Sample records for quality time representation

  1. [Time perceptions and representations].

    PubMed

    Tordjman, S

    2015-09-01

    Representations of time and time measurements depend on subjective constructs that vary according to changes in our concepts, beliefs, societal needs and technical advances. Similarly, the past, the future and the present are subjective representations that depend on each individual's psychic time and biological time. Therefore, there is no single, one-size-fits-all time for everyone, but rather a different, subjective time for each individual. We need to acknowledge the existence of different inter-individual times but also intra-individual times, to which different functions and different rhythms are attached, depending on the system of reference. However, the construction of these time perceptions and representations is influenced by objective factors (physiological, physical and cognitive) related to neuroscience which will be presented and discussed in this article. Thus, studying representation and perception of time lies at the crossroads between neuroscience, human sciences and philosophy. Furthermore, it is possible to identify several constants among the many and various representations of time and their corresponding measures, regardless of the system of time reference. These include the notion of movements repeated in a stable rhythmic pattern involving the recurrence of the same interval of time, which enables us to define units of time of equal and invariable duration. This rhythmicity is also found at a physiological level and contributes through circadian rhythms, in particular the melatonin rhythm, to the existence of a biological time. Alterations of temporality in mental disorders will be also discussed in this article illustrated by certain developmental disorders such as autism spectrum disorders. In particular, the hypothesis will be developed that children with autism would need to create discontinuity out of continuity through stereotyped behaviors and/or interests. This discontinuity repeated at regular intervals could have been

  2. Wait-Time and Multiple Representation Levels in Chemistry Lessons

    ERIC Educational Resources Information Center

    Li, Winnie Sim Siew; Arshad, Mohammad Yusof

    2014-01-01

    Wait-time is an important aspect in a teaching and learning process, especially after the teacher has posed questions to students, as it is one of the factors in determining quality of students' responses. This article describes the practices of wait-time one after teacher's questions at multiple representation levels among twenty three chemistry…

  3. Negative emotion boosts quality of visual working memory representation.

    PubMed

    Xie, Weizhen; Zhang, Weiwei

    2016-08-01

    Negative emotion impacts a variety of cognitive processes, including working memory (WM). The present study investigated whether negative emotion modulated WM capacity (quantity) or resolution (quality), 2 independent limits on WM storage. In Experiment 1, observers tried to remember several colors over 1-s delay and then recalled the color of a randomly picked memory item by clicking a best-matching color on a continuous color wheel. On each trial, before the visual WM task, 1 of 3 emotion conditions (negative, neutral, or positive) was induced by having observers to rate the valence of an International Affective Picture System image. Visual WM under negative emotion showed enhanced resolution compared with neutral and positive conditions, whereas the number of retained representations was comparable across the 3 emotion conditions. These effects were generalized to closed-contour shapes in Experiment 2. To isolate the locus of these effects, Experiment 3 adopted an iconic memory version of the color recall task by eliminating the 1-s retention interval. No significant change in the quantity or quality of iconic memory was observed, suggesting that the resolution effects in the first 2 experiments were critically dependent on the need to retain memory representations over a short period of time. Taken together, these results suggest that negative emotion selectively boosts visual WM quality, supporting the dissociable nature quantitative and qualitative aspects of visual WM representation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. [Social representations of elders' quality of life].

    PubMed

    Silva, Luípa Michele; Silva, Antonia Oliveira; Tura, Luiz Fernando Rangel; Moreira, Maria Adelaide Silva Paredes; Rodrigues, Rosalina Aparecida Partezani; Marques, Maria do Céu

    2012-03-01

    This study aimed to identify elders' social representations of quality of life. This is an exploratory study with a sample of 240 elders, of both sexes. For data collection we used a Free Association Test with Words, using the inductive stimulus 'quality of life" and sociodemographic variables. The interviews were analyzed with the software Alceste. Of the 240 studied eslders, 167 were women, with the dominant age from 60 to 69 years, income between two and three minimum wages, most of the married and with catholicism as the predominant religion. The results from Alceste pointed towards seven hierarchical classes: accessibility, work, activity, support affection, care and interactions. Social representations of quality of life by elders can support professionals in understanding the adhesion to preventive practices for the elderly and in strengthening policies directed to this population.

  5. A scale-invariant internal representation of time.

    PubMed

    Shankar, Karthik H; Howard, Marc W

    2012-01-01

    We propose a principled way to construct an internal representation of the temporal stimulus history leading up to the present moment. A set of leaky integrators performs a Laplace transform on the stimulus function, and a linear operator approximates the inversion of the Laplace transform. The result is a representation of stimulus history that retains information about the temporal sequence of stimuli. This procedure naturally represents more recent stimuli more accurately than less recent stimuli; the decrement in accuracy is precisely scale invariant. This procedure also yields time cells that fire at specific latencies following the stimulus with a scale-invariant temporal spread. Combined with a simple associative memory, this representation gives rise to a moment-to-moment prediction that is also scale invariant in time. We propose that this scale-invariant representation of temporal stimulus history could serve as an underlying representation accessible to higher-level behavioral and cognitive mechanisms. In order to illustrate the potential utility of this scale-invariant representation in a variety of fields, we sketch applications using minimal performance functions to problems in classical conditioning, interval timing, scale-invariant learning in autoshaping, and the persistence of the recency effect in episodic memory across timescales.

  6. Time representations in social science.

    PubMed

    Schulz, Yvan

    2012-12-01

    Time has long been a major topic of study in social science, as in other sciences or in philosophy. Social scientists have tended to focus on collective representations of time, and on the ways in which these representations shape our everyday experiences. This contribution addresses work from such disciplines as anthropology, sociology and history. It focuses on several of the main theories that have preoccupied specialists in social science, such as the alleged "acceleration" of life and overgrowth of the present in contemporary Western societies, or the distinction between so-called linear and circular conceptions of time. The presentation of these theories is accompanied by some of the critiques they have provoked, in order to enable the reader to form her or his own opinion of them.

  7. Time representations in social science

    PubMed Central

    Schulz, Yvan

    2012-01-01

    Time has long been a major topic of study in social science, as in other sciences or in philosophy. Social scientists have tended to focus on collective representations of time, and on the ways in which these representations shape our everyday experiences. This contribution addresses work from such disciplines as anthropology, sociology and history. It focuses on several of the main theories that have preoccupied specialists in social science, such as the alleged “acceleration” of life and overgrowth of the present in contemporary Western societies, or the distinction between so-called linear and circular conceptions of time. The presentation of these theories is accompanied by some of the critiques they have provoked, in order to enable the reader to form her or his own opinion of them. PMID:23393420

  8. An evaluation of space time cube representation of spatiotemporal patterns.

    PubMed

    Kristensson, Per Ola; Dahlbäck, Nils; Anundi, Daniel; Björnstad, Marius; Gillberg, Hanna; Haraldsson, Jonas; Mårtensson, Ingrid; Nordvall, Mathias; Ståhl, Josefine

    2009-01-01

    Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a data set to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap, we report on a between-subjects experiment comparing novice users' error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions, the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the data set, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users analyzing complex spatiotemporal patterns.

  9. The representation of vulnerable populations in quality improvement studies.

    PubMed

    Rolnitsky, Asaph; Kirtsman, Maksim; Goldberg, Hanna R; Dunn, Michael; Bell, Chaim M

    2018-05-01

    A mapping review to quantify representation of vulnerable populations, who suffer from disparity and often inequitable healthcare, in quality improvement (QI) research. Studies published in 2004-2014 inclusive from Medline, Embase and Cochrane databases for English language research with the terms 'quality improvement' or 'quality control' or 'QI' and 'plan-do-study-act' or 'PDSA' in the years 2004-2014 inclusively. Published clinical research that was a QI-themed, as identified by its declared search terms, MESH terms, abstract or title. Three reviewers identified the eligible studies independently. Excluded were publications that were not trials, evaluations or analyses. Of 2039 results, 1660 were eligible for inclusion. There were 586 (33.5%) publications that targeted a specific vulnerable population: children (184, 10.54%), mental health patients (125, 7.16%), the elderly (100, 5.73%), women (57, 3.27%), the poor (30, 1.72%), rural residents (29, 1.66%), visible minorities (27, 1.55%), the terminally ill (17, 0.97%), adolescents (16, 0.92%) and prisoners (1 study). Seventy-four articles targeted two or more vulnerable populations, and 11 targeted three population categories. On average, there were 158 QI research studies published per year, increasing from 69 in 2004 to 396 in 2014 (R2 = 0.7, P < 0.001). The relative representation of vulnerable populations had a mean of 33.58% and was stable over the time period (standard deviation (SD) = 5.9%, R2 = 0.001). Seven countries contributed to over 85% of the publications targeting vulnerable populations, with the USA contributing 62% of the studies. Over 11 years, there has been a marked increase in QI publications. Roughly one-third of all published QI research is on vulnerable populations, a stable proportion over time. Nevertheless, some vulnerable populations are under-represented. Increased education, resources and attention are encouraged to improve the health of vulnerable populations through focused QI

  10. Action simulation: time course and representational mechanisms

    PubMed Central

    Springer, Anne; Parkinson, Jim; Prinz, Wolfgang

    2013-01-01

    The notion of action simulation refers to the ability to re-enact foreign actions (i.e., actions observed in other individuals). Simulating others' actions implies a mirroring of their activities, based on one's own sensorimotor competencies. Here, we discuss theoretical and experimental approaches to action simulation and the study of its representational underpinnings. One focus of our discussion is on the timing of internal simulation and its relation to the timing of external action, and a paradigm that requires participants to predict the future course of actions that are temporarily occluded from view. We address transitions between perceptual mechanisms (referring to action representation before and after occlusion) and simulation mechanisms (referring to action representation during occlusion). Findings suggest that action simulation runs in real-time; acting on newly created action representations rather than relying on continuous visual extrapolations. A further focus of our discussion pertains to the functional characteristics of the mechanisms involved in predicting other people's actions. We propose that two processes are engaged, dynamic updating and static matching, which may draw on both semantic and motor information. In a concluding section, we discuss these findings in the context of broader theoretical issues related to action and event representation, arguing that a detailed functional analysis of action simulation in cognitive, neural, and computational terms may help to further advance our understanding of action cognition and motor control. PMID:23847563

  11. Losing track of time through delayed body representations.

    PubMed

    Fritz, Thomas H; Steixner, Agnes; Boettger, Joachim; Villringer, Arno

    2015-01-01

    The ability to keep track of time is perceived as crucial in most human societies. However, to lose track of time may also serve an important social role, associated with recreational purpose. To this end a number of social technologies are employed, some of which may relate to a manipulation of time perception through a modulation of body representation. Here, we investigated an influence of real-time or delayed videos of own-body representations on time perception in an experimental setup with virtual mirrors. Seventy participants were asked to either stay in the installation until they thought that a defined time (90 s) had passed, or they were encouraged to stay in the installation as long as they wanted and after exiting were asked to estimate the duration of their stay. Results show that a modulation of body representation by time-delayed representations of the mirror-video displays influenced time perception. Furthermore, these time-delayed conditions were associated with a greater sense of arousal and intoxication. We suggest that feeding in references to the immediate past into working memory could be the underlying mental mechanism mediating the observed modulation of time perception. We argue that such an influence on time perception would probably not only be achieved visually, but might also work with acoustic references to the immediate past (e.g., with music).

  12. Children's Eye-Movements during Reading Reflect the Quality of Lexical Representations: An Individual Differences Approach

    ERIC Educational Resources Information Center

    Luke, Steven G.; Henderson, John M.; Ferreira, Fernanda

    2015-01-01

    The lexical quality hypothesis (Perfetti & Hart, 2002) suggests that skilled reading requires high-quality lexical representations. In children, these representations are still developing, and it has been suggested that this development leads to more adult-like eye-movement behavior during the reading of connected text. To test this idea, a…

  13. Community representation in hospital decision making: a literature review.

    PubMed

    Murray, Zoë

    2015-06-01

    Advancing quality in health services requires structures and processes that are informed by consumer input. Although this agenda is well recognised, few researchers have focussed on the establishment and maintenance of customer input throughout the structures and processes used to produce high-quality, safe care. We present an analysis of literature outlining the barriers and enablers involved in community representation in hospital governance. The review aimed to explore how community representation in hospital governance is achieved. Studies spanning 1997-2012 were analysed using Donabedian' s model of quality systems as a guide for categories of interest: structure, in relation to administration of quality; process, which is particularly concerned with cooperation and culture; and outcome, considered, in this case, to be the achievement of effective community representation on quality of care. There are limited published studies on community representation in hospital governance in Australia. What can be gleaned from the literature is: 1) quality subcommittees set up to assist Hospital Boards are a key structure for involving community representation in decision making around quality of care, and 2) there are a number of challenges to effectively developing the process of community representation in hospital governance: ambiguity and the potential for escalated indecision; inadequate value and consideration given to it by decision makers resulting in a lack of time and resources needed to support the community engagement strategy (time, facilitation, budgets); poor support and attitude amongst staff; and consumer issues, such as feeling isolated and intimidated by expert opinion. The analysis indicates that: quality subcommittees set up to assist boards are a key structure for involving community representation in decision making around quality of care. There are clearly a number of challenges to effectively developing the process of community representation in

  14. Image Quality Assessment Using the Joint Spatial/Spatial-Frequency Representation

    NASA Astrophysics Data System (ADS)

    Beghdadi, Azeddine; Iordache, Răzvan

    2006-12-01

    This paper demonstrates the usefulness of spatial/spatial-frequency representations in image quality assessment by introducing a new image dissimilarity measure based on 2D Wigner-Ville distribution (WVD). The properties of 2D WVD are shortly reviewed, and the important issue of choosing the analytic image is emphasized. The WVD-based measure is shown to be correlated with subjective human evaluation, which is the premise towards an image quality assessor developed on this principle.

  15. Using Verbal Protocol Data to Reflect the Quality of Problem Representation in Solving Algebra Word Problems.

    ERIC Educational Resources Information Center

    Bull, Elizabeth Kay

    The goal of this study was to find a way to quantify three criteria of representational quality, described by Greeno, so that it would be possible to examine statistically the relationship between representational quality and other variables related to problem solution. The sample consisted of 18 college students, 84 percent of whom had…

  16. Relations between maternal attachment representations and the quality of mother-infant interaction in preterm and full-term infants.

    PubMed

    Korja, Riikka; Ahlqvist-Björkroth, Sari; Savonlahti, Elina; Stolt, Suvi; Haataja, Leena; Lapinleimu, Helena; Piha, Jorma; Lehtonen, Liisa

    2010-06-01

    The aim of the study was to assess the relationship between maternal representations and the quality of mother-infant interaction in a group of preterm and full-term infants. The study groups consisted of 38 mothers and their preterm infants (representations were assessed using the Working Model of Child Interview (WMCI) at 12 months of the infant's corrected age. The quality of mother-infant interaction was studied using the Parent-Child Early Relational Assessment (PCERA) method at 6 and 12 months of the infant's corrected age. The results showed that maternal representations are related to the quality of mother-infant interaction in a parallel manner in preterm and full-term infants and their mothers. Furthermore, distorted representations were more strongly related to a higher number of areas of concern in mother-infant interaction than other representation classifications. Our results underline the importance of combined assessment of the subjective experiences of the mother and the quality of mother-infant interaction in clinical follow-up. This is the first study to describe the relation between maternal attachment representations and the quality of mother-infant interaction involving preterm infants. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Do Monkeys Think in Metaphors? Representations of Space and Time in Monkeys and Humans

    ERIC Educational Resources Information Center

    Merritt, Dustin J.; Casasanto, Daniel; Brannon, Elizabeth M.

    2010-01-01

    Research on the relationship between the representation of space and time has produced two contrasting proposals. ATOM posits that space and time are represented via a common magnitude system, suggesting a symmetrical relationship between space and time. According to metaphor theory, however, representations of time depend on representations of…

  18. Social representations of older adults regarding quality of life.

    PubMed

    Ferreira, Marielle Cristina Gonçalves; Tura, Luiz Fernando Rangel; Silva, Rafael Celestino da; Ferreira, Márcia de Assunção

    2017-01-01

    to identify the social representations of older adults regarding quality of life, and to analyze the care practices adopted to promote it. qualitative, exploratory, descriptive research, applying the Theory of Social Representations. Thirty older people from a Health Academy of Rio de Janeiro participated in the study. The software Alceste was used, and lexical analysis of data was performed. social representations of quality of life are based on the social determinants of health; they evidence knowledge and practices of care by valuing physical activities. The practices promoting quality of life comprise healthy eating habits, daily physical exercise, social participation, interaction and socialization, accomplishment of leisure activities and daily tasks with independence and autonomy, and support and family contact. the elderly have a global understanding of the concept of quality of life, coordinate knowledge built in daily life and knowledge coming from the technical-professional field, which evidences the multidimensionality of the concept. identificar as representações sociais de idosos sobre qualidade de vida e analisar as práticas de cuidado por eles adotadas para promovê-la. pesquisa qualitativa, exploratória, descritiva, com aplicação da Teoria das Representações Sociais. Participaram 30 idosos de uma Academia Carioca de Saúde. Utilizou-se o software Alceste e realizou-se análise lexical dos dados. As representações sociais de qualidade de vida sustentam-se nos determinantes sociais de saúde, evidenciam saberes e práticas de cuidado, com valorização de atividades físicas. As práticas promotoras de qualidade de vida congregam hábitos alimentares saudáveis, exercícios físicos diários, participação social, convívio e interação, realização de atividades de lazer e tarefas cotidianas com independência e autonomia, apoio e contato familiar. Os idosos têm uma compreensão global do conceito de qualidade de vida, articulam

  19. Space-Time Error Representation and Estimation in Navier-Stokes Calculations

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2006-01-01

    The mathematical framework for a-posteriori error estimation of functionals elucidated by Eriksson et al. [7] and Becker and Rannacher [3] is revisited in a space-time context. Using these theories, a hierarchy of exact and approximate error representation formulas are presented for use in error estimation and mesh adaptivity. Numerical space-time results for simple model problems as well as compressible Navier-Stokes flow at Re = 300 over a 2D circular cylinder are then presented to demonstrate elements of the error representation theory for time-dependent problems.

  20. A Sparse Representation-Based Deployment Method for Optimizing the Observation Quality of Camera Networks

    PubMed Central

    Wang, Chang; Qi, Fei; Shi, Guangming; Wang, Xiaotian

    2013-01-01

    Deployment is a critical issue affecting the quality of service of camera networks. The deployment aims at adopting the least number of cameras to cover the whole scene, which may have obstacles to occlude the line of sight, with expected observation quality. This is generally formulated as a non-convex optimization problem, which is hard to solve in polynomial time. In this paper, we propose an efficient convex solution for deployment optimizing the observation quality based on a novel anisotropic sensing model of cameras, which provides a reliable measurement of the observation quality. The deployment is formulated as the selection of a subset of nodes from a redundant initial deployment with numerous cameras, which is an ℓ0 minimization problem. Then, we relax this non-convex optimization to a convex ℓ1 minimization employing the sparse representation. Therefore, the high quality deployment is efficiently obtained via convex optimization. Simulation results confirm the effectiveness of the proposed camera deployment algorithms. PMID:23989826

  1. EliXR-TIME: A Temporal Knowledge Representation for Clinical Research Eligibility Criteria.

    PubMed

    Boland, Mary Regina; Tu, Samson W; Carini, Simona; Sim, Ida; Weng, Chunhua

    2012-01-01

    Effective clinical text processing requires accurate extraction and representation of temporal expressions. Multiple temporal information extraction models were developed but a similar need for extracting temporal expressions in eligibility criteria (e.g., for eligibility determination) remains. We identified the temporal knowledge representation requirements of eligibility criteria by reviewing 100 temporal criteria. We developed EliXR-TIME, a frame-based representation designed to support semantic annotation for temporal expressions in eligibility criteria by reusing applicable classes from well-known clinical temporal knowledge representations. We used EliXR-TIME to analyze a training set of 50 new temporal eligibility criteria. We evaluated EliXR-TIME using an additional random sample of 20 eligibility criteria with temporal expressions that have no overlap with the training data, yielding 92.7% (76 / 82) inter-coder agreement on sentence chunking and 72% (72 / 100) agreement on semantic annotation. We conclude that this knowledge representation can facilitate semantic annotation of the temporal expressions in eligibility criteria.

  2. Emerging Object Representations in the Visual System Predict Reaction Times for Categorization

    PubMed Central

    Ritchie, J. Brendan; Tovar, David A.; Carlson, Thomas A.

    2015-01-01

    Recognizing an object takes just a fraction of a second, less than the blink of an eye. Applying multivariate pattern analysis, or “brain decoding”, methods to magnetoencephalography (MEG) data has allowed researchers to characterize, in high temporal resolution, the emerging representation of object categories that underlie our capacity for rapid recognition. Shortly after stimulus onset, object exemplars cluster by category in a high-dimensional activation space in the brain. In this emerging activation space, the decodability of exemplar category varies over time, reflecting the brain’s transformation of visual inputs into coherent category representations. How do these emerging representations relate to categorization behavior? Recently it has been proposed that the distance of an exemplar representation from a categorical boundary in an activation space is critical for perceptual decision-making, and that reaction times should therefore correlate with distance from the boundary. The predictions of this distance hypothesis have been born out in human inferior temporal cortex (IT), an area of the brain crucial for the representation of object categories. When viewed in the context of a time varying neural signal, the optimal time to “read out” category information is when category representations in the brain are most decodable. Here, we show that the distance from a decision boundary through activation space, as measured using MEG decoding methods, correlates with reaction times for visual categorization during the period of peak decodability. Our results suggest that the brain begins to read out information about exemplar category at the optimal time for use in choice behaviour, and support the hypothesis that the structure of the representation for objects in the visual system is partially constitutive of the decision process in recognition. PMID:26107634

  3. Social representations of drinking water: subsidies for water quality surveillance programmes.

    PubMed

    Carmo, Rose Ferraz; Bevilacqua, Paula Dias; Barletto, Marisa

    2015-09-01

    A qualitative study was developed aimed at understanding the social representations of water consumption by a segment of the population of a small town in Brazil. A total of 19 semi-structured interviews were carried out and subjected to a content analysis addressing opinion on drinking water, characteristics of drinking water and its correlation to health and diseases, criteria for water usage and knowledge on the source and accountability for drinking-water quality. Social representations of drinking water predominantly incorporate the municipal water supply and sanitation provider and its quality. The identification of the municipal water supply provider as alone responsible for maintaining water quality indicated the lack of awareness of any health surveillance programme. For respondents, chlorine was accountable for conferring colour, odour and taste to the water. These physical parameters were reported as the cause for rejecting the water supplied and suggest the need to review the focus of health-educational strategies based on notions of hygiene and water-borne diseases. The study allowed the identification of elements that could contribute to positioning the consumers vs. services relationship on a level playing field, enabling dialogue and exchange of knowledge for the benefit of public health.

  4. User-based representation of time-resolved multimodal public transportation networks.

    PubMed

    Alessandretti, Laura; Karsai, Márton; Gauvin, Laetitia

    2016-07-01

    Multimodal transportation systems, with several coexisting services like bus, tram and metro, can be represented as time-resolved multilayer networks where the different transportation modes connecting the same set of nodes are associated with distinct network layers. Their quantitative description became possible recently due to openly accessible datasets describing the geo-localized transportation dynamics of large urban areas. Advancements call for novel analytics, which combines earlier established methods and exploits the inherent complexity of the data. Here, we provide a novel user-based representation of public transportation systems, which combines representations, accounting for the presence of multiple lines and reducing the effect of spatial embeddedness, while considering the total travel time, its variability across the schedule, and taking into account the number of transfers necessary. After the adjustment of earlier techniques to the novel representation framework, we analyse the public transportation systems of several French municipal areas and identify hidden patterns of privileged connections. Furthermore, we study their efficiency as compared to the commuting flow. The proposed representation could help to enhance resilience of local transportation systems to provide better design policies for future developments.

  5. User-based representation of time-resolved multimodal public transportation networks

    PubMed Central

    Alessandretti, Laura; Gauvin, Laetitia

    2016-01-01

    Multimodal transportation systems, with several coexisting services like bus, tram and metro, can be represented as time-resolved multilayer networks where the different transportation modes connecting the same set of nodes are associated with distinct network layers. Their quantitative description became possible recently due to openly accessible datasets describing the geo-localized transportation dynamics of large urban areas. Advancements call for novel analytics, which combines earlier established methods and exploits the inherent complexity of the data. Here, we provide a novel user-based representation of public transportation systems, which combines representations, accounting for the presence of multiple lines and reducing the effect of spatial embeddedness, while considering the total travel time, its variability across the schedule, and taking into account the number of transfers necessary. After the adjustment of earlier techniques to the novel representation framework, we analyse the public transportation systems of several French municipal areas and identify hidden patterns of privileged connections. Furthermore, we study their efficiency as compared to the commuting flow. The proposed representation could help to enhance resilience of local transportation systems to provide better design policies for future developments. PMID:27493773

  6. Individual differences in long-range time representation.

    PubMed

    Agostino, Camila S; Caetano, Marcelo S; Balci, Fuat; Claessens, Peter M E; Zana, Yossi

    2017-04-01

    On the basis of experimental data, long-range time representation has been proposed to follow a highly compressed power function, which has been hypothesized to explain the time inconsistency found in financial discount rate preferences. The aim of this study was to evaluate how well linear and power function models explain empirical data from individual participants tested in different procedural settings. The line paradigm was used in five different procedural variations with 35 adult participants. Data aggregated over the participants showed that fitted linear functions explained more than 98% of the variance in all procedures. A linear regression fit also outperformed a power model fit for the aggregated data. An individual-participant-based analysis showed better fits of a linear model to the data of 14 participants; better fits of a power function with an exponent β > 1 to the data of 12 participants; and better fits of a power function with β < 1 to the data of the remaining nine participants. Of the 35 volunteers, the null hypothesis β = 1 was rejected for 20. The dispersion of the individual β values was approximated well by a normal distribution. These results suggest that, on average, humans perceive long-range time intervals not in a highly compressed, biased manner, but rather in a linear pattern. However, individuals differ considerably in their subjective time scales. This contribution sheds new light on the average and individual psychophysical functions of long-range time representation, and suggests that any attribution of deviation from exponential discount rates in intertemporal choice to the compressed nature of subjective time must entail the characterization of subjective time on an individual-participant basis.

  7. Mathematical representation of joint time-chroma distributions

    NASA Astrophysics Data System (ADS)

    Wakefield, Gregory H.

    1999-11-01

    Originally coined by the sensory psychologist Roger Shepard in the 1960s, chroma transforms frequency into octave equivalence classes. By extending the concept of chroma to chroma strength and how it varies over time, we have demonstrated the utility of chroma in simplifying the processing and representation of signals dominated by harmonically-related narrowband components. These investigations have utilized an ad hoc procedure for calculating the chromagram from a given time-frequency distribution. The present paper is intended to put this ad hoc procedure on more sound mathematical ground.

  8. Inside stories: maternal representations of first time mothers from pre-pregnancy to early pregnancy.

    PubMed

    Hopkins, Julia; Clarke, David; Cross, Wendy

    2014-03-01

    According to the psychoanalytical literature, it is during pregnancy that maternal representations of the mother-infant relationship become activated. Midwives who are engaged with the mother and the baby have not drawn upon this concept in their practice. In order for this to happen, it is important to understand better the nature of maternal representations and when they are activated from empirical studies. The research question is: what are the maternal representations of a group of first time mothers from pre-pregnancy, early pregnancy and to the first ultrasound. A narrative approach was used to gain insight into the maternal representations of first time pregnant womens' account of their representations. The analysis method was based on thematic approach. Fifteen women aged between 23 and 38 years. A midwives clinic attached to a tertiary hospital in Melbourne, Australia. First-time pregnant women's maternal representations were activated when a woman begins to plan her pregnancy ('the time is right'), again at the onset of physical changes to her body as a result of conception ('my body is changing'), and at the first early ultrasound at around twelve weeks ('it' is a real baby). Maternal representations are important for the midwife and pregnant women because this concept provides another understanding in relation to the psychological dimension of pregnancy. Copyright © 2013 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  9. On the performance of metrics to predict quality in point cloud representations

    NASA Astrophysics Data System (ADS)

    Alexiou, Evangelos; Ebrahimi, Touradj

    2017-09-01

    Point clouds are a promising alternative for immersive representation of visual contents. Recently, an increased interest has been observed in the acquisition, processing and rendering of this modality. Although subjective and objective evaluations are critical in order to assess the visual quality of media content, they still remain open problems for point cloud representation. In this paper we focus our efforts on subjective quality assessment of point cloud geometry, subject to typical types of impairments such as noise corruption and compression-like distortions. In particular, we propose a subjective methodology that is closer to real-life scenarios of point cloud visualization. The performance of the state-of-the-art objective metrics is assessed by considering the subjective scores as the ground truth. Moreover, we investigate the impact of adopting different test methodologies by comparing them. Advantages and drawbacks of every approach are reported, based on statistical analysis. The results and conclusions of this work provide useful insights that could be considered in future experimentation.

  10. Short-time fractional Fourier methods for the time-frequency representation of chirp signals.

    PubMed

    Capus, Chris; Brown, Keith

    2003-06-01

    The fractional Fourier transform (FrFT) provides a valuable tool for the analysis of linear chirp signals. This paper develops two short-time FrFT variants which are suited to the analysis of multicomponent and nonlinear chirp signals. Outputs have similar properties to the short-time Fourier transform (STFT) but show improved time-frequency resolution. The FrFT is a parameterized transform with parameter, a, related to chirp rate. The two short-time implementations differ in how the value of a is chosen. In the first, a global optimization procedure selects one value of a with reference to the entire signal. In the second, a values are selected independently for each windowed section. Comparative variance measures based on the Gaussian function are given and are shown to be consistent with the uncertainty principle in fractional domains. For appropriately chosen FrFT orders, the derived fractional domain uncertainty relationship is minimized for Gaussian windowed linear chirp signals. The two short-time FrFT algorithms have complementary strengths demonstrated by time-frequency representations for a multicomponent bat chirp, a highly nonlinear quadratic chirp, and an output pulse from a finite-difference sonar model with dispersive change. These representations illustrate the improvements obtained in using FrFT based algorithms compared to the STFT.

  11. Time and timelessness: inscription and representation.

    PubMed

    Levine, Howard B

    2009-04-01

    Time is a real dimension of the physical universe and a subjective matter of mind. Depending on their relationship to Eros and the Death Instinct, our feelings about time and timelessness may serve disparate ends- positive or negative, constructive or destructive. The conflicts that emerge between time and timelessness will be affected by and drawn into our conflicts between the reality principle and the pleasure principle and by our capacity to acknowledge and bear the losses, hurts, and disappointments with which life presents us and the hopes and possibilities that life may hold. The "making" and inscribing of time-i.e., articulating and ordering mental elements in the act of representation, symbolization, and verbal linkage of previously unrepresented and inchoate proto-mental elements and states-are central to psychic functioning and the psychoanalytic process. Clinical material will illustrate these processes and their relation to the binding and mastery of trauma: internal and external, massive and cumulative.

  12. [Quality of life and AIDS from the perspective of persons living with HIV: a preliminary contribution by the structural approach to social representations].

    PubMed

    Costa, Tadeu Lessa da; Oliveira, Denize Cristina de; Formozo, Gláucia Alexandre

    2015-02-01

    This descriptive qualitative study had the following objectives: identify the content and structure of social representations of quality of life and AIDS for persons living with the disease and analyze the structural relations between such representations. The sample included 103 persons with HIV in a municipality (county) in northern Rio de Janeiro State, Brazil. The methodology used free and hierarchical recall of words for the inductive terms "AIDS" and "quality of life for persons with AIDS", with analysis by the EVOC software. The probable core representation of AIDS was identified as: prejudice, treatment, family, and medications, with the same components identified for quality of life, plus healthy diet and work. We thus elaborated the hypothesis of joint, coordinated representational interaction, fitting the representations together, with implications for the symbolic grasp and quality of life for persons living with HIV. The findings provide backing for collective and individual health approaches to improve quality of life in this group.

  13. Quality of Life as a Social Representation in China: A Qualitative Study

    ERIC Educational Resources Information Center

    Liu, Li

    2006-01-01

    This study explores the meaning of quality of life (QOL) in China from the perspective of social representations. The data were collected by open-ended individual interviews with 16 ordinary Chinese people. The study shows that social thinking about QOL in Chinese society is activated in five critical domains of life: health, family, work, social…

  14. Time drawings: Spatial representation of temporal concepts.

    PubMed

    Leone, María Juliana; Salles, Alejo; Pulver, Alejandro; Golombek, Diego Andrés; Sigman, Mariano

    2018-03-01

    Time representation is a fundamental property of human cognition. Ample evidence shows that time (and numbers) are represented in space. However, how the conceptual mapping varies across individuals, scales, and temporal structures remains largely unknown. To investigate this issue, we conducted a large online study consisting in five experiments that addressed different time scales and topology: Zones of time, Seasons, Days of the week, Parts of the day and Timeline. Participants were asked to map different kinds of time events to a location in space and to determine their size and color. Results showed that time is organized in space in a hierarchical progression: some features appear to be universal (i.e. selection order), others are shaped by how time is organized in distinct cultures (i.e. location order) and, finally, some aspects vary depending on individual features such as age, gender, and chronotype (i.e. size and color). Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Dissociating neural variability related to stimulus quality and response times in perceptual decision-making.

    PubMed

    Bode, Stefan; Bennett, Daniel; Sewell, David K; Paton, Bryan; Egan, Gary F; Smith, Philip L; Murawski, Carsten

    2018-03-01

    According to sequential sampling models, perceptual decision-making is based on accumulation of noisy evidence towards a decision threshold. The speed with which a decision is reached is determined by both the quality of incoming sensory information and random trial-by-trial variability in the encoded stimulus representations. To investigate those decision dynamics at the neural level, participants made perceptual decisions while functional magnetic resonance imaging (fMRI) was conducted. On each trial, participants judged whether an image presented under conditions of high, medium, or low visual noise showed a piano or a chair. Higher stimulus quality (lower visual noise) was associated with increased activation in bilateral medial occipito-temporal cortex and ventral striatum. Lower stimulus quality was related to stronger activation in posterior parietal cortex (PPC) and dorsolateral prefrontal cortex (DLPFC). When stimulus quality was fixed, faster response times were associated with a positive parametric modulation of activation in medial prefrontal and orbitofrontal cortex, while slower response times were again related to more activation in PPC, DLPFC and insula. Our results suggest that distinct neural networks were sensitive to the quality of stimulus information, and to trial-to-trial variability in the encoded stimulus representations, but that reaching a decision was a consequence of their joint activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. 39 CFR 966.6 - Filing, docketing and serving documents; computation of time; representation of parties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... business hours are between 8:15 a.m. and 4:45 p.m., eastern standard or daylight saving time as appropriate...; computation of time; representation of parties. 966.6 Section 966.6 Postal Service UNITED STATES POSTAL... time; representation of parties. (a) Filing. All documents required under this part must be filed by...

  17. 39 CFR 966.6 - Filing, docketing and serving documents; computation of time; representation of parties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... business hours are between 8:15 a.m. and 4:45 p.m., eastern standard or daylight saving time as appropriate...; computation of time; representation of parties. 966.6 Section 966.6 Postal Service UNITED STATES POSTAL... time; representation of parties. (a) Filing. All documents required under this part must be filed by...

  18. 39 CFR 966.6 - Filing, docketing and serving documents; computation of time; representation of parties.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... business hours are between 8:15 a.m. and 4:45 p.m., eastern standard or daylight saving time as appropriate...; computation of time; representation of parties. 966.6 Section 966.6 Postal Service UNITED STATES POSTAL... time; representation of parties. (a) Filing. All documents required under this part must be filed by...

  19. 39 CFR 966.6 - Filing, docketing and serving documents; computation of time; representation of parties.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... are between 8:45 a.m. and 4:45 p.m., eastern standard or daylight saving time as appropriate during...; computation of time; representation of parties. 966.6 Section 966.6 Postal Service UNITED STATES POSTAL... time; representation of parties. (a) Filing. All documents required under this part must be filed by...

  20. 39 CFR 966.6 - Filing, docketing and serving documents; computation of time; representation of parties.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... are between 8:45 a.m. and 4:45 p.m., eastern standard or daylight saving time as appropriate during...; computation of time; representation of parties. 966.6 Section 966.6 Postal Service UNITED STATES POSTAL... time; representation of parties. (a) Filing. All documents required under this part must be filed by...

  1. The Influence of Representations of Attachment, Maternal-Adolescent Relationship Quality, and Maternal Monitoring on Adolescent Substance Use: A 2-Year Longitudinal Examination

    ERIC Educational Resources Information Center

    Branstetter, Steven A.; Furman, Wyndol; Cottrell, Lesley

    2009-01-01

    The present study examined the hypotheses that more secure representations of attachments to parents are associated with less adolescent substance use over time and that this link is mediated through relationship quality and monitoring. A sample of 200 adolescents (M = 14-16 years), their mothers, and close friends were assessed over 2 years.…

  2. Analytical representation for ephemeris with short time-span - Aplication to the longitude of Titan

    NASA Astrophysics Data System (ADS)

    XI, Xiaojin; Vienne, Alain

    2017-06-01

    Ephemerides of the natural satellites are generally presented in the form of tables, or computed on line, for example like some best ones from JPL or IMCCE. In the sense of fitted the more recent and best observations, analytical representation is not so sufficient, although these representations are valid over a very long time-span. But in some analytical studies, it could be benefitted to have the both advantages. We present here the case of the study of the rotation of Titan, in which we need a representation of the true longitude of Titan. Frequency analysis can be used partially on the numerical ephemerides because of limited time-span. To complete it, we use the form of the analytical representation to obtained their numerical parameters.The method is presented and some results are given.

  3. Mid-level image representations for real-time heart view plane classification of echocardiograms.

    PubMed

    Penatti, Otávio A B; Werneck, Rafael de O; de Almeida, Waldir R; Stein, Bernardo V; Pazinato, Daniel V; Mendes Júnior, Pedro R; Torres, Ricardo da S; Rocha, Anderson

    2015-11-01

    In this paper, we explore mid-level image representations for real-time heart view plane classification of 2D echocardiogram ultrasound images. The proposed representations rely on bags of visual words, successfully used by the computer vision community in visual recognition problems. An important element of the proposed representations is the image sampling with large regions, drastically reducing the execution time of the image characterization procedure. Throughout an extensive set of experiments, we evaluate the proposed approach against different image descriptors for classifying four heart view planes. The results show that our approach is effective and efficient for the target problem, making it suitable for use in real-time setups. The proposed representations are also robust to different image transformations, e.g., downsampling, noise filtering, and different machine learning classifiers, keeping classification accuracy above 90%. Feature extraction can be performed in 30 fps or 60 fps in some cases. This paper also includes an in-depth review of the literature in the area of automatic echocardiogram view classification giving the reader a through comprehension of this field of study. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Transformation from a pure time delay to a mixed time and phase delay representation in the auditory forebrain pathway.

    PubMed

    Vonderschen, Katrin; Wagner, Hermann

    2012-04-25

    Birds and mammals exploit interaural time differences (ITDs) for sound localization. Subsequent to ITD detection by brainstem neurons, ITD processing continues in parallel midbrain and forebrain pathways. In the barn owl, both ITD detection and processing in the midbrain are specialized to extract ITDs independent of frequency, which amounts to a pure time delay representation. Recent results have elucidated different mechanisms of ITD detection in mammals, which lead to a representation of small ITDs in high-frequency channels and large ITDs in low-frequency channels, resembling a phase delay representation. However, the detection mechanism does not prevent a change in ITD representation at higher processing stages. Here we analyze ITD tuning across frequency channels with pure tone and noise stimuli in neurons of the barn owl's auditory arcopallium, a nucleus at the endpoint of the forebrain pathway. To extend the analysis of ITD representation across frequency bands to a large neural population, we employed Fourier analysis for the spectral decomposition of ITD curves recorded with noise stimuli. This method was validated using physiological as well as model data. We found that low frequencies convey sensitivity to large ITDs, whereas high frequencies convey sensitivity to small ITDs. Moreover, different linear phase frequency regimes in the high-frequency and low-frequency ranges suggested an independent convergence of inputs from these frequency channels. Our results are consistent with ITD being remodeled toward a phase delay representation along the forebrain pathway. This indicates that sensory representations may undergo substantial reorganization, presumably in relation to specific behavioral output.

