs with an atomic force microscopy tip, the Schottky barrier between the Pt tip and GaN can be effectively tuned by the piezotronic effect. In contrast, the normal compressive force cannot change the electron transport characteristics in m-plane GaN NWs whose piezoelectric polarization axis is turned in the transverse direction. This observation provided solid evidence for clarifying the difference between the piezotronic effect and the piezoresistive effect. We further demonstrated a high sensitivity of the m-plane GaN piezotronic transistor to collect the transverse force. The integration of c-plane GaN and m-plane GaN indicates an overall response to an external force in any direction.

  6. Piezoelectric domains in the AlGaN hexagonal microrods: Effect of crystal orientations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivadasan, A. K., E-mail: sivankondazhy@gmail.com, E-mail: gm@igcar.gov.in, E-mail: dhara@igcar.gov.in; Dhara, Sandip, E-mail: sivankondazhy@gmail.com, E-mail: gm@igcar.gov.in, E-mail: dhara@igcar.gov.in; Mangamma, G., E-mail: sivankondazhy@gmail.com, E-mail: gm@igcar.gov.in, E-mail: dhara@igcar.gov.in

    2016-05-07

    Presently, the piezoelectric materials are finding tremendous applications in the micro-mechanical actuators, sensors, and self-powered devices. In this context, the studies pertaining to piezoelectric properties of materials in the different size ranges are very important for the scientific community. The III-nitrides are exceptionally important, not only for optoelectronic but also for their piezoelectric applications. In the present study, we synthesized AlGaN via self-catalytic vapor-solid mechanism by atmospheric pressure chemical vapor deposition technique on AlN base layer over intrinsic Si(100) substrate. The growth process is substantiated using X-ray diffraction and X-ray photoelectron spectroscopy. The Raman and photoluminescence studies reveal the formationmore » of AlGaN microrods in the wurtzite phase and ensure the high optical quality of the crystalline material. The single crystalline, direct wide band gap and hexagonally shaped AlGaN microrods are studied for understanding the behavior of the crystallites under the application of constant external electric field using the piezoresponse force microscopy. The present study is mainly focused on understanding the behavior of induced polarization for the determination of piezoelectric coefficient of AlGaN microrod along the c-axis and imaging of piezoelectric domains in the sample originating because of the angular inclination of AlGaN microrods with respect to its AlN base layers.« less

  7. Coating MCPs with AlN and GaN

    NASA Technical Reports Server (NTRS)

    Bensaoula, Abdelhakim; Starikov, David; Boney, Chris

    2006-01-01

    A development effort underway at the time of reporting the information for this article is devoted to increasing the sensitivity of microchannel plates (MCPs) as detectors of photons and ions by coating the MCPs with nitrides of elements in period III of the periodic table. Conventional MCPs are relatively insensitive to slowly moving, large-mass ions for example, ions of biomolecules under analysis in mass spectrometers. The idea underlying this development is to coat an MCP to reduce its work function (decrease its electron affinity) in order to increase both (1) the emission of electrons in response to impingement of low-energy, large-mass ions and (2) the multiplying effect of secondary electron emission. Of particular interest as coating materials having appropriately low or even negative electron affinities are gallium nitride, aluminum nitride, and ternary alloys of general composition Al(x)Ga(1-x)N (where 0AlN and GaN both undoped and doped with Si were deposited on commercial MCPs by radio-frequency molecular-beam epitaxy (also known as plasma-assisted molecular-beam epitaxy) at temperatures <200 C. This deposition technique is particularly suitable because (1) MCPs cannot withstand the higher deposition-substrate temperatures used to decompose constituent compounds in some other deposition techniques and (2) in this technique, the constituent Al, Ga, and N

  8. Chemical shielding properties for BN, BP, AlN, and AlP nanocones: DFT studies

    NASA Astrophysics Data System (ADS)

    Mirzaei, Mahmoud; Yousefi, Mohammad; Meskinfam, Masoumeh

    2012-06-01

    The properties of boron nitride (BN), boron phosphide (BP), aluminum nitride (AlN), and aluminum phosphide (AlP) nanocones were investigated by density functional theory (DFT) calculations. The investigated structures were optimized and chemical shielding (CS) properties including isotropic and anisotropic CS parameters were calculated for the atoms of the optimized structures. The magnitudes of CS parameters were observed to be mainly dependent on the bond lengths of considered atoms. The results indicated that the atoms could be divided into atomic layers due to the similarities of their CS properties for the atoms of each layer. The trend means that the atoms of each layer detect almost similar electronic environments. Moreover, the atoms at the apex and mouth of nanocones exhibit different properties with respect to the other atomic layers.

  9. Topical Review: Development of overgrown semi-polar GaN for high efficiency green/yellow emission

    NASA Astrophysics Data System (ADS)

    Wang, T.

    2016-09-01

    The most successful example of large lattice-mismatched epitaxial growth of semiconductors is the growth of III-nitrides on sapphire, leading to the award of the Nobel Prize in 2014 and great success in developing InGaN-based blue emitters. However, the majority of achievements in the field of III-nitride optoelectronics are mainly limited to polar GaN grown on c-plane (0001) sapphire. This polar orientation poses a number of fundamental issues, such as reduced quantum efficiency, efficiency droop, green and yellow gap in wavelength coverage, etc. To date, it is still a great challenge to develop longer wavelength devices such as green and yellow emitters. One clear way forward would be to grow III-nitride device structures along a semi-/non-polar direction, in particular, a semi-polar orientation, which potentially leads to both enhanced indium incorporation into GaN and reduced quantum confined Stark effects. This review presents recent progress on developing semi-polar GaN overgrowth technologies on sapphire or Si substrates, the two kinds of major substrates which are cost-effective and thus industry-compatible, and also demonstrates the latest achievements on electrically injected InGaN emitters with long emission wavelengths up to and including amber on overgrown semi-polar GaN. Finally, this review presents a summary and outlook on further developments for semi-polar GaN based optoelectronics.

  10. Electron density and currents of AlN/GaN high electron mobility transistors with thin GaN/AlN buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bairamis, A.; Zervos, Ch.; Georgakilas, A., E-mail: alexandr@physics.uoc.gr

    2014-09-15

    AlN/GaN high electron mobility transistor (HEMT) structures with thin GaN/AlN buffer layer have been analyzed theoretically and experimentally, and the effects of the AlN barrier and GaN buffer layer thicknesses on two-dimensional electron gas (2DEG) density and transport properties have been evaluated. HEMT structures consisting of [300 nm GaN/ 200 nm AlN] buffer layer on sapphire were grown by plasma-assisted molecular beam epitaxy and exhibited a remarkable agreement with the theoretical calculations, suggesting a negligible influence of the crystalline defects that increase near the heteroepitaxial interface. The 2DEG density varied from 6.8 × 10{sup 12} to 2.1 × 10{sup 13} cm{sup −2} as themore » AlN barrier thickness increased from 2.2 to 4.5 nm, while a 4.5 nm AlN barrier would result to 3.1 × 10{sup 13} cm{sup −2} on a GaN buffer layer. The 3.0 nm AlN barrier structure exhibited the highest 2DEG mobility of 900 cm{sup 2}/Vs for a density of 1.3 × 10{sup 13} cm{sup −2}. The results were also confirmed by the performance of 1 μm gate-length transistors. The scaling of AlN barrier thickness from 1.5 nm to 4.5 nm could modify the drain-source saturation current, for zero gate-source voltage, from zero (normally off condition) to 0.63 A/mm. The maximum drain-source current was 1.1 A/mm for AlN barrier thickness of 3.0 nm and 3.7 nm, and the maximum extrinsic transconductance was 320 mS/mm for 3.0 nm AlN barrier.« less

  11. Thermodynamics of inversion-domain boundaries in aluminum nitride: Interplay between interface energy and electric dipole potential energy

    NASA Astrophysics Data System (ADS)

    Zhang, J. Y.; Xie, Y. P.; Guo, H. B.; Chen, Y. G.

    2018-05-01

    Aluminum nitride (AlN) has a polar crystal structure that is susceptible to electric dipolar interactions. The inversion domains in AlN, similar to those in GaN and other wurtzite-structure materials, decrease the energy associated with the electric dipolar interactions at the expense of inversion-domain boundaries, whose interface energy has not been quantified. We study the atomic structures of six different inversion-domain boundaries in AlN, and compare their interface energies from density functional theory calculations. The low-energy interfaces have atomic structures with similar bonding geometry as those in the bulk phase, while the high-energy interfaces contain N-N wrong bonds. We calculate the formation energy of an inversion domain using the interface energy and dipoles' electric-field energy, and find that the distribution of the inversion domains is an important parameter for the microstructures of AlN films. Using this thermodynamic model, it is possible to control the polarity and microstructure of AlN films by tuning the distribution of an inversion-domain nucleus and by selecting the low-energy synthesis methods.

  12. Proposition of a model elucidating the AlN-on-Si (111) microstructure

    NASA Astrophysics Data System (ADS)

    Mante, N.; Rennesson, S.; Frayssinet, E.; Largeau, L.; Semond, F.; Rouvière, J. L.; Feuillet, G.; Vennéguès, P.

    2018-06-01

    AlN-on-Si can be considered as a model system for heteroepitaxial growth of highly mismatched materials. Indeed, AlN and Si drastically differ in terms of chemistry, crystalline structure, and lattice parameters. In this paper, we present a transmission electron microscopy and grazing incidence X-ray diffraction study of the microstructure of AlN layers epitaxially grown on Si (111) by molecular beam epitaxy. The large interfacial energy due to the dissimilarities between AlN and Si results in a 3D Volmer-Weber growth mode with the nucleation of independent and relaxed AlN islands. Despite a well-defined epitaxial relationship, these islands exhibit in-plane misorientations up to 6°-7°. We propose a model which quantitatively explains these misorientations by taking into account the relaxation of the islands through the introduction of 60° a-type misfit dislocations. Threading dislocations (TDs) are formed to compensate these misorientations when islands coalesce. TD density depends on two parameters: the islands' misorientation and density. We show that the former is related to the mismatch between AlN and Si, while the latter depends on the growth parameters. A large decrease in TD density occurs during the 3D growth stage by overlap and overgrowth of highly misoriented islands. On the other hand, the TD density does not change significantly when the growth becomes 2D. The proposed model, explaining the misorientations of 3D-grown islands, may be extended to other (0001)-oriented III-nitrides and more generally to any heteroepitaxial system exhibiting a 3D Volmer-Weber growth mode with islands relaxed thanks to the introduction of mixed-type misfit dislocations.

  13. GaN-on-silicon high-electron-mobility transistor technology with ultra-low leakage up to 3000 V using local substrate removal and AlN ultra-wide bandgap

    NASA Astrophysics Data System (ADS)

    Dogmus, Ezgi; Zegaoui, Malek; Medjdoub, Farid

    2018-03-01

    We report on extremely low off-state leakage current in AlGaN/GaN-on-silicon metal–insulator–semiconductor high-electron-mobility transistors (MISHEMTs) up to a high blocking voltage. Remarkably low off-state gate and drain leakage currents below 1 µA/mm up to 3 kV have been achieved owing to the use of a thick in situ SiN gate dielectric under the gate, and a local Si substrate removal technique combined with a cost effective 15-µm-thick AlN dielectric layer followed by a Cu deposition. This result establishes a manufacturable state-of-the-art high-voltage GaN-on-silicon power transistors while maintaining a low specific on-resistance of approximately 10 mΩ·cm2.

  14. Phase constitution and interface structure of nano-sized Ag-Cu/AlN multilayers: Experiment and ab initio modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pigozzi, Giancarlo; Janczak-Rusch, Jolanta; Passerone, Daniele

    2012-10-29

    Nano-sized Ag-Cu{sub 8nm}/AlN{sub 10nm} multilayers were deposited by reactive DC sputtering on {alpha}-Al{sub 2}O{sub 3}(0001) substrates. Investigation of the phase constitution and interface structure of the multilayers evidences a phase separation of the alloy sublayers into nanosized grains of Ag and Cu. The interfaces between the Ag grains and the quasi-single-crystalline AlN sublayers are semi-coherent, whereas the corresponding Cu/AlN interfaces are incoherent. The orientation relationship between Ag and AlN is constant throughout the entire multilayer stack. These observations are consistent with atomistic models of the interfaces as obtained by ab initio calculations.

  15. Ethanol surface chemistry on MBE-grown GaN(0001), GaOx/GaN(0001), and Ga2O3(2¯01).

    PubMed

    Kollmannsberger, Sebastian L; Walenta, Constantin A; Winnerl, Andrea; Knoller, Fabian; Pereira, Rui N; Tschurl, Martin; Stutzmann, Martin; Heiz, Ueli

    2017-09-28

    In this work, ethanol is used as a chemical probe to study the passivation of molecular beam epitaxy-grown GaN(0001) by surface oxidation. With a high degree of oxidation, no reaction from ethanol to acetaldehyde in temperature-programmed desorption experiments is observed. The acetaldehyde formation is attributed to a mechanism based on α-H abstraction from the dissociatively bound alcohol molecule. The reactivity is related to negatively charged surface states, which are removed upon oxidation of the GaN(0001) surface. This is compared with the Ga 2 O 3 (2¯01) single crystal surface, which is found to be inert for the acetaldehyde production. These results offer a toolbox to explore the surface chemistry of nitrides and oxynitrides on an atomic scale and relate their intrinsic activity to systems under ambient atmosphere.

  16. Structural and magnetic properties of ultra-thin Fe films on metal-organic chemical vapour deposited GaN(0001)

    NASA Astrophysics Data System (ADS)

    Kim, Jun-Young; Ionescu, Adrian; Mansell, Rhodri; Farrer, Ian; Oehler, Fabrice; Kinane, Christy J.; Cooper, Joshaniel F. K.; Steinke, Nina-Juliane; Langridge, Sean; Stankiewicz, Romuald; Humphreys, Colin J.; Cowburn, Russell P.; Holmes, Stuart N.; Barnes, Crispin H. W.

    2017-01-01

    Structural and magnetic properties of 1-10 nm thick Fe films deposited on GaN(0001) were investigated. In-situ reflecting high energy electron diffraction images indicated a α-Fe(110)/GaN(0001) growth of the 3D Volmer-Weber type. The α-Fe(110) X-ray diffraction peak showed a 1° full-width at half-maximum, indicating ≈20 nm grain sizes. A significant reduction in Fe atomic moment from its bulk value was observed for films thinner than 4 nm. Both GaN/Fe interface roughness and Fe film coercivity increased with Fe thickness, indicating a possible deterioration of Fe crystalline quality. Magnetic anisotropy was mainly uniaxial for all films while hexagonal anisotropies appeared for thicknesses higher than 3.7 nm.

  17. Stability diagrams for the surface patterns of GaN(0001bar) as a function of Schwoebel barrier height

    NASA Astrophysics Data System (ADS)

    Krzyżewski, Filip; Załuska-Kotur, Magdalena A.

    2017-01-01

    Height and type of Schwoebel barriers (direct or inverse) decides about the character of the surface instability. Different surface morphologies are presented. Step bunches, double steps, meanders, mounds and irregular patterns emerge at the surface as a result of step (Schwoebel) barriers at some temperature or miscut values. The study was carried out on the two-component kinetic Monte Carlo (kMC) model of GaN(0001bar) surface grown in nitrogen rich conditions. Diffusion of gallium adatoms over N-polar surface is slow and nitrogen adatoms are almost immobile. We show that in such conditions surfaces remain smooth when gallium adatoms diffuse in the presence of low inverse Schwoebel barrier. It is illustrated by adequate stability diagrams for surface morphologies.

  18. Semi-polar (11-22) AlGaN on overgrown GaN on micro-rod templates: Simultaneous management of crystal quality improvement and cracking issue

    NASA Astrophysics Data System (ADS)

    Li, Z.; Jiu, L.; Gong, Y.; Wang, L.; Zhang, Y.; Bai, J.; Wang, T.

    2017-02-01

    Thick and crack-free semi-polar (11-22) AlGaN layers with various high Al compositions have been achieved by means of growth on the top of nearly but not yet fully coalesced GaN overgrown on micro-rod templates. The range of the Al composition of up to 55.7% was achieved, corresponding to an emission wavelength of up to 270 nm characterised by photoluminescence at room temperature. X-ray diffraction (XRD) measurements show greatly improved crystal quality as a result of lateral overgrowth compared to the AlGaN counterparts on standard planar substrates. The full width at half maximums of the XRD rocking curves measured along the [1-100]/[11-2-3] directions (the two typical orientations for characterizing the crystal quality of (11-22) AlGaN) are 0.2923°/0.2006° for 37.8% Al and 0.3825°/0.2064° for 55.7% Al, respectively, which have never been achieved previously. Our calculation based on reciprocal space mapping measurements has demonstrated significant strain relaxation in the AlGaN as a result of utilising the non-coalesced GaN underneath, contributing to the elimination of any cracks. The results presented have demonstrated that our overgrowth technique can effectively manage strain and improve crystal quality simultaneously.

  19. Intersubband absorption in GaN nanowire heterostructures at mid-infrared wavelengths.

    PubMed

    Ajay, Akhil; Blasco, Rodrigo; Polaczynski, Jakub; Spies, Maria; den Hertog, Martien; Monroy, Eva

    2018-06-27

    In this paper, we study intersubband characteristics of GaN/AlN and GaN/Al0.4Ga0.6N heterostructures in GaN nanowires structurally designed to absorb in the mid-infrared wavelength region. Increasing the GaN well width from 1.5 to 5.7 nm leads to a red shift of the intersubband absorption from 1.4 to 3.4 µm. The red shift in larger quantum wells is amplified by the fact that one of the GaN/AlN heterointerfaces (corresponding to the growth of GaN on AlN) is not sharp but rather a graded alloy extending around 1.5-2 nm. Using AlGaN instead of AlN for the same barrier dimensions, we observe the effects of reduced polarization, which blue shifts the band-to-band transitions and red shifts the intersubband transitions. In heavily doped GaN/AlGaN nanowires, a broad absorption band is observed in the 4.5-6.4 µm spectral region. © 2018 IOP Publishing Ltd.

  20. Electrochemical fabrication and interfacial charge-transfer process of Ni/GaN(0001) electrodes.

    PubMed

    Qin, Shuang-Jiao; Peng, Fei; Chen, Xue-Qing; Pan, Ge-Bo

    2016-02-17

    The electrodeposition of Ni on single-crystal n-GaN(0001) film from acetate solution was investigated using scanning electron microscopy, X-ray diffraction, energy dispersive X-ray analysis, atomic force microscopy, and electrochemical techniques. The as-deposited Ni/n-GaN(0001) had a flat band potential of Ufb = -1.0 V vs. Ag/AgCl, which was much lower than that of bare GaN(0001). That is, a more feasible charge-transfer process occurred at the Ni/n-Ga(0001) interface. On the basis of a Tafel plot, an exchange current density of ∼1.66 × 10(-4) mA cm(-2) was calculated. The nuclei density increased when the applied potential was varied from -0.9 V to -1.2 V and, eventually the whole substrate was covered. In addition, the current transient measurements revealed that the Ni deposition process followed instantaneous nucleation in 5 mM Ni(CH3COO)2 + 0.5 M H3BO3.

  1. Quantum chemical study of small AlnBm clusters: Structure and physical properties

    NASA Astrophysics Data System (ADS)

    Loukhovitski, Boris I.; Sharipov, Alexander S.; Starik, Alexander M.

    2017-08-01

    The structure and physical properties, including rotational constants, characteristic vibrational temperatures, collision diameter, dipole moment, static polarizability, the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), and formation enthalpy of the different isomeric forms of AlnBm clusters with n + m ⩽ 7 are studied using density functional theory. The search of the structure of isomers has been carried employing multistep hierarchical algorithm. Temperature dependencies of thermodynamic functions, such as enthalpy, entropy, and specific heat capacity, have been determined both for the individual isomers and for the ensembles with equilibrium and frozen compositions for the each class of clusters taking into account the anharmonicity of cluster vibrations and the contribution of their excited electronic states. The prospects of the application of small AlnBm clusters as the components of energetic materials are also considered.

  2. A quantum chemistry study on surface reactivity of pristine and carbon-substituted AlN nanotubes

    NASA Astrophysics Data System (ADS)

    Mahdaviani, Amir; Esrafili, Mehdi D.; Esrafili, Ali; Behzadi, Hadi

    2013-09-01

    A density functional theory investigation was performed to predict the surface reactivity of pristine and carbon-substituted (6,0) single-walled aluminum nitride nanotubes (AlNNTs). The properties determined include the electrostatic potentials VS(r) and average local ionization energies ĪS(r) on the surfaces of the investigated tubes. According to computed VS(r) results, the Al/N atoms in edge or cap regions show a different reactivity pattern than those at the middle portion of the tubes. Due to the carbon-substitution at the either Al or N sites of the tubes, the negative regions associated with nitrogen atoms are stronger than before. The prediction of surface reactivity and regioselectivity using average local ionization energies has been verified by atomic hydrogen chemisorption energies calculated for AlNNTs at the B3LYP/6-31 G* level. There is an acceptable correlation between the minima of ĪS(r) and the atomic hydrogen chemisorption energies, demonstrating that ĪS(r) provides an effective means for rapidly and economically assessing the relative reactivities of finite sized AlNNTs.

  3. Ethanol surface chemistry on MBE-grown GaN(0001), GaOx/GaN(0001), and Ga2O3(2 \\xAF 01 )

    NASA Astrophysics Data System (ADS)

    Kollmannsberger, Sebastian L.; Walenta, Constantin A.; Winnerl, Andrea; Knoller, Fabian; Pereira, Rui N.; Tschurl, Martin; Stutzmann, Martin; Heiz, Ueli

    2017-09-01

    In this work, ethanol is used as a chemical probe to study the passivation of molecular beam epitaxy-grown GaN(0001) by surface oxidation. With a high degree of oxidation, no reaction from ethanol to acetaldehyde in temperature-programmed desorption experiments is observed. The acetaldehyde formation is attributed to a mechanism based on α -H abstraction from the dissociatively bound alcohol molecule. The reactivity is related to negatively charged surface states, which are removed upon oxidation of the GaN(0001) surface. This is compared with the Ga2O3(2 ¯ 01 ) single crystal surface, which is found to be inert for the acetaldehyde production. These results offer a toolbox to explore the surface chemistry of nitrides and oxynitrides on an atomic scale and relate their intrinsic activity to systems under ambient atmosphere.

  4. Characterization of Polar, Semi-Polar, and Non-Polar p-n Homo and Hetero-junctions grown by Ammonia Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Hurni, Christophe Antoine

    Widespread interest in the group III-Nitrides began with the achievement of p-type conductivity in the early 1990s in Mg-doped GaN films grown by metal organic chemical vapor deposition (MOCVD) by Nakamura et al. Indeed, MOCVD-grown Mg-doped GaN is insulating as-grown, because of the formation of neutral Mg-H complexes. Nakamura et al. showed that a rapid thermal anneal removes the hydrogen and enables p-conductivity. Shortly after this discovery, the first LEDs and lasers were demonstrated by Nakamura et al. The necessary annealing step is problematic for devices which need a buried p-layer, such as hetero-junction bipolar transistors. Ammonia molecular beam epitaxy (NH3-MBE) has a great potential for growing vertical III-Nitrides-based devices, thank to its N-rich growth conditions and all the usual advantages of MBE, which include a low-impurity growth environment, in situ monitoring techniques as well as the ability to grow sharp interfaces. We first investigated the growth of p-GaN by NH3-MBE. We found that the hole concentration strongly depends on the growth temperature. Thanks to comprehensive Hall and transfer length measurements, we found evidences for a compensating donor defects in NH3-MBE-grown Mg-doped GaN films. High-quality p-n junctions with very low reverse current and close to unity ideality factor were also grown and investigated. For the design of heterojunction devices such as laser diodes, light emitting diodes or heterojunction bipolar transistors, hetero-interface's characteristics such as the band offset or interface charges are fundamental. A technique developed by Kroemer et al. uses capacitance-voltage (C-V) profiling to extract band-offsets and charges at a hetero-interface. We applied this technique to the III-Nitrides. We discovered that for the polar III-Nitrides, the technique is not applicable because of the very large polarization charge. We nevertheless successfully measured the polarization charge at the AlGaN/GaN hetero

  5. AlN/GaN Digital Alloy for Mid- and Deep-Ultraviolet Optoelectronics.

    PubMed

    Sun, Wei; Tan, Chee-Keong; Tansu, Nelson

    2017-09-19

    The AlN/GaN digital alloy (DA) is a superlattice-like nanostructure formed by stacking ultra-thin ( ≤ 4 monolayers) AlN barriers and GaN wells periodically. Here we performed a comprehensive study on the electronics and optoelectronics properties of the AlN/GaN DA for mid- and deep-ultraviolet (UV) applications. Our numerical analysis indicates significant miniband engineering in the AlN/GaN DA by tuning the thicknesses of AlN barriers and GaN wells, so that the effective energy gap can be engineered from ~3.97 eV to ~5.24 eV. The band structure calculation also shows that the valence subbands of the AlN/GaN DA is properly rearranged leading to the heavy-hole (HH) miniband being the top valence subband, which results in the desired transverse-electric polarized emission. Furthermore, our study reveals that the electron-hole wavefunction overlaps in the AlN/GaN DA structure can be remarkably enhanced up to 97% showing the great potential of improving the internal quantum efficiency for mid- and deep-UV device application. In addition, the optical absorption properties of the AlN/GaN DA are analyzed with wide spectral coverage and spectral tunability in mid- and deep-UV regime. Our findings suggest the potential of implementing the AlN/GaN DA as a promising active region design for high efficiency mid- and deep-UV device applications.

  6. Wide-bandgap III-Nitride based Second Harmonic Generation

    DTIC Science & Technology

    2014-10-02

    fabrication process for a GaN LPS. Fig. 1: 3-step Fabrication process of a GaN based lateral polar structure. ( a ) Growth of a 20 nm AlN buffer layer...etching of the LT-AlN stripes. This results are shown in Fig. 2 ( a ) and (b). Fig. 2: AFM images of KOH ( a ) and RIE (b) patterned templates for lateral ...was varied between 0.6 - 1.0. FIG. 3: Growth process of AlGaN based Lateral Polar Structures. ( a ) RIE patterning. (b) Growth of HT- AlN. (c

  7. Selected Growth of Cubic and Hexagonal GaN Epitaxial Films on Polar MgO(111)

    NASA Astrophysics Data System (ADS)

    Lazarov, V. K.; Zimmerman, J.; Cheung, S. H.; Li, L.; Weinert, M.; Gajdardziska-Josifovska, M.

    2005-06-01

    Selected molecular beam epitaxy of zinc blende (111) or wurtzite (0001) GaN films on polar MgO(111) is achieved depending on whether N or Ga is deposited first. The cubic stacking is enabled by nitrogen-induced polar surface stabilization, which yields a metallic MgO(111)-(1×1)-ON surface. High-resolution transmission electron microscopy and density functional theory studies indicate that the atomically abrupt semiconducting GaN(111)/MgO(111) interface has a Mg-O-N-Ga stacking, where the N atom is bonded to O at a top site. This specific atomic arrangement at the interface allows the cubic stacking to more effectively screen the substrate and film electric dipole moment than the hexagonal stacking, thus stabilizing the zinc blende phase even though the wurtzite phase is the ground state in the bulk.

  8. Structural and electrical properties of Pb(Zr ,Ti)O3 grown on (0001) GaN using a double PbTiO3/PbO bridge layer

    NASA Astrophysics Data System (ADS)

    Xiao, Bo; Gu, Xing; Izyumskaya, Natalia; Avrutin, Vitaliy; Xie, Jinqiao; Liu, Huiyong; Morkoç, Hadis

    2007-10-01

    Pb(Zr0.52Ti0.48)O3 films were deposited by rf magnetron sputtering on silicon-doped GaN(0001)/c-sapphire with a PbTiO3/PbO oxide bridge layer grown by molecular beam epitaxy. X-ray diffraction data showed the highly (111)-oriented perovskite phase in lead zirconate titanate (PZT) films with PbTiO3/PbO bridge layers, compared to the pyrochlore phase grown directly on GaN. The in-plane epitaxial relationships were found from x-ray pole figures to be PZT[112¯]‖GaN[11¯00] and PZT[11¯0]‖GaN[112¯0]. The polarization-electric field measurements revealed the ferroelectric behavior with remanent polarization of 30-40μC /cm2 and asymmetric hysteresis loops due to the depletion layer formed in GaN under reverse bias which resulted in a high negative coercive electric field (950kV/cm).

  9. Deposition of highly textured AlN thin films by reactive high power impulse magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreira, Milena A.; Törndahl, Tobias; Katardjiev, Ilia

    2015-03-15

    Aluminum nitride thin films were deposited by reactive high power impulse magnetron sputtering (HiPIMS) and pulsed direct-current on Si (100) and textured Mo substrates, where the same deposition conditions were used for both techniques. The films were characterized by x-ray diffraction and atomic force microscopy. The results show a pronounced improvement in the AlN crystalline texture for all films deposited by HiPIMS on Si. Already at room temperature, the HiPIMS films exhibited a strong preferred (002) orientation and at 400 °C, no contributions from other orientations were detected. Despite the low film thickness of only 200 nm, an ω-scan full width atmore » half maximum value of 5.1° was achieved on Si. The results are attributed to the high ionization of sputtered material achieved in HiPIMS. On textured Mo, there was no significant difference between the deposition techniques.« less

  10. Photoluminescence and positron annihilation studies on Mg-doped nitrogen-polarity semipolar (101xAF1xAF) GaN heteroepitaxial layers grown by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Onuma, T.; Uedono, A.; Asamizu, H.; Sato, H.; Kaeding, J. F.; Iza, M.; DenBaars, S. P.; Nakamura, S.; Chichibu, S. F.

    2010-03-01

    The influences of enhanced stacking fault (SF) formation, which is peculiar to nitrogen-(N-) polarity growth and lattice-mismatched semipolar heteroepitaxy, on the electrical properties of (101¯1¯) Mg-doped GaN (GaN:Mg) epilayers were investigated. Although the residual donor concentration was higher than (0001) GaN because of N-polar growth, comparatively low Mg doping (3×1019 cm-3) gave a hole concentration approximately 1.5×1018 cm-3, which was an order of magnitude higher than (0001) GaN:Mg. As the acceptor ionization energy estimated from low temperature photoluminescence was quite similar for (101¯1¯) and (0001) GaN:Mg, the high Mg activation seems to result with the aid of high density SFs. Because the Doppler broadening S parameter for the positron annihilation measurement, which reflects the concentration or size of negatively charged cation vacancies, of (101¯1¯) GaN:Mg was smaller than (0001) case, (101¯1¯) orientation is well suited to Mg-doping.

  11. Polarization-induced hole doping in N-polar III-nitride LED grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yan, Long; Zhang, Yuantao; Han, Xu; Deng, Gaoqiang; Li, Pengchong; Yu, Ye; Chen, Liang; Li, Xiaohang; Song, Junfeng

    2018-04-01

    Polarization-induced doping has been shown to be effective for wide-bandgap III-nitrides. In this work, we demonstrated a significantly enhanced hole concentration via linearly grading an N-polar AlxGa1-xN (x = 0-0.3) layer grown by metal-organic chemical vapor deposition. The hole concentration increased by ˜17 times compared to that of N-polar p-GaN at 300 K. The fitting results of temperature-dependent hole concentration indicated that the holes in the graded p-AlGaN layer comprised both polarization-induced and thermally activated ones. By optimizing the growth conditions, the hole concentration was further increased to 9.0 × 1017 cm-3 in the graded AlGaN layer. The N-polar blue-violet light-emitting device with the graded p-AlGaN shows stronger electroluminescence than the one with the conventional p-GaN. The study indicates the potential of the polarization doping technique in high-performance N-polar light-emitting devices.

  12. Identifying and overcoming the interface originating c-axis instability in highly Sc enhanced AlN for piezoelectric micro-electromechanical systems

    NASA Astrophysics Data System (ADS)

    Fichtner, Simon; Wolff, Niklas; Krishnamurthy, Gnanavel; Petraru, Adrian; Bohse, Sascha; Lofink, Fabian; Chemnitz, Steffen; Kohlstedt, Hermann; Kienle, Lorenz; Wagner, Bernhard

    2017-07-01

    Enhancing the piezoelectric activity of AlN by partially substituting Al with Sc to form Al1-xScxN is a promising approach to improve the performance of piezoelectric micro-electromechanical systems. Here, we present evidence of an instability in the morphology of Al1-xScxN, which originates at, or close to, the substrate/Al1-xScxN interface and becomes more pronounced as the Sc content is increased. Based on Transmission electron microscopy, piezoresponse force microscopy, X-ray diffraction, and SEM analysis, it is identified to be the incipient formation of (100) oriented grains. Approaches to successfully reestablish exclusive c-axis orientation up to x = 0.43 are revealed, with electrode pre-treatment and cathode-substrate distance found to exert significant influence. This allows us to present first measurements of the transversal thin film piezoelectric coefficient e31,f and dielectric loss tangent tan δ beyond x = 0.3.

  13. Dependence of N-polar GaN rod morphology on growth parameters during selective area growth by MOVPE

    NASA Astrophysics Data System (ADS)

    Li, Shunfeng; Wang, Xue; Mohajerani, Matin Sadat; Fündling, Sönke; Erenburg, Milena; Wei, Jiandong; Wehmann, Hergo-Heinrich; Waag, Andreas; Mandl, Martin; Bergbauer, Werner; Strassburg, Martin

    2013-02-01

    Selective area growth of GaN rods by metalorganic vapor phase epitaxy has attracted great interest due to its novel applications in optoelectronic and photonics. In this work, we will present the dependence of GaN rod morphology on various growth parameters i.e. growth temperature, H2/N2 carrier gas concentration, V/III ratio, total carrier gas flow and reactor pressure. It is found that higher growth temperature helps to increase the aspect ratio of the rods, but reduces the height homogeneity. Furthermore, H2/N2 carrier gas concentration is found to be a critical factor to obtain vertical rod growth. Pure nitrogen carrier gas leads to irregular growth of GaN structure, while an increase of hydrogen carrier gas results in vertical GaN rod growth. Higher hydrogen carrier gas concentration also reduces the diameter and enhances the aspect of the GaN rods. Besides, increase of V/III ratio causes reduction of the aspect ratio of N-polar GaN rods, which could be explained by the relatively lower growth rate on (000-1) N-polar top surface when supplying more ammonia. In addition, an increase of the total carrier gas flow leads to a decrease in the diameter and the average volume of GaN rods. These phenomena are tentatively explained by the change of partial pressure of the source materials and boundary layer thickness in the reactor. Finally, it is shown that the average volume of the N-polar GaN rods keeps a similar value for a reactor pressure PR of 66 and 125 mbar, while an incomplete filling of the pattern opening is observed with PR of 250 mbar. Room temperature photoluminescence spectrum of the rods is also briefly discussed.

  14. Ion channeling studies on mixed phases formed in metalorganic chemical vapor deposition grown Mg-doped GaN on Al2O3(0001)

    NASA Astrophysics Data System (ADS)

    Sundaravel, B.; Luo, E. Z.; Xu, J. B.; Wilson, I. H.; Fong, W. K.; Wang, L. S.; Surya, C.

    2000-01-01

    Rutherford backscattering spectrometry and ion channeling were used to determine the relative quantities of wurtzite and zinc-blende phases in metalorganic chemical vapor deposition grown Mg-doped GaN(0001) on an Al2O3(0001) substrate with a GaN buffer layer. Offnormal axial channeling scans were used. High-resolution x-ray diffraction measurements also confirmed the presence of mixed phases. The in-plane orientation was found to be GaN[11¯0]‖GaN[112¯0]‖Al2O3[112¯0]. The effects of rapid thermal annealing on the relative phase content, thickness and crystalline quality of the GaN epilayer were also studied.

  15. Improved ultraviolet emission performance from polarization-engineered n-ZnO/p-GaN heterojunction diode

    NASA Astrophysics Data System (ADS)

    Jiang, Junyan; Zhang, Yuantao; Chi, Chen; Shi, Zhifeng; Yan, Long; Li, Pengchong; Zhang, Baolin; Du, Guotong

    2016-02-01

    O-polar ZnO films were grown on N-polar p-GaN/sapphire substrates by photo-assisted metal-organic chemical vapor deposition, and further heterojunction light-emitting diodes based O-polar n-ZnO/N-polar p-GaN were proposed and fabricated. It is experimentally demonstrated that the interface polarization of O-polar n-ZnO/N-polar p-GaN heterojunction can shift the location of the depletion region from the interface deep into the ZnO side. When a forward bias is applied to the proposed diode, a strong and high-purity ultraviolet emission located at 385 nm can be observed. Compared with conventional Zn-polar n-ZnO/Ga-polar p-GaN heterostructure diode, the ultraviolet emission intensity of the proposed heterojunction diode is greatly enhanced due to the presence of polarization-induced inversion layer at the ZnO side of the heterojunction interface. This work provides an innovative path for the design and development of ZnO-based ultraviolet diode.

  16. Enhancement of surface migration by Mg doping in the metalorganic vapor phase epitaxy of N-polar (000\\bar{1}) GaN/sapphire

    NASA Astrophysics Data System (ADS)

    Tanikawa, Tomoyuki; Shojiki, Kanako; Aisaka, Takashi; Kimura, Takeshi; Kuboya, Shigeyuki; Hanada, Takashi; Katayama, Ryuji; Matsuoka, Takashi

    2014-01-01

    With respect to N-polar (000\\bar{1}) GaN grown on a sapphire substrate, the effects of Mg doping on the surface morphology, and the optical, and electrical properties are precisely investigated. By doping Mg, hillocks observed on the surface of (000\\bar{1}) GaN can be suppressed, while step bunching becomes severe. The atomic terrace width is extended with increasing Mg/Ga precursor ratio. Mg doping can promote the surface migration of Ga adatoms on a GaN surface during growth. In the case of heavily Mg-doped GaN, atomic steps become wavy. From photoluminescence spectra, the dominant transition was found to change from near-band-edge transition to donor-acceptor-pair transition. Hall-effect measurement shows p-type conduction at room temperature for a sample grown with the Mg/Ga precursor ratio of 4.5 × 10-3. The activation energy is 143 meV, which is comparable to that of Mg in the conventional Ga-polar (0001) GaN.

  17. Electron band bending of polar, semipolar and non-polar GaN surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartoš, I.; Romanyuk, O., E-mail: romanyuk@fzu.cz; Houdkova, J.