  5. Representational constraints on the development of memory and metamemory: a developmental-representational theory.

    PubMed

    Ceci, Stephen J; Fitneva, Stanka A; Williams, Wendy M

    2010-04-01

    Traditional accounts of memory development suggest that maturation of prefrontal cortex (PFC) enables efficient metamemory, which enhances memory. An alternative theory is described, in which changes in early memory and metamemory are mediated by representational changes, independent of PFC maturation. In a pilot study and Experiment 1, younger children failed to recognize previously presented pictures, yet the children could identify the context in which they occurred, suggesting these failures resulted from inefficient metamemory. Older children seldom exhibited such failure. Experiment 2 established that this was not due to retrieval-time recoding. Experiment 3 suggested that young children's representation of a picture's attributes explained their metamemory failure. Experiment 4 demonstrated that metamemory is age-invariant when representational quality is controlled: When stimuli were equivalently represented, age differences in memory and metamemory declined. These findings do not support the traditional view that as children develop, neural maturation permits more efficient monitoring, which leads to improved memory. These findings support a theory based on developmental-representational synthesis, in which constraints on metamemory are independent of neurological development; representational features drive early memory to a greater extent than previously acknowledged, suggesting that neural maturation has been overimputed as a source of early metamemory and memory failure. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  6. Representations of time coordinates in FITS. Time and relative dimension in space

    NASA Astrophysics Data System (ADS)

    Rots, Arnold H.; Bunclark, Peter S.; Calabretta, Mark R.; Allen, Steven L.; Manchester, Richard N.; Thompson, William T.

    2015-02-01

    Context. In a series of three previous papers, formulation and specifics of the representation of world coordinate transformations in FITS data have been presented. This fourth paper deals with encoding time. Aims: Time on all scales and precisions known in astronomical datasets is to be described in an unambiguous, complete, and self-consistent manner. Methods: Employing the well-established World Coordinate System (WCS) framework, and maintaining compatibility with the FITS conventions that are currently in use to specify time, the standard is extended to describe rigorously the time coordinate. Results: World coordinate functions are defined for temporal axes sampled linearly and as specified by a lookup table. The resulting standard is consistent with the existing FITS WCS standards and specifies a metadata set that achieves the aims enunciated above.

  7. Investigation of Time Series Representations and Similarity Measures for Structural Damage Pattern Recognition

    PubMed Central

    Swartz, R. Andrew

    2013-01-01

    This paper investigates the time series representation methods and similarity measures for sensor data feature extraction and structural damage pattern recognition. Both model-based time series representation and dimensionality reduction methods are studied to compare the effectiveness of feature extraction for damage pattern recognition. The evaluation of feature extraction methods is performed by examining the separation of feature vectors among different damage patterns and the pattern recognition success rate. In addition, the impact of similarity measures on the pattern recognition success rate and the metrics for damage localization are also investigated. The test data used in this study are from the System Identification to Monitor Civil Engineering Structures (SIMCES) Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage test case datasets and damage test data with different damage modalities are used. The simulation results show that both time series representation methods and similarity measures have significant impact on the pattern recognition success rate. PMID:24191136

  8. Rapid production of optimal-quality reduced-resolution representations of very large databases

    DOEpatents

    Sigeti, David E.; Duchaineau, Mark; Miller, Mark C.; Wolinsky, Murray; Aldrich, Charles; Mineev-Weinstein, Mark B.

    2001-01-01

    View space representation data is produced in real time from a world space database representing terrain features. The world space database is first preprocessed. A database is formed having one element for each spatial region corresponding to a finest selected level of detail. A multiresolution database is then formed by merging elements and a strict error metric is computed for each element at each level of detail that is independent of parameters defining the view space. The multiresolution database and associated strict error metrics are then processed in real time for real time frame representations. View parameters for a view volume comprising a view location and field of view are selected. The error metric with the view parameters is converted to a view-dependent error metric. Elements with the coarsest resolution are chosen for an initial representation. Data set first elements from the initial representation data set are selected that are at least partially within the view volume. The first elements are placed in a split queue ordered by the value of the view-dependent error metric. If the number of first elements in the queue meets or exceeds a predetermined number of elements or whether the largest error metric is less than or equal to a selected upper error metric bound, the element at the head of the queue is force split and the resulting elements are inserted into the queue. Force splitting is continued until the determination is positive to form a first multiresolution set of elements. The first multiresolution set of elements is then outputted as reduced resolution view space data representing the terrain features.

  9. Representation of Time-Relevant Common Data Elements in the Cancer Data Standards Repository: Statistical Evaluation of an Ontological Approach

    PubMed Central

    Chen, Henry W; Du, Jingcheng; Song, Hsing-Yi; Liu, Xiangyu; Jiang, Guoqian

    2018-01-01

    Background Today, there is an increasing need to centralize and standardize electronic health data within clinical research as the volume of data continues to balloon. Domain-specific common data elements (CDEs) are emerging as a standard approach to clinical research data capturing and reporting. Recent efforts to standardize clinical study CDEs have been of great benefit in facilitating data integration and data sharing. The importance of the temporal dimension of clinical research studies has been well recognized; however, very few studies have focused on the formal representation of temporal constraints and temporal relationships within clinical research data in the biomedical research community. In particular, temporal information can be extremely powerful to enable high-quality cancer research. Objective The objective of the study was to develop and evaluate an ontological approach to represent the temporal aspects of cancer study CDEs. Methods We used CDEs recorded in the National Cancer Institute (NCI) Cancer Data Standards Repository (caDSR) and created a CDE parser to extract time-relevant CDEs from the caDSR. Using the Web Ontology Language (OWL)–based Time Event Ontology (TEO), we manually derived representative patterns to semantically model the temporal components of the CDEs using an observing set of randomly selected time-related CDEs (n=600) to create a set of TEO ontological representation patterns. In evaluating TEO’s ability to represent the temporal components of the CDEs, this set of representation patterns was tested against two test sets of randomly selected time-related CDEs (n=425). Results It was found that 94.2% (801/850) of the CDEs in the test sets could be represented by the TEO representation patterns. Conclusions In conclusion, TEO is a good ontological model for representing the temporal components of the CDEs recorded in caDSR. Our representative model can harness the Semantic Web reasoning and inferencing functionalities and

  10. Subjective time in near and far representational space.

    PubMed

    Zäch, Peter; Brugger, Peter

    2008-03-01

    We set out to measure healthy subjects' estimates of temporal duration during the imagination of left and right sides of an object located in either near or far representational space. Duration estimates during the observation of small-scale scenes are shorter than those during the observation of the same scenes presented in a larger scale. It is not known whether a similar space-time relationship also exists for objects merely imagined and whether subjective time varies with a forced focus on either the left or the right side of a mental image. Eyes closed, 40 healthy, right-handed subjects (20 women) had to imagine a standard Swiss railway clock either at a distance of 30 cm or 6 m. They were required to focus on the imagined movement of the second hand and provide estimates of elapsed durations of 15 and 30 seconds. Separate estimates for the left and right side of the clockface were obtained. The magnitude of implicit line bisection error was assessed in a separate task. Irrespective of side of the clockface, duration estimates were shorter for the clockface imagined in far space than for the one imagined immediately in front of the inner eye. For men, but not women, duration judgments (left relative to right side of the clockface) correlated with relative lengths of left and right line segments in the bisection task. Subjective time seems to run faster during the inspection of a small-size compared with a larger-size mental image. This finding underlines the equivalence of the laws that guide both exploration and representation of space. Together with the observed correlation between spatial and temporal measures of lateral asymmetries, the result also illustrates the conceptual similarities in the processing of space and time. The normative data presented here may be useful for clinical applications of the paradigm in patients with hemispatial neglect or a distorted perception of time.

  11. Evaluating imaging quality between different ghost imaging systems based on the coherent-mode representation

    NASA Astrophysics Data System (ADS)

    Shen, Qian; Bai, Yanfeng; Shi, Xiaohui; Nan, Suqin; Qu, Lijie; Li, Hengxing; Fu, Xiquan

    2017-07-01

    The difference in imaging quality between different ghost imaging schemes is studied by using coherent-mode representation of partially coherent fields. It is shown that the difference mainly relies on the distribution changes of the decomposition coefficients of the object imaged when the light source is fixed. For a new-designed imaging scheme, we only need to give the distribution of the decomposition coefficients and compare them with that of the existing imaging system, thus one can predict imaging quality. By choosing several typical ghost imaging systems, we theoretically and experimentally verify our results.

  12. Cross-cultural differences in mental representations of time: evidence from an implicit nonlinguistic task.

    PubMed

    Fuhrman, Orly; Boroditsky, Lera

    2010-11-01

    Across cultures people construct spatial representations of time. However, the particular spatial layouts created to represent time may differ across cultures. This paper examines whether people automatically access and use culturally specific spatial representations when reasoning about time. In Experiment 1, we asked Hebrew and English speakers to arrange pictures depicting temporal sequences of natural events, and to point to the hypothesized location of events relative to a reference point. In both tasks, English speakers (who read left to right) arranged temporal sequences to progress from left to right, whereas Hebrew speakers (who read right to left) arranged them from right to left, replicating previous work. In Experiments 2 and 3, we asked the participants to make rapid temporal order judgments about pairs of pictures presented one after the other (i.e., to decide whether the second picture showed a conceptually earlier or later time-point of an event than the first picture). Participants made responses using two adjacent keyboard keys. English speakers were faster to make "earlier" judgments when the "earlier" response needed to be made with the left response key than with the right response key. Hebrew speakers showed exactly the reverse pattern. Asking participants to use a space-time mapping inconsistent with the one suggested by writing direction in their language created interference, suggesting that participants were automatically creating writing-direction consistent spatial representations in the course of their normal temporal reasoning. It appears that people automatically access culturally specific spatial representations when making temporal judgments even in nonlinguistic tasks. Copyright © 2010 Cognitive Science Society, Inc.

  13. Time-dependent importance sampling in semiclassical initial value representation calculations for time correlation functions.

    PubMed

    Tao, Guohua; Miller, William H

    2011-07-14

    An efficient time-dependent importance sampling method is developed for the Monte Carlo calculation of time correlation functions via the initial value representation (IVR) of semiclassical (SC) theory. A prefactor-free time-dependent sampling function weights the importance of a trajectory based on the magnitude of its contribution to the time correlation function, and global trial moves are used to facilitate the efficient sampling the phase space of initial conditions. The method can be generally applied to sampling rare events efficiently while avoiding being trapped in a local region of the phase space. Results presented in the paper for two system-bath models demonstrate the efficiency of this new importance sampling method for full SC-IVR calculations.

  14. Developing quality indicators and auditing protocols from formal guideline models: knowledge representation and transformations.

    PubMed

    Advani, Aneel; Goldstein, Mary; Shahar, Yuval; Musen, Mark A

    2003-01-01

    Automated quality assessment of clinician actions and patient outcomes is a central problem in guideline- or standards-based medical care. In this paper we describe a model representation and algorithm for deriving structured quality indicators and auditing protocols from formalized specifications of guidelines used in decision support systems. We apply the model and algorithm to the assessment of physician concordance with a guideline knowledge model for hypertension used in a decision-support system. The properties of our solution include the ability to derive automatically context-specific and case-mix-adjusted quality indicators that can model global or local levels of detail about the guideline parameterized by defining the reliability of each indicator or element of the guideline.

  15. Changes in the representation of space and time while listening to music

    PubMed Central

    Schäfer, Thomas; Fachner, Jörg; Smukalla, Mario

    2013-01-01

    Music is known to alter people's ordinary experience of space and time. Not only does this challenge the concept of invariant space and time tacitly assumed in psychology but it may also help us understand how music works and how music can be understood as an embodied experience. Yet research about these alterations is in its infancy. This review is intended to delineate a future research agenda. We review experimental evidence and subjective reports of the influence of music on the representation of space and time and present prominent approaches to explaining these effects. We discuss the role of absorption and altered states of consciousness and their associated changes in attention and neurophysiological processes, as well as prominent models of human time processing and time experience. After integrating the reviewed research, we conclude that research on the influence of music on the representation of space and time is still quite inconclusive but that integrating the different approaches could lead to a better understanding of the observed effects. We also provide a working model that integrates a large part of the evidence and theories. Several suggestions for further research in both music psychology and cognitive psychology are outlined. PMID:23964254

  16. Changes in the representation of space and time while listening to music.

    PubMed

    Schäfer, Thomas; Fachner, Jörg; Smukalla, Mario

    2013-01-01

    Music is known to alter people's ordinary experience of space and time. Not only does this challenge the concept of invariant space and time tacitly assumed in psychology but it may also help us understand how music works and how music can be understood as an embodied experience. Yet research about these alterations is in its infancy. This review is intended to delineate a future research agenda. We review experimental evidence and subjective reports of the influence of music on the representation of space and time and present prominent approaches to explaining these effects. We discuss the role of absorption and altered states of consciousness and their associated changes in attention and neurophysiological processes, as well as prominent models of human time processing and time experience. After integrating the reviewed research, we conclude that research on the influence of music on the representation of space and time is still quite inconclusive but that integrating the different approaches could lead to a better understanding of the observed effects. We also provide a working model that integrates a large part of the evidence and theories. Several suggestions for further research in both music psychology and cognitive psychology are outlined.

  17. Multiscale wavelet representations for mammographic feature analysis

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Song, Shuwu

    1992-12-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet coefficients, enhanced by linear, exponential and constant weight functions localized in scale space. By improving the visualization of breast pathology we can improve the changes of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).

  18. Intrinsic and Extrinsic Evaluation of Spatiotemporal Text Representations in Twitter Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Lawrence A.; Shaffer, Kyle J.; Arendt, Dustin L.

    Language in social media is a dynamic system, constantly evolving and adapting, with words and concepts rapidly emerging, disappearing, and changing their meaning. These changes can be estimated using word representations in context, over time and across locations. A number of methods have been proposed to track these spatiotemporal changes but no general method exists to evaluate the quality of these representations. Previous work largely focused on qualitative evaluation, which we improve by proposing a set of visualizations that highlight changes in text representation over both space and time. We demonstrate usefulness of novel spatiotemporal representations to explore and characterizemore » specific aspects of the corpus of tweets collected from European countries over a two-week period centered around the terrorist attacks in Brussels in March 2016. In addition, we quantitatively evaluate spatiotemporal representations by feeding them into a downstream classification task – event type prediction. Thus, our work is the first to provide both intrinsic (qualitative) and extrinsic (quantitative) evaluation of text representations for spatiotemporal trends.« less

  19. Towards improving phenotype representation in OWL

    PubMed Central

    2012-01-01

    Background Phenotype ontologies are used in species-specific databases for the annotation of mutagenesis experiments and to characterize human diseases. The Entity-Quality (EQ) formalism is a means to describe complex phenotypes based on one or more affected entities and a quality. EQ-based definitions have been developed for many phenotype ontologies, including the Human and Mammalian Phenotype ontologies. Methods We analyze formalizations of complex phenotype descriptions in the Web Ontology Language (OWL) that are based on the EQ model, identify several representational challenges and analyze potential solutions to address these challenges. Results In particular, we suggest a novel, role-based approach to represent relational qualities such as concentration of iron in spleen, discuss its ontological foundation in the General Formal Ontology (GFO) and evaluate its representation in OWL and the benefits it can bring to the representation of phenotype annotations. Conclusion Our analysis of OWL-based representations of phenotypes can contribute to improving consistency and expressiveness of formal phenotype descriptions. PMID:23046625

  20. Knowledge Representation and Management, It's Time to Integrate!

    PubMed

    Dhombres, F; Charlet, J

    2017-08-01

    Objectives: To select, present, and summarize the best papers published in 2016 in the field of Knowledge Representation and Management (KRM). Methods: A comprehensive and standardized review of the medical informatics literature was performed based on a PubMed query. Results: Among the 1,421 retrieved papers, the review process resulted in the selection of four best papers focused on the integration of heterogeneous data via the development and the alignment of terminological resources. In the first article, the authors provide a curated and standardized version of the publicly available US FDA Adverse Event Reporting System. Such a resource will improve the quality of the underlying data, and enable standardized analyses using common vocabularies. The second article describes a project developed in order to facilitate heterogeneous data integration in the i2b2 framework. The originality is to allow users integrate the data described in different terminologies and to build a new repository, with a unique model able to support the representation of the various data. The third paper is dedicated to model the association between multiple phenotypic traits described within the Human Phenotype Ontology (HPO) and the corresponding genotype in the specific context of rare diseases (rare variants). Finally, the fourth paper presents solutions to annotation-ontology mapping in genome-scale data. Of particular interest in this work is the Experimental Factor Ontology (EFO) and its generic association model, the Ontology of Biomedical AssociatioN (OBAN). Conclusion: Ontologies have started to show their efficiency to integrate medical data for various tasks in medical informatics: electronic health records data management, clinical research, and knowledge-based systems development. Georg Thieme Verlag KG Stuttgart.

  1. Developing Quality Indicators and Auditing Protocols from Formal Guideline Models: Knowledge Representation and Transformations

    PubMed Central

    Advani, Aneel; Goldstein, Mary; Shahar, Yuval; Musen, Mark A.

    2003-01-01

    Automated quality assessment of clinician actions and patient outcomes is a central problem in guideline- or standards-based medical care. In this paper we describe a model representation and algorithm for deriving structured quality indicators and auditing protocols from formalized specifications of guidelines used in decision support systems. We apply the model and algorithm to the assessment of physician concordance with a guideline knowledge model for hypertension used in a decision-support system. The properties of our solution include the ability to derive automatically (1) context-specific and (2) case-mix-adjusted quality indicators that (3) can model global or local levels of detail about the guideline (4) parameterized by defining the reliability of each indicator or element of the guideline. PMID:14728124

  2. a Representation-Driven Ontology for Spatial Data Quality Elements, with Orthoimagery as Running Example

    NASA Astrophysics Data System (ADS)

    Hangouët, J.-F.

    2015-08-01

    The many facets of what is encompassed by such an expression as "quality of spatial data" can be considered as a specific domain of reality worthy of formal description, i.e. of ontological abstraction. Various ontologies for data quality elements have already been proposed in literature. Today, the system of quality elements is most generally used and discussed according to the configuration exposed in the "data dictionary for data quality" of international standard ISO 19157. Our communication proposes an alternative view. This is founded on a perspective which focuses on the specificity of spatial data as a product: the representation perspective, where data in the computer are meant to show things of the geographic world and to be interpreted as such. The resulting ontology introduces new elements, the usefulness of which will be illustrated by orthoimagery examples.

  3. Representation of solution for fully nonlocal diffusion equations with deviation time variable

    NASA Astrophysics Data System (ADS)

    Drin, I. I.; Drin, S. S.; Drin, Ya. M.

    2018-01-01

    We prove the solvability of the Cauchy problem for a nonlocal heat equation which is of fractional order both in space and time. The representation formula for classical solutions for time- and space- fractional partial differential operator Dat + a2 (-Δ) γ/2 (0 <= α <= 1, γ ɛ (0, 2]) and deviation time variable is given in terms of the Fox H-function, using the step by step method.

  4. The time course of activation of object shape and shape+colour representations during memory retrieval.

    PubMed

    Lloyd-Jones, Toby J; Roberts, Mark V; Leek, E Charles; Fouquet, Nathalie C; Truchanowicz, Ewa G

    2012-01-01

    Little is known about the timing of activating memory for objects and their associated perceptual properties, such as colour, and yet this is important for theories of human cognition. We investigated the time course associated with early cognitive processes related to the activation of object shape and object shape+colour representations respectively, during memory retrieval as assessed by repetition priming in an event-related potential (ERP) study. The main findings were as follows: (1) we identified a unique early modulation of mean ERP amplitude during the N1 that was associated with the activation of object shape independently of colour; (2) we also found a subsequent early P2 modulation of mean amplitude over the same electrode clusters associated with the activation of object shape+colour representations; (3) these findings were apparent across both familiar (i.e., correctly coloured - yellow banana) and novel (i.e., incorrectly coloured - blue strawberry) objects; and (4) neither of the modulations of mean ERP amplitude were evident during the P3. Together the findings delineate the timing of object shape and colour memory systems and support the notion that perceptual representations of object shape mediate the retrieval of temporary shape+colour representations for familiar and novel objects.

  5. The Time Course of Activation of Object Shape and Shape+Colour Representations during Memory Retrieval

    PubMed Central

    Lloyd-Jones, Toby J.; Roberts, Mark V.; Leek, E. Charles; Fouquet, Nathalie C.; Truchanowicz, Ewa G.

    2012-01-01

    Little is known about the timing of activating memory for objects and their associated perceptual properties, such as colour, and yet this is important for theories of human cognition. We investigated the time course associated with early cognitive processes related to the activation of object shape and object shape+colour representations respectively, during memory retrieval as assessed by repetition priming in an event-related potential (ERP) study. The main findings were as follows: (1) we identified a unique early modulation of mean ERP amplitude during the N1 that was associated with the activation of object shape independently of colour; (2) we also found a subsequent early P2 modulation of mean amplitude over the same electrode clusters associated with the activation of object shape+colour representations; (3) these findings were apparent across both familiar (i.e., correctly coloured – yellow banana) and novel (i.e., incorrectly coloured - blue strawberry) objects; and (4) neither of the modulations of mean ERP amplitude were evident during the P3. Together the findings delineate the timing of object shape and colour memory systems and support the notion that perceptual representations of object shape mediate the retrieval of temporary shape+colour representations for familiar and novel objects. PMID:23155393

  6. Time-frequency representation of autoionization dynamics in helium

    NASA Astrophysics Data System (ADS)

    Busto, D.; Barreau, L.; Isinger, M.; Turconi, M.; Alexandridi, C.; Harth, A.; Zhong, S.; Squibb, R. J.; Kroon, D.; Plogmaker, S.; Miranda, M.; Jiménez-Galán, Á.; Argenti, L.; Arnold, C. L.; Feifel, R.; Martín, F.; Gisselbrecht, M.; L'Huillier, A.; Salières, P.

    2018-02-01

    Autoionization, which results from the interference between direct photoionization and photoexcitation to a discrete state decaying to the continuum by configuration interaction, is a well known example of the important role of electron correlation in light-matter interaction. Information on this process can be obtained by studying the spectral, or equivalently, temporal complex amplitude of the ionized electron wave packet. Using an energy-resolved interferometric technique, we measure the spectral amplitude and phase of autoionized wave packets emitted via the sp2+ and sp3+ resonances in helium. These measurements allow us to reconstruct the corresponding temporal profiles by Fourier transform. In addition, applying various time-frequency representations, we observe the build-up of the wave packets in the continuum, monitor the instantaneous frequencies emitted at any time and disentangle the dynamics of the direct and resonant ionization channels.

  7. The loss of short-term visual representations over time: decay or temporal distinctiveness?

    PubMed

    Mercer, Tom

    2014-12-01

    There has been much recent interest in the loss of visual short-term memories over the passage of time. According to decay theory, visual representations are gradually forgotten as time passes, reflecting a slow and steady distortion of the memory trace. However, this is controversial and decay effects can be explained in other ways. The present experiment aimed to reexamine the maintenance and loss of visual information over the short term. Decay and temporal distinctiveness models were tested using a delayed discrimination task, in which participants compared complex and novel objects over unfilled retention intervals of variable length. Experiment 1 found no significant change in the accuracy of visual memory from 2 to 6 s, but the gap separating trials reliably influenced task performance. Experiment 2 found evidence for information loss at a 10-s retention interval, but temporally separating trials restored the fidelity of visual memory, possibly because temporally isolated representations are distinct from older memory traces. In conclusion, visual representations lose accuracy at some point after 6 s, but only within temporally crowded contexts. These findings highlight the importance of temporal distinctiveness within visual short-term memory. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  8. The Social Representations of Students on the Assessment of Universities' Quality: The Influence of Market- and Managerialism-Driven Discourse

    ERIC Educational Resources Information Center

    Cardoso, Sonia; Santiago, Rui; Sarrico, Claudia S.

    2012-01-01

    Although students are considered major actors in the quality assessment of universities, the way they perceive this process and the meanings they ascribe to it are still neglected as a research subject. This article aims to reduce this gap by focusing on the social representations of students on quality assessment. Specifically, it tries to…

  9. Three-Dimensionality as an Effective Mode of Representation for Expressing Sequential Time Perception

    ERIC Educational Resources Information Center

    Eden, Sigal; Passig, David

    2007-01-01

    The process of developing concepts of time continues from age 5 to 11 years (Zakay, 1998). This study sought the representation mode in which children could best express time concepts, especially the proper arrangement of events in a logical and temporal order. Usually, temporal order is examined and taught by 2D (2-dimensional) pictorial scripts.…

  10. Big-Time Football Conferences Tried To Ignore Rule on Representation of Women.

    ERIC Educational Resources Information Center

    Naughton, Jim

    1997-01-01

    Controversy over limited representation of women on a key committee of the National Collegiate Athletic Association, the Division I Management Council, has renewed concerns that big-time football conferences are not committed to diverse membership on such panels. The division's board of directors rejected the first female nominees and suggested…

  11. Narcissism and relational representations among psychiatric outpatients.

    PubMed

    Kealy, David; Ogrodniczuk, John S; Joyce, Anthony S; Steinberg, Paul I; Piper, William E

    2015-06-01

    Pathological narcissism is associated with maladaptive interpersonal behavior, although less is known regarding the internal relational representations of narcissistic patients. The authors examined the relationship between pathological narcissism and two constructs that reflect internal representations of relational patterns: quality of object relations and attachment style. Patients attending a psychiatric day treatment program (N = 218) completed measures of narcissism, general psychiatric distress, and attachment style in terms of attachment avoidance and anxiety. A semistructured interview was used to assess quality of object relations. Multiple regression analysis was conducted, controlling for general psychiatric distress. Pathological narcissism was associated with anxious attachment, but not with avoidant attachment. Narcissism was also associated with lower levels of quality of object relations. The implications of these results are discussed in terms of internal representations of self-other relations.

  12. A simple and fast representation space for classifying complex time series

    NASA Astrophysics Data System (ADS)

    Zunino, Luciano; Olivares, Felipe; Bariviera, Aurelio F.; Rosso, Osvaldo A.

    2017-03-01

    In the context of time series analysis considerable effort has been directed towards the implementation of efficient discriminating statistical quantifiers. Very recently, a simple and fast representation space has been introduced, namely the number of turning points versus the Abbe value. It is able to separate time series from stationary and non-stationary processes with long-range dependences. In this work we show that this bidimensional approach is useful for distinguishing complex time series: different sets of financial and physiological data are efficiently discriminated. Additionally, a multiscale generalization that takes into account the multiple time scales often involved in complex systems has been also proposed. This multiscale analysis is essential to reach a higher discriminative power between physiological time series in health and disease.

  13. Phonological Representations in Children with SLI

    ERIC Educational Resources Information Center

    Claessen, Mary; Leitao, Suze

    2012-01-01

    It has been hypothesized that children with specific language impairment (SLI) have difficulty processing sound-based information, including storing and accessing phonological representations in the lexicon. Tasks are emerging in the literature that provide a measure of the quality of stored phonological representations, without requiring a verbal…

  14. Optimizing Functional Network Representation of Multivariate Time Series

    PubMed Central

    Zanin, Massimiliano; Sousa, Pedro; Papo, David; Bajo, Ricardo; García-Prieto, Juan; Pozo, Francisco del; Menasalvas, Ernestina; Boccaletti, Stefano

    2012-01-01

    By combining complex network theory and data mining techniques, we provide objective criteria for optimization of the functional network representation of generic multivariate time series. In particular, we propose a method for the principled selection of the threshold value for functional network reconstruction from raw data, and for proper identification of the network's indicators that unveil the most discriminative information on the system for classification purposes. We illustrate our method by analysing networks of functional brain activity of healthy subjects, and patients suffering from Mild Cognitive Impairment, an intermediate stage between the expected cognitive decline of normal aging and the more pronounced decline of dementia. We discuss extensions of the scope of the proposed methodology to network engineering purposes, and to other data mining tasks. PMID:22953051

  15. Optimizing Functional Network Representation of Multivariate Time Series

    NASA Astrophysics Data System (ADS)

    Zanin, Massimiliano; Sousa, Pedro; Papo, David; Bajo, Ricardo; García-Prieto, Juan; Pozo, Francisco Del; Menasalvas, Ernestina; Boccaletti, Stefano

    2012-09-01

    By combining complex network theory and data mining techniques, we provide objective criteria for optimization of the functional network representation of generic multivariate time series. In particular, we propose a method for the principled selection of the threshold value for functional network reconstruction from raw data, and for proper identification of the network's indicators that unveil the most discriminative information on the system for classification purposes. We illustrate our method by analysing networks of functional brain activity of healthy subjects, and patients suffering from Mild Cognitive Impairment, an intermediate stage between the expected cognitive decline of normal aging and the more pronounced decline of dementia. We discuss extensions of the scope of the proposed methodology to network engineering purposes, and to other data mining tasks.

  16. Representation control increases task efficiency in complex graphical representations.

    PubMed

    Moritz, Julia; Meyerhoff, Hauke S; Meyer-Dernbecher, Claudia; Schwan, Stephan

    2018-01-01

    In complex graphical representations, the relevant information for a specific task is often distributed across multiple spatial locations. In such situations, understanding the representation requires internal transformation processes in order to extract the relevant information. However, digital technology enables observers to alter the spatial arrangement of depicted information and therefore to offload the transformation processes. The objective of this study was to investigate the use of such a representation control (i.e. the users' option to decide how information should be displayed) in order to accomplish an information extraction task in terms of solution time and accuracy. In the representation control condition, the participants were allowed to reorganize the graphical representation and reduce information density. In the control condition, no interactive features were offered. We observed that participants in the representation control condition solved tasks that required reorganization of the maps faster and more accurate than participants without representation control. The present findings demonstrate how processes of cognitive offloading, spatial contiguity, and information coherence interact in knowledge media intended for broad and diverse groups of recipients.

  17. Representation control increases task efficiency in complex graphical representations

    PubMed Central

    Meyerhoff, Hauke S.; Meyer-Dernbecher, Claudia; Schwan, Stephan

    2018-01-01

    In complex graphical representations, the relevant information for a specific task is often distributed across multiple spatial locations. In such situations, understanding the representation requires internal transformation processes in order to extract the relevant information. However, digital technology enables observers to alter the spatial arrangement of depicted information and therefore to offload the transformation processes. The objective of this study was to investigate the use of such a representation control (i.e. the users' option to decide how information should be displayed) in order to accomplish an information extraction task in terms of solution time and accuracy. In the representation control condition, the participants were allowed to reorganize the graphical representation and reduce information density. In the control condition, no interactive features were offered. We observed that participants in the representation control condition solved tasks that required reorganization of the maps faster and more accurate than participants without representation control. The present findings demonstrate how processes of cognitive offloading, spatial contiguity, and information coherence interact in knowledge media intended for broad and diverse groups of recipients. PMID:29698443

  18. Learning Novel Phonological Representations in Developmental Dyslexia: Associations with Basic Auditory Processing of Rise Time and Phonological Awareness

    ERIC Educational Resources Information Center

    Thomson, Jennifer M.; Goswami, Usha

    2010-01-01

    Across languages, children with developmental dyslexia are known to have impaired lexical phonological representations. Here, we explore associations between learning new phonological representations, phonological awareness, and sensitivity to amplitude envelope onsets (rise time). We show that individual differences in learning novel phonological…

  19. Children's Use of Morphological Cues in Real-Time Event Representation

    ERIC Educational Resources Information Center

    Zhou, Peng; Ma, Weiyi

    2018-01-01

    The present study investigated whether and how fast young children can use information encoded in morphological markers during real-time event representation. Using the visual world paradigm, we tested 35 adults, 34 5-year-olds and 33 3-year-olds. The results showed that the adults, the 5-year-olds and the 3-year-olds all exhibited eye gaze…

  20. A new image representation for compact and secure communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, Lakshman; Skourikhine, A. N.

    In many areas of nuclear materials management there is a need for communication, archival, and retrieval of annotated image data between heterogeneous platforms and devices to effectively implement safety, security, and safeguards of nuclear materials. Current image formats such as JPEG are not ideally suited in such scenarios as they are not scalable to different viewing formats, and do not provide a high-level representation of images that facilitate automatic object/change detection or annotation. The new Scalable Vector Graphics (SVG) open standard for representing graphical information, recommended by the World Wide Web Consortium (W3C) is designed to address issues of imagemore » scalability, portability, and annotation. However, until now there has been no viable technology to efficiently field images of high visual quality under this standard. Recently, LANL has developed a vectorized image representation that is compatible with the SVG standard and preserves visual quality. This is based on a new geometric framework for characterizing complex features in real-world imagery that incorporates perceptual principles of processing visual information known from cognitive psychology and vision science, to obtain a polygonal image representation of high fidelity. This representation can take advantage of all textual compression and encryption routines unavailable to other image formats. Moreover, this vectorized image representation can be exploited to facilitate automated object recognition that can reduce time required for data review. The objects/features of interest in these vectorized images can be annotated via animated graphics to facilitate quick and easy display and comprehension of processed image content.« less

  1. Does movement influence representations of time and space?

    PubMed Central

    2017-01-01

    Embodied cognition posits that abstract conceptual knowledge such as mental representations of time and space are at least partially grounded in sensorimotor experiences. If true, then the execution of whole-body movements should result in modulations of temporal and spatial reference frames. To scrutinize this hypothesis, in two experiments participants either walked forward, backward or stood on a treadmill and responded either to an ambiguous temporal question (Experiment 1) or an ambiguous spatial question (Experiment 2) at the end of the walking manipulation. Results confirmed the ambiguousness of the questions in the control condition. Nevertheless, despite large power, walking forward or backward did not influence the answers or response times to the temporal (Experiment 1) or spatial (Experiment 2) question. A follow-up Experiment 3 indicated that this is also true for walking actively (or passively) in free space (as opposed to a treadmill). We explore possible reasons for the null-finding as concerns the modulation of temporal and spatial reference frames by movements and we critically discuss the methodological and theoretical implications. PMID:28376130

  2. Does movement influence representations of time and space?

    PubMed

    Loeffler, Jonna; Raab, Markus; Cañal-Bruland, Rouwen

    2017-01-01

    Embodied cognition posits that abstract conceptual knowledge such as mental representations of time and space are at least partially grounded in sensorimotor experiences. If true, then the execution of whole-body movements should result in modulations of temporal and spatial reference frames. To scrutinize this hypothesis, in two experiments participants either walked forward, backward or stood on a treadmill and responded either to an ambiguous temporal question (Experiment 1) or an ambiguous spatial question (Experiment 2) at the end of the walking manipulation. Results confirmed the ambiguousness of the questions in the control condition. Nevertheless, despite large power, walking forward or backward did not influence the answers or response times to the temporal (Experiment 1) or spatial (Experiment 2) question. A follow-up Experiment 3 indicated that this is also true for walking actively (or passively) in free space (as opposed to a treadmill). We explore possible reasons for the null-finding as concerns the modulation of temporal and spatial reference frames by movements and we critically discuss the methodological and theoretical implications.

  3. Real-time water quality monitoring and providing water quality ...

    EPA Pesticide Factsheets

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Bay. The Village Blue demonstration project complements work that a number of state and local organizations are doing to make Baltimore Harbor “swimmable and fishable” 2 by 2020. Village Blue is designed to build upon EPA’s “Village Green” project which provides real-time air quality information to communities in six locations across the country. The presentation, “Real-time water quality monitoring and providing water quality information to the Baltimore Community”, summarizes the Village Blue real-time water quality monitoring project being developed for the Baltimore Harbor.

  4. Neuromimetic Sound Representation for Percept Detection and Manipulation

    NASA Astrophysics Data System (ADS)

    Zotkin, Dmitry N.; Chi, Taishih; Shamma, Shihab A.; Duraiswami, Ramani

    2005-12-01

    The acoustic wave received at the ears is processed by the human auditory system to separate different sounds along the intensity, pitch, and timbre dimensions. Conventional Fourier-based signal processing, while endowed with fast algorithms, is unable to easily represent a signal along these attributes. In this paper, we discuss the creation of maximally separable sounds in auditory user interfaces and use a recently proposed cortical sound representation, which performs a biomimetic decomposition of an acoustic signal, to represent and manipulate sound for this purpose. We briefly overview algorithms for obtaining, manipulating, and inverting a cortical representation of a sound and describe algorithms for manipulating signal pitch and timbre separately. The algorithms are also used to create sound of an instrument between a "guitar" and a "trumpet." Excellent sound quality can be achieved if processing time is not a concern, and intelligible signals can be reconstructed in reasonable processing time (about ten seconds of computational time for a one-second signal sampled at [InlineEquation not available: see fulltext.]). Work on bringing the algorithms into the real-time processing domain is ongoing.

  5. N-representability-driven reconstruction of the two-electron reduced-density matrix for a real-time time-dependent electronic structure method

    NASA Astrophysics Data System (ADS)

    Jeffcoat, David B.; DePrince, A. Eugene

    2014-12-01

    Propagating the equations of motion (EOM) for the one-electron reduced-density matrix (1-RDM) requires knowledge of the corresponding two-electron RDM (2-RDM). We show that the indeterminacy of this expression can be removed through a constrained optimization that resembles the variational optimization of the ground-state 2-RDM subject to a set of known N-representability conditions. Electronic excitation energies can then be obtained by propagating the EOM for the 1-RDM and following the dipole moment after the system interacts with an oscillating external electric field. For simple systems with well-separated excited states whose symmetry differs from that of the ground state, excitation energies obtained from this method are comparable to those obtained from full configuration interaction computations. Although the optimized 2-RDM satisfies necessary N-representability conditions, the procedure cannot guarantee a unique mapping from the 1-RDM to the 2-RDM. This deficiency is evident in the mean-field-quality description of transitions to states of the same symmetry as the ground state, as well as in the inability of the method to describe Rabi oscillations.

  6. Compressive sensing for sparse time-frequency representation of nonstationary signals in the presence of impulsive noise

    NASA Astrophysics Data System (ADS)

    Orović, Irena; Stanković, Srdjan; Amin, Moeness

    2013-05-01

    A modified robust two-dimensional compressive sensing algorithm for reconstruction of sparse time-frequency representation (TFR) is proposed. The ambiguity function domain is assumed to be the domain of observations. The two-dimensional Fourier bases are used to linearly relate the observations to the sparse TFR, in lieu of the Wigner distribution. We assume that a set of available samples in the ambiguity domain is heavily corrupted by an impulsive type of noise. Consequently, the problem of sparse TFR reconstruction cannot be tackled using standard compressive sensing optimization algorithms. We introduce a two-dimensional L-statistics based modification into the transform domain representation. It provides suitable initial conditions that will produce efficient convergence of the reconstruction algorithm. This approach applies sorting and weighting operations to discard an expected amount of samples corrupted by noise. The remaining samples serve as observations used in sparse reconstruction of the time-frequency signal representation. The efficiency of the proposed approach is demonstrated on numerical examples that comprise both cases of monocomponent and multicomponent signals.

  7. Real-time video quality monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Narvekar, Niranjan; Wang, Beibei; Ding, Ran; Zou, Dekun; Cash, Glenn; Bhagavathy, Sitaram; Bloom, Jeffrey

    2011-12-01

    The ITU-T Recommendation G.1070 is a standardized opinion model for video telephony applications that uses video bitrate, frame rate, and packet-loss rate to measure the video quality. However, this model was original designed as an offline quality planning tool. It cannot be directly used for quality monitoring since the above three input parameters are not readily available within a network or at the decoder. And there is a great room for the performance improvement of this quality metric. In this article, we present a real-time video quality monitoring solution based on this Recommendation. We first propose a scheme to efficiently estimate the three parameters from video bitstreams, so that it can be used as a real-time video quality monitoring tool. Furthermore, an enhanced algorithm based on the G.1070 model that provides more accurate quality prediction is proposed. Finally, to use this metric in real-world applications, we present an example emerging application of real-time quality measurement to the management of transmitted videos, especially those delivered to mobile devices.

  8. Space-by-time manifold representation of dynamic facial expressions for emotion categorization

    PubMed Central

    Delis, Ioannis; Chen, Chaona; Jack, Rachael E.; Garrod, Oliver G. B.; Panzeri, Stefano; Schyns, Philippe G.

    2016-01-01

    Visual categorization is the brain computation that reduces high-dimensional information in the visual environment into a smaller set of meaningful categories. An important problem in visual neuroscience is to identify the visual information that the brain must represent and then use to categorize visual inputs. Here we introduce a new mathematical formalism—termed space-by-time manifold decomposition—that describes this information as a low-dimensional manifold separable in space and time. We use this decomposition to characterize the representations used by observers to categorize the six classic facial expressions of emotion (happy, surprise, fear, disgust, anger, and sad). By means of a Generative Face Grammar, we presented random dynamic facial movements on each experimental trial and used subjective human perception to identify the facial movements that correlate with each emotion category. When the random movements projected onto the categorization manifold region corresponding to one of the emotion categories, observers categorized the stimulus accordingly; otherwise they selected “other.” Using this information, we determined both the Action Unit and temporal components whose linear combinations lead to reliable categorization of each emotion. In a validation experiment, we confirmed the psychological validity of the resulting space-by-time manifold representation. Finally, we demonstrated the importance of temporal sequencing for accurate emotion categorization and identified the temporal dynamics of Action Unit components that cause typical confusions between specific emotions (e.g., fear and surprise) as well as those resolving these confusions. PMID:27305521

  9. From early detection to rehabilitation in the community: reading beyond the blog testimonies of survivors' quality of life and prostate cancer representation.

    PubMed

    Zanchetta, Margareth Santos; Cognet, Marguerite; Lam-Kin-Teng, Mary Rachel; Dumitriu, Marie Elisabeth; Renaud, Lise; Rhéaume, Jacques

    2016-12-16

    Survivors' testimonies can reveal much about men's experiences of prostate cancer and impacts on their quality of life (QOL) during the clinical trajectory of the disease. These survivors' shared thoughts and views were hypothesized to reflect salient features of their lived social representation of prostate cancer. We explored the content of testimonies posted by men to a public blog hosted by a French national prostate cancer patients' association. The study question, "What do French bloggers' testimonies reveal about their lived experiences with prostate cancer, especially regarding their quality of life in community settings, that underpin their social representation of prostate cancer?" guided the exploration and analysis of the textual data. The aims were to better understand men's experiences and predominant thoughts and views, to elucidate patients' behaviours, and to enlighten medical policy and practice. Explore issues of QOL as reported by French prostate cancer survivors in a public blog by: (a) identifying the salient aspects and issues of the experience of living with prostate cancer from the perspective of survivors; and (b) analyzing the content in the posted testimonies regarding perceived and lived impacts of prostate cancer on QOL. A critical ethnographic study guided the selection of textual data from 196 male bloggers' testimonies about prostate cancer posted in the period from 2008 to 2013. Media content analysis method was undertaken on blog testimonies, framed by a multidimensional conceptual framework of QOL. Testimonies focused mainly on medical care and rehabilitation, recovery, health education and self-care, as well as on a global vision of prostate cancer and its impacts on personal views of manhood and masculinity. The language used indicated that political, educative and compassionate discourses were intertwined to create a complex representation of the experience and effects of prostate cancer; this multi-faceted representation can

  10. GEE-WIS Anchored Problem Solving Using Real-Time Authentic Water Quality Data

    NASA Astrophysics Data System (ADS)

    Young, M.; Wlodarczyk, M. S.; Branco, B.; Torgersen, T.

    2002-05-01

    GEE-WIS scientific problem solving consists of observing, hypothesizing, synthesis, argument building and reasoning, in the context of analysis, representation, modeling and sense-making of real-time authentic water quality data. Geoscience Environmental Education - Web-accessible Instrumented Systems, or GEE-WIS, an NSF Geoscience Education grant, has established a set of companion websites that stream real-time data from two campus retention ponds for research and use in secondary and undergraduate water quality lessons. We have targeted scientific problem solving skills because of the nature of the GEE-WIS environment, but further because they are central to state and federal efforts to establish science education curriculum standards and are at the core of performance-based testing. We have used a design experiment process to create and test two Anchored Instruction scenario problems. Customization such as that done through a design process, is acknowledged to be a fundamental component of educational research from an ecological psychology perspective. Our efforts have shared core design elements with other NSF water quality projects. Our method involves the analysis of student written scenario responses for level of scientific problem solving using a qualitative scoring rubric designed from participation in a related NSF project, SCALE (Synergy Communities: Aggregating Learning about Education). Student solutions of GEE-WIS anchor problems from Fall 2001 and Spring 2002 will be summarized. Implications are drawn for those interested in making secondary and high education geoscience more realistic and more motivating for students through the use of real-time authentic data via Internet.

  11. Quality of Learners' Time and Learning Performance beyond Quantitative Time-on-Task

    ERIC Educational Resources Information Center

    Romero, Margarida; Barbera, Elena

    2011-01-01

    Along with the amount of time spent learning (or time-on-task), the quality of learning time has a real influence on learning performance. Quality of time in online learning depends on students' time availability and their willingness to devote quality cognitive time to learning activities. However, the quantity and quality of the time spent by…

  12. The use of Matlab for colour fuzzy representation of multichannel EEG short time spectra.

    PubMed

    Bigan, C; Strungaru, R

    1998-01-01

    During the last years, a lot of EEG research efforts was directed to intelligent methods for automatic analysis of data from multichannel EEG recordings. However, all the applications reported were focused on specific single tasks like detection of one specific "event" in the EEG signal: spikes, sleep spindles, epileptic seizures, K complexes, alpha or other rhythms or even artefacts. The aim of this paper is to present a complex system being able to perform a representation of the dynamic changes in frequency components of each EEG channel. This representation uses colours as a powerful means to show the only one frequency range chosen from the shortest epoch of signal able to be processed with the conventional "Short Time Fast Fourier Transform" (S.T.F.F.T.) method.

  13. Phonological Awareness Deficits in Developmental Dyslexia and the Phonological Representations Hypothesis.

    ERIC Educational Resources Information Center

    Swan, Denise; Goswami, Usha

    1997-01-01

    Used picture-naming task to identify accurate/inaccurate phonological representations by dyslexic and control children; compared performance on phonological measures for words with precise/imprecise representations. Found that frequency effects in phonological tasks disappeared after considering representational quality, and that availability of…

  14. Improving the accuracy and efficiency of time-resolved electronic spectra calculations: cellular dephasing representation with a prefactor.

    PubMed

    Zambrano, Eduardo; Šulc, Miroslav; Vaníček, Jiří

    2013-08-07

    Time-resolved electronic spectra can be obtained as the Fourier transform of a special type of time correlation function known as fidelity amplitude, which, in turn, can be evaluated approximately and efficiently with the dephasing representation. Here we improve both the accuracy of this approximation-with an amplitude correction derived from the phase-space propagator-and its efficiency-with an improved cellular scheme employing inverse Weierstrass transform and optimal scaling of the cell size. We demonstrate the advantages of the new methodology by computing dispersed time-resolved stimulated emission spectra in the harmonic potential, pyrazine, and the NCO molecule. In contrast, we show that in strongly chaotic systems such as the quartic oscillator the original dephasing representation is more appropriate than either the cellular or prefactor-corrected methods.

  15. The topography of frequency and time representation in primate auditory cortices

    PubMed Central

    Baumann, Simon; Joly, Olivier; Rees, Adrian; Petkov, Christopher I; Sun, Li; Thiele, Alexander; Griffiths, Timothy D

    2015-01-01

    Natural sounds can be characterised by their spectral content and temporal modulation, but how the brain is organized to analyse these two critical sound dimensions remains uncertain. Using functional magnetic resonance imaging, we demonstrate a topographical representation of amplitude modulation rate in the auditory cortex of awake macaques. The representation of this temporal dimension is organized in approximately concentric bands of equal rates across the superior temporal plane in both hemispheres, progressing from high rates in the posterior core to low rates in the anterior core and lateral belt cortex. In A1 the resulting gradient of modulation rate runs approximately perpendicular to the axis of the tonotopic gradient, suggesting an orthogonal organisation of spectral and temporal sound dimensions. In auditory belt areas this relationship is more complex. The data suggest a continuous representation of modulation rate across several physiological areas, in contradistinction to a separate representation of frequency within each area. DOI: http://dx.doi.org/10.7554/eLife.03256.001 PMID:25590651

  16. Standard model of knowledge representation

    NASA Astrophysics Data System (ADS)

    Yin, Wensheng

    2016-09-01

    Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphics language, natural language, etc. To establish the intrinsic link between various knowledge representation methods, a unified knowledge representation model is necessary. According to ontology, system theory, and control theory, a standard model of knowledge representation that reflects the change of the objective world is proposed. The model is composed of input, processing, and output. This knowledge representation method is not a contradiction to the traditional knowledge representation method. It can express knowledge in terms of multivariate and multidimensional. It can also express process knowledge, and at the same time, it has a strong ability to solve problems. In addition, the standard model of knowledge representation provides a way to solve problems of non-precision and inconsistent knowledge.

  17. A polygon soup representation for free viewpoint video

    NASA Astrophysics Data System (ADS)

    Colleu, T.; Pateux, S.; Morin, L.; Labit, C.

    2010-02-01

    This paper presents a polygon soup representation for multiview data. Starting from a sequence of multi-view video plus depth (MVD) data, the proposed representation takes into account, in a unified manner, different issues such as compactness, compression, and intermediate view synthesis. The representation is built in two steps. First, a set of 3D quads is extracted using a quadtree decomposition of the depth maps. Second, a selective elimination of the quads is performed in order to reduce inter-view redundancies and thus provide a compact representation. Moreover, the proposed methodology for extracting the representation allows to reduce ghosting artifacts. Finally, an adapted compression technique is proposed that limits coding artifacts. The results presented on two real sequences show that the proposed representation provides a good trade-off between rendering quality and data compactness.

  18. Medical Image Fusion Based on Feature Extraction and Sparse Representation

    PubMed Central

    Wei, Gao; Zongxi, Song

    2017-01-01

    As a novel multiscale geometric analysis tool, sparse representation has shown many advantages over the conventional image representation methods. However, the standard sparse representation does not take intrinsic structure and its time complexity into consideration. In this paper, a new fusion mechanism for multimodal medical images based on sparse representation and decision map is proposed to deal with these problems simultaneously. Three decision maps are designed including structure information map (SM) and energy information map (EM) as well as structure and energy map (SEM) to make the results reserve more energy and edge information. SM contains the local structure feature captured by the Laplacian of a Gaussian (LOG) and EM contains the energy and energy distribution feature detected by the mean square deviation. The decision map is added to the normal sparse representation based method to improve the speed of the algorithm. Proposed approach also improves the quality of the fused results by enhancing the contrast and reserving more structure and energy information from the source images. The experiment results of 36 groups of CT/MR, MR-T1/MR-T2, and CT/PET images demonstrate that the method based on SR and SEM outperforms five state-of-the-art methods. PMID:28321246

  19. The Past Is Present: Representations of Parents, Friends, and Romantic Partners Predict Subsequent Romantic Representations.

    PubMed

    Furman, Wyndol; Collibee, Charlene

    2018-01-01

    This study examined how representations of parent-child relationships, friendships, and past romantic relationships are related to subsequent romantic representations. Two-hundred 10th graders (100 female; M age  = 15.87 years) from diverse neighborhoods in a Western U.S. city were administered questionnaires and were interviewed to assess avoidant and anxious representations of their relationships with parents, friends, and romantic partners. Participants then completed similar questionnaires and interviews about their romantic representations six more times over the next 7.5 years. Growth curve analyses revealed that representations of relationships with parents, friends, and romantic partners each uniquely predicted subsequent romantic representations across development. Consistent with attachment and behavioral systems theory, representations of romantic relationships are revised by representations and experiences in other relationships. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  20. Studies in Astronomical Time Series Analysis. VI. Bayesian Block Representations

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.; Norris, Jay P.; Jackson, Brad; Chiang, James

    2013-01-01

    This paper addresses the problem of detecting and characterizing local variability in time series and other forms of sequential data. The goal is to identify and characterize statistically significant variations, at the same time suppressing the inevitable corrupting observational errors. We present a simple nonparametric modeling technique and an algorithm implementing it-an improved and generalized version of Bayesian Blocks [Scargle 1998]-that finds the optimal segmentation of the data in the observation interval. The structure of the algorithm allows it to be used in either a real-time trigger mode, or a retrospective mode. Maximum likelihood or marginal posterior functions to measure model fitness are presented for events, binned counts, and measurements at arbitrary times with known error distributions. Problems addressed include those connected with data gaps, variable exposure, extension to piece- wise linear and piecewise exponential representations, multivariate time series data, analysis of variance, data on the circle, other data modes, and dispersed data. Simulations provide evidence that the detection efficiency for weak signals is close to a theoretical asymptotic limit derived by [Arias-Castro, Donoho and Huo 2003]. In the spirit of Reproducible Research [Donoho et al. (2008)] all of the code and data necessary to reproduce all of the figures in this paper are included as auxiliary material.

  1. Observations and Student Perceptions of the Quality of Preservice Teachers' Teaching Behaviour: Construct Representation and Predictive Quality

    ERIC Educational Resources Information Center

    Maulana, Ridwan; Helms-Lorenz, Michelle

    2016-01-01

    Observations and student perceptions are recognised as important tools for examining teaching behaviour, but little is known about whether both perspectives share similar construct representations and how both perspectives link with student academic outcomes. The present study compared the construct representation of preservice teachers' teaching…

  2. Inherited Representations are Read in Development

    PubMed Central

    Shea, Nicholas

    2013-01-01

    Recent theoretical work has identified a tightly constrained sense in which genes carry representational content. Representational properties of the genome are founded in the transmission of DNA over phylogenetic time and its role in natural selection. However, genetic representation is not just relevant to questions of selection and evolution. This article goes beyond existing treatments and argues for the heterodox view that information generated by a process of selection over phylogenetic time can be read in ontogenetic time, in the course of individual development. Recent results in evolutionary biology, drawn both from modelling work, and from experimental and observational data, support a role for genetic representation in explaining individual ontogeny: both genetic representations and environmental information are read by the mechanisms of development, in an individual, so as to lead to adaptive phenotypes. Furthermore, in some cases there appears to have been selection between individuals that rely to different degrees on the two sources of information. Thus, the theory of representation in inheritance systems like the genome is much more than just a coherent reconstruction of information talk in biology. Genetic representation is a property with considerable explanatory utility. 1 Introduction2 Inherited Representations3 Reading Genetic Representations   3.1 Do genes carry correlational information?4 Selection Between Genetic and Environmental Information   4.1 Modelling  4.2 Empirical applications  4.3 Maternal effects5 Genetic Representation and the Genome   5.1 Information capacity of organisms' genomes  5.2 Many amino acids, few nucleotides  5.3 A function of sex6 Explaining Further Aspects of Development   6.1 Canalization against environmental variation  6.2 An informational function for the nuclear membrane?7 Conclusion PMID:23526835

  3. Specialized mechanisms for theory of mind: are mental representations special because they are mental or because they are representations?

    PubMed

    Cohen, Adam S; Sasaki, Joni Y; German, Tamsin C

    2015-03-01

    Does theory of mind depend on a capacity to reason about representations generally or on mechanisms selective for the processing of mental state representations? In four experiments, participants reasoned about beliefs (mental representations) and notes (non-mental, linguistic representations), which according to two prominent theories are closely matched representations because both are represented propositionally. Reaction times were faster and accuracies higher when participants endorsed or rejected statements about false beliefs than about false notes (Experiment 1), even when statements emphasized representational format (Experiment 2), which should have favored the activation of representation concepts. Experiments 3 and 4 ruled out a counterhypothesis that differences in task demands were responsible for the advantage in belief processing. These results demonstrate for the first time that understanding of mental and linguistic representations can be dissociated even though both may carry propositional content, supporting the theory that mechanisms governing theory of mind reasoning are narrowly specialized to process mental states, not representations more broadly. Extending this theory, we discuss whether less efficient processing of non-mental representations may be a by-product of mechanisms specialized for processing mental states. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  4. Continous Representation Learning via User Feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Representation learning is a deep-learning based technique for extracting features from data for the purpose of machine learning. This requires a large amount of data, on order tens of thousands to millions of samples, to properly teach the deep neural network. This a system for continuous representation learning, where the system may be improved with a small number of additional samples (order 10-100). The unique characteristics of this invention include a human-computer feedback component, where assess the quality of the current representation and then provides a better representation to the system. The system then mixes the new data with oldmore » training examples to avoid overfitting and improve overall performance of the system. The model can be exported and shared with other users, and it may be applied to additional images the system hasn't seen before.« less

  5. Representations of the Bondi—Metzner—Sachs group in three space—time dimensions

    NASA Astrophysics Data System (ADS)

    Melas, Evangelos

    2017-01-01

    The original Bondi-Metzner-Sachs group B is the common asymptotic symmetry group of all asymptotically at Lorentzian 4-dim space-times. As such, B is the best candidate for the universal symmetry group of General Relativity (G.R.). In 1973, with this motivation, P. J. McCarthy classified all relativistic B-invariant systems in terms of strongly continuous irreducible unitary representations (IRS) of B. Here, we construct the IRS of B(2, 1), the analogue of B, in 3 space-time dimensions. The IRS are induced from ‘little groups’ which are compact. The finite ‘little groups’ are cyclic groups of even order. The inducing construction is exhaustive notwithstanding the fact that B(2, 1) is not locally compact in the employed Hilbert topology.

  6. Representations of Parent-Child Alliances in Children's Family Drawings

    ERIC Educational Resources Information Center

    Leon, Kim; Wallace, Tamar; Rudy, Duane

    2007-01-01

    The purpose of this study was to investigate relationships between children's representations of parent-child alliances (PCA) and their peer relationship quality, using a new scale that was developed to rate representations of PCA in children's family drawings. The parent-child alliance pattern is characterized by a relationship between parent and…

  7. Multicultural Representation in Children's Books.

    ERIC Educational Resources Information Center

    Adams, Karen Irene

    Fifty-seven children's books of accepted literary worth were evaluated for quantity and quality of multicultural representation. For evaluation, the cultural groups represented in the books were arranged under nine headings: females, age, socioeconomic status, religion, handicaps, ethnic background, regional culture, language, and illustrations.…

  8. Social Anxiety and Friendship Quality over Time.

    PubMed

    Rodebaugh, Thomas L; Lim, Michelle H; Shumaker, Erik A; Levinson, Cheri A; Thompson, Tess

    2015-01-01

    High social anxiety in adults is associated with self-report of impaired friendship quality, but not necessarily with impairment reported by friends. Further, prospective prediction of social anxiety and friendship quality over time has not been tested among adults. We therefore examined friendship quality and social anxiety prospectively in 126 young adults (67 primary participants and 59 friends, aged 17-22 years); the primary participants were screened to be extreme groups to increase power and relevance to clinical samples (i.e., they were recruited based on having very high or very low social interaction anxiety). The prospective relationships between friendship quality and social anxiety were then tested using an Actor-Partner Interdependence Model. Friendship quality prospectively predicted social anxiety over time within each individual in the friendship, such that higher friendship quality at Time 1 predicted lower social anxiety approximately 6 months later at Time 2. Social anxiety did not predict friendship quality. Although the results support the view that social anxiety and friendship quality have an important causal relationship, the results run counter to the assumption that high social anxiety causes poor friendship quality. Interventions to increase friendship quality merit further consideration.

  9. Time perception of visual motion is tuned by the motor representation of human actions

    PubMed Central

    Gavazzi, Gioele; Bisio, Ambra; Pozzo, Thierry

    2013-01-01

    Several studies have shown that the observation of a rapidly moving stimulus dilates our perception of time. However, this effect appears to be at odds with the fact that our interactions both with environment and with each other are temporally accurate. This work exploits this paradox to investigate whether the temporal accuracy of visual motion uses motor representations of actions. To this aim, the stimuli were a dot moving with kinematics belonging or not to the human motor repertoire and displayed at different velocities. Participants had to replicate its duration with two tasks differing in the underlying motor plan. Results show that independently of the task's motor plan, the temporal accuracy and precision depend on the correspondence between the stimulus' kinematics and the observer's motor competencies. Our data suggest that the temporal mechanism of visual motion exploits a temporal visuomotor representation tuned by the motor knowledge of human actions. PMID:23378903

  10. The Representation and Execution of Articulatory Timing in First and Second Language Acquisition.

    PubMed

    Redford, Melissa A; Oh, Grace E

    2017-07-01

    The early acquisition of language-specific temporal patterns relative to the late development of speech motor control suggests a dissociation between the representation and execution of articulatory timing. The current study tested for such a dissociation in first and second language acquisition. American English-speaking children (5- and 8-year-olds) and Korean-speaking adult learners of English repeatedly produced real English words in a simple carrier sentence. The words were designed to elicit different language-specific vowel length contrasts. Measures of absolute duration and variability in single vowel productions were extracted to evaluate the realization of contrasts (representation) and to index speech motor abilities (execution). Results were mostly consistent with a dissociation. Native English-speaking children produced the same language-specific temporal patterns as native English-speaking adults, but their productions were more variable than the adults'. In contrast, Korean-speaking adult learners of English typically produced different temporal patterns than native English-speaking adults, but their productions were as stable as the native speakers'. Implications of the results are discussed with reference to different models of speech production.

  11. Group Analysis in FieldTrip of Time-Frequency Responses: A Pipeline for Reproducibility at Every Step of Processing, Going From Individual Sensor Space Representations to an Across-Group Source Space Representation.

    PubMed

    Andersen, Lau M

    2018-01-01

    An important aim of an analysis pipeline for magnetoencephalographic (MEG) data is that it allows for the researcher spending maximal effort on making the statistical comparisons that will answer his or her questions. The example question being answered here is whether the so-called beta rebound differs between novel and repeated stimulations. Two analyses are presented: going from individual sensor space representations to, respectively, an across-group sensor space representation and an across-group source space representation. The data analyzed are neural responses to tactile stimulations of the right index finger in a group of 20 healthy participants acquired from an Elekta Neuromag System. The processing steps covered for the first analysis are MaxFiltering the raw data, defining, preprocessing and epoching the data, cleaning the data, finding and removing independent components related to eye blinks, eye movements and heart beats, calculating participants' individual evoked responses by averaging over epoched data and subsequently removing the average response from single epochs, calculating a time-frequency representation and baselining it with non-stimulation trials and finally calculating a grand average, an across-group sensor space representation. The second analysis starts from the grand average sensor space representation and after identification of the beta rebound the neural origin is imaged using beamformer source reconstruction. This analysis covers reading in co-registered magnetic resonance images, segmenting the data, creating a volume conductor, creating a forward model, cutting out MEG data of interest in the time and frequency domains, getting Fourier transforms and estimating source activity with a beamformer model where power is expressed relative to MEG data measured during periods of non-stimulation. Finally, morphing the source estimates onto a common template and performing group-level statistics on the data are covered. Functions for

  12. Semiclassical initial value representation for the quantum propagator in the Heisenberg interaction representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, Jakob; Pollak, Eli, E-mail: eli.pollak@weizmann.ac.il

    2015-12-14

    One of the challenges facing on-the-fly ab initio semiclassical time evolution is the large expense needed to converge the computation. In this paper, we suggest that a significant saving in computational effort may be achieved by employing a semiclassical initial value representation (SCIVR) of the quantum propagator based on the Heisenberg interaction representation. We formulate and test numerically a modification and simplification of the previous semiclassical interaction representation of Shao and Makri [J. Chem. Phys. 113, 3681 (2000)]. The formulation is based on the wavefunction form of the semiclassical propagation instead of the operator form, and so is simpler andmore » cheaper to implement. The semiclassical interaction representation has the advantage that the phase and prefactor vary relatively slowly as compared to the “standard” SCIVR methods. This improves its convergence properties significantly. Using a one-dimensional model system, the approximation is compared with Herman-Kluk’s frozen Gaussian and Heller’s thawed Gaussian approximations. The convergence properties of the interaction representation approach are shown to be favorable and indicate that the interaction representation is a viable way of incorporating on-the-fly force field information within a semiclassical framework.« less

  13. 'Touchpoints' by nurses: impact on maternal representations, child development, quality of mother-infant interaction, and mothers' perception of the quality of relationships with nurses.

    PubMed

    Soares, Hélia

    2016-05-09

    To investigate the effect of implementing the Touchpoints methodology by nurses in the following variables: quality of mother-infant interaction; infant development; maternal representations of child temperament and mothers' perception of the quality of relationship with nurses. Quasi-experimental longitudinal study, including 86 child-mother dyads distributed equally for: Group with Intervention (GI) (n=43), Group without Intervention (GWI) (n=43). These groups belonged to paired samples according to the following criteria: maternal age; socio-economic class; family structure; child health; parents' physical or psychological health; twins; family's nationality; risk during pregnancy; baby APGAR. Paired samples with the same routine visits allowed comparing the impact of Touchpoints intervention on the above mentioned variables. The monitoring of the two groups took place in a period of between 11 and 24 months of children's life (four moments of assessment), being held two Touchpoints sessions in the GI at 12 and 18 months. Two Touchpoints interventions sessions were applied in the GI as follows: the first time, at 12 months; the second time, at 24 months, child age. The instruments used for data collection were: Schedule of Growing Skills II (SGS II); CARE-Index; Temperament Scale; Parent-Caregiver Relationship Scale - parents' version. Infant Locomotor development (p=.036) and maternal representations about the child and motherhood (Z=5.737; p=.019) improved in the GI. No significant results were found for mother-infant interaction in this direct comparison. Nevertheless, findings indicate that maternal sensitivity and infant cooperative behaviour increased from 12 to 24 months in the GI [t(41)=4.513; p<.001], whereas it decreased in the GWI (from 8.62 at 12 months to 8.40 at 24 months). The means of mothers' perceptions of Trust/Caring towards nurses in the GI were higher than in GWI after six months of the Touchpoints intervention [t(84)=2.146; p<.001; M_GI=34

  14. FATHERS' AND MOTHERS' REPRESENTATIONS OF THE INFANT: ASSOCIATIONS WITH PRENATAL RISK FACTORS.

    PubMed

    Vreeswijk, Charlotte M J M; Rijk, Catharina H A M; Maas, A Janneke B M; van Bakel, Hedwig J A

    2015-01-01

    Parents' representations of their infants consist of parents' subjective experiences of how they perceive their infants. They provide important information about the quality of the parent-infant relationship and are closely related to parenting behavior and infant attachment. Previous studies have shown that parents' representations emerge during pregnancy. However, little is known about prenatal (risk) factors that are related to parents' representations. In a prospective study, 308 mothers and 243 fathers were followed during pregnancy and postpartum. Prenatal risk factors were assessed with an adapted version of the Dunedin Family Services Indicator (T.G. Egan et al., ; R.C. Muir et al., ). At 26 weeks' gestation and 6 months' postpartum, parents' representations of their children were assessed with the Working Model of the Child Interview (C.H. Zeanah, D. Benoit, L. Hirshberg, M.L. Barton, & C. Regan). Results showed stability between pre- and postnatal representations, with fathers having more disengaged representations than did mothers. In addition, prenatal risk factors of parenting problems were associated with the quality of parents' prenatal (only in mothers) and postnatal representations. This study provides valuable information concerning parents at risk of developing nonbalanced representations of their children. In clinical practice, these families could be monitored more intensively and may be supported in developing a more optimal parent-infant relationship. © 2015 Michigan Association for Infant Mental Health.

  15. Internal Representational Models of Attachment Relationships.

    ERIC Educational Resources Information Center

    Crittenden, Patricia M.

    This paper outlines several properties of internal representational models (IRMs) and offers terminology that may help to differentiate the models. Properties of IRMs include focus, memory systems, content, cognitive function, "metastructure," quality of attachment, behavioral strategies, and attitude toward attachment. An IRM focuses on…

  16. Hippocampus Contributes to the Maintenance but Not the Quality of Visual Information over Time

    ERIC Educational Resources Information Center

    Warren, David E.; Duff, Melissa C.; Cohen, Neal J.; Tranel, Daniel

    2015-01-01

    The hippocampus has recently been implicated in the brief representation of visual information, but its specific role is not well understood. We investigated this role using a paradigm that distinguishes quantity and quality of visual memory as described in a previous study. We found that amnesic patients with bilateral hippocampal damage (N = 5)…

  17. On the representation theory of the Bondi-Metzner-Sachs group and its variants in three space-time dimensions

    NASA Astrophysics Data System (ADS)

    Melas, Evangelos

    2017-07-01

    The original Bondi-Metzner-Sachs (BMS) group B is the common asymptotic symmetry group of all asymptotically flat Lorentzian radiating 4-dim space-times. As such, B is the best candidate for the universal symmetry group of General Relativity (G.R.). In 1973, with this motivation, McCarthy classified all relativistic B-invariant systems in terms of strongly continuous irreducible unitary representations (IRS) of B. Here we introduce the analogue B(2, 1) of the BMS group B in 3 space-time dimensions. B(2, 1) itself admits thirty-four analogues both real in all signatures and in complex space-times. In order to find the IRS of both B(2, 1) and its analogues, we need to extend Wigner-Mackey's theory of induced representations. The necessary extension is described and is reduced to the solution of three problems. These problems are solved in the case where B(2, 1) and its analogues are equipped with the Hilbert topology. The extended theory is necessary in order to construct the IRS of both B and its analogues in any number d of space-time dimensions, d ≥3 , and also in order to construct the IRS of their supersymmetric counterparts. We use the extended theory to obtain the necessary data in order to construct the IRS of B(2, 1). The main results of the representation theory are as follows: The IRS are induced from "little groups" which are compact. The finite "little groups" are cyclic groups of even order. The inducing construction is exhaustive notwithstanding the fact that B(2, 1) is not locally compact in the employed Hilbert topology.

  18. The Interaction between Semantic Representation and Episodic Memory.

    PubMed

    Fang, Jing; Rüther, Naima; Bellebaum, Christian; Wiskott, Laurenz; Cheng, Sen

    2018-02-01

    The experimental evidence on the interrelation between episodic memory and semantic memory is inconclusive. Are they independent systems, different aspects of a single system, or separate but strongly interacting systems? Here, we propose a computational role for the interaction between the semantic and episodic systems that might help resolve this debate. We hypothesize that episodic memories are represented as sequences of activation patterns. These patterns are the output of a semantic representational network that compresses the high-dimensional sensory input. We show quantitatively that the accuracy of episodic memory crucially depends on the quality of the semantic representation. We compare two types of semantic representations: appropriate representations, which means that the representation is used to store input sequences that are of the same type as those that it was trained on, and inappropriate representations, which means that stored inputs differ from the training data. Retrieval accuracy is higher for appropriate representations because the encoded sequences are less divergent than those encoded with inappropriate representations. Consistent with our model prediction, we found that human subjects remember some aspects of episodes significantly more accurately if they had previously been familiarized with the objects occurring in the episode, as compared to episodes involving unfamiliar objects. We thus conclude that the interaction with the semantic system plays an important role for episodic memory.

  19. Time-dependent importance sampling in semiclassical initial value representation calculations for time correlation functions. II. A simplified implementation.

    PubMed

    Tao, Guohua; Miller, William H

    2012-09-28

    An efficient time-dependent (TD) Monte Carlo (MC) importance sampling method has recently been developed [G. Tao and W. H. Miller, J. Chem. Phys. 135, 024104 (2011)] for the evaluation of time correlation functions using the semiclassical (SC) initial value representation (IVR) methodology. In this TD-SC-IVR method, the MC sampling uses information from both time-evolved phase points as well as their initial values, and only the "important" trajectories are sampled frequently. Even though the TD-SC-IVR was shown in some benchmark examples to be much more efficient than the traditional time-independent sampling method (which uses only initial conditions), the calculation of the SC prefactor-which is computationally expensive, especially for large systems-is still required for accepted trajectories. In the present work, we present an approximate implementation of the TD-SC-IVR method that is completely prefactor-free; it gives the time correlation function as a classical-like magnitude function multiplied by a phase function. Application of this approach to flux-flux correlation functions (which yield reaction rate constants) for the benchmark H + H(2) system shows very good agreement with exact quantum results. Limitations of the approximate approach are also discussed.

  20. A real-time 3D end-to-end augmented reality system (and its representation transformations)

    NASA Astrophysics Data System (ADS)

    Tytgat, Donny; Aerts, Maarten; De Busser, Jeroen; Lievens, Sammy; Rondao Alface, Patrice; Macq, Jean-Francois

    2016-09-01

    The new generation of HMDs coming to the market is expected to enable many new applications that allow free viewpoint experiences with captured video objects. Current applications usually rely on 3D content that is manually created or captured in an offline manner. In contrast, this paper focuses on augmented reality applications that use live captured 3D objects while maintaining free viewpoint interaction. We present a system that allows live dynamic 3D objects (e.g. a person who is talking) to be captured in real-time. Real-time performance is achieved by traversing a number of representation formats and exploiting their specific benefits. For instance, depth images are maintained for fast neighborhood retrieval and occlusion determination, while implicit surfaces are used to facilitate multi-source aggregation for both geometry and texture. The result is a 3D reconstruction system that outputs multi-textured triangle meshes at real-time rates. An end-to-end system is presented that captures and reconstructs live 3D data and allows for this data to be used on a networked (AR) device. For allocating the different functional blocks onto the available physical devices, a number of alternatives are proposed considering the available computational power and bandwidth for each of the components. As we will show, the representation format can play an important role in this functional allocation and allows for a flexible system that can support a highly heterogeneous infrastructure.

  1. Image super-resolution via sparse representation.

    PubMed

    Yang, Jianchao; Wright, John; Huang, Thomas S; Ma, Yi

    2010-11-01

    This paper presents a new approach to single-image super-resolution, based on sparse signal representation. Research on image statistics suggests that image patches can be well-represented as a sparse linear combination of elements from an appropriately chosen over-complete dictionary. Inspired by this observation, we seek a sparse representation for each patch of the low-resolution input, and then use the coefficients of this representation to generate the high-resolution output. Theoretical results from compressed sensing suggest that under mild conditions, the sparse representation can be correctly recovered from the downsampled signals. By jointly training two dictionaries for the low- and high-resolution image patches, we can enforce the similarity of sparse representations between the low resolution and high resolution image patch pair with respect to their own dictionaries. Therefore, the sparse representation of a low resolution image patch can be applied with the high resolution image patch dictionary to generate a high resolution image patch. The learned dictionary pair is a more compact representation of the patch pairs, compared to previous approaches, which simply sample a large amount of image patch pairs, reducing the computational cost substantially. The effectiveness of such a sparsity prior is demonstrated for both general image super-resolution and the special case of face hallucination. In both cases, our algorithm generates high-resolution images that are competitive or even superior in quality to images produced by other similar SR methods. In addition, the local sparse modeling of our approach is naturally robust to noise, and therefore the proposed algorithm can handle super-resolution with noisy inputs in a more unified framework.

  2. Identifying Representational Competence with Multi-Representational Displays

    ERIC Educational Resources Information Center

    Stieff, Mike; Hegarty, Mary; Deslongchamps, Ghislain

    2011-01-01

    Increasingly, multi-representational educational technologies are being deployed in science classrooms to support science learning and the development of representational competence. Several studies have indicated that students experience significant challenges working with these multi-representational displays and prefer to use only one…

  3. Effects of sport expertise on representational momentum during timing control.

    PubMed

    Nakamoto, Hiroki; Mori, Shiro; Ikudome, Sachi; Unenaka, Satoshi; Imanaka, Kuniyasu

    2015-04-01

    Sports involving fast visual perception require players to compensate for delays in neural processing of visual information. Memory for the final position of a moving object is distorted forward along its path of motion (i.e., "representational momentum," RM). This cognitive extrapolation of visual perception might compensate for the neural delay in interacting appropriately with a moving object. The present study examined whether experienced batters cognitively extrapolate the location of a fast-moving object and whether this extrapolation is associated with coincident timing control. Nine expert and nine novice baseball players performed a prediction motion task in which a target moved from one end of a straight 400-cm track at a constant velocity. In half of the trials, vision was suddenly occluded when the target reached the 200-cm point (occlusion condition). Participants had to press a button concurrently with the target arrival at the end of the track and verbally report their subjective assessment of the first target-occluded position. Experts showed larger RM magnitude (cognitive extrapolation) than did novices in the occlusion condition. RM magnitude and timing errors were strongly correlated in the fast velocity condition in both experts and novices, whereas in the slow velocity condition, a significant correlation appeared only in experts. This suggests that experts can cognitively extrapolate the location of a moving object according to their anticipation and, as a result, potentially circumvent neural processing delays. This process might be used to control response timing when interacting with moving objects.

  4. The Immediate and Chronic Influence of Spatio-Temporal Metaphors on the Mental Representations of Time in English, Mandarin, and Mandarin-English Speakers

    PubMed Central

    Lai, Vicky Tzuyin; Boroditsky, Lera

    2013-01-01

    In this paper we examine whether experience with spatial metaphors for time has an influence on people’s representation of time. In particular we ask whether spatio-temporal metaphors can have both chronic and immediate effects on temporal thinking. In Study 1, we examine the prevalence of ego-moving representations for time in Mandarin speakers, English speakers, and Mandarin-English (ME) bilinguals. As predicted by observations in linguistic analyses, we find that Mandarin speakers are less likely to take an ego-moving perspective than are English speakers. Further, we find that ME bilinguals tested in English are less likely to take an ego-moving perspective than are English monolinguals (an effect of L1 on meaning-making in L2), and also that ME bilinguals tested in Mandarin are more likely to take an ego-moving perspective than are Mandarin monolinguals (an effect of L2 on meaning-making in L1). These findings demonstrate that habits of metaphor use in one language can influence temporal reasoning in another language, suggesting the metaphors can have a chronic effect on patterns in thought. In Study 2 we test Mandarin speakers using either horizontal or vertical metaphors in the immediate context of the task. We find that Mandarin speakers are more likely to construct front-back representations of time when understanding front-back metaphors, and more likely to construct up-down representations of time when understanding up-down metaphors. These findings demonstrate that spatio-temporal metaphors can also have an immediate influence on temporal reasoning. Taken together, these findings demonstrate that the metaphors we use to talk about time have both immediate and long-term consequences for how we conceptualize and reason about this fundamental domain of experience. PMID:23630505

  5. Spouse "Together Time": Quality Time within the Household

    ERIC Educational Resources Information Center

    Glorieux, Ignace; Minnen, Joeri; van Tienoven, Theun Pieter

    2011-01-01

    During the last decade more and more time-use data were gathered on a household level in stead of on an individual level. The time-use information of all members of the household provides much more insight in research fields that until now largely used data gathered at the individual level. One of these research fields is the study of quality of…

  6. Progress in knowledge representation research

    NASA Technical Reports Server (NTRS)

    Lum, Henry

    1985-01-01

    Brief descriptions are given of research being carried out in the field of knowledge representation. Dynamic simulation and modelling of planning systems with real-time sensor inputs; development of domain-independent knowledge representation tools which can be used in the development of application-specific expert and planning systems; and development of a space-borne very high speed integrated circuit processor are among the projects discussed.

  7. Self-Representations in Early Adolescence: Variations in Sibling Similarity by Sex Composition and Sibling Relationship Qualities

    ERIC Educational Resources Information Center

    Gamble, Wendy C.; Card, Noel A.; Yu, Jeong Jin

    2010-01-01

    Self-representations play an important role in adolescent development. This study compared self-representations for siblings and explored whether sibling relationship characteristics are associated with similarities or differences in sibling self-concepts. We examined self-representations of 438 adolescent sibling dyads (M age younger sibling =…

  8. Tensorial dynamic time warping with articulation index representation for efficient audio-template learning.

    PubMed

    Le, Long N; Jones, Douglas L

    2018-03-01

    Audio classification techniques often depend on the availability of a large labeled training dataset for successful performance. However, in many application domains of audio classification (e.g., wildlife monitoring), obtaining labeled data is still a costly and laborious process. Motivated by this observation, a technique is proposed to efficiently learn a clean template from a few labeled, but likely corrupted (by noise and interferences), data samples. This learning can be done efficiently via tensorial dynamic time warping on the articulation index-based time-frequency representations of audio data. The learned template can then be used in audio classification following the standard template-based approach. Experimental results show that the proposed approach outperforms both (1) the recurrent neural network approach and (2) the state-of-the-art in the template-based approach on a wildlife detection application with few training samples.

  9. Effects of Time-Compressed Narration and Representational Adjunct Images on Cued-Recall, Content Recognition, and Learner Satisfaction

    ERIC Educational Resources Information Center

    Ritzhaupt, Albert Dieter; Barron, Ann

    2008-01-01

    The purpose of this study was to investigate the effect of time-compressed narration and representational adjunct images on a learner's ability to recall and recognize information. The experiment was a 4 Audio Speeds (1.0 = normal vs. 1.5 = moderate vs. 2.0 = fast vs. 2.5 = fastest rate) x Adjunct Image (Image Present vs. Image Absent) factorial…

  10. Time-frequency representation of a highly nonstationary signal via the modified Wigner distribution

    NASA Technical Reports Server (NTRS)

    Zoladz, T. F.; Jones, J. H.; Jong, J.