    2016-03-14

    The magnitudes of the surface band bending have been determined by X-ray photoelectron spectroscopy for polar, semipolar, and non-polar surfaces of wurtzite GaN crystals. All surfaces have been prepared from crystalline GaN samples grown by the hydride-vapour phase epitaxy and separated from sapphire substrates. The Ga 3d core level peak shifts have been used for band bending determination. Small band bending magnitudes and also relatively small difference between the band bendings of the surfaces with opposite polarity have been found. These results point to the presence of electron surface states of different amounts and types on surfaces of different polaritymore » and confirm the important role of the electron surface states in compensation of the bound surface polarity charges in wurtzite GaN crystals.« less

  18. Titanium induced polarity inversion in ordered (In,Ga)N/GaN nanocolumns.

    PubMed

    Kong, X; Li, H; Albert, S; Bengoechea-Encabo, A; Sanchez-Garcia, M A; Calleja, E; Draxl, C; Trampert, A

    2016-02-12

    We report on the formation of polarity inversion in ordered (In,Ga)N/GaN nanocolumns grown on a Ti-masked GaN-buffered sapphire substrate by plasma assisted molecular beam epitaxy. High-resolution transmission electron microscopy and electron energy-loss spectroscopy reveal a stacking fault-like planar defect at the homoepitaxial GaN interface due to Ti incorporation, triggering the generation of N-polar domains in Ga-polar nanocolumns. Density functional theory calculations are applied to clarify the atomic configurations of a Ti monolayer occupation on the GaN (0002) plane and to prove the inversion effect. The polarity inversion leads to an enhanced indium incorporation in the subsequent (In,Ga)N segment of the nanocolumn. This study provides a deeper understanding of the effects of Ti mask in the well-controlled selective area growth of (In,Ga)N/GaN nanocolumns.

  19. Comparative study of GaN-based ultraviolet LEDs grown on different-sized patterned sapphire substrates with sputtered AlN nucleation layer

    NASA Astrophysics Data System (ADS)

    Zhou, Shengjun; Hu, Hongpo; Liu, Xingtong; Liu, Mengling; Ding, Xinghuo; Gui, Chengqun; Liu, Sheng; Guo, L. Jay

    2017-11-01

    GaN-based ultraviolet-light-emitting diodes (UV LEDs) with 375 nm emission were grown on different-sized patterned sapphire substrates (PSSs) with ex situ 15-nm-thick sputtered AlN nucleation layers by metal-organic chemical vapor deposition (MOCVD). It was observed through in situ optical reflectance monitoring that the transition time from a three-dimensional (3D) island to a two-dimensional (2D) coalescence was prolonged when GaN was grown on a larger PSS, owing to a much longer lateral growth time of GaN. The full widths at half-maximum (FWHMs) of symmetric GaN(002) and asymmetric GaN(102) X-ray diffraction (XRD) rocking curves decreased as the PSS size increased. By cross-sectional transmission electron microscopy (TEM) analysis, it was found that the threading dislocation (TD) density in UV LEDs decreased with increasing pattern size and fill factor of the PSS, thereby resulting in a marked improvement in internal quantum efficiency (IQE). Finite-difference time-domain (FDTD) simulations quantitatively demonstrated a progressive decrease in light extraction efficiency (LEE) as the PSS size increased. However, owing to the significantly reduced TD density in InGaN/AlInGaN multiple quantum wells (MQWs) and thus improved IQE, the light output power of the UV LED grown on a large PSS with a fill factor of 0.71 was 131.8% higher than that of the UV LED grown on a small PSS with a fill factor of 0.4, albeit the UV LED grown on a large PSS exhibited a much lower LEE.

  20. Mechanism of Carrier Transport in Hybrid GaN/AlN/Si Solar Cells

    NASA Astrophysics Data System (ADS)

    Ekinci, Huseyin; Kuryatkov, Vladimir V.; Gherasoiu, Iulian; Karpov, Sergey Y.; Nikishin, Sergey A.

    2017-10-01

    The particularities of the carrier transport in p- n-GaN/ n-AlN/ p- n-Si and n-GaN/ n-AlN /p- n-Si structures were investigated through temperature-dependent current density and forward voltage ( J- V) measurements, carrier distribution, and transport modeling. Despite the insulating properties of AlN, reasonably high current densities were achieved under forward bias. The experimental relationship between the current density and forward voltage was accurately approximated by an expression accounting for space-charge-limited current in the AlN layer and non-linear characteristics of the p- n junction formed in silicon. We suggest that extended defects throughout the AlN volume are responsible for the conduction, although the limited data available do not allow the accurate identification of the type of these defects.

  1. Growth diagram of N-face GaN (0001{sup ¯}) grown at high rate by plasma-assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okumura, Hironori, E-mail: okumura@engineering.ucsb.edu; McSkimming, Brian M.; Speck, James S.

    2014-01-06

    N-face GaN was grown on free-standing GaN (0001{sup ¯}) substrates at a growth rate of 1.5 μm/h using plasma-assisted molecular beam epitaxy. Difference in growth rate between (0001{sup ¯}) and (0001) oriented GaN depends on nitrogen plasma power, and the (0001{sup ¯}) oriented GaN had only 70% of the growth rate of the (0001) oriented GaN at 300 W. Unintentional impurity concentrations of silicon, carbon, and oxygen were 2 × 10{sup 15}, 2 × 10{sup 16}, and 7 × 10{sup 16} cm{sup −3}, respectively. A growth diagram was constructed that shows the dependence of the growth modes on the difference in the Ga and active nitrogen flux, Φ{sub Ga} − Φ{submore » N*}, and the growth temperature. At high Φ{sub Ga} − Φ{sub N*} (Φ{sub Ga} ≫ Φ{sub N*}), two-dimensional (step-flow and layer-by-layer) growth modes were realized. High growth temperature (780 °C) expanded the growth window of the two-dimensional growth modes, achieving a surface with rms roughness of 0.48 nm without Ga droplets.« less

  2. Sensitivity of Fermi level position at Ga-polar, N-polar, and nonpolar m-plane GaN surfaces to vacuum and air ambient

    NASA Astrophysics Data System (ADS)

    Janicki, Łukasz; Ramírez-López, Manolo; Misiewicz, Jan; Cywiński, Grzegorz; Boćkowski, Michał; Muzioł, Grzegorz; Chèze, Caroline; Sawicka, Marta; Skierbiszewski, Czesław; Kudrawiec, Robert

    2016-05-01

    Ga-polar, N-polar, and nonpolar m-plane GaN UN+ structures have been examined in air and vacuum ambient by contactless electroreflectance (CER). This technique is very sensitive to the surface electric field that varies with the Fermi level position at the surface. For UN+ GaN structures [i.e., GaN (undoped)/GaN (n-type)/substrate], a homogeneous built-in electric field is expected in the undoped GaN layer that is manifested by Franz-Keldysh oscillation (FKO) in CER spectra. A clear change in FKO has been observed in CER spectra for N-polar and nonpolar m-plane structures when changing from air to vacuum ambient. This means that those surfaces are very sensitive to ambient atmosphere. In contrast to that, only a small change in FKO can be seen in the Ga-polar structure. This clearly shows that the ambient sensitivity of the Fermi level position at the GaN surface varies with the crystallographic orientation and is very high for N-polar and nonpolar m-plane surfaces. This feature of the N-polar and nonpolar m-plane surfaces can be very important for GaN-based devices grown on these crystallographic orientations and can be utilized in some of the devices, e.g., sensors.

  3. A design strategy for achieving more than 90% of the overlap integral of electron and hole wavefunctions in high-AlN-mole-fraction Al x Ga1- x N multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Kojima, Kazunobu; Furusawa, Kentaro; Yamazaki, Yoshiki; Miyake, Hideto; Hiramatsu, Kazumasa; Chichibu, Shigefusa F.

    2017-01-01

    A strategy for increasing the square of an overlap integral of electron and hole wavefunctions (I 2) in polar c-plane Al x Ga1- x N multiple quantum wells (MQWs) is proposed. By applying quadratic modulation to AlN mole fractions along the c-axis, local bandgap energies and concentrations of immobile charges induced by polarization discontinuity are simultaneously controlled throughout the MQW structure, and optimized band profiles are eventually achieved. The I 2 value can be substantially increased to 94% when the well width (L w) is smaller than 4.0 nm. In addition, I 2 greater than 80% is predicted even for thick MQWs with L w of 10 nm.

  4. Structural and optical properties of semi-polar (11-22) InGaN/GaN green light-emitting diode structure

    NASA Astrophysics Data System (ADS)

    Zhao, Guijuan; Wang, Lianshan; Li, Huijie; Meng, Yulin; Li, Fangzheng; Yang, Shaoyan; Wang, Zhanguo

    2018-01-01

    Semi-polar (11-22) InGaN multiple quantum well (MQW) green light-emitting diode (LED) structures have been realized by metal-organic chemical vapor deposition on an m-plane sapphire substrate. By introducing double GaN buffer layers, we improve the crystal quality of semi-polar (11-22) GaN significantly. The vertical alignment of the diffraction peaks in the (11-22) X-ray reciprocal space mapping indicates the fully strained MQW on the GaN layer. The photoluminescence spectra of the LED structure show stronger emission intensity along the [1-100] InGaN/GaN direction. The electroluminescence emission of the LED structure is very broad with peaks around 550 nm and 510 nm at the 100 mA current injection for samples A and B, respectively, and exhibits a significant blue-shift with increasing drive current.

  5. Helical Growth of Aluminum Nitride: New Insights into Its Growth Habit from Nanostructures to Single Crystals

    PubMed Central

    Zhang, Xing-Hong; Shao, Rui-Wen; Jin, Lei; Wang, Jian-Yu; Zheng, Kun; Zhao, Chao-Liang; Han, Jie-Cai; Chen, Bin; Sekiguchi, Takashi; Zhang, Zhi; Zou, Jin; Song, Bo

    2015-01-01

    By understanding the growth mechanism of nanomaterials, the morphological features of nanostructures can be rationally controlled, thereby achieving the desired physical properties for specific applications. Herein, the growth habits of aluminum nitride (AlN) nanostructures and single crystals synthesized by an ultrahigh-temperature, catalyst-free, physical vapor transport process were investigated by transmission electron microscopy. The detailed structural characterizations strongly suggested that the growth of AlN nanostructures including AlN nanowires and nanohelixes follow a sequential and periodic rotation in the growth direction, which is independent of the size and shape of the material. Based on these experimental observations, an helical growth mechanism that may originate from the coeffect of the polar-surface and dislocation-driven growth is proposed, which offers a new insight into the related growth kinetics of low-dimensional AlN structures and will enable the rational design and synthesis of novel AlN nanostructures. Further, with the increase of temperature, the growth process of AlN grains followed the helical growth model. PMID:25976071

  6. Polarity Control of Heteroepitaxial GaN Nanowires on Diamond.

    PubMed

    Hetzl, Martin; Kraut, Max; Hoffmann, Theresa; Stutzmann, Martin

    2017-06-14

    Group III-nitride materials such as GaN nanowires are characterized by a spontaneous polarization within the crystal. The sign of the resulting sheet charge at the top and bottom facet of a GaN nanowire is determined by the orientation of the wurtzite bilayer of the different atomic species, called N and Ga polarity. We investigate the polarity distribution of heteroepitaxial GaN nanowires on different substrates and demonstrate polarity control of GaN nanowires on diamond. Kelvin Probe Force Microscopy is used to determine the polarity of individual selective area-grown and self-assembled nanowires over a large scale. At standard growth conditions, mixed polarity occurs for selective GaN nanowires on various substrates, namely on silicon, on sapphire and on diamond. To obtain control over the growth orientation on diamond, the substrate surface is modified by nitrogen and oxygen plasma exposure prior to growth, and the growth parameters are adjusted simultaneously. We find that the surface chemistry and the substrate temperature are the decisive factors for obtaining control of up to 93% for both polarity types, whereas the growth mode, namely selective area or self-assembled growth, does not influence the polarity distribution significantly. The experimental results are discussed by a model based on the interfacial bonds between the GaN nanowires, the termination layer, and the substrate.

  7. Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes

    NASA Astrophysics Data System (ADS)

    Feng, Shih-Wei; Liao, Po-Hsun; Leung, Benjamin; Han, Jung; Yang, Fann-Wei; Wang, Hsiang-Chen

    2015-07-01

    Based on quantum efficiency and time-resolved electroluminescence measurements, the effects of carrier localization and quantum-confined Stark effect (QCSE) on carrier transport and recombination dynamics of Ga- and N-polar InGaN/GaN light-emitting diodes (LEDs) are reported. The N-polar LED exhibits shorter ns-scale response, rising, delay, and recombination times than the Ga-polar one does. Stronger carrier localization and the combined effects of suppressed QCSE and electric field and lower potential barrier acting upon the forward bias in an N-polar LED provide the advantages of more efficient carrier relaxation and faster carrier recombination. By optimizing growth conditions to enhance the radiative recombination, the advantages of more efficient carrier relaxation and faster carrier recombination in a competitive performance N-polar LED can be realized for applications of high-speed flash LEDs. The research results provide important information for carrier transport and recombination dynamics of an N-polar InGaN/GaN LED.

  8. Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Shih-Wei, E-mail: swfeng@nuk.edu.tw; Liao, Po-Hsun; Leung, Benjamin

    2015-07-28

    Based on quantum efficiency and time-resolved electroluminescence measurements, the effects of carrier localization and quantum-confined Stark effect (QCSE) on carrier transport and recombination dynamics of Ga- and N-polar InGaN/GaN light-emitting diodes (LEDs) are reported. The N-polar LED exhibits shorter ns-scale response, rising, delay, and recombination times than the Ga-polar one does. Stronger carrier localization and the combined effects of suppressed QCSE and electric field and lower potential barrier acting upon the forward bias in an N-polar LED provide the advantages of more efficient carrier relaxation and faster carrier recombination. By optimizing growth conditions to enhance the radiative recombination, the advantagesmore » of more efficient carrier relaxation and faster carrier recombination in a competitive performance N-polar LED can be realized for applications of high-speed flash LEDs. The research results provide important information for carrier transport and recombination dynamics of an N-polar InGaN/GaN LED.« less

  9. Effect of uniaxial stress on the polarization of light emitted from GaN/AlN quantum dots grown on Si(111)

    NASA Astrophysics Data System (ADS)

    Moshe, O.; Rich, D. H.; Damilano, B.; Massies, J.

    2008-04-01

    Cathodoluminescence (CL) measurements of the ground-state excitonic transition of vertically stacked GaN/AlN quantum dots (QDs) exhibited an in-plane linear polarization anisotropy in close proximity to microcracks. Microcracks form as a result of a mismatch of the thermal expansion coefficient between the GaN/AlN layers and the Si(111) substrate. In close proximity to the cracks, the layers are found to be under uniaxial tensile stress, whereas the film is under biaxial tensile stress for distances greater than ˜3μm from the cracks. The microcracks serve as an excellent stressor through which the strain tensor of the GaN/AlN QDs can be reproducibly modified for studies of strain-induced changes in the optical and electronic properties by using a spatially resolved probe, such as with CL. Changes in the optical properties of the QDs are attributed to stress-dependent variations of the band edges and the electric field along [0001], which is caused by charge polarization. Such changes in the field will subsequently affect the oscillator strength between electrons and holes. Three-dimensional 6×6 kṡp calculations of the QD electron and hole wave functions and eigenstates were performed to examine the influence of biaxial and uniaxial tensile stresses on the polarization-dependent momentum matrix element in varying proximity to the microcracks. The model reveals that a change from biaxial to uniaxial stress alters the admixture of px and py characters of the band edges and the ground-state hole wave function, changes the shape and direction of elongation of the hole isosurfaces, and accounts well for the subsequent anisotropy in the polarization dependent optical transitions.

  10. Structure and lattice dynamics of the wide band gap semiconductors MgSiN2 and MgGeN2

    NASA Astrophysics Data System (ADS)

    Râsander, M.; Quirk, J. B.; Wang, T.; Mathew, S.; Davies, R.; Palgrave, R. G.; Moram, M. A.

    2017-08-01

    We have determined the structural and lattice dynamical properties of the orthorhombic, wide band gap semiconductors MgSiN2 and MgGeN2 using density functional theory. In addition, we present the structural properties and Raman spectra of MgSiN2 powder. The structural properties and lattice dynamics of the orthorhombic systems are compared to those of wurtzite AlN. We find clear differences in the lattice dynamics between MgSiN2, MgGeN2 and AlN, for example, we find that the highest phonon frequency in MgSiN2 is about 100 cm-1 higher than the highest frequency in AlN, and that MgGeN2 is much softer. We also provide the Born effective charge tensors and dielectric tensors of MgSiN2, MgGeN2 and AlN. Phonon related thermodynamic properties, such as the heat capacity and the entropy, have also been evaluated and are found to be in very good agreement with available experimental results.

  11. Mobility of indium on the ZnO(0001) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinhold, R.; Reeves, R. J.; Allen, M. W.

    2015-02-02

    The mobility of indium on the Zn-polar (0001) surface of single crystal ZnO wafers was investigated using real-time x-ray photoelectron spectroscopy. A sudden transition in the wettability of the ZnO(0001) surface was observed at ∼520 °C, with indium migrating from the (0001{sup ¯}) underside of the wafer, around the non-polar (11{sup ¯}00) and (112{sup ¯}0) sidewalls, to form a uniform self-organized (∼20 Å) adlayer. The In adlayer was oxidized, in agreement with the first principles calculations of Northrup and Neugebauer that In{sub 2}O{sub 3} precipitation can only be avoided under a combination of In-rich and Zn-rich conditions. These findings suggest that unintentionalmore » In adlayers may form during the epitaxial growth of ZnO on indium-bonded substrates.« less

  12. Polarization-induced Zener tunnel diodes in GaN/InGaN/GaN heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Xiaodong; Li, Wenjun; Islam, S. M.

    By the insertion of thin In{sub x}Ga{sub 1−x}N layers into Nitrogen-polar GaN p-n junctions, polarization-induced Zener tunnel junctions are studied. The reverse-bias interband Zener tunneling current is found to be weakly temperature dependent, as opposed to the strongly temperature-dependent forward bias current. This indicates tunneling as the primary reverse-bias current transport mechanism. The Indium composition in the InGaN layer is systematically varied to demonstrate the increase in the interband tunneling current. Comparing the experimentally measured tunneling currents to a model helps identify the specific challenges in potentially taking such junctions towards nitride-based polarization-induced tunneling field-effect transistors.

  13. Growth and characterizations of various GaN nanostructures on C-plane sapphire using laser MBE

    NASA Astrophysics Data System (ADS)

    Ch., Ramesh; Tyagi, P.; Maurya, K. K.; Kumar, M. Senthil; Kushvaha, S. S.

    2017-05-01

    We have grown various GaN nanostructures such as three-dimensional islands, nanowalls and nanocolumns on c-plane sapphire substrates using laser assisted molecular beam epitaxy (LMBE) system. The shape of the GaN nanostructures was controlled by using different nucleation surfaces such as bare and nitridated sapphire with GaN or AlN buffer layers. The structural and surface morphological properties of grown GaN nanostructures were characterized by ex-situ high resolution x-ray diffraction, Raman spectroscopy and field emission scanning electron microscopy. The symmetric x-ray rocking curve along GaN (0002) plane shows that the GaN grown on pre-nitridated sapphire with GaN or AlN buffer layer possesses good crystalline quality compared to sapphire without nitridation. The Raman spectroscopy measurements revealed the wurtzite phase for all the GaN nanostructures grown on c-sapphire.

  14. Curvature evolution of 200 mm diameter GaN-on-insulator wafer fabricated through metalorganic chemical vapor deposition and bonding

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Lee, Kwang Hong; Kadir, Abdul; Wang, Yue; Lee, Kenneth E.; Tan, Chuan Seng; Chua, Soo Jin; Fitzgerald, Eugene A.

    2018-05-01

    Crack-free 200 mm diameter N-polar GaN-on-insulator (GaN-OI) wafers are demonstrated by the transfer of metalorganic chemical vapor deposition (MOCVD)-grown Ga-polar GaN layers from Si(111) wafers onto SiO2/Si(100) wafers. The wafer curvature of the GaN-OI wafers after the removal of the original Si(111) substrate is correlated with the wafer curvature of the starting GaN-on-Si wafers and the voids on the GaN-on-Si surface that evolve into cracks on the GaN-OI wafers. In crack-free GaN-OI wafers, the wafer curvature during the removal of the AlN nucleation layer, AlGaN strain-compensation buffer layers and GaN layers is correlated with the residual stress distribution within individual layers in the GaN-OI wafer.

  15. Enhanced polarization of (11-22) semi-polar InGaN nanorod array structure

    NASA Astrophysics Data System (ADS)

    Athanasiou, M.; Smith, R. M.; Hou, Y.; Zhang, Y.; Gong, Y.; Wang, T.

    2015-10-01

    By means of a cost effective nanosphere lithography technique, an InGaN/GaN multiple quantum well structure grown on (11-22) semipolar GaN has been fabricated into two dimensional nanorod arrays which form a photonic crystal (PhC) structure. Such a PhC structure demonstrates not only significantly increased emission intensity, but also an enhanced polarization ratio of the emission. This is due to an effective inhibition of the emission in slab modes and then redistribution to the vertical direction, thus minimizing the light scattering processes that lead to randomizing of the optical polarization. The PhC structure is designed based on a standard finite-difference-time-domain simulation, and then optically confirmed by detailed time-resolved photoluminescence measurements. The results presented pave the way for the fabrication of semipolar InGaN/GaN based emitters with both high efficiency and highly polarized emission.

  16. Mg Incorporation Efficiency in Pulsed MOCVD of N-Polar GaN:Mg

    NASA Astrophysics Data System (ADS)

    Marini, Jonathan; Mahaboob, Isra; Hogan, Kasey; Novak, Steve; Bell, L. D.; Shahedipour-Sandvik, F.

    2017-10-01

    We report on the effect of growth polarity and pulsed or δ -doped growth mode on impurity incorporation in metalorganic chemical vapor deposition-grown GaN. In Ga-polar orientation, up to 12× enhancement in Mg concentration for given Mg flow rate is observed, resulting in enhanced p-type conductivity for these samples. In contrast, this enhancement effect is greatly diminished for N-polar samples, falling off with increasing Mg flow and showing maximum enhancement of 2.7× at 30 nmol/min Mg flow. At higher Mg flow rates, Mg incorporation at normal levels did not correspond to p-type conductivity, which may be due to Mg incorporation at nonacceptor sites. Concentrations of C, O, and Si were also investigated, revealing dependence on Mg flow in N-polar pulsed samples. Carbon incorporation was found to decrease with increasing Mg flow, and oxygen incorporation was found to remain high across varied Mg flow. These effects combine to result in N-polar samples that are not p-type when using the pulsed growth mode.

  17. Vanadium-based Ohmic contacts to n-AlGaN in the entire alloy composition

    NASA Astrophysics Data System (ADS)

    France, Ryan; Xu, Tao; Chen, Papo; Chandrasekaran, R.; Moustakas, T. D.

    2007-02-01

    The authors report on the formation and evaluation of V-based Ohmic contacts to n-AlGaN films in the entire alloy composition. The films were produced by plasma assisted molecular beam epitaxy and doped n-type with Si. The conductivity of the films was determined to vary from 103to10-2(Ωcm )-1 as the AlN mole fraction increases from 0% to 100%. Ohmic contacts were formed by e-beam evaporation of V(15nm )/Al(80nm)/V(20nm)/Au(100nm). These contacts were rapid thermal annealed in N2 for 30s at various temperatures. The optimum annealing temperature for this contact scheme to n-GaN is about 650°C and increases monotonically to about 1000°C for 95%-100% AlN mole fraction. The specific contact resistivity was found to be about 10-6Ωcm2 for all films up to 70% AlN mole fraction and then increases to 0.1-1Ωcm2 for films from 95%-100% AlN mole fraction. These results were accounted for by hypothesizing that vanadium, upon annealing, interacts with the nitride film and forms vanadium nitride, which is consistent with reports that it is a metal with low work function.

  18. Growth of ZnO(0001) on GaN(0001)/4H-SiC buffer layers by plasma-assisted hybrid molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Adolph, David; Tingberg, Tobias; Ive, Tommy

    2015-09-01

    Plasma-assisted molecular beam epitaxy was used to grow ZnO(0001) layers on GaN(0001)/4H-SiC buffer layers deposited in the same growth chamber equipped with both N- and O-plasma sources. The GaN buffer layers were grown immediately before initiating the growth of ZnO. Using a substrate temperature of 445 °C and an O2 flow rate of 2.5 standard cubic centimeters per minute, we obtained ZnO layers with statistically smooth surfaces having a root-mean-square roughness of 0.3 nm and a peak-to-valley distance of 3 nm as revealed by atomic force microscopy. The full-width-at-half-maximum for x-ray rocking curves obtained across the ZnO(0002) and ZnO(10 1 bar 5) reflections was 198 and 948 arcsec, respectively. These values indicated that the mosaicity of the ZnO layer was comparable to the corresponding values of the underlying GaN buffer layer. Reciprocal space maps showed that the in-plane relaxation of the GaN and ZnO layers was 82% and 73%, respectively, and that the relaxation occurred abruptly during the growth. Room-temperature Hall-effect measurements revealed that the layers were inherently n-type and had an electron concentration of 1×1019 cm-3 and a Hall mobility of 51 cm2/V s.

  19. Exciton localization in polar and semipolar (112̅2) In0.2Ga0.8N/GaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Dinh, Duc V.; Presa, Silvino; Maaskant, Pleun P.; Corbett, Brian; Parbrook, Peter J.

    2016-08-01

    The exciton localization (ELZ) in polar (0001) and semipolar (112̅2) In{}0.2Ga{}0.8{{N}} multiple-quantum-well (MQW) structures has been studied by excitation power density and temperature dependent photoluminescence. The ELZ in the (112̅2) MQW was found to be much stronger (ELZ degree σ E ˜ 40 -70 meV) compared to the (0001) MQW (σ E ˜ 5-11 meV) that was attributed to the anisotropic growth on the (112̅2) surface. This strong ELZ was found to cause a blue-shift of the (112̅2) MQW exciton emission with rising temperature from 200 to 340 K, irrespective of excitation source used. A lower luminescence efficiency of the (112̅2) MQW was attributed to their anisotropic growth, and higher concentrations of unintentional impurities and point defects than the (0001) MQW.

  20. Fabrication of lateral lattice-polarity-inverted GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Katayama, Ryuji; Kuge, Yoshihiro; Kondo, Takashi; Onabe, Kentaro

    2007-04-01

    Fabrication of the lateral polarity-inverted GaN heterostructure on sapphire (0 0 0 1) using a radio-frequency plasma enhanced molecular beam epitaxy is demonstrated. Its microscopic properties, which are closely related to the local polarity distribution, such as surface potentials, piezoelectric polarizations and residual carrier concentrations were investigated by Kelvin force microscopy and micro-Raman scattering. The successful inversion from Ga-polarity to N-polarity of GaN in a specific domain and its higher crystal perfection had been confirmed clearly by these microscopic analyses. The results were also fairly consistent with that of KOH etching experiments, which suggest the applicability of these processes to the fabrication of photonic nanostructures composed of nitride semiconductors.

  1. Optical, structural, and nuclear scientific studies of AlGaN with high Al composition

    NASA Astrophysics Data System (ADS)

    Lin, Tse Yang; Chung, Yee Ling; Li, Lin; Yao, Shude; Lee, Y. C.; Feng, Zhe Chuan; Ferguson, Ian T.; Lu, Weijie

    2010-08-01

    AlGaN epilayers with higher Al-compositions were grown by Metalorganic Chemical Vapor Deposition (MOCVD) on (0001) sapphire. Trimethylgallium (TMGa), trimethylaluminium (TMAl) and NH3 were used as the source precursors for Ga, Al, and N, respectively. A 25 nm AlN nucleation layer was first grown at low-temperature of 590 °C at 300 Torr. Followed, AlxGa1-xN layers were grown at 1080 °C on low-temperature AlN nucleation layers. The heterostructures were characterized by a series of techniques, including x-ray diffraction (XRD), Rutherford backscattering (RBS), photoluminescence (PL), scanning electron microscopy (SEM) and Raman scattering. Precise Al compositions were determined through XRD, RBS, and SEM combined measurements. Room Temperature Raman Scattering spectra shows three major bands from AlGaN alloys, which are AlN-like, A1 longitudinal optical (LO) phonon modes, and E2 transverse optical (TO) band, respectively, plus several peak comes from the substrate. Raman spectral line shape analysis lead to an optical determination of the electrical property free carrier concentration of AlGaN. The optical properties of AlGaN with high Al composition were presented here.

  2. Band offsets of non-polar A-plane GaN/AlN and AlN/GaN heterostructures measured by X-ray photoemission spectroscopy.

    PubMed

    Sang, Ling; Zhu, Qin Sheng; Yang, Shao Yan; Liu, Gui Peng; Li, Hui Jie; Wei, Hong Yuan; Jiao, Chun Mei; Liu, Shu Man; Wang, Zhan Guo; Zhou, Xiao Wei; Mao, Wei; Hao, Yue; Shen, Bo

    2014-01-01

    The band offsets of non-polar A-plane GaN/AlN and AlN/GaN heterojunctions are measured by X-ray photoemission spectroscopy. A large forward-backward asymmetry is observed in the non-polar GaN/AlN and AlN/GaN heterojunctions. The valence-band offsets in the non-polar A-plane GaN/AlN and AlN/GaN heterojunctions are determined to be 1.33 ± 0.16 and 0.73 ± 0.16 eV, respectively. The large valence-band offset difference of 0.6 eV between the non-polar GaN/AlN and AlN/GaN heterojunctions is considered to be due to piezoelectric strain effect in the non-polar heterojunction overlayers.

  3. Polarization imaging of imperfect m-plane GaN surfaces

    NASA Astrophysics Data System (ADS)

    Sakai, Yuji; Kawayama, Iwao; Nakanishi, Hidetoshi; Tonouchi, Masayoshi

    2017-04-01

    Surface polar states in m-plane GaN wafers were studied using a laser terahertz (THz) emission microscope (LTEM). Femtosecond laser illumination excites THz waves from the surface due to photocarrier acceleration by local spontaneous polarization and/or the surface built-in electric field. The m-plane, in general, has a large number of unfavorable defects and unintentional polarization inversion created during the regrowth process. The LTEM images can visualize surface domains with different polarizations, some of which are hard to visualize with photoluminescence mapping, i.e., non-radiative defect areas. The present study demonstrates that the LTEM provides rich information about the surface polar states of GaN, which is crucial to improve the performance of GaN-based optoelectronic and power devices.

  4. Studies on the InAlN/InGaN/InAlN/InGaN double channel heterostructures with low sheet resistance

    NASA Astrophysics Data System (ADS)

    Zhang, Yachao; Wang, Zhizhe; Xu, Shengrui; Chen, Dazheng; Bao, Weimin; Zhang, Jinfeng; Zhang, Jincheng; Hao, Yue

    2017-11-01

    High quality InAlN/InGaN/InAlN/InGaN double channel heterostructures were proposed and grown by metal organic chemical vapor deposition. Benefiting from the adoption of the pulsed growth method and Two-Step AlN interlayer, the material quality and interface characteristics of the double channel heterostructures are satisfactory. The results of the temperature-dependent Hall effect measurement indicated that the transport properties of the double channel heterostructures were superior to those of the traditional single channel heterostructures in the whole test temperature range. Meanwhile, the sheet resistance of the double channel heterostructures reached 218.5 Ω/□ at 300 K, which is the record of InGaN-based heterostructures. The good transport properties of the InGaN double channel heterostructures are beneficial to improve the performance of the microwave power devices based on nitride semiconductors.

  5. Band gap and electronic structure of MgSiN2

    NASA Astrophysics Data System (ADS)

    Quirk, J. B.; Râsander, M.; McGilvery, C. M.; Palgrave, R.; Moram, M. A.

    2014-09-01

    Density functional theory calculations and electron energy loss spectroscopy indicate that the electronic structure of ordered orthorhombic MgSiN2 is similar to that of wurtzite AlN. A band gap of 5.7 eV was calculated for both MgSiN2 (indirect) and AlN (direct) using the Heyd-Scuseria-Ernzerhof approximation. Correction with respect to the experimental room-temperature band gap of AlN indicates that the true band gap of MgSiN2 is 6.2 eV. MgSiN2 has an additional direct gap of 6.3 eV at the Γ point.

  6. Interfacial coherency stress distribution in TiN/AlN bilayer and multilayer films studied by FEM analysis

    PubMed Central

    Chawla, Vipin; Holec, David; Mayrhofer, Paul H.

    2012-01-01

    The development of interfacial coherency stresses in TiN/AlN bilayer and multilayer films was investigated by finite element method (ABAQUS) using the four-node bilinear quadrilateral axisymmetric element CAX4R. The TiN and AlN layers are always in compression and tension at the interface, respectively, as may be expected from the fact TiN has larger lattice parameter than AlN. Both, the bi-layer and the multilayer stacks bend due to the coherency stresses. For the TiN/AlN bilayer system, the curvature of the bending is largest for the TiN/AlN thickness ratios ∼0.5 and ∼2 (at which one of the two layers is fully in compression or tension), while it is smaller for the layers with the same thickness (at which both layers posses regions with compressive as well as tensile stresses). This stress distribution over the bi-layer thickness is shown to be strongly influenced by the presence and the properties of a substrate. Furthermore, the coherency stress profile and specimen curvature of a TiN/AlN multilayer system was studied as a function of the top-most layer thickness. The curvature is maximum for equal number of TiN and AlN layers, and decreases with increasing the number of TiN/AlN periods. Within the growth of an additional TiN/AlN bilayer, the curvature first decreases to zero for a vertically symmetrical geometry over the layers when the TiN layer growth is finished (e.g. for (n + 1) layers of TiN and n layers of AlN). At this stage, the coherency stresses in TiN and AlN are same in each layer type (independent on the layer position). The growth of the second half of the TiN/AlN bi-layer (i.e. the AlN) to finish the period, again bends the specimen, and generates a non-uniform stress distribution. This suggests that the top layer as well as the overall specimen geometry plays a critical role on the actual coherency stress profile. PMID:27570370

  7. Lambda polarization feasibility study at BM@N

    NASA Astrophysics Data System (ADS)

    Suvarieva, Dilyna; Gudima, Konstantin; Zinchenko, Alexander

    2017-03-01

    Heavy strange objects (hyperons) could provide essential signatures of the excited and compressed baryonic matter. At NICA, it is planned to study hyperons both in the collider mode (MPD detector) and the fixed-target one (BM@N setup). Measurements of strange hyperons polarization could give additional information on the strong interaction mechanisms. In heavy-ion collisions, such measurements are even more valuable since the polarization is expected to be sensitive to characteristics of the QCD medium (vorticity, hydrodynamic helicity) and to QCD anomalous transport. In this analysis, the possibility to measure at BM@N the polarization of the lightest strange hyperon Λ is studied in Monte Carlo event samples produced with the DCM-QGSM generator. It is shown that the detector will allow to measure Λ polarization with a precision required to check the model predictions.

  8. Quantitative thickness measurement of polarity-inverted piezoelectric thin-film layer by scanning nonlinear dielectric microscopy

    NASA Astrophysics Data System (ADS)

    Odagawa, Hiroyuki; Terada, Koshiro; Tanaka, Yohei; Nishikawa, Hiroaki; Yanagitani, Takahiko; Cho, Yasuo

    2017-10-01

    A quantitative measurement method for a polarity-inverted layer in ferroelectric or piezoelectric thin film is proposed. It is performed nondestructively by scanning nonlinear dielectric microscopy (SNDM). In SNDM, linear and nonlinear dielectric constants are measured using a probe that converts the variation of capacitance related to these constants into the variation of electrical oscillation frequency. In this paper, we describe a principle for determining the layer thickness and some calculation results of the output signal, which are related to the radius of the probe tip and the thickness of the inverted layer. Moreover, we derive an equation that represents the relationship between the output signal and the oscillation frequency of the probe and explain how to determine the thickness from the measured frequency. Experimental results in Sc-doped AlN piezoelectric thin films that have a polarity-inverted layer with a thickness of 1.5 µm fabricated by radio frequency magnetron sputtering showed a fairly good value of 1.38 µm for the thickness of the polarity-inverted layer.

  9. Role of quantum-confined stark effect on bias dependent photoluminescence of N-polar GaN/InGaN multi-quantum disk amber light emitting diodes

    NASA Astrophysics Data System (ADS)

    Tangi, Malleswararao; Mishra, Pawan; Janjua, Bilal; Prabaswara, Aditya; Zhao, Chao; Priante, Davide; Min, Jung-Wook; Ng, Tien Khee; Ooi, Boon S.

    2018-03-01

    We study the impact of quantum-confined stark effect (QCSE) on bias dependent micro-photoluminescence emission of the quantum disk (Q-disk) based nanowires light emitting diodes (NWs-LED) exhibiting the amber colored emission. The NWs are found to be nitrogen polar (N-polar) verified using KOH wet chemical etching and valence band spectrum analysis of high-resolution X-ray photoelectron spectroscopy. The crystal structure and quality of the NWs were investigated by high-angle annular dark field - scanning transmission electron microscopy. The LEDs were fabricated to acquire the bias dependent micro-photoluminescence spectra. We observe a redshift and a blueshift of the μPL peak in the forward and reverse bias conditions, respectively, with reference to zero bias, which is in contrast to the metal-polar InGaN well-based LEDs in the literature. Such opposite shifts of μPL peak emission observed for N-polar NWs-LEDs, in our study, are due to the change in the direction of the internal piezoelectric field. The quenching of PL intensity, under the reverse bias conditions, is ascribed to the reduction of electron-hole overlap. Furthermore, the blueshift of μPL emission with increasing excitation power reveals the suppression of QCSE resulting from the photo-generated carriers. Thereby, our study confirms the presence of QCSE for NWs-LEDs from both bias and power dependent μPL measurements. Thus, this study serves to understand the QCSE in N-polar InGaN Q-disk NWs-LEDs and other related wide-bandgap nitride nanowires, in general.

  10. Metal-organic chemical vapor deposition of N-polar InN quantum dots and thin films on vicinal GaN

    NASA Astrophysics Data System (ADS)

    Lund, Cory; Catalano, Massimo; Wang, Luhua; Wurm, Christian; Mates, Thomas; Kim, Moon; Nakamura, Shuji; DenBaars, Steven P.; Mishra, Umesh K.; Keller, Stacia

    2018-02-01

    N-polar InN layers were deposited using MOCVD on GaN-on-sapphire templates which were miscut 4° towards the GaN m-direction. For thin layers, quantum dot-like features were spontaneously formed to relieve the strain between the InN and GaN layers. As the thickness was increased, the dots elongated along the step direction before growing outward perpendicular to the step direction and coalescing to form a complete InN layer. XRD reciprocal space maps indicated that the InN films relaxed upon quantum dot formation after nominally 1 nm thick growth, resulting in 5-7 nm tall dots with diameters around 20-50 nm. For thicker layers above 10 nm, high electron mobilities of up to 706 cm2/V s were measured using Hall effect measurements indicating high quality layers.