    1992-01-01

    A new signal analysis technique called the modified Wigner distribution (MWD) is presented. The new signal processing tool has been very successful in determining time frequency representations of highly non-stationary multicomponent signals in both simulations and trials involving actual Space Shuttle Main Engine (SSME) high frequency data. The MWD departs from the classic Wigner distribution (WD) in that it effectively eliminates the cross coupling among positive frequency components in a multiple component signal. This attribute of the MWD, which prevents the generation of 'phantom' spectral peaks, will undoubtedly increase the utility of the WD for real world signal analysis applications which more often than not involve multicomponent signals.

  11. Contacts de langues et representations (Language Contacts and Representations).

    ERIC Educational Resources Information Center

    Matthey, Marinette, Ed.

    1997-01-01

    Essays on language contact and the image of language, entirely in French, include: "Representations 'du' contexte et representations 'en' contexte? Eleves et enseignants face a l'apprentissage de la langue" ("Representations 'of' Context or Representations 'in' Context? Students and Teachers Facing Language Learning" (Laurent…

  12. A Subdivision-Based Representation for Vector Image Editing.

    PubMed

    Liao, Zicheng; Hoppe, Hugues; Forsyth, David; Yu, Yizhou

    2012-11-01

    Vector graphics has been employed in a wide variety of applications due to its scalability and editability. Editability is a high priority for artists and designers who wish to produce vector-based graphical content with user interaction. In this paper, we introduce a new vector image representation based on piecewise smooth subdivision surfaces, which is a simple, unified and flexible framework that supports a variety of operations, including shape editing, color editing, image stylization, and vector image processing. These operations effectively create novel vector graphics by reusing and altering existing image vectorization results. Because image vectorization yields an abstraction of the original raster image, controlling the level of detail of this abstraction is highly desirable. To this end, we design a feature-oriented vector image pyramid that offers multiple levels of abstraction simultaneously. Our new vector image representation can be rasterized efficiently using GPU-accelerated subdivision. Experiments indicate that our vector image representation achieves high visual quality and better supports editing operations than existing representations.

  13. Visual representation of spatiotemporal structure

    NASA Astrophysics Data System (ADS)

    Schill, Kerstin; Zetzsche, Christoph; Brauer, Wilfried; Eisenkolb, A.; Musto, A.

    1998-07-01

    The processing and representation of motion information is addressed from an integrated perspective comprising low- level signal processing properties as well as higher-level cognitive aspects. For the low-level processing of motion information we argue that a fundamental requirement is the existence of a spatio-temporal memory. Its key feature, the provision of an orthogonal relation between external time and its internal representation, is achieved by a mapping of temporal structure into a locally distributed activity distribution accessible in parallel by higher-level processing stages. This leads to a reinterpretation of the classical concept of `iconic memory' and resolves inconsistencies on ultra-short-time processing and visual masking. The spatial-temporal memory is further investigated by experiments on the perception of spatio-temporal patterns. Results on the direction discrimination of motion paths provide evidence that information about direction and location are not processed and represented independent of each other. This suggests a unified representation on an early level, in the sense that motion information is internally available in form of a spatio-temporal compound. For the higher-level representation we have developed a formal framework for the qualitative description of courses of motion that may occur with moving objects.

  14. Intrinsic qualities of primate bones as predictors of skeletal element representation in modern and fossil carnivore feeding assemblages.

    PubMed

    Carlson, Kristian J; Pickering, Travis Rayne

    2003-04-01

    Plio-Pleistocene faunal assemblages from Swartkrans Cave (South Africa) preserve large numbers of primate remains. Brain, C.K., 1981. The Hunters or the Hunted? An Introduction to African Cave Taphonomy. University of Chicago Press, Chicago suggested that these primate subassemblages might have resulted from a focus by carnivores on primate predation and bone accumulation. Brain's hypothesis prompted us to investigate, in a previous study, this taphonomic issue as it relates to density-mediated destruction of primate bones (J. Archaeol. Sci. 29, 2002, 883). Here we extend our investigation of Brain's hypothesis by examining additional intrinsic qualities of baboon bones and their role as mediators of skeletal element representation in carnivore-created assemblages. Using three modern adult baboon skeletons, we collected data on four intrinsic bone qualities (bulk bone mineral density, maximum length, volume, and cross-sectional area) for approximately 81 bones per baboon skeleton. We investigated the relationship between these intrinsic bone qualities and a measure of skeletal part representation (the percentage minimum animal unit) for baboon bones in carnivore refuse and scat assemblages. Refuse assemblages consist of baboon bones not ingested during ten separate experimental feeding episodes in which individual baboon carcasses were fed to individual captive leopards and a spotted hyena. Scat assemblages consist of those baboon bones recovered in carnivore regurgitations and feces resulting from the feeding episodes. In refuse assemblages, volume (i.e., size) was consistently the best predictor of element representation, while cross-sectional area was the poorest predictor in the leopard refuse assemblage and bulk bone mineral density (i.e., a measure of the proportion of cortical to trabecular bone) was the poorest predictor in the hyena refuse assemblage. In light of previous documentation of carnivore-induced density-mediated destruction to bone assemblages

  15. Evaluating a normalized conceptual representation produced from natural language patient discharge summaries.

    PubMed Central

    Zweigenbaum, P.; Bouaud, J.; Bachimont, B.; Charlet, J.; Boisvieux, J. F.

    1997-01-01

    The Menelas project aimed to produce a normalized conceptual representation from natural language patient discharge summaries. Because of the complex and detailed nature of conceptual representations, evaluating the quality of output of such a system is difficult. We present the method designed to measure the quality of Menelas output, and its application to the state of the French Menelas prototype as of the end of the project. We examine this method in the framework recently proposed by Friedman and Hripcsak. We also propose two conditions which enable to reduce the evaluation preparation workload. PMID:9357694

  16. Statistical Representations of Track Geometry : Volume I, Text.

    DOT National Transportation Integrated Search

    1980-03-31

    Mathematical representations of railroad track geometry variations are derived from time series analyses of track measurements. Since the majority of track is free of anomalies (turnouts, crossings, bridges, etc.), representation of anomaly-free trac...

  17. The role of national identity representation in the relation between in-group identification and out-group derogation: ethnic versus civic representation.

    PubMed

    Meeus, Joke; Duriez, Bart; Vanbeselaere, Norbert; Boen, Filip

    2010-06-01

    Two studies investigated whether the content of in-group identity affects the relation between in-group identification and ethnic prejudice. The first study among university students, tested whether national identity representations (i.e., ethnic vs. civic) moderate or mediate the relation between Flemish in-group identification and ethnic prejudice. A moderation hypothesis is supported when those higher in identification who subscribe to a more ethnic representation display higher ethnic prejudice levels than those higher in identification who subscribe to a more civic representation. A mediation hypothesis is supported when those higher in identification tend towards one specific representation, which in turn, should predict ethnic prejudice. Results supported a mediation hypothesis and showed that the more respondents identified with the Flemish in-group, the more ethnic their identity representation, and the more they were inclined to display ethnic prejudice. The second study tested this mediation from a longitudinal perspective in a two-wave study among high school students. In-group identification at Time 1 predicted over-time changes in identity representation, which in turn, predicted changes in ethnic prejudice. In addition to this, changes in identity representation were predicted by initial ethnic prejudice levels. The implications of these findings are discussed.

  18. A single-sided homogeneous Green's function representation for holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval

    NASA Astrophysics Data System (ADS)

    Wapenaar, Kees; Thorbecke, Jan; van der Neut, Joost

    2016-04-01

    Green's theorem plays a fundamental role in a diverse range of wavefield imaging applications, such as holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval. In many of those applications, the homogeneous Green's function (i.e. the Green's function of the wave equation without a singularity on the right-hand side) is represented by a closed boundary integral. In practical applications, sources and/or receivers are usually present only on an open surface, which implies that a significant part of the closed boundary integral is by necessity ignored. Here we derive a homogeneous Green's function representation for the common situation that sources and/or receivers are present on an open surface only. We modify the integrand in such a way that it vanishes on the part of the boundary where no sources and receivers are present. As a consequence, the remaining integral along the open surface is an accurate single-sided representation of the homogeneous Green's function. This single-sided representation accounts for all orders of multiple scattering. The new representation significantly improves the aforementioned wavefield imaging applications, particularly in situations where the first-order scattering approximation breaks down.

  19. Graphical representation of robot grasping quality measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varma, V.; Tasch, U.

    1993-11-01

    When an object is held by a multi-fingered hand, the values of the contact forces can be multivalued. An objective function, when used in conjunction with the frictional and geometric constraints of the grasp, can however, give a unique set of finger force values. The selection of the objective function in determining the finger forces is dependent on the type of grasp required, the material properties of the object, and the limitations of the robot fingers. In this paper several optimization functions are studied and their merits highlighted. A graphical representation of the finger force values and the objective functionmore » is introduced that enable one in selecting and comparing various grasping configurations. The impending motion of the object at different torque and finger force values are determined by observing the normalized coefficient of friction plots.« less

  20. Taste quality decoding parallels taste sensations.

    PubMed

    Crouzet, Sébastien M; Busch, Niko A; Ohla, Kathrin

    2015-03-30

    In most species, the sense of taste is key in the distinction of potentially nutritious and harmful food constituents and thereby in the acceptance (or rejection) of food. Taste quality is encoded by specialized receptors on the tongue, which detect chemicals corresponding to each of the basic tastes (sweet, salty, sour, bitter, and savory [1]), before taste quality information is transmitted via segregated neuronal fibers [2], distributed coding across neuronal fibers [3], or dynamic firing patterns [4] to the gustatory cortex in the insula. In rodents, both hardwired coding by labeled lines [2] and flexible, learning-dependent representations [5] and broadly tuned neurons [6] seem to coexist. It is currently unknown how, when, and where taste quality representations are established in the cortex and whether these representations are used for perceptual decisions. Here, we show that neuronal response patterns allow to decode which of four tastants (salty, sweet, sour, and bitter) participants tasted in a given trial by using time-resolved multivariate pattern analyses of large-scale electrophysiological brain responses. The onset of this prediction coincided with the earliest taste-evoked responses originating from the insula and opercular cortices, indicating that quality is among the first attributes of a taste represented in the central gustatory system. These response patterns correlated with perceptual decisions of taste quality: tastes that participants discriminated less accurately also evoked less discriminated brain response patterns. The results therefore provide the first evidence for a link between taste-related decision-making and the predictive value of these brain response patterns. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A unified data representation theory for network visualization, ordering and coarse-graining

    PubMed Central

    Kovács, István A.; Mizsei, Réka; Csermely, Péter

    2015-01-01

    Representation of large data sets became a key question of many scientific disciplines in the last decade. Several approaches for network visualization, data ordering and coarse-graining accomplished this goal. However, there was no underlying theoretical framework linking these problems. Here we show an elegant, information theoretic data representation approach as a unified solution of network visualization, data ordering and coarse-graining. The optimal representation is the hardest to distinguish from the original data matrix, measured by the relative entropy. The representation of network nodes as probability distributions provides an efficient visualization method and, in one dimension, an ordering of network nodes and edges. Coarse-grained representations of the input network enable both efficient data compression and hierarchical visualization to achieve high quality representations of larger data sets. Our unified data representation theory will help the analysis of extensive data sets, by revealing the large-scale structure of complex networks in a comprehensible form. PMID:26348923

  2. Narrative representations of caregivers and emotion dysregulation as predictors of maltreated children's rejection by peers.

    PubMed

    Shields, A; Ryan, R M; Cicchetti, D

    2001-05-01

    This study examined whether maltreated children were more likely than nonmaltreated children to develop poor-quality representations of caregivers and whether these representations predicted children's rejection by peers. A narrative task assessing representations of mothers and fathers was administered to 76 maltreated and 45 nonmaltreated boys and girls (8-12 years old). Maltreated children's representations were more negative/constricted and less positive/coherent than those of nonmaltreated children. Maladaptive representations were associated with emotion dysregulation, aggression, and peer rejection, whereas positive/coherent representations were related to prosocial behavior and peer preference. Representations mediated maltreatment's effects on peer rejection in part by undermining emotion regulation. Findings suggest that representations of caregivers serve an important regulatory function in the peer relationships of at-risk children.

  3. Shared and Distinctive Origins and Correlates of Adult Attachment Representations: The Developmental Organization of Romantic Functioning

    PubMed Central

    Haydon, Katherine C.; Collins, W. Andrew; Salvatore, Jessica E.; Simpson, Jeffry A.; Roisman, Glenn I.

    2012-01-01

    To test proposals regarding the hierarchical organization of adult attachment, this study examined developmental origins of generalized and romantic attachment representations and their concurrent associations with romantic functioning. Participants (N = 112) in a 35-year prospective study completed the Adult Attachment Interview (AAI) and Current Relationship Interview (CRI). Two-way ANOVAs tested interactive associations of AAI and CRI security with infant attachment, early parenting quality, preschool ego resiliency, adolescent friendship quality, and adult romantic functioning. Both representations were associated with earlier parenting and core attachment-related romantic behavior, but romantic representations had distinctive links to ego resiliency and relationship-specific romantic behaviors. Attachment representations were independent and did not interactively predict romantic functioning, suggesting that they confer somewhat distinctive benefits for romantic functioning. PMID:22694197

  4. Flux-Based Finite Volume representations for general thermal problems

    NASA Technical Reports Server (NTRS)

    Mohan, Ram V.; Tamma, Kumar K.

    1993-01-01

    Flux-Based Finite Volume (FV) element representations for general thermal problems are given in conjunction with a generalized trapezoidal gamma-T family of algorithms, formulated following the spirit of what we term as the Lax-Wendroff based FV formulations. The new flux-based representations introduced offer an improved physical interpretation of the problem along with computationally convenient and attractive features. The space and time discretization emanate from a conservation form of the governing equation for thermal problems, and in conjunction with the flux-based element representations give rise to a physically improved and locally conservative numerical formulations. The present representations seek to involve improved locally conservative properties, improved physical representations and computational features; these are based on a 2D, bilinear FV element and can be extended for other cases. Time discretization based on a gamma-T family of algorithms in the spirit of a Lax-Wendroff based FV formulations are employed. Numerical examples involving linear/nonlinear steady and transient situations are shown to demonstrate the applicability of the present representations for thermal analysis situations.

  5. Representations of Nets of C*-Algebras over S 1

    NASA Astrophysics Data System (ADS)

    Ruzzi, Giuseppe; Vasselli, Ezio

    2012-11-01

    In recent times a new kind of representations has been used to describe superselection sectors of the observable net over a curved spacetime, taking into account the effects of the fundamental group of the spacetime. Using this notion of representation, we prove that any net of C*-algebras over S 1 admits faithful representations, and when the net is covariant under Diff( S 1), it admits representations covariant under any amenable subgroup of Diff( S 1).

  6. Image fusion based on Bandelet and sparse representation

    NASA Astrophysics Data System (ADS)

    Zhang, Jiuxing; Zhang, Wei; Li, Xuzhi

    2018-04-01

    Bandelet transform could acquire geometric regular direction and geometric flow, sparse representation could represent signals with as little as possible atoms on over-complete dictionary, both of which could be used to image fusion. Therefore, a new fusion method is proposed based on Bandelet and Sparse Representation, to fuse Bandelet coefficients of multi-source images and obtain high quality fusion effects. The test are performed on remote sensing images and simulated multi-focus images, experimental results show that the performance of new method is better than tested methods according to objective evaluation indexes and subjective visual effects.

  7. Adding "Circle of Security - Parenting" to treatment as usual in three Swedish infant mental health clinics. Effects on parents' internal representations and quality of parent-infant interaction.

    PubMed

    Risholm Mothander, Pia; Furmark, Catarina; Neander, Kerstin

    2018-06-01

    This study presents effects of adding Circle of Security-Parenting (COS-P) to an already established comprehensive therapeutic model for early parent-child intervention in three Swedish infant mental health (IMH) clinics. Parents' internal representations and quality of parent-infant interaction were studied in a clinical sample comprised of 52 parent-infant dyads randomly allocated to two comparable groups. One group consisted of 28 dyads receiving treatment as usual (TAU) supplemented with COS-P in a small group format, and another group of 24 dyads receiving TAU only. Assessments were made at baseline (T1), 6 months after inclusion (T2) and 12 months after inclusion (T3). Changes over time were explored in 42 dyads. In the COS-P group, the proportion of balanced representations, as assessed with Working Model of the Child Interview (WMCI), significantly increased between T1 and T3. Further, the proportion of emotionally available interactions, as assessed with Emotional Availability scales (EA), significantly increased over time in the COS-P group. Improvements in the TAU-group were close to significant. Limitations of the study are mainly related to the small sample size. Strength is the real world character of the study, where COS-P was implemented in a clinical context not otherwise adapted to research. We conclude by discussing the value of supplementing TAU with COS-P in IMH treatment. © 2017 The Authors. Scandinavian Journal of Psychology published by Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  8. Real-time computer treatment of THz passive device images with the high image quality

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2012-06-01

    We demonstrate real-time computer code improving significantly the quality of images captured by the passive THz imaging system. The code is not only designed for a THz passive device: it can be applied to any kind of such devices and active THz imaging systems as well. We applied our code for computer processing of images captured by four passive THz imaging devices manufactured by different companies. It should be stressed that computer processing of images produced by different companies requires using the different spatial filters usually. The performance of current version of the computer code is greater than one image per second for a THz image having more than 5000 pixels and 24 bit number representation. Processing of THz single image produces about 20 images simultaneously corresponding to various spatial filters. The computer code allows increasing the number of pixels for processed images without noticeable reduction of image quality. The performance of the computer code can be increased many times using parallel algorithms for processing the image. We develop original spatial filters which allow one to see objects with sizes less than 2 cm. The imagery is produced by passive THz imaging devices which captured the images of objects hidden under opaque clothes. For images with high noise we develop an approach which results in suppression of the noise after using the computer processing and we obtain the good quality image. With the aim of illustrating the efficiency of the developed approach we demonstrate the detection of the liquid explosive, ordinary explosive, knife, pistol, metal plate, CD, ceramics, chocolate and other objects hidden under opaque clothes. The results demonstrate the high efficiency of our approach for the detection of hidden objects and they are a very promising solution for the security problem.

  9. The duality of temporal encoding – the intrinsic and extrinsic representation of time

    PubMed Central

    Golan, Ronen; Zakay, Dan

    2015-01-01

    While time is well acknowledged for having a fundamental part in our perception, questions on how it is represented are still matters of great debate. One of the main issues in question is whether time is represented intrinsically at the neural level, or is it represented within dedicated brain regions. We used an fMRI block design to test if we can impose covert encoding of temporal features of faces and natural scenes stimuli within category selective neural populations by exposing subjects to four types of temporal variance, ranging from 0% up to 50% variance. We found a gradual increase in neural activation associated with the gradual increase in temporal variance within category selective areas. A second level analysis showed the same pattern of activations within known brain regions associated with time representation, such as the Cerebellum, the Caudate, and the Thalamus. We concluded that temporal features are integral to perception and are simultaneously represented within category selective regions and globally within dedicated regions. Our second conclusion, drown from our covert procedure, is that time encoding, at its basic level, is an automated process that does not require attention allocated toward the temporal features nor does it require dedicated resources. PMID:26379604

  10. Building blocks of topological quantum chemistry: Elementary band representations

    NASA Astrophysics Data System (ADS)

    Cano, Jennifer; Bradlyn, Barry; Wang, Zhijun; Elcoro, L.; Vergniory, M. G.; Felser, C.; Aroyo, M. I.; Bernevig, B. Andrei

    2018-01-01

    The link between chemical orbitals described by local degrees of freedom and band theory, which is defined in momentum space, was proposed by Zak several decades ago for spinless systems with and without time reversal in his theory of "elementary" band representations. In a recent paper [Bradlyn et al., Nature (London) 547, 298 (2017), 10.1038/nature23268] we introduced the generalization of this theory to the experimentally relevant situation of spin-orbit coupled systems with time-reversal symmetry and proved that all bands that do not transform as band representations are topological. Here we give the full details of this construction. We prove that elementary band representations are either connected as bands in the Brillouin zone and are described by localized Wannier orbitals respecting the symmetries of the lattice (including time reversal when applicable), or, if disconnected, describe topological insulators. We then show how to generate a band representation from a particular Wyckoff position and determine which Wyckoff positions generate elementary band representations for all space groups. This theory applies to spinful and spinless systems, in all dimensions, with and without time reversal. We introduce a homotopic notion of equivalence and show that it results in a finer classification of topological phases than approaches based only on the symmetry of wave functions at special points in the Brillouin zone. Utilizing a mapping of the band connectivity into a graph theory problem, we show in companion papers which Wyckoff positions can generate disconnected elementary band representations, furnishing a natural avenue for a systematic materials search.

  11. Semantic representation of reported measurements in radiology.

    PubMed

    Oberkampf, Heiner; Zillner, Sonja; Overton, James A; Bauer, Bernhard; Cavallaro, Alexander; Uder, Michael; Hammon, Matthias

    2016-01-22

    In radiology, a vast amount of diverse data is generated, and unstructured reporting is standard. Hence, much useful information is trapped in free-text form, and often lost in translation and transmission. One relevant source of free-text data consists of reports covering the assessment of changes in tumor burden, which are needed for the evaluation of cancer treatment success. Any change of lesion size is a critical factor in follow-up examinations. It is difficult to retrieve specific information from unstructured reports and to compare them over time. Therefore, a prototype was implemented that demonstrates the structured representation of findings, allowing selective review in consecutive examinations and thus more efficient comparison over time. We developed a semantic Model for Clinical Information (MCI) based on existing ontologies from the Open Biological and Biomedical Ontologies (OBO) library. MCI is used for the integrated representation of measured image findings and medical knowledge about the normal size of anatomical entities. An integrated view of the radiology findings is realized by a prototype implementation of a ReportViewer. Further, RECIST (Response Evaluation Criteria In Solid Tumors) guidelines are implemented by SPARQL queries on MCI. The evaluation is based on two data sets of German radiology reports: An oncologic data set consisting of 2584 reports on 377 lymphoma patients and a mixed data set consisting of 6007 reports on diverse medical and surgical patients. All measurement findings were automatically classified as abnormal/normal using formalized medical background knowledge, i.e., knowledge that has been encoded into an ontology. A radiologist evaluated 813 classifications as correct or incorrect. All unclassified findings were evaluated as incorrect. The proposed approach allows the automatic classification of findings with an accuracy of 96.4 % for oncologic reports and 92.9 % for mixed reports. The ReportViewer permits

  12. Can Real-Time Data Also Be Climate Quality?

    NASA Astrophysics Data System (ADS)

    Brewer, M.; Wentz, F. J.

    2015-12-01

    GMI, AMSR-2 and WindSat herald a new era of highly accurate and timely microwave data products. Traditionally, there has been a large divide between real-time and re-analysis data products. What if these completely separate processing systems could be merged? Through advanced modeling and physically based algorithms, Remote Sensing Systems (RSS) has narrowed the gap between real-time and research-quality. Satellite microwave ocean products have proven useful for a wide array of timely Earth science applications. Through cloud SST capabilities have enormously benefited tropical cyclone forecasting and day to day fisheries management, to name a few. Oceanic wind vectors enhance operational safety of shipping and recreational boating. Atmospheric rivers are of import to many human endeavors, as are cloud cover and knowledge of precipitation events. Some activities benefit from both climate and real-time operational data used in conjunction. RSS has been consistently improving microwave Earth Science Data Records (ESDRs) for several decades, while making near real-time data publicly available for semi-operational use. These data streams have often been produced in 2 stages: near real-time, followed by research quality final files. Over the years, we have seen this time delay shrink from months or weeks to mere hours. As well, we have seen the quality of near real-time data improve to the point where the distinction starts to blur. We continue to work towards better and faster RFI filtering, adaptive algorithms and improved real-time validation statistics for earlier detection of problems. Can it be possible to produce climate quality data in real-time, and what would the advantages be? We will try to answer these questions…

  13. Redundant binary number representation for an inherently parallel arithmetic on optical computers.

    PubMed

    De Biase, G A; Massini, A

    1993-02-10

    A simple redundant binary number representation suitable for digital-optical computers is presented. By means of this representation it is possible to build an arithmetic with carry-free parallel algebraic sums carried out in constant time and parallel multiplication in log N time. This redundant number representation naturally fits the 2's complement binary number system and permits the construction of inherently parallel arithmetic units that are used in various optical technologies. Some properties of this number representation and several examples of computation are presented.

  14. A Vocabulary of Motives: Understanding How Parents Define Quality Time

    ERIC Educational Resources Information Center

    Snyder, Karrie Ann

    2007-01-01

    Although discussions of parenting refer to quality time, parents' views of quality time have not been explored. Using the Sloan 500 Family Study, this article examines how 220 parents from 110 dual-parent families define the spending quality time with their families and finds 3 distinct views: Structured-planning parents saw it as planned family…

  15. On-board ephemeris representation for Topex/Poseidon

    NASA Technical Reports Server (NTRS)

    Salama, Ahmed H.

    1990-01-01

    The Topex/Poseidon satellite requires real-time on-board knowledge of the satellite and TDRS ephemeris for attitude determination and control and High-Gain Antenna (HGA) pointing. The ephemeris representation concept for the MMS (Multimission Modular Spacecraft) satellites has shown that compressing the predicted ephemeris in a Fourier Power Series (FPS) before uplinking in conjunction with the On-Board Computer (OBC) ephemeris reconstruction algorithms is an efficient technique for ephemeris representation. As an MMS-based satellite, Topex/Poseidon has inherited the Landsat ephemeris representation concept including a daily FPS upload. This paper presents the Topex/Poseidon concept, analysis, and results including the conclusion that the ephemeris representation duration could be extended to 10 days or more and convenient weekly uploading is adopted without an increase in OBC memory requirements.

  16. Hyper-heuristic Evolution of Dispatching Rules: A Comparison of Rule Representations.

    PubMed

    Branke, Jürgen; Hildebrandt, Torsten; Scholz-Reiter, Bernd

    2015-01-01

    Dispatching rules are frequently used for real-time, online scheduling in complex manufacturing systems. Design of such rules is usually done by experts in a time consuming trial-and-error process. Recently, evolutionary algorithms have been proposed to automate the design process. There are several possibilities to represent rules for this hyper-heuristic search. Because the representation determines the search neighborhood and the complexity of the rules that can be evolved, a suitable choice of representation is key for a successful evolutionary algorithm. In this paper we empirically compare three different representations, both numeric and symbolic, for automated rule design: A linear combination of attributes, a representation based on artificial neural networks, and a tree representation. Using appropriate evolutionary algorithms (CMA-ES for the neural network and linear representations, genetic programming for the tree representation), we empirically investigate the suitability of each representation in a dynamic stochastic job shop scenario. We also examine the robustness of the evolved dispatching rules against variations in the underlying job shop scenario, and visualize what the rules do, in order to get an intuitive understanding of their inner workings. Results indicate that the tree representation using an improved version of genetic programming gives the best results if many candidate rules can be evaluated, closely followed by the neural network representation that already leads to good results for small to moderate computational budgets. The linear representation is found to be competitive only for extremely small computational budgets.

  17. The Long and the Short of it: On the Nature and Origin of Functional Overlap Between Representations of Space and Time

    PubMed Central

    Srinivasan, Mahesh; Carey, Susan

    2010-01-01

    When we describe time, we often use the language of space (The movie was long; The deadline is approaching). Experiments 1–3 asked whether—as patterns in language suggest—a structural similarity between representations of spatial length and temporal duration is easier to access than one between length and other dimensions of experience, such as loudness. Adult participants were shown pairings of lines of different length with tones of different duration (Experiment 1) or tones of different loudness (Experiment 2). The length of the lines and duration or loudness of the tones was either positively or negatively correlated. Participants were better able to bind particular lengths and durations when they were positively correlated than when they were not, a pattern not observed for pairings of lengths and tone amplitudes, even after controlling for the presence of visual cues to duration in Experiment 1 (Experiment 3). This suggests that representations of length and duration may functionally overlap to a greater extent than representations of length and loudness. Experiments 4 and 5 asked whether experience with and mastery of words like long and short—which can flexibly refer to both space and time—itself creates this privileged relationship. Nine-month-old infants, like adults, were better able to bind representations of particular lengths and durations when these were positively correlated (Experiment 4), and failed to show this pattern for pairings of lengths and tone amplitudes (Experiment 5). We conclude that the functional overlap between representations of length and duration does not result from a metaphoric construction processes mediated by learning to flexibly use words such as long and short. We suggest instead that it may reflect an evolutionary recycling of spatial representations for more general purposes. PMID:20537324

  18. Distinguishing Representations as Origin and Representations as Input: Roles for Individual Neurons.

    PubMed

    Edwards, Jonathan C W

    2016-01-01

    It is widely perceived that there is a problem in giving a naturalistic account of mental representation that deals adequately with the issue of meaning, interpretation, or significance (semantic content). It is suggested here that this problem may arise partly from the conflation of two vernacular senses of representation: representation-as-origin and representation-as-input. The flash of a neon sign may in one sense represent a popular drink, but to function as a representation it must provide an input to a 'consumer' in the street. The arguments presented draw on two principles - the neuron doctrine and the need for a venue for 'presentation' or 'reception' of a representation at a specified site, consistent with the locality principle. It is also argued that domains of representation cannot be defined by signal traffic, since they can be expected to include 'null' elements based on non-firing cells. In this analysis, mental representations-as-origin are distributed patterns of cell firing. Each firing cell is given semantic value in its own right - some form of atomic propositional significance - since different axonal branches may contribute to integration with different populations of signals at different downstream sites. Representations-as-input are patterns of local co-arrival of signals in the form of synaptic potentials in dendrites. Meaning then draws on the relationships between active and null inputs, forming 'scenarios' comprising a molecular combination of 'premises' from which a new output with atomic propositional significance is generated. In both types of representation, meaning, interpretation or significance pivots on events in an individual cell. (This analysis only applies to 'occurrent' representations based on current neural activity.) The concept of representations-as-input emphasizes the need for an internal 'consumer' of a representation and the dependence of meaning on the co-relationships involved in an input interaction between

  19. Effects of simulated turbulence on aircraft handling qualities

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.; Joshi, D. S.

    1977-01-01

    The influence of simulated turbulence on aircraft handling qualities is presented. Pilot opinions of the handling qualities of a light general aviation aircraft were evaluated in a motion-base simulator using a simulated turbulence environment. A realistic representation of turbulence disturbances is described in terms of rms intensity and scale length and their random variations with time. The time histories generated by the proposed turbulence models showed characteristics which are more similar to real turbulence than the frequently-used Gaussian turbulence model. The proposed turbulence models flexibly accommodate changes in atmospheric conditions and are easily implemented in flight simulator studies.

  20. Right service, right place: optimising utilisation of a community nursing service to reduce planned re-presentations to the emergency department

    PubMed Central

    Lawton, Jessica Kirsten; Kinsman, Leigh; Dalton, Lisa; Walsh, Fay; Bryan, Helen; Williams, Sharon

    2017-01-01

    Background Congruent with international rising emergency department (ED) demand, a focus on strategies and services to reduce burden on EDs and improve patient outcomes is necessary. Planned re-presentations of non-urgent patients at a regional Australian hospital exceeded 1200 visits during the 2013–2014 financial year. Planned re-presentations perpetuate demand and signify a lack of alternative services for non-urgent patients. The Community Nursing Enhanced Connections Service (CoNECS) collaboratively evolved between acute care and community services in 2014 to reduce planned ED re-presentations. Objective This study aimed to investigate the evolution and impact of a community nursing service to reduce planned re-presentations to a regional Australian ED and identify enablers and barriers to interventionist effectiveness. Methods A mixed-methods approach evaluated the impact of CoNECS. Data from hospital databases including measured numbers of planned ED re-presentations by month, time of day, age, gender and reason were used to calculate referral rates to CoNECS. These results informed two semistructured focus groups with ED and community nurses. The researchers used a theoretical lens, ‘diffusion of innovation’, to understand how this service could inform future interventions. Results Analyses showed that annual ED planned re-presentations decreased by 43% (527 presentations) after implementation. Three themes emerged from the focus groups. These were right service at the right time, nursing uncertainty and system disconnect and medical disengagement. Conclusions CoNECS reduced overall ED planned re-presentations and was sustained longer than many complex service-level interventions. Factors supporting the service were endorsement from senior administration and strong leadership to drive responsive quality improvement strategies. This study identified a promising alternative service outside the ED, highlighting possibilities for other hospital emergency

  1. Right service, right place: optimising utilisation of a community nursing service to reduce planned re-presentations to the emergency department.

    PubMed

    Lawton, Jessica Kirsten; Kinsman, Leigh; Dalton, Lisa; Walsh, Fay; Bryan, Helen; Williams, Sharon

    2017-01-01

    Congruent with international rising emergency department (ED) demand, a focus on strategies and services to reduce burden on EDs and improve patient outcomes is necessary. Planned re-presentations of non-urgent patients at a regional Australian hospital exceeded 1200 visits during the 2013-2014 financial year. Planned re-presentations perpetuate demand and signify a lack of alternative services for non-urgent patients. The Community Nursing Enhanced Connections Service (CoNECS) collaboratively evolved between acute care and community services in 2014 to reduce planned ED re-presentations. This study aimed to investigate the evolution and impact of a community nursing service to reduce planned re-presentations to a regional Australian ED and identify enablers and barriers to interventionist effectiveness. A mixed-methods approach evaluated the impact of CoNECS. Data from hospital databases including measured numbers of planned ED re-presentations by month, time of day, age, gender and reason were used to calculate referral rates to CoNECS. These results informed two semistructured focus groups with ED and community nurses. The researchers used a theoretical lens, 'diffusion of innovation', to understand how this service could inform future interventions. Analyses showed that annual ED planned re-presentations decreased by 43% (527 presentations) after implementation. Three themes emerged from the focus groups. These were right service at the right time, nursing uncertainty and system disconnect and medical disengagement. CoNECS reduced overall ED planned re-presentations and was sustained longer than many complex service-level interventions. Factors supporting the service were endorsement from senior administration and strong leadership to drive responsive quality improvement strategies. This study identified a promising alternative service outside the ED, highlighting possibilities for other hospital emergency services aiming to reduce planned re-presentations.

  2. Acoustic representation of tomographic data

    NASA Astrophysics Data System (ADS)

    Wampler, Cheryl; Zahrt, John D.; Hotchkiss, Robert S.; Zahrt, Rebecca; Kust, Mark

    1993-04-01

    Tomographic data and tomographic reconstructions are naturally periodic in the angle of rotation of the turntable and the polar angel of the coordinates in the object, respectively. Similarly, acoustic waves are periodic and have amplitude and wavelength as free parameters that can be fit to another representation. Work has been in progress for some time in bringing the acoustic senses to bear on large data sets rather than just the visual sense. We will provide several different acoustic representations of both raw data and density maps. Rather than graphical portrayal of the data and reconstructions, you will be presented various 'tone poems.'

  3. Health-related Quality of Life and Related Factors in Full-time and Part-time Workers.

    PubMed

    Kim, Byungsung; Kim, Wonjoon; Choi, Hyunrim; Won, Changwon; Kim, Youngshin

    2012-07-01

    There has been a rapid increase in the number of part-time workers in Korea with little information available on associated changes in quality of life. This study was designed to compare part-time and full-time workers in terms of the quality of life and related factors. Data were extracted from the 4th Korea National Health and Nutrition Examination Survey, conducted in 2008. Of the 1,284 participants selected, 942 were females (range, 20 to 64 years). Based on the information provided by self-administered questionnaire, subjects were categorized according to the working pattern (full-time and part-time) and working hours (<30 and ≥30 hours). Differences in socio-demographic characteristics, health-related behaviors, and job characteristics were assessed by t-test and chi-square test. EuroQol-five dimensions (EQ-5D) index was implemented in order to measure the quality of life. Differences in the EQ-5D index scores between the groups were compared by t-test, stepwise multivariate logistic regression analyses. Quality of life did not differ by work patterns. In males, the Organization for Economic Cooperation and Development part-time group was associated with poorer quality of life (odds ratio [OR], 0.49; P = 0.028). For both sexes, the non-stress group was linked with superior quality of life in comparison to the stress group (OR, 2.64; P = 0.002; OR, 2.17; P < 0.001). Female employees engaged in non-manual labor had superior quality of life than those engaged in manual labor (OR, 1.40; P = 0.027). This study concludes that working less than 30 hours per week is related to lower quality of life in comparison to working 30 hours or more in male employees in Korea.

  4. Internet-based hearing screening using speech-in-noise: validation and comparisons of self-reported hearing problems, quality of life and phonological representation

    PubMed Central

    Molander, Peter; Nordqvist, Peter; Öberg, Marie; Lunner, Thomas; Lyxell, Björn; Andersson, Gerhard

    2013-01-01

    Objectives For the last decade a host of different projects have been launched to allow persons who are concerned about their hearing status to quickly and at a low cost test their hearing ability. Most often, this is carried out without collecting complementary information that could be correlated with hearing impairment. In this two-part study we first, present the development and validation of a novel Internet-based hearing test, and second, report on the associations between this test and phonological representation, quality of life and self-reported hearing difficulties. Design Cross-sectional study. Setting An opportunity sample of participants was recruited at the Stockholm central station for the first study. All parts of the second study were conducted via the Internet, with testing and self-report forms adapted for online use. Participants The first part of the study was carried out in direct contact with the participants, and participants from the second study were recruited by means of advertisements in newspapers and on webpages. The only exclusion criterion was that participants had to be over 18 years old. Most participants were between 60 and 69 years old. There were almost an equal number of men and women (total n=316). Outcome measures 48 participants failed the Internet-based hearing screening test. The group failing the test reported more problems on the Amsterdam Inventory of Auditory Disability. In addition, they were found to have diminished phonological representational skills. However, no difference in quality of life was found. Conclusions Almost one in five participants was in need of contacting their local hearing clinic. This group had more complaints regarding tinnitus and hyperacusis, rated their own hearing as worse than those who passed, and had a poorer capability of generating accurate phonological representations. This study suggests that it is feasible to screen for hearing status online, and obtain valid data. PMID

  5. Distinguishing Representations as Origin and Representations as Input: Roles for Individual Neurons

    PubMed Central

    Edwards, Jonathan C. W.

    2016-01-01

    It is widely perceived that there is a problem in giving a naturalistic account of mental representation that deals adequately with the issue of meaning, interpretation, or significance (semantic content). It is suggested here that this problem may arise partly from the conflation of two vernacular senses of representation: representation-as-origin and representation-as-input. The flash of a neon sign may in one sense represent a popular drink, but to function as a representation it must provide an input to a ‘consumer’ in the street. The arguments presented draw on two principles – the neuron doctrine and the need for a venue for ‘presentation’ or ‘reception’ of a representation at a specified site, consistent with the locality principle. It is also argued that domains of representation cannot be defined by signal traffic, since they can be expected to include ‘null’ elements based on non-firing cells. In this analysis, mental representations-as-origin are distributed patterns of cell firing. Each firing cell is given semantic value in its own right – some form of atomic propositional significance – since different axonal branches may contribute to integration with different populations of signals at different downstream sites. Representations-as-input are patterns of local co-arrival of signals in the form of synaptic potentials in dendrites. Meaning then draws on the relationships between active and null inputs, forming ‘scenarios’ comprising a molecular combination of ‘premises’ from which a new output with atomic propositional significance is generated. In both types of representation, meaning, interpretation or significance pivots on events in an individual cell. (This analysis only applies to ‘occurrent’ representations based on current neural activity.) The concept of representations-as-input emphasizes the need for an internal ‘consumer’ of a representation and the dependence of meaning on the co-relationships involved

  6. Embedded Data Representations.

    PubMed

    Willett, Wesley; Jansen, Yvonne; Dragicevic, Pierre

    2017-01-01

    We introduce embedded data representations, the use of visual and physical representations of data that are deeply integrated with the physical spaces, objects, and entities to which the data refers. Technologies like lightweight wireless displays, mixed reality hardware, and autonomous vehicles are making it increasingly easier to display data in-context. While researchers and artists have already begun to create embedded data representations, the benefits, trade-offs, and even the language necessary to describe and compare these approaches remain unexplored. In this paper, we formalize the notion of physical data referents - the real-world entities and spaces to which data corresponds - and examine the relationship between referents and the visual and physical representations of their data. We differentiate situated representations, which display data in proximity to data referents, and embedded representations, which display data so that it spatially coincides with data referents. Drawing on examples from visualization, ubiquitous computing, and art, we explore the role of spatial indirection, scale, and interaction for embedded representations. We also examine the tradeoffs between non-situated, situated, and embedded data displays, including both visualizations and physicalizations. Based on our observations, we identify a variety of design challenges for embedded data representation, and suggest opportunities for future research and applications.