  11. Synthesis and Performance Evaluation of Pulse Electrodeposited Ni-AlN Nanocomposite Coatings

    PubMed Central

    Ali, Kamran; Narayana, Sivaprasad; Okonkwo, Paul C.; Yusuf, Moinuddin M.; Alashraf, Abdullah

    2018-01-01

    This research work presents the microscopic analysis of pulse electrodeposited Ni-AlN nanocomposite coatings using SEM and AFM techniques and their performance evaluation (mechanical and electrochemical) by employing nanoindentation and electrochemical methods. The Ni-AlN nanocomposite coatings were developed by pulse electrodeposition. The nickel matrix was reinforced with various amounts of AlN nanoparticles (3, 6, and 9 g/L) to develop Ni-AlN nanocomposite coatings. The effect of reinforcement concentration on structure, surface morphology, and mechanical and anticorrosion properties was studied. SEM and AFM analyses indicate that Ni-AlN nanocomposite coatings have dense, homogenous, and well-defined pyramid structure containing uniformly distributed AlN particles. A decent improvement in the corrosion protection performance is also observed by the addition of AlN particles to the nickel matrix. Corrosion current was reduced from 2.15 to 1.29 μA cm−2 by increasing the AlN particles concentration from 3 to 9 g/L. It has been observed that the properties of Ni-AlN nanocomposite coating are sensitive to the concentration of AlN nanoparticles used as reinforcement. PMID:29619143

  12. Prediction of the electron redundant SinNn fullerenes

    NASA Astrophysics Data System (ADS)

    Yang, Huihui; Song, Yan; Zhang, Yan; Chen, Hongshan

    2018-05-01

    The stabilities and electronic structures of SimAln-mNn and SinNn (n = 16, 20, m = 12 and n = 24, m = 16) fullerene-like cages have been investigated using density functional method B3LYP and the second-order perturbation theory MP2. The results show that the SimAln-mNn and SinNn fullerenes are more stable than the AlN counterparts. Comparing with the corresponding AlnNn cages, one silicon atom in each Si2N2 square protrudes and the excess electrons reside as lone pair electrons at the outside of the protrudent Si atoms. Analyses on the electronic structures suggest that the Sisbnd N bonds are covalent bonding with strong polarity. The ELF (electron localization function) shows large electron pair probability between Si and N atoms. The orbital interactions between Si and N are stronger than that between Al and N atoms; the overlap integral is 0.40 per Sisbnd N bond in SinNn and 0.34 per Alsbnd N bond in AlnNn. The AIM (atoms in molecule) charges on the Al atoms in AlnNn and SimAln-mNn are 2.37 and 2.40. The charges on the in-plane and protrudent Si atoms are about 2.88 and 1.50 respectively. Considering the large local dipole moments around the protrudent Si atoms, the electrostatic interactions are also favorable to the SiN cages.

  13. Wafer-scale Fabrication of Non-Polar Mesoporous GaN Distributed Bragg Reflectors via Electrochemical Porosification.

    PubMed

    Zhu, Tongtong; Liu, Yingjun; Ding, Tao; Fu, Wai Yuen; Jarman, John; Ren, Christopher Xiang; Kumar, R Vasant; Oliver, Rachel A

    2017-03-27

    Distributed Bragg reflectors (DBRs) are essential components for the development of optoelectronic devices. For many device applications, it is highly desirable to achieve not only high reflectivity and low absorption, but also good conductivity to allow effective electrical injection of charges. Here, we demonstrate the wafer-scale fabrication of highly reflective and conductive non-polar gallium nitride (GaN) DBRs, consisting of perfectly lattice-matched non-polar (11-20) GaN and mesoporous GaN layers that are obtained by a facile one-step electrochemical etching method without any extra processing steps. The GaN/mesoporous GaN DBRs exhibit high peak reflectivities (>96%) across the entire visible spectrum and wide spectral stop-band widths (full-width at half-maximum >80 nm), while preserving the material quality and showing good electrical conductivity. Such mesoporous GaN DBRs thus provide a promising and scalable platform for high performance GaN-based optoelectronic, photonic, and quantum photonic devices.

  14. 431 kA/cm2 peak tunneling current density in GaN/AlN resonant tunneling diodes

    NASA Astrophysics Data System (ADS)

    Growden, Tyler A.; Zhang, Weidong; Brown, Elliott R.; Storm, David F.; Hansen, Katurah; Fakhimi, Parastou; Meyer, David J.; Berger, Paul R.

    2018-01-01

    We report on the design and fabrication of high current density GaN/AlN double barrier resonant tunneling diodes grown via plasma assisted molecular-beam epitaxy on bulk GaN substrates. A quantum-transport solver was used to model and optimize designs with high levels of doping and ultra-thin AlN barriers. The devices displayed repeatable room temperature negative differential resistance with peak-to-valley current ratios ranging from 1.20 to 1.60. A maximum peak tunneling current density (Jp) of 431 kA/cm2 was observed. Cross-gap near-UV (370-385 nm) electroluminescence (EL) was observed above +6 V when holes, generated from a polarization induced Zener tunneling effect, recombine with electrons in the emitter region. Analysis of temperature dependent measurements, thermal resistance, and the measured EL spectra revealed the presence of severe self-heating effects.

  15. Reduction of Defects on Microstructure Aluminium Nitride Using High Temperature Annealing Heat Treatment

    NASA Astrophysics Data System (ADS)

    Tanasta, Z.; Muhamad, P.; Kuwano, N.; Norfazrina, H. M. Y.; Unuh, M. H.

    2018-03-01

    Aluminium Nitride (AlN) is a ceramic 111-nitride material that is used widely as components in functional devices. Besides good thermal conductivity, it also has a high band gap in emitting light which is 6 eV. AlN thin film is grown on the sapphire substrate (0001). However, lattice mismatch between both materials has caused defects to exist along the microstructure of AlN thin films. The defects have affected the properties of Aluminium Nitride. Annealing heat treatment has been proved by the previous researcher to be the best method to improve the microstructure of Aluminium Nitride thin films. Hence, this method is applied at four different temperatures for two hour. The changes of Aluminium Nitride microstructures before and after annealing is observed using Transmission Electron Microscope. It is observed that inversion domains start to occur at temperature of 1500 °C. Convergent Beam Electron Diffraction pattern simulation has confirmed the defects as inversion domain. Therefore, this paper is about to extract the matters occurred during the process of producing high quality Aluminium Nitride thin films and the ways to overcome this problem.

  16. High optical quality GaN nanopillar arrays

    NASA Astrophysics Data System (ADS)

    Wang, Y. D.; Chua, S. J.; Tripathy, S.; Sander, M. S.; Chen, P.; Fonstad, C. G.

    2005-02-01

    GaN nanopillar arrays have been fabricated by inductively coupled plasma etching of GaN films using anodic aluminum oxide film as an etch mask. The average diameter and length of these pillars are 60-65nm and 350-400nm, respectively. Ultraviolet microphotoluminescence measurements indicate high photoluminescence intensity and stress relaxation in these GaN nanopillars as compared to the starting epitaxial GaN films. Evidence of good crystalline quality is also observed by micro-Raman measurements, wherein a redshift of the E2high mode from GaN nanopillars suggests partial relaxation of the compressive strain. In addition, breakdown of the polarization selection rules led to the appearance of symmetry-forbidden and quasipolar modes.

  17. MBE Growth of InN/GaN(0001) and Shape Transitions of InN islands

    NASA Astrophysics Data System (ADS)

    Cao, Yongge; Xie, Maohai; Liu, Ying; Ng, Y. F.

    2003-03-01

    Plasma-assisted molecular-beam epitaxial growth of InN on GaN(0001) is investigated. Both layer-by-layer and Stranski-Krastanov (SK) growth modes are observed under different growth windows. Strain relaxation is studied by real-time recording of the in-plane lattice spacing evolutions on RHEED pattern, which suggest a gradual relaxation of the strain in InN film commenced during the first bilayer (BL) deposition and almost completed after 2-4 BLs. For SK growth, 3D islanding initiates after the strain has mostly been relieved, presumably by dislocations. Based on statistical analysis, the shape transitions of 3D islands are firstly observed in the III-nitrides system. The InN islands transform gradually from pyramids to platelets with increasing of In flux. Under In-rich growth condition, the reverse trend of island shape evolution dependence on volume size, compared with Equilibrium Crystal Shape (ECS) theory, is induced by the Indium self-surfactant effects, in which Indium adlayer on the top surface of InN islands will depress the thermodynamic driving force for the vertical growth of 3D islands. Lateral growth of 3D islands is not only the result of kinetic process but also favored by thermodynamics while Indium self-surfactant exist.

  18. Linearly polarized photoluminescence of InGaN quantum disks embedded in GaN nanorods.

    PubMed

    Park, Youngsin; Chan, Christopher C S; Nuttall, Luke; Puchtler, Tim J; Taylor, Robert A; Kim, Nammee; Jo, Yongcheol; Im, Hyunsik

    2018-05-25

    We have investigated the emission from InGaN/GaN quantum disks grown on the tip of GaN nanorods. The emission at 3.21 eV from the InGaN quantum disk doesn't show a Stark shift, and it is linearly polarized when excited perpendicular to the growth direction. The degree of linear polarization is about 39.3% due to the anisotropy of the nanostructures. In order to characterize a single nanostructure, the quantum disks were dispersed on a SiO 2 substrate patterned with a metal reference grid. By rotating the excitation polarization angle from parallel to perpendicular relative to the nanorods, the variation of overall PL for the 3.21 eV peak was recorded and it clearly showed the degree of linear polarization (DLP) of 51.5%.

  19. Electronic and chemical structure of the H 2O/GaN(0001) interface under ambient conditions

    DOE PAGES

    Zhang, Xueqiang; Ptasinska, Sylwia

    2016-04-25

    We employed ambient pressure X-ray photoelectron spectroscopy to investigate the electronic and chemical properties of the H 2O/GaN(0001) interface under elevated pressures and/or temperatures. A pristine GaN(0001) surface exhibited upward band bending, which was partially flattened when exposed to H 2O at room temperature. However, the GaN surface work function was slightly reduced due to the adsorption of molecular H 2O and its dissociation products. At elevated temperatures, a negative charge generated on the surface by a vigorous H 2O/GaN interfacial chemistry induced an increase in both the surface work function and upward band bending. We tracked the dissociative adsorptionmore » of H 2O onto the GaN(0001) surface by recording the core-level photoemission spectra and obtained the electronic and chemical properties at the H 2O/GaN interface under operando conditions. In conclusion, our results suggest a strong correlation between the electronic and chemical properties of the material surface, and we expect that their evolutions lead to significantly different properties at the electrolyte/ electrode interface in a photoelectrochemical solar cell.« less

  20. Oxygen adsorption on the Al0.25Ga0.75N (0001) surface: A first-principles study

    NASA Astrophysics Data System (ADS)

    Fu, Jiaqi; Song, Tielei; Liang, Xixia; Zhao, Guojun

    2018-04-01

    To understand the interaction mechanism for the oxygen adsorption on AlGaN surface, herein, we built the possible models of oxygen adsorption on Al0.25Ga0.75N (0001) surface. For different oxygen coverage, three kinds of adsorption site are considered. Then the favorable adsorption sites are characterized by first principles calculation for (2 × 2) supercell of Al0.25Ga0.75N (0001) surface. On basis of the optimal adsorption structures, our calculated results show that all the adsorption processes are exothermic, indicating that the (0001) surface orientation is active towards the adsorption of oxygen. The doping of Al is advantage to the adsorption of O atom. Additionally, the adsorption energy decreases with reducing the oxygen coverage, and the relationship between them is approximately linear. Owing to the oxygen adsorption, the surface states in the fundamental band gap are significant reduced with respect to the free Al0.25Ga0.75N (0001) surface. Moreover, the optical properties on different oxygen coverage are also discussed.

  1. Alendronate is more effective than elcatonin in improving pain and quality of life in postmenopausal women with osteoporosis.

    PubMed

    Iwamoto, J; Makita, K; Sato, Y; Takeda, T; Matsumoto, H

    2011-10-01

    A randomized controlled trial was performed to compare the short-term effects of alendronate (ALN) and ECT on pain and quality of life (QOL) in postmenopausal women with osteoporosis. Back pain and QOL [Short-Form Health Survey (SF-8)] significantly improved at 1, 3, and 6 months in both groups, with greater improvements in the ALN group than in the ECT group. These results suggested that ALN reduced back pain and improved QOL more markedly than ECT in postmenopausal osteoporotic women with back pain. Intramuscular ECT is known to reduce pain via the central nervous system. A multicenter randomized controlled trial was performed to compare the short-term effects of ALN and ECT on pain and QOL in postmenopausal women with osteoporosis. One hundred and 94 postmenopausal osteoporotic women with back pain (mean age 79.8 years, range 60-96 years) were randomly divided into two groups: the ALN group (35 mg weekly) and the ECT group (intramuscular 20 units a week). The duration of the study was 6 months. The trial was completed in 97 (100%) women of the ALN group and 96 (99.0%) women of the ECT group. Urinary levels of cross-linked N-terminal telopeptide of type I collagen (NTX), serum alkaline phosphatase (ALP), face scale score (FSS, back pain), and SF-8 (QOL) were monitored. Urinary NTX levels significantly decreased at 3 months in the ALN group, but not in the ECT group. Serum ALP levels significantly decreased at 6 months in the both groups, with a greater reduction in the ALN group. The FSS and SF-8 significantly improved at 1, 3, and 6 months in both groups, with greater improvements in the ALN group than in the ECT group. ALN suppressed bone turnover, reduced back pain, and improved QOL more markedly than ECT in postmenopausal osteoporotic women with back pain.

  2. Polarization Enhanced Charge Transfer: Dual-Band GaN-Based Plasmonic Photodetector.

    PubMed

    Jia, Ran; Zhao, Dongfang; Gao, Naikun; Liu, Duo

    2017-01-13

    Here, we report a dual-band plasmonic photodetector based on Ga-polar gallium nitride (GaN) for highly sensitive detection of UV and green light. We discover that decoration of Au nanoparticles (NPs) drastically increases the photoelectric responsivities by more than 50 times in comparition to the blank GaN photodetector. The observed behaviors are attributed to polarization enhanced charge transfer of optically excited hot electrons from Au NPs to GaN driven by the strong spontaneous polarization field of Ga-polar GaN. Moreover, defect ionization promoted by localized surface plasmon resonances (LSPRs) is also discussed. This novel type of photodetector may shed light on the design and fabrication of photoelectric devices based on polar semiconductors and microstructural defects.

  3. Stress evolution of GaN/AlN heterostructure grown on 6H-SiC substrate by plasma assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Agrawal, M.; Ravikiran, L.; Dharmarasu, N.; Radhakrishnan, K.; Karthikeyan, G. S.; Zheng, Y.

    2017-01-01

    The stress evolution of GaN/AlN heterostructure grown on 6H-SiC substrate by plasma assisted molecular beam epitaxy (PA-MBE) has been studied. AlN nucleation layer and GaN layer were grown as a function of III/V ratio. GaN/AlN structure is found to form buried cracks when AlN is grown in the intermediate growth regime(III/V˜1)and GaN is grown under N-rich growth regime (III/V<1). The III/V ratio determines the growth mode of the layers that influences the lattice mismatch at the GaN/AlN interface. The lattice mismatch induced interfacial stress at the GaN/AlN interface relaxes by the formation of buried cracks in the structure. Additionally, the stress also relaxes by misorienting the AlN resulting in two misorientations with different tilts. Crack-free layers were obtained when AlN and GaN were grown in the N-rich growth regime (III/V<1) and metal rich growth regime (III/V≥1), respectively. AlGaN/GaN high electron mobility transistor (HEMT) heterostructure was demonstrated on 2-inch SiC that showed good two dimensional electron gas (2DEG) properties with a sheet resistance of 480 Ω/sq, mobility of 1280 cm2/V.s and sheet carrier density of 1×1013 cm-2.

  4. Point-Defect Nature of the Ultraviolet Absorption Band in AlN

    NASA Astrophysics Data System (ADS)

    Alden, D.; Harris, J. S.; Bryan, Z.; Baker, J. N.; Reddy, P.; Mita, S.; Callsen, G.; Hoffmann, A.; Irving, D. L.; Collazo, R.; Sitar, Z.

    2018-05-01

    We present an approach where point defects and defect complexes are identified using power-dependent photoluminescence excitation spectroscopy, impurity data from SIMS, and density-functional-theory (DFT)-based calculations accounting for the total charge balance in the crystal. Employing the capabilities of such an experimental computational approach, in this work, the ultraviolet-C absorption band at 4.7 eV, as well as the 2.7- and 3.9-eV luminescence bands in AlN single crystals grown via physical vapor transport (PVT) are studied in detail. Photoluminescence excitation spectroscopy measurements demonstrate the relationship between the defect luminescent bands centered at 3.9 and 2.7 eV to the commonly observed absorption band centered at 4.7 eV. Accordingly, the thermodynamic transition energy for the absorption band at 4.7 eV and the luminescence band at 3.9 eV is estimated at 4.2 eV, in agreement with the thermodynamic transition energy for the CN- point defect. Finally, the 2.7-eV PL band is the result of a donor-acceptor pair transition between the VN and CN point defects since nitrogen vacancies are predicted to be present in the crystal in concentrations similar to carbon-employing charge-balance-constrained DFT calculations. Power-dependent photoluminescence measurements reveal the presence of the deep donor state with a thermodynamic transition energy of 5.0 eV, which we hypothesize to be nitrogen vacancies in agreement with predictions based on theory. The charge state, concentration, and type of impurities in the crystal are calculated considering a fixed amount of impurities and using a DFT-based defect solver, which considers their respective formation energies and the total charge balance in the crystal. The presented results show that nitrogen vacancies are the most likely candidate for the deep donor state involved in the donor-acceptor pair transition with peak emission at 2.7 eV for the conditions relevant to PVT growth.

  5. Surface damage of thin AlN films with increased oxygen content by nanosecond and femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly; Salakhutdinov, Ildar; Chen, J. K.; Danylyuk, Yuriy; McCullen, Erik; Auner, Gregory

    2009-10-01

    AlN films deposited on sapphire substrates were damaged by single UV nanosecond (at 248 nm) and IR femtosecond (at 775 nm) laser pulses in air at normal pressure. The films had high (27-35 atomic %) concentration of oxygen introduced into thin surface layer (5-10 nm thickness). We measured damage threshold and studied morphology of the damage sites with atomic force and Nomarski optical microscopes with the objective to determine a correlation between damage processes and oxygen content. The damage produced by nanosecond pulses was accompanied by significant thermal effects with evident signatures of melting, chemical modification of the film surface, and specific redistribution of micro-defect rings around the damage spots. The nanosecond-damage threshold exhibited pronounced increase with increase of the oxygen content. In contrast to that, the femtosecond pulses produced damage without any signs of thermal, thermo-mechanical or chemical effects. No correlation between femtosecond-damage threshold and oxygen content as well as presence of defects within the laser-damage spot was found. We discuss the influence of the oxygen contamination on film properties and related mechanisms responsible for the specific damage effects and morphology of the damage sites observed in the experiments.

  6. Reflectance and fast polarization dynamics of GaN/Si nanowire ensemble.

    PubMed

    Korona, Krzysztof Piotr; Zytkiewicz, Zbigniew R; Sobanska, Marta; Sosada, Florentyna; Dróżdż, Piotr Andrzej; Klosek, Kamil; Tchutchulashvili, Giorgi

    2018-06-25

    Optical phenomena in high-quality GaN nanowires (NWs) ensemble grown on Si substrate have been studied by reflectance and time-resolved luminescence. Such NWs form a structure that acts as a virtual layer that specifically reflects and polarizes light and can be characterized by an effective refractive index. In fact we have found that the NW ensembles of high NW density (high filling fraction) behave rather like a layer of effective medium described by Maxwell Garnett approximation. Moreover, light extinction and strong depolarization are observed that we assign to scattering and interference of light inside the NW ensemble. The wavelength range of high extinction and depolarization correlates well with transverse localization wavelength estimated for such ensemble of NWs, so we suppose that these effects are due to Anderson localization of light. We also report results of time-resolved measurements of polarization of individual emission centers including free and bound excitons (D0XA, 3.47 eV), inversion domain boundaries (IDB, 3.45eV) and stacking faults (SF, 3.42 eV). The emission of the D0XA and SF lines is polarized perpendicular to GaN c-axis while the 3.45 eV line is polarized along the c-axis what supports hypothesis that this line is emitted from IDBs. Time-dependent depolarization of luminescence is observed during the first 0.1 ns after excitation and is interpreted as the result of interaction of the emission centers with hot particles existing during short time after excitation. . © 2018 IOP Publishing Ltd.

  7. Kinetic-limited etching of magnesium doping nitrogen polar GaN in potassium hydroxide solution

    NASA Astrophysics Data System (ADS)

    Jiang, Junyan; Zhang, Yuantao; Chi, Chen; Yang, Fan; Li, Pengchong; Zhao, Degang; Zhang, Baolin; Du, Guotong

    2016-01-01

    KOH based wet etchings were performed on both undoped and Mg-doped N-polar GaN films grown by metal-organic chemical vapor deposition. It is found that the etching rate for Mg-doped N-polar GaN gets slow obviously compared with undoped N-polar GaN. X-ray photoelectron spectroscopy analysis proved that Mg oxide formed on N-polar GaN surface is insoluble in KOH solution so that kinetic-limited etching occurs as the etching process goes on. The etching process model of Mg-doped N-polar GaN in KOH solution is tentatively purposed using a simplified ideal atomic configuration. Raman spectroscopy analysis reveals that Mg doping can induce tensile strain in N-polar GaN films. Meanwhile, p-type N-polar GaN film with a hole concentration of 2.4 ÿ 1017 cm⿿3 was obtained by optimizing bis-cyclopentadienyl magnesium flow rates.

  8. Cubic crystalline erbium oxide growth on GaN(0001) by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Yu; Posadas, Agham B.; Kwon, Sunah; Wang, Qingxiao; Kim, Moon J.; Demkov, Alexander A.; Ekerdt, John G.

    2017-12-01

    Growth of crystalline Er2O3, a rare earth sesquioxide, on GaN(0001) is described. Ex situ HCl and NH4OH solutions and an in situ N2 plasma are used to remove impurities on the GaN surface and result in a Ga/N stoichiometry of 1.02. Using atomic layer deposition with erbium tris(isopropylcyclopentadienyl) [Er(iPrCp)3] and water, crystalline cubic Er2O3 (C-Er2O3) is grown on GaN at 250 °C. The orientation relationships between the C-Er2O3 film and the GaN substrate are C-Er2O3(222) ǁ GaN(0001), C-Er2O3⟨-440⟩ ǁ GaN ⟨11-20⟩, and C-Er2O3⟨-211⟩ ǁ GaN ⟨1-100⟩. Scanning transmission electron microscopy and electron energy loss spectroscopy are used to examine the microstructure of C-Er2O3 and its interface with GaN. With post-deposition annealing at 600 °C, a thicker interfacial layer is observed, and two transition layers, crystalline GaNwOz and crystalline GaErxOy, are found between GaN and C-Er2O3. The tensile strain in the C-Er2O3 film is studied with x-ray diffraction by changes in both out-of-plane and in-plane d-spacing. Fully relaxed C-Er2O3 films on GaN are obtained when the film thickness is around 13 nm. Additionally, a valence band offset of 0.7 eV and a conduction band offset of 1.2 eV are obtained using x-ray photoelectron spectroscopy.

  9. Enhanced c-axis orientation of aluminum nitride thin films by plasma-based pre-conditioning of sapphire substrates for SAW applications

    NASA Astrophysics Data System (ADS)

    Gillinger, M.; Shaposhnikov, K.; Knobloch, T.; Stöger-Pollach, M.; Artner, W.; Hradil, K.; Schneider, M.; Kaltenbacher, M.; Schmid, U.

    2018-03-01

    Aluminum nitride (AlN) on sapphire has been investigated with two different pretreatments prior to sputter deposition of the AlN layer to improve the orientation and homogeneity of the thin film. An inverse sputter etching of the substrate in argon atmosphere results in an improvement of the uniformity of the alignment of the AlN grains and hence, in enhanced electro-mechanical AlN film properties. This effect is demonstrated in the raw measurements of SAW test devices. Additionally, the impulse response of several devices shows that a poor AlN thin film layer quality leads to a higher signal damping during the transduction of energy in the inter-digital transducers. As a result, the triple-transit signal cannot be detected at the receiver.

  10. Comparative studies of efficiency droop in polar and non-polar InGaN quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, M. J.; Dawson, P.; Hammersley, S.

    We report on a comparative study of efficiency droop in polar and non-polar InGaN quantum well structures at T = 10 K. To ensure that the experiments were carried out with identical carrier densities for any particular excitation power density, we used laser pulses of duration ∼100 fs at a repetition rate of 400 kHz. For both types of structures, efficiency droop was observed to occur for carrier densities of above 7 × 10{sup 11 }cm{sup −2 }pulse{sup −1} per quantum well; also both structures exhibited similar spectral broadening in the droop regime. These results show that efficiency droop is intrinsic in InGaN quantum wells, whether polar or non-polar,more » and is a function, specifically, of carrier density.« less

  11. Influence of vacancy defect on surface feature and adsorption of Cs on GaN(0001) surface.

    PubMed

    Ji, Yanjun; Du, Yujie; Wang, Meishan

    2014-01-01

    The effects of Ga and N vacancy defect on the change in surface feature, work function, and characteristic of Cs adsorption on a (2 × 2) GaN(0001) surface have been investigated using density functional theory with a plane-wave ultrasoft pseudopotential method based on first-principles calculations. The covalent bonds gain strength for Ga vacancy defect, whereas they grow weak for N vacancy defect. The lower work function is achieved for Ga and N vacancy defect surfaces than intact surface. The most stable position of Cs adatom on Ga vacancy defect surface is at T1 site, whereas it is at B(Ga) site on N vacancy defect surface. The E(ads) of Cs on GaN(0001) vacancy defect surface increases compared with that of intact surface; this illustrates that the adsorption of Cs on intact surface is more stable.

  12. Polarization Compensation of Fresnel Aberrations in Telescopes

    NASA Technical Reports Server (NTRS)

    Clark, Natalie; Breckenridge, James B.

    2011-01-01

    Large aperture space telescopes are built with low F# s to accommodate the mechanical constraints of launch vehicles and to reduce resonance frequencies of the on-orbit system. Inherent with these low F# s is Fresnel polarization which affects image quality. We present the design and modeling of a nano-structure consisting of birefringent layers to control polarization and increase contrast. Analysis shows a device that functions across a 400nm bandwidth tunable from 300nm to 1200nm. This Fresnel compensator device has a cross leakage of less than 0.001 retardance.

  13. High-quality ZnO growth, doping, and polarization effect

    NASA Astrophysics Data System (ADS)

    Kun, Tang; Shulin, Gu; Jiandong, Ye; Shunming, Zhu; Rong, Zhang; Youdou, Zheng

    2016-03-01

    The authors have reported their recent progress in the research field of ZnO materials as well as the corresponding global advance. Recent results regarding (1) the development of high-quality epitaxy techniques, (2) the defect physics and the Te/N co-doping mechanism for p-type conduction, and (3) the design, realization, and properties of the ZnMgO/ZnO hetero-structures have been shown and discussed. A complete technology of the growth of high-quality ZnO epi-films and nano-crystals has been developed. The co-doping of N plus an iso-valent element to oxygen has been found to be the most hopeful path to overcome the notorious p-type hurdle. High mobility electrons have been observed in low-dimensional structures utilizing the polarization of ZnMgO and ZnO. Very different properties as well as new physics of the electrons in 2DEG and 3DES have been found as compared to the electrons in the bulk. Project supported by the National Natural Science Foundation of China (Nos. 61025020, 61274058, 61322403, 61504057, 61574075), the Natural Science Foundation of Jiangsu Province (Nos. BK2011437, BK20130013, BK20150585), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Fundamental Research Funds for the Central Universities.

  14. Polarization effects on quantum levels in InN/GaN quantum wells.

    PubMed

    Lin, Wei; Li, Shuping; Kang, Junyong

    2009-12-02

    Polarization effects on quantum states in InN/GaN quantum wells have been investigated by means of ab initio calculation and spectroscopic ellipsometry. Through the position-dependent partial densities of states, our results show that the polarization modified by the strain with different well thickness leads to an asymmetry band bending of the quantum well. The quantum levels are identified via the band structures and their square wave function distributions are analyzed by the partial charge densities. Further theoretical and experimental comparison of the imaginary part of the dielectric function show that the overall transition probability increases under larger polarization fields, which can be attributable to the fact that the excited quantum states of 2h have a greater overlap with 1e states and enhance other hole quantum states in the well by a hybridization. These results would provide a new approach to improve the transition probability and light emission by enhancing the polarization fields in a proper way.

  15. Recombination dynamics of excitons with low non-radiative component in semi-polar (10-11)-oriented GaN/AlGaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Rosales, D.; Gil, B.; Bretagnon, T.; Guizal, B.; Izyumskaya, N.; Monavarian, M.; Zhang, F.; Okur, S.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2014-09-01

    Optical properties of GaN/Al0.2Ga0.8N multiple quantum wells grown with semi-polar (10-11) orientation on patterned 7°-off Si (001) substrates have been investigated. Studies performed at 8 K reveal the in-plane anisotropic behavior of the QW photoluminescence (PL) intensity for this semi-polar orientation. The time resolved PL measurements were carried out in the temperature range from 8 to 295 K to deduce the effective recombination decay times, with respective radiative and non-radiative contributions. The non-radiative component remains relatively weak with increasing temperature, indicative of high crystalline quality. The radiative decay time is a consequence of contribution from both localized and free excitons. We report an effective density of interfacial defects of 2.3 × 1012 cm-2 and a radiative recombination time of τloc = 355 ps for the localized excitons. This latter value is significantly larger than those reported for the non-polar structures, which we attribute to the presence of a weak residual electric field in the semi-polar QW layers.

  16. Influence of Vacancy Defect on Surface Feature and Adsorption of Cs on GaN(0001) Surface

    PubMed Central

    Ji, Yanjun; Du, Yujie; Wang, Meishan

    2014-01-01

    The effects of Ga and N vacancy defect on the change in surface feature, work function, and characteristic of Cs adsorption on a (2 × 2) GaN(0001) surface have been investigated using density functional theory with a plane-wave ultrasoft pseudopotential method based on first-principles calculations. The covalent bonds gain strength for Ga vacancy defect, whereas they grow weak for N vacancy defect. The lower work function is achieved for Ga and N vacancy defect surfaces than intact surface. The most stable position of Cs adatom on Ga vacancy defect surface is at T1 site, whereas it is at BGa site on N vacancy defect surface. The E ads of Cs on GaN(0001) vacancy defect surface increases compared with that of intact surface; this illustrates that the adsorption of Cs on intact surface is more stable. PMID:25126599

  17. X-ray diffraction study of A- plane non-polar InN epilayer grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Moret, Matthieu; Briot, Olivier; Gil, Bernard

    2015-03-01

    Strong polarisation-induced electric fields in C-plane oriented nitrides semiconductor layers reduce the performance of devices. Eliminating the polarization fields can be achieved by growing nitrides along non polar direction. We have grown non polar A-plane oriented InN on R-plane (1‾102) nitridated sapphire substrate by MOCVD. We have studied the structural anisotropy observed in these layers by analyzing High Resolution XRay Diffraction rocking curve (RC) experiments as a function of the in-plane beam orientation. A-plane InN epilayer have a unique epitaxial relationship on R-Plane sapphire and show a strong structural anisotropy. Full width at half maximum (FWHM) of the InN(11‾20) XRD RC values are contained between 44 and 81 Arcmin. FWHM is smaller when the diffraction occurs along the [0001] and the largest FWHM values, of the (11‾20) RC, are obtained when the diffraction occurs along the [1‾100] in-plane direction. Atomic Force Microscopy imaging revealed morphologies with well organized crystallites. The grains are structured along a unique crystallographic orientation of InN, leading to larger domains in this direction. This structural anisotropy can be, in first approximation, attributed to the difference in the domain sizes observed. XRD reciprocal space mappings (RSM) were performed in asymmetrical configuration on (13‾40) and (2‾202) diffraction plane. RSM are measured with a beam orientation corresponding to a maximal and a minimal width of the (11‾20) Rocking curves, respectively. A simple theoretical model is exposed to interpret the RSM. We concluded that the dominant contribution to the anisotropy is due to the scattering coherence length anisotropy present in our samples.

  18. p-GaN/n-ZnO heterojunction nanowires: optoelectronic properties and the role of interface polarity.

    PubMed

    Schuster, Fabian; Laumer, Bernhard; Zamani, Reza R; Magén, Cesar; Morante, Joan Ramon; Arbiol, Jordi; Stutzmann, Martin

    2014-05-27

    In this work, simulations of the electronic band structure of a p-GaN/n-ZnO heterointerface are presented. In contrast to homojunctions, an additional energy barrier due to the type-II band alignment hinders the flow of majority charge carriers in this heterojunction. Spontaneous polarization and piezoelectricity are shown to additionally affect the band structure and the location of the recombination region. Proposed as potential UV-LEDs and laser diodes, p-GaN/n-ZnO heterojunction nanowires were fabricated by plasma-assisted molecular beam epitaxy (PAMBE). Atomic resolution annular bright field scanning transmission electron microscopy (STEM) studies reveal an abrupt and defect-free heterointerface with a polarity inversion from N-polar GaN to Zn-polar ZnO. Photoluminescence measurements show strong excitonic UV emission originating from the ZnO-side of the interface as well as stimulated emission in the case of optical pumping above a threshold of 55 kW/cm(2).

  19. Gettering of Residual Impurities by Ion Implantation Damage in Poly-AlN UV Diode Detectors

    NASA Astrophysics Data System (ADS)

    Khan, A. H.; Stacy, T.; Meese, J. M.

    1996-03-01

    UV diode detectors have been fabricated from oriented polycrystalline AlN grown on (111) n-type 3-15Ω-cm Si substrates by CVD using AlCl3 and ammonia with a hydrogen carrier gas at 760-800C, 40-45 torr and gas flow rates of 350, 120, and 120 sccm for hydrogen, ammonia and hydrogen over heated AlCl_3. Half of the AlN film of thickness 1.5-2.0 microns was masked off prior to ion implantation. Samples were ion-implanted at 5 kV with methane, nitrogen and argon to a dose of 5-6 x 10^18 ions/cm^2. The AlN was contacted with sputtered Au while the Si was contacted with evaporated Al. No annealing was performed. Rectification was obtained as a result of radiation damage in the AlN. SIMs analysis showed a reduction of oxygen, hydrogen, chlorine and carbon by several orders of magnitude and to a depth of several microns in the ion implanted samples compared to the masked samples. The quantum efficiency was 16nm uncorrected for reflection from the AlN and thin metal contact.

  20. Hydrogen Surfactant Effect on ZnO/GaN Heterostructures Growth

    NASA Astrophysics Data System (ADS)

    Zhang, Jingzhao; Zhang, Yiou; Tse, Kinfai; Zhu, Junyi

    To grow high quality heterostructures based on ZnO and GaN, growth conditions that favor the layer by layer (Frank-Van der Merwe) growth mode have to be applied. However, if A wets B, B would not wet A without special treatments. A famous example is the epitaxial growth of Si/Ge/Si heterostructure with the help of arsenic surfactant in the late 1980s. It has been confirmed by the previous experiments and our calculations that poor crystal quality and 3D growth mode were obtained when GaN grown on ZnO polar surfaces while high quality ZnO was achieved on (0001) and (000-1)-oriented GaN. During the standard OMVPE growth processes, hydrogen is a common impurity and hydrogen-involved surface reconstructions have been well investigated experimentally and theoretically elsewhere. Due to the above facts, we proposed key growth strategies by using hydrogen as a surfactant to achieve ideal growth mode for GaN on ZnO (000-1) surface. This novel strategy may for the first time make the growth of high quality GaN single crystal on ZnO substrate possible. This surfactant effect is expected to largely improve the crystal quality and the efficiency of ZnO/GaN super lattices or other heterostructure devices. Part of the computing resources was provided by the High Performance Cluster Computing Centre, Hong Kong Baptist University. This work was supported by the start-up funding and direct Grant with the Project code of 4053134 and 3132748 at CUHK.

  1. Effects of Mg/Ga and V/III source ratios on hole concentration of N-polar (000\\bar{1}) p-type GaN grown by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Nonoda, Ryohei; Shojiki, Kanako; Tanikawa, Tomoyuki; Kuboya, Shigeyuki; Katayama, Ryuji; Matsuoka, Takashi

    2016-05-01

    The effects of growth conditions such as Mg/Ga and V/III ratios on the properties of N-polar (000\\bar{1}) p-type GaN grown by metalorganic vapor phase epitaxy were studied. Photoluminescence spectra from Mg-doped GaN depended on Mg/Ga and V/III ratios. For the lightly doped samples, the band-to-acceptor emission was observed at 3.3 eV and its relative intensity decreased with increasing V/III ratio. For the heavily doped samples, the donor-acceptor pair emission was observed at 2.8 eV and its peak intensity monotonically decreased with V/III ratio. The hole concentration was maximum for the Mg/Ga ratio. This is the same tendency as in group-III polar (0001) growth. The V/III ratio also reduced the hole concentration. The higher V/III ratio reduced the concentration of residual donors such as oxygen by substituting nitrogen atoms. The surface became rougher with increasing V/III ratio and the hillock density increased.

  2. Built-in-polarization field effect on lattice thermal conductivity of AlxGa1-xN/GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Pansari, Anju; Gedam, Vikas; Kumar Sahoo, Bijaya

    2015-12-01

    The built-in-polarization field at the interface of AlxGa1-xN/GaN heterostructure enhances elastic constant, phonon velocity, Debye temperature and their bowing constants of barrier material AlxGa1-xN. The combined phonon relaxation time of acoustics phonons has been computed for with and without built-in-polarization field at room temperature for different aluminum (Al) content (x). Our result shows that the built-in-polarization field suppresses the scattering mechanisms and enhances the combined relaxation time. The thermal conductivity of AlxGa1-xN has been estimated as a function of temperature for x=0, 0.1, 0.5 and 1 for with and without polarization field. Minimum thermal conductivity has been observed for x=0.1 and 0.5. Analysis shows that up to a certain temperature (different for different x) the polarization field acts as negative effect and reduces the thermal conductivity and after this temperature thermal conductivity is significantly contributed by polarization field. This signifies pyroelectric character of AlxGa1-xN. The pyroelectric transition temperature of AlxGa1-xN alloy has been predicted for different x. Our study reports that room temperature thermal conductivity of AlxGa1-xN/GaN heterostructure is enhanced by built-in-polarization field. The temperature dependence of thermal conductivity for x=0.1 and 0.5 are in line with prior experimental studies. The method we have developed can be used for the simulation of heat transport in nitride devices to minimize the self heating processes and in polarization engineering strategies to optimize the thermoelectric performance of AlxGa1-xN/GaN heterostructures.

  3. Microstructures of GaN1-xPx layers grown on (0001) GaN substrates by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Seong, Tae-Yeon; Bae, In-Tae; Choi, Chel-Jong; Noh, D. Y.; Zhao, Y.; Tu, C. W.

    1999-03-01

    Transmission electron microscope (TEM), transmission electron diffraction (TED), and synchrotron x-ray diffraction (XRD) studies have been performed to investigate microstructural behavior of gas source molecular beam epitaxial GaN1-xPx layers grown on (0001) GaN/sapphire at temperatures (Tg) in the range 500-760 °C. TEM, TED, and XRD results indicate that the samples grown at Tg⩽600 °C undergo phase separation resulting in a mixture of GaN-rich and GaP-rich GaNP with zinc-blende structure. However, the samples grown at Tg⩾730 °C are found to be binary zinc-blende GaN(P) single crystalline materials. As for the 500 °C layer, the two phases are randomly oriented and distributed, whereas the 600 °C layer consists of phases that are elongated and inclined by 60°-70° clockwise from the [0001]α-GaN direction. The samples grown at Tg⩾730 °C are found to consist of two types of microdomains, namely, GaN(P)I and GaN(P)II; the former having twin relation to the latter.

  4. Polarization of III-nitride blue and ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Shakya, J.; Knabe, K.; Kim, K. H.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2005-02-01

    Polarization-resolved electroluminescence studies of III-nitride blue and ultraviolet (UV) light-emitting diodes (LEDs) were performed. The LEDs were fabricated on nitride materials grown by metalorganic chemical vapor deposition on sapphire substrates (0001). Transverse electric (TE) polarization dominates in the InGaN/GaN quantum-well (QW) blue LEDs (λ'=458nm), whereas transverse magnetic (TM) polarization is dominant in the AlInGaN QW UV LEDs (λ=333nm). For the case of edge emission in blue LEDs, a ratio (r=I⊥/I ‖) of about 1.8:1 was observed between the EL intensities with polarization E ⊥c (TE mode) and E ‖c (TM mode), which corresponds to a degree of polarization ˜0.29. The UV LEDs exhibit a ratio r of about 1:2.3, corresponding to a degree of polarization ˜0.4. This is due to the fact that the degree of polarization of the bandedge emission of the AlxInyGa1-x -yN active layer changes with Al concentration. The low emission efficiency of nitride UV LEDs is partly related to this polarization property. Possible consequences and ways to enhance UV emitter performances related to this unique polarization property are discussed.

  5. Investigation of the influence of irradiation with Fe+7 ions on structural properties of AlN ceramics

    NASA Astrophysics Data System (ADS)

    Kozlovskiy, A.; Dukenbayev, K.; Ivanov, I.; Kozin, S.; Aleksandrenko, V.; Kurakhmedov, A.; Sambaev, E.; Kenzhina, I.; Tosi, D.; Loginov, V.; Zdorovets, M.

    2018-06-01

    The paper presents the results of investigation of defect formation in AlN ceramics under Fe+7 ion irradiation with a fluence from 1 × 1011 to 1 × 1014 ion cm‑2. The change in the main crystallographic characteristics, the decrease in the magnitude of Griffiths criterion, and the increase in the average voltage as a result of irradiation are caused by the appearance of additional defects in the structure and their further evolution leading to a change in the degree of crystallinity. For samples irradiated with Fe+7 ions to a dose of 1 × 1011 ion cm‑2, the formation of pyramidal hillocks is observed on the surface, whose average height is 17–20 nm. An increase in the irradiation dose leads to an increase in chillocks size and their density. At the same time, at large irradiation doses, the formation of conglomerates of chyllocks and grooves on the samples surface is observed. The change in surface morphology, the formation of chyllocks on the ceramic surface, and the dependence of the change in crystallographic characteristics during irradiation make it possible to unambiguously associate the formation of radiation defects in the structure of the ceramic with energy losses in elastic and inelastic interactions of iron ions with lattice atoms.

  6. Selective area growth and characterization of GaN nanocolumns, with and without an InGaN insertion, on semi-polar (11–22) GaN templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bengoechea-Encabo, A.; Albert, S.; Barbagini, F.

    The aim of this work is the selective area growth (SAG) of GaN nanocolumns, with and without an InGaN insertion, by molecular beam epitaxyon semi-polar (11–22) GaN templates. The high density of stacking faults present in the template is strongly reduced after SAG. A dominant sharp photoluminescence emission at 3.473 eV points to high quality strain-free material. When embedding an InGaN insertion into the ordered GaN nanostructures, very homogeneous optical properties are observed, with two emissions originating from different regions of each nanostructure, most likely related to different In contents on different crystallographic planes.

  7. Early and Late Retrieval of the ALN Removable Vena Cava Filter: Results from a Multicenter Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellerin, O., E-mail: olivier.pellerin@egp.aphp.f; Barral, F. G.; Lions, C.

    Retrieval of removable inferior vena cava (IVC) filters in selected patients is widely practiced. The purpose of this multicenter study was to evaluate the feasibility and results of percutaneous removal of the ALN removable filter in a large patient cohort. Between November 2003 and June 2006, 123 consecutive patients were referred for percutaneous extraction of the ALN filter at three centers. The ALN filter is a removable filter that can be implanted through a femoral/jugular vein approach and extracted by the jugular vein approach. Filter removal was attempted after an implantation period of 93 {+-} 15 days (range, 6-722 days)more » through the right internal jugular vein approach using the dedicated extraction kit after control inferior vena cavography. Following filter removal, vena cavograms were obtained in all patients. Successful extraction was achieved in all but one case. Among these successful retrievals, additional manipulation using a femoral approach was needed when the apex of the filter was close to the IVC wall in two patients. No immediate IVC complications were observed according to the postimplantation cavography. Neither technical nor clinical differences between early and late filter retrieval were noticed. Our data confirm the safety of ALN filter retrieval up to 722 days after implantation. In infrequent cases, additional endovenous filter manipulation is needed to facilitate extraction.« less

  8. THE POLARIZATION OF NEUTRONS FROM THE C$sup 12$(d,n) N$sup 13$ REACTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budzanowski, A.; Grotowski, K.; Niewodniczanski, H.

    1959-01-01

    The polarization of neutroni emitted irom the stripping reaction C/sup 12/(d,n)N/sup 13/ was investigated at the reaction angle theta /sub lab/ = 15 deg and deuteron energy E/sub d/ = I2.9 Mev. The polarization of neutrons connected with the 3.56 Mev energy- level in N/sup 13/ nucleus was found to be - (0.39 plus or minus 0.11). (auth)

  9. AlN/ITO-Based Hybrid Electrodes with Conducting Filaments: Their Application to Ultraviolet Light-Emitting Diodes.

    PubMed

    Kim, Kyeong Heon; Lee, Tae Ho; Kim, Tae Geun

    2017-07-19

    A hybrid-type transparent conductive electrode (H-TCE) structure comprising an AlN rod array with conducting filaments (CFs) and indium tin oxide (ITO) films is proposed to improve both current injection and distribution as well as optical transmittance in the UV region. These CFs, generated in UV-transparent AlN rod areas using an electric field, can be used as conducting paths for carrier injection from a metal to a semiconductor such as p-(Al)GaN, which allows perfect Ohmic behavior with high transmittance (>95% at 365 nm) to be obtained. In addition, conduction across AlN rods and Ohmic conduction mechanisms are investigated by analyzing AlN rods and AlN rod/p-AlGaN film interfaces. We apply these H-TCEs to three near-UV light-emitting diodes (LEDs) (385 nm LEDs with p-GaN and p-AlGaN terminated surfaces and 365 nm LED with p-AlGaN terminated surface). We confirm that the light power outputs increase by 66%, 79%, and 103%, whereas the forward voltages reduce by 5.6%, 10.2%, and 8.6% for 385 nm p-GaN terminated, 385 nm p-AlGaN terminated, and 365 nm p-AlGaN terminated LEDs with H-TCEs, respectively, compared to LEDs with reference ITOs.

  10. Theoretical and experimental studies of electric field distribution in N-polar GaN/AlGaN/GaN heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladysiewicz, M., E-mail: marta.gladysiewicz@pwr.edu.pl; Janicki, L.; Kudrawiec, R.

    2015-12-28

    Electric field distribution in N-polar GaN(channel)/AlGaN/GaN(buffer) heterostructures was studied theoretically by solving Schrodinger and Poisson equations in a self-consistent manner for various boundary conditions and comparing results of these calculations with experimental data, i.e., measurements of electric field in GaN(channel) and AlGaN layers by electromodulation spectroscopy. A very good agreement between theoretical calculations and experimental data has been found for the Fermi-level located at ∼0.3 eV below the conduction band at N-polar GaN surface. With this surface boundary condition, the electric field distribution and two dimensional electron gas concentration are determined for GaN(channel)/AlGaN/GaN(buffer) heterostructures of various thicknesses of GaN(channel) and AlGaNmore » layers.« less

  11. Effect of low NH3 flux towards high quality semi-polar (11-22) GaN on m-plane sapphire via MOCVD

    NASA Astrophysics Data System (ADS)

    Omar, Al-Zuhairi; Shuhaimi Bin Abu Bakar, Ahmad; Makinudin, Abdullah Haaziq Ahmad; Khudus, Muhammad Imran Mustafa Abdul; Azman, Adreen; Kamarundzaman, Anas; Supangat, Azzuliani

    2018-05-01

    The effect of ammonia flux towards the quality of the semi-polar (11-22) gallium nitride thin film on m-plane (10-10) sapphire is presented. Semi-polar (11-22) gallium nitride epi-layers were obtained using a two-step growth method, consisting of high temperature aluminum nitride followed by gallium nitride via metal organic chemical vapor deposition. The surface morphology analysis via field emission scanning electron microscopy and atomic force microscopy of the semi-polar (11-22) gallium nitride has shown that low ammonia flux promotes two-dimensional growth with low surface roughness of 4.08 nm. A dominant diffraction peak of (11-22) gallium nitride was also observed via X-ray diffraction upon utilizing low ammonia flux. The on- and off-axis X-ray rocking curve measurements illustrate the enhancement of the crystal quality, which might result from the reduction of the basal stacking faults and perfect dislocation. The full width half maximum values were reduced by at least 15% for both on- and off-axis measurements.

  12. Photoassisted Kelvin probe force microscopy at GaN surfaces: The role of polarity

    NASA Astrophysics Data System (ADS)

    Wei, J. D.; Li, S. F.; Atamuratov, A.; Wehmann, H.-H.; Waag, A.

    2010-10-01

    The behavior of GaN surfaces during photoassisted Kelvin probe force microscopy is demonstrated to be strongly dependant on surface polarity. The surface photovoltage of GaN surfaces illuminated with above-band gap light is analyzed as a function of time and light intensity. Distinct differences between Ga-polar and N-polar surfaces could be identified, attributed to photoinduced chemisorption of oxygen during illumination. These differences can be used for a contactless, nondestructive, and easy-performable analysis of the polarity of GaN surfaces.

  13. Significantly improved surface morphology of N-polar GaN film grown on SiC substrate by the optimization of V/III ratio

    NASA Astrophysics Data System (ADS)

    Deng, Gaoqiang; Zhang, Yuantao; Yu, Ye; Yan, Long; Li, Pengchong; Han, Xu; Chen, Liang; Zhao, Degang; Du, Guotong

    2018-04-01

    In this paper, N-polar GaN films with different V/III ratios were grown on vicinal C-face SiC substrates by metalorganic chemical vapor deposition. During the growth of N-polar GaN film, the V/III ratio was controlled by adjusting the molar flow rate of ammonia while keeping the trimethylgallium flow rate unchanged. The influence of the V/III ratio on the surface morphology of N-polar GaN film has been studied. We find that the surface root mean square roughness of N-polar GaN film over an area of 20 × 20 μm2 can be reduced from 8.13 to 2.78 nm by optimization of the V/III ratio. Then, using the same growth conditions, N-polar InGaN/GaN multiple quantum wells (MQWs) light-emitting diodes (LEDs) were grown on the rough and the smooth N-polar GaN templates, respectively. Compared with the LED grown on the rough N-polar GaN template, dramatically improved interface sharpness and luminescence uniformity of the InGaN/GaN MQWs are achieved for the LED grown on the smooth N-polar GaN template.

  14. Effects of Thickness of a Low-Temperature Buffer and Impurity Incorporation on the Characteristics of Nitrogen-polar GaN.

    PubMed

    Yang, Fann-Wei; Chen, Yu-Yu; Feng, Shih-Wei; Sun, Qian; Han, Jung

    2016-12-01

    In this study, effects of the thickness of a low temperature (LT) buffer and impurity incorporation on the characteristics of Nitrogen (N)-polar GaN are investigated. By using either a nitridation or thermal annealing step before the deposition of a LT buffer, three N-polar GaN samples with different thicknesses of LT buffer and different impurity incorporations are prepared. It is found that the sample with the thinnest LT buffer and a nitridation step proves to be the best in terms of a fewer impurity incorporations, strong PL intensity, fast mobility, small biaxial strain, and smooth surface. As the temperature increases at ~10 K, the apparent donor-acceptor-pair band is responsible for the decreasing integral intensity of the band-to-band emission peak. In addition, the thermal annealing of the sapphire substrates may cause more impurity incorporation around the HT-GaN/LT-GaN/sapphire interfacial regions, which in turn may result in a lower carrier mobility, larger biaxial strain, larger bandgap shift, and stronger yellow luminescence. By using a nitridation step, both a thinner LT buffer and less impurity incorporation are beneficial to obtaining a high quality N-polar GaN.

  15. Polarity in GaN and ZnO: Theory, measurement, growth, and devices

    NASA Astrophysics Data System (ADS)

    Zúñiga-Pérez, Jesús; Consonni, Vincent; Lymperakis, Liverios; Kong, Xiang; Trampert, Achim; Fernández-Garrido, Sergio; Brandt, Oliver; Renevier, Hubert; Keller, Stacia; Hestroffer, Karine; Wagner, Markus R.; Reparaz, Juan Sebastián; Akyol, Fatih; Rajan, Siddharth; Rennesson, Stéphanie; Palacios, Tomás; Feuillet, Guy

    2016-12-01

    The polar nature of the wurtzite crystalline structure of GaN and ZnO results in the existence of a spontaneous electric polarization within these materials and their associated alloys (Ga,Al,In)N and (Zn,Mg,Cd)O. The polarity has also important consequences on the stability of the different crystallographic surfaces, and this becomes especially important when considering epitaxial growth. Furthermore, the internal polarization fields may adversely affect the properties of optoelectronic devices but is also used as a potential advantage for advanced electronic devices. In this article, polarity-related issues in GaN and ZnO are reviewed, going from theoretical considerations to electronic and optoelectronic devices, through thin film, and nanostructure growth. The necessary theoretical background is first introduced and the stability of the cation and anion polarity surfaces is discussed. For assessing the polarity, one has to make use of specific characterization methods, which are described in detail. Subsequently, the nucleation and growth mechanisms of thin films and nanostructures, including nanowires, are presented, reviewing the specific growth conditions that allow controlling the polarity of such objects. Eventually, the demonstrated and/or expected effects of polarity on the properties and performances of optoelectronic and electronic devices are reported. The present review is intended to yield an in-depth view of some of the hot topics related to polarity in GaN and ZnO, a fast growing subject over the last decade.

  16. Origins of Fermi-level pinning on GaN and InN polar and nonpolar surfaces

    NASA Astrophysics Data System (ADS)

    Segev, D.; Van de Walle, C. G.

    2006-10-01

    Using band structure and total energy methods, we study the atomic and electronic structures of the polar (+c and - c plane) and nonpolar (a and m plane) surfaces of GaN and InN. We identify two distinct microscopic origins for Fermi-level pinning on GaN and InN, depending on surface stoichiometry and surface polarity. At moderate Ga/N ratios unoccupied gallium dangling bonds pin the Fermi level on n-type GaN at 0.5 0.7 eV below the conduction-band minimum. Under highly Ga-rich conditions metallic Ga adlayers lead to Fermi-level pinning at 1.8 eV above the valence-band maximum. We also explain the source of the intrinsic electron accumulation that has been universally observed on polar InN surfaces. It is caused by In-In bonds leading to occupied surface states above the conduction-band minimum. We predict that such a charge accumulation will be absent on the nonpolar surfaces of InN, when prepared under specific conditions.

  17. Modulating optical polarization properties of Al-rich AlGaN/AlN quantum well by controlling wavefunction overlap

    NASA Astrophysics Data System (ADS)

    Chen, X. J.; Yu, T. J.; Lu, H. M.; Yuan, G. C.; Shen, B.; Zhang, G. Y.

    2013-10-01

    Using modified k.p perturbation method, the optical polarization properties of Al-rich AlGaN/AlN quantum wells (QWs) are studied. It is found that change of wavefunction overlaps between conduction band and valance subbands of heavy hole, light hole, and crystal-field split off hole is different. Such difference leads to the overturn of polarization degree and modulates optical polarization properties as well width and strain vary. This prompts that changing wavefunction overlaps of electron and hole can lead to a way to modulate optical polarization properties of Al-rich AlGaN/AlN QWs, on no condition that valence band order changes.

  18. High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer.

    PubMed

    Muhammed, M M; Roldan, M A; Yamashita, Y; Sahonta, S-L; Ajia, I A; Iizuka, K; Kuramata, A; Humphreys, C J; Roqan, I S

    2016-07-14

    We demonstrate the high structural and optical properties of InxGa1-xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 10(7) cm(-2)) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1-xN epilayers can be achieved with high optical quality of InxGa1-xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design.

  19. Effect of crystal quality on performance of spin-polarized photocathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Xiuguang; Ozdol, Burak; Yamamoto, Masahiro

    2014-11-17

    GaAs/GaAsP strain-compensated superlattices (SLs) with thickness up to 90-pair were fabricated. Transmission electron microscopy revealed the SLs are of high crystal quality and the introduced strain in SLs layers are fixed in the whole SL layers. With increasing SL pair number, the strain-compensated SLs show a less depolarization than the conventional strained SLs. In spite of the high crystal quality, the strain-compensated SLs also remain slightly depolarized with increasing SL pairs and the decrease in spin-polarization contributes to the spin relaxation time. 24-pair of GaAs/GaAsP strain-compensated SL demonstrates a maximum spin-polarization of 92% with a high quantum efficiency of 1.6%.

  20. Linearly polarized light emission from InGaN/GaN quantum well structure with high indium composition.

    PubMed

    Song, Hooyoung; Kim, Eun Kyu; Han, Il Ki; Lee, Sung-Ho; Hwang, Sung-Min

    2011-10-01

    We fabricated yellow (575 nm) emitting a-plane InGaN/GaN light emitting diode (LED). Microstructure and stress relaxation of the InGaN well layer were observed from the images of dark field transmission electron microscopy. The LED chip was operated at 3.7 V, 20 mA, and the polarization-free characteristic in nonpolar InGaN layer was confirmed from a small blue-shift of approximaely 1.7 nm with increase of current density. The high photoluminescence (PL) efficiency of 30.4% showed that this non-polar InGaN layer has a potential of application to green-red long wavelength light emitters. The PL polarization ratio at 290 K was 0.25 and the energy difference between two subbands was estimated to be 40.2 meV. The low values of polarization and energy difference were due to the stress relaxation of InGaN well layer.

  1. Ultra-violet avalanche photodiode based on AlN/GaN periodically-stacked-structure

    NASA Astrophysics Data System (ADS)

    Wu, Xingzhao; Zheng, Jiyuan; Wang, Lai; Brault, Julien; Matta, Samuel; Hao, Zhibiao; Sun, Changzheng; Xiong, Bing; Luo, Yi; Han, Yianjun; Wang, Jian; Li, Hongtao; Khalfioui, Mohamed A.; Li, Mo; Kang, Jianbin; Li, Qian

    2018-02-01

    The high-gain photomultiplier tube (PMT) is the most popular method to detect weak ultra-violet signals which attenuate quickly in atmosphere, although the vacuum tube makes it fragile and difficult to integrate. To overcome the disadvantage of PMT, an AlN/GaN periodically-stacked-structure (PSS) avalanche photodiode (APD) has been proposed, finally achieving good quality of high gain and low excessive noise. As there is a deep g valley only in the conduction band of both GaN and AlN, the electron transfers suffering less scattering and thus becomes easier to obtain the threshold of ionization impact. Because of unipolar ionization in the PSS APD, it works in linear mode. Four prototype devices of 5-period, 10-period, 15-period, and 20-period were fabricated to verify that the gain of APD increases exponentially with period number. And in 20-period device, a recorded high and stable gain of 104 was achieved under constant bias. In addition, it is proved both experimentally and theoretically, that temperature stability on gain is significantly improved in PSS APD. And it is found that the resonant enhancement in interfacial ionization may bring significant enhancement of electron ionization performance. To make further progress in PSS APD, the device structure is investigated by simulation. Both the gain and temperature stability are optimized alternatively by a proper design of periodical thickness and AlN layer occupancy.

  2. Polarization transformation as an algorithm for automatic generalization and quality assessment

    NASA Astrophysics Data System (ADS)

    Qian, Haizhong; Meng, Liqiu

    2007-06-01

    Since decades it has been a dream of cartographers to computationally mimic the generalization processes in human brains for the derivation of various small-scale target maps or databases from a large-scale source map or database. This paper addresses in a systematic way the polarization transformation (PT) - a new algorithm that serves both the purpose of automatic generalization of discrete features and the quality assurance. By means of PT, two dimensional point clusters or line networks in the Cartesian system can be transformed into a polar coordinate system, which then can be unfolded as a single spectrum line r = f(α), where r and a stand for the polar radius and the polar angle respectively. After the transformation, the original features will correspond to nodes on the spectrum line delimited between 0° and 360° along the horizontal axis, and between the minimum and maximum polar radius along the vertical axis. Since PT is a lossless transformation, it allows a straighforward analysis and comparison of the original and generalized distributions, thus automatic generalization and quality assurance can be down in this way. Examples illustrate that PT algorithm meets with the requirement of generalization of discrete spatial features and is more scientific.

  3. Simulation study of MEMS piezoelectric vibration energy harvester based on c-axis tilted AlN thin film for performance improvement

    NASA Astrophysics Data System (ADS)

    Kong, Lingfeng; Zhang, Jinhui; Wang, Huiyuan; Ma, Shenglin; Li, Fang; Wang, Qing-Ming; Qin, Lifeng

    2016-12-01

    In this paper, a MEMS piezoelectric cantilevered vibration energy harvester based on c-axis tilted AlN thin film is investigated. Based on basic piezoelectric equations and static analysis of cantilever beam, the equations for generated energy (E) and open circuit voltage (Vo) were derived, and simulations were carried out to study the effects of geometry parameters and c-axis tilted angle. Results show that E and Vo of energy harvesters are greatly dependent on c-axis tilted angle and geometry parameters, while the coupling between c-axis tilted angle and geometry parameters is not strong. For a given structure size, E and Vo can be almost simultaneously improved by controlling c-axis tilted angle; compared with the case of normal c-axis angle, E with optimal c-axis tilted angle can be amplified by more than 3 times, and the Vo is amplified by about 2 times. E or Vo could be further improved by geometry parameters, while there is trade-off between them. These results can be used for the design and application of piezoelectric cantilevered vibration energy harvester.

  4. Adsorption of n-butane on graphene/Ru(0001)—A molecular beam scattering study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivapragasam, Nilushni; Nayakasinghe, Mindika T.; Burghaus, Uwe, E-mail: uwe.burghaus@ndsu.edu

    2016-07-15

    Adsorption kinetics/dynamics of n-butane on graphene, physical vapor deposited on Ru(0001) (hereafter G/Ru), and bare Ru(0001) (hereafter Ru) are discussed. The chemical activity of the supported-graphene as well as the support was probed by thermal desorption spectroscopy (adsorption kinetics). In addition and to the best of our knowledge, for the first time, molecular beam scattering data of larger molecules were collected for graphene (probing the adsorption dynamics). Furthermore, samples were inspected by x-ray photoelectron spectroscopy and Auger electron spectroscopy. At the measuring conditions used here, n-butane adsorption kinetics/dynamics are molecular and nonactivated. Binding energies of butane on Ru and G/Rumore » are indistinguishable within experimental uncertainty. Thus, G/Ru is “kinetically transparent.” Initial adsorption probabilities, S{sub 0}, of n-butane decrease with increasing impact energy (0.76–1.72 eV) and are adsorption temperature independent for both Ru and G/Ru, again consistent with molecular adsorption. Also, S{sub 0} of Ru and G/Ru are indistinguishable within experimental uncertainty. Thus, G/Ru is “dynamically transparent.” Coverage dependent adsorption probabilities indicate precursor effects for graphene/Ru.« less

  5. Oocyte-specific deletion of N-WASP does not affect oocyte polarity, but causes failure of meiosis II completion.

    PubMed

    Wang, Zhen-Bo; Ma, Xue-Shan; Hu, Meng-Wen; Jiang, Zong-Zhe; Meng, Tie-Gang; Dong, Ming-Zhe; Fan, Li-Hua; Ouyang, Ying-Chun; Snapper, Scott B; Schatten, Heide; Sun, Qing-Yuan

    2016-09-01

    There is an unexplored physiological role of N-WASP (neural Wiskott-Aldrich syndrome protein) in oocyte maturation that prevents completion of second meiosis. In mice, N-WASP deletion did not affect oocyte polarity and asymmetric meiotic division in first meiosis, but did impair midbody formation and second meiosis completion. N-WASP regulates actin dynamics and participates in various cell activities through the RHO-GTPase-Arp2/3 (actin-related protein 2/3 complex) pathway, and specifically the Cdc42 (cell division cycle 42)-N-WASP-Arp2/3 pathway. Differences in the functions of Cdc42 have been obtained from in vitro compared to in vivo studies. By conditional knockout of N-WASP in mouse oocytes, we analyzed its in vivo functions by employing a variety of different methods including oocyte culture, immunofluorescent staining and live oocyte imaging. Each experiment was repeated at least three times, and data were analyzed by paired-samples t-test. Oocyte-specific deletion of N-WASP did not affect the process of oocyte maturation including spindle formation, spindle migration, polarity establishment and maintenance, and homologous chromosome or sister chromatid segregation, but caused failure of cytokinesis completion during second meiosis (P < 0.001 compared to control). Further analysis showed that a defective midbody may be responsible for the failure of cytokinesis completion. The present study did not include a detailed analysis of the mechanisms underlying the results, which will require more extensive further investigations. N-WASP may play an important role in mediating and co-ordinating the activity of the spindle (midbody) and actin (contractile ring constriction) when cell division occurs. The findings are important for understanding the regulation of oocyte meiosis completion and failures in this process that affect oocyte quality. None. This work was supported by the National Basic Research Program of China (No. 2012CB944404) and the National Natural

  6. Optical, Structural and Paramagnetic Properties of Eu-Doped Ternary Sulfides ALnS2 (A = Na, K, Rb; Ln = La, Gd, Lu, Y)

    PubMed Central

    Jarý, Vítězslav; Havlák, Lubomír; Bárta, Jan; Buryi, Maksym; Mihóková, Eva; Rejman, Martin; Laguta, Valentin; Nikl, Martin

    2015-01-01

    Eu-doped ternary sulfides of general formula ALnS2 (A = Na, K, Rb; Ln = La, Gd, Lu, Y) are presented as a novel interesting material family which may find usage as X-ray phosphors or solid state white light emitting diode (LED) lighting. Samples were synthesized in the form of transparent crystalline hexagonal platelets by chemical reaction under the flow of hydrogen sulfide. Their physical properties were investigated by means of X-ray diffraction, time-resolved photoluminescence spectroscopy, electron paramagnetic resonance, and X-ray excited fluorescence. Corresponding characteristics, including absorption, radioluminescence, photoluminescence excitation and emission spectra, and decay kinetics curves, were measured and evaluated in a broad temperature range (8–800 K). Calculations including quantum local crystal field potential and spin-Hamiltonian for a paramagnetic particle in D3d local symmetry and phenomenological model dealing with excited state dynamics were performed to explain the experimentally observed features. Based on the results, an energy diagram of lanthanide energy levels in KLuS2 is proposed. Color model xy-coordinates are used to compare effects of dopants on the resulting spectrum. The application potential of the mentioned compounds in the field of white LED solid state lighting or X-ray phosphors is thoroughly discussed. PMID:28793612

  7. Polarization compensation at low p-GaN doping density in InGaN/GaN p-i-n solar cells: Effect of InGaN interlayers

    NASA Astrophysics Data System (ADS)

    Saini, Basant; Adhikari, Sonachand; Pal, Suchandan; Kapoor, Avinsahi

    2017-07-01

    The effectiveness of polarization matching layer (PML) between i-InGaN/p-GaN is studied numerically for Ga-face InGaN/GaN p-i-n solar cell at low p-GaN doping (∼5e17 cm-3). The simulations are performed for four InxGa1-xN/GaN heterostructures (x = 10%, 15%, 20% and 25%), thus investigating the impact of PML for low as well as high indium containing absorber regions. Use of PML presents a suitable alternative to counter the effects of polarization-induced electric fields arising at low p-GaN doping density especially for absorber regions with high indium (>10%). It is seen that it not only mitigates the negative effects of polarization-induced electric fields but also reduces the high potential barriers existing at i-InGaN/p-GaN heterojunction. The improvement in photovoltaic properties of the heterostructures even at low p-GaN doping validates this claim.

  8. Ferroelectric polarization-controlled two-dimensional electron gas in ferroelectric/AlGaN/GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Kong, Y. C.; Xue, F. S.; Zhou, J. J.; Li, L.; Chen, C.; Li, Y. R.

    2009-06-01

    The control effect of the ferroelectric polarization on the two-dimensional electron gas (2DEG) in a ferroelectric/AlGaN/GaN metal-ferroelectric-semiconductor (MFS) structure is theoretically analyzed by a self-consistent approach. With incorporating the hysteresis nature of the ferroelectric into calculation, the nature of the control effect is disclosed, where the 2DEG density is depleted/restored after poling/depoling operation on the MFS structure. The orientation of the ferroelectric polarization is clarified to be parallel to that of the AlGaN barrier, which, based on an electrostatics analysis, is attributed to the pinning effect of the underlying polarization. Reducing the thickness of the AlGaN barrier from 25 nm to 20 nm leads to an improved control modulation of the 2DEG density from 36.7% to 54.1%.

  9. Polarity-inverted lateral overgrowth and selective wet-etching and regrowth (PILOSWER) of GaN.

    PubMed

    Jang, Dongsoo; Jue, Miyeon; Kim, Donghoi; Kim, Hwa Seob; Lee, Hyunkyu; Kim, Chinkyo

    2018-03-07

    On an SiO 2 -patterned c-plane sapphire substrate, GaN domains were grown with their polarity controlled in accordance with the pattern. While N-polar GaN was grown on hexagonally arranged circular openings, Ga-polar GaN was laterally overgrown on mask regions due to polarity inversion occurring at the boundary of the circular openings. After etching of N-polar GaN on the circular openings by H 3 PO 4 , this template was coated with 40-nm Si by sputtering and was slightly etched by KOH. After slight etching, a thin layer of Si left on the circular openings of sapphire,but not on GaN, was oxidized during thermal annealing and served as a dielectric mask during subsequent regrowth. Thus, the subsequent growth of GaN was made only on the existing Ga-polar GaN domains, not on the circular openings of the sapphire substrate. Transmission electron microscopy analysis revealed no sign of threading dislocations in this film. This approach may help fabricating an unholed and merged GaN film physically attached to but epitaxially separated from the SiO 2 -patterned sapphire.

  10. A first-principles study on the adsorption behavior of amphetamine on pristine, P- and Al-doped B12N12 nano-cages

    NASA Astrophysics Data System (ADS)

    Bahrami, Aidin; Seidi, Shahram; Baheri, Tahmineh; Aghamohammadi, Mohammad

    2013-12-01

    The first-principles computations using density functional theory (DFT) calculations at the M062X/6-311++G** level have been applied to scrutinize the adsorption behavior of amphetamine (AMP) molecule on the external surface of pristine, P- and Al-doped B12N12 nano-cages. In order to gain insight into the binding features of pristine and doped B12N12 complexes as adsorbent with AMP, the structural and electronic parameters as well as the Atoms in Molecules (AIM) properties were examined. The results showed that AMP prefers to adsorb via its nitrogen atom on the Lewis acid sites of B and Al atoms of the nano-cages. On the basis of calculated density of states, the interaction of AMP with the external wall of B12N12 leads to the remarkable differences in their conductivities. Presence of polar solvent increases the AMP adsorption on the nano-cage. In addition, AIM based analyses indicated an electrostatic nature for N-B interaction in Amph-B12N12 and partial covalent for N-Al in AMP-B11AlN12. Based on calculated results, the B12N12 and B11AlN12 nano-cages are expected to be a potential efficient adsorbent as well as sensors for adsorption of AMP in environmental systems.

  11. Comparision between Ga- and N-polarity InGaN solar cells with gradient-In-composition intrinsic layers

    NASA Astrophysics Data System (ADS)

    Lu, Lin; Li, Ming-Chao; Lv, Chen; Gao, Wen-Gen; Jiang, Ming; Xu, Fu-Jun; Chen, Qi-Gong

    2016-10-01

    Performances of Ga- and N-polarity solar cells (SCs) adopting gradient-In-composition intrinsic layer (IL) are compared. It is found the gradient ILs can greatly weaken the negative influence from the polarization effects for the Ga- polarity case, and the highest conversion efficiency (η) of 2.18% can be obtained in the structure with a linear increase of In composition in the IL from bottom to top. This is mainly attributed to the adsorptions of more photons caused by the higher In composition in the IL closer to the p-GaN window layer. In contrast, for the N-polarity case, the SC structure with an InGaN IL adopting fixed In composition prevails over the ones adopting the gradient-In-composition IL, where the highest η of 9.28% can be obtained at x of 0.62. N-polarity SC structures are proven to have greater potential preparations in high-efficient InGaN SCs. Project supported by the National Natural Science Foundation of China (Grant Nos. 61306108, 61172131, and 61271377), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China (Grant No. 2013693), and the Anhui Polytechnic University Funds for Excellent Young Scientists, China (Grant No. 2014YQQ005).

  12. Surface oxidation of GaN(0001): Nitrogen plasma-assisted cleaning for ultrahigh vacuum applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangopadhyay, Subhashis; Schmidt, Thomas, E-mail: tschmidt@ifp.uni-bremen.de; Kruse, Carsten

    The cleaning of metal-organic vapor-phase epitaxial GaN(0001) template layers grown on sapphire has been investigated. Different procedures, performed under ultrahigh vacuum conditions, including degassing and exposure to active nitrogen from a radio frequency nitrogen plasma source have been compared. For this purpose, x-ray photoelectron spectroscopy, reflection high-energy electron diffraction, and scanning tunneling microscopy have been employed in order to assess chemical as well as structural and morphological surface properties. Initial degassing at 600 °C under ultrahigh vacuum conditions only partially eliminates the surface contaminants. In contrast to plasma assisted nitrogen cleaning at temperatures as low as 300 °C, active-nitrogen exposure at temperaturesmore » as high as 700 °C removes the majority of oxide species from the surface. However, extended high-temperature active-nitrogen cleaning leads to severe surface roughening. Optimum results regarding both the removal of surface oxides as well as the surface structural and morphological quality have been achieved for a combination of initial low-temperature plasma-assisted cleaning, followed by a rapid nitrogen plasma-assisted cleaning at high temperature.« less

  13. Luminescent N-polar (In,Ga)N/GaN quantum wells achieved by plasma-assisted molecular beam epitaxy at temperatures exceeding 700 °C

    NASA Astrophysics Data System (ADS)

    Chèze, C.; Feix, F.; Lähnemann, J.; Flissikowski, T.; Kryśko, M.; Wolny, P.; Turski, H.; Skierbiszewski, C.; Brandt, O.

    2018-01-01

    Previously, we found that N-polar (In,Ga)N/GaN quantum wells prepared on freestanding GaN substrates by plasma-assisted molecular beam epitaxy at conventional growth temperatures of about 650 °C do not exhibit any detectable luminescence even at 10 K. In the present work, we investigate (In,Ga)N/GaN quantum wells grown on Ga- and N-polar GaN substrates at a constant temperature of 730 °C . This exceptionally high temperature results in a vanishing In incorporation for the Ga-polar sample. In contrast, quantum wells with an In content of 20% and abrupt interfaces are formed on N-polar GaN. Moreover, these quantum wells exhibit a spatially uniform green luminescence band up to room temperature, but the intensity of this band is observed to strongly quench with temperature. Temperature-dependent photoluminescence transients show that this thermal quenching is related to a high density of nonradiative Shockley-Read-Hall centers with large capture coefficients for electrons and holes.

  14. Interface science of virtual GaN substrates on Si(111) via Sc2O3/Y2O3 buffers: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Tarnawska, L.; Dabrowski, J.; Grzela, T.; Lehmann, M.; Niermann, T.; Paszkiewicz, R.; Storck, P.; Schroeder, T.

    2013-06-01

    The final film quality of GaN on foreign substrates is known to crucially depend on the initial GaN interface and nucleation characteristics. To shed light on these characteristics of recently pioneered virtual, hexagonal GaN(0001) substrates on Si(111) via step graded Sc2O3(111)/Y2O3(111) buffers, a complex GaN(0001)/Sc2O3(111) interface structure model and the initial nucleation scenario is derived from a combined experimental (reflection high energy electron diffraction and X-ray photoelectron spectroscopy) and theoretical ab initio study. It is shown that the GaN/Sc2O3 interface chemistry is determined by a N-Ga-O-Sc atomic arrangement leading to N-polar GaN films. However, the atomic GaN(0001)/Sc2O3(111) interface configuration is complex and local perturbations might be at the origin of Ga-polar inversion domains in the mainly N-polar GaN films. The initial growth of GaN on Sc2O3 is characterized by an ultrathin N-Ga-O-Sc wetting layer which carries tensile strain and relaxes with increasing thickness. Further GaN deposition results in the formation of 3D islands which fully relax before island coalescence occurs. The implications of the GaN/Sc2O3 interface configuration, the 3D nucleation growth mode, and the coalescence process of misaligned islands are discussed with respect to the defect characteristics (inversion domains, cubic inclusions, threading dislocations) of the final GaN layer.

  15. Polarized time-resolved photoluminescence measurements of m-plane AlGaN/GaN MQWs

    NASA Astrophysics Data System (ADS)

    Rosales, Daniel; Gil, B.; Bretagnon, T.; Zhang, F.; Okur, S.; Monavarian, M.; Izioumskaia, N.; Avrutin, V.; Özgür, Ü.; Morkoç, H.; Leach, J. H.

    2014-03-01

    The optical properties of GaN/Al0.15Ga0.85N multiple quantum wells grown on m-plane oriented substrate are studied in 8K-300K temperature range. The optical spectra reveal strong in-plane optical anisotropies as predicted by group theory. Polarized time resolved temperature-dependent photoluminescence experiments are performed providing access to the relative contributions of the non-radiative and radiative recombination processes. We deduce the variation of the radiative decay time with temperature in the two polarizations.