  7. Effect of hemodiafiltration on quality of life over time.

    PubMed

    Mazairac, Albert H A; de Wit, G Ardine; Grooteman, Muriel P C; Penne, E Lars; van der Weerd, Neelke C; den Hoedt, Claire H; Lévesque, Renée; van den Dorpel, Marinus A; Nubé, Menso J; ter Wee, Piet M; Bots, Michiel L; Blankestijn, Peter J

    2013-01-01

    It is unclear if hemodiafiltration leads to a better quality of life compared with hemodialysis. It was, therefore, the aim of this study to assess the effect of hemodiafiltration on quality of life compared with hemodialysis in patients with ESRD. This study analyzed the data of 714 patients with a median follow-up of 2 years from the Convective Transport Study. The patients were enrolled between June of 2004 and December of 2009. The Convective Transport Study is a randomized controlled trial on the effect of online hemodiafiltration versus low-flux hemodialysis on all-cause mortality. Quality of life was assessed with the Kidney Disease Quality of Life-Short Form. This questionnaire provides data for a physical and mental composite score and describes kidney disease-specific quality of life in 12 domains. The domains have scales from 0 to 100. There were no significant differences in changes in health-related quality of life over time between patients treated with hemodialysis (n=358) or hemodiafiltration (n=356). The quality of life domain patient satisfaction declined over time in both dialysis modalities (hemodialysis: -2.5/yr, -3.4 to -1.5, P<0.001; hemodiafiltration: -1.4/yr, -2.4 to -0.5, P=0.004). Compared with hemodialysis, hemodiafiltration had no significant effect on quality of life over time.

  8. Multi-representation based on scientific investigation for enhancing students’ representation skills

    NASA Astrophysics Data System (ADS)

    Siswanto, J.; Susantini, E.; Jatmiko, B.

    2018-03-01

    This research aims to implementation learning physics with multi-representation based on the scientific investigation for enhancing students’ representation skills, especially on the magnetic field subject. The research design is one group pretest-posttest. This research was conducted in the department of mathematics education, Universitas PGRI Semarang, with the sample is students of class 2F who take basic physics courses. The data were obtained by representation skills test and documentation of multi-representation worksheet. The Results show gain analysis value of .64 which means some medium improvements. The result of t-test (α = .05) is shows p-value = .001. This learning significantly improves students representation skills.

  9. Why Representations?

    ERIC Educational Resources Information Center

    Schultz, James E.; Waters, Michael S.

    2000-01-01

    Discusses representations in the context of solving a system of linear equations. Views representations (concrete, tables, graphs, algebraic, matrices) from perspectives of understanding, technology, generalization, exact versus approximate solution, and learning style. (KHR)

  10. High-quality and interactive animations of 3D time-varying vector fields.

    PubMed

    Helgeland, Anders; Elboth, Thomas

    2006-01-01

    In this paper, we present an interactive texture-based method for visualizing three-dimensional unsteady vector fields. The visualization method uses a sparse and global representation of the flow, such that it does not suffer from the same perceptual issues as is the case for visualizing dense representations. The animation is made by injecting a collection of particles evenly distributed throughout the physical domain. These particles are then tracked along their path lines. At each time step, these particles are used as seed points to generate field lines using any vector field such as the velocity field or vorticity field. In this way, the animation shows the advection of particles while each frame in the animation shows the instantaneous vector field. In order to maintain a coherent particle density and to avoid clustering as time passes, we have developed a novel particle advection strategy which produces approximately evenly-spaced field lines at each time step. To improve rendering performance, we decouple the rendering stage from the preceding stages of the visualization method. This allows interactive exploration of multiple fields simultaneously, which sets the stage for a more complete analysis of the flow field. The final display is rendered using texture-based direct volume rendering.

  11. Representation in Memory.

    ERIC Educational Resources Information Center

    Rumelhart, David E.; Norman, Donald A.

    This paper reviews work on the representation of knowledge from within psychology and artificial intelligence. The work covers the nature of representation, the distinction between the represented world and the representing world, and significant issues concerned with propositional, analogical, and superpositional representations. Specific topics…

  12. Model Representation of Secondary Organic Aerosol in CMAQ v4.7

    EPA Science Inventory

    Numerous scientific upgrades to the representation of secondary organic aerosol (SOA) are incorporated into the Community Multiscale Air Quality (CMAQ) modeling system. Additions include several recently identified SOA precursors: benzene, isoprene, and sesquiterpenes; and pathwa...

  13. An Effective Time and Management Strategy in Quality Circles.

    ERIC Educational Resources Information Center

    Halverson, Don E.

    Contending that participation in quality circles enhances effective time management by school administrators and teachers, this guide provides both a theoretical briefing and practical recommendations for better time management. A pre- posttest prefaces a review of basic concepts of quality circles with reference to the work of Abraham Maslow,…

  14. Generative Representations for Evolving Families of Designs

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.

    2003-01-01

    Since typical evolutionary design systems encode only a single artifact with each individual, each time the objective changes a new set of individuals must be evolved. When this objective varies in a way that can be parameterized, a more general method is to use a representation in which a single individual encodes an entire class of artifacts. In addition to saving time by preventing the need for multiple evolutionary runs, the evolution of parameter-controlled designs can create families of artifacts with the same style and a reuse of parts between members of the family. In this paper an evolutionary design system is described which uses a generative representation to encode families of designs. Because a generative representation is an algorithmic encoding of a design, its input parameters are a way to control aspects of the design it generates. By evaluating individuals multiple times with different input parameters the evolutionary design system creates individuals in which the input parameter controls specific aspects of a design. This system is demonstrated on two design substrates: neural-networks which solve the 3/5/7-parity problem and three-dimensional tables of varying heights.

  15. Representation in dynamical agents.

    PubMed

    Ward, Ronnie; Ward, Robert

    2009-04-01

    This paper extends experiments by Beer [Beer, R. D. (1996). Toward the evolution of dynamical neural networks for minimally cognitive behavior. In P. Maes, M. Mataric, J. Meyer, J. Pollack, & S. Wilson (Eds.), From animals to animats 4: Proceedings of the fourth international conference on simulation of adaptive behavior (pp. 421-429). MIT Press; Beer, R. D. (2003). The dynamics of active categorical perception in an evolved model agent (with commentary and response). Adaptive Behavior, 11 (4), 209-243] with an evolved, dynamical agent to further explore the question of representation in cognitive systems. Beer's environmentally-situated visual agent was controlled by a continuous-time recurrent neural network, and evolved to perform a categorical perception task, discriminating circles from diamonds. Despite the agent's high levels of discrimination performance, Beer found no evidence of internal representation in the best-evolved agent's nervous system. Here we examine the generality of this result. We evolved an agent for shape discrimination, and performed extensive behavioral analyses to test for representation. In this case we find that agents developed to discriminate equal-width shapes exhibit what Clark [Clark, A. (1997). The dynamical challenge. Cognitive Science, 21 (4), 461-481] calls "weak-substantive representation". The agent had internal configurations that (1) were understandably related to the object in the environment, and (2) were functionally used in a task relevant way when the target was not visible to the agent.

  16. Transformations and representations supporting spatial perspective taking

    PubMed Central

    Yu, Alfred B.; Zacks, Jeffrey M.

    2018-01-01

    Spatial perspective taking is the ability to reason about spatial relations relative to another’s viewpoint. Here, we propose a mechanistic hypothesis that relates mental representations of one’s viewpoint to the transformations used for spatial perspective taking. We test this hypothesis using a novel behavioral paradigm that assays patterns of response time and variation in those patterns across people. The results support the hypothesis that people maintain a schematic representation of the space around their body, update that representation to take another’s perspective, and thereby to reason about the space around their body. This is a powerful computational mechanism that can support imitation, coordination of behavior, and observational learning. PMID:29545731

  17. Generative Representations for Automated Design of Robots

    NASA Technical Reports Server (NTRS)

    Homby, Gregory S.; Lipson, Hod; Pollack, Jordan B.

    2007-01-01

    A method of automated design of complex, modular robots involves an evolutionary process in which generative representations of designs are used. The term generative representations as used here signifies, loosely, representations that consist of or include algorithms, computer programs, and the like, wherein encoded designs can reuse elements of their encoding and thereby evolve toward greater complexity. Automated design of robots through synthetic evolutionary processes has already been demonstrated, but it is not clear whether genetically inspired search algorithms can yield designs that are sufficiently complex for practical engineering. The ultimate success of such algorithms as tools for automation of design depends on the scaling properties of representations of designs. A nongenerative representation (one in which each element of the encoded design is used at most once in translating to the design) scales linearly with the number of elements. Search algorithms that use nongenerative representations quickly become intractable (search times vary approximately exponentially with numbers of design elements), and thus are not amenable to scaling to complex designs. Generative representations are compact representations and were devised as means to circumvent the above-mentioned fundamental restriction on scalability. In the present method, a robot is defined by a compact programmatic form (its generative representation) and the evolutionary variation takes place on this form. The evolutionary process is an iterative one, wherein each cycle consists of the following steps: 1. Generative representations are generated in an evolutionary subprocess. 2. Each generative representation is a program that, when compiled, produces an assembly procedure. 3. In a computational simulation, a constructor executes an assembly procedure to generate a robot. 4. A physical-simulation program tests the performance of a simulated constructed robot, evaluating the performance

  18. 48 CFR 19.301-1 - Representation by the offeror.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Determination of Small Business Status for Small Business Programs 19.301-1 Representation by the offeror. (a) To be eligible for award as a small business, an offeror must represent in good faith that it is a small business at the time of its written representation...

  19. Overcomplete compact representation of two-particle Green's functions

    NASA Astrophysics Data System (ADS)

    Shinaoka, Hiroshi; Otsuki, Junya; Haule, Kristjan; Wallerberger, Markus; Gull, Emanuel; Yoshimi, Kazuyoshi; Ohzeki, Masayuki

    2018-05-01

    Two-particle Green's functions and the vertex functions play a critical role in theoretical frameworks for describing strongly correlated electron systems. However, numerical calculations at the two-particle level often suffer from large computation time and massive memory consumption. We derive a general expansion formula for the two-particle Green's functions in terms of an overcomplete representation based on the recently proposed "intermediate representation" basis. The expansion formula is obtained by decomposing the spectral representation of the two-particle Green's function. We demonstrate that the expansion coefficients decay exponentially, while all high-frequency and long-tail structures in the Matsubara-frequency domain are retained. This representation therefore enables efficient treatment of two-particle quantities and opens a route to the application of modern many-body theories to realistic strongly correlated electron systems.

  20. The Digital electronic Guideline Library (DeGeL): a hybrid framework for representation and use of clinical guidelines.

    PubMed

    Shahar, Yuval; Young, Ohad; Shalom, Erez; Mayaffit, Alon; Moskovitch, Robert; Hessing, Alon; Galperin, Maya

    2004-01-01

    We propose to present a poster (and potentially also a demonstration of the implemented system) summarizing the current state of our work on a hybrid, multiple-format representation of clinical guidelines that facilitates conversion of guidelines from free text to a formal representation. We describe a distributed Web-based architecture (DeGeL) and a set of tools using the hybrid representation. The tools enable performing tasks such as guideline specification, semantic markup, search, retrieval, visualization, eligibility determination, runtime application and retrospective quality assessment. The representation includes four parallel formats: Free text (one or more original sources); semistructured text (labeled by the target guideline-ontology semantic labels); semiformal text (which includes some control specification); and a formal, machine-executable representation. The specification, indexing, search, retrieval, and browsing tools are essentially independent of the ontology chosen for guideline representation, but editing the semi-formal and formal formats requires ontology-specific tools, which we have developed in the case of the Asbru guideline-specification language. The four formats support increasingly sophisticated computational tasks. The hybrid guidelines are stored in a Web-based library. All tools, such as for runtime guideline application or retrospective quality assessment, are designed to operate on all representations. We demonstrate the hybrid framework by providing examples from the semantic markup and search tools.

  1. Effect of Hemodiafiltration on Quality of Life over Time

    PubMed Central

    Mazairac, Albert H.A.; de Wit, G. Ardine; Grooteman, Muriel P.C.; Penne, E. Lars; van der Weerd, Neelke C.; den Hoedt, Claire H.; Lévesque, Renée; van den Dorpel, Marinus A.; Nubé, Menso J.; ter Wee, Piet M.; Bots, Michiel L.

    2013-01-01

    Summary Background and objectives It is unclear if hemodiafiltration leads to a better quality of life compared with hemodialysis. It was, therefore, the aim of this study to assess the effect of hemodiafiltration on quality of life compared with hemodialysis in patients with ESRD. Design, setting, participants, & measurements This study analyzed the data of 714 patients with a median follow-up of 2 years from the Convective Transport Study. The patients were enrolled between June of 2004 and December of 2009. The Convective Transport Study is a randomized controlled trial on the effect of online hemodiafiltration versus low-flux hemodialysis on all-cause mortality. Quality of life was assessed with the Kidney Disease Quality of Life—Short Form. This questionnaire provides data for a physical and mental composite score and describes kidney disease-specific quality of life in 12 domains. The domains have scales from 0 to 100. Results There were no significant differences in changes in health-related quality of life over time between patients treated with hemodialysis (n=358) or hemodiafiltration (n=356). The quality of life domain patient satisfaction declined over time in both dialysis modalities (hemodialysis: −2.5/yr, −3.4 to −1.5, P<0.001; hemodiafiltration: −1.4/yr, −2.4 to −0.5, P=0.004). Conclusions Compared with hemodialysis, hemodiafiltration had no significant effect on quality of life over time. PMID:23124783

  2. Joint space-time geostatistical model for air quality surveillance

    NASA Astrophysics Data System (ADS)

    Russo, A.; Soares, A.; Pereira, M. J.

    2009-04-01

    Air pollution and peoples' generalized concern about air quality are, nowadays, considered to be a global problem. Although the introduction of rigid air pollution regulations has reduced pollution from industry and power stations, the growing number of cars on the road poses a new pollution problem. Considering the characteristics of the atmospheric circulation and also the residence times of certain pollutants in the atmosphere, a generalized and growing interest on air quality issues led to research intensification and publication of several articles with quite different levels of scientific depth. As most natural phenomena, air quality can be seen as a space-time process, where space-time relationships have usually quite different characteristics and levels of uncertainty. As a result, the simultaneous integration of space and time is not an easy task to perform. This problem is overcome by a variety of methodologies. The use of stochastic models and neural networks to characterize space-time dispersion of air quality is becoming a common practice. The main objective of this work is to produce an air quality model which allows forecasting critical concentration episodes of a certain pollutant by means of a hybrid approach, based on the combined use of neural network models and stochastic simulations. A stochastic simulation of the spatial component with a space-time trend model is proposed to characterize critical situations, taking into account data from the past and a space-time trend from the recent past. To identify near future critical episodes, predicted values from neural networks are used at each monitoring station. In this paper, we describe the design of a hybrid forecasting tool for ambient NO2 concentrations in Lisbon, Portugal.

  3. Attachment stability and the emergence of unresolved representations during adolescence.

    PubMed

    Aikins, Julie Wargo; Howes, Carollee; Hamilton, Claire

    2009-09-01

    This 15-year longitudinal study examined the stability of attachment representations from infancy to adolescence and investigated the emergence of unresolved representations during adolescence in a sample of 47 16-year-olds. Attachment was assessed at 12 months using the Strange Situation Procedure, at 4 years using the modified Strange Situation Procedure, and again at 16 years with the Adult Attachment Projective (AAP). The emergence of unresolved classifications in adolescence (AAP) was associated with higher rates of negative life events, low levels of early mother-child relationship security (an aggregate measure of the 12-month and 4-year measures), negative teacher-child relationship experiences in middle childhood, and low early adolescent friendship quality. The results support the growing body of evidence suggesting that changes in attachment are lawful, while adding to the growing understanding of the emergence of unresolved attachment representations.

  4. Objective speech quality evaluation of real-time speech coders

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. R.; Russell, W. H.; Huggins, A. W. F.

    1984-02-01

    This report describes the work performed in two areas: subjective testing of a real-time 16 kbit/s adaptive predictive coder (APC) and objective speech quality evaluation of real-time coders. The speech intelligibility of the APC coder was tested using the Diagnostic Rhyme Test (DRT), and the speech quality was tested using the Diagnostic Acceptability Measure (DAM) test, under eight operating conditions involving channel error, acoustic background noise, and tandem link with two other coders. The test results showed that the DRT and DAM scores of the APC coder equalled or exceeded the corresponding test scores fo the 32 kbit/s CVSD coder. In the area of objective speech quality evaluation, the report describes the development, testing, and validation of a procedure for automatically computing several objective speech quality measures, given only the tape-recordings of the input speech and the corresponding output speech of a real-time speech coder.

  5. [Real-time feedback systems for improvement of resuscitation quality].

    PubMed

    Lukas, R P; Van Aken, H; Engel, P; Bohn, A

    2011-07-01

    The quality of chest compression is a determinant of survival after cardiac arrest. Therefore, the European Resuscitation Council (ERC) 2010 guidelines on resuscitation strongly focus on compression quality. Despite its impact on survival, observational studies have shown that chest compression quality is not reached by professional rescue teams. Real-time feedback devices for resuscitation are able to measure chest compression during an ongoing resuscitation attempt through a sternal sensor equipped with a motion and pressure detection system. In addition to the electrocardiograph (ECG) ventilation can be detected by transthoracic impedance monitoring. In cases of quality deviation, such as shallow chest compression depth or hyperventilation, feedback systems produce visual or acoustic alarms. Rescuers can thereby be supported and guided to the requested quality in chest compression and ventilation. Feedback technology is currently available both as a so-called stand-alone device and as an integrated feature in a monitor/defibrillator unit. Multiple studies have demonstrated sustainable enhancement in the education of resuscitation due to the use of real-time feedback technology. There is evidence that real-time feedback for resuscitation combined with training and debriefing strategies can improve both resuscitation quality and patient survival. Chest compression quality is an independent predictor for survival in resuscitation and should therefore be measured and documented in further clinical multicenter trials.

  6. Mother-Child Attachment Representation and Relationships over Time in Mexican-Heritage Families

    ERIC Educational Resources Information Center

    Howes, Carollee; Vu, Jennifer A.; Hamilton, Claire

    2011-01-01

    Continuity and intergenerational transmission of representations of attachment were examined in a longitudinal sample of 88 Mexican immigrant mothers and their children who participated in the local intervention group of the Early Head Start Evaluation Study. The authors interviewed mothers with the Adult Attachment Interview (AAI) and Parent…

  7. On the Prony series representation of stretched exponential relaxation

    NASA Astrophysics Data System (ADS)

    Mauro, John C.; Mauro, Yihong Z.

    2018-09-01

    Stretched exponential relaxation is a ubiquitous feature of homogeneous glasses. The stretched exponential decay function can be derived from the diffusion-trap model, which predicts certain critical values of the fractional stretching exponent, β. In practical implementations of glass relaxation models, it is computationally convenient to represent the stretched exponential function as a Prony series of simple exponentials. Here, we perform a comprehensive mathematical analysis of the Prony series approximation of the stretched exponential relaxation, including optimized coefficients for certain critical values of β. The fitting quality of the Prony series is analyzed as a function of the number of terms in the series. With a sufficient number of terms, the Prony series can accurately capture the time evolution of the stretched exponential function, including its "fat tail" at long times. However, it is unable to capture the divergence of the first-derivative of the stretched exponential function in the limit of zero time. We also present a frequency-domain analysis of the Prony series representation of the stretched exponential function and discuss its physical implications for the modeling of glass relaxation behavior.

  8. [Biometric identification method for ECG based on the piecewise linear representation (PLR) and dynamic time warping (DTW)].

    PubMed

    Yang, Licai; Shen, Jun; Bao, Shudi; Wei, Shoushui

    2013-10-01

    To treat the problem of identification performance and the complexity of the algorithm, we proposed a piecewise linear representation and dynamic time warping (PLR-DTW) method for ECG biometric identification. Firstly we detected R peaks to get the heartbeats after denoising preprocessing. Then we used the PLR method to keep important information of an ECG signal segment while reducing the data dimension at the same time. The improved DTW method was used for similarity measurements between the test data and the templates. The performance evaluation was carried out on the two ECG databases: PTB and MIT-BIH. The analystic results showed that compared to the discrete wavelet transform method, the proposed PLR-DTW method achieved a higher accuracy rate which is nearly 8% of rising, and saved about 30% operation time, and this demonstrated that the proposed method could provide a better performance.

  9. Representation Elements of Spatial Thinking

    NASA Astrophysics Data System (ADS)

    Fiantika, F. R.

    2017-04-01

    This paper aims to add a reference in revealing spatial thinking. There several definitions of spatial thinking but it is not easy to defining it. We can start to discuss the concept, its basic a forming representation. Initially, the five sense catch the natural phenomenon and forward it to memory for processing. Abstraction plays a role in processing information into a concept. There are two types of representation, namely internal representation and external representation. The internal representation is also known as mental representation; this representation is in the human mind. The external representation may include images, auditory and kinesthetic which can be used to describe, explain and communicate the structure, operation, the function of the object as well as relationships. There are two main elements, representations properties and object relationships. These elements play a role in forming a representation.

  10. Female Representation in the Academic Oncology Physician Workforce: Radiation Oncology Losing Ground to Hematology Oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Awad A.; Hwang, Wei-Ting; Holliday, Emma B.

    Purpose: Our purpose was to assess comparative female representation trends for trainees and full-time faculty in the academic radiation oncology and hematology oncology workforce of the United States over 3 decades. Methods and Materials: Simple linear regression models with year as the independent variable were used to determine changes in female percentage representation per year and associated 95% confidence intervals for trainees and full-time faculty in each specialty. Results: Peak representation was 48.4% (801/1654) in 2013 for hematology oncology trainees, 39.0% (585/1499) in 2014 for hematology oncology full-time faculty, 34.8% (202/581) in 2007 for radiation oncology trainees, and 27.7% (439/1584) inmore » 2015 for radiation oncology full-time faculty. Representation significantly increased for trainees and full-time faculty in both specialties at approximately 1% per year for hematology oncology trainees and full-time faculty and 0.3% per year for radiation oncology trainees and full-time faculty. Compared with radiation oncology, the rates were 3.84 and 2.94 times greater for hematology oncology trainees and full-time faculty, respectively. Conclusion: Despite increased female trainee and full-time faculty representation over time in the academic oncology physician workforce, radiation oncology is lagging behind hematology oncology, with trainees declining in recent years in radiation oncology; this suggests a de facto ceiling in female representation. Whether such issues as delayed or insufficient exposure, inadequate mentorship, or specialty competitiveness disparately affect female representation in radiation oncology compared to hematology oncology are underexplored and require continued investigation to ensure that the future oncologic physician workforce reflects the diversity of the population it serves.« less

  11. Female Representation in the Academic Oncology Physician Workforce: Radiation Oncology Losing Ground to Hematology Oncology.

    PubMed

    Ahmed, Awad A; Hwang, Wei-Ting; Holliday, Emma B; Chapman, Christina H; Jagsi, Reshma; Thomas, Charles R; Deville, Curtiland

    2017-05-01

    Our purpose was to assess comparative female representation trends for trainees and full-time faculty in the academic radiation oncology and hematology oncology workforce of the United States over 3 decades. Simple linear regression models with year as the independent variable were used to determine changes in female percentage representation per year and associated 95% confidence intervals for trainees and full-time faculty in each specialty. Peak representation was 48.4% (801/1654) in 2013 for hematology oncology trainees, 39.0% (585/1499) in 2014 for hematology oncology full-time faculty, 34.8% (202/581) in 2007 for radiation oncology trainees, and 27.7% (439/1584) in 2015 for radiation oncology full-time faculty. Representation significantly increased for trainees and full-time faculty in both specialties at approximately 1% per year for hematology oncology trainees and full-time faculty and 0.3% per year for radiation oncology trainees and full-time faculty. Compared with radiation oncology, the rates were 3.84 and 2.94 times greater for hematology oncology trainees and full-time faculty, respectively. Despite increased female trainee and full-time faculty representation over time in the academic oncology physician workforce, radiation oncology is lagging behind hematology oncology, with trainees declining in recent years in radiation oncology; this suggests a de facto ceiling in female representation. Whether such issues as delayed or insufficient exposure, inadequate mentorship, or specialty competitiveness disparately affect female representation in radiation oncology compared to hematology oncology are underexplored and require continued investigation to ensure that the future oncologic physician workforce reflects the diversity of the population it serves. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Performance Data Gathering and Representation from Fixed-Size Statistical Data

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Jin, Haoqiang H.; Schmidt, Melisa A.; Kutler, Paul (Technical Monitor)

    1997-01-01

    The two commonly-used performance data types in the super-computing community, statistics and event traces, are discussed and compared. Statistical data are much more compact but lack the probative power event traces offer. Event traces, on the other hand, are unbounded and can easily fill up the entire file system during program execution. In this paper, we propose an innovative methodology for performance data gathering and representation that offers a middle ground. Two basic ideas are employed: the use of averages to replace recording data for each instance and 'formulae' to represent sequences associated with communication and control flow. The user can trade off tracing overhead, trace data size with data quality incrementally. In other words, the user will be able to limit the amount of trace data collected and, at the same time, carry out some of the analysis event traces offer using space-time views. With the help of a few simple examples, we illustrate the use of these techniques in performance tuning and compare the quality of the traces we collected with event traces. We found that the trace files thus obtained are, indeed, small, bounded and predictable before program execution, and that the quality of the space-time views generated from these statistical data are excellent. Furthermore, experimental results showed that the formulae proposed were able to capture all the sequences associated with 11 of the 15 applications tested. The performance of the formulae can be incrementally improved by allocating more memory at runtime to learn longer sequences.

  13. Social representations of biosecurity in nursing: occupational health and preventive care.

    PubMed

    Sousa, Álvaro Francisco Lopes de; Queiroz, Artur Acelino Francisco Luz Nunes; Oliveira, Layze Braz de; Moura, Maria Eliete Batista; Batista, Odinéa Maria Amorim; Andrade, Denise de

    2016-01-01

    to understand the biosecurity social representations by primary care nursing professionals and analyze how they articulate with quality of care. exploratory and qualitative research based on social representation theory. The study participants were 36 nursing workers from primary health care in a state capital in the Northeast region of Brazil. The data were analyzed by descending hierarchical classification. five classes were obtained: occupational accidents suffered by professionals; occupational exposure to biological agents; biosecurity management in primary health care; the importance of personal protective equipment; and infection control and biosecurity. the different positions taken by the professionals seem to be based on a field of social representations related to the concept of biosecurity, namely exposure to accidents and risks to which they are exposed. However, occupational accidents are reported as inherent to the practice.

  14. Preexisting semantic representation improves working memory performance in the visuospatial domain.

    PubMed

    Rudner, Mary; Orfanidou, Eleni; Cardin, Velia; Capek, Cheryl M; Woll, Bencie; Rönnberg, Jerker

    2016-05-01

    Working memory (WM) for spoken language improves when the to-be-remembered items correspond to preexisting representations in long-term memory. We investigated whether this effect generalizes to the visuospatial domain by administering a visual n-back WM task to deaf signers and hearing signers, as well as to hearing nonsigners. Four different kinds of stimuli were presented: British Sign Language (BSL; familiar to the signers), Swedish Sign Language (SSL; unfamiliar), nonsigns, and nonlinguistic manual actions. The hearing signers performed better with BSL than with SSL, demonstrating a facilitatory effect of preexisting semantic representation. The deaf signers also performed better with BSL than with SSL, but only when WM load was high. No effect of preexisting phonological representation was detected. The deaf signers performed better than the hearing nonsigners with all sign-based materials, but this effect did not generalize to nonlinguistic manual actions. We argue that deaf signers, who are highly reliant on visual information for communication, develop expertise in processing sign-based items, even when those items do not have preexisting semantic or phonological representations. Preexisting semantic representation, however, enhances the quality of the gesture-based representations temporarily maintained in WM by this group, thereby releasing WM resources to deal with increased load. Hearing signers, on the other hand, may make strategic use of their speech-based representations for mnemonic purposes. The overall pattern of results is in line with flexible-resource models of WM.

  15. Integrating conventional and inverse representation for face recognition.

    PubMed

    Xu, Yong; Li, Xuelong; Yang, Jian; Lai, Zhihui; Zhang, David

    2014-10-01

    Representation-based classification methods are all constructed on the basis of the conventional representation, which first expresses the test sample as a linear combination of the training samples and then exploits the deviation between the test sample and the expression result of every class to perform classification. However, this deviation does not always well reflect the difference between the test sample and each class. With this paper, we propose a novel representation-based classification method for face recognition. This method integrates conventional and the inverse representation-based classification for better recognizing the face. It first produces conventional representation of the test sample, i.e., uses a linear combination of the training samples to represent the test sample. Then it obtains the inverse representation, i.e., provides an approximation representation of each training sample of a subject by exploiting the test sample and training samples of the other subjects. Finally, the proposed method exploits the conventional and inverse representation to generate two kinds of scores of the test sample with respect to each class and combines them to recognize the face. The paper shows the theoretical foundation and rationale of the proposed method. Moreover, this paper for the first time shows that a basic nature of the human face, i.e., the symmetry of the face can be exploited to generate new training and test samples. As these new samples really reflect some possible appearance of the face, the use of them will enable us to obtain higher accuracy. The experiments show that the proposed conventional and inverse representation-based linear regression classification (CIRLRC), an improvement to linear regression classification (LRC), can obtain very high accuracy and greatly outperforms the naive LRC and other state-of-the-art conventional representation based face recognition methods. The accuracy of CIRLRC can be 10% greater than that of LRC.

  16. The Long and the Short of It: On the Nature and Origin of Functional Overlap between Representations of Space and Time

    ERIC Educational Resources Information Center

    Srinivasan, Mahesh; Carey, Susan

    2010-01-01

    When we describe time, we often use the language of space ("The movie was long"; "The deadline is approaching"). Experiments 1-3 asked whether--as patterns in language suggest--a structural similarity between representations of spatial length and temporal duration is easier to access than one between length and other dimensions of experience, such…

  17. Data Representation, Coding, and Communication Standards.

    PubMed

    Amin, Milon; Dhir, Rajiv

    2015-06-01

    The immense volume of cases signed out by surgical pathologists on a daily basis gives little time to think about exactly how data are stored. An understanding of the basics of data representation has implications that affect a pathologist's daily practice. This article covers the basics of data representation and its importance in the design of electronic medical record systems. Coding in surgical pathology is also discussed. Finally, a summary of communication standards in surgical pathology is presented, including suggested resources that establish standards for select aspects of pathology reporting. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Spatiotemporal dynamics of similarity-based neural representations of facial identity.

    PubMed

    Vida, Mark D; Nestor, Adrian; Plaut, David C; Behrmann, Marlene

    2017-01-10

    Humans' remarkable ability to quickly and accurately discriminate among thousands of highly similar complex objects demands rapid and precise neural computations. To elucidate the process by which this is achieved, we used magnetoencephalography to measure spatiotemporal patterns of neural activity with high temporal resolution during visual discrimination among a large and carefully controlled set of faces. We also compared these neural data to lower level "image-based" and higher level "identity-based" model-based representations of our stimuli and to behavioral similarity judgments of our stimuli. Between ∼50 and 400 ms after stimulus onset, face-selective sources in right lateral occipital cortex and right fusiform gyrus and sources in a control region (left V1) yielded successful classification of facial identity. In all regions, early responses were more similar to the image-based representation than to the identity-based representation. In the face-selective regions only, responses were more similar to the identity-based representation at several time points after 200 ms. Behavioral responses were more similar to the identity-based representation than to the image-based representation, and their structure was predicted by responses in the face-selective regions. These results provide a temporally precise description of the transformation from low- to high-level representations of facial identity in human face-selective cortex and demonstrate that face-selective cortical regions represent multiple distinct types of information about face identity at different times over the first 500 ms after stimulus onset. These results have important implications for understanding the rapid emergence of fine-grained, high-level representations of object identity, a computation essential to human visual expertise.

  19. Spatiotemporal dynamics of similarity-based neural representations of facial identity

    PubMed Central

    Vida, Mark D.; Nestor, Adrian; Plaut, David C.; Behrmann, Marlene

    2017-01-01

    Humans’ remarkable ability to quickly and accurately discriminate among thousands of highly similar complex objects demands rapid and precise neural computations. To elucidate the process by which this is achieved, we used magnetoencephalography to measure spatiotemporal patterns of neural activity with high temporal resolution during visual discrimination among a large and carefully controlled set of faces. We also compared these neural data to lower level “image-based” and higher level “identity-based” model-based representations of our stimuli and to behavioral similarity judgments of our stimuli. Between ∼50 and 400 ms after stimulus onset, face-selective sources in right lateral occipital cortex and right fusiform gyrus and sources in a control region (left V1) yielded successful classification of facial identity. In all regions, early responses were more similar to the image-based representation than to the identity-based representation. In the face-selective regions only, responses were more similar to the identity-based representation at several time points after 200 ms. Behavioral responses were more similar to the identity-based representation than to the image-based representation, and their structure was predicted by responses in the face-selective regions. These results provide a temporally precise description of the transformation from low- to high-level representations of facial identity in human face-selective cortex and demonstrate that face-selective cortical regions represent multiple distinct types of information about face identity at different times over the first 500 ms after stimulus onset. These results have important implications for understanding the rapid emergence of fine-grained, high-level representations of object identity, a computation essential to human visual expertise. PMID:28028220

  20. Neonatal Atlas Construction Using Sparse Representation

    PubMed Central

    Shi, Feng; Wang, Li; Wu, Guorong; Li, Gang; Gilmore, John H.; Lin, Weili; Shen, Dinggang

    2014-01-01

    Atlas construction generally includes first an image registration step to normalize all images into a common space and then an atlas building step to fuse the information from all the aligned images. Although numerous atlas construction studies have been performed to improve the accuracy of the image registration step, unweighted or simply weighted average is often used in the atlas building step. In this article, we propose a novel patch-based sparse representation method for atlas construction after all images have been registered into the common space. By taking advantage of local sparse representation, more anatomical details can be recovered in the built atlas. To make the anatomical structures spatially smooth in the atlas, the anatomical feature constraints on group structure of representations and also the overlapping of neighboring patches are imposed to ensure the anatomical consistency between neighboring patches. The proposed method has been applied to 73 neonatal MR images with poor spatial resolution and low tissue contrast, for constructing a neonatal brain atlas with sharp anatomical details. Experimental results demonstrate that the proposed method can significantly enhance the quality of the constructed atlas by discovering more anatomical details especially in the highly convoluted cortical regions. The resulting atlas demonstrates superior performance of our atlas when applied to spatially normalizing three different neonatal datasets, compared with other start-of-the-art neonatal brain atlases. PMID:24638883

  1. Plane representations of graphs and visibility between parallel segments

    NASA Astrophysics Data System (ADS)

    Tamassia, R.; Tollis, I. G.

    1985-04-01

    Several layout compaction strategies for VLSI are based on the concept of visibility between parallel segments, where we say that two parallel segments of a given set are visible if they can be joined by a segment orthogonal to them, which does not intersect any other segment. This paper studies visibility representations of graphs, which are constructed by mapping vertices to horizontal segments, and edges to vertical segments drawn between visible vertex-segments. Clearly, every graph that admits such a representation must be a planar. The authors consider three types of visibility representations, and give complete characterizations of the classes of graphs that admit them. Furthermore, they present linear time algorithms for testing the existence of and constructing visibility representations of planar graphs.

  2. Students' Representational Fluency at University: A Cross-Sectional Measure of How Multiple Representations Are Used by Physics Students Using the Representational Fluency Survey

    ERIC Educational Resources Information Center

    Hill, Matthew; Sharma, Manjula Devi

    2015-01-01

    To succeed within scientific disciplines, using representations, including those based on words, graphs, equations, and diagrams, is important. Research indicates that the use of discipline specific representations (sometimes referred to as expert generated representations), as well as multi-representational use, is critical for problem solving…

  3. Real-time water quality monitoring and providing water quality information to the Baltimore Community

    EPA Science Inventory

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Ba...

  4. Mental Representations of Weekdays

    PubMed Central

    Ellis, David A.; Wiseman, Richard; Jenkins, Rob

    2015-01-01

    Keeping social appointments involves keeping track of what day it is. In practice, mismatches between apparent day and actual day are common. For example, a person might think the current day is Wednesday when in fact it is Thursday. Here we show that such mismatches are highly systematic, and can be traced to specific properties of their mental representations. In Study 1, mismatches between apparent day and actual day occurred more frequently on midweek days (Tuesday, Wednesday, and Thursday) than on other days, and were mainly due to intrusions from immediately neighboring days. In Study 2, reaction times to report the current day were fastest on Monday and Friday, and slowest midweek. In Study 3, participants generated fewer semantic associations for “Tuesday”, “Wednesday” and “Thursday” than for other weekday names. Similarly, Google searches found fewer occurrences of midweek days in webpages and books. Analysis of affective norms revealed that participants’ associations were strongly negative for Monday, strongly positive for Friday, and graded over the intervening days. Midweek days are confusable because their mental representations are sparse and similar. Mondays and Fridays are less confusable because their mental representations are rich and distinctive, forming two extremes along a continuum of change. PMID:26288194

  5. The field representation language.

    PubMed

    Tsafnat, Guy

    2008-02-01

    The complexity of quantitative biomedical models, and the rate at which they are published, is increasing to a point where managing the information has become all but impossible without automation. International efforts are underway to standardise representation languages for a number of mathematical entities that represent a wide variety of physiological systems. This paper presents the Field Representation Language (FRL), a portable representation of values that change over space and/or time. FRL is an extensible mark-up language (XML) derivative with support for large numeric data sets in Hierarchical Data Format version 5 (HDF5). Components of FRL can be reused through unified resource identifiers (URI) that point to external resources such as custom basis functions, boundary geometries and numerical data. To demonstrate the use of FRL as an interchange we present three models that study hyperthermia cancer treatment: a fractal model of liver tumour microvasculature; a probabilistic model simulating the deposition of magnetic microspheres throughout it; and a finite element model of hyperthermic treatment. The microsphere distribution field was used to compute the heat generation rate field around the tumour. We used FRL to convey results from the microsphere simulation to the treatment model. FRL facilitated the conversion of the coordinate systems and approximated the integral over regions of the microsphere deposition field.

  6. Maternal depression, children's attachment security, and representational development: an organizational perspective.

    PubMed

    Toth, Sheree L; Rogosch, Fred A; Sturge-Apple, Melissa; Cicchetti, Dante

    2009-01-01

    Relations among maternal depression, child attachment, and children's representations of parents and self were examined. Participants included toddlers and their mothers with a history of major depressive disorder (n= 63) or no history of mental disorder (n= 68). Attachment was assessed at 20 and 36 months and representations of parents and self were assessed at 36 and 48 months. Depressive symptoms were assessed at all 3 time points. While early-occurring maternal depression had a negative impact on children's negative and positive representations of parents, attachment security mediated the relation between depressive symptoms and negative representations. Attachment security served as an intervening variable between maternal depression and changes in children's negative representations of self. Implications for prevention are highlighted.

  7. Social workers' and nurses' illness representations about Alzheimer disease: an exploratory study.

    PubMed

    Shinan-Altman, Shiri; Werner, Perla; Cohen, Miri

    2014-01-01

    Professionals' perceptions of patients' diseases (illness representations) are a major factor influencing the quality of treatment they provide. The aim of the study was to examine and compare Alzheimer disease (AD) illness representations among 2 main professional groups involved in the care of Alzheimer patients. A total of 327 nurses and social workers in Israel were asked to report their cognitive representations (dimensions of identity, cause, timeline, consequences, control, coherence, timeline cycle) and emotional representations. Knowledge about AD, demographic, and occupational characteristics were also obtained. Participants perceived AD as a chronic disease associated with severe consequences. Statistically significant differences were found between the groups, as nurses attributed psychological reasons to AD more than the social workers. Nevertheless, social workers perceived AD as more chronic with severe consequences compared with the nurses. Despite some resemblance, there were differences between the social workers and nurses regarding AD illness representations. Therefore, continuing to distribute materials to professionals regarding AD is recommended, with attention to the unique characteristics of each professional group. Furthermore, the findings encourage the development of training and support programs that will not only deal with the organizational and instrumental levels of treating AD patients but also with the assessment and consequences of professionals' illness representations.

  8. MOTHERS' AND FATHERS' PRENATAL REPRESENTATIONS IN RELATION TO MARITAL DISTRESS AND DEPRESSIVE SYMPTOMS.

    PubMed

    Ahlqvist-Björkroth, Sari; Korja, Riikka; Junttila, Niina; Savonlahti, Elina; Pajulo, Marjukka; Räihä, Hannele; Aromaa, Minna

    2016-07-01

    Marital distress, parental depression, and weak quality of parental representations are all known risk factors for parent-child relationships. However, the relation between marital distress, depressive symptoms, and parents' prenatal representation is uncertain, especially regarding fathers. The present study aimed to explore how mothers' and fathers' prenatal experience of marital distress and depressive symptoms affects the organization of their prenatal representations in late pregnancy. Participants were 153 pregnant couples from a Finnish follow-up study called "Steps to the Healthy Development and Well-being of Children" (H. Lagström et al., ). Marital distress (Revised Dyadic Adjustment Scale; D.M. Busby, C. Christensen, D. Crane, & J. Larson, 1995) and depressive symptoms (Edinburgh Postnatal Depression Scale) were assessed at 20 gestational weeks, and prenatal representations (Working Model of the Child Interview; D. Benoit, K.C.H. Parker, & C.H. Zeanah, 1997; C.H. Zeanah, D. Benoit, M. Barton, & L. Hirshberg, 1996) were assessed between 29 and 32 gestational weeks. The mothers' risks of distorted representations increased significantly when they had at least minor depressive symptoms. Marital distress was associated with the fathers' prenatal representations, although the association was weak; fathers within the marital distress group had less balanced representations. Coexisting marital distress and depressive symptoms were only associated with the mothers' representations; lack of marital distress and depressive symptoms increased the likelihood for mothers to have balanced representations. The results imply that marital distress and depressive symptoms are differently related to the organizations of mothers' and fathers' prenatal representations. © 2016 Michigan Association for Infant Mental Health.

  9. Characterizing representational learning: A combined simulation and tutorial on perturbation theory

    NASA Astrophysics Data System (ADS)

    Kohnle, Antje; Passante, Gina

    2017-12-01

    Analyzing, constructing, and translating between graphical, pictorial, and mathematical representations of physics ideas and reasoning flexibly through them ("representational competence") is a key characteristic of expertise in physics but is a challenge for learners to develop. Interactive computer simulations and University of Washington style tutorials both have affordances to support representational learning. This article describes work to characterize students' spontaneous use of representations before and after working with a combined simulation and tutorial on first-order energy corrections in the context of quantum-mechanical time-independent perturbation theory. Data were collected from two institutions using pre-, mid-, and post-tests to assess short- and long-term gains. A representational competence level framework was adapted to devise level descriptors for the assessment items. The results indicate an increase in the number of representations used by students and the consistency between them following the combined simulation tutorial. The distributions of representational competence levels suggest a shift from perceptual to semantic use of representations based on their underlying meaning. In terms of activity design, this study illustrates the need to support students in making sense of the representations shown in a simulation and in learning to choose the most appropriate representation for a given task. In terms of characterizing representational abilities, this study illustrates the usefulness of a framework focusing on perceptual, syntactic, and semantic use of representations.

  10. Prediction task guided representation learning of medical codes in EHR.

    PubMed

    Cui, Liwen; Xie, Xiaolei; Shen, Zuojun

    2018-06-18

    There have been rapidly growing applications using machine learning models for predictive analytics in Electronic Health Records (EHR) to improve the quality of hospital services and the efficiency of healthcare resource utilization. A fundamental and crucial step in developing such models is to convert medical codes in EHR to feature vectors. These medical codes are used to represent diagnoses or procedures. Their vector representations have a tremendous impact on the performance of machine learning models. Recently, some researchers have utilized representation learning methods from Natural Language Processing (NLP) to learn vector representations of medical codes. However, most previous approaches are unsupervised, i.e. the generation of medical code vectors is independent from prediction tasks. Thus, the obtained feature vectors may be inappropriate for a specific prediction task. Moreover, unsupervised methods often require a lot of samples to obtain reliable results, but most practical problems have very limited patient samples. In this paper, we develop a new method called Prediction Task Guided Health Record Aggregation (PTGHRA), which aggregates health records guided by prediction tasks, to construct training corpus for various representation learning models. Compared with unsupervised approaches, representation learning models integrated with PTGHRA yield a significant improvement in predictive capability of generated medical code vectors, especially for limited training samples. Copyright © 2018. Published by Elsevier Inc.

  11. Impact of the basic state and MJO representation on MJO Pacific teleconnections in GCMs

    NASA Astrophysics Data System (ADS)

    Henderson, S. A.; Maloney, E. D.; Son, S. W.

    2017-12-01

    Teleconnection patterns induced by the Madden-Julian Oscillation (MJO) are known to significantly alter extratropical weather and climate patterns. However, accurate MJO representation has been difficult for many General Circulation Models (GCMs). Furthermore, many GCMs contain large basic state biases. These issues present challenges to the simulation of MJO teleconnections and, in turn, their associated extratropical impacts. This study examines the impacts of basic state quality and MJO representation on the quality of MJO teleconnection patterns in GCMs from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Results suggest that GCMs assessed to have a good MJO but with large basic state biases have similarly low skill in reproducing MJO teleconnections as GCMs with poor MJO representation. In the good MJO models examined, poor teleconnection quality is associated with large errors in the zonal extent of the Pacific subtropical jet. Whereas the horizontal structure of MJO heating in the Indo-Pacific region is found to have modest impacts on the teleconnection patterns, results suggest that MJO heating east of the dateline can alter the teleconnection pattern characteristics over North America. These findings suggest that in order to accurately simulate the MJO teleconnection patterns and associated extratropical impacts, both the MJO and the basic state must be well represented.

  12. Preschool Children's Participation in Representational and Non-Representational Activities

    ERIC Educational Resources Information Center

    Braswell, Gregory S.

    2017-01-01

    The present study examined representational and non-representational activities in which children in a Head Start classroom participated. This was an investigation from the perspective of cultural-historical activity theory of how components (e.g. artifacts and division of labour) of classroom activities vary across and within types of activities.…

  13. Object-based attention: strength of object representation and attentional guidance.

    PubMed

    Shomstein, Sarah; Behrmann, Marlene

    2008-01-01

    Two or more features belonging to a single object are identified more quickly and more accurately than are features belonging to different objects--a finding attributed to sensory enhancement of all features belonging to an attended or selected object. However, several recent studies have suggested that this "single-object advantage" may be a product of probabilistic and configural strategic prioritizations rather than of object-based perceptual enhancement per se, challenging the underlying mechanism that is thought to give rise to object-based attention. In the present article, we further explore constraints on the mechanisms of object-based selection by examining the contribution of the strength of object representations to the single-object advantage. We manipulated factors such as exposure duration (i.e., preview time) and salience of configuration (i.e., objects). Varying preview time changes the magnitude of the object-based effect, so that if there is ample time to establish an object representation (i.e., preview time of 1,000 msec), then both probability and configuration (i.e., objects) guide attentional selection. If, however, insufficient time is provided to establish a robust object-based representation, then only probabilities guide attentional selection. Interestingly, at a short preview time of 200 msec, when the two objects were sufficiently different from each other (i.e., different colors), both configuration and probability guided attention selection. These results suggest that object-based effects can be explained both in terms of strength of object representations (established at longer exposure durations and by pictorial cues) and probabilistic contingencies in the visual environment.

  14. Parent-Child Quality Time: Does Birth Order Matter?

    ERIC Educational Resources Information Center

    Price, Joseph

    2008-01-01

    Using data from the American Time Use Survey, I find that a first-born child receives 20-30 more minutes of quality time each day with his or her parent than a second-born child of the same age from a similar family. The birth-order difference results from parents giving roughly equal time to each child at any point in time while the amount of…

  15. Negotiated Representational Mediators: How Young Children Decide What to Include in Their Science Representations

    ERIC Educational Resources Information Center

    Danish, Joshua A.; Enyedy, Noel

    2007-01-01

    In this paper, we synthesize two bodies of work related to students' representational activities: the notions of meta-representational competence and representation as a form of practice. We report on video analyses of kindergarten and first-grade students as they create representations of pollination in a science classroom, as well as summarize…

  16. Colometer: a real-time quality feedback system for screening colonoscopy.

    PubMed

    Filip, Dobromir; Gao, Xuexin; Angulo-Rodríguez, Leticia; Mintchev, Martin P; Devlin, Shane M; Rostom, Alaa; Rosen, Wayne; Andrews, Christopher N

    2012-08-28

    To investigate the performance of a new software-based colonoscopy quality assessment system. The software-based system employs a novel image processing algorithm which detects the levels of image clarity, withdrawal velocity, and level of the bowel preparation in a real-time fashion from live video signal. Threshold levels of image blurriness and the withdrawal velocity below which the visualization could be considered adequate have initially been determined arbitrarily by review of sample colonoscopy videos by two experienced endoscopists. Subsequently, an overall colonoscopy quality rating was computed based on the percentage of the withdrawal time with adequate visualization (scored 1-5; 1, when the percentage was 1%-20%; 2, when the percentage was 21%-40%, etc.). In order to test the proposed velocity and blurriness thresholds, screening colonoscopy withdrawal videos from a specialized ambulatory colon cancer screening center were collected, automatically processed and rated. Quality ratings on the withdrawal were compared to the insertion in the same patients. Then, 3 experienced endoscopists reviewed the collected videos in a blinded fashion and rated the overall quality of each withdrawal (scored 1-5; 1, poor; 3, average; 5, excellent) based on 3 major aspects: image quality, colon preparation, and withdrawal velocity. The automated quality ratings were compared to the averaged endoscopist quality ratings using Spearman correlation coefficient. Fourteen screening colonoscopies were assessed. Adenomatous polyps were detected in 4/14 (29%) of the collected colonoscopy video samples. As a proof of concept, the Colometer software rated colonoscope withdrawal as having better visualization than the insertion in the 10 videos which did not have any polyps (average percent time with adequate visualization: 79% ± 5% for withdrawal and 50% ± 14% for insertion, P < 0.01). Withdrawal times during which no polyps were removed ranged from 4-12 min. The median quality

  17. The DTW-based representation space for seismic pattern classification

    NASA Astrophysics Data System (ADS)

    Orozco-Alzate, Mauricio; Castro-Cabrera, Paola Alexandra; Bicego, Manuele; Londoño-Bonilla, John Makario

    2015-12-01

    Distinguishing among the different seismic volcanic patterns is still one of the most important and labor-intensive tasks for volcano monitoring. This task could be lightened and made free from subjective bias by using automatic classification techniques. In this context, a core but often overlooked issue is the choice of an appropriate representation of the data to be classified. Recently, it has been suggested that using a relative representation (i.e. proximities, namely dissimilarities on pairs of objects) instead of an absolute one (i.e. features, namely measurements on single objects) is advantageous to exploit the relational information contained in the dissimilarities to derive highly discriminant vector spaces, where any classifier can be used. According to that motivation, this paper investigates the suitability of a dynamic time warping (DTW) dissimilarity-based vector representation for the classification of seismic patterns. Results show the usefulness of such a representation in the seismic pattern classification scenario, including analyses of potential benefits from recent advances in the dissimilarity-based paradigm such as the proper selection of representation sets and the combination of different dissimilarity representations that might be available for the same data.

  18. Communication: importance sampling including path correlation in semiclassical initial value representation calculations for time correlation functions.

    PubMed

    Pan, Feng; Tao, Guohua

    2013-03-07

    Full semiclassical (SC) initial value representation (IVR) for time correlation functions involves a double phase space average over a set of two phase points, each of which evolves along a classical path. Conventionally, the two initial phase points are sampled independently for all degrees of freedom (DOF) in the Monte Carlo procedure. Here, we present an efficient importance sampling scheme by including the path correlation between the two initial phase points for the bath DOF, which greatly improves the performance of the SC-IVR calculations for large molecular systems. Satisfactory convergence in the study of quantum coherence in vibrational relaxation has been achieved for a benchmark system-bath model with up to 21 DOF.

  19. Effect of time delay on flying qualities: An update

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Sarrafian, S. K.

    1986-01-01

    Flying qualities problems of modern, full-authority electronic flight control systems are most often related to the introduction of additional time delay in aircraft response to a pilot input. These delays can have a significant effect on the flying qualities of the aircraft. Time delay effects are reexamined in light of recent flight test experience with aircraft incorporating new technology. Data from the X-29A forward-swept-wing demonstrator, a related preliminary in-flight experiment, and other flight observations are presented. These data suggest that the present MIL-F-8785C allowable-control system time delay specifications are inadequate or, at least, incomplete. Allowable time delay appears to be a function of the shape of the aircraft response following the initial delay. The cockpit feel system is discussed as a dynamic element in the flight control system. Data presented indicate that the time delay associated with a significant low-frequency feel system does not result in the predicted degradation in aircraft flying qualities. The impact of the feel system is discussed from two viewpoints: as a filter in the control system which can alter the initial response shape and, therefore, the allowable time delay, and as a unique dynamic element whose delay contribution can potentially be discounted by special pilot loop closures.

  20. Distributions in the error space: goal-directed movements described in time and state-space representations.

    PubMed

    Fisher, Moria E; Huang, Felix C; Wright, Zachary A; Patton, James L

    2014-01-01

    Manipulation of error feedback has been of great interest to recent studies in motor control and rehabilitation. Typically, motor adaptation is shown as a change in performance with a single scalar metric for each trial, yet such an approach might overlook details about how error evolves through the movement. We believe that statistical distributions of movement error through the extent of the trajectory can reveal unique patterns of adaption and possibly reveal clues to how the motor system processes information about error. This paper describes different possible ordinate domains, focusing on representations in time and state-space, used to quantify reaching errors. We hypothesized that the domain with the lowest amount of variability would lead to a predictive model of reaching error with the highest accuracy. Here we showed that errors represented in a time domain demonstrate the least variance and allow for the highest predictive model of reaching errors. These predictive models will give rise to more specialized methods of robotic feedback and improve previous techniques of error augmentation.

  1. A Possible Approach to Inclusion of Space and Time in Frame Fields of Quantum Representations of Real and Complex Numbers

    DOE PAGES

    Benioff, Paul

    2009-01-01

    Tmore » his work is based on the field of reference frames based on quantum representations of real and complex numbers described in other work. Here frame domains are expanded to include space and time lattices. Strings of qukits are described as hybrid systems as they are both mathematical and physical systems. As mathematical systems they represent numbers. As physical systems in each frame the strings have a discrete Schrodinger dynamics on the lattices. he frame field has an iterative structure such that the contents of a stage j frame have images in a stage j - 1 (parent) frame. A discussion of parent frame images includes the proposal that points of stage j frame lattices have images as hybrid systems in parent frames. he resulting association of energy with images of lattice point locations, as hybrid systems states, is discussed. Representations and images of other physical systems in the different frames are also described.« less

  2. Joint sparse representation for robust multimodal biometrics recognition.

    PubMed

    Shekhar, Sumit; Patel, Vishal M; Nasrabadi, Nasser M; Chellappa, Rama

    2014-01-01

    Traditional biometric recognition systems rely on a single biometric signature for authentication. While the advantage of using multiple sources of information for establishing the identity has been widely recognized, computational models for multimodal biometrics recognition have only recently received attention. We propose a multimodal sparse representation method, which represents the test data by a sparse linear combination of training data, while constraining the observations from different modalities of the test subject to share their sparse representations. Thus, we simultaneously take into account correlations as well as coupling information among biometric modalities. A multimodal quality measure is also proposed to weigh each modality as it gets fused. Furthermore, we also kernelize the algorithm to handle nonlinearity in data. The optimization problem is solved using an efficient alternative direction method. Various experiments show that the proposed method compares favorably with competing fusion-based methods.

  3. Alterations in central motor representation increase over time in individuals with rotator cuff tendinopathy.

    PubMed

    Ngomo, Suzy; Mercier, Catherine; Bouyer, Laurent J; Savoie, Alexandre; Roy, Jean-Sébastien

    2015-02-01

    To investigate whether rotator cuff tendinopathy leads to changes in central motor representation of a rotator cuff muscle, and to assess whether such changes are related to pain intensity, pain duration, and physical disability. Using transcranial magnetic stimulation, motor representation of infraspinatus muscle was assessed bilaterally in patients with unilateral rotator cuff tendinopathy. Active motor threshold is significantly larger for the affected shoulder comparatively to the unaffected shoulder (n=39, p=0.01), indicating decreased corticospinal excitability on the affected side compared to unaffected side. Further, results suggest that this asymmetry in corticospinal excitability is associated with duration of pain (n=39; r=0.45; p=0.005), but not with pain intensity (n=39; r<0.03; p>0.43). In contrast with findings in other populations with musculoskeletal pain, no significant inter-hemispheric asymmetry was observed in map location (n=16; p-values ⩾ 0.91), or in the amplitude of motor responses obtained at various stimulation intensities (n=16; p=0.83). Chronicity of pain, but not its intensity, appears to be a factor related to lower excitability of infraspinatus representation. These results support the view that while cortical reorganization correlates with magnitude of pain in neuropathic pain syndromes, it could be more related to chronicity in the case of musculoskeletal disorders. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Productivity, quality, and patient satisfaction: comparison of part-time and full-time primary care physicians.

    PubMed

    Fairchild, D G; McLoughlin, K S; Gharib, S; Horsky, J; Portnow, M; Richter, J; Gagliano, N; Bates, D W

    2001-10-01

    Although few data are available, many believe that part-time primary care physicians (PCPs) are less productive and provide lower quality care than full-time PCPs. Some insurers exclude part-time PCPs from their provider networks. To compare productivity, quality of preventive care, patient satisfaction, and risk-adjusted resource utilization of part-time and full-time PCPs. Retrospective cohort study. Boston. PCPs affiliated with 2 academic outpatient primary care networks. PCP productivity, patient satisfaction, resource utilization, and compliance with screening guidelines. Part-time PCP productivity was greater than that of full-time PCPs (2.1 work relative value units (RVUs)/bookable clinical hour versus 1.3 work RVUs/bookable clinical hour, P< .01). A similar proportion of part-time PCPs (80%) and full-time PCPs (75%) met targets for mammography, Pap smears, and cholesterol screening (P = .67). After adjusting for clinical case mix, practice location, gender, board certification status, and years in practice, resource utilization of part-time PCPs (138 dollars [95% confidence interval (CI), 108 dollars to 167 dollars]) was similar to that of full-time PCPs (139 dollars [95% CI, 108 dollars to 170 dollars], P = .92). Patient satisfaction was similar for part-time and full-time PCPs. In these academic primary care practices, rates of patient satisfaction, compliance with screening guidelines, and resource utilization were similar for part-time PCPs compared to full-time PCPs. Productivity per clinical hour was markedly higher for part-time PCPs. Despite study limitations, these data suggest that academic part-time PCPs are at least as efficient as full-time PCPs and that the quality of their work is similar.

  5. Age Differences in Symbolic Representation: Fluidity in Representational Construction.

    ERIC Educational Resources Information Center

    Reifel, Stuart

    This paper reports a cross-sectional, developmental study of the fluidity of children's mental functioning (representational skills) in contexts involving the representational use of blocks. Data were collected from a sample of 40 children from a laboratory school: 20 four-year-olds and 20 seven-year-olds, with an equal number of boys and girls in…

  6. Volta-Based Cells Materials Chemical Multiple Representation to Improve Ability of Student Representation

    NASA Astrophysics Data System (ADS)

    Helsy, I.; Maryamah; Farida, I.; Ramdhani, M. A.

    2017-09-01

    This study aimed to describe the application of teaching materials, analyze the increase in the ability of students to connect the three levels of representation and student responses after application of multiple representations based teaching materials chemistry. The method used quasi one-group pretest-posttest design to 71 students. The results showed the application of teaching materials carried 88% with very good category. A significant increase ability to connect the three levels of representation of students after the application of multiple representations based teaching materials chemistry with t-value > t-crit (11.402 > 1.991). Recapitulation N-gain pretest and posttest showed relatively similar for all groups is 0.6 criterion being achievement. Students gave a positive response to the application of multiple representations based teaching materials chemistry. Students agree teaching materials used in teaching chemistry (88%), and agrees teaching materials to provide convenience in connecting the three levels of representation (95%).

  7. Time to harmonize national ambient air quality standards.

    PubMed

    Kutlar Joss, Meltem; Eeftens, Marloes; Gintowt, Emily; Kappeler, Ron; Künzli, Nino

    2017-05-01

    The World Health Organization has developed ambient air quality guidelines at levels considered to be safe or of acceptable risk for human health. These guidelines are meant to support governments in defining national standards. It is unclear how they are followed. We compiled an inventory of ambient air quality standards for 194 countries worldwide for six air pollutants: PM 2.5 , PM 10 , ozone, nitrogen dioxide, sulphur dioxide and carbon monoxide. We conducted literature and internet searches and asked country representatives about national ambient air quality standards. We found information on 170 countries including 57 countries that did not set any air quality standards. Levels varied greatly by country and by pollutant. Ambient air quality standards for PM 2.5 , PM 10 and SO 2 poorly complied with WHO guideline values. The agreement was higher for CO, SO 2 (10-min averaging time) and NO 2 . Regulatory differences mirror the differences in air quality and the related burden of disease around the globe. Governments worldwide should adopt science based air quality standards and clean air management plans to continuously improve air quality locally, nationally, and globally.

  8. Time in the Mind: Using Space to Think about Time

    ERIC Educational Resources Information Center

    Casasanto, Daniel; Boroditsky, Lera

    2008-01-01

    How do we construct abstract ideas like justice, mathematics, or time-travel? In this paper we investigate whether mental representations that result from physical experience underlie people's more abstract mental representations, using the domains of space and time as a testbed. People often talk about time using spatial language (e.g., a "long"…

  9. Hierarchical representation and machine learning from faulty jet engine behavioral examples to detect real time abnormal conditions

    NASA Technical Reports Server (NTRS)

    Gupta, U. K.; Ali, M.

    1988-01-01

    The theoretical basis and operation of LEBEX, a machine-learning system for jet-engine performance monitoring, are described. The behavior of the engine is modeled in terms of four parameters (the rotational speeds of the high- and low-speed sections and the exhaust and combustion temperatures), and parameter variations indicating malfunction are transformed into structural representations involving instances and events. LEBEX extracts descriptors from a set of training data on normal and faulty engines, represents them hierarchically in a knowledge base, and uses them to diagnose and predict faults on a real-time basis. Diagrams of the system architecture and printouts of typical results are shown.

  10. Psychology of knowledge representation.

    PubMed

    Grimm, Lisa R

    2014-05-01

    Every cognitive enterprise involves some form of knowledge representation. Humans represent information about the external world and internal mental states, like beliefs and desires, and use this information to meet goals (e.g., classification or problem solving). Unfortunately, researchers do not have direct access to mental representations. Instead, cognitive scientists design experiments and implement computational models to develop theories about the mental representations present during task performance. There are several main types of mental representation and corresponding processes that have been posited: spatial, feature, network, and structured. Each type has a particular structure and a set of processes that are capable of accessing and manipulating information within the representation. The structure and processes determine what information can be used during task performance and what information has not been represented at all. As such, the different types of representation are likely used to solve different kinds of tasks. For example, structured representations are more complex and computationally demanding, but are good at representing relational information. Researchers interested in human psychology would benefit from considering how knowledge is represented in their domain of inquiry. For further resources related to this article, please visit the WIREs website. The author has declared no conflicts of interest for this article. © 2014 John Wiley & Sons, Ltd.

  11. Representations and evolutionary operators for the scheduling of pump operations in water distribution networks.

    PubMed

    López-Ibáñez, Manuel; Prasad, T Devi; Paechter, Ben

    2011-01-01

    Reducing the energy consumption of water distribution networks has never had more significance. The greatest energy savings can be obtained by carefully scheduling the operations of pumps. Schedules can be defined either implicitly, in terms of other elements of the network such as tank levels; or explicitly, by specifying the time during which each pump is on/off. The traditional representation of explicit schedules is a string of binary values with each bit representing pump on/off status during a particular time interval. In this paper, we formally define and analyze two new explicit representations based on time-controlled triggers, where the maximum number of pump switches is established beforehand and the schedule may contain fewer than the maximum number of switches. In these representations, a pump schedule is divided into a series of integers with each integer representing the number of hours for which a pump is active/inactive. This reduces the number of potential schedules compared to the binary representation, and allows the algorithm to operate on the feasible region of the search space. We propose evolutionary operators for these two new representations. The new representations and their corresponding operations are compared with the two most-used representations in pump scheduling, namely, binary representation and level-controlled triggers. A detailed statistical analysis of the results indicates which parameters have the greatest effect on the performance of evolutionary algorithms. The empirical results show that an evolutionary algorithm using the proposed representations is an improvement over the results obtained by a recent state of the art hybrid genetic algorithm for pump scheduling using level-controlled triggers.

  12. Relational versus absolute representation in categorization.

    PubMed

    Edwards, Darren J; Pothos, Emmanuel M; Perlman, Amotz

    2012-01-01

    This study explores relational-like and absolute-like representations in categorization. Although there is much evidence that categorization processes can involve information about both the particular physical properties of studied instances and abstract (relational) properties, there has been little work on the factors that lead to one kind of representation as opposed to the other. We tested 370 participants in 6 experiments, in which participants had to classify new items into predefined artificial categories. In 4 experiments, we observed a predominantly relational-like mode of classification, and in 2 experiments we observed a shift toward an absolute-like mode of classification. These results suggest 3 factors that promote a relational-like mode of classification: fewer items per group, more training groups, and the presence of a time delay. Overall, we propose that less information about the distributional properties of a category or weaker memory traces for the category exemplars (induced, e.g., by having smaller categories or a time delay) can encourage relational-like categorization.

  13. Intelligence with representation.

    PubMed

    Steels, Luc

    2003-10-15

    Behaviour-based robotics has always been inspired by earlier cybernetics work such as that of W. Grey Walter. It emphasizes that intelligence can be achieved without the kinds of representations common in symbolic AI systems. The paper argues that such representations might indeed not be needed for many aspects of sensory-motor intelligence but become a crucial issue when bootstrapping to higher levels of cognition. It proposes a scenario in the form of evolutionary language games by which embodied agents develop situated grounded representations adapted to their needs and the conventions emerging in the population.

  14. Children's representations of multiple family relationships: organizational structure and development in early childhood.

    PubMed

    Schermerhorn, Alice C; Cummings, E Mark; Davies, Patrick T

    2008-02-01

    The authors examine mutual family influence processes at the level of children's representations of multiple family relationships, as well as the structure of those representations. From a community sample with 3 waves, each spaced 1 year apart, kindergarten-age children (105 boys and 127 girls) completed a story-stem completion task, tapping representations of multiple family relationships. Structural equation modeling with autoregressive controls indicated that representational processes involving different family relationships were interrelated over time, including links between children's representations of marital conflict and reactions to conflict, between representations of security about marital conflict and parent-child relationships, and between representations of security in father-child and mother-child relationships. Mixed support was found for notions of increasing stability in representations during this developmental period. Results are discussed in terms of notions of transactional family dynamics, including family-wide perspectives on mutual influence processes attributable to multiple family relationships.

  15. Hemispheric asymmetry of liking for representational and abstract paintings.

    PubMed

    Nadal, Marcos; Schiavi, Susanna; Cattaneo, Zaira

    2017-10-13

    Although the neural correlates of the appreciation of aesthetic qualities have been the target of much research in the past decade, few experiments have explored the hemispheric asymmetries in underlying processes. In this study, we used a divided visual field paradigm to test for hemispheric asymmetries in men and women's preference for abstract and representational artworks. Both male and female participants liked representational paintings more when presented in the right visual field, whereas preference for abstract paintings was unaffected by presentation hemifield. We hypothesize that this result reflects a facilitation of the sort of visual processes relevant to laypeople's liking for art-specifically, local processing of highly informative object features-when artworks are presented in the right visual field, given the left hemisphere's advantage in processing such features.

  16. Calculating and controlling the error of discrete representations of Pareto surfaces in convex multi-criteria optimization.

    PubMed

    Craft, David

    2010-10-01

    A discrete set of points and their convex combinations can serve as a sparse representation of the Pareto surface in multiple objective convex optimization. We develop a method to evaluate the quality of such a representation, and show by example that in multiple objective radiotherapy planning, the number of Pareto optimal solutions needed to represent Pareto surfaces of up to five dimensions grows at most linearly with the number of objectives. The method described is also applicable to the representation of convex sets. Copyright © 2009 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Knowledge Representation and Care Planning for Population Health Management.

    PubMed

    Merahn, Steven

    2015-01-01

    The traditional organizing principles of medical knowledge may be insufficient to allow for problem representations that are relevant to solution development in emerging models of care such as population health management. Operational classification and central management of clinical and quality objectives and associated strategies will allow for productive innovation in care design and better support goal-directed collaboration among patients and their health resource communities.

  18. Visual reaction time for chromaticity changes at constant luminance in different color representation systems

    NASA Astrophysics Data System (ADS)

    Jimenezdel Barco, L.; Jimenez, J. R.; Rubino, M.; Diaz, J. A.

    1996-09-01

    The results obtained by different authors show that when a color stimulus changes in both luminance and chromaticity, the visual reaction time (VRT) of an observer in detecting this chromatic change depends on nothing more than the luminance change and is regulated by Pieron's law. In the present work, we evaluate the VRT needed by an observer to detect the chromaticity difference between an adapting and variable stimulus. For this, we have used the experimental method of hue substitution, which allows us to maintain the luminance channel constant and thereby study the temporal response to changes only in chromaticity. The experiments were carried out with a CRT color monitor and the experimental results are expressed in different color-representation systems. The systems UCS-CIE 1964 (U*, V*, W*) and CIELUV show good correlations between the VRT and the chromaticity difference expressed in these systems, adjusting the VRT to an expression following Pieron's law: VRT-VRTon=k( Delta E)- beta .

  19. Unified double- and single-sided homogeneous Green's function representations

    NASA Astrophysics Data System (ADS)

    Wapenaar, Kees; van der Neut, Joost; Slob, Evert

    2016-06-01

    In wave theory, the homogeneous Green's function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from one side only. The inherent approximations are acceptable as long as the effects of multiple scattering are negligible. However, in case of strongly inhomogeneous media, the effects of multiple scattering can be severe. We derive double- and single-sided homogeneous Green's function representations. The single-sided representation applies to situations where the medium can be accessed from one side only. It correctly handles multiple scattering. It employs a focusing function instead of the backward propagating Green's function in the classical (double-sided) representation. When reflection measurements are available at the accessible boundary of the medium, the focusing function can be retrieved from these measurements. Throughout the paper, we use a unified notation which applies to acoustic, quantum-mechanical, electromagnetic and elastodynamic waves. We foresee many interesting applications of the unified single-sided homogeneous Green's function representation in holographic imaging and inverse scattering, time-reversed wave field propagation and interferometric Green's function retrieval.

  20. Ghost microscope imaging system from the perspective of coherent-mode representation

    NASA Astrophysics Data System (ADS)

    Shen, Qian; Bai, Yanfeng; Shi, Xiaohui; Nan, Suqin; Qu, Lijie; Li, Hengxing; Fu, Xiquan

    2018-03-01

    The coherent-mode representation theory of partially coherent fields is firstly used to analyze a two-arm ghost microscope imaging system. It is shown that imaging quality of the generated images depend crucially on the distribution of the decomposition coefficients of the object imaged when the light source is fixed. This theory is also suitable for demonstrating the effects from the distance the object is moved away from the original plane on imaging quality. Our results are verified theoretically and experimentally.

  1. Systematic Quality Development Work in a Swedish Leisure-Time Centre

    ERIC Educational Resources Information Center

    Lager, Karin; Sheridan, Sonja; Gustafsson, Jan

    2016-01-01

    There is increasing activity in the area of quality issues in education in Europe. Diverse discourses of policy for quality are encountered in daily practice. This article explores systematic quality development work in a Swedish educational setting: the leisure-time centre. By following 2 teachers' enactments of policy in planning, organising,…

  2. Same-Sex Parenting: Identification of Social Representations in a Sample of Portuguese Professionals.

    PubMed

    Xavier, Paula; Alberto, Isabel; Mendes, Francisco

    2017-11-14

    Although international scientific research and the position of professional associations reiterate that the parents' sexual orientation is not a criterion of parenting quality, the social recognition of same-sex parenting remains difficult in Portugal. Given the importance of forensic issues in this field, this study aims to identify the representations of psychologists, social workers, lawyers/attorneys, and judges regarding same-sex parenting. The study involves five homogeneous focus groups with a total of 19 professionals. Content analysis reveals reservations regarding same-sex couples' access to parenting, in particular among lawyers/attorneys. There also emerged narratives that highlight specific competencies in these families and that argue that sexual orientation does not define the quality of parenting. Social narratives are more expressive than scientific knowledge in support of professional representations. These findings have critical implications for professional practice and formation.

  3. How learning to abstract shapes neural sound representations

    PubMed Central

    Ley, Anke; Vroomen, Jean; Formisano, Elia

    2014-01-01

    The transformation of acoustic signals into abstract perceptual representations is the essence of the efficient and goal-directed neural processing of sounds in complex natural environments. While the human and animal auditory system is perfectly equipped to process the spectrotemporal sound features, adequate sound identification and categorization require neural sound representations that are invariant to irrelevant stimulus parameters. Crucially, what is relevant and irrelevant is not necessarily intrinsic to the physical stimulus structure but needs to be learned over time, often through integration of information from other senses. This review discusses the main principles underlying categorical sound perception with a special focus on the role of learning and neural plasticity. We examine the role of different neural structures along the auditory processing pathway in the formation of abstract sound representations with respect to hierarchical as well as dynamic and distributed processing models. Whereas most fMRI studies on categorical sound processing employed speech sounds, the emphasis of the current review lies on the contribution of empirical studies using natural or artificial sounds that enable separating acoustic and perceptual processing levels and avoid interference with existing category representations. Finally, we discuss the opportunities of modern analyses techniques such as multivariate pattern analysis (MVPA) in studying categorical sound representations. With their increased sensitivity to distributed activation changes—even in absence of changes in overall signal level—these analyses techniques provide a promising tool to reveal the neural underpinnings of perceptually invariant sound representations. PMID:24917783

  4. A logical foundation for representation of clinical data.

    PubMed Central

    Campbell, K E; Das, A K; Musen, M A

    1994-01-01

    OBJECTIVE: A general framework for representation of clinical data that provides a declarative semantics of terms and that allows developers to define explicitly the relationships among both terms and combinations of terms. DESIGN: Use of conceptual graphs as a standard representation of logic and of an existing standardized vocabulary, the Systematized Nomenclature of Medicine (SNOMED International), for lexical elements. Concepts such as time, anatomy, and uncertainty must be modeled explicitly in a way that allows relation of these foundational concepts to surface-level clinical descriptions in a uniform manner. RESULTS: The proposed framework was used to model a simple radiology report, which included temporal references. CONCLUSION: Formal logic provides a framework for formalizing the representation of medical concepts. Actual implementations will be required to evaluate the practicality of this approach. PMID:7719805

  5. Defining time crystals via representation theory

    NASA Astrophysics Data System (ADS)

    Khemani, Vedika; von Keyserlingk, C. W.; Sondhi, S. L.

    2017-09-01

    Time crystals are proposed states of matter which spontaneously break time translation symmetry. There is no settled definition of such states. We offer a new definition which follows the traditional recipe for Wigner symmetries and order parameters. Supplementing our definition with a few plausible assumptions we find that a) systems with time-independent Hamiltonians should not exhibit time translation symmetry breaking while b) the recently studied π spin glass/Floquet time crystal can be viewed as breaking a global internal symmetry and as breaking time translation symmetry, as befits its two names.

  6. Ince-Gaussian series representation of the two-dimensional fractional Fourier transform.

    PubMed

    Bandres, Miguel A; Gutiérrez-Vega, Julio C

    2005-03-01

    We introduce the Ince-Gaussian series representation of the two-dimensional fractional Fourier transform in elliptical coordinates. A physical interpretation is provided in terms of field propagation in quadratic graded-index media whose eigenmodes in elliptical coordinates are derived for the first time to our knowledge. The kernel of the new series representation is expressed in terms of Ince-Gaussian functions. The equivalence among the Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian series representations is verified by establishing the relation among the three definitions.

  7. Time-frequency representations of the sternocleidomastoid muscle electromyographic signal recorded with concentric ring electrodes.

    PubMed

    Estrada, Luis; Torres, Abel; Garcia-Casado, Javier; Sarlabous, Leonardo; Prats-Boluda, Gema; Jane, Raimon

    2016-08-01

    The use of non-invasive methods for the study of respiratory muscle signals can provide clinical information for the evaluation of the respiratory muscle function. The aim of this study was to evaluate time-frequency characteristics of the electrical activity of the sternocleidomastoid muscle recorded superficially by means of concentric ring electrodes (CREs) in a bipolar configuration. The CREs enhance the spatial resolution, attenuate interferences, as the cardiac activity, and also simplify the orientation problem associated to the electrode location. Five healthy subjects underwent a respiratory load test in which an inspiratory load was imposed during the inspiratory phase. During the test, the electromyographic signal of the sternocleidomastoid muscle (EMGsc) and the inspiratory mouth pressure (Pmouth) were acquired. Time-frequency characteristics of the EMGsc signal were analyzed by means of eight time-frequency representations (TFRs): the spectrogram (SPEC), the Morlet scalogram (SCAL), the Wigner-Ville distribution (WVD), the Choi-Williams distribution (CHWD), two generalized exponential distributions (GED1 and GED2), the Born-Jordan distribution (BJD) and the Cone-Kernel distribution (CKD). The instantaneous central frequency of the EMGsc showed an increasing behavior during the inspiratory cycle and with the increase of the inspiratory load. The bilinear TFRs (WVD, CHWD, GEDs and BJD) were less sensitive to cardiac activity interference than classical TFRs (SPEC and SCAL). The GED2 was the TFR that shown the best results for the characterization of the instantaneous central frequency of the EMGsc.

  8. Quality Time after School: What Instructors Can Do To Enhance Learning

    ERIC Educational Resources Information Center

    Grossman, Jean; Campbell, Margo; Raley, Becca

    2007-01-01

    Improving the quality of out-of-school time activities and creating effective learning environments is of keen interest to practitioners, funders and policymakers. Funded by The William Penn Foundation, "Quality Time After School" identifies characteristics of after-school activities that are linked to youth engagement and learning…

  9. A single-sided representation for the homogeneous Green's function of a unified scalar wave equation.

    PubMed

    Wapenaar, Kees

    2017-06-01

    A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their singularities at the source position cancel each other. A classical representation expresses this homogeneous Green's function as a closed boundary integral. This representation finds applications in holographic imaging, time-reversed wave propagation and Green's function retrieval by cross correlation. The main drawback of the classical representation in those applications is that it requires access to a closed boundary around the medium of interest, whereas in many practical situations the medium can be accessed from one side only. Therefore, a single-sided representation is derived for the homogeneous Green's function of the unified scalar wave equation. Like the classical representation, this single-sided representation fully accounts for multiple scattering. The single-sided representation has the same applications as the classical representation, but unlike the classical representation it is applicable in situations where the medium of interest is accessible from one side only.