  16. Magnetometory Measurement of AlGaN/GaN 2DEG

    NASA Astrophysics Data System (ADS)

    Tsubaki, K.; Maeda, N.; Saitoh, T.; Kobayashi, N.

    2004-03-01

    AlGaN/GaN heterostructure devices have been attracting much attention because of their potential for high-performance microwave applications. Therefore, the electronic properties of a 2DEG in AlGaN/GaN heterostructures have recently been discussed. In this paper, we performed the magnetometory measurement of AlGaN/GaN 2DEG at low temperature. The AlGaN/GaN heterostructures were grown by low-pressure metal-organic chemical vapour phase epitaxy on (0001) SiC substrate using AlN buffers. The electron mobility and electron concentration at 4.2 K are 9,540 cm^2/Vs and 6.6 × 10^12 cm-2, respectively. When the temperature is lower than 4.5 K the hysteresis of magnetometric data is observed near zero magnetic field. At the temperature larger than 4.5 K, the hysteresis of magnetometric data disappears and the slope of magnetometric data with respect to magnetic field becomes lower as obeying Currie-Weiss law. In general the hysteresis and Currie-Weiss law behavior in magnetometric data imply the possibility of the ferromagnetism, but the conformation of the ferromagnetism of AlGaN/GaN heterostructure is still difficult and the detailed physical mechanism is still unclear.

  17. High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer

    PubMed Central

    Muhammed, M. M.; Roldan, M. A.; Yamashita, Y.; Sahonta, S.-L.; Ajia, I. A.; Iizuka, K.; Kuramata, A.; Humphreys, C. J.; Roqan, I. S.

    2016-01-01

    We demonstrate the high structural and optical properties of InxGa1−xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 107 cm−2) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1−xN epilayers can be achieved with high optical quality of InxGa1−xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design. PMID:27412372

  18. High Temperature Annealing of MBE-grown Mg-doped GaN

    NASA Astrophysics Data System (ADS)

    Contreras, S.; Konczewicz, L.; Peyre, H.; Juillaguet, S.; Khalfioui, M. Al; Matta, S.; Leroux, M.; Damilano, B.; Brault, J.

    2017-06-01

    In this report, are shown the results of high temperature resistivity and Hall Effect studies of Mg-doped GaN epilayers. The samples studied were grown on (0001) (c-plane) sapphire by molecular beam epitaxy and 0.5 μm GaN:Mg layers have been achieved on low temperature buffers of GaN (30 nm) and AlN ( 150 nm). The experiments were carried out in the temperature range from 300 K up to 900 K. Up to about 870 K a typical thermally activated conduction process has been observed with the activation energy value EA = 215 meV. However, for higher temperatures, an annealing effect is observed in all the investigated samples. The increase of the free carrier concentration as a function of time leads to an irreversible decrease of sample resistivity of more than 60%.

  19. Valence subband coupling effect on polarization of spontaneous emissions from Al-rich AlGaN/AlN quantum wells.

    PubMed

    Lu, Huimin; Yu, Tongjun; Yuan, Gangcheng; Jia, Chuanyu; Chen, Genxiang; Zhang, Guoyi

    2012-12-03

    The optical polarization properties of Al-rich AlGaN/AlN quantum wells (QWs) were investigated using the theoretical model based on the k·p method. Numerical results show that there is valence subband coupling which can influence the peak emission wavelength and emission intensity for TE and TM polarization components from Al-rich AlGaN/AlN QWs. Especially the valence subband coupling could be strong enough when CH1 is close to HH1 and LH1 subbands to modulate the critical Al content switching dominant emissions from TE to TM polarization. It is believed that the valence subband coupling may give important influence on polarization properties of spontaneous emissions and should be considered in designing high efficiency AlGaN-based ultraviolet (UV) LEDs.

  20. Spin Polarization of Alternate Monatomic Epitaxial [Fe/Co]n Superlattice

    NASA Astrophysics Data System (ADS)

    Chu, In Chang; Doi, Masaaki; Sahashi, Masashi; Rajanikanth, Ammanabrolu; Takahashi, Yukiko; Hono, Kazuhiro

    2012-09-01

    The spin polarization (P) of alternate monatomic layered (AML) epitaxial [Fe/Co]n superlattices grown on MgO(001) substrates by electron beam (EB) evaporation has been measured by the point contact Andreev reflection (PCAR) method. The intrinsic transport P of 0.60 was obtained for the AML epitaxial [Fe/Co]n superlattice grown at 75 °C, which is comparable to that of half-metallic Heusler alloys measured by PCAR. The AML epitaxial [Fe/Co]n superlattices on MgO(001), which are expected to possess the B2 ordered structure, show the highest spin polarization of metallic Fe-Co alloy films.

  1. Enhancement of optical polarization degree of AlGaN quantum wells by using staggered structure.

    PubMed

    Wang, Weiying; Lu, Huimin; Fu, Lei; He, Chenguang; Wang, Mingxing; Tang, Ning; Xu, Fujun; Yu, Tongjun; Ge, Weikun; Shen, Bo

    2016-08-08

    Staggered AlGaN quantum wells (QWs) are designed to enhance the transverse-electric (TE) polarized optical emission in deep ultraviolet (DUV) light- emitting diodes (LED). The optical polarization properties of the conventional and staggered AlGaN QWs are investigated by a theoretical model based on the k·p method as well as polarized photoluminescence (PL) measurements. Based on an analysis of the valence subbands and momentum matrix elements, it is found that AlGaN QWs with step-function-like Al content in QWs offers much stronger TE polarized emission in comparison to that from conventional AlGaN QWs. Experimental results show that the degree of the PL polarization at room temperature can be enhanced from 20.8% of conventional AlGaN QWs to 40.2% of staggered AlGaN QWs grown by MOCVD, which is in good agreement with the theoretical simulation. It suggests that polarization band engineering via staggered AlGaN QWs can be well applied in high efficiency AlGaN-based DUV LEDs.

  2. Defect reduction in overgrown semi-polar (11-22) GaN on a regularly arrayed micro-rod array template

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.; Bai, J.; Hou, Y.

    2016-02-15

    We demonstrate a great improvement in the crystal quality of our semi-polar (11-22) GaN overgrown on regularly arrayed micro-rod templates fabricated using a combination of industry-matched photolithography and dry-etching techniques. As a result of our micro-rod configuration specially designed, an intrinsic issue on the anisotropic growth rate which is a great challenge in conventional overgrowth technique for semi-polar GaN has been resolved. Transmission electron microscopy measurements show a different mechanism of defect reduction from conventional overgrowth techniques and also demonstrate major advantages of our approach. The dislocations existing in the GaN micro-rods are effectively blocked by both a SiO{sub 2}more » mask on the top of each GaN micro-rod and lateral growth along the c-direction, where the growth rate along the c-direction is faster than that along any other direction. Basal stacking faults (BSFs) are also effectively impeded, leading to a distribution of BSF-free regions periodically spaced by BSF regions along the [-1-123] direction, in which high and low BSF density areas further show a periodic distribution along the [1-100] direction. Furthermore, a defect reduction model is proposed for further improvement in the crystalline quality of overgrown (11-22) GaN on sapphire.« less

  3. Fabrication of AlN/BN bishell hollow nanofibers by electrospinning and atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haider, Ali; Kayaci, Fatma; Uyar, Tamer

    2014-09-01

    Aluminum nitride (AlN)/boron nitride (BN) bishell hollow nanofibers (HNFs) have been fabricated by successive atomic layer deposition (ALD) of AlN and sequential chemical vapor deposition (CVD) of BN on electrospun polymeric nanofibrous template. A four-step fabrication process was utilized: (i) fabrication of polymeric (nylon 6,6) nanofibers via electrospinning, (ii) hollow cathode plasma-assisted ALD of AlN at 100 °C onto electrospun polymeric nanofibers, (iii) calcination at 500 °C for 2 h in order to remove the polymeric template, and (iv) sequential CVD growth of BN at 450 °C. AlN/BN HNFs have been characterized for their chemical composition, surface morphology, crystal structure, and internal nanostructuremore » using X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and selected area electron diffraction. Measurements confirmed the presence of crystalline hexagonal BN and AlN within the three dimensional (3D) network of bishell HNFs with relatively low impurity content. In contrast to the smooth surface of the inner AlN layer, outer BN coating showed a highly rough 3D morphology in the form of BN nano-needle crystallites. It is shown that the combination of electrospinning and plasma-assisted low-temperature ALD/CVD can produce highly controlled multi-layered bishell nitride ceramic hollow nanostructures. While electrospinning enables easy fabrication of nanofibrous template, self-limiting reactions of plasma-assisted ALD and sequential CVD provide control over the wall thicknesses of AlN and BN layers with sub-nanometer accuracy.« less

  4. The underlying micro-mechanism of performance enhancement of non-polar n-ZnO/p-AlGaN ultraviolet light emitting diode with i-ZnO inserted layer

    NASA Astrophysics Data System (ADS)

    Jiang, Fan; Chen, Jingwen; Bi, Han; Li, Luying; Jing, Wenkui; Zhang, Jun; Dai, Jiangnan; Che, Renchao; Chen, Changqing; Gao, Yihua

    2018-01-01

    Non-polar a-plane n-ZnO/p-AlGaN and n-ZnO/i-ZnO/p-AlGaN heterojunction film light-emitting diodes (LEDs) are fabricated with good crystalline quality. The optical measurements show obvious performance enhancement with i-ZnO layer insertion. Off-axis electron holography reveals a potential drop of ˜1.5 V across the heterojunctions with typical p-n junction characteristics. It is found that the electrostatic potentials are inclined and the corresponding electrostatic fields are opposite to each other in n-ZnO and p-AlGaN regions. The electrostatic fields are mainly attributed to strain induced piezoelectric polarizations. After an insertion of an i-ZnO layer into the p-n heterojunction, comparatively flat electrostatic potential generates in the intrinsic ZnO region and contributes to faster movements of the injected electrons and holes, making the i-ZnO layer more conductive to the radiative recombination with enhanced exciton recombination possibilities and at last the LED performance enhancement.

  5. Influence of cation choice on magnetic behavior of III-N dilute magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Frazier, Rachel Marian

    With the increasing interest in spintronics, many attempts have been made at incorporating spin-based functionality into existing semiconductor technology. One approach, utilizing dilute magnetic semiconductors (DMS) formed via introduction of transition metal ions into III-Nitride hosts, would allow for integration of spin based phenomena into current wide bandgap device technology. To accomplish such device structures, it is necessary to achieve single phase transition metal doped GaN and AlN which exhibit room temperature magnetic behavior. Ion implantation is an effective survey method for introduction of various transition metals into AlN. In ion implanted AlN, the Co and Cr doped films showed hysteresis at 300K while the Mn doped material did not. However, it is not a technique which will allow for the development of advanced spin based devices. Such devices will require epitaxial methods of the sort currently used for synthesis of III-Nitride optoelectronics. One such technique, Gas Source Molecular Beam Epitaxy (GSMBE), has been used to synthesize AlN films doped with Cr and Mn. Room temperature ferromagnetism has been observed for AlMnN and AlCrN grown by GSMBE. In both cases, the magnetic signal was found to depend on the flux of the dopant. The magnetization of the AlCrN was found to be an order of magnitude greater than in the AlMnN. The temperature dependent magnetic behavior of AlCrN was also superior to AlMnN; however, the AlCrN was not resistant to thermal degradation. An all-semiconductor tunneling magnetoresistive device (TMR) was grown with GaMnN as a spin injector and AlMnN as a spin filter. The resistance of the device should change with applied magnetic field depending on the magnetization of the injector and filter. However, due to the impurity bands found in the AlMnN, the resistance was found to change very little with magnetic field. To overcome such obstacles as found in the transition metal doped AlN, another dopant must be used. One

  6. High-Efficiency Visible Transmitting Polarizations Devices Based on the GaN Metasurface.

    PubMed

    Guo, Zhongyi; Xu, Haisheng; Guo, Kai; Shen, Fei; Zhou, Hongping; Zhou, Qingfeng; Gao, Jun; Yin, Zhiping

    2018-05-15

    Metasurfaces are capable of tailoring the amplitude, phase, and polarization of incident light to design various polarization devices. Here, we propose a metasurface based on the novel dielectric material gallium nitride (GaN) to realize high-efficiency modulation for both of the orthogonal linear polarizations simultaneously in the visible range. Both modulated transmitted phases of the orthogonal linear polarizations can almost span the whole 2π range by tailoring geometric sizes of the GaN nanobricks, while maintaining high values of transmission (almost all over 90%). At the wavelength of 530 nm, we designed and realized the beam splitter and the focusing lenses successfully. To further prove that our proposed method is suitable for arbitrary orthogonal linear polarization, we also designed a three-dimensional (3D) metalens that can simultaneously focus the X -, Y -, 45°, and 135° linear polarizations on spatially symmetric positions, which can be applied to the linear polarization measurement. Our work provides a possible method to achieve high-efficiency multifunctional optical devices in visible light by extending the modulating dimensions.

  7. FInvestigation of enhancement mode HfO2 insulated N-polarity GaN/InN/GaN/In0.9Al0.1N heterostructure MISHEMT for high-frequency applications

    NASA Astrophysics Data System (ADS)

    Mohanbabu, A.; Mohankumar, N.; Godwin Raj, D.; Sarkar, Partha

    2017-08-01

    In this paper, we examined normally-OFF N-polar InN-channel Metal insulated semiconductor high-electron mobility transistors (MISHEMTs) device with a relaxed In0.9Al0.1N buffer layer. In addition, the enhancement-mode operation of the N-polar structure was investigated. The effect of scaling in N-polar MISHEMT, such as the dielectric and the channel thickness, alter the electrical behavior of the device. We have achieved a maximum drain current of 1.17 A/mm, threshold voltage (VT) =0.728 V, transconductance (gm) of 2.9 S mm-1, high ION/IOFF current ratio of 3.23×103, lowest ON-state resistance (RON) of 0.41 Ω mm and an intrinsic delay time (τ) of 1.456 Fs along with high-frequency performance with ft/ fmaxof 90 GHz/109 GHz and 180 GHz/260 GHz for TCH =0.5 nm at Vds =0.5 V and 1.0 V. The numerically simulated results of highly confined GaN/InN/GaN/In0.9Al0.1N heterostructure MISHEMT exhibits outstanding potential as one of the possibility to replace presently used N-polar MISHEMTs for delivering high power density and frequency at RF/power amplifier applications.

  8. Growth of non-polar and semi-polar gallium nitride with plasma assisted molecular beam epitaxy: Relatonships between film microstructure, reciprocal lattice and transport properties

    NASA Astrophysics Data System (ADS)

    McLaurin, Melvin Barker

    2007-12-01

    The group-III nitrides exhibit significant spontaneous and piezoelectric polarization parallel to the [0001] direction, which are manifested as sheet charges at heterointerfaces. While polarization can be used to engineer the band-structure of a device, internal electric fields generated by polarization discontinuities can also have a number of negative consequences for the performance and design of structures utilizing heterojunctions. The most direct route to polarization free group-III nitride devices is growth on either one of the "non-polar" prismatic faces of the crystal (m-plane (1010) or a-plane (1120)) where the [0001] direction lies in the plane of any heterointerfaces. This dissertation focuses on the growth of non-polar and semi-polar GaN by MBE and on how the dominant feature of the defect structure of non-polar and semi-polar films, basal plane stacking faults, determines the properties of the reciprocal lattice and electrical transport of the films. The first part is a survey of the MBE growth of the two non-polar planes (10 10) and (1120) and three semi-polar planes (1011), (1013) and {11 22} investigated in this work. The relationship between basal plane stacking faults and broadening of the reciprocal lattice is discussed and measured with X-ray diffraction using a lateral-variant of the Williamson-Hall analysis. The electrical properties of m-plane films are investigated using Hall-effect and TLM measurements. Anisotropic mobilities were observed for both electrons and holes along with record p-type conductivities and hole concentrations. By comparison to both inversion-domain free c-plane films and stacking-fault-free free-standing m-plane GaN wafers it was determined that basal plane stacking faults were the source of both the enhanced p-type conductivity and the anisotropic carrier mobilities. Finally, we propose a possible source of anisotropic mobilities and enhanced p-type conduction in faulted films is proposed. Basal plane stacking faults

  9. Low-Temperature Reactivity of C2n+1N(-) Anions with Polar Molecules.

    PubMed

    Joalland, Baptiste; Jamal-Eddine, Nour; Kłos, Jacek; Lique, François; Trolez, Yann; Guillemin, Jean-Claude; Carles, Sophie; Biennier, Ludovic

    2016-08-04

    Following the recent discovery of molecular anions in the interstellar medium, we report on the kinetics of proton transfer reactions between cyanopolyynide anions C2n+1N(-) (n = 0, 1, 2) and formic acid HCOOH. The results, obtained from room temperature down to 36 K by means of uniform supersonic flows, show a surprisingly weak temperature dependence of the CN(-) reaction rate, in contrast with longer chain anions. The CN(-) + HCOOH reaction is further studied theoretically via a reduced dimensional quantum model that highlights a tendency of the reaction probability to decrease with temperature, in agreement with experimental data but at the opposite of conventional long-range capture theories. In return, comparing HCOOH to HC3N as target molecules suggests that dipole-dipole interactions must play an active role in overcoming this limiting effect at low temperatures. This work provides new fundamental insights on prototypical reactions between polar anions and polar molecules along with critical data for astrochemical modeling.

  10. A method used to overcome polarization effects in semi-polar structures of nitride light-emitting diodes emitting green radiation

    NASA Astrophysics Data System (ADS)

    Morawiec, Seweryn; Sarzała, Robert P.; Nakwaski, Włodzimierz

    2013-11-01

    Polarization effects are studied within nitride light-emitting diodes (LEDs) manufactured on standard polar and semipolar substrates. A new theoretical approach, somewhat different than standard ones, is proposed to this end. It is well known that when regular polar GaN substrates are used, strong piezoelectric and spontaneous polarizations create built-in electric fields leading to the quantum-confined Stark effects (QCSEs). These effects may be completely avoided in nonpolar crystallographic orientations, but then there are problems with manufacturing InGaN layers of relatively high Indium contents necessary for the green emission. Hence, a procedure leading to partly overcoming these polarization problems in semi-polar LEDs emitting green radiation is proposed. The (11 22) crystallographic substrate orientation (inclination angle of 58∘ to c plane) seems to be the most promising because it is characterized by low Miller-Bravais indices leading to high-quality and high Indium content smooth growth planes. Besides, it makes possible an increased Indium incorporation efficiency and it is efficient in suppressing QCSE. The In0.3Ga0.7N/GaN QW LED grown on the semipolar (11 22) substrate has been found as currently the optimal LED structure emitting green radiation.

  11. Intrinsic polarization control in rectangular GaN nanowire lasers

    DOE PAGES

    Li, Changyi; Liu, Sheng; Luk, Ting S.; ...

    2016-02-01

    In this study, we demonstrate intrinsic, linearly polarized lasing from single GaN nanowires using cross-sectional shape control. A two-step top-down fabrication approach was employed to create straight nanowires with controllable rectangular cross-sections. A clear lasing threshold of 444kW/cm 2 and a narrow spectral line width of 0.16 nm were observed under optical pumping at room temperature, indicating the onset of lasing. The polarization was along the short dimension (y-direction) of the nanowire due to the higher transverse confinement factors for y-polarized transverse modes resulting from the rectangular nanowire cross-section. The results show that cross-sectioned shape control can enable inherent controlmore » over the polarization of nanowire lasers without additional environment requirements, such as placement onto lossy substrates.« less

  12. Mocvd Growth of Group-III Nitrides on Silicon Carbide: From Thin Films to Atomically Thin Layers

    NASA Astrophysics Data System (ADS)

    Al Balushi, Zakaria Y.

    of N-polar InGaN by MOCVD is challenging. These challenges arise from the lack of available native substrates suitable for N-polar film growth. As a result, InGaN layers are conventionally grown in the III-polar direction (i.e. III-polar InGaN) and typically grow under considerable amounts of stress on III-polar GaN base layers. While the structure-property relations of thin III-polar InGaN layers have been widely studied in quantum well structures, insight into the growth of thick films and N-polar InGaN layers have been limited. Therefore, this dissertation research compared the growth of both thick III-polar and N-polar InGaN films grown on optimized GaN base layers. III-polar InGaN films were rough and exhibited a high density of V-pits, while the growth of thick N-polar InGaN films showed improved structural quality and low surface roughness. The results of this dissertation work thereby provide an alternative route to the fabrication of thick InGaN films for potential use in solar cells as well as strain reducing schemes for deep-green and red light emitters. Moreover, this dissertation investigated stress relaxation in thick N-polar films using in situ reflectivity and curvature measurements. The results showed that stress relaxation in N-polar InGaN significantly differed from III-polar InGaN due to the absence of V-pits and it was hypothesized that plastic relaxation in N-polar InGaN could occur by dislocation glide, which typically is kinetically limited at such low growth temperatures required for InGaN. The second part of this dissertation research work focused on buffer free growth of GaN directly on SiC and on epitaxial graphene produced on SiC for potential vertical devices. The studies presented in this dissertation work on the growth of GaN directly on SiC compared the stress evolution of GaN films grown with and without an AlN buffer layer. Films grown directly on SiC showed reduced threading dislocation densities and improved surface roughness when

  13. Ozone decrease outside Arctic polar vortex due to polar vortex processing in 1997

    NASA Astrophysics Data System (ADS)

    Akiyoshi, H.; Sugata, S.; Yoshiki, M.; Sugita, T.

    2006-11-01

    We examine the effect of polar vortex processing on ozone concentrations outside the 1997 Arctic polar vortex. The Arctic vortex in this year was well isolated, cold, and circumpolar, and it broke up unusually late. However, time threshold diagnostics (TTD) analysis using a middle vortex boundary defined by the first derivative of the equivalent latitude gradient of potential vorticity and calculations using the nudging chemical transport model (CTM) of the Center for Climate System Research/National Institute for Environmental Studies (CCSR/NIES) show that there were intermittently several relatively large transport events from the vortex to the outside region in the lower stratosphere, with timescales and spatial scales that can be resolved at T42 CTM horizontal resolution (2.8° by 2.8° grid). These intermittent outflow events of polar air are also identified in TTD analysis using an outer vortex boundary defined by the second derivative of potential vorticity and a boundary defined by the N2O concentration. These intermittent events had a significant effect on the ozone concentration outside the vortex near the boundary in this year. A CTM calculation with a polar chemical ozone tracer shows that the effect on the ozone concentration outside the polar vortex near the vortex boundary in the equivalent latitude band of 55°-65°N and 450 K is 0.3 ppmv (15-20% of the ozone concentration at this height) and that on the total ozone is 12-15 Dobson units (1 DU = 0.001 atm cm) (3-4% of the total ozone) by the end of April just before the final vortex breakup. The effect in the equivalent latitude band of 30°-60°N is much smaller, with a reduction of 2 DU at the end of March and 4 DU by the end of April (less than 1% of the total ozone). The effect is about the half if we use the inner boundary or a boundary of 73°N equivalent latitude for the polar tracer calculations. The CTM calculations also show that these polar vortex processing effects might be masked at

  14. A Monte Carlo Study of Lambda Hyperon Polarization at BM@N

    NASA Astrophysics Data System (ADS)

    Suvarieva, D.; Gudima, K.; Zinchenko, A.

    2018-03-01

    Heavy strange objects (hyperons) can provide essential signatures of the excited and compressed baryonic matter. At NICA, it is planned to study hyperons both in the collider mode (MPD detector) and the fixed-target one (BM@N setup). Measurements of strange hyperon polarization can give additional information on the strong interaction mechanisms. In heavy-ion collisions, such measurements are even more valuable since the polarization is expected to be sensitive to characteristics of the QCD medium (vorticity, hydrodynamic helicity) and to QCD anomalous transport. In this analysis, the possibility to measure at BM@N the polarization of the lightest strange hyperon Λ is studied in Monte Carlo event samples of Au + Au collisions produced with the DCM-QGSM generator. It is shown that the detector will allow to measure polarization with a precision required to check the model predictions.

  15. POLARIZATION OF NEUTRONS BY THE STRIPPING REACTION C$sup 12$(d,n)N$sup 1$$sup 3$ (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budzanowski, A.; Grotowski, K.; Niewodniczanski, H.

    1960-05-01

    The polarization of neutrcns emitted from the stripping reaction C/sup 12/(d,n)N/sup 13/ hns been investigated at the reaction angle was / sub lab/ = 15 tained and deuteron energy E/sub d/ = 12.9 Mev. The polarization of neutrons connected with the 3.56 Mev energy level in N/sup 13/ nucleus was found to be --(0.39 combination rat 0.11). Also some general remarks concerning the preliminary results of the polarization of neutrons at the reaction angles 30 tained , 45 tained , and 60 tained are given. (auth)

  16. Optimization of polarization compensating interlayers for InGaN/GaN MQW solar cells

    NASA Astrophysics Data System (ADS)

    Saini, Basant; Sharma, Sugandha; Kaur, Ravinder; Pal, Suchandan; Kapoor, Avinashi

    2018-05-01

    Optimization of polarization compensating interlayer (PCI) is performed numerically to improve the photovoltaic properties of InGaN/GaN multiple quantum well solar cell (MQWSC). Simulations are performed to investigate the effect of change in thickness and composition of PCI on the performance of cell. Short circuit current density is increased as we increase the thickness of the PCI. Changing the constitution of PCI not only mitigates the negative effects of polarization-induced electric fields but also reduces the high potential barrier existing at the QW/p-GaN hetero-interface. This claim is validated by the performance shown by the cell containing optimized PCI, as it shows an improved efficiency of 1.54 % under AM1.5G illumination.

  17. In-plane, commensurate GaN/AlN junctions: single-layer composite structures, multiple quantum wells and quantum dots

    NASA Astrophysics Data System (ADS)

    Durgun, Engin; Onen, Abdullatif; Kecik, Deniz; Ciraci, Salim

    In-plane composite structures constructed of the stripes or core/shells of single-layer GaN and AlN, which are joined commensurately display diversity of electronic properties, that can be tuned by the size of their constituents. In heterostructures, the dimensionality of electrons change from 2D to 1D upon their confinements in wide constituent stripes leading to the type-I band alignment and hence multiple quantum well structure in the direct space. The δ-doping of one wide stripe by other narrow stripe results in local narrowing or widening of the band gap. The direct-indirect transition of the fundamental band gap of composite structures can be attained depending on the odd or even values of formula unit in the armchair edged heterojunction. In a patterned array of GaN/AlN core/shells, the dimensionality of the electronic states are reduced from 2D to 0D forming multiple quantum dots in large GaN-cores, while 2D electrons propagate in multiply connected AlN shell as if they are in a supercrystal. These predictions are obtained from first-principles calculations based on density functional theory on single-layer GaN and AlN compound semiconductors which were synthesized recently. This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No 115F088.

  18. ScAlN etch mask for highly selective silicon etching

    DOE PAGES

    Henry, Michael David; Young, Travis R.; Griffin, Ben

    2017-09-08

    Here, this work reports the utilization of a recently developed film, ScAlN, as a silicon etch mask offering significant improvements in high etch selectivity to silicon. Utilization of ScAlN as a fluorine chemistry based deep reactive ion etch mask demonstrated etch selectivity at 23 550:1, four times better than AlN, 11 times better than Al 2O 3, and 148 times better than silicon dioxide with significantly less resputtering at high bias voltage than either Al 2O 3 or AlN. Ellipsometry film thickness measurements show less than 0.3 nm/min mask erosion rates for ScAlN. Micromasking of resputtered Al for Al 2Omore » 3, AlN, and ScAlN etch masks is also reported here, utilizing cross-sectional scanning electron microscope and confocal microscope roughness measurements. With lower etch bias, the reduced etch rate can be optimized to achieve a trench bottom surface roughness that is comparable to SiO 2 etch masks. Etch mask selectivity enabled by ScAlN is likely to make significant improvements in microelectromechanical systems, wafer level packaging, and plasma dicing of silicon.« less

  19. AlGaN materials for semiconductor sensors and emitters in 200- to 365-nm range

    NASA Astrophysics Data System (ADS)

    Usikov, Alexander S.; Shapvalova, Elizaveta V.; Melnik, Yuri V.; Ivantsov, Vladimir A.; Dmitriev, Vladimir A.; Collins, Charles J.; Sampath, Anand V.; Garrett, Gregory A.; Shen, Paul H.; Wraback, Michael

    2004-12-01

    In this paper we report on the fabrication and characterization of GaN, AlGaN, and AlN layers grown by hydride vapor phase epitaxy (HVPE). The layers were grown on 2-inch and 4-inch sapphire and 2-inch silicon carbide substrates. Thickness of the GaN layers was varied from 2 to 80 microns. Surface roughness, Rms, for the smoothest GaN layers was less than 0.5 nm, as measured by AFM using 10 μm x 10 μm scans. Background Nd-Na concentration for undoped GaN layers was less than 1x1016 cm-3. For n-type GaN layers doped with Si, concentration Nd-Na was controlled from 1016 to 1019 cm-3. P-type GaN layers were fabricated using Mg doping with concentration Na-Nd ranging from 4x1016 to 3x1018 cm-3, for various samples. Zn doping also resulted in p-type GaN formation with concnetration ND-NA in the 1017 cm-3 range. UV transmission, photoluminescence, and crystal structure of AlGaN layers with AlN concentration up to 85 mole.% were studied. Dependence of optical band gap on AlGaN alloy composition was measured for the whole composition range. Thick (up to 75 microns) crack-free AlN layers were grown on SiC substrates. Etch pit density for such thick AlN layers was in the 107 cm-2 range.

  20. Kinetically controlled indium surface coverage effects on PAMBE-growth of InN/GaN(0001) quantum well structures

    NASA Astrophysics Data System (ADS)

    Li, Chen; Maidaniuk, Yurii; Kuchuk, Andrian V.; Shetty, Satish; Ghosh, Pijush; White, Thomas P.; Morgan, Timothy Al.; Hu, Xian; Wu, Yang; Ware, Morgan E.; Mazur, Yuriy I.; Salamo, Gregory J.

    2018-05-01

    We report the effects of nitrogen (N) plasma and indium (In) flux on the In adatom adsorption/desorption kinetics on a GaN(0001) surface at the relatively high plasma-assisted molecular beam epitaxy-growth temperature of 680 °C. We experimentally demonstrate that under an active N flux, the (√{3 }×√{3 })R 30 ° surface reconstruction containing In and N quickly appears and the dynamically stable In adlayers sitting on this surface exhibit a continuous change from 0 to 2 MLs as a function of In flux. Compared to the bare GaN 1 ×1 surface which is stable during In exposure without an active N flux, we observed a much faster desorption for the bottom In adlayer and the absence of an In flux window corresponding to an In coverage of 1 ML. Moreover, when the In coverage exceeds 2 MLs, the desorption rates become identical for both surfaces. Finally, the importance of In surface coverage before GaN capping was shown by growing a series of InN/GaN multiple quantum well samples. The photoluminescence data show that a consistent quantum well structure is only formed if the surface is covered by excess In droplets before GaN capping.

  1. 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Dong, Peng; Yan, Jianchang; Wang, Junxi; Zhang, Yun; Geng, Chong; Wei, Tongbo; Cong, Peipei; Zhang, Yiyun; Zeng, Jianping; Tian, Yingdong; Sun, Lili; Yan, Qingfeng; Li, Jinmin; Fan, Shunfei; Qin, Zhixin

    2013-06-01

    We first report AlGaN-based deep ultraviolet light-emitting diodes (UV-LEDs) grown on nano-patterned sapphire substrates (NPSS) prepared through a nanosphere lithography technique. The AlN coalescence thickness on NPSS is only 3 μm due to AlN's nano-scaled lateral growth, which also leads to low dislocation densities in AlN and epi-layers above. On NPSS, the light-output power of a 282-nm UV-LED reaches 3.03 mW at 20 mA with external quantum efficiency of 3.45%, exhibiting 98% better performance than that on flat sapphire. Temperature-dependent photoluminescence reveals this significant enhancement to be a combination of higher internal quantum efficiency and higher light extraction efficiency.

  2. Microstructure & properties of SiC-AlN multiphase ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Y.B.; Tan, S.H.; Jiang, D.L.

    It is that AlN and SiC mixture could form solid solution at the temperature from 1800{degrees}C to 2100{degrees}C, its result will be conducive to important benefits for the improving to study and develop on the silicon carbide ceramics. The effect of AlN as a mainly additive phase on silicon carbide ceramic were investigated in this paper. For the optimum hot press(HP) process, SiC and AlN mixture formed solid solution at the 1950{degrees}C--2050{degrees}C in Ar environment. The properties of SiC-AlN composition were that bending strength more than 600 MPa and fracture toughness more than 7 MPa.m{sup 1/2} at the room temperature(R.T)more » could be received, at the same time the strength hold ascertain value from R.T. to 1400{degrees}C in air. The dense samples were examined by metallograph, X-ray diffraction (XRD), scanning electron microscope (SEM) & transmission electron microscope (TEM) to determine the fracture structure, interface phase, crack spread etc.« less

  3. Effects of laser polar-body biopsy on embryo quality.

    PubMed

    Levin, Ishai; Almog, Benny; Shwartz, Tamar; Gold, Veronica; Ben-Yosef, Dalit; Shaubi, Michal; Amit, Ami; Malcov, Mira

    2012-05-01

    To evaluate the effect of laser polar-body biopsy (PBB) for preimplantation genetic diagnosis on embryo quality. Retrospective case-control analysis. The quality of 145 embryos after PBB was compared to 276 embryos of the same group of women without biopsy. University-based tertiary-care medical center. Women with inherited genetics disease. Laser PBB of IVF embryos for genetic diagnosis. The study and control embryos were compared for fertilization rate, pronuclear grading, and cleavage-stage parameters on days 1, 2, and 3 after oocyte retrieval. The study embryos demonstrated higher rates of cleavage arrest (3.6% vs. 0.7%), higher rate of significant fragmentation on day 2 (9.5% vs. 3.0%), and lower rate of good cleavage embryos on day 2 (69.1% vs. 78.4%) compared with control embryos. On day 3, the study embryos had lower cleavage rates (six or more blastomeres; 56.5% vs. 74.5%), higher fragmentation (11.7% vs. 3.9%), higher rate of embryos presenting inferior cleavage pattern (57.2% vs. 38.5%), and lower mean blastomere number (5.8 ± 2.1 vs. 6.6 ± 1.9) compared with control embryos. Polar-body biopsy may have a negative effect on embryo quality. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. Non-polar a-plane ZnO films grown on r-Al2O3 substrates using GaN buffer layers

    NASA Astrophysics Data System (ADS)

    Xu, C. X.; Chen, W.; Pan, X. H.; Chen, S. S.; Ye, Z. Z.; Huang, J. Y.

    2016-09-01

    In this work, GaN buffer layer has been used to grow non-polar a-plane ZnO films by laser-assisted and plasma-assisted molecular beam epitaxy. The thickness of GaN buffer layer ranges from ∼3 to 12 nm. The GaN buffer thickness effect on the properties of a-plane ZnO thin films is carefully investigated. The results show that the surface morphology, crystal quality and optical properties of a-plane ZnO films are strongly correlated with the thickness of GaN buffer layer. It was found that with 6 nm GaN buffer layer, a-plane ZnO films display the best crystal quality with X-ray diffraction rocking curve full-width at half-maximum of only 161 arcsec for the (101) reflection.

  5. Isotype InGaN/GaN heterobarrier diodes by ammonia molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fireman, Micha N.; Browne, David A.; Speck, James S.

    The design of isotype InGaN/GaN heterobarrier diode structures grown by ammonia molecular beam epitaxy is presented. On the (0001) Ga-polar plane, a structure consisting of a surface n{sup +} GaN contact layer, followed by a thin InGaN layer, followed by a thick unintentionally doped (UID) GaN layer, and atop a buried n{sup +} GaN contact layer induces a large conduction band barrier via a depleted UID GaN layer. Suppression of reverse and subthreshold current in such isotype barrier devices under applied bias depends on the quality of this composite layer polarization. Sample series were grown under fixed InGaN growth conditionsmore » that varied either the UID GaN NH{sub 3} flow rate or the UID GaN thickness, and under fixed UID GaN growth conditions that varied InGaN growth conditions. Decreases in subthreshold current and reverse bias current were measured for thicker UID GaN layers and increasing InGaN growth rates. Temperature-dependent analysis indicated that although extracted barrier heights were lower than those predicted by 1D Schrödinger Poisson simulations (0.9 eV–1.4 eV for In compositions from 10% to 15%), optimized growth conditions increased the extracted barrier height from ∼11% to nearly 85% of the simulated values. Potential subthreshold mechanisms are discussed, along with those growth factors which might affect their prevalence.« less

  6. Electron microscopy characterization of AlGaN/GaN heterostructures grown on Si (111) substrates

    NASA Astrophysics Data System (ADS)

    Gkanatsiou, A.; Lioutas, Ch. B.; Frangis, N.; Polychroniadis, E. K.; Prystawko, P.; Leszczynski, M.

    2017-03-01

    AlGaN/GaN buffer heterostructures were grown on "on axis" and 4 deg off Si (111) substrates by MOVPE. The electron microscopy study reveals the very good epitaxial growth of the layers. Almost c-plane orientated nucleation grains are achieved after full AlN layer growth. Step-graded AlGaN layers were introduced, in order to prevent the stress relaxation and to work as a dislocation filter. Thus, a crack-free smooth surface of the final GaN epitaxial layer is achieved in both cases, making the buffer structure ideal for the forthcoming growth of the heterostructure (used for HEMT device applications). Finally, the growth of the AlGaN/GaN heterostructure on top presents characteristic and periodic undulations (V-pits) on the surface, due to strain relaxation reasons. The AlN interlayer grown in between the heterostructure demonstrates an almost homogeneous thickness, probably reinforcing the 2DEG electrical characteristics.

  7. The Study of Al0.29Ga0.71N-BASED Schottky Photodiodes Grown on Silicon by Plasma-Assisted Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Mohd Yusoff, M. Z.; Hassan, Z.; Chin, C. W.; Hassan, H. Abu; Abdullah, M. J.; Mohammad, N. N.; Ahmad, M. A.; Yusof, Y.

    2013-05-01

    In this paper, the growth and characterization of epitaxial Al0.29Ga0.71N grown on Si(111) by RF-plasma assisted molecular beam epitaxy (MBE) are described. The Al mole fraction was derived from the HR-XRD symmetric rocking curve (RC) ω/2θ scans of (0002) plane as x = 0.29. PL spectrum of sample has shown sharp and intense band edge emission of GaN without the existence of yellow emission band, showing that it is comparable in crystal quality of the sample when compared with previous reports. From the Raman measurement of as-grown Al0.29Ga0.71N layer on GaN/AlN/Si sample. We found that the dominant E2 (high) phonon mode of GaN appears at 572.7 cm-1. The E2 (high) mode of AlN appears at 656.7 cm-1 and deviates from the standard value of 655 cm-1 for unstrained AlN. Finally, AlGaN Schottky photodiode have been fabricated and analyzed by mean of electrical characterization, using current-voltage (I-V) measurement to evaluate the performance of this device.