  10. Switch-Independent Task Representations in Frontal and Parietal Cortex.

    PubMed

    Loose, Lasse S; Wisniewski, David; Rusconi, Marco; Goschke, Thomas; Haynes, John-Dylan

    2017-08-16

    Alternating between two tasks is effortful and impairs performance. Previous fMRI studies have found increased activity in frontoparietal cortex when task switching is required. One possibility is that the additional control demands for switch trials are met by strengthening task representations in the human brain. Alternatively, on switch trials, the residual representation of the previous task might impede the buildup of a neural task representation. This would predict weaker task representations on switch trials, thus also explaining the performance costs. To test this, male and female participants were cued to perform one of two similar tasks, with the task being repeated or switched between successive trials. Multivoxel pattern analysis was used to test which regions encode the tasks and whether this encoding differs between switch and repeat trials. As expected, we found information about task representations in frontal and parietal cortex, but there was no difference in the decoding accuracy of task-related information between switch and repeat trials. Using cross-classification, we found that the frontoparietal cortex encodes tasks using a generalizable spatial pattern in switch and repeat trials. Therefore, task representations in frontal and parietal cortex are largely switch independent. We found no evidence that neural information about task representations in these regions can explain behavioral costs usually associated with task switching. SIGNIFICANCE STATEMENT Alternating between two tasks is effortful and slows down performance. One possible explanation is that the representations in the human brain need time to build up and are thus weaker on switch trials, explaining performance costs. Alternatively, task representations might even be enhanced to overcome the previous task. Here, we used a combination of fMRI and a brain classifier to test whether the additional control demands under switching conditions lead to an increased or decreased strength

  11. 2D biological representations with reduced speckle obtained from two perpendicular ultrasonic arrays.

    PubMed

    Rodriguez-Hernandez, Miguel A; Gomez-Sacristan, Angel; Sempere-Payá, Víctor M

    2016-04-29

    Ultrasound diagnosis is a widely used medical tool. Among the various ultrasound techniques, ultrasonic imaging is particularly relevant. This paper presents an improvement to a two-dimensional (2D) ultrasonic system using measurements taken from perpendicular planes, where digital signal processing techniques are used to combine one-dimensional (1D) A-scans were acquired by individual transducers in arrays located in perpendicular planes. An algorithm used to combine measurements is improved based on the wavelet transform, which includes a denoising step during the 2D representation generation process. The inclusion of this new denoising stage generates higher quality 2D representations with a reduced level of speckling. The paper includes different 2D representations obtained from noisy A-scans and compares the improvements obtained by including the denoising stage.

  12. Supporting Quality Timely PhD Completions: Delivering Research Outcomes

    ERIC Educational Resources Information Center

    Gasson, Susan

    2015-01-01

    The case study used a three-phase organising process to explain how design and implementation of an accessible and interactive electronic thesis submission form streamlined quality assurance of theses and their timely dissemination via an online thesis repository. The quality of the theses submitted is assured by key academics in their final sign…

  13. A methodology for space-time classification of groundwater quality.

    PubMed

    Passarella, G; Caputo, M C

    2006-04-01

    Safeguarding groundwater from civil, agricultural and industrial contamination is matter of great interest in water resource management. During recent years, much legislation has been produced stating the importance of groundwater as a source for drinking water supplies, underlining its vulnerability and defining the required quality standards. Thus, schematic tools, able to characterise the quality and quantity of groundwater systems, are of very great interest in any territorial planning and/or water resource management activity. This paper proposes a groundwater quality classification method which has been applied to a real aquifer, starting from several studies published by the Italian National Hydrogeologic Catastrophe Defence Group (GNDCI). The methodology is based on the concentration values of several parameters used as indexes of the natural hydro-chemical water condition and of potential man-induced modifications of groundwater quality. The resulting maps, although representative of the quality, do not include any information on its evolution in time. In this paper, this "stationary" classification method has been improved by crossing the quality classes with three indexes of temporal behaviour during recent years. It was then applied to data from monitoring campaigns, performed in spring and autumn, from 1990 to 1996, in the plain of Modena aquifer (central Italy). The results are reported in the form of space-time classification table and maps.

  14. The effects of learner-generated representations versus computer-generated representations on physics problem solving

    NASA Astrophysics Data System (ADS)

    Price, Gwyneth A.

    In this study, multiple external representations and Generative Learning Theory were used to design instruction that would facilitate physics learning. Specifically, the study looks at the learning differences that may occur when students are engaged in generating a graphical representation as compared to being presented with a computer-generated graph. It is hypothesized that by generating the graphical representation students will be able to overcome obstacles to integration and determine the relationships involved within a representation. In doing so, students will build a more complete mental model of the situation and be able to more readily use this information in transfer situations, thus improving their problem solving ability. Though the results of this study do not lend strong support for the hypothesis, the results are still informative and encouraging. Though several of the obstacles associated with learning from multiple representations such as cognitive load were cause for concern, those students with appropriate prior knowledge and familiarity with graphical representations were able to benefit from the generative activity. This finding indicates that if the issues are directly addressed within instruction, it may be that all students may be able to benefit from being actively engaged in generating representations.

  15. Representations and uses of light distribution functions

    NASA Astrophysics Data System (ADS)

    Lalonde, Paul Albert

    1998-11-01

    At their lowest level, all rendering algorithms depend on models of local illumination to define the interplay of light with the surfaces being rendered. These models depend both on the representations of light scattering at a surface due to reflection and to an equal extent on the representation of light sources and light fields. Both emission and reflection have in common that they describe how light leaves a surface as a function of direction. Reflection also depends on an incident light direction. Emission can depend on the position on the light source We call the functions representing emission and reflection light distribution functions (LDF's). There are some difficulties to using measured light distribution functions. The data sets are very large-the size of the data grows with the fourth power of the sampling resolution. For example, a bidirectional reflectance distribution function (BRDF) sampled at five degrees angular resolution, which is arguably insufficient to capture highlights and other high frequency effects in the reflection, can easily require one and a half million samples. Once acquired this data requires some form of interpolation to use them. Any compression method used must be efficient, both in space and in the time required to evaluate the function at a point or over a range of points. This dissertation examines a wavelet representation of light distribution functions that addresses these issues. A data structure is presented that allows efficient reconstruction of LDFs for a given set of parameters, making the wavelet representation feasible for rendering tasks. Texture mapping methods that take advantage of our LDF representations are examined, as well as techniques for filtering LDFs, and methods for using wavelet compressed bidirection reflectance distribution functions (BRDFs) and light sources with Monte Carlo path tracing algorithms. The wavelet representation effectively compresses BRDF and emission data while inducing only a

  16. Reading Visual Representations

    ERIC Educational Resources Information Center

    Rubenstein, Rheta N.; Thompson, Denisse R.

    2012-01-01

    Mathematics is rich in visual representations. Such visual representations are the means by which mathematical patterns "are recorded and analyzed." With respect to "vocabulary" and "symbols," numerous educators have focused on issues inherent in the language of mathematics that influence students' success with mathematics communication.…

  17. Effective real-time vehicle tracking using discriminative sparse coding on local patches

    NASA Astrophysics Data System (ADS)

    Chen, XiangJun; Ye, Feiyue; Ruan, Yaduan; Chen, Qimei

    2016-01-01

    A visual tracking framework that provides an object detector and tracker, which focuses on effective and efficient visual tracking in surveillance of real-world intelligent transport system applications, is proposed. The framework casts the tracking task as problems of object detection, feature representation, and classification, which is different from appearance model-matching approaches. Through a feature representation of discriminative sparse coding on local patches called DSCLP, which trains a dictionary on local clustered patches sampled from both positive and negative datasets, the discriminative power and robustness has been improved remarkably, which makes our method more robust to a complex realistic setting with all kinds of degraded image quality. Moreover, by catching objects through one-time background subtraction, along with offline dictionary training, computation time is dramatically reduced, which enables our framework to achieve real-time tracking performance even in a high-definition sequence with heavy traffic. Experiment results show that our work outperforms some state-of-the-art methods in terms of speed, accuracy, and robustness and exhibits increased robustness in a complex real-world scenario with degraded image quality caused by vehicle occlusion, image blur of rain or fog, and change in viewpoint or scale.

  18. Engaging 5th/6th Graders in Representations of Change Over Time in the Context of Adaptations to Climate Change in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Peake, L.; Young Morse, R.

    2017-12-01

    Since 2005, the Gulf of Maine Research Institute has brought 70% of Maine's 5th/6th grade cohort annually to our marine research lab for a 2.5-hour exploration of ecosystem complexity. Using a digital platform, tools of science, and live marine species, students consider the interconnections among key Gulf of Maine species while experiencing the process of authentic marine research. With funding from NASA, we are renovating the program's learning content, underlying technology, and physical interfaces to leverage NASA data sets. The new experience will emphasize development of students' data skills as they investigate the impacts of climate change in the Gulf of Maine. To do this, students will explore representations of rising ocean temperatures and connect that to representations of changes in the populations of key species like lobster and black sea bass. Past experience suggests the abstraction and synthesis required to make meaning from data visualizations is extremely challenging for this age student. We will report on an early round of informal testing with 250+ students to understand their ability to extract meaning from geospatial and graphical representations of change over time. We will also report on experiments that will be conducted in Fall 2017 to understand the kinds of informal learning experiences, and the sequences of data representations, that best support growth in students' ability to interpret a range of representations. Finally, we will discuss the project's work to extend the learning experiences 1) back into the classroom, including through citizen science; and 2) out to regional science centers for adaptation to investigations of local climate impacts.

  19. Statistical representation of multiphase flow

    NASA Astrophysics Data System (ADS)

    Subramaniam

    2000-11-01

    The relationship between two common statistical representations of multiphase flow, namely, the single--point Eulerian statistical representation of two--phase flow (D. A. Drew, Ann. Rev. Fluid Mech. (15), 1983), and the Lagrangian statistical representation of a spray using the dropet distribution function (F. A. Williams, Phys. Fluids 1 (6), 1958) is established for spherical dispersed--phase elements. This relationship is based on recent work which relates the droplet distribution function to single--droplet pdfs starting from a Liouville description of a spray (Subramaniam, Phys. Fluids 10 (12), 2000). The Eulerian representation, which is based on a random--field model of the flow, is shown to contain different statistical information from the Lagrangian representation, which is based on a point--process model. The two descriptions are shown to be simply related for spherical, monodisperse elements in statistically homogeneous two--phase flow, whereas such a simple relationship is precluded by the inclusion of polydispersity and statistical inhomogeneity. The common origin of these two representations is traced to a more fundamental statistical representation of a multiphase flow, whose concepts derive from a theory for dense sprays recently proposed by Edwards (Atomization and Sprays 10 (3--5), 2000). The issue of what constitutes a minimally complete statistical representation of a multiphase flow is resolved.

  20. Aircraft model prototypes which have specified handling-quality time histories

    NASA Technical Reports Server (NTRS)

    Johnson, S. H.

    1976-01-01

    Several techniques for obtaining linear constant-coefficient airplane models from specified handling-quality time histories are discussed. One technique, the pseudodata method, solves the basic problem, yields specified eigenvalues, and accommodates state-variable transfer-function zero suppression. The method is fully illustrated for a fourth-order stability-axis small-motion model with three lateral handling-quality time histories specified. The FORTRAN program which obtains and verifies the model is included and fully documented.

  1. Representation of magnetic fields in space

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1975-01-01

    Several methods by which a magnetic field in space can be represented are reviewed with particular attention to problems of the observed geomagnetic field. Time dependence is assumed to be negligible, and five main classes of representation are described by vector potential, scalar potential, orthogonal vectors, Euler potentials, and expanded magnetic field.

  2. Narrative, memory and social representations: a conversation between history and social psychology.

    PubMed

    Jovchelovitch, Sandra

    2012-12-01

    This paper explores relations between narrative, memory and social representations by examining how social representations express the ways in which communities deal with the historical past. Drawing on a case study of social representations of the Brazilian public sphere, it shows how a specific narrative of origins re-invents history as a useful mythological resource for defending identity, building inter-group solidarity and maintaining social cohesion. Produced by a time-travelling dialogue between multiple sources, this historical narrative is functional both to transform, to stabilise and give resilience to specific social representations of public life. The Brazilian case shows that historical narratives, which tend to be considered as part of the stable core of representational fields, are neither homogenous nor consensual but open polyphasic platforms for the construction of alternative, often contradictory, representations. These representations do not go away because they are ever changing and situated, recruit multiple ways of thinking and fulfil functions of identity, inter-group solidarity and social cohesion. In the disjunction between historiography and the past as social representation are the challenges and opportunities for the dialogue between historians and social psychologists.

  3. Representations and Rafts

    ERIC Educational Resources Information Center

    Hartweg, Kimberly Sipes

    2011-01-01

    To build on prior knowledge and mathematical understanding, middle school students need to be given the opportunity to make connections among a variety of representations. Graphs, tables, algebraic formulas, and models are just a few examples of representations that can help students explore quantitative relationships. As a mathematics educator,…

  4. Object Recognition in Mental Representations: Directions for Exploring Diagnostic Features through Visual Mental Imagery

    PubMed Central

    Roldan, Stephanie M.

    2017-01-01

    One of the fundamental goals of object recognition research is to understand how a cognitive representation produced from the output of filtered and transformed sensory information facilitates efficient viewer behavior. Given that mental imagery strongly resembles perceptual processes in both cortical regions and subjective visual qualities, it is reasonable to question whether mental imagery facilitates cognition in a manner similar to that of perceptual viewing: via the detection and recognition of distinguishing features. Categorizing the feature content of mental imagery holds potential as a reverse pathway by which to identify the components of a visual stimulus which are most critical for the creation and retrieval of a visual representation. This review will examine the likelihood that the information represented in visual mental imagery reflects distinctive object features thought to facilitate efficient object categorization and recognition during perceptual viewing. If it is the case that these representational features resemble their sensory counterparts in both spatial and semantic qualities, they may well be accessible through mental imagery as evaluated through current investigative techniques. In this review, methods applied to mental imagery research and their findings are reviewed and evaluated for their efficiency in accessing internal representations, and implications for identifying diagnostic features are discussed. An argument is made for the benefits of combining mental imagery assessment methods with diagnostic feature research to advance the understanding of visual perceptive processes, with suggestions for avenues of future investigation. PMID:28588538

  5. Object Recognition in Mental Representations: Directions for Exploring Diagnostic Features through Visual Mental Imagery.

    PubMed

    Roldan, Stephanie M

    2017-01-01

    One of the fundamental goals of object recognition research is to understand how a cognitive representation produced from the output of filtered and transformed sensory information facilitates efficient viewer behavior. Given that mental imagery strongly resembles perceptual processes in both cortical regions and subjective visual qualities, it is reasonable to question whether mental imagery facilitates cognition in a manner similar to that of perceptual viewing: via the detection and recognition of distinguishing features. Categorizing the feature content of mental imagery holds potential as a reverse pathway by which to identify the components of a visual stimulus which are most critical for the creation and retrieval of a visual representation. This review will examine the likelihood that the information represented in visual mental imagery reflects distinctive object features thought to facilitate efficient object categorization and recognition during perceptual viewing. If it is the case that these representational features resemble their sensory counterparts in both spatial and semantic qualities, they may well be accessible through mental imagery as evaluated through current investigative techniques. In this review, methods applied to mental imagery research and their findings are reviewed and evaluated for their efficiency in accessing internal representations, and implications for identifying diagnostic features are discussed. An argument is made for the benefits of combining mental imagery assessment methods with diagnostic feature research to advance the understanding of visual perceptive processes, with suggestions for avenues of future investigation.

  6. Finger vein verification system based on sparse representation.

    PubMed

    Xin, Yang; Liu, Zhi; Zhang, Haixia; Zhang, Hong

    2012-09-01

    Finger vein verification is a promising biometric pattern for personal identification in terms of security and convenience. The recognition performance of this technology heavily relies on the quality of finger vein images and on the recognition algorithm. To achieve efficient recognition performance, a special finger vein imaging device is developed, and a finger vein recognition method based on sparse representation is proposed. The motivation for the proposed method is that finger vein images exhibit a sparse property. In the proposed system, the regions of interest (ROIs) in the finger vein images are segmented and enhanced. Sparse representation and sparsity preserving projection on ROIs are performed to obtain the features. Finally, the features are measured for recognition. An equal error rate of 0.017% was achieved based on the finger vein image database, which contains images that were captured by using the near-IR imaging device that was developed in this study. The experimental results demonstrate that the proposed method is faster and more robust than previous methods.

  7. An Application of Reassigned Time-Frequency Representations for Seismic Noise/Signal Decomposition

    NASA Astrophysics Data System (ADS)

    Mousavi, S. M.; Langston, C. A.

    2016-12-01

    Seismic data recorded by surface arrays are often strongly contaminated by unwanted noise. This background noise makes the detection of small magnitude events difficult. An automatic method for seismic noise/signal decomposition is presented based upon an enhanced time-frequency representation. Synchrosqueezing is a time-frequency reassignment method aimed at sharpening a time-frequency picture. Noise can be distinguished from the signal and suppressed more easily in this reassigned domain. The threshold level is estimated using a general cross validation approach that does not rely on any prior knowledge about the noise level. Efficiency of thresholding has been improved by adding a pre-processing step based on higher order statistics and a post-processing step based on adaptive hard-thresholding. In doing so, both accuracy and speed of the denoising have been improved compared to our previous algorithms (Mousavi and Langston, 2016a, 2016b; Mousavi et al., 2016). The proposed algorithm can either kill the noise (either white or colored) and keep the signal or kill the signal and keep the noise. Hence, It can be used in either normal denoising applications or in ambient noise studies. Application of the proposed method on synthetic and real seismic data shows the effectiveness of the method for denoising/designaling of local microseismic, and ocean bottom seismic data. References: Mousavi, S.M., C. A. Langston., and S. P. Horton (2016), Automatic Microseismic Denoising and Onset Detection Using the Synchrosqueezed-Continuous Wavelet Transform. Geophysics. 81, V341-V355, doi: 10.1190/GEO2015-0598.1. Mousavi, S.M., and C. A. Langston (2016a), Hybrid Seismic Denoising Using Higher-Order Statistics and Improved Wavelet Block Thresholding. Bull. Seismol. Soc. Am., 106, doi: 10.1785/0120150345. Mousavi, S.M., and C.A. Langston (2016b), Adaptive noise estimation and suppression for improving microseismic event detection, Journal of Applied Geophysics., doi: http

  8. The Instructional Effects of Diagrams and Time-Compressed Instruction on Student Achievement and Learners' Perceptions of Cognitive Load

    ERIC Educational Resources Information Center

    Pastore, Raymond S.

    2009-01-01

    The purpose of this study was to examine the effects of visual representations and time-compressed instruction on learning and learners' perceptions of cognitive load. Time-compressed instruction refers to instruction that has been increased in speed without sacrificing quality. It was anticipated that learners would be able to gain a conceptual…

  9. Updating representations of learned scenes.

    PubMed

    Finlay, Cory A; Motes, Michael A; Kozhevnikov, Maria

    2007-05-01

    Two experiments were designed to compare scene recognition reaction time (RT) and accuracy patterns following observer versus scene movement. In Experiment 1, participants memorized a scene from a single perspective. Then, either the scene was rotated or the participants moved (0 degrees -360 degrees in 36 degrees increments) around the scene, and participants judged whether the objects' positions had changed. Regardless of whether the scene was rotated or the observer moved, RT increased with greater angular distance between judged and encoded views. In Experiment 2, we varied the delay (0, 6, or 12 s) between scene encoding and locomotion. Regardless of the delay, however, accuracy decreased and RT increased with angular distance. Thus, our data show that observer movement does not necessarily update representations of spatial layouts and raise questions about the effects of duration limitations and encoding points of view on the automatic spatial updating of representations of scenes.

  10. Data Representations for Geographic Information Systems.

    ERIC Educational Resources Information Center

    Shaffer, Clifford A.

    1992-01-01

    Surveys the field and literature of geographic information systems (GIS) and spatial data representation as it relates to GIS. Highlights include GIS terms, data types, and operations; vector representations and raster, or grid, representations; spatial indexing; elevation data representations; large spatial databases; and problem areas and future…

  11. Interrupted Time Series Versus Statistical Process Control in Quality Improvement Projects.

    PubMed

    Andersson Hagiwara, Magnus; Andersson Gäre, Boel; Elg, Mattias

    2016-01-01

    To measure the effect of quality improvement interventions, it is appropriate to use analysis methods that measure data over time. Examples of such methods include statistical process control analysis and interrupted time series with segmented regression analysis. This article compares the use of statistical process control analysis and interrupted time series with segmented regression analysis for evaluating the longitudinal effects of quality improvement interventions, using an example study on an evaluation of a computerized decision support system.

  12. Implementation of a frame-based representation in CLIPS

    NASA Technical Reports Server (NTRS)

    Assal, Hisham; Myers, Leonard

    1990-01-01

    Knowledge representation is one of the major concerns in expert systems. The representation of domain-specific knowledge should agree with the nature of the domain entities and their use in the real world. For example, architectural applications deal with objects and entities such as spaces, walls, and windows. A natural way of representing these architectural entities is provided by frames. This research explores the potential of using the expert system shell CLIPS, developed by NASA, to implement a frame-based representation that can accommodate architectural knowledge. These frames are similar but quite different from the 'template' construct in version 4.3 of CLIPS. Templates support only the grouping of related information and the assignment of default values to template fields. In addition to these features frames provide other capabilities including definition of classes, inheritance between classes and subclasses, relation of objects of different classes with 'has-a', association of methods (demons) of different types (standard and user-defined) to fields (slots), and creation of new fields at run-time. This frame-based representation is implemented completely in CLIPS. No change to the source code is necessary.

  13. Balancing Exploration, Uncertainty Representation and Computational Time in Many-Objective Reservoir Policy Optimization

    NASA Astrophysics Data System (ADS)

    Zatarain-Salazar, J.; Reed, P. M.; Quinn, J.; Giuliani, M.; Castelletti, A.

    2016-12-01

    As we confront the challenges of managing river basin systems with a large number of reservoirs and increasingly uncertain tradeoffs impacting their operations (due to, e.g. climate change, changing energy markets, population pressures, ecosystem services, etc.), evolutionary many-objective direct policy search (EMODPS) solution strategies will need to address the computational demands associated with simulating more uncertainties and therefore optimizing over increasingly noisy objective evaluations. Diagnostic assessments of state-of-the-art many-objective evolutionary algorithms (MOEAs) to support EMODPS have highlighted that search time (or number of function evaluations) and auto-adaptive search are key features for successful optimization. Furthermore, auto-adaptive MOEA search operators are themselves sensitive to having a sufficient number of function evaluations to learn successful strategies for exploring complex spaces and for escaping from local optima when stagnation is detected. Fortunately, recent parallel developments allow coordinated runs that enhance auto-adaptive algorithmic learning and can handle scalable and reliable search with limited wall-clock time, but at the expense of the total number of function evaluations. In this study, we analyze this tradeoff between parallel coordination and depth of search using different parallelization schemes of the Multi-Master Borg on a many-objective stochastic control problem. We also consider the tradeoff between better representing uncertainty in the stochastic optimization, and simplifying this representation to shorten the function evaluation time and allow for greater search. Our analysis focuses on the Lower Susquehanna River Basin (LSRB) system where multiple competing objectives for hydropower production, urban water supply, recreation and environmental flows need to be balanced. Our results provide guidance for balancing exploration, uncertainty, and computational demands when using the EMODPS

  14. Unified double- and single-sided homogeneous Green’s function representations

    PubMed Central

    van der Neut, Joost; Slob, Evert

    2016-01-01

    In wave theory, the homogeneous Green’s function consists of the impulse response to a point source, minus its time-reversal. It can be represented by a closed boundary integral. In many practical situations, the closed boundary integral needs to be approximated by an open boundary integral because the medium of interest is often accessible from one side only. The inherent approximations are acceptable as long as the effects of multiple scattering are negligible. However, in case of strongly inhomogeneous media, the effects of multiple scattering can be severe. We derive double- and single-sided homogeneous Green’s function representations. The single-sided representation applies to situations where the medium can be accessed from one side only. It correctly handles multiple scattering. It employs a focusing function instead of the backward propagating Green’s function in the classical (double-sided) representation. When reflection measurements are available at the accessible boundary of the medium, the focusing function can be retrieved from these measurements. Throughout the paper, we use a unified notation which applies to acoustic, quantum-mechanical, electromagnetic and elastodynamic waves. We foresee many interesting applications of the unified single-sided homogeneous Green’s function representation in holographic imaging and inverse scattering, time-reversed wave field propagation and interferometric Green’s function retrieval. PMID:27436983

  15. The role of physical digit representation and numerical magnitude representation in children's multiplication fact retrieval.

    PubMed

    De Visscher, Alice; Noël, Marie-Pascale; De Smedt, Bert

    2016-12-01

    Arithmetic facts, in particular multiplication tables, are thought to be stored in long-term memory and to be interference prone. At least two representations underpinning these arithmetic facts have been suggested: a physical representation of the digits and a numerical magnitude representation. We hypothesized that both representations are possible sources of interference that could explain individual differences in multiplication fact performance and/or in strategy use. We investigated the specificity of these interferences on arithmetic fact retrieval and explored the relation between interference and performance on the different arithmetic operations and on general mathematics achievement. Participants were 79 fourth-grade children (M age =9.6 years) who completed a products comparison and a multiplication production task with verbal strategy reports. Performances on a speeded calculation test including the four operations and on a general mathematics achievement test were also collected. Only the interference coming from physical representations was a significant predictor of the performance across multiplications. However, both the magnitude and physical representations were unique predictors of individual differences in multiplication. The frequency of the retrieval strategy across multiplication problems and across individuals was determined only by the physical representation, which therefore is suggested as being responsible for memory storage issues. Interestingly, this impact of physical representation was not observed when predicting performance on subtraction or on general mathematical achievement. In contrast, the impact of the numerical magnitude representation was more general in that it was observed across all arithmetic operations and in general mathematics achievement. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Strategy and Quality Maps in Higher Education

    ERIC Educational Resources Information Center

    Kettunen, Juha

    2011-01-01

    The purpose of this study is to investigate the integration of strategic management and quality assurance in higher education. The study presents how the value chain can be described in the strategy and quality maps, which are, respectively graphical representations of the strategic plan and the quality assurance system. The quality map is a new…

  17. Representation of time interval entrained by periodic stimuli in the visual thalamus of pigeons

    PubMed Central

    Wang, Shu-Rong

    2017-01-01

    Animals use the temporal information from previously experienced periodic events to instruct their future behaviors. The retina and cortex are involved in such behavior, but it remains largely unknown how the thalamus, transferring visual information from the retina to the cortex, processes the periodic temporal patterns. Here we report that the luminance cells in the nucleus dorsolateralis anterior thalami (DLA) of pigeons exhibited oscillatory activities in a temporal pattern identical to the rhythmic luminance changes of repetitive light/dark (LD) stimuli with durations in the seconds-to-minutes range. Particularly, after LD stimulation, the DLA cells retained the entrained oscillatory activities with an interval closely matching the duration of the LD cycle. Furthermore, the post-stimulus oscillatory activities of the DLA cells were sustained without feedback inputs from the pallium (equivalent to the mammalian cortex). Our study suggests that the experience-dependent representation of time interval in the brain might not be confined to the pallial/cortical level, but may occur as early as at the thalamic level. PMID:29284554

  18. The role of memory representation in the vigilance decrement.

    PubMed

    Caggiano, Daniel M; Parasuraman, Raja

    2004-10-01

    Working memory load is critically important for the overall level of performance on vigilance tasks. However, its role in a key aspect of vigilance-sensitivity decrement over time-is unclear. We used a dual-task procedure in which either a spatial or a nonspatial working memory task was performed simultaneously with a spatial vigilance task for 20 min. Sensitivity in the vigilance task declined over time when the concurrent task involved spatial working memory. In contrast, there was no sensitivity decrement with a nonspatial working memory task. The results provide the first evidence of a specific role for working memory representation in vigilance decrement. The findings are also consistent with a multiple resource theory in which separate resources for memory representation and cognitive control operations are differentially susceptible to depletion over time, depending on the demands of the task at hand.

  19. Optical aberration correction for simple lenses via sparse representation

    NASA Astrophysics Data System (ADS)

    Cui, Jinlin; Huang, Wei

    2018-04-01

    Simple lenses with spherical surfaces are lightweight, inexpensive, highly flexible, and can be easily processed. However, they suffer from optical aberrations that lead to limitations in high-quality photography. In this study, we propose a set of computational photography techniques based on sparse signal representation to remove optical aberrations, thereby allowing the recovery of images captured through a single-lens camera. The primary advantage of the proposed method is that many prior point spread functions calibrated at different depths are successfully used for restoring visual images in a short time, which can be generally applied to nonblind deconvolution methods for solving the problem of the excessive processing time caused by the number of point spread functions. The optical software CODE V is applied for examining the reliability of the proposed method by simulation. The simulation results reveal that the suggested method outperforms the traditional methods. Moreover, the performance of a single-lens camera is significantly enhanced both qualitatively and perceptually. Particularly, the prior information obtained by CODE V can be used for processing the real images of a single-lens camera, which provides an alternative approach to conveniently and accurately obtain point spread functions of single-lens cameras.

  20. An innovative time-cost-quality tradeoff modeling of building construction project based on resource allocation.

    PubMed

    Hu, Wenfa; He, Xinhua

    2014-01-01

    The time, quality, and cost are three important but contradictive objectives in a building construction project. It is a tough challenge for project managers to optimize them since they are different parameters. This paper presents a time-cost-quality optimization model that enables managers to optimize multiobjectives. The model is from the project breakdown structure method where task resources in a construction project are divided into a series of activities and further into construction labors, materials, equipment, and administration. The resources utilized in a construction activity would eventually determine its construction time, cost, and quality, and a complex time-cost-quality trade-off model is finally generated based on correlations between construction activities. A genetic algorithm tool is applied in the model to solve the comprehensive nonlinear time-cost-quality problems. Building of a three-storey house is an example to illustrate the implementation of the model, demonstrate its advantages in optimizing trade-off of construction time, cost, and quality, and help make a winning decision in construction practices. The computational time-cost-quality curves in visual graphics from the case study prove traditional cost-time assumptions reasonable and also prove this time-cost-quality trade-off model sophisticated.

  1. Reserve Design under Climate Change: From Land Facets Back to Ecosystem Representation

    PubMed Central

    Schneider, Richard R.; Bayne, Erin M.

    2015-01-01

    Ecosystem distributions are expected to shift as a result of global warming, raising concerns about the long-term utility of reserve systems based on coarse-filter ecosystem representation. We tested the extent to which proportional ecosystem representation targets would be maintained under a changing climate by projecting the distribution of the major ecosystems of Alberta, Canada, into the future using bioclimatic envelope models and then calculating the composition of reserves in successive periods. We used the Marxan conservation planning software to generate the suite of reserve systems for our test, varying the representation target and degree of reserve clumping. Our climate envelope projections for the 2080s indicate that virtually all reserves will, in time, be comprised of different ecosystem types than today. Nevertheless, our proportional targets for ecosystem representation were maintained across all time periods, with only minor exceptions. We hypothesize that this stability in representation arises because ecosystems may be serving as proxies for land facets, the stable abiotic landscape features that delineate major arenas of biological activity. The implication is that accommodating climate change may not require abandoning the conventional ecosystem-based approach to reserve design in favour of a strictly abiotic approach, since the two approaches may be largely synonymous. PMID:25978759

  2. Pictorial Representation of Illness and Self Measure (PRISM): A novel visual instrument to measure quality of life in dermatological inpatients.

    PubMed

    Mühleisen, Beda; Büchi, Stefan; Schmidhauser, Simone; Jenewein, Josef; French, Lars E; Hofbauer, Günther F L

    2009-07-01

    To validate the PRISM (Pictorial Representation of Illness and Self Measure) tool, a novel visual instrument, for the assessment of health-related quality of life in dermatological inpatients compared with the Dermatology Life Quality Index (DLQI) and the Skindex-29 questionnaires and to report qualitative information on PRISM. In an open longitudinal study, PRISM and Skindex-29 and DLQI questionnaires were completed and HRQOL measurements compared. Academic dermatological inpatient ward. The study population comprised 227 sequential dermatological inpatients on admission. Patients completed the PRISM tool and the Skindex-29 and DLQI questionnaires at admission and discharge. PRISM Self-Illness Separation (SIS) score; Skindex-29 and DLQI scores; and qualitative PRISM information by Mayring inductive qualitative context analysis. The PRISM scores correlated well with those from the Skindex-29 (rho = 0.426; P < .001) and DLQI (rho = 0.304; P < .001) questionnaires. Between PRISM and Skindex-29 scores, the highest correlations were for dermatitis (rho = 0.614) and leg ulcer (rho = 0.554), and between PRISM and DLQI scores, the highest correlations were for psoriasis (rho = 0.418) and tumor (rho = 0.399). The PRISM tool showed comparable or higher sensitivity than quality of life questionnaires to assess changes in the burden of suffering during hospitalization. Inductive qualitative context analysis revealed impairment of adjustment and self-image as major aspects. Patients overall expected symptomatic and functional improvement. In patients with psoriasis and leg ulcers, many expected no treatment benefit. The PRISM tool proved to be convenient and reliable for health-related quality of life assessment, applicable for a wide range of skin diseases, and correlated with DLQI and Skindex-29 scores. With the PRISM tool, free-text answers allow for the assessment of individual information and potentially customized therapeutic approaches.

  3. Laser Welding Process Monitoring Systems: Advanced Signal Analysis for Quality Assurance

    NASA Astrophysics Data System (ADS)

    D'Angelo, Giuseppe

    Laser material processing today is widely used in industry. Especially laser welding became one of the key-technologies, e. g., for the automotive sector. This is due to the improvement and development of new laser sources and the increasing knowledge gained at countless scientific research projects. Nevertheless, it is still not possible to use the full potential of this technology. Therefore, the introduction and application of quality-assuring systems is required. For a long time, the statement "the best sensor is no sensor" was often heard. Today, a change of paradigm can be observed. On the one hand, ISO 9000 and other by law enforced regulations have led to the understanding that quality monitoring is an essential tool in modern manufacturing and necessary in order to keep production results in deterministic boundaries. On the other hand, rising quality requirements not only set higher and higher requirements for the process technology but also demand qualityassurance measures which ensure the reliable recognition of process faults. As a result, there is a need for reliable online detection and correction of welding faults by means of an in-process monitoring. The chapter describes an advanced signals analysis technique to extract information from signals detected, during the laser welding process, by optical sensors. The technique is based on the method of reassignment which was first applied to the spectrogram by Kodera, Gendrin and de Villedary22,23 and later generalized to any bilinear time-frequency representation by Auger and Flandrin.24 Key to the method is a nonlinear convolution where the value of the convolution is not placed at the center of the convolution kernel but rather reassigned to the center of mass of the function within the kernel. The resulting reassigned representation yields significantly improved components localization. We compare the proposed time-frequency distributions by analyzing signals detected during the laser welding of

  4. A novel water quality data analysis framework based on time-series data mining.

    PubMed

    Deng, Weihui; Wang, Guoyin

    2017-07-01

    The rapid development of time-series data mining provides an emerging method for water resource management research. In this paper, based on the time-series data mining methodology, we propose a novel and general analysis framework for water quality time-series data. It consists of two parts: implementation components and common tasks of time-series data mining in water quality data. In the first part, we propose to granulate the time series into several two-dimensional normal clouds and calculate the similarities in the granulated level. On the basis of the similarity matrix, the similarity search, anomaly detection, and pattern discovery tasks in the water quality time-series instance dataset can be easily implemented in the second part. We present a case study of this analysis framework on weekly Dissolve Oxygen time-series data collected from five monitoring stations on the upper reaches of Yangtze River, China. It discovered the relationship of water quality in the mainstream and tributary as well as the main changing patterns of DO. The experimental results show that the proposed analysis framework is a feasible and efficient method to mine the hidden and valuable knowledge from water quality historical time-series data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Retronasal odor representations in the dorsal olfactory bulb of rats

    PubMed Central

    Gautam, Shree Hari; Verhagen, Justus V.

    2012-01-01

    Animals perceive their olfactory environment not only from odors originating in the external world (orthonasal route) but also from odors released in the oral cavity while eating food (retronasal route). Retronasal olfaction is crucial for the perception of food flavor in humans. However, little is known about the retronasal stimulus coding in the brain. The most basic question is if and how route affects the odor representations at the level of the olfactory bulb (OB), where odor quality codes originate. We used optical calcium imaging of presynaptic dorsal OB responses to odorants in anesthetized rats to ask whether the rat OB could be activated retronasally, and how these responses compare to orthonasal responses under similar conditions. We further investigated the effects of specific odorant properties on orthoversus retronasal response patterns. We found that at a physiologically relevant flow rate retronasal odorants can effectively reach the olfactory receptor neurons, eliciting glomerular response patterns that grossly overlap with those of orthonasal responses, but differ from the orthonasal patterns in the response amplitude and temporal dynamics. Interestingly, such differences correlated well with specific odorant properties. Less volatile odorants yielded relatively smaller responses retronasally, but volatility did not affect relative temporal profiles. More polar odorants responded with relatively longer onset latency and time to peak retronasally, but polarity did not affect relative response magnitudes. These data provide insight into the early stages of retronasal stimulus coding and establish relationships between ortho- and retronasal odor representations in the rat OB. PMID:22674270

  6. AIC identifies optimal representation of longitudinal dietary variables.

    PubMed

    VanBuren, John; Cavanaugh, Joseph; Marshall, Teresa; Warren, John; Levy, Steven M

    2017-09-01

    The Akaike Information Criterion (AIC) is a well-known tool for variable selection in multivariable modeling as well as a tool to help identify the optimal representation of explanatory variables. However, it has been discussed infrequently in the dental literature. The purpose of this paper is to demonstrate the use of AIC in determining the optimal representation of dietary variables in a longitudinal dental study. The Iowa Fluoride Study enrolled children at birth and dental examinations were conducted at ages 5, 9, 13, and 17. Decayed or filled surfaces (DFS) trend clusters were created based on age 13 DFS counts and age 13-17 DFS increments. Dietary intake data (water, milk, 100 percent-juice, and sugar sweetened beverages) were collected semiannually using a food frequency questionnaire. Multinomial logistic regression models were fit to predict DFS cluster membership (n=344). Multiple approaches could be used to represent the dietary data including averaging across all collected surveys or over different shorter time periods to capture age-specific trends or using the individual time points of dietary data. AIC helped identify the optimal representation. Averaging data for all four dietary variables for the whole period from age 9.0 to 17.0 provided a better representation in the multivariable full model (AIC=745.0) compared to other methods assessed in full models (AICs=750.6 for age 9 and 9-13 increment dietary measurements and AIC=762.3 for age 9, 13, and 17 individual measurements). The results illustrate that AIC can help researchers identify the optimal way to summarize information for inclusion in a statistical model. The method presented here can be used by researchers performing statistical modeling in dental research. This method provides an alternative approach for assessing the propriety of variable representation to significance-based procedures, which could potentially lead to improved research in the dental community. © 2017 American

  7. The dynamic representation of gravity is suspended when the idiotropic vector is misaligned with gravity.

    PubMed

    De Sá Teixeira, Nuno Alexandre; Hecht, Heiko

    2014-01-01

    When people are asked to indicate the vanishing location of a moving target, errors in the direction of motion (representational momentum) and in the direction of gravity (representational gravity) are usually found. These errors possess a temporal course wherein the memory for the location of the target drifts downwards with increasing temporal intervals between target's disappearance and participant's responses (representational trajectory). To assess if representational trajectory is a body-referenced or a world-referenced phenomenon. A behavioral localization method was employed with retention times between 0 and 1400 ms systematically imposed after the target's disappearance. The target could move horizontally (rightwards or leftwards) or vertically (upwards or downwards). Body posture was varied in a counterbalanced order between sitting upright and lying on the side (left lateral decubitus position). In the upright task, the memory for target location drifted downwards with time in the direction of gravity. This time course did not emerge for the decubitus task, where idiotropic dominance was found. The dynamic visual representation of gravity is neither purely body-referenced nor world-referenced. It seems to be modulated instead by the relationship between the idiotropic vector and physical gravity.

  8. Predicting perceptual quality of images in realistic scenario using deep filter banks

    NASA Astrophysics Data System (ADS)

    Zhang, Weixia; Yan, Jia; Hu, Shiyong; Ma, Yang; Deng, Dexiang

    2018-03-01

    Classical image perceptual quality assessment models usually resort to natural scene statistic methods, which are based on an assumption that certain reliable statistical regularities hold on undistorted images and will be corrupted by introduced distortions. However, these models usually fail to accurately predict degradation severity of images in realistic scenarios since complex, multiple, and interactive authentic distortions usually appear on them. We propose a quality prediction model based on convolutional neural network. Quality-aware features extracted from filter banks of multiple convolutional layers are aggregated into the image representation. Furthermore, an easy-to-implement and effective feature selection strategy is used to further refine the image representation and finally a linear support vector regression model is trained to map image representation into images' subjective perceptual quality scores. The experimental results on benchmark databases present the effectiveness and generalizability of the proposed model.