  8. High power broadband all fiber super-fluorescent source with linear polarization and near diffraction-limited beam quality.

    PubMed

    Ma, Pengfei; Huang, Long; Wang, Xiaolin; Zhou, Pu; Liu, Zejin

    2016-01-25

    In this manuscript, a high power broadband superfluorescent source (SFS) with linear polarization and near-diffraction-limited beam quality is achieved based on an ytterbium-doped (Yb-doped), all fiberized and polarization-maintained master oscillator power amplifier (MOPA) configuration. The MOPA structure generates a linearly polarized output power of 1427 W with a slope efficiency of 80% and a full width at half maximum (FWHM) of 11 nm, which is power scaled by an order of magnitude compared with the previously reported SFSs with linear polarization. In the experiment, both the polarization extinction ratio (PER) and beam quality (M(2) factor) are degraded little during the power scaling process. At maximal output power, the PER and M(2) factor are measured to be 19.1dB and 1.14, respectively. The root-mean-square (RMS) and peak-vale (PV) values of the power fluctuation at maximal output power are just 0.48% and within 3%, respectively. Further power scaling of the whole system is limited by the available pump sources. To the best of our knowledge, this is the first demonstration of kilowatt level broadband SFS with linear polarization and near-diffraction-limited beam quality.

  9. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial.

    PubMed

    Fitzgerald, Kevin; Frank-Kamenetsky, Maria; Shulga-Morskaya, Svetlana; Liebow, Abigail; Bettencourt, Brian R; Sutherland, Jessica E; Hutabarat, Renta M; Clausen, Valerie A; Karsten, Verena; Cehelsky, Jeffrey; Nochur, Saraswathy V; Kotelianski, Victor; Horton, Jay; Mant, Timothy; Chiesa, Joseph; Ritter, James; Munisamy, Malathy; Vaishnaw, Akshay K; Gollob, Jared A; Simon, Amy

    2014-01-04

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to LDL receptors, leading to their degradation. Genetics studies have shown that loss-of-function mutations in PCSK9 result in reduced plasma LDL cholesterol and decreased risk of coronary heart disease. We aimed to investigate the safety and efficacy of ALN-PCS, a small interfering RNA that inhibits PCSK9 synthesis, in healthy volunteers with raised cholesterol who were not on lipid-lowering treatment. We did a randomised, single-blind, placebo-controlled, phase 1 dose-escalation study in healthy adult volunteers with serum LDL cholesterol of 3·00 mmol/L or higher. Participants were randomly assigned in a 3:1 ratio by computer algorithm to receive one dose of intravenous ALN-PCS (with doses ranging from 0·015 to 0·400 mg/kg) or placebo. The primary endpoint was safety and tolerability of ALN-PCS. Secondary endpoints were the pharmacokinetic characteristics of ALN-PCS and its pharmacodynamic effects on PCSK9 and LDL cholesterol. Study participants were masked to treatment assignment. Analysis was per protocol and we used ANCOVA to analyse pharmacodynamic endpoint data. This trial is registered with ClinicalTrials.gov, number NCT01437059. Of 32 participants, 24 were randomly allocated to receive a single dose of ALN-PCS (0·015 mg/kg [n=3], 0·045 mg/kg [n=3], 0·090 mg/kg [n=3], 0·150 mg/kg [n=3], 0·250 mg/kg [n=6], or 0·400 mg/kg [n=6]) and eight to placebo. The proportions of patients affected by treatment-emergent adverse events were similar in the ALN-PCS and placebo groups (19 [79%] vs seven [88%]). ALN-PCS was rapidly distributed, with peak concentration and area under the curve (0 to last measurement) increasing in a roughly dose-proportional way across the dose range tested. In the group given 0·400 mg/kg of ALN-PCS, treatment resulted in a mean 70% reduction in circulating PCSK9 plasma protein (p<0·0001) and a mean 40% reduction in LDL cholesterol from baseline relative to placebo (p<0

  10. Investigation on Surface Polarization of Al2O3-capped GaN/AlGaN/GaN Heterostructure by Angle-Resolved X-ray Photoelectron Spectroscopy.

    PubMed

    Duan, Tian Li; Pan, Ji Sheng; Wang, Ning; Cheng, Kai; Yu, Hong Yu

    2017-08-17

    The surface polarization of Ga-face gallium nitride (GaN) (2 nm)/AlGaN (22 nm)/GaN channel (150 nm)/buffer/Si with Al 2 O 3 capping layer is investigated by angle-resolved X-ray photoelectron spectroscopy (ARXPS). It is found that the energy band varies from upward bending to downward bending in the interface region, which is believed to be corresponding to the polarization variation. An interfacial layer is formed between top GaN and Al 2 O 3 due to the occurrence of Ga-N bond break and Ga-O bond forming during Al 2 O 3 deposition via the atomic layer deposition (ALD). This interfacial layer is believed to eliminate the GaN polarization, thus reducing the polarization-induced negative charges. Furthermore, this interfacial layer plays a key role for the introduction of the positive charges which lead the energy band downward. Finally, a N 2 annealing at 400 °C is observed to enhance the interfacial layer growth thus increasing the density of positive charges.

  11. Polarization and interface charge coupling in ferroelectric/AlGaN/GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Kong, Yuechan; Zhou, Jianjun; Xue, Fangshi; Li, Liang; Jiang, Wenhai; Hao, Lanzhong; Luo, Wenbo; Zeng, Huizhong

    2012-03-01

    Asymmetrical shift behaviors of capacitance-voltage (C-V) curve with opposite direction are observed in two AlGaN/GaN metal-ferroelectric-semiconductor (MFS) heterostructures with Pb(Zr,Ti)O3 and LiNbO3 gate dielectrics. By incorporating the switchable polar nature of the ferroelectric into a self-consistent calculation, the coupling effect between the ferroelectric and the interface charges is disclosed. The opposite initial orientation of ferroelectric dipoles determined by the interface charges is essentially responsible for the different C-V characteristics. A critical fixed charge density of -1.27 × 1013cm-2 is obtained, which plays a key role in the dependence of the C-V characteristic on the ferroelectric polarization. The results pave the way for design of memory devices based on MFS structure with heteropolar interface.

  12. Design of BAs-AlN monolayered honeycomb heterojunction structures: A first-principles study

    NASA Astrophysics Data System (ADS)

    Camacho-Mojica, Dulce C.; López-Urías, Florentino

    2016-04-01

    BAs and AlN are semiconductor materials with an indirect and direct gap respectively in the bulk phase. Recently, electronic calculations have demonstrated that a single-layer or few layers of BAs and AlN exhibit a graphite-like structure with interesting electronic properties. In this work, infinite sheets single-layer heterojunction structures based on alternated strips with honeycomb BAs and AlN layers are investigated using first-principles density functional theory calculations. Optimized geometries, density of states, band-gaps, formation energies, and wave functions are studied for different strip widths joined along zigzag and armchair edges. Results in optimized heterojunction geometries revealed that BAs narrow strips exhibit a corrugation effect due to a lattice mismatch. It was found that zigzag heterojunctions are more energetically favored than armchair heterojunctions. Furthermore, the formation energy presents a maximum at the point where the heterojunction becomes a planar structure. Electronic charge density results yielded a more ionic behavior in Alsbnd N bonds than the Bsbnd As bonds in accordance with monolayer results. It was observed that the conduction band minimum for both heterojunctions exhibit confined states located mainly at the entire AlN strips whereas the valence band maximum exhibits confined states located mainly at BAs strips. We expect that the present investigation will motivate more experimental and theoretical studies on new layered materials made of III-V semiconductors.

  13. Dopant-Free GaN/AlN/AlGaN Radial Nanowire Heterostructures as High Electron Mobility Transistors

    DTIC Science & Technology

    2006-06-10

    grown at 775 °C and sequentially deposited with AlN and AlGaN shells in hydrogen at 1040 °C. (21) Manfra, M. J.; Pfriffer, L. N.; West, K. W.; Stormer ...Lett. 2005, 86, 102106. (30) Henriksen, E. A.; Syed, S.; Ahmadian, Y.; Manfra, M. J.; Baldwin, K. W.; Sergent, A. M.; Molnar, R. J.; Stormer , H. L

  14. Development of AlN/Epoxy Composites with Enhanced Thermal Conductivity

    PubMed Central

    Xu, Yonggang; Yang, Chi; Li, Jun; Zhang, Hailong; Hu, Song; Wang, Shiwei

    2017-01-01

    AlN/epoxy composites with high thermal conductivity were successfully prepared by infiltrating epoxy into AlN porous ceramics which were fabricated by gelcasting of foaming method. The microstructure, mechanical, and thermal properties of the resulting composites were investigated. The compressive strengths of the AlN/epoxy composites were enhanced compared with the pure epoxy. The AlN/epoxy composites demonstrate much higher thermal conductivity, up to 19.0 W/(m·K), compared with those by the traditional particles filling method, because of continuous thermal channels formed by the walls and struts of AlN porous ceramics. This study demonstrates a potential route to manufacture epoxy-based composites with extremely high thermal conductivity. PMID:29258277

  15. Development of AlN/Epoxy Composites with Enhanced Thermal Conductivity.

    PubMed

    Xu, Yonggang; Yang, Chi; Li, Jun; Mao, Xiaojian; Zhang, Hailong; Hu, Song; Wang, Shiwei

    2017-12-18

    AlN/epoxy composites with high thermal conductivity were successfully prepared by infiltrating epoxy into AlN porous ceramics which were fabricated by gelcasting of foaming method. The microstructure, mechanical, and thermal properties of the resulting composites were investigated. The compressive strengths of the AlN/epoxy composites were enhanced compared with the pure epoxy. The AlN/epoxy composites demonstrate much higher thermal conductivity, up to 19.0 W/(m·K), compared with those by the traditional particles filling method, because of continuous thermal channels formed by the walls and struts of AlN porous ceramics. This study demonstrates a potential route to manufacture epoxy-based composites with extremely high thermal conductivity.

  16. Epitaxial Growth of GaN Films by Pulse-Mode Hot-Mesh Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Komae, Yasuaki; Yasui, Kanji; Suemitsu, Maki; Endoh, Tetsuo; Ito, Takashi; Nakazawa, Hideki; Narita, Yuzuru; Takata, Masasuke; Akahane, Tadashi

    2009-07-01

    Intermittent gas supplies for hot-mesh chemical vapor deposition (CVD) for the epitaxial growth of gallium nitride (GaN) films were investigated to improve film crystallinity and optical properties. The GaN films were deposited on SiC/Si(111) substrates using an alternating-source gas supply or an intermittent supply of source gases such as ammonia (NH3) and trimethylgallium (TMG) in hot-mesh CVD after deposition of an aluminum nitride (AlN) buffer layer. The AlN layer was deposited using NH3 and trimethylaluminum (TMA) on a SiC layer grown by carbonization of a Si substrate using propane (C3H8). GaN films were grown on the AlN layer by a reaction between NHx radicals generated on a ruthenium (Ru)-coated tungsten (W) mesh and TMG molecules. After testing various gas supply modes, GaN films with good crystallinity and surface morphology were obtained using an intermittent supply of TMG and a continuous supply of NH3 gas. An optimal interval for the TMG gas supply was also obtained for the apparatus employed.

  17. Anion Order and Spontaneous Polarization in LaTiO2N Oxynitride Thin Films

    NASA Astrophysics Data System (ADS)

    Vonrüti, Nathalie; Aschauer, Ulrich

    2018-01-01

    The perovskite oxynitride LaTiO2N is a promising material for photocatalytic water splitting under visible light. One of the obstacles towards higher efficiencies of this and similar materials stems from charge-carrier recombination, which could be suppressed by the surface charges resulting from the dipolar field in polar materials. In this study, we investigate the spontaneous polarization in epitaxially strained LaTiO2N thin films via density functional theory calculations. The effect of epitaxial strain on the anion order, resulting out-of-plane polarization, energy barriers for polarization reversal, and corresponding coercive fields are studied. We find that for compressive strains larger than 4% the thermodynamically stable anion order is polar along the out-of-plane direction and has a coercive field comparable to other switchable ferroelectrics. Our results show that strained LaTiO2N could indeed suppress carrier recombination and lead to enhanced photocatalytic activities.

  18. Growth condition optimization and mobility enhancement through prolonging the GaN nuclei coalescence process of AlGaN/AlN/GaN structure

    NASA Astrophysics Data System (ADS)

    He, Xiao-Guang; Zhao, De-Gang; Jiang, De-Sheng; Zhu, Jian-Jun; Chen, Ping; Liu, Zong-Shun; Le, Ling-Cong; Yang, Jing; Li, Xiao-Jing; Zhang, Shu-Ming; Yang, Hui

    2015-09-01

    AlGaN/AlN/GaN structures are grown by metalorganic vapor phase epitaxy on sapphire substrates. Influences of AlN interlayer thickness, AlGaN barrier thickness, and Al composition on the two-dimensional electron gas (2DEG) performance are investigated. Lowering the V/III ratio and enhancing the reactor pressure at the initial stage of the high-temperature GaN layer growth will prolong the GaN nuclei coalescence process and effectively improve the crystalline quality and the interface morphology, diminishing the interface roughness scattering and improving 2DEG mobility. AlGaN/AlN/GaN structure with 2DEG sheet density of 1.19 × 1013 cm-2, electron mobility of 2101 cm2·V-1·s-1, and square resistance of 249 Ω is obtained. Project support by the National Natural Science Foundation of China (Grant Nos. 61474110, 61377020, 61376089, 61223005, and 61176126), the National Science Fund for Distinguished Young Scholars, China (Grant No. 60925017), the One Hundred Person Project of the Chinese Academy of Sciences, and the Basic Research Project of Jiangsu Province, China (Grant No. BK20130362).

  19. Polarized edge emission from GaN-based light-emitting diodes sandwiched by dielectric/metal hybrid reflectors

    NASA Astrophysics Data System (ADS)

    Yan, L. J.; Sheu, J. K.; Huang, F. W.; Lee, M. L.

    2010-12-01

    Edge-emitting c-plane GaN/sapphire-based light-emitting diodes (LEDs) sandwiched by two dielectric/metal hybrid reflectors on both sapphire and GaN surfaces were studied to determine their light emission polarization. The hybrid reflectors comprised dielectric multiple thin films and a metal layer. The metal layers of Au or Ag used in this study were designed to enhance the polarization ratio from S-polarization (transverse electric wave, TE) to P-polarization (transverse magnetic wave, TM). The two sets of optimized dielectric multi thin films served as matching layers for wide-angle incident light on both sapphire and GaN surfaces. To determine which reflector scheme would achieve a higher polarization ratio, simulations of the reflectance at the hybrid reflectors on sapphire (or GaN) interface were performed before the fabrication of experimental LEDs. Compared with conventional c-plane InGaN/GaN/sapphire LEDs without dielectric/metal hybrid reflectors, the experimental LEDs exhibited higher polarization ratio (ITE-max/ITM-max) with r=2.174 (˜3.37 dB) at a wavelength of 460 nm. In contrast, the original polarized light (without dielectric/metal hybrid reflectors) was partially contributed (r=1.398) by C-HH or C-LH (C band to the heavy-hole sub-band or C band to the crystal-field split-off sub-band) transitions along the a-plane or m-plane direction.

  20. Binary Compound Bilayer and Multilayer with Vertical Polarizations: Two-Dimensional Ferroelectrics, Multiferroics, and Nanogenerators.

    PubMed

    Li, Lei; Wu, Menghao

    2017-06-27

    Vertical ferroelectricity in two-dimensional (2D) materials is desirable for high-density data storage without quantum tunneling or high power consumption/dissipation, which still remains elusive due to the surface-depolarizing field. Herein, we report the first-principles evidence of 2D vertical ferroelectricity induced by interlayer translation, which exists extensively in the graphitic bilayer of BN, AlN, ZnO, MoS 2 , GaSe, etc.; the bilayer of some 2D ferromagnets like MXene, VS 2 , and MoN 2 can be even multiferroics with switchable magnetizations upon ferroelectric switching, rendering efficient reading and writing for high-density data storage. In particular, the electromechanical coupling between interlayer translation and potential can be used to drive the flow of electrons as nanogenerators for harvesting energy from human activities, ocean waves, mechanical vibration, etc. A ferroelectric superlattice with spatial varying potential can be formed in a bilayer Moire pattern upon a small twist or strain, making it possible to generate periodic n/p doped-domains and shape the periodicity of the potential energy landscape. Finally, some of their multilayer counterparts with wurtzite structures like a ZnO multilayer are revealed to exhibit another type of vertical ferroelectricity with greatly enhanced polarizations.

  1. Mechanical, Corrosion and Biological Properties of Room-Temperature Sputtered Aluminum Nitride Films with Dissimilar Nanostructure.

    PubMed

    Besleaga, Cristina; Dumitru, Viorel; Trinca, Liliana Marinela; Popa, Adrian-Claudiu; Negrila, Constantin-Catalin; Kołodziejczyk, Łukasz; Luculescu, Catalin-Romeo; Ionescu, Gabriela-Cristina; Ripeanu, Razvan-George; Vladescu, Alina; Stan, George E

    2017-11-17

    Aluminum Nitride (AlN) has been long time being regarded as highly interesting material for developing sensing applications (including biosensors and implantable sensors). AlN, due to its appealing electronic properties, is envisaged lately to serve as a multi-functional biosensing platform. Although generally exploited for its intrinsic piezoelectricity, its surface morphology and mechanical performance (elastic modulus, hardness, wear, scratch and tensile resistance to delamination, adherence to the substrate), corrosion resistance and cytocompatibility are also essential features for high performance sustainable biosensor devices. However, information about AlN suitability for such applications is rather scarce or at best scattered and incomplete. Here, we aim to deliver a comprehensive evaluation of the morpho-structural, compositional, mechanical, electrochemical and biological properties of reactive radio-frequency magnetron sputtered AlN nanostructured thin films with various degrees of c -axis texturing, deposited at a low temperature (~50 °C) on Si (100) substrates. The inter-conditionality elicited between the base pressure level attained in the reactor chamber and crystalline quality of AlN films is highlighted. The potential suitability of nanostructured AlN (in form of thin films) for the realization of various type of sensors (with emphasis on bio-sensors) is thoroughly probed, thus unveiling its advantages and limitations, as well as suggesting paths to safely exploit the remarkable prospects of this type of materials.

  2. Mechanical, Corrosion and Biological Properties of Room-Temperature Sputtered Aluminum Nitride Films with Dissimilar Nanostructure

    PubMed Central

    Besleaga, Cristina; Dumitru, Viorel; Trinca, Liliana Marinela; Popa, Adrian-Claudiu; Negrila, Constantin-Catalin; Ionescu, Gabriela-Cristina; Ripeanu, Razvan-George; Stan, George E.

    2017-01-01

    Aluminum Nitride (AlN) has been long time being regarded as highly interesting material for developing sensing applications (including biosensors and implantable sensors). AlN, due to its appealing electronic properties, is envisaged lately to serve as a multi-functional biosensing platform. Although generally exploited for its intrinsic piezoelectricity, its surface morphology and mechanical performance (elastic modulus, hardness, wear, scratch and tensile resistance to delamination, adherence to the substrate), corrosion resistance and cytocompatibility are also essential features for high performance sustainable biosensor devices. However, information about AlN suitability for such applications is rather scarce or at best scattered and incomplete. Here, we aim to deliver a comprehensive evaluation of the morpho-structural, compositional, mechanical, electrochemical and biological properties of reactive radio-frequency magnetron sputtered AlN nanostructured thin films with various degrees of c-axis texturing, deposited at a low temperature (~50 °C) on Si (100) substrates. The inter-conditionality elicited between the base pressure level attained in the reactor chamber and crystalline quality of AlN films is highlighted. The potential suitability of nanostructured AlN (in form of thin films) for the realization of various type of sensors (with emphasis on bio-sensors) is thoroughly probed, thus unveiling its advantages and limitations, as well as suggesting paths to safely exploit the remarkable prospects of this type of materials. PMID:29149061

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Virginia R.; Nepal, Neeraj; Johnson, Scooter D.

    Wide bandgap semiconducting nitrides have found wide-spread application as light emitting and laser diodes and are under investigation for further application in optoelectronics, photovoltaics, and efficient power switching technologies. Alloys of the binary semiconductors allow adjustments of the band gap, an important semiconductor material characteristic, which is 6.2 eV for aluminum nitride (AlN), 3.4 eV for gallium nitride, and 0.7 eV for (InN). Currently, the highest quality III-nitride films are deposited by metalorganic chemical vapor deposition and molecular beam epitaxy. Temperatures of 900 °C and higher are required to deposit high quality AlN. Research into depositing III-nitrides with atomic layermore » epitaxy (ALEp) is ongoing because it is a fabrication friendly technique allowing lower growth temperatures. Because it is a relatively new technique, there is insufficient understanding of the ALEp growth mechanism which will be essential to development of the process. Here, grazing incidence small angle x-ray scattering is employed to observe the evolving behavior of the surface morphology during growth of AlN by ALEp at temperatures from 360 to 480 °C. Increased temperatures of AlN resulted in lower impurities and relatively fewer features with short range correlations.« less

  4. Interface and transport properties of metallization contacts to flat and wet-etching roughed N-polar n-type GaN.

    PubMed

    Wang, Liancheng; Liu, Zhiqiang; Guo, Enqing; Yang, Hua; Yi, Xiaoyan; Wang, Guohong

    2013-06-26

    The electrical characteristics of metallization contacts to flat (F-sample, without wet-etching roughed) and wet-etching roughed (R-sample) N-polar (Nitrogen-polar) n-GaN have been investigated. R-sample shows higher contact resistance (Rc) to Al/Ti/Au (~2.5 × 10(-5) Ω·cm(2)) and higher Schottky barriers height (SBH, ~0.386 eV) to Ni/Au, compared with that of F-sample (~1.3 × 10(-6) Ω·cm(2), ~0.154 eV). Reasons accounting for this discrepancy has been detail investigated and discussed: for R-sample, wet-etching process caused surface state and spontaneous polarization variation will degraded its electrical characteristics. Metal on R-sample shows smoother morphology, however, the effect of metal deposition state on electrical characteristics is negligible. Metallization contact area for both samples has also been further considered. Electrical characteristics of metallization contact to both samples show degradation upon annealing. The VLED chip (1 mm × 1 mm), which was fabricated on the basis of a hybrid scheme, coupling the advantage of F- and R-sample, shows the lowest forward voltage (2.75 V@350 mA) and the highest light output power.

  5. Characterization of N-doped multilayer graphene grown on 4H-SiC (0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arezki, Hakim, E-mail: hakim.arezki@lgep.supelec.fr; Jaffré, Alexandre; Alamarguy, David

    Large-area graphene film doped with hetero-atoms is of great interest for a wide spectrum of nanoelectronics applications, such as field effect devices, super capacitors, fuel cells among many others. Here, we report the structural and electronic properties of nitrogen doped multilayer graphene on 4H-SiC (0001). The incorporation of nitrogen during the growth causes an increase in the D band on the Raman signature indicating that the nitrogen is creating defects. The analysis of micro-Raman mapping of G, D, 2D bands shows a predominantly trilayer graphene with a D band inherent to doping and inhomogeneous dopant distribution at the step edges.more » Ultraviolet photoelectron spectroscopy (UPS) indicates an n type work function (WF) of 4.1 eV. In addition, a top gate FET device was fabricated showing n-type I-V characteristic after the desorption of oxygen with high electron and holes mobilities.« less

  6. Enhanced mobility in vertically scaled N-polar high-electron-mobility transistors using GaN/InGaN composite channels

    NASA Astrophysics Data System (ADS)

    Li, Haoran; Wienecke, Steven; Romanczyk, Brian; Ahmadi, Elaheh; Guidry, Matthew; Zheng, Xun; Keller, Stacia; Mishra, Umesh K.

    2018-02-01

    A GaN/InGaN composite channel design for vertically scaled N-polar high-electron-mobility transistor (HEMT) structures is proposed and demonstrated by metal-organic chemical vapor deposition. In a conventional N-polar HEMT structure, as the channel thickness (tch) decreases, the sheet charge density (ns) decreases, the electric field in the channel increases, and the centroid of the two-dimensional electron gas (2DEG) moves towards the back-barrier/channel interface, resulting in stronger scattering and lower electron mobility (μ). In this study, a thin InGaN layer was introduced in-between the channel and the AlGaN cap to increase the 2DEG density and reduce the electric field in the channel and therefore increase the electron mobility. The dependence of μ on the InGaN thickness (tInGaN) and the indium composition (xIn) was investigated for different channel thicknesses. With optimized tInGaN and xIn, significant improvements in electron mobility were observed. For a 6 nm channel HEMT structure, the electron mobility increased from 606 to 1141 cm2/(V.s) when the 6 nm thick pure GaN channel was replaced by the 4 nm GaN/2 nm In0.1Ga0.9N composite channel.

  7. Anisotropically biaxial strain in non-polar (112-0) plane In x Ga1-x N/GaN layers investigated by X-ray reciprocal space mapping.

    PubMed

    Zhao, Guijuan; Li, Huijie; Wang, Lianshan; Meng, Yulin; Ji, Zesheng; Li, Fangzheng; Wei, Hongyuan; Yang, Shaoyan; Wang, Zhanguo

    2017-07-03

    In this study, the indium composition x as well as the anisotropically biaxial strain in non-polar a-plane In x Ga 1-x N on GaN is studied by X-ray diffraction (XRD) analysis. In accordance with XRD reciprocal lattice space mapping, with increasing indium composition, the maximum of the In x Ga 1-x N reciprocal lattice points progressively shifts from a fully compressive strained to a fully relaxed position, then to reversed tensile strained. To fully understand the strain in the ternary alloy layers, it is helpful to grow high-quality device structures using a-plane nitrides. As the layer thickness increases, the strain of In x Ga 1-x N layer releases through surface roughening and the 3D growth-mode.

  8. Polarity control of GaN epitaxial films grown on LiGaO2(001) substrates and its mechanism.

    PubMed

    Zheng, Yulin; Wang, Wenliang; Li, Xiaochan; Li, Yuan; Huang, Liegen; Li, Guoqiang

    2017-08-16

    The polarity of GaN epitaxial films grown on LiGaO 2 (001) substrates by pulsed laser deposition has been well controlled. It is experimentally proved that the GaN epitaxial films grown on nitrided LiGaO 2 (001) substrates reveal Ga-polarity, while the GaN epitaxial films grown on non-nitrided LiGaO 2 (001) substrates show N-polarity. The growth mechanisms for these two cases are systematically studied by first-principles calculations based on density functional theory. Theoretical calculation presents that the adsorption of a Ga atom preferentially occurs at the center of three N atoms stacked on the nitrided LiGaO 2 (001) substrates, which leads to the formation of Ga-polarity GaN. Whereas the adsorption of a Ga atom preferentially deposits at the top of a N atom stacked on the non-nitrided LiGaO 2 (001) substrates, which results in the formation of N-polarity GaN. This work of controlling the polarity of GaN epitaxial films is of paramount importance for the fabrication of group-III nitride devices for various applications.

  9. Anisotropy of the nitrogen conduction states in the group III nitrides studied by polarized x-ray absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawniczak-Jablonska, K.; Liliental-Weber, Z.; Gullikson, E.M.

    1997-04-01

    Group III nitrides (AlN, GaN, and InN) consist of the semiconductors which appear recently as a basic materials for optoelectronic devices active in the visible/ultraviolet spectrum as well as high-temperature and high-power microelectronic devices. However, understanding of the basic physical properties leading to application is still not satisfactory. One of the reasons consists in unsufficient knowledge of the band structure of the considered semiconductors. Several theoretical studies of III-nitrides band structure have been published but relatively few experimental studies have been carried out, particularly with respect to their conduction band structure. This motivated the authors to examine the conduction bandmore » structure projected onto p-states of the nitrogen atoms for AlN, GaN and InN. An additional advantage of their studies is the availability of the studied nitrides in two structures, hexagonal (wurtzite) and cubic (zincblende). This offers an opportunity to gain information about the role of the anisotropy of electronic band states in determining various physical properties.« less

  10. The investigation of Al0.29Ga0.71N/GaN/AlN and AlN/GaN/AlN thin films grown on Si (111) by RF plasma-assisted MBE

    NASA Astrophysics Data System (ADS)

    Yusoff, Mohd Zaki Mohd; Mahyuddin, Azzafeerah; Hassan, Zainuriah; Hassan, Haslan Abu; Abdullah, Mat Johar

    2012-06-01

    Recently, gallium nitride (GaN) and its related compounds involving Al and In have attracted much attention because of their potential to be used as high-efficiency UV light emitting devices, and as high frequency and high power electronic devices. Consequently, the growth and physics of GaN-based materials have attracted remarkable scientific attention. In this work, the growth and characterization of epitaxial Al0.29Ga0.71N and AlN layers grown on Si (111) by RF-plasma assisted molecular beam epitaxy (MBE) are described. The Al mole fraction was derived from the HR-XRD symmetric rocking curve (RC) ω/2θ scans of (0002) plane as x = 0.29. For AlN/GaN/AlN sample, the maximum Raman intensity at 521.53 cm-1 is attributed to crystalline silicon. It was found that the allowed Raman optical phonon mode of GaN, the E1 (high) is clearly visible, which is located at 570.74 cm-1. Photoluminscence (PL) spectrums of both samples have shown sharp and intense band edge emission of GaN without the existence of yellow emission band, showing good crystal quality of the samples have been successfully grown on Si substrate.

  11. Clean Os(0001) electronic surface states: A first-principle fully relativistic investigation

    NASA Astrophysics Data System (ADS)

    Urru, Andrea; Dal Corso, Andrea

    2018-05-01

    We analyze the electronic structure of the Os(0001) surface by means of first-principle calculations based on Fully Relativistic (FR) Density Functional Theory (DFT) and a Projector Augmented-Wave (PAW) approach. We investigate surface states and resonances analyzing their spin-orbit induced energy splitting and their spin polarization. The results are compared with previously studied surfaces Ir(111), Pt(111), and Au(111). We do not find any surface state in the gap similar to the L-gap of the (111) fcc surfaces, but find Rashba split resonances that cross the Fermi level and, as in the recently studied Ir(111) surface, have a characteristic downward dispersion. Moreover, for some selected surface states we study the spin polarization with respect to k∥, the wave-vector parallel to the surface. In some cases, such as the Rashba split resonances, the spin polarization shows a smooth behavior with slow rotations, in others the rotation is faster, due to mixing and anti-crossing of the states.

  12. Polarized millijoule fiber laser system with high beam quality and pulse shaping ability

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Tian, Xiaocheng; Xu, Dangpeng; Zhou, Dandan; Zong, Zhaoyu; Li, Hongxun; Fan, Mengqiu; Huang, Zhihua; Zhu, Na; Su, Jingqin; Zhu, Qihua; Jing, Feng

    2017-05-01

    The coherent amplification network (CAN) aims at developing a laser system based on the coherent combination of multiple laser beams, which are produced through a network of high beam quality optical fiber amplifiers. The scalability of the CAN laser facilitates the development of many novel applications, such as fiber-based acceleration, orbital debris removal and inertial confinement fusion energy. According to the requirements of CAN and the front end of high-power laser facilities, a millijoule polarized fiber laser system was studied in this paper. Using polarization maintaining Ytterbium-fiber laser system as the seed, and 10-μm core Yb-doped fiber amplifier as the first power amplifier and 40-μm core polarizing (PZ) photonic crystal fiber (PCF) as the second power amplifier, the all-fiber laser system outputs 1.06-mJ energy at 10 ns and diffraction limited mode quality. Using 85-μm rod-type PCF as the third power amplifiers, 2.5-mJ energy at 10-ns pulse width was obtained with better than 500:1 peak-to-foot pulse shaping ability and fundamental mode beam quality. The energy fluctuation of the system is 1.3% rms with 1-mJ output in one hour. When using phase-modulated pulse as the seed, the frequency modulation to amplitude modulation (FM-to-AM) conversion ratio of the system is better than 5%. This fiber laser system has the advantages of high beam quality, high beam shaping ability, good stability, small volume and free of maintenance, which can be used in many applications.

  13. Polarization characteristics of semipolar (112̄2) InGaN/GaN quantum well structures grown on relaxed InGaN buffer layers and comparison with experiment.

    PubMed

    Park, Seoung-Hwan; Mishra, Dhaneshwar; Eugene Pak, Y; Kang, K; Park, Chang Yong; Yoo, Seung-Hyun; Cho, Yong-Hee; Shim, Mun-Bo; Kim, Sungjin

    2014-06-16

    Partial strain relaxation effects on polarization ratio of semipolar (112̄2) InxGa1−xN/GaN quantum well (QW) structures grown on relaxed InGaN buffers were investigated using the multiband effective-mass theory. The absolute value of the polarization ratio gradually decreases with increasing In composition in InGaN buffer layer when the strain relaxation ratio (ε0y′y′−εy′y′)/ε0y′y′ along y′-axis is assumed to be linearly proportional to the difference of lattice constants between the well and the buffer layer. Also, it changes its sign for the QW structure grown on InGaN buffer layer with a relatively larger In composition (x > 0.07). These results are in good agreement with the experiment. This can be explained by the fact that, with increasing In composition in the InGaN subsrate, the spontaneous emission rate for the y′-polarization gradually increases while that for x′-polarization decreases due to the decrease in a matrix element at the band-edge (k‖ = 0).

  14. Effect of odanacatib on bone turnover markers, bone density and geometry of the spine and hip of ovariectomized monkeys: a head-to-head comparison with alendronate.

    PubMed

    Williams, Donald S; McCracken, Paul J; Purcell, Mona; Pickarski, Maureen; Mathers, Parker D; Savitz, Alan T; Szumiloski, John; Jayakar, Richa Y; Somayajula, Sangeetha; Krause, Stephen; Brown, Keenan; Winkelmann, Christopher T; Scott, Boyd B; Cook, Lynn; Motzel, Sherri L; Hargreaves, Richard; Evelhoch, Jeffrey L; Cabal, Antonio; Dardzinski, Bernard J; Hangartner, Thomas N; Duong, Le T

    2013-10-01

    Odanacatib (ODN) is a selective and reversible Cathepsin K (CatK) inhibitor currently being developed as a once weekly treatment for osteoporosis. Here, effects of ODN compared to alendronate (ALN) on bone turnover, DXA-based areal bone mineral density (aBMD), QCT-based volumetric BMD (vBMD) and geometric parameters were studied in ovariectomized (OVX) rhesus monkeys. Treatment was initiated 10 days after ovariectomy and continued for 20 months. The study consisted of four groups: L-ODN (2 mg/kg, daily p.o.), H-ODN (8/4 mg/kg daily p.o.), ALN (15 μg/kg, twice weekly, s.c.), and VEH (vehicle, daily, p.o.). L-ODN and ALN doses were selected to approximate the clinical exposures of the ODN 50-mg and ALN 70-mg once-weekly, respectively. L-ODN and ALN effectively reduced bone resorption markers uNTx and sCTx compared to VEH. There was no additional efficacy with these markers achieved with H-ODN. Conversely, ODN displayed inversely dose-dependent reduction of bone formation markers, sP1NP and sBSAP, and L-ODN reduced formation to a lesser degree than ALN. At month 18 post-OVX, L-ODN showed robust increases in lumbar spine aBMD (11.4%, p<0.001), spine trabecular vBMD (13.7%, p<0.001), femoral neck (FN) integral (int) vBMD (9.0%, p<0.001) and sub-trochanteric proximal femur (SubTrPF) int vBMD, (6.4%, p<0.001) compared to baseline. L-ODN significantly increased FN cortical thickness (Ct.Th) and cortical bone mineral content (Ct.BMC) by 22.5% (p<0.001) and 21.8% (p<0.001), respectively, and SubTrPF Ct.Th and Ct.BMC by 10.9% (p<0.001) and 11.3% (p<0.001) respectively. Compared to ALN, L-ODN significantly increased FN Ct. BMC by 8.7% (p<0.05), and SubTrPF Ct.Th by 7.6% (p<0.05) and Ct.BMC by 6.2% (p<0.05). H-ODN showed no additional efficacy compared to L-ODN in OVX-monkeys in prevention mode. Taken together, the results from this study have demonstrated that administration of ODN at levels which approximate clinical exposure in OVX-monkeys had comparable efficacy to ALN in

  15. On the use of response surface methodology to predict and interpret the preferred c-axis orientation of sputtered AlN thin films

    NASA Astrophysics Data System (ADS)

    Adamczyk, J.; Horny, N.; Tricoteaux, A.; Jouan, P.-Y.; Zadam, M.

    2008-01-01

    This paper deals with experimental design applied to response surface methodology (RSM) in order to determine the influence of the discharge conditions on preferred c-axis orientation of sputtered AlN thin films. The thin films have been deposited by DC reactive magnetron sputtering on Si (1 0 0) substrates. The preferred orientation was evaluated using a conventional Bragg-Brentano X-ray diffractometer ( θ-2 θ) with the CuKα radiation. We have first determined the experimental domain for 3 parameters: sputtering pressure (2-6 mTorr), discharge current (312-438 mA) and nitrogen percentage (17-33%). For the setup of the experimental design we have used a three factors Doehlert matrix which allows the use of the statistical response surface methodology (RSM) in a spherical domain. A four dimensional surface response, which represents the (0 0 0 2) peak height as a function of sputtering pressure, discharge current and nitrogen percentage, was obtained. It has been found that the main interaction affecting the preferential c-axis orientation was the pressure-nitrogen percentage interaction. It has been proved that a Box-Cox transformation is a very useful method to interpret and discuss the experimental results and leads to predictions in good agreement with experiments.

  16. CO adsorption on small Au{sub n} (n = 1–4) structures supported on hematite. II. Adsorption on the O-rich termination of α-Fe{sub 2}O{sub 3}(0001) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pabisiak, Tomasz; Kiejna, Adam, E-mail: kiejna@ifd.uni.wroc.pl; Winiarski, Maciej J.

    2016-01-28

    The adsorption of small Au{sub n} (n = 1–4) nanostructures on oxygen terminated α-Fe{sub 2}O{sub 3}(0001) surface was investigated using density functional theory in the generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) form with Hubbard correction U, accounting for strong electron correlations (PBE+U). The structural, energetic, and electronic properties were examined for two classes of the adsorbed Au{sub n} nanostructures with vertical and flattened configurations. Similarly to the Fe-terminated α-Fe{sub 2}O{sub 3}(0001) surface considered in Part I, the flattened configurations were found energetically more favored than vertical ones. The binding of Au{sub n} to the O-terminated surface is much stronger thanmore » to the Fe-termination. The adsorption bonding energy of Au{sub n} and the work function of the Au{sub n}/α-Fe{sub 2}O{sub 3}(0001) systems decrease with the increased number of Au atoms in a structure. All of the adsorbed Au{sub n} structures are positively charged. The bonding of CO molecules to the Au{sub n} structures is distinctly stronger than on the Fe-terminated surface; however, it is weaker than the binding to the bare O-terminated surface. The CO molecule binds to the Au{sub n}/α-Fe{sub 2}O{sub 3}(0001) system through a peripheral Au atom partly detached from the Au{sub n} structure. The results of this work indicate that the most energetically favored sites for adsorption of a CO molecule on the Au{sub n}/α-Fe{sub 2}O{sub 3}(0001) systems are atoms in the Au{sup 0.5+} oxidation state.« less

  17. Defect-related photoluminescence in Mg-doped GaN nanostructures

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Shahedipour-Sandvik, F.; Messer, B. J.; Jindal, V.; Tripathi, N.; Tungare, M.

    2009-12-01

    Thin film of GaN:Mg, pyramidal GaN:Mg on GaN, sapphire and AlN substrates were grown in a MOCVD system under same growth conditions and at the same time. In samples with Mg-doped GaN pyramids on GaN:Si template a strong ultraviolet (UVL) band with few phonon replicas dominated at low temperature and was attributed to transitions from shallow donors to shallow Mg acceptor. In samples grown on sapphire and AlN substrates the UVL band appeared as a structureless band with the maximum at about 3.25 eV. There is a possibility that the structureless UVL band and the UVL band with phonon structure have different origin. In addition to the UVL band, the blue luminescence (BL) band peaking at 2.9 eV was observed in samples representing GaN:Mg pyramids on GaN:Si substrate. It is preliminary attributed to transitions from shallow donors to Zn acceptor in GaN:Si substrate.

  18. Controlling Surface Morphology and Circumventing Secondary Phase Formation in Non-polar m-GaN by Tuning Nitrogen Activity

    NASA Astrophysics Data System (ADS)

    Chang, C. W.; Wadekar, P. V.; Guo, S. S.; Cheng, Y. J.; Chou, M.; Huang, H. C.; Hsieh, W. C.; Lai, W. C.; Chen, Q. Y.; Tu, L. W.

    2018-01-01

    For the development of non-polar nitrides based optoelectronic devices, high-quality films with smooth surfaces, free of defects or clusters, are critical. In this work, the mechanisms governing the topography and single phase epitaxy of non-polar m-plane gallium nitride ( m-GaN) thin films are studied. The samples were grown using plasma-assisted molecular beam epitaxy on m-plane sapphire substrates. Growth of pure m-GaN thin films, concomitant with smooth surfaces is possible at low radio frequency powers and high growth temperatures as judged by the high resolution x-ray diffraction, field emission scanning electron microscopy, and atomic force microscopy measurements. Defect types and densities are quantified using transmission electron microscopy, while Raman spectroscopy was used to analyze the in-plane stress in the thin films which matches the lattice mismatch analysis. Energy dispersive spectroscopy and cathodoluminescence support a congruent growth and a dominant near band edge emission. From the analysis, a narrow growth window is discovered wherein epitaxial growth of pure m-plane GaN samples free of secondary phases with narrow rocking curves and considerable smooth surfaces are successfully demonstrated.

  19. Constructing molecular structures on periodic superstructure of graphene/Ru(0001)

    PubMed Central

    Li, Geng; Huang, Li; Xu, Wenyan; Que, Yande; Zhang, Yi; Lu, Jianchen; Du, Shixuan; Liu, Yunqi; Gao, Hong-Jun

    2014-01-01

    We review the way to fabricate large-scale, high-quality and single crystalline graphene epitaxially grown on Ru(0001) substrate. A moiré pattern of the graphene/Ru(0001) is formed due to the lattice mismatch between graphene and Ru(0001). This superstructure gives rise to surface charge redistribution and could behave as an ordered quantum dot array, which results in a perfect template to guide the assembly of organic molecular structures. Molecules, for example iron phthalocyanine and C60, on this template show how the molecule–substrate interaction makes different superstructures. These results show the possibility of constructing ordered molecular structures on graphene/Ru(0001), which is helpful for practical applications in the future. PMID:24615151

  20. Synthesizing (ZrAl3 + AlN)/Mg-Al composites by a 'matrix exchange' method

    NASA Astrophysics Data System (ADS)

    Gao, Tong; Li, Zengqiang; Hu, Kaiqi; Han, Mengxia; Liu, Xiangfa

    2018-06-01

    A method named 'matrix exchange' to synthesize ZrAl3 and AlN reinforced Mg-Al composite was developed in this paper. By inserting Al-10ZrN master alloy into Mg matrix and reheating the cooled ingot to 550 °C, Al and Mg atoms diffuse to the opposite side. As a result, liquid melt occurs once the interface areas reach to proper compositions. Then dissolved Al atoms react with ZrN, leading to the in-situ formation of ZrAl3 and AlN particles, while the Al matrix is finally replaced by Mg. This study provides a new insight for preparing Mg composites.

  1. Transverse polarization of Λ and Λ produced inclusively in eN scattering at HERMES

    DOE PAGES

    Grebenyuk, O.

    2002-11-01

    The transverse polarization of inclusively produced Λ and Λ -hyperons has been studied at HERMES using the 27.6 GeV positron beam of HERA and an internal gas target. From the data taken in the years 1996-2000, 386,000 Λ and 72,000 Λ events have been reconstructed, allowing the measurement of the Λ and Λ polarizations with high statistical accuracy. Averaged over the full kinematic range of the data, the transverse polarizations were measured to be P n Λ = 5.4 ± 0.5 (stat) ± 1.5 (syst) % and P n Λ = -4.0 ± 1.3 (stat) ± 1.2 (syst) %. Themore » dependence of the polarization on several transverse momentum PT and on the hyperons' light cone momentum fraction ζ has been investigated.« less

  2. Low temperature aluminum nitride thin films for sensory applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarar, E.; Zamponi, C.; Piorra, A.

    2016-07-15

    A low-temperature sputter deposition process for the synthesis of aluminum nitride (AlN) thin films that is attractive for applications with a limited temperature budget is presented. Influence of the reactive gas concentration, plasma treatment of the nucleation surface and film thickness on the microstructural, piezoelectric and dielectric properties of AlN is investigated. An improved crystal quality with respect to the increased film thickness was observed; where full width at half maximum (FWHM) of the AlN films decreased from 2.88 ± 0.16° down to 1.25 ± 0.07° and the effective longitudinal piezoelectric coefficient (d{sub 33,f}) increased from 2.30 ± 0.32 pm/Vmore » up to 5.57 ± 0.34 pm/V for film thicknesses in the range of 30 nm to 2 μm. Dielectric loss angle (tan δ) decreased from 0.626% ± 0.005% to 0.025% ± 0.011% for the same thickness range. The average relative permittivity (ε{sub r}) was calculated as 10.4 ± 0.05. An almost constant transversal piezoelectric coefficient (|e{sub 31,f}|) of 1.39 ± 0.01 C/m{sup 2} was measured for samples in the range of 0.5 μm to 2 μm. Transmission electron microscopy (TEM) investigations performed on thin (100 nm) and thick (1.6 μm) films revealed an (002) oriented AlN nucleation and growth starting directly from the AlN-Pt interface independent of the film thickness and exhibit comparable quality with the state-of-the-art AlN thin films sputtered at much higher substrate temperatures.« less

  3. AlN/GaN heterostructures for normally-off transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuravlev, K. S., E-mail: zhur@isp.nsc.ru; Malin, T. V.; Mansurov, V. G.

    The structure of AlN/GaN heterostructures with an ultrathin AlN barrier is calculated for normally-off transistors. The molecular-beam epitaxy technology of in situ passivated SiN/AlN/GaN heterostructures with a two-dimensional electron gas is developed. Normally-off transistors with a maximum current density of ~1 A/mm, a saturation voltage of 1 V, a transconductance of 350 mS/mm, and a breakdown voltage of more than 60 V are demonstrated. Gate lag and drain lag effects are almost lacking in these transistors.

  4. Deep-UV emission at 219 nm from ultrathin MBE GaN/AlN quantum heterostructures

    NASA Astrophysics Data System (ADS)

    Islam, S. M.; Protasenko, Vladimir; Lee, Kevin; Rouvimov, Sergei; Verma, Jai; Xing, Huili Grace; Jena, Debdeep

    2017-08-01

    Deep ultraviolet (UV) optical emission below 250 nm (˜5 eV) in semiconductors is traditionally obtained from high aluminum containing AlGaN alloy quantum wells. It is shown here that high-quality epitaxial ultrathin binary GaN quantum disks embedded in an AlN matrix can produce efficient optical emission in the 219-235 nm (˜5.7-5.3 eV) spectral range, far above the bulk bandgap (3.4 eV) of GaN. The quantum confinement energy in these heterostructures is larger than the bandgaps of traditional semiconductors, made possible by the large band offsets. These molecular beam epitaxy-grown extreme quantum-confinement GaN/AlN heterostructures exhibit an internal quantum efficiency of 40% at wavelengths as short as 219 nm. These observations together with the ability to engineer the interband optical matrix elements to control the direction of photon emission in such binary quantum disk active regions offer unique advantages over alloy AlGaN quantum well counterparts for the realization of deep-UV light-emitting diodes and lasers.

  5. III-nitrate ultraviolet photonic materials: epitaxial growth, optical and electrical properties, and applications

    NASA Astrophysics Data System (ADS)

    Lin, Jingyu; Jiang, Hongxing

    2003-07-01

    This paper summarizes some of the recent advances made by our group on the growth, characterization and applications of AlGaN alloys with high Al contents. Recently, our group has achieved highly conductive n-type AlxGa1-xN for x as high as 0.7 (a resistivity value as low as 0.15 ohm-cm has been achieved). Prior to this, only insulating AlxGa1-xN (x > 0.5) can be obtained. Our success is largely attributed to our unique capability for monitoring the optical qualities of these layers -- the development of the world's first (and presently only) deep UV picosecond time-resolved optical spectroscopy system for probing the optical properties of III-nitrides [photoluminescence (PL), electro-luminescence (EL), etc.] with a time-resolution of a few ps and wavelength down to deep UV (down to 195 nm). Our time- resolved PL results have shown that we must fill in the localization states (caused by alloy fluctuation) by doping before conduction could occur. The density of states of localization states is about 1018/cm3 in this system. It was also shown that AlxGa1-xN alloys could be made n-type for x up to 1 (pure AlN). Time-resolved photoluminescence (PL) studies carried out on these materials have revealed that Si-doping reduces the effect of carrier localization in AlxGa1-xN alloys and a sharp drop in carrier localization energy as well as a sharp increase in conductivity occurs when the Si doping concentration increases to above 1 x 1018 cm-3. For the Mg-doped AlxGa1-xN alloys, p-type conduction was achieved for x up to 0.27. The Mg acceptor activation energy as a function of Al content has been deduced. Mg-δ-doping in GaN and AlGaN epilayers has been investigated. We have demonstrated that δ-doping significantly suppresses the dislocation density, enhances the p-type conduction, and reduces the non-radiative recombination centers in GaN and AlGaN. AlN epilayers with high optical qualities have also been grown on sapphire substrates. Very efficient band-edge PL emission

  6. Thermodynamics of GaN(s)-NH3(v)+N2(v)+H2(v) system - Electronic aspects of the processes at GaN(0001) surface

    NASA Astrophysics Data System (ADS)

    Kempisty, Pawel; Strak, Pawel; Sakowski, Konrad; Krukowski, Stanislaw

    2017-08-01

    Comprehensive analysis of GaN(0001) surface in equilibrium with ammonia/hydrogen mixture was undertaken using results of ab initio calculations. Adsorption energies of the species derived from ammonia and molecular hydrogen and their stable sites were obtained. It was shown that the adsorption process type and energy depend on the position of Fermi level at the surface. Hydrogen decomposes into two separate H atoms, always adsorbed in the positions on top of the surface Ga atoms (On-top). Ammonia adsorption at GaN(0001) surface proceeds molecularly to ammonia in the On-top position or dissociatively into NH2 radicals in bridge (NH2-bridge) or On-top positions or into NH radicals in H3 (NH-H3) site. Presence of these species affects Fermi level pinning at the surface due to creation of new surface states. The Fermi level pinning in function of the surface attached species concentration was determined using extended electron counting rule (EECR). Results of ab initio calculations fully proved validity of the EECR predictions. Thermodynamic analysis of the surface in equilibrium with molecular hydrogen and ammonia vapor mixture is made giving the range of ammonia and hydrogen pressures, corresponding to Fermi level pinned at Ga-broken bond state for NH-H3&H and NH3&H and NH2-bridge&H coverage and at VBM for NH3 & H coverage. As the region of Fermi level pinned at Ga broken bond state corresponds to very low pressures, at pressures close to normal, GaN(0001) surface is almost totally covered by H, NH3 and NH2 located in On-top positions. It is also shown however that dominant portion of the hydrogen and ammonia pressures corresponds to Fermi level not pinned. Among them are these corresponding to MOVPE and HVPE growth conditions in which the surface is almost fully covered by NH3, NH2 and H species in On-top positions.

  7. Heteroepitaxial growth of ɛ-(AlxGa1-x)2O3 alloy films on c-plane AlN templates by mist chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Tahara, Daisuke; Nishinaka, Hiroyuki; Morimoto, Shota; Yoshimoto, Masahiro

    2018-04-01

    In this study, ɛ-(AlxGa1-x)2O3 alloy films were grown on c-plane AlN templates by mist chemical vapor deposition. The Al content of two samples was determined by Rutherford backscattering analysis. The lattice constant of the ɛ-(AlxGa1-x)2O3 alloy films followed Vegard's law, and the Al contents of other samples were determined to be as high as x = 0.395 by Vegard's law. The direct bandgap was obtained in the range of 5.0-5.9 eV by transmittance measurements. The valence-band offset between ɛ-(Al0.395Ga0.605)2O3 and ɛ-Ga2O3 was analyzed to be 0.2 eV, and the conduction-band offset was calculated to be 0.7 eV by X-ray photoelectron spectroscopy. The ɛ-(AlxGa1-x)2O3/ɛ-Ga2O3 interface band discontinuity was type I. Our experimental results will be important for the actual application of ɛ-(AlxGa1-x)2O3/ɛ-Ga2O3 heterojunction devices.

  8. High pressure and time resolved studies of optical properties of n-type doped GaN/AlN multi-quantum wells: Experimental and theoretical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminska, A.; Cardinal Stefan Wyszynski University, College of Science, Department of Mathematics and Natural Sciences, Dewajtis 5, 01-815 Warsaw; Jankowski, D.

    High-pressure and time-resolved studies of the optical emission from n-type doped GaN/AlN multi-quantum-wells (MQWs) with various well thicknesses are analysed in comparison with ab initio calculations of the electronic (band structure, density of states) and optical (emission energies and their pressure derivatives, oscillator strength) properties. The optical properties of GaN/AlN MQWs are strongly affected by quantum confinement and polarization-induced electric fields. Thus, the photoluminescence (PL) peak energy decreases by over 1 eV with quantum well (QW) thicknesses increasing from 1 to 6 nm. Furthermore, the respective PL decay times increased from about 1 ns up to 10 μs, due to the strong built-in electricmore » field. It was also shown that the band gap pressure coefficients are significantly reduced in MQWs as compared to bulk AlN and GaN crystals. Such coefficients are strongly dependent on the geometric factors such as the thickness of the wells and barriers. The transition energies, their oscillator strength, and pressure dependence are modeled for tetragonally strained structures of the same geometry using a full tensorial representation of the strain in the MQWs under external pressure. These MQWs were simulated directly using density functional theory calculations, taking into account two different systems: the semi-insulating QWs and the n-doped QWs with the same charge density as in the experimental samples. Such an approach allowed an assessment of the impact of n-type doping on optical properties of GaN/AlN MQWs. We find a good agreement between these two approaches and between theory and experimental results. We can therefore confirm that the nonlinear effects induced by the tetragonal strain related to the lattice mismatch between the substrates and the polar MQWs are responsible for the drastic decrease of the pressure coefficients observed experimentally.« less

  9. Electrical properties of surface and interface layers of the N- and In-polar undoped and Mg-doped InN layers grown by PA MBE

    NASA Astrophysics Data System (ADS)

    Komissarova, T. A.; Kampert, E.; Law, J.; Jmerik, V. N.; Paturi, P.; Wang, X.; Yoshikawa, A.; Ivanov, S. V.

    2018-01-01

    Electrical properties of N-polar undoped and Mg-doped InN layers and In-polar undoped InN layers grown by plasma-assisted molecular beam epitaxy (PA MBE) were studied. Transport parameters of the surface and interface layers were determined from the measurements of the Hall coefficient and resistivity as well as the Shubnikov-de Haas oscillations at magnetic fields up to 60 T. Contributions of the 2D surface, 3D near-interface, and 2D interface layers to the total conductivity of the InN films were defined and discussed to be dependent on InN surface polarity, Mg doping, and PA MBE growth conditions.

  10. Theoretical investigation into negative differential resistance characteristics of resonant tunneling diodes based on lattice-matched and polarization-matched AlInN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Rong, Taotao; Yang, Lin-An; Yang, Lin; Hao, Yue

    2018-01-01

    In this work, we report an investigation of resonant tunneling diodes (RTDs) with lattice-matched and polarization-matched AlInN/GaN heterostructures using the numerical simulation. Compared with the lattice-matched AlInN/GaN RTDs, the RTDs based on polarization-matched AlInN/GaN hetero-structures exhibit symmetrical conduction band profiles due to eliminating the polarization charge discontinuity, which achieve the equivalence of double barrier transmission coefficients, thereby the relatively high driving current, the high symmetry of current density, and the high peak-to-valley current ratio (PVCR) under the condition of the positive and the negative sweeping voltages. Simulations show that the peak current density approaches 1.2 × 107 A/cm2 at the bias voltage of 0.72 V and the PVCR approaches 1.37 at both sweeping voltages. It also shows that under the condition of the same shallow energy level, when the trap density reaches 1 × 1019 cm-3, the polarization-matched RTDs still have acceptable negative differential resistance (NDR) characteristics, while the NDR characteristics of lattice-matched RTDs become irregular. After introducing the deeper energy level of 1 eV into the polarization-matched and lattice-matched RTDs, 60 scans are performed under the same trap density. Simulation results show that the degradation of the polarization-matched RTDs is 22%, while lattice-matched RTDs have a degradation of 55%. It can be found that the polarization-matched RTDs have a greater defect tolerance than the lattice-matched RTDs, which is beneficial to the available manufacture of actual terahertz RTD devices.

  11. The management of stress in MOCVD-grown InGaN/GaN LED multilayer structures on Si(1 1 1) substrates

    NASA Astrophysics Data System (ADS)

    Jiang, Quanzhong; Allsopp, Duncan W. E.; Bowen, Chris R.; Wang, Wang N.

    2013-09-01

    The tensile stress in light-emitting diode (LED)-on-Si(1 1 1) multilayer structures must be reduced so that it does not compromise the multiple quantum well emission wavelength uniformity and structural stability. In this paper it is shown for non-optimized LED structures grown on Si(1 1 1) substrates that both emission wavelength uniformity and structural stability can be achieved within the same growth process. In order to gain a deeper understanding of the stress distribution within such a structure, cross-sectional Raman and photo-luminescence spectroscopy techniques were developed. It is observed that for a Si:GaN layer grown on a low-temperature (LT) AlN intermediate layer there is a decrease in compressive stress with increasing Si:GaN layer thickness during MOCVD growth which leads to a high level of tensile stress in the upper part of the layer. This may lead to the development of cracks during cooling to room temperature. Such a phenomenon may be associated with annihilation of defects such as dislocations. Therefore, a reduction of dislocation intensity should take place at the early stage of GaN growth on an AlN or AlGaN layer in order to reduce a build up of tensile stress with thickness. Furthermore, it is also shown that a prolonged three dimensional GaN island growth on a LT AlN interlayer for the reduction of dislocations may result in a reduction in the compressive stress in the resulting GaN layer.

  12. Refractive Index of III-metal-polar and N-polar AlGaN Waveguides Grown by Metal Organic Chemical Vapor Deposition

    DTIC Science & Technology

    2013-06-03

    traditional birefringent materials is the wide bandgap semiconductor AlGaN. This semiconductor belongs to the 6 mm point group, and thus, has five non...effi- ciency of the SHG structure. As the two different polar surfa- ces incorporate point defects at a different rate during growth,25,26 the...diffraction in a triple axis geometry to determine the c-lattice parameter through the use of the (002) symmetric reflection and relating it to com

  13. 1030 nm high power polarization maintained fiber laser with narrow linewidth and near-diffraction-limited beam quality

    NASA Astrophysics Data System (ADS)

    Chu, Qiuhui; Zhao, Pengfei; Li, Chengyu; Wang, Bopeng; Lin, Honghuan; Guo, Chao; Liu, Yu; Jing, Feng; Tang, Chuanxiang

    2018-03-01

    A high power 1030 nm ytterbium-doped polarization maintained fiber laser with optimized parameters is presented in this paper. The master oscillator power amplifier system with counter-pumped amplifier is established. The output power is 900 W, along with a light-to-light efficiency of 64.2%. The amplified spontaneous emission suppression ratio of spectrum reaches to 40 dB with 3 dB linewidth of 0.14 nm. The polarization extinction ratio is 12 dB, and the beam quality factor is M2x=1.07, M2y=1.12. To the best of our knowledge, this is the first demonstration of 1030 nm high power fiber laser with narrow linewidth, near linear polarization, and neardiffraction-limited beam quality

  14. New CVD-based method for the growth of high-quality crystalline zinc oxide layers

    NASA Astrophysics Data System (ADS)

    Huber, Florian; Madel, Manfred; Reiser, Anton; Bauer, Sebastian; Thonke, Klaus

    2016-07-01

    High-quality zinc oxide (ZnO) layers were grown using a new chemical vapour deposition (CVD)-based low-cost growth method. The process is characterized by total simplicity, high growth rates, and cheap, less hazardous precursors. To produce elementary zinc vapour, methane (CH4) is used to reduce a ZnO powder. By re-oxidizing the zinc with pure oxygen, highly crystalline ZnO layers were grown on gallium nitride (GaN) layers and on sapphire substrates with an aluminum nitride (AlN) nucleation layer. Using simple CH4 as precursor has the big advantage of good controllability and the avoidance of highly toxic gases like nitrogen oxides. In photoluminescence (PL) measurements the samples show a strong near-band-edge emission and a sharp line width at 5 K. The good crystal quality has been confirmed in high resolution X-ray diffraction (HRXRD) measurements. This new growth method has great potential for industrial large-scale production of high-quality single crystal ZnO layers.

  15. Room-temperature mobility above 2200 cm{sup 2}/V·s of two-dimensional electron gas in a sharp-interface AlGaN/GaN heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jr-Tai, E-mail: jrche@ifm.liu.se; Persson, Ingemar; Nilsson, Daniel

    A high mobility of 2250 cm{sup 2}/V·s of a two-dimensional electron gas (2DEG) in a metalorganic chemical vapor deposition-grown AlGaN/GaN heterostructure was demonstrated. The mobility enhancement was a result of better electron confinement due to a sharp AlGaN/GaN interface, as confirmed by scanning transmission electron microscopy analysis, not owing to the formation of a traditional thin AlN exclusion layer. Moreover, we found that the electron mobility in the sharp-interface heterostructures can sustain above 2000 cm{sup 2}/V·s for a wide range of 2DEG densities. Finally, it is promising that the sharp-interface AlGaN/GaN heterostructure would enable low contact resistance fabrication, less impurity-related scattering, andmore » trapping than the AlGaN/AlN/GaN heterostructure, as the high-impurity-contained AlN is removed.« less

  16. Magma transport in sheet intrusions of the Alnö carbonatite complex, central Sweden.

    PubMed

    Andersson, Magnus; Almqvist, Bjarne S G; Burchardt, Steffi; Troll, Valentin R; Malehmir, Alireza; Snowball, Ian; Kübler, Lutz

    2016-06-10

    Magma transport through the Earth's crust occurs dominantly via sheet intrusions, such as dykes and cone-sheets, and is fundamental to crustal evolution, volcanic eruptions and geochemical element cycling. However, reliable methods to reconstruct flow direction in solidified sheet intrusions have proved elusive. Anisotropy of magnetic susceptibility (AMS) in magmatic sheets is often interpreted as primary magma flow, but magnetic fabrics can be modified by post-emplacement processes, making interpretation of AMS data ambiguous. Here we present AMS data from cone-sheets in the Alnö carbonatite complex, central Sweden. We discuss six scenarios of syn- and post-emplacement processes that can modify AMS fabrics and offer a conceptual framework for systematic interpretation of magma movements in sheet intrusions. The AMS fabrics in the Alnö cone-sheets are dominantly oblate with magnetic foliations parallel to sheet orientations. These fabrics may result from primary lateral flow or from sheet closure at the terminal stage of magma transport. As the cone-sheets are discontinuous along their strike direction, sheet closure is the most probable process to explain the observed AMS fabrics. We argue that these fabrics may be common to cone-sheets and an integrated geology, petrology and AMS approach can be used to distinguish them from primary flow fabrics.

  17. Magma transport in sheet intrusions of the Alnö carbonatite complex, central Sweden

    PubMed Central

    Andersson, Magnus; Almqvist, Bjarne S. G.; Burchardt, Steffi; Troll, Valentin R.; Malehmir, Alireza; Snowball, Ian; Kübler, Lutz

    2016-01-01

    Magma transport through the Earth’s crust occurs dominantly via sheet intrusions, such as dykes and cone-sheets, and is fundamental to crustal evolution, volcanic eruptions and geochemical element cycling. However, reliable methods to reconstruct flow direction in solidified sheet intrusions have proved elusive. Anisotropy of magnetic susceptibility (AMS) in magmatic sheets is often interpreted as primary magma flow, but magnetic fabrics can be modified by post-emplacement processes, making interpretation of AMS data ambiguous. Here we present AMS data from cone-sheets in the Alnö carbonatite complex, central Sweden. We discuss six scenarios of syn- and post-emplacement processes that can modify AMS fabrics and offer a conceptual framework for systematic interpretation of magma movements in sheet intrusions. The AMS fabrics in the Alnö cone-sheets are dominantly oblate with magnetic foliations parallel to sheet orientations. These fabrics may result from primary lateral flow or from sheet closure at the terminal stage of magma transport. As the cone-sheets are discontinuous along their strike direction, sheet closure is the most probable process to explain the observed AMS fabrics. We argue that these fabrics may be common to cone-sheets and an integrated geology, petrology and AMS approach can be used to distinguish them from primary flow fabrics. PMID:27282420

  18. Angular dependent XPS study of surface band bending on Ga-polar n-GaN

    NASA Astrophysics Data System (ADS)

    Huang, Rong; Liu, Tong; Zhao, Yanfei; Zhu, Yafeng; Huang, Zengli; Li, Fangsen; Liu, Jianping; Zhang, Liqun; Zhang, Shuming; Dingsun, An; Yang, Hui

    2018-05-01

    Surface band bending and composition of Ga-polar n-GaN with different surface treatments were characterized by using angular dependent X-ray photoelectron spectroscopy. Upward surface band bending of varying degree was observed distinctly upon to the treatment methods. Besides the nitrogen vacancies, we found that surface states of oxygen-containing absorbates (O-H component) also contribute to the surface band bending, which lead the Fermi level pined at a level further closer to the conduction band edge on n-GaN surface. The n-GaN surface with lower surface band bending exhibits better linear electrical properties for Ti/GaN Ohmic contacts. Moreover, the density of positively charged surface states could be derived from the values of surface band bending.

  19. Magnetometory of AlGaN/GaN heterostructure wafers

    NASA Astrophysics Data System (ADS)

    Tsubaki, K.; Maeda, N.; Saitoh, T.; Kobayashi, N.

    2005-06-01

    AlGaN/GaN heterostructure wafers are becoming a key technology for next generation cellar-phone telecommunication system because of their potential for high-performance microwave applications. Therefore, the electronic properties of a 2DEG in AlGaN/GaN heterostructures have recently been discussed. In this paper, we performed the extraordinary Hall effect measurement and the SQUID magnetometory of AlGaN/GaN heterostructure wafer at low temperature. The AlGaN/GaN heterostructures were grown by low-pressure metal-organic chemical vapour phase epitaxy on (0001) SiC substrate using AlN buffers. The electron mobility and electron concentration at 4.2 K are 9,540cm2/V s and 6.6 × 1012cm-2, respectively. In the extraordinary Hall effect measurement of AlGaN/GaN heterostructures, the hysteresis of Hall resistance appeared below 4.5 K and disappeared above 4.5 K. On the other hand, the hysteresis of magnetometric data obtained by SQUID magnetometory appears near zero magnetic field when the temperature is lower than 4.5 K. At the temperature larger than 4.5 K, the hysteresis of magnetometric data disappears. And the slopes of magnetometric data with respect to magnetic field become lower as obeying Currie-Weiss law and the Curie temperature TC is 4.5 K. Agreement of TC measured by the extraordinary Hall effect and the SQUID magnetometory implies the ferromagnetism at the AlGaN/GaN heterojunction. However, the conformation of the ferromagnetism of AlGaN/GaN heterostructure is still difficult and the detailed physical mechanism is still unclear.

  20. Polarization-resolved micro-photoluminescence investigation of InGaN/GaN core-shell microrods

    NASA Astrophysics Data System (ADS)

    Mounir, Christian; Schimpke, Tilman; Rossbach, Georg; Avramescu, Adrian; Strassburg, Martin; Schwarz, Ulrich T.

    2017-01-01

    We investigate the optical emission properties of the active InGaN shell of high aspect-ratio InGaN/GaN core-shell microrods (μRods) by confocal quasi-resonant polarization-resolved and excitation density dependent micro-photoluminescence (μPL). The active shell, multiple thin InGaN/GaN quantum wells (MQWs), was deposited on GaN μRods selectively grown by metal organic vapor phase epitaxy on patterned SiO2/n-GaN/sapphire template. High spatial resolution mappings reveal a very homogeneous emission intensity along the whole μRods including the tip despite a red-shift of 30 nm from the base to the tip along the 8.6 μm-long m-plane sidewalls. Looking at the Fabry-Perot interference fringes superimposed on the μPL spectra, we get structural information on the μRods. A high degree of linear polarization (DLP) of 0.6-0.66 is measured on the lower half of the m-plane side facets with a slight decrease toward the tip. We observe the typical drop of the DLP with an excitation density caused by degenerate filling of valence bands (Fermi regime). Local internal quantum efficiencies (IQEs) of 55 ±11 % up to 73 ±7 % are estimated on the m-plane facet from measurements at low temperature. Finally, simultaneously fitting the DLP and IQE as a function of the excitation density, we determine the carrier density inside the active region and the recombination rate coefficients of the m-plane MQWs. We show that phase-space filling and the background carrier density have to be included in the recombination rate model.

  1. Spin-polarized electron emitter: Mn-doped GaN nanotubes and their arrays

    NASA Astrophysics Data System (ADS)

    Hao, Shaogang; Zhou, Gang; Wu, Jian; Duan, Wenhui; Gu, Bing-Lin

    2004-03-01

    The influences from the doping magnetic atom, Mn, on the geometry, electronic properties, and spin-polarization characteristics are demonstrated for open armchair gallium nitrogen (GaN) nanotubes and arrays by use of the first-principles calculations. The interaction between dangling bonds of Ga (Mn) and N atoms at the open-end promotes the self-close of the tube mouth and formation of a more stable open semicone top. Primarily owing to hybridization of Mn 3d and N 2p orbitals, one Mn atom introduces several impurity energy levels into the original energy gap, and the calculated magnetic moment is 4μB. The electron spin polarizations in the field emission are theoretically evaluated. We suggest that armchair open GaN nanotube arrays doped with a finite number of magnetic atoms may have application potential as the electron source of spintronic devices in the future.

  2. Video image processing greatly enhances contrast, quality, and speed in polarization-based microscopy

    PubMed Central

    1981-01-01

    Video cameras with contrast and black level controls can yield polarized light and differential interference contrast microscope images with unprecedented image quality, resolution, and recording speed. The theoretical basis and practical aspects of video polarization and differential interference contrast microscopy are discussed and several applications in cell biology are illustrated. These include: birefringence of cortical structures and beating cilia in Stentor, birefringence of rotating flagella on a single bacterium, growth and morphogenesis of echinoderm skeletal spicules in culture, ciliary and electrical activity in a balancing organ of a nudibranch snail, and acrosomal reaction in activated sperm. PMID:6788777

  3. Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cong, Yingying; Li, Xiaoxue; Bai, Yunyun

    Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus releasedmore » into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. - Highlights: • PEDV infection of polarized intestinal epithelial cells (IECs) was characterized. • Porcine aminpeptidase N (pAPN) facilitated PEDV infection in IECs. • PEDV entry into and release from polarized cell via its apical membrane. • PEDV infection may proceed by lateral spread of virus in IECs.« less

  4. Inversion by metalorganic chemical vapor deposition from N- to Ga-polar gallium nitride and its application to multiple quantum well light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosalli, A. M.; Van Den Broeck, D. M.; Bedair, S. M.

    2013-12-02

    We demonstrate a metalorganic chemical vapor deposition growth approach for inverting N-polar to Ga-polar GaN by using a thin inversion layer grown with high Mg flux. The introduction of this inversion layer allowed us to grow p-GaN films on N-polar GaN thin film. We have studied the dependence of hole concentration, surface morphology, and degree of polarity inversion for the inverted Ga-polar surface on the thickness of the inversion layer. We then use this approach to grow a light emitting diode structure which has the MQW active region grown on the advantageous N-polar surface and the p-layer grown on themore » inverted Ga-polar surface.« less

  5. Continuous-Flow MOVPE of Ga-Polar GaN Column Arrays and Core-Shell LED Structures

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Li, Shunfeng; Mohajerani, Matin Sadat; Ledig, Johannes; Wehmann, Hergo-Heinrich; Mandl, Martin; Strassburg, Martin; Steegmüller, Ulrich; Jahn, Uwe; Lähnemann, Jonas; Riechert, Henning; Griffiths, Ian; Cherns, David; Waag, Andreas

    2013-06-01

    Arrays of dislocation free uniform Ga-polar GaN columns have been realized on patterned SiOx/GaN/sapphire templates by metal organic vapor phase epitaxy using a continuous growth mode. The key parameters and the physical principles of growth of Ga-polar GaN three-dimensional columns are identified, and their potential for manipulating the growth process is discussed. High aspect ratio columns have been achieved using silane during the growth, leading to n-type columns. The vertical growth rate increases with increasing silane flow. In a core-shell columnar LED structure, the shells of InGaN/GaN multi quantum wells and p-GaN have been realized on a core of n-doped GaN column. Cathodoluminescence gives insight into the inner structure of these core-shell LED structures.

  6. CO adsorption on small Au{sub n} (n = 1–4) structures supported on hematite. I. Adsorption on iron terminated α-Fe{sub 2}O{sub 3} (0001) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pabisiak, Tomasz; Kiejna, Adam, E-mail: kiejna@ifd.uni.wroc.pl; Winiarski, Maciej J.

    2016-01-28

    This is the first of two papers dealing with the adsorption of Au and formation of Au{sub n} nanostructures (n = 1–4) on hematite (0001) surface and adsorption of CO thereon. The stoichiometric Fe-terminated (0001) surface of hematite was investigated using density functional theory in the generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) form with Hubbard correction U, accounting for strong electron correlations (PBE+U). The structural, energetic, and electronic properties of the systems studied were examined for vertical and flattened configurations of Au{sub n} nanostructures adsorbed on the hematite surfaces. The flattened ones, which can be viewed as bilayer-like structures, weremore » found energetically more favored than vertical ones. For both classes of structures the adsorption binding energy increases with the number of Au atoms in a structure. The adsorption of Au{sub n} induces charge rearrangement at the Au{sub n}/oxide contact which is reflected in work function changes. In most considered cases Au{sub n} adsorption increases the work function. A detailed analysis of the bonding electron charge is presented and the corresponding electron charge rearrangements at the contacts were quantified by a Bader charge analyses. The interaction of a CO molecule with the Au{sub n} nanostructures supported on α-Fe{sub 2}O{sub 3} (0001) and the oxide support was studied. It is found that the CO adsorption binding to the hematite supported Au{sub n} structures is more than twice as strong as to the bare hematite surface. Analysis of the Bader charges on the atoms showed that in each case CO binds to the most positively charged (cationic) atom of the Au{sub n} structure. Changes in the electronic structure of the Au{sub n} species and of the oxide support, and their consequences for the interactions with CO, are discussed.« less

  7. Defect characterization of MOCVD grown AlN/AlGaN films on sapphire substrates by TEM and TKD

    NASA Astrophysics Data System (ADS)

    O'Connell, J. H.; Lee, M. E.; Westraadt, J.; Engelbrecht, J. A. A.

    2018-04-01

    High resolution transmission electron microscopy (TEM) has been used to characterize defects structures in AlN/AlGaN epilayers grown by metal-organic chemical vapour deposition (MOCVD) on c-plane sapphire (Al2O3) substrates. The AlN buffer layer was shown to be epitaxially grown on the sapphire substrate with the two lattices rotated relatively through 30°. The AlN layer had a measured thickness of 20-30 nm and was also shown to contain nano-sized voids. The misfit dislocations in the buffer layer have been shown to be pure edge with a spacing of 1.5 nm. TEM characterization of the AlGaN epilayers was shown to contain a higher than expected threading dislocation density of the order 1010 cm-2 as well as the existence of "nanopipes". TEM analysis of the planar lamella for AlGaN has presented evidence for the possibility of columnar growth. The strain and misorientation mapping in the AlGaN epilayer by transmission Kikuchi diffraction (TKD) using the FIB lamella has also been demonstrated to be complimentary to data obtained by TEM imaging.

  8. Reduction of Polarization Field Strength in Fully Strained c-Plane InGaN/(In)GaN Multiple Quantum Wells Grown by MOCVD.

    PubMed

    Zhang, Feng; Ikeda, Masao; Zhang, Shu-Ming; Liu, Jian-Ping; Tian, Ai-Qin; Wen, Peng-Yan; Cheng, Yang; Yang, Hui

    2016-12-01

    The polarization fields in c-plane InGaN/(In)GaN multiple quantum well (MQW) structures grown on sapphire substrate by metal-organic chemical vapor deposition are investigated in this paper. The indium composition in the quantum wells varies from 14.8 to 26.5% for different samples. The photoluminescence wavelengths are calculated theoretically by fully considering the related effects and compared with the measured wavelengths. It is found that when the indium content is lower than 17.3%, the measured wavelengths agree well with the theoretical values. However, when the indium content is higher than 17.3%, the measured ones are much shorter than the calculation results. This discrepancy is attributed to the reduced polarization field in the MQWs. For the MQWs with lower indium content, 100% theoretical polarization can be maintained, while, when the indium content is higher, the polarization field decreases significantly. The polarization field can be weakened down to 23% of the theoretical value when the indium content is 26.5%. Strain relaxation is excluded as the origin of the polarization reduction because there is no sign of lattice relaxation in the structures, judging by the X-ray diffraction reciprocal space mapping. The possible causes of the polarization reduction are discussed.

  9. Spin Polarization of Rb and Cs n p P2 3/2 (n =5 , 6) Atoms by Circularly Polarized Photoexcitation of a Transient Diatomic Molecule

    NASA Astrophysics Data System (ADS)

    Mironov, A. E.; Hewitt, J. D.; Eden, J. G.

    2017-03-01

    We report the selective population of Rb or Cs n p P2 3/2 (n =5 , 6; F =4 , 5) hyperfine states by the photodissociation of a transient, alkali-rare gas diatomic molecule. Circularly polarized (σ-), amplified spontaneous emission (ASE) on the D2 line of Rb or Cs (780.0 and 852.1 nm, respectively) is generated when Rb-Xe or Cs-Xe ground state collision pairs are photoexcited by a σ+-polarized optical field having a wavelength within the D2 blue satellite continuum, associated with the B Σ2 1/2 +←X Σ2 1/2 + (free←free ) transition of the diatomic molecule. The degree of spin polarization of Cs (6 p P3/2 2 ), specifically, is found to be dependent on the interatomic distance (R ) at which the excited complex is born, a result attributed to the structure of the B Σ2 1/2 + state. For Cs-Xe atomic pairs, tuning the wavelength of the optical field from 843 to 848 nm varies the degree of circular polarization of the ASE from 63% to almost unity because of the perturbation, in the 5 ≤R ≤6 Å interval, of the Σ2 1/2 + potential by a d σ molecular orbital associated with a higher Λ 2 electronic state. Monitoring only the Cs 6 p P3/2 2 spin polarization reveals a previously unobserved interaction of CsXe (B Σ2 1/2 + ) with the lowest vibrational levels of a Λ 2 state derived from Cs (5 d )+Xe . By inserting a molecular intermediate into the alkali atom excitation mechanism, these experiments realize electronic spin polarization through populating no more than two n p P2 3/2 hyperfine states, and demonstrate a sensitive spectroscopic

  10. Suppressing spontaneous polarization of p-GaN by graphene oxide passivation: Augmented light output of GaN UV-LED

    PubMed Central

    Jeong, Hyun; Jeong, Seung Yol; Park, Doo Jae; Jeong, Hyeon Jun; Jeong, Sooyeon; Han, Joong Tark; Jeong, Hee Jin; Yang, Sunhye; Kim, Ho Young; Baeg, Kang-Jun; Park, Sae June; Ahn, Yeong Hwan; Suh, Eun-Kyung; Lee, Geon-Woong; Lee, Young Hee; Jeong, Mun Seok

    2015-01-01

    GaN-based ultraviolet (UV) LEDs are widely used in numerous applications, including white light pump sources and high-density optical data storage. However, one notorious issue is low hole injection rate in p-type transport layer due to poorly activated holes and spontaneous polarization, giving rise to insufficient light emission efficiency. Therefore, improving hole injection rate is a key step towards high performance UV-LEDs. Here, we report a new method of suppressing spontaneous polarization in p-type region to augment light output of UV-LEDs. This was achieved by simply passivating graphene oxide (GO) on top of the fully fabricated LED. The dipole layer formed by the passivated GO enhanced hole injection rate by suppressing spontaneous polarization in p-type region. The homogeneity of electroluminescence intensity in active layers was improved due to band filling effect. As a consequence, the light output was enhanced by 60% in linear current region. Our simple approach of suppressing spontaneous polarization of p-GaN using GO passivation disrupts the current state of the art technology and will be useful for high-efficiency UV-LED technology. PMID:25586148

  11. Suppressing spontaneous polarization of p-GaN by graphene oxide passivation: augmented light output of GaN UV-LED.

    PubMed

    Jeong, Hyun; Jeong, Seung Yol; Park, Doo Jae; Jeong, Hyeon Jun; Jeong, Sooyeon; Han, Joong Tark; Jeong, Hee Jin; Yang, Sunhye; Kim, Ho Young; Baeg, Kang-Jun; Park, Sae June; Ahn, Yeong Hwan; Suh, Eun-Kyung; Lee, Geon-Woong; Lee, Young Hee; Jeong, Mun Seok

    2015-01-14

    GaN-based ultraviolet (UV) LEDs are widely used in numerous applications, including white light pump sources and high-density optical data storage. However, one notorious issue is low hole injection rate in p-type transport layer due to poorly activated holes and spontaneous polarization, giving rise to insufficient light emission efficiency. Therefore, improving hole injection rate is a key step towards high performance UV-LEDs. Here, we report a new method of suppressing spontaneous polarization in p-type region to augment light output of UV-LEDs. This was achieved by simply passivating graphene oxide (GO) on top of the fully fabricated LED. The dipole layer formed by the passivated GO enhanced hole injection rate by suppressing spontaneous polarization in p-type region. The homogeneity of electroluminescence intensity in active layers was improved due to band filling effect. As a consequence, the light output was enhanced by 60% in linear current region. Our simple approach of suppressing spontaneous polarization of p-GaN using GO passivation disrupts the current state of the art technology and will be useful for high-efficiency UV-LED technology.

  12. Low-threshold voltage ultraviolet light-emitting diodes based on (Al,Ga)N metal-insulator-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Liang, Yu-Han; Towe, Elias

    2017-12-01

    Al-rich III-nitride-based deep-ultraviolet (UV) (275-320 nm) light-emitting diodes are plagued with a low emission efficiency and high turn-on voltages. We report Al-rich (Al,Ga)N metal-insulator-semiconductor UV light-emitting Schottky diodes with low turn-on voltages of <3 V, which are about half those of typical (Al,Ga)N p-i-n diodes. Our devices use a thin AlN film as the insulator and an n-type Al0.58Ga0.42N film as the semiconductor. To improve the efficiency, we inserted a GaN quantum-well structure between the AlN insulator and the n-type Al x Ga1- x N semiconductor. The benefits of the quantum-well structure include the potential to tune the emission wavelength and the capability to confine carriers for more efficient radiative recombination.

  13. Temperature-dependent time-resolved photoluminescence measurements of (1-101)-oriented semi-polar AlGaN/GaN MQWs

    NASA Astrophysics Data System (ADS)

    Rosales, Daniel; Gil, Bernard; Monavarian, Morteza; Zhang, Fan; Okur, Serdal; Izyumskaya, Natalia; Avrutin, Vitaliy; Özgür, Ümit; Morkoç, Hadis

    2015-03-01

    We studied the temperature dependence and the recombination dynamics of the photoluminescence of (1-101)-oriented semi-polar Al0.2Ga0.8N/GaN multiple quantum wells (MQW). The polarized low-temperature PL measurements reveal that radiative recombination exhibit an anisotropic behavior. The PL intensity at room temperature is reduced by one order of magnitude with respect to low temperature. The radiative decay time exhibits a mixed behavior: it is roughly constant between 8K to ranging near 140-150K and then rapidly increases with a slope of 10 ps.K-1. This behavior is indicative of coexistence of localized excitons and free excitons which relative proportion are statistically computed.

  14. Facile synthesis and characterisation of AlNs using Protein Rich Solution extracted from sewage sludge and its application for ultrasonic assisted dye adsorption: Isotherms, kinetics, mechanism and RSM design.

    PubMed

    Mary Ealias, Anu; Saravanakumar, M P

    2018-01-15

    Protein Rich Solution (PRS) was prepared from the sewage sludge with ultrasonic assistance. With PRS, aluminium based nanosheet like materials (AlNs) were synthesised for the ultrasonic removal of Congo Red (CR) and Crystal Violet (CV) dyes. PRS was characterised by UV, EEM and NMR spectral analysis. AlNs were characterised by FTIR, XRD, TGA, BET, SEM, AFM, TEM and XPS analysis. The point of zero charge of AlNs was found to be 5.4. The BET analysis ensured that the average pore diameter and total pore volume of AlNs as 8.464 nm and 0.11417 cc/g respectively. The efficacy of AlNs for the removal of toxic dyes was tested by performing Response surface methodology (RSM) designed experiments. The effect of sonication time, dosage and initial concentration on dye removal was studied at an optimised pH value. Langmuir, Freundlich and Temkin isotherm models were examined. The maximum adsorption capacity was found to be 121.951 and 105.263 mg/g for CR and CV respectively. The kinetic models like pseudo-first order, pseudo-second order, Elovich and intra-particle diffusion were examined to understand the mechanism behind it. The results revealed that the use of ultrasonication enhanced the mass transfer. The experimental studies on the influence of ultrasound power indicated a positive relation with the removal efficiency. The results of thermodynamic study revealed that the process was spontaneous and exothermic for both the dyes. The increase in ionic strength increased the removal efficiency for both CR and CV. RSM predicted the optimum adsorbent dosages as 0.16 g for 50 mg/L of CR and 0.12 g for 100 mg/L of CV dye solutions. The values of half-life and fractional adsorption for both CR and CV suggested that the low cost AlNs has high potential to remove the toxic industrial dyes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Carrier lifetimes in polar InGaN-based LEDs

    NASA Astrophysics Data System (ADS)

    Wang, Lai; Jin, Jie; Hao, Zhibiao; Luo, Yi

    2018-02-01

    Measurement of carrier lifetime is very important to understand the physics in light-emitting diodes (LEDs), as it builds a link between carrier concentration and excitation power or current density. In this paper, we present our study on optical and electrical characterizations on carrier lifetimes in polar InGaN-based LEDs. First, a carrier rate equation model is proposed to explain the non-exponential nature of time-resolved photoluminescence (TRPL) decay curves, wherein exciton recombination is replaced by bimolecular recombination, considering the influence of polarization field on electron-hole pairs. Then, nonradiative recombination and radiative recombination coefficients can be deduced from fitting and used to calculate the radiative recombination efficiency. By comparing with the temperature-dependent photoluminescence (TDPL) and power-dependent photoluminescence (PDPL), it is found these three methods provide the consistent results. Second, differential carrier lifetimes depending on injection current are measured in commercial near-ultraviolet (NUV), blue and green LEDs. It is found that carrier lifetime is longer in green one and shorter in NUV one, which is attributed to the influence of polarization-induced quantum confined Stark effect (QCSE). This result implies the carrier density is higher in green LED while lower NUV LED, even the injection current is the same. By ignoring Auger recombination and fitting the efficiency-current and carrier lifetime-current curves simultaneously, the dependence of injection efficiency on carrier concentration in different LED samples are plotted. The NUV LED, which has the shallowest InGaN quantum well, actually exhibits the most serious efficiency droop versus carrier concentration. Then, the approaches to overcome the efficiency droop are discussed.

  16. Characterization of remote O2-plasma-enhanced CVD SiO2/GaN(0001) structure using photoemission measurements

    NASA Astrophysics Data System (ADS)

    Truyen, Nguyen Xuan; Ohta, Akio; Makihara, Katsunori; Ikeda, Mitsuhisa; Miyazaki, Seiichi

    2018-01-01

    The control of chemical composition and bonding features at a SiO2/GaN interface is a key to realizing high-performance GaN power devices. In this study, an ∼5.2-nm-thick SiO2 film has been deposited on an epitaxial GaN(0001) surface by remote O2-plasma-enhanced chemical vapor deposition (O2-RPCVD) using SiH4 and Ar/O2 mixture gases at a substrate temperature of 500 °C. The depth profile of chemical structures and electronic defects of the O2-RPCVD SiO2/GaN structures has been evaluated from a combination of SiO2 thinning examined by X-ray photoelectron spectroscopy (XPS) and the total photoelectron yield spectroscopy (PYS) measurements. As a highlight, we found that O2-RPCVD is effective for fabricating an abrupt SiO2/GaN interface.

  17. Polarity dependence of Mn incorporation in (Ga,Mn)N superlattices

    NASA Astrophysics Data System (ADS)

    Tropf, L.; Kunert, G.; Jakieła, R.; Wilhelm, R. A.; Figge, S.; Grenzer, J.; Hommel, D.

    2016-03-01

    In the context of recent efforts to combine high Mn concentrations in (Ga,Mn)N with a pronounced p-type carrier density, (Ga,Mn)N/GaN:Mg-superlattices have been fabricated using plasma-assisted molecular beam epitaxy. Profiles of the dopant atomic densities in the heterostructures are obtained by secondary ion mass spectroscopy. They show an abrupt drop of two to three orders of magnitude in both Mn and Mg concentrations after the first GaN:Mg layer above a critical Mg-flux. Scanning electron microscopy before and after selective etching reveals a polarity inversion from originally Ga-face to N-face GaN in samples in which high Mg fluxes were applied. From our observations, we are able to draw an analogy between the impurity incorporation laws of Mg and Mn.

  18. Electronic structures of filled tetrahedral semiconductors LiMgN and LiZnN: conduction band distortion

    NASA Astrophysics Data System (ADS)

    Yu, L. H.; Yao, K. L.; Liu, Z. L.

    2004-12-01

    The band structures of the filled tetrahedral semiconductors LiMgN and LiZnN, viewed as the zinc-blende (MgN) - and (ZnN) - lattices partially filled with He-like Li + ion interstitials, were studied using the full-potential linearized augmented plane wave method (FP-LAPW) within density functional theory. The conduction band distortions of LiMgN and LiZnN, compared to their “parent” zinc-blende analog AlN and GaN, are discussed. It was found that the insertion of Li + ions at the interstitial sites near the cation or anion pushes the conduction band minimum of the X point in the Brillouin zone upward, relative to that of the Γ point, for both (MgN) - and (ZnN) - lattices (the valence band maximum is at Γ for AlN, GaN, LiMgN, and LiZnN), which provides a method to convert a zinc-blende indirect gap semiconductor into a direct gap material, but the conduction band distortion of the β phase (Li + near the cation) is quite stronger than that of the α phase (Li + near the anion). The total energy calculations show the α phase to be more stable than the β phase for both LiMgN and LiZnN. The Li-N and Mg-N bonds exhibit a strong ionic character, whereas the Zn-N bond has a strong covalent character in LiMgN and LiZnN.

  19. Active zinc-blende III-nitride photonic structures on silicon

    NASA Astrophysics Data System (ADS)

    Sergent, Sylvain; Kako, Satoshi; Bürger, Matthias; Blumenthal, Sarah; Iwamoto, Satoshi; As, Donat Josef; Arakawa, Yasuhiko

    2016-01-01

    We use a layer transfer method to fabricate free-standing photonic structures in a zinc-blende AlN epilayer grown by plasma-assisted molecular beam epitaxy on a 3C-SiC pseudosubstrate and containing GaN quantum dots. The method leads to the successful realization of microdisks, nanobeam photonic crystal cavities, and waveguides integrated on silicon (100) and operating at short wavelengths. We assess the quality of such photonic elements by micro-photoluminescence spectroscopy in the visible and ultraviolet ranges, and extract the absorption coefficient of ZB AlN membranes (α ˜ (2-5) × 102 cm-1).

  20. Storm-associated Alfvén Waves in the Polar Environment

    NASA Astrophysics Data System (ADS)

    Keiling, A.; Wygant, J. R.; Dombeck, J. P.

    2017-12-01

    Global polar distribution maps of Alfvénic Poynting flux and Alfvén-wave-accelerated electrons now exist from a number of satellites, orbiting at various altitudes, including below and in the auroral acceleration region (AAR), above the AAR and in the equatorial plasma sheet. Together with auroral images, it has been established that the nightside aurora, in particular its premidnight to midnight dominance, is coupled to these waves. Moreover, global simulations have reproduced the observed nightside distribution of Alfvén waves, coming from the far-tail magnetospheric dynamo. While recent studies, using low-altitude and equatorial satellites, have shown a deviation from this average nightside pattern during storm times, as of now there is no such study to provide the link between these regions, namely just above the AAR. In this presentation, we will present Polar spacecraft-based data during storm times, covering the altitude range from 4 to 7 RE (geocentric distance) and spanning a time period of six years. The results will be put in context to published studies, in particular with regard to morphology and dissipation.

  1. Selective area growth of N-polar GaN nanorods by plasma-assisted MBE on micro-cone-patterned c-sapphire substrates

    NASA Astrophysics Data System (ADS)

    Jmerik, V. N.; Kuznetsova, N. V.; Nechaev, D. V.; Shubina, T. V.; Kirilenko, D. A.; Troshkov, S. I.; Davydov, V. Yu.; Smirnov, A. N.; Ivanov, S. V.

    2017-11-01

    The site-controlled selective area growth of N-polar GaN nanorods (NR) was developed by plasma-assisted MBE (PA MBE) on micro-cone-patterned sapphire substrates (μ-CPSS) by using a two-stage growth process. A GaN nucleation layer grown by migration enhanced epitaxy provides the best selectivity for nucleation of NRs on the apexes of 3.5-μm-diameter cones, whereas the subsequent growth of 1-μm-high NRs with a constant diameter of about 100 nm proceeds by standard high-temperature PA MBE at nitrogen-rich conditions. These results are explained by anisotropy of the surface energy for GaN of different polarity and crystal orientation. The InGaN single quantum wells inserted in the GaN NRs grown on the μ-CPSS demonstrate photoluminescence at 510 nm with a spatially periodic variation of its intensity with a period of ∼6 μm equal to that of the substrate patterning profile.

  2. Improving optical performance of GaN nanowires grown by selective area growth homoepitaxy: Influence of substrate and nanowire dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aseev, P., E-mail: pavel.aseev@isom.upm.es, E-mail: gacevic@isom.upm.es; Gačević, Ž., E-mail: pavel.aseev@isom.upm.es, E-mail: gacevic@isom.upm.es; Calleja, E.

    2016-06-20

    Series of GaN nanowires (NW) with controlled diameters (160–500 nm) and heights (420–1100 nm) were homoepitaxially grown on three different templates: GaN/Si(111), GaN/AlN/Si(111), and GaN/sapphire(0001). Transmission electron microscopy reveals a strong influence of the NW diameter on dislocation filtering effect, whereas photoluminescence measurements further relate this effect to the GaN NWs near-bandgap emission efficiency. Although the templates' quality has some effects on the GaN NWs optical and structural properties, the NW diameter reduction drives the dislocation filtering effect to the point where a poor GaN template quality becomes negligible. Thus, by a proper optimization of the homoepitaxial GaN NWs growth, the propagationmore » of dislocations into the NWs can be greatly prevented, leading to an exceptional crystal quality and a total dominance of the near-bandgap emission over sub-bandgap, defect-related lines, such as basal stacking faults and so called unknown exciton (UX) emission. In addition, a correlation between the presence of polarity inversion domain boundaries and the UX emission lines around 3.45 eV is established.« less

  3. Crystal growth of Bi{sub 2}Te{sub 3} and noble cleaved (0001) surface properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atuchin, V.V., E-mail: atuchin@thermo.isp.nsc.ru; Functional Electronics Laboratory, Tomsk State University, Tomsk 634050; Golyashov, V.A.

    2016-04-15

    A high quality Bi{sub 2}Te{sub 3} crystal has been grown by Bridgman method with the use of rotating heat field. The phase purity and bulk structural quality of the crystal have been verified by XRD analysis and rocking curve observation. The atomically smooth Bi{sub 2}Te{sub 3}(0001) surface with an excellent crystallographic quality is formed by cleavage in the air. The chemical and microstructural properties of the surface have been evaluated with RHEED, AFM, STM, SE and XPS. The Bi{sub 2}Te{sub 3}(0001) cleaved surface is formed by atomically smooth terraces with the height of the elemental step of ~1.04±0.1 nm, asmore » estimated by AFM. There is no surface oxidation process detected over a month keeping in the air at normal conditions, as shown by comparative core level photoelectron spectroscopy. - Graphical abstract: A high quality Bi{sub 2}Te{sub 3} crystal has been grown by Bridgman method with the use of rotating heat field and the Bi{sub 2}Te{sub 3}(0001) cleaved surface has been evaluated with RHEED, AFM, STM, SE and XPS. - Highlights: • High-quality Bi{sub 2}Te{sub 3} crystal of 10 mm in diameter and 50 mm long have been grown. • The high-purity cleaved Bi{sub 2}Te{sub 3}(0001) surface has been evaluated by RHEED, AFM, STM and XPS methods. • The Bi{sub 2}Te{sub 3} surface covered by atomically smooth (0001) terraces is chemically stable for a long time.« less

  4. AlGaN/GaN High Electron Mobility Transistor Grown and Fabricated on ZrTi Metallic Alloy Buffer Layers

    DOE PAGES

    Ren, Fan; Pearton, Stephen J.; Ahn, Shihyun; ...

    2017-09-26

    AlGaN/GaN high electron mobility transistors (HEMTs) were demonstrated for structures grown on ZrTi metallic alloy buffer layers, which provided lattice matching of the in-plane lattice parameter (“a-parameter”) to hexagonal GaN. The quality of the GaN buffer layer and HEMT structure were confirmed with X-ray 2θ and rocking scans as well as cross-section transmission electron microscopy (TEM) images. The X-ray 2θ scans showed full widths at half maximum (FWHM) of 0.06°, 0.05° and 0.08° for ZrTi alloy, GaN buffer layer, and the entire HEMT structure, respectively. TEM of the lower section of the HEMT structure containing the GaN buffer layer andmore » the AlN/ZrTi/AlN stack on the Si substrate showed that it was important to grow AlN on the top of ZrTi prior to growing the GaN buffer layer. Finally, the estimated threading dislocation (TD) density in the GaN channel layer of the HEMT structure was in the 10 8 cm -2 range.« less

  5. Control of epitaxial defects for optimal AlGaN/GaN HEMT performance and reliability

    NASA Astrophysics Data System (ADS)

    Green, D. S.; Gibb, S. R.; Hosse, B.; Vetury, R.; Grider, D. E.; Smart, J. A.

    2004-12-01

    High-quality GaN epitaxy continues to be challenged by the lack of matched substrates. Threading dislocations that result from heteroepitaxy are responsible for leakage currents, trapping effects, and may adversely affect device reliability. We have studied the impact of AlN nucleation conditions on the density and character of threading dislocations on SiC substrates. Variation of the nucleation temperature, V/III ratio, and thickness are seen to have a dramatic effect on the balance between edge, screw and mixed character dislocation densities. Electrical and structural properties have been assessed by AFM and XRD on a material level and through DC and RF performance at the device level. The ratio between dislocation characteristics has been established primarily through comparison of symmetric and asymmetric XRD rocking curve widths. The effect of each dislocation type on leakage current, RF power and reliability at 2 GHz, the targeted band for cell phone infrastructure applications, is discussed.

  6. Recent advance in polar seismology: Global impact of the International Polar Year

    NASA Astrophysics Data System (ADS)

    Kanao, Masaki; Zhao, Dapeng; Wiens, Douglas A.; Stutzmann, Éléonore

    2015-03-01

    The most exciting initiative for the recent polar studies was the International Polar Year (IPY) in 2007-2008. The IPY has witnessed a growing community of seismologists who have made considerable efforts to acquire high-quality data in polar regions. It also provided an excellent opportunity to make significant advances in seismic instrumentation of the polar regions to achieve scientific targets involving global issues. Taking these aspects into account, we organize and publish a special issue in Polar Science on the recent advance in polar seismology and cryoseismology as fruitful achievements of the IPY.

  7. Multicycle rapid thermal annealing optimization of Mg-implanted GaN: Evolution of surface, optical, and structural properties

    NASA Astrophysics Data System (ADS)

    Greenlee, Jordan D.; Feigelson, Boris N.; Anderson, Travis J.; Tadjer, Marko J.; Hite, Jennifer K.; Mastro, Michael A.; Eddy, Charles R.; Hobart, Karl D.; Kub, Francis J.

    2014-08-01

    The first step of a multi-cycle rapid thermal annealing process was systematically studied. The surface, structure, and optical properties of Mg implanted GaN thin films annealed at temperatures ranging from 900 to 1200 °C were investigated by Raman spectroscopy, photoluminescence, UV-visible spectroscopy, atomic force microscopy, and Nomarski microscopy. The GaN thin films are capped with two layers of in-situ metal organic chemical vapor deposition -grown AlN and annealed in 24 bar of N2 overpressure to avoid GaN decomposition. The crystal quality of the GaN improves with increasing annealing temperature as confirmed by UV-visible spectroscopy and the full widths at half maximums of the E2 and A1 (LO) Raman modes. The crystal quality of films annealed above 1100 °C exceeds the quality of the as-grown films. At 1200 °C, Mg is optically activated, which is determined by photoluminescence measurements. However, at 1200 °C, the GaN begins to decompose as evidenced by pit formation on the surface of the samples. Therefore, it was determined that the optimal temperature for the first step in a multi-cycle rapid thermal anneal process should be conducted at 1150 °C due to crystal quality and surface morphology considerations.

  8. Alternating-Polarity Arc Welding

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1987-01-01

    Brief reversing polarity of welding current greatly improves quality of welds. NASA technical memorandum recounts progress in art of variable-polarity plasma-arc (VPPA) welding, with emphasis on welding of aluminum-alloy tanks. VPPA welders offer important advantages over conventional single-polarity gas/tungsten arc welders.

  9. Admittance–voltage profiling of Al{sub x}Ga{sub 1−x}N/GaN heterostructures: Frequency dependence of capacitance and conductance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Köhler, K.; Pletschen, W.; Godejohann, B.

    2015-11-28

    Admittance–voltage profiling of Al{sub x}Ga{sub 1−x}N/GaN heterostructures was used to determine the frequency dependent capacitance and conductance of FET devices in the frequency range from 50 Hz to 1 MHz. The nominally undoped low pressure metal-organic vapor-phase epitaxy structures were grown with an Al-content of 30%. An additional 1 nm thick AlN interlayer was placed in one structure before the Al{sub 0.3}Ga{sub 0.7}N layer growth. For frequencies below 10{sup 8} Hz it is convenient to use equivalent circuits to represent electric or dielectric properties of a material, a method widely used, for example, in impedance spectroscopy. We want to emphasize the relation betweenmore » frequency dependent admittance–voltage profiling and the corresponding equivalent circuits to the complex dielectric function. Debye and Drude models are used for the description of the frequency dependent admittance profiles in a range of depletion onset of the two-dimensional electron gas. Capacitance- and conductance-frequency profiles are fitted in the entire measured range by combining both models. Based on our results, we see contributions to the two-dimensional electron gas for our samples from surface states (80%) as well as from background doping in the Al{sub 0.3}Ga{sub 0.7}N barriers (20%). The specific resistance of the layers below the gate is above 10{sup 5} Ω cm for both samples and increases with increasing negative bias, i.e., the layers below the gate are essentially depleted. We propose that the resistance due to free charge carriers, determined by the Drude model, is located between gate and drain and, because of the AlN interlayer, the resistance is lowered by a factor of about 30 if compared to the sample without an AlN layer.« less

  10. FEM Analysis of Sezawa Mode SAW Sensor for VOC Based on CMOS Compatible AlN/SiO₂/Si Multilayer Structure.

    PubMed

    Aslam, Muhammad Zubair; Jeoti, Varun; Karuppanan, Saravanan; Malik, Aamir Farooq; Iqbal, Asif

    2018-05-24

    A Finite Element Method (FEM) simulation study is conducted, aiming to scrutinize the sensitivity of Sezawa wave mode in a multilayer AlN/SiO₂/Si Surface Acoustic Wave (SAW) sensor to low concentrations of Volatile Organic Compounds (VOCs), that is, trichloromethane, trichloroethylene, carbon tetrachloride and tetrachloroethene. A Complimentary Metal-Oxide Semiconductor (CMOS) compatible AlN/SiO₂/Si based multilayer SAW resonator structure is taken into account for this purpose. In this study, first, the influence of AlN and SiO₂ layers’ thicknesses over phase velocities and electromechanical coupling coefficients ( k ²) of two SAW modes (i.e., Rayleigh and Sezawa) is analyzed and the optimal thicknesses of AlN and SiO₂ layers are opted for best propagation characteristics. Next, the study is further extended to analyze the mass loading effect on resonance frequencies of SAW modes by coating a thin Polyisobutylene (PIB) polymer film over the AlN surface. Finally, the sensitivity of the two SAW modes is examined for VOCs. This study concluded that the sensitivity of Sezawa wave mode for 1 ppm of selected volatile organic gases is twice that of the Rayleigh wave mode.

  11. Nonlinear optical effects in semi-polar GaN micro-cavity emitter

    NASA Astrophysics Data System (ADS)

    Butler, Sween; Jiang, Hongxing; Lin, Jingyu; Neogi, Arup

    Nonlinear optical (NLO) response of low dimensional emitters is of current interest because of the need for active elements in photonic applications. NLO effects in a selectively grown array of semi-polar GaN microcavity structures offer a promising route toward devices for integrated optical circuitry in optoelectronics and photonics field. Localized spatial excitation of a single hexagonal GaN microcavity with semipolar facets formed by selective area growth was optimized for nonlinear optical light generation due to second harmonic generation (SHG) and multi-photon luminescence(MPL). Multi-photon transition induced by tightly focused femtosecond NIR incident field results in ultra-violet and yellow luminescence for excitations above and below half bandgap energy, whereas SHG was observed for below half bandgap energy. We show that color and coherence of the light generation from the emitter can be controlled by selective onset of the nonlinear process which depends not only on the incident laser energy and intensity but also on the geometry of the microcavity. Quasi-WGM like modes were observed for off-resonant excitations from the GaN microcavity resulting in enhanced SHG. The directionality of MPL and SHG will be presented as a function of the pump polarization.

  12. Improved linearity in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors with nonlinear polarization dielectric

    NASA Astrophysics Data System (ADS)

    Gao, Tao; Xu, Ruimin; Kong, Yuechan; Zhou, Jianjun; Kong, Cen; Dong, Xun; Chen, Tangsheng

    2015-06-01

    We demonstrate highly improved linearity in a nonlinear ferroelectric of Pb(Zr0.52Ti0.48)-gated AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor (MIS-HEMT). Distinct double-hump feature in the transconductance-gate voltage (gm-Vg) curve is observed, yielding remarkable enhancement in gate voltage swing as compared to MIS-HEMT with conventional linear gate dielectric. By incorporating the ferroelectric polarization into a self-consistent calculation, it is disclosed that in addition to the common hump corresponding to the onset of electron accumulation, the second hump at high current level is originated from the nonlinear polar nature of ferroelectric, which enhances the gate capacitance by increasing equivalent dielectric constant nonlinearly. This work paves a way for design of high linearity GaN MIS-HEMT by exploiting the nonlinear properties of dielectric.

  13. Excitonic recombination dynamics in non-polar GaN/AlGaN quantum wells

    NASA Astrophysics Data System (ADS)

    Rosales, D.; Gil, B.; Bretagnon, T.; Guizal, B.; Zhang, F.; Okur, S.; Monavarian, M.; Izyumskaya, N.; Avrutin, V.; Özgür, Ü.; Morkoç, H.; Leach, J. H.

    2014-02-01

    The optical properties of GaN/Al0.15Ga0.85N multiple quantum wells are examined in 8 K-300 K temperature range. Both polarized CW and time resolved temperature-dependent photoluminescence experiment are performed so that we can deduce the relative contributions of the non-radiative and radiative recombination processes. From the calculation of the proportion of the excitonic population having wave vector in the light cone, we can deduce the variation of the radiative decay time with temperature. We find part of the excitonic population to be localized in concert with the report of Corfdir et al. (Jpn. J. Appl. Phys., Part 2 52, 08JC01 (2013)) in case of a-plane quantum wells.

  14. Quantitative analysis of the polarization characteristics of atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Gubarkova, Ekaterina V.; Kirillin, Michail Y.; Dudenkova, Varvara V.; Kiseleva, Elena B.; Moiseev, Alexander A.; Gelikonov, Grigory V.; Timofeeva, Lidia B.; Fiks, Ilya I.; Feldchtein, Felix I.; Gladkova, Natalia D.

    2016-04-01

    In this study we demonstrate the capability of cross-polarization optical coherence tomography (CP OCT) to assess collagen and elastin fibers condition in atherosclerotic plaques basing on ratio of the OCT signal levels in cross- and co- polarizations. We consider the depolarization factor (DF) and the effective birefringence (Δn) as quantitative characteristics of CP OCT images. We revealed that calculation of both DF and Δn in the region of interest (fibrous cap) yields a statistically significant difference between stable and unstable plaques (0.46+/-0.21 vs 0.09+/-0.04 for IDF; (4.7+/-1.0)•10-4 vs (2.5+/-0.7)•10-4 for Δn p<0.05). In parallel with CP OCT we used the nonlinear microscopy for analysis of thin cross-section of atherosclerotic plaque, revealing the different average isotropy index of collagen and elastin fibers for stable and unstable plaques (0.30 +/- 0.10 vs 0.70 +/- 0.08; p<0.001). The proposed approach for quantitative assessment of CP OCT images allows cross-scattering and birefringence characterization of stable and unstable atherosclerotic plaques.

  15. Recent advances of high voltage AlGaN/GaN power HFETs

    NASA Astrophysics Data System (ADS)

    Uemoto, Yasuhiro; Ueda, Tetsuzo; Tanaka, Tsuyoshi; Ueda, Daisuke

    2009-02-01

    We review our recent advances of GaN-based high voltage power transistors. These are promising owing to low on-state resistance and high breakdown voltage taking advantages of superior material properties. However, there still remain a couple of technical issues to be solved for the GaN devices to replace the existing Si-based power devices. The most critical issue is to achieve normally-off operation which is strongly desired for the safety operation, however, it has been very difficult because of the built-in polarization electric field. Our new device called GIT (Gate Injection Transistor) utilizing conductivity modulation successfully achieves the normally-off operation keeping low on-state resistance. The fabricated GIT on a Si substrate exhibits threshold voltage of +1.0V. The obtained on-state resistance and off-state breakdown voltage were 2.6mΩ•cm2 and 800V, respectively. Remaining technical issue is to further increase the breakdown voltage. So far, the reported highest off-state breakdown voltage of AlGaN/GaN HFETs has been 1900V. Overcoming these issues by a novel device structure, we have demonstrated the world highest breakdown voltages of 10400V using thick poly-crystalline AlN as a passivation film and Via-holes through sapphire which enable very efficient layout of the lateral HFET array avoiding any undesired breakdown of passivation films. Since conventional wet or dry etching cannot be used for chemically stable sapphire, high power pulsed laser is used to form the via-holes. The presented GaN power devices demonstrate that GaN is advantageous for high voltage power switching applications replacing currently used Si-based power MOSFETs and IGBTs.

  16. Influence of dislocations on indium diffusion in semi-polar InGaN/GaN heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Yao; National Institute for Materials Science, Tsukuba, Ibaraki 305-0044; Sun, Huabin

    2015-05-15

    The spatial distribution of indium composition in InGaN/GaN heterostructure is a critical topic for modulating the wavelength of light emitting diodes. In this letter, semi-polar InGaN/GaN heterostructure stripes were fabricated on patterned GaN/Sapphire substrates by epitaxial lateral overgrowth (ELO), and the spatial distribution of indium composition in the InGaN layer was characterized by using cathodoluminescence. It is found that the indium composition is mainly controlled by the diffusion behaviors of metal atoms (In and Ga) on the surface. The diffusivity of metal atoms decreases sharply as migrating to the region with a high density of dislocations and other defects, whichmore » influences the distribution of indium composition evidently. Our work is beneficial for the understanding of ELO process and the further development of InGaN/GaN heterostructure based devices.« less

  17. Design of Al-rich AlGaN quantum well structures for efficient UV emitters

    NASA Astrophysics Data System (ADS)

    Funato, Mitsuru; Ichikawa, Shuhei; Kumamoto, Kyosuke; Kawakami, Yoichi

    2017-02-01

    The effects of the structure design of AlGaN-based quantum wells (QWs) on the optical properties are discussed. We demonstrate that to achieve efficient emission in the germicidal wavelength range (250 - 280 nm), AlxGa1-xN QWs in an AlyGa1-yN matrix (x < y) is quite effective, compared with those in an AlN matrix: Time-resolved photoluminescence and cathodoluminescence spectroscopies show that the AlyGa1-yN matrix can enhance the radiative recombination process and can prevent misfit dislocations, which act as non-radiative recombination centers, from being induced in the QW interface. As a result, the emission intensity at room temperature is about 2.7 times larger for the AlxGa1-xN QW in the AlyGa1-yN matrix than that in the AlN matrix. We also point out that further reduction of point defects is crucial to achieve an even higher emission efficiency.

  18. Reducing Mg acceptor activation-energy in Al(0.83)Ga(0.17)N disorder alloy substituted by nanoscale (AlN)₅/(GaN)₁ superlattice using Mg(Ga) δ-doping: Mg local-structure effect.

    PubMed

    Zhong, Hong-xia; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Huang, Pu; Ding, Yi-min

    2014-10-23

    Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al(0.83)Ga(0.17)N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al(0.83)Ga(0.17)N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 10(19) cm(-3) can be obtained in (AlN)5/(GaN)1 SL by Mg(Ga) δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN.

  19. Polarization-enhanced InGaN/GaN-based hybrid tunnel junction contacts to GaN p-n diodes and InGaN LEDs

    NASA Astrophysics Data System (ADS)

    Mughal, Asad J.; Young, Erin C.; Alhassan, Abdullah I.; Back, Joonho; Nakamura, Shuji; Speck, James S.; DenBaars, Steven P.

    2017-12-01

    Improved turn-on voltages and reduced series resistances were realized by depositing highly Si-doped n-type GaN using molecular beam epitaxy on polarization-enhanced p-type InGaN contact layers grown using metal-organic chemical vapor deposition. We compared the effects of different Si doping concentrations and the addition of p-type InGaN on the forward voltages of p-n diodes and light-emitting diodes, and found that increasing the Si concentrations from 1.9 × 1020 to 4.6 × 1020 cm-3 and including a highly doped p-type InGaN at the junction both contributed to reductions in the depletion width, the series resistance of 4.2 × 10-3-3.4 × 10-3 Ω·cm2, and the turn-on voltages of the diodes.

  20. In-situ cyclic pulse annealing of InN on AlN/Si during IR-lamp-heated MBE growth

    NASA Astrophysics Data System (ADS)

    Suzuki, Akira; Bungi, Yu; Araki, Tsutomu; Nanishi, Yasushi; Mori, Yasuaki; Yamamoto, Hiroaki; Harima, Hiroshi

    2009-05-01

    To improve crystal quality of InN, an in-situ cyclic rapid pulse annealing during growth was carried out using infrared-lamp-heated molecular beam epitaxy. A cycle of 4 min growth of InN at 400 °C and 3 s pulse annealing at a higher temperature was repeated 15 times on AlN on Si substrate. Annealing temperatures were 550, 590, 620, and 660 °C. The back of Si was directly heated by lamp irradiation through a quartz rod. A total InN film thickness was about 200 nm. With increasing annealing temperature up to 620 °C, crystal grain size by scanning electron microscope showed a tendency to increase, while widths of X-ray diffraction rocking curve of (0 0 0 2) reflection and E 2 (high) mode peak of Raman scattering spectra decreased. A peak of In (1 0 1) appeared in X-ray diffraction by annealing higher than 590 °C, and In droplets were found on the surface by annealing at 660 °C.