  9. Students’ mathematical representations on secondary school in solving trigonometric problems

    NASA Astrophysics Data System (ADS)

    Istadi; Kusmayadi, T. A.; Sujadi, I.

    2017-06-01

    This research aimed to analyse students’ mathematical representations on secondary school in solving trigonometric problems. This research used qualitative method. The participants were 4 students who had high competence of knowledge taken from 20 students of 12th natural-science grade SMAN-1 Kota Besi, Central Kalimantan. Data validation was carried out using time triangulation. Data analysis used Huberman and Miles stages. The results showed that their answers were not only based on the given figure, but also used the definition of trigonometric ratio on verbal representations. On the other hand, they were able to determine the object positions to be observed. However, they failed to determine the position of the angle of depression at the sketches made on visual representations. Failure in determining the position of the angle of depression to cause an error in using the mathematical equation. Finally, they were unsuccessful to use the mathematical equation properly on symbolic representations. From this research, we could recommend the importance of translations between mathematical problems and mathematical representations as well as translations among mathematical representaions (verbal, visual, and symbolic) in learning mathematics in the classroom.

  10. Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks

    PubMed Central

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Oliva, Aude

    2017-01-01

    Human scene recognition is a rapid multistep process evolving over time from single scene image to spatial layout processing. We used multivariate pattern analyses on magnetoencephalography (MEG) data to unravel the time course of this cortical process. Following an early signal for lower-level visual analysis of single scenes at ~100 ms, we found a marker of real-world scene size, i.e. spatial layout processing, at ~250 ms indexing neural representations robust to changes in unrelated scene properties and viewing conditions. For a quantitative model of how scene size representations may arise in the brain, we compared MEG data to a deep neural network model trained on scene classification. Representations of scene size emerged intrinsically in the model, and resolved emerging neural scene size representation. Together our data provide a first description of an electrophysiological signal for layout processing in humans, and suggest that deep neural networks are a promising framework to investigate how spatial layout representations emerge in the human brain. PMID:27039703

  11. Real-time, continuous water-quality monitoring in Indiana and Kentucky

    USGS Publications Warehouse

    Shoda, Megan E.; Lathrop, Timothy R.; Risch, Martin R.

    2015-01-01

    Water-quality “super” gages (also known as “sentry” gages) provide real-time, continuous measurements of the physical and chemical characteristics of stream water at or near selected U.S. Geological Survey (USGS) streamgages in Indiana and Kentucky. A super gage includes streamflow and water-quality instrumentation and representative stream sample collection for laboratory analysis. USGS scientists can use statistical surrogate models to relate instrument values to analyzed chemical concentrations at a super gage. Real-time, continuous and laboratory-analyzed concentration and load data are publicly accessible on USGS Web pages.

  12. Motor Adaptation and Manual Transfer: Insight into the Persistent Nature of Sensorimotor Representations

    ERIC Educational Resources Information Center

    Green, Sharon; Grierson, Lawrence E. M.; Dubrowski, Adam; Carnahan, Heather

    2010-01-01

    It is well known that sensorimotor memories are built and updated through experience with objects. These representations are useful to anticipatory and feedforward control processes that preset grip and load forces during lifting. When individuals lift objects with qualities that are not congruent with their memory-derived expectations, feedback…

  13. An Innovative Time-Cost-Quality Tradeoff Modeling of Building Construction Project Based on Resource Allocation

    PubMed Central

    2014-01-01

    The time, quality, and cost are three important but contradictive objectives in a building construction project. It is a tough challenge for project managers to optimize them since they are different parameters. This paper presents a time-cost-quality optimization model that enables managers to optimize multiobjectives. The model is from the project breakdown structure method where task resources in a construction project are divided into a series of activities and further into construction labors, materials, equipment, and administration. The resources utilized in a construction activity would eventually determine its construction time, cost, and quality, and a complex time-cost-quality trade-off model is finally generated based on correlations between construction activities. A genetic algorithm tool is applied in the model to solve the comprehensive nonlinear time-cost-quality problems. Building of a three-storey house is an example to illustrate the implementation of the model, demonstrate its advantages in optimizing trade-off of construction time, cost, and quality, and help make a winning decision in construction practices. The computational time-cost-quality curves in visual graphics from the case study prove traditional cost-time assumptions reasonable and also prove this time-cost-quality trade-off model sophisticated. PMID:24672351

  14. Monitoring scale scores over time via quality control charts, model-based approaches, and time series techniques.

    PubMed

    Lee, Yi-Hsuan; von Davier, Alina A

    2013-07-01

    Maintaining a stable score scale over time is critical for all standardized educational assessments. Traditional quality control tools and approaches for assessing scale drift either require special equating designs, or may be too time-consuming to be considered on a regular basis with an operational test that has a short time window between an administration and its score reporting. Thus, the traditional methods are not sufficient to catch unusual testing outcomes in a timely manner. This paper presents a new approach for score monitoring and assessment of scale drift. It involves quality control charts, model-based approaches, and time series techniques to accommodate the following needs of monitoring scale scores: continuous monitoring, adjustment of customary variations, identification of abrupt shifts, and assessment of autocorrelation. Performance of the methodologies is evaluated using manipulated data based on real responses from 71 administrations of a large-scale high-stakes language assessment.

  15. The Application of Auto-Disturbance Rejection Control Optimized by Least Squares Support Vector Machines Method and Time-Frequency Representation in Voltage Source Converter-High Voltage Direct Current System.

    PubMed

    Liu, Ying-Pei; Liang, Hai-Ping; Gao, Zhong-Ke

    2015-01-01

    In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC) system, we propose an improved auto-disturbance rejection control (ADRC) method based on least squares support vector machines (LSSVM) in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles. We ignore the tracking differentiator in the ADRC controller aiming to improve the system dynamic response speed. On this basis, we derive the mathematical model of ADRC controller optimized by LSSVM for direct current voltage loop. Finally we carry out simulations to verify the feasibility and effectiveness of our proposed control method. In addition, we employ the time-frequency representation methods, i.e., Wigner-Ville distribution (WVD) and adaptive optimal kernel (AOK) time-frequency representation, to demonstrate our proposed method performs better than the traditional method from the perspective of energy distribution in time and frequency plane.

  16. The Application of Auto-Disturbance Rejection Control Optimized by Least Squares Support Vector Machines Method and Time-Frequency Representation in Voltage Source Converter-High Voltage Direct Current System

    PubMed Central

    Gao, Zhong-Ke

    2015-01-01

    In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC) system, we propose an improved auto-disturbance rejection control (ADRC) method based on least squares support vector machines (LSSVM) in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles. We ignore the tracking differentiator in the ADRC controller aiming to improve the system dynamic response speed. On this basis, we derive the mathematical model of ADRC controller optimized by LSSVM for direct current voltage loop. Finally we carry out simulations to verify the feasibility and effectiveness of our proposed control method. In addition, we employ the time-frequency representation methods, i.e., Wigner-Ville distribution (WVD) and adaptive optimal kernel (AOK) time-frequency representation, to demonstrate our proposed method performs better than the traditional method from the perspective of energy distribution in time and frequency plane. PMID:26098556

  17. REAL-TIME REMOTE MONITORING OF DRINKING WATER QUALITY

    EPA Science Inventory

    Over the past eight years, the U.S. Environmental Protection Agency's (EPA) Office of Research and Development (ORD) has funded the testing and evaluation of various online "real-time" technologies for monitoring drinking water quality. The events of 9/11 and subsequent threats t...

  18. Effects of varying presentation time on long-term recognition memory for scenes: Verbatim and gist representations.

    PubMed

    Ahmad, Fahad N; Moscovitch, Morris; Hockley, William E

    2017-04-01

    Konkle, Brady, Alvarez and Oliva (Psychological Science, 21, 1551-1556, 2010) showed that participants have an exceptional long-term memory (LTM) for photographs of scenes. We examined to what extent participants' exceptional LTM for scenes is determined by presentation time during encoding. In addition, at retrieval, we varied the nature of the lures in a forced-choice recognition task so that they resembled the target in gist (i.e., global or categorical) information, but were distinct in verbatim information (e.g., an "old" beach scene and a similar "new" beach scene; exemplar condition) or vice versa (e.g., a beach scene and a new scene from a novel category; novel condition). In Experiment 1, half of the list of scenes was presented for 1 s, whereas the other half was presented for 4 s. We found lower performance for shorter study presentation time in the exemplar test condition and similar performance for both study presentation times in the novel test condition. In Experiment 2, participants showed similar performance in an exemplar test for which the lure was of a different category but a category that was used at study. In Experiment 3, when presentation time was lowered to 500 ms, recognition accuracy was reduced in both novel and exemplar test conditions. A less detailed memorial representation of the studied scene containing more gist (i.e., meaning) than verbatim (i.e., surface or perceptual details) information is retrieved from LTM after a short compared to a long study presentation time. We conclude that our findings support fuzzy-trace theory.

  19. Dissociations of the number and precision of visual short-term memory representations in change detection.

    PubMed

    Xie, Weizhen; Zhang, Weiwei

    2017-11-01

    The present study dissociated the number (i.e., quantity) and precision (i.e., quality) of visual short-term memory (STM) representations in change detection using receiver operating characteristic (ROC) and experimental manipulations. Across three experiments, participants performed both recognition and recall tests of visual STM using the change-detection task and the continuous color-wheel recall task, respectively. Experiment 1 demonstrated that the estimates of the number and precision of visual STM representations based on the ROC model of change-detection performance were robustly correlated with the corresponding estimates based on the mixture model of continuous-recall performance. Experiments 2 and 3 showed that the experimental manipulation of mnemonic precision using white-noise masking and the experimental manipulation of the number of encoded STM representations using consolidation masking produced selective effects on the corresponding measures of mnemonic precision and the number of encoded STM representations, respectively, in both change-detection and continuous-recall tasks. Altogether, using the individual-differences (Experiment 1) and experimental dissociation (Experiment 2 and 3) approaches, the present study demonstrated the some-or-none nature of visual STM representations across recall and recognition.

  20. Learning through Constructing Representations in Science: A Framework of Representational Construction Affordances

    ERIC Educational Resources Information Center

    Prain, Vaughan; Tytler, Russell

    2012-01-01

    Compared with research on the role of student engagement with expert representations in learning science, investigation of the use and theoretical justification of student-generated representations to learn science is less common. In this paper, we present a framework that aims to integrate three perspectives to explain how and why…

  1. Modality-independent representations of small quantities based on brain activation patterns.

    PubMed

    Damarla, Saudamini Roy; Cherkassky, Vladimir L; Just, Marcel Adam

    2016-04-01

    Machine learning or MVPA (Multi Voxel Pattern Analysis) studies have shown that the neural representation of quantities of objects can be decoded from fMRI patterns, in cases where the quantities were visually displayed. Here we apply these techniques to investigate whether neural representations of quantities depicted in one modality (say, visual) can be decoded from brain activation patterns evoked by quantities depicted in the other modality (say, auditory). The main finding demonstrated, for the first time, that quantities of dots were decodable by a classifier that was trained on the neural patterns evoked by quantities of auditory tones, and vice-versa. The representations that were common across modalities were mainly right-lateralized in frontal and parietal regions. A second finding was that the neural patterns in parietal cortex that represent quantities were common across participants. These findings demonstrate a common neuronal foundation for the representation of quantities across sensory modalities and participants and provide insight into the role of parietal cortex in the representation of quantity information. © 2016 Wiley Periodicals, Inc.

  2. Television-viewing time and dietary quality among U.S. children and adults.

    PubMed

    Sisson, Susan B; Shay, Christina M; Broyles, Stephanie T; Leyva, Misti

    2012-08-01

    Greater TV-viewing time is generally associated with unhealthy dietary behaviors; however, few studies have examined associations between TV-viewing time and composite measures of dietary quality. Most studies have focused on energy intake or intake of specific foods. But overall dietary quality is important to health and weight status. To examine the relationship between TV-viewing time and dietary quality using a nationally representative U.S. sample. Participants in the 2003-2006 National Health and Nutrition Examination Surveys were included (analyses conducted in Fall 2011). Dietary quality was determined by Healthy Eating Index (HEI)-2005 calculated from two 24-hour recalls. TV-viewing time was categorized as lower (≤1 hour/day); moderate (2-3 hours/day); and higher (≥4 hours/day; referent). Multivariate linear regression models were used to estimate the TV-viewing time and HEI-2005, adjusted for BMI (percentile for children aged 2-18 years); age; ethnicity; physical activity; and total energy intake. Analyses were conducted separately for gender-age groups (preschool=aged 2-5 years [n=1423]; school-aged=6-11 years [n=1749], adolescent=aged 12-18 years [n=3343], and adult=aged ≥19 years [n=8222]). Lower TV-viewing time was associated with higher HEI-2005 (i.e., healthier diet) for all gender and age groups. Compared with higher TV-viewing time, in each case, HEI-2005 was higher in groups with low TV-viewing time, ranging from 47.0-52.3 in ≤1 hour/day to 44.7-48.9 in ≥4 hours/day (all p<0.05). Less time spent watching TV was associated with better dietary quality in U.S. children and adults. Copyright © 2012 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  3. Representation in Memory.

    DTIC Science & Technology

    1983-06-07

    siderably in the development of theories of representation in psychology and in artificial intelligence, most especially the requirements that a... developed representational systems based on these "larger" units. We will discuss three of them here: 0 A theory of schemata as developed by Rumelhart...and Ortony (1977) and extended by Rumelhart and Norman (1978) and Rumelhart (1981). A theory of scripts and plans developed by Schank and Abelson (1977

  4. Analysis of the circumferential acoustic waves backscattered by a tube using the time-frequency representation of Wigner-Ville

    NASA Astrophysics Data System (ADS)

    Latif, R.; Aassif, E.; Maze, G.; Decultot, D.; Moudden, A.; Faiz, B.

    2000-01-01

    This paper presents a study of the group velocity dispersion of some circumferential waves propagating around an elastic tube. The dispersive character of the circumferential waves is theoretically known, but the experimental measurement of the group velocity in a dispersive medium is still a complex operation. We have determined the characteristics of the circumferential wave dispersion for aluminium and steel tubes using a time-frequency representation. Among these time-frequency techniques, the Wigner-Ville distribution (WVD) is used here for its interesting properties in terms of acoustic applications. The WVD is applied to the analysis of the dispersion of S0 symmetric and A1 antisymmetric circumferential waves propagating around a tube with a radii ratio equal to 0.95 (internal radius:external radius). This allowed us to determine their group velocities and reduced cutoff frequencies. The results obtained are in good agreement with the calculated values using the proper modes theory.

  5. Representational specificity of within-category phonetic variation in the mental lexicon

    NASA Astrophysics Data System (ADS)

    Ju, Min; Luce, Paul A.

    2003-10-01

    This study examines (1) whether within-category phonetic variation in voice onset time (VOT) is encoded in long-term memory and has consequences for subsequent word recognition and, if so, (2) whether such effects are greater in words with voiced counterparts (pat/bat) than those without (cow/*gow), given that VOT information is more critical for lexical discrimination in the former. Two long-term repetition priming experiments were conducted using words containing word-initial voiceless stops varying in VOT. Reaction times to a lexical decision were compared between the same and different VOT conditions in words with or without voiced counterparts. If veridical representations of each episode are preserved in memory, variation in VOT should have demonstrable effects on the magnitude of priming. However, if within-category variation is discarded and form-based representations are abstract, the variation in VOT should not mediate priming. The implications of these results for the specificity and abstractness of phonetic representations in long-term memory will be discussed.

  6. Translating between Representations in a Social Context: A Study of Undergraduate Science Students' Representational Fluency

    ERIC Educational Resources Information Center

    Nichols, Kim; Ranasinghe, Muditha; Hanan, Jim

    2013-01-01

    Interacting with and translating across multiple representations is an essential characteristic of expertise and representational fluency. In this study, we explored the effect of interacting with and translating between representations in a computer simulation or in a paper-based assignment on scientific accuracy of undergraduate science…

  7. On the nature of hand-action representations evoked during written sentence comprehension.

    PubMed

    Bub, Daniel N; Masson, Michael E J

    2010-09-01

    We examine the nature of motor representations evoked during comprehension of written sentences describing hand actions. We distinguish between two kinds of hand actions: a functional action, applied when using the object for its intended purpose, and a volumetric action, applied when picking up or holding the object. In Experiment 1, initial activation of both action representations was followed by selection of the functional action, regardless of sentence context. Experiment 2 showed that when the sentence was followed by a picture of the object, clear context-specific effects on evoked action representations were obtained. Experiment 3 established that when a picture of an object was presented alone, the time course of both functional and volumetric actions was the same. These results provide evidence that representations of object-related hand actions are evoked as part of sentence processing. In addition, we discuss the conditions that elicit context-specific evocation of motor representations. 2010 Elsevier B.V. All rights reserved.

  8. Quality Teaching: Means for Its Enhancement?

    ERIC Educational Resources Information Center

    Buchanan, John

    2011-01-01

    The pursuit of enhancing quality in tertiary education and educators is noble. Increasingly, however, universities are resorting to stark, reductionist representations of educational quality, such as decontextualised mean figures generated by student surveys, to measure and report on this. This paper questions the validity and reliability of such…

  9. Can representational trajectory reveal the nature of an internal model of gravity?

    PubMed

    De Sá Teixeira, Nuno; Hecht, Heiko

    2014-05-01

    The memory for the vanishing location of a horizontally moving target is usually displaced forward in the direction of motion (representational momentum) and downward in the direction of gravity (representational gravity). Moreover, this downward displacement has been shown to increase with time (representational trajectory). However, the degree to which different kinematic events change the temporal profile of these displacements remains to be determined. The present article attempts to fill this gap. In the first experiment, we replicate the finding that representational momentum for downward-moving targets is bigger than for upward motions, showing, moreover, that it increases rapidly during the first 300 ms, stabilizing afterward. This temporal profile, but not the increased error for descending targets, is shown to be disrupted when eye movements are not allowed. In the second experiment, we show that the downward drift with time emerges even for static targets. Finally, in the third experiment, we report an increased error for upward-moving targets, as compared with downward movements, when the display is compatible with a downward ego-motion by including vection cues. Thus, the errors in the direction of gravity are compatible with the perceived event and do not merely reflect a retinotopic bias. Overall, these results provide further evidence for an internal model of gravity in the visual representational system.

  10. Social representations, individual and collective mind: a study of Wundt, Cattaneo and Moscovici.

    PubMed

    Tateo, Luca; Iannaccone, Antonio

    2012-03-01

    The paper presents a discussion on the role of Social Representations in the articulation between individual and collective dimensions of mental activity. An analysis of some concepts in the works of Wundt and Cattaneo is the starting point for a discussion of the relationship between individual processes, practices, artifacts, symbolic systems and functions of Social Representations in the development of culture and individuals. In this perspective, Social Representations could be considered a space of negotiation of the meaning. The relationship between Social Representations, symbolic systems, practices and sense making involves the elaboration of the tension between continuity and innovation, which is developed through communication and practice along time in the interaction between individual and collective minds.

  11. Aircraft model prototypes which have specified handling-quality time histories

    NASA Technical Reports Server (NTRS)

    Johnson, S. H.

    1978-01-01

    Several techniques for obtaining linear constant-coefficient airplane models from specified handling-quality time histories are discussed. The pseudodata method solves the basic problem, yields specified eigenvalues, and accommodates state-variable transfer-function zero suppression. The algebraic equations to be solved are bilinear, at worst. The disadvantages are reduced generality and no assurance that the resulting model will be airplane like in detail. The method is fully illustrated for a fourth-order stability-axis small motion model with three lateral handling quality time histories specified. The FORTRAN program which obtains and verifies the model is included and fully documented.

  12. The freckle plot (daily turnaround time chart): a technique for timely and effective quality improvement of test turnaround times.

    PubMed

    Pellar, T G; Ward, P J; Tuckerman, J F; Henderson, A R

    1993-06-01

    Test turnaround times are often monitored on a monthly basis. However, such an interval usually means that not all causes for delay in test reporting can be unequivocally identified for institution of remedial action. We have devised a daily chart--the freckle plot--that graphically displays the test turnaround times by laboratory receipt time. Different symbols are used to designate specimens reported within the test's turnaround time limit, those within 10 min beyond that limit, and those well outside the limit. These categories are adjustable to suit different limits of stringency. Freckle plots are produced on a daily basis and can be used to track down causes for test delays. Using the 1-h turnaround time "stat" potassium test as a model, we found 16 causes for test delay, of which 9 were potentially remediable. By applying these remedies, we were able to increase test compliance, in the day shift, from 91.5% (95% confidence interval 88.8%-93.7%) to 97.6% (95% confidence interval 96.4-98.55%), which is significant at P < 10(-7). This daily plot is a useful quality assurance tool, supplementing the more conventional tests used to ensure laboratory quality improvement.

  13. Lexical Quality and Reading Comprehension in Primary School Children

    ERIC Educational Resources Information Center

    Richter, Tobias; Isberner, Maj-Britt; Naumann, Johannes; Neeb, Yvonne

    2013-01-01

    In a cross-sectional study, we examined the relationship between the quality of lexical representations and text comprehension skill in German primary school children (Grades 1-4). We measured the efficiency and accuracy of orthographical, phonological, and meaning representations by means of computerized tests. Text comprehension skill was…

  14. Efficient Type Representation in TAL

    NASA Technical Reports Server (NTRS)

    Chen, Juan

    2009-01-01

    Certifying compilers generate proofs for low-level code that guarantee safety properties of the code. Type information is an essential part of safety proofs. But the size of type information remains a concern for certifying compilers in practice. This paper demonstrates type representation techniques in a large-scale compiler that achieves both concise type information and efficient type checking. In our 200,000-line certifying compiler, the size of type information is about 36% of the size of pure code and data for our benchmarks, the best result to the best of our knowledge. The type checking time is about 2% of the compilation time.

  15. Qualitative aspects of representational competence among college chemistry students: Multiple representations and their role in the understanding of ideal gases

    NASA Astrophysics Data System (ADS)

    Madden, Sean Patrick

    This study examined the role of multiple representations of chemical phenomena, specifically, the temperature-pressure relationship of ideal gases, in the problem solving strategies of college chemistry students. Volunteers included students enrolled in a first semester general chemistry course at a western university. Two additional volunteers from the same university were asked to participate and serve as models of greater sophistication. One was a senior chemistry major; another was a junior science writing major. Volunteers completed an initial screening task involving multiple representations of concentration and dilution concepts. Based on the results of this screening instrument a smaller set of subjects were asked to complete a think aloud session involving multiple representations of the temperature-pressure relationship. Data consisted of the written work of the volunteers and transcripts from videotaped think aloud sessions. The data were evaluated by the researcher and two other graduate students in chemical education using a coding scheme (Kozma, Schank, Coppola, Michalchik, and Allen. 2000). This coding scheme was designed to identify essential features of representational competence and differences in uses of multiple representations. The results indicate that students tend to have a strong preference for one type of representation. Students scoring low on representational competence, as measured by the rubric, ignored important features of some representations or acknowledged them only superficially. Students scoring higher on representational competence made meaningful connections among representations. The more advanced students, those who rated highly on representational competence, tended to use their preferred representation in a heuristic manner to establish meaning for other representations. The more advanced students also reflected upon the problem at greater length before beginning work. Molecular level sketches seemed to be the most

  16. Facilitating Mathematical Practices through Visual Representations

    ERIC Educational Resources Information Center

    Murata, Aki; Stewart, Chana

    2017-01-01

    Effective use of mathematical representation is key to supporting student learning. In "Principles to Actions: Ensuring Mathematical Success for All" (NCTM 2014), "use and connect mathematical representations" is one of the effective Mathematics Teaching Practices. By using different representations, students examine concepts…

  17. Adjoints and Low-rank Covariance Representation

    NASA Technical Reports Server (NTRS)

    Tippett, Michael K.; Cohn, Stephen E.

    2000-01-01

    Quantitative measures of the uncertainty of Earth System estimates can be as important as the estimates themselves. Second moments of estimation errors are described by the covariance matrix, whose direct calculation is impractical when the number of degrees of freedom of the system state is large. Ensemble and reduced-state approaches to prediction and data assimilation replace full estimation error covariance matrices by low-rank approximations. The appropriateness of such approximations depends on the spectrum of the full error covariance matrix, whose calculation is also often impractical. Here we examine the situation where the error covariance is a linear transformation of a forcing error covariance. We use operator norms and adjoints to relate the appropriateness of low-rank representations to the conditioning of this transformation. The analysis is used to investigate low-rank representations of the steady-state response to random forcing of an idealized discrete-time dynamical system.

  18. Visual Tracking Based on Extreme Learning Machine and Sparse Representation

    PubMed Central

    Wang, Baoxian; Tang, Linbo; Yang, Jinglin; Zhao, Baojun; Wang, Shuigen

    2015-01-01

    The existing sparse representation-based visual trackers mostly suffer from both being time consuming and having poor robustness problems. To address these issues, a novel tracking method is presented via combining sparse representation and an emerging learning technique, namely extreme learning machine (ELM). Specifically, visual tracking can be divided into two consecutive processes. Firstly, ELM is utilized to find the optimal separate hyperplane between the target observations and background ones. Thus, the trained ELM classification function is able to remove most of the candidate samples related to background contents efficiently, thereby reducing the total computational cost of the following sparse representation. Secondly, to further combine ELM and sparse representation, the resultant confidence values (i.e., probabilities to be a target) of samples on the ELM classification function are used to construct a new manifold learning constraint term of the sparse representation framework, which tends to achieve robuster results. Moreover, the accelerated proximal gradient method is used for deriving the optimal solution (in matrix form) of the constrained sparse tracking model. Additionally, the matrix form solution allows the candidate samples to be calculated in parallel, thereby leading to a higher efficiency. Experiments demonstrate the effectiveness of the proposed tracker. PMID:26506359

  19. Representation and alignment of sung queries for music information retrieval

    NASA Astrophysics Data System (ADS)

    Adams, Norman H.; Wakefield, Gregory H.

    2005-09-01

    The pursuit of robust and rapid query-by-humming systems, which search melodic databases using sung queries, is a common theme in music information retrieval. The retrieval aspect of this database problem has received considerable attention, whereas the front-end processing of sung queries and the data structure to represent melodies has been based on musical intuition and historical momentum. The present work explores three time series representations for sung queries: a sequence of notes, a ``smooth'' pitch contour, and a sequence of pitch histograms. The performance of the three representations is compared using a collection of naturally sung queries. It is found that the most robust performance is achieved by the representation with highest dimension, the smooth pitch contour, but that this representation presents a formidable computational burden. For all three representations, it is necessary to align the query and target in order to achieve robust performance. The computational cost of the alignment is quadratic, hence it is necessary to keep the dimension small for rapid retrieval. Accordingly, iterative deepening is employed to achieve both robust performance and rapid retrieval. Finally, the conventional iterative framework is expanded to adapt the alignment constraints based on previous iterations, further expediting retrieval without degrading performance.

  20. OCT despeckling via weighted nuclear norm constrained non-local low-rank representation

    NASA Astrophysics Data System (ADS)

    Tang, Chang; Zheng, Xiao; Cao, Lijuan

    2017-10-01

    As a non-invasive imaging modality, optical coherence tomography (OCT) plays an important role in medical sciences. However, OCT images are always corrupted by speckle noise, which can mask image features and pose significant challenges for medical analysis. In this work, we propose an OCT despeckling method by using non-local, low-rank representation with weighted nuclear norm constraint. Unlike previous non-local low-rank representation based OCT despeckling methods, we first generate a guidance image to improve the non-local group patches selection quality, then a low-rank optimization model with a weighted nuclear norm constraint is formulated to process the selected group patches. The corrupted probability of each pixel is also integrated into the model as a weight to regularize the representation error term. Note that each single patch might belong to several groups, hence different estimates of each patch are aggregated to obtain its final despeckled result. Both qualitative and quantitative experimental results on real OCT images show the superior performance of the proposed method compared with other state-of-the-art speckle removal techniques.

  1. Sparse representation based image interpolation with nonlocal autoregressive modeling.

    PubMed

    Dong, Weisheng; Zhang, Lei; Lukac, Rastislav; Shi, Guangming

    2013-04-01

    Sparse representation is proven to be a promising approach to image super-resolution, where the low-resolution (LR) image is usually modeled as the down-sampled version of its high-resolution (HR) counterpart after blurring. When the blurring kernel is the Dirac delta function, i.e., the LR image is directly down-sampled from its HR counterpart without blurring, the super-resolution problem becomes an image interpolation problem. In such cases, however, the conventional sparse representation models (SRM) become less effective, because the data fidelity term fails to constrain the image local structures. In natural images, fortunately, many nonlocal similar patches to a given patch could provide nonlocal constraint to the local structure. In this paper, we incorporate the image nonlocal self-similarity into SRM for image interpolation. More specifically, a nonlocal autoregressive model (NARM) is proposed and taken as the data fidelity term in SRM. We show that the NARM-induced sampling matrix is less coherent with the representation dictionary, and consequently makes SRM more effective for image interpolation. Our extensive experimental results demonstrate that the proposed NARM-based image interpolation method can effectively reconstruct the edge structures and suppress the jaggy/ringing artifacts, achieving the best image interpolation results so far in terms of PSNR as well as perceptual quality metrics such as SSIM and FSIM.

  2. Envelope contributions to the representation of interaural time difference in the forebrain of barn owls.

    PubMed

    Tellers, Philipp; Lehmann, Jessica; Führ, Hartmut; Wagner, Hermann

    2017-09-01

    Birds and mammals use the interaural time difference (ITD) for azimuthal sound localization. While barn owls can use the ITD of the stimulus carrier frequency over nearly their entire hearing range, mammals have to utilize the ITD of the stimulus envelope to extend the upper frequency limit of ITD-based sound localization. ITD is computed and processed in a dedicated neural circuit that consists of two pathways. In the barn owl, ITD representation is more complex in the forebrain than in the midbrain pathway because of the combination of two inputs that represent different ITDs. We speculated that one of the two inputs includes an envelope contribution. To estimate the envelope contribution, we recorded ITD response functions for correlated and anticorrelated noise stimuli in the barn owl's auditory arcopallium. Our findings indicate that barn owls, like mammals, represent both carrier and envelope ITDs of overlapping frequency ranges, supporting the hypothesis that carrier and envelope ITD-based localization are complementary beyond a mere extension of the upper frequency limit. NEW & NOTEWORTHY The results presented in this study show for the first time that the barn owl is able to extract and represent the interaural time difference (ITD) information conveyed by the envelope of a broadband acoustic signal. Like mammals, the barn owl extracts the ITD of the envelope and the carrier of a signal from the same frequency range. These results are of general interest, since they reinforce a trend found in neural signal processing across different species. Copyright © 2017 the American Physiological Society.

  3. Adinkra (in)equivalence from Coxeter group representations: A case study

    NASA Astrophysics Data System (ADS)

    Chappell, Isaac; Gates, S. James; Hübsch, T.

    2014-02-01

    Using a MathematicaTM code, we present a straightforward numerical analysis of the 384-dimensional solution space of signed permutation 4×4 matrices, which in sets of four, provide representations of the 𝒢ℛ(4, 4) algebra, closely related to the 𝒩 = 1 (simple) supersymmetry algebra in four-dimensional space-time. Following after ideas discussed in previous papers about automorphisms and classification of adinkras and corresponding supermultiplets, we make a new and alternative proposal to use equivalence classes of the (unsigned) permutation group S4 to define distinct representations of higher-dimensional spin bundles within the context of adinkras. For this purpose, the definition of a dual operator akin to the well-known Hodge star is found to partition the space of these 𝒢ℛ(4, 4) representations into three suggestive classes.

  4. Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks.

    PubMed

    Martin Cichy, Radoslaw; Khosla, Aditya; Pantazis, Dimitrios; Oliva, Aude

    2017-06-01

    Human scene recognition is a rapid multistep process evolving over time from single scene image to spatial layout processing. We used multivariate pattern analyses on magnetoencephalography (MEG) data to unravel the time course of this cortical process. Following an early signal for lower-level visual analysis of single scenes at ~100ms, we found a marker of real-world scene size, i.e. spatial layout processing, at ~250ms indexing neural representations robust to changes in unrelated scene properties and viewing conditions. For a quantitative model of how scene size representations may arise in the brain, we compared MEG data to a deep neural network model trained on scene classification. Representations of scene size emerged intrinsically in the model, and resolved emerging neural scene size representation. Together our data provide a first description of an electrophysiological signal for layout processing in humans, and suggest that deep neural networks are a promising framework to investigate how spatial layout representations emerge in the human brain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. A Representation for Visual Information.

    DTIC Science & Technology

    1981-11-01

    receive 3-D information. Tlhe representation described here is well suited for the analysis of stereo pairs. It is also well suited for the...cylinder representation [Agin and Binford 731, [Nevadia and Binford 741 and de Medial Axis Transfonm [Blum 67] as examples of representations that have...negative minimum are de points at which that filter most strongly resembles the input signal. If the inner- product at that point is also larger than inner

  6. A real time quality control application for animal production by image processing.

    PubMed

    Sungur, Cemil; Özkan, Halil

    2015-11-01

    Standards of hygiene and health are of major importance in food production, and quality control has become obligatory in this field. Thanks to rapidly developing technologies, it is now possible for automatic and safe quality control of food production. For this purpose, image-processing-based quality control systems used in industrial applications are being employed to analyze the quality of food products. In this study, quality control of chicken (Gallus domesticus) eggs was achieved using a real time image-processing technique. In order to execute the quality control processes, a conveying mechanism was used. Eggs passing on a conveyor belt were continuously photographed in real time by cameras located above the belt. The images obtained were processed by various methods and techniques. Using digital instrumentation, the volume of the eggs was measured, broken/cracked eggs were separated and dirty eggs were determined. In accordance with international standards for classifying the quality of eggs, the class of separated eggs was determined through a fuzzy implication model. According to tests carried out on thousands of eggs, a quality control process with an accuracy of 98% was possible. © 2014 Society of Chemical Industry.

  7. Localization of Unitary Braid Group Representations

    NASA Astrophysics Data System (ADS)

    Rowell, Eric C.; Wang, Zhenghan

    2012-05-01

    Governed by locality, we explore a connection between unitary braid group representations associated to a unitary R-matrix and to a simple object in a unitary braided fusion category. Unitary R-matrices, namely unitary solutions to the Yang-Baxter equation, afford explicitly local unitary representations of braid groups. Inspired by topological quantum computation, we study whether or not it is possible to reassemble the irreducible summands appearing in the unitary braid group representations from a unitary braided fusion category with possibly different positive multiplicities to get representations that are uniformly equivalent to the ones from a unitary R-matrix. Such an equivalence will be called a localization of the unitary braid group representations. We show that the q = e π i/6 specialization of the unitary Jones representation of the braid groups can be localized by a unitary 9 × 9 R-matrix. Actually this Jones representation is the first one in a family of theories ( SO( N), 2) for an odd prime N > 1, which are conjectured to be localizable. We formulate several general conjectures and discuss possible connections to physics and computer science.

  8. Interactions between visual working memory representations.

    PubMed

    Bae, Gi-Yeul; Luck, Steven J

    2017-11-01

    We investigated whether the representations of different objects are maintained independently in working memory or interact with each other. Observers were shown two sequentially presented orientations and required to reproduce each orientation after a delay. The sequential presentation minimized perceptual interactions so that we could isolate interactions between memory representations per se. We found that similar orientations were repelled from each other whereas dissimilar orientations were attracted to each other. In addition, when one of the items was given greater attentional priority by means of a cue, the representation of the high-priority item was not influenced very much by the orientation of the low-priority item, but the representation of the low-priority item was strongly influenced by the orientation of the high-priority item. This indicates that attention modulates the interactions between working memory representations. In addition, errors in the reported orientations of the two objects were positively correlated under some conditions, suggesting that representations of distinct objects may become grouped together in memory. Together, these results demonstrate that working-memory representations are not independent but instead interact with each other in a manner that depends on attentional priority.

  9. Representational geometry: integrating cognition, computation, and the brain

    PubMed Central

    Kriegeskorte, Nikolaus; Kievit, Rogier A.

    2013-01-01

    The cognitive concept of representation plays a key role in theories of brain information processing. However, linking neuronal activity to representational content and cognitive theory remains challenging. Recent studies have characterized the representational geometry of neural population codes by means of representational distance matrices, enabling researchers to compare representations across stages of processing and to test cognitive and computational theories. Representational geometry provides a useful intermediate level of description, capturing both the information represented in a neuronal population code and the format in which it is represented. We review recent insights gained with this approach in perception, memory, cognition, and action. Analyses of representational geometry can compare representations between models and the brain, and promise to explain brain computation as transformation of representational similarity structure. PMID:23876494

  10. Effect of Quality Grade and Storage Time on the Palatability, Physicochemical and Microbial Quality of Hanwoo Striploin Beef

    PubMed Central

    Yim, Dong-Gyun

    2015-01-01

    The effects of quality grade and storage time on physicochemical, sensory properties and microbial population of Hanwoo striploin beef were investigated. After a total of 30 Hanwoo beef were slaughtered, the cold carcasses were graded by official meat grader at 24 h postmortem. The carcasses were categorized into five groups (quality grade 1++, 1+, 1, 2, and 3) and were vacuum-packaged and stored. The samples were kept for 1, 4, 6, 8, 11, 13, 15, 18, 20, 22 and 25 d for analyses. As the quality grade was increased, moisture, protein and ash contents decreased (p<0.05). Higher quality grade corresponded with higher fat contents. The shear force values decreased with increasing quality grade and showed decreases sharply during the first 4 d (p<0.05). pH, water holding capacity, cooking loss, and volatile basic nitrogen for grade 1++ groups were lower than for grade 3 (p<0.05). CIE L* and b* values increased as increased quality grade (p<0.05). Meat color decreased until 13 d and fluctuated after 15 d of storage (p<0.05). Regarding the sensory scores, higher quality grade corresponded with higher juiciness, tenderness, flavor, fatty and palatability scores (p<0.05). Generally, increased storage time for 15 d improved sensory scores attributes. Results indicate that a high quality grade could positively influence physicochemical and sensory properties. PMID:26761865

  11. Vision and the representation of the surroundings in spatial memory

    PubMed Central

    Tatler, Benjamin W.; Land, Michael F.

    2011-01-01

    One of the paradoxes of vision is that the world as it appears to us and the image on the retina at any moment are not much like each other. The visual world seems to be extensive and continuous across time. However, the manner in which we sample the visual environment is neither extensive nor continuous. How does the brain reconcile these differences? Here, we consider existing evidence from both static and dynamic viewing paradigms together with the logical requirements of any representational scheme that would be able to support active behaviour. While static scene viewing paradigms favour extensive, but perhaps abstracted, memory representations, dynamic settings suggest sparser and task-selective representation. We suggest that in dynamic settings where movement within extended environments is required to complete a task, the combination of visual input, egocentric and allocentric representations work together to allow efficient behaviour. The egocentric model serves as a coding scheme in which actions can be planned, but also offers a potential means of providing the perceptual stability that we experience. PMID:21242146

  12. A Distributed Representation of Remembered Time

    DTIC Science & Technology

    2015-11-19

    hippocampus , time, and memory across scales. Journal of Experimental Psychology: General., 142(4), 1211-30. doi: 10.1037/a0033621 Howard, M. W...The hippocampus , time, and memory across scales. Journal of Experimental Psychology: General., 142(4), 1211-30. doi: 10.1037/a0033621 Howard, M. W...accomplished this goal by developing a computational framework that describes a wide range of functional cellular correlates in the hippocampus and

  13. Time perception and psychopathology: Influence of time perspective on quality of life of severe mental illness.

    PubMed

    Oyanadel, Cristián; Buela-Casal, Gualberto

    2014-01-01

    The study of time perception and mental illness has given priority to time estimation over time perspective. Considering Zimbardo’s theory on five dimensions of time perspective, and balanced time perspective profile, this study has aimed to compare people with severe mental illness (SMI) and healthy people, with measurements of time perspective and time estimation and to assess whether the time perspective profile influences the quality of life in people with SMI. Using a quasi-experimental design, a clinical group (n=167) corresponding to four samples of severe mental disorders (major depression, bipolar disorder, schizophrenia and personality disorders) and healthy people (n=167) were compared in their performance regarding time perspective and time estimation. After, the clinical sample was grouped according to their deviation from the balanced time perspective profile (DBTP) and negative profile (DNTP). These groups were evaluated with health measures and time estimation tasks. Through the ANOVA, it can be seen that the time perspective profile affects health measurements. There are significant differences between the clinical sample and controls regarding time perspective and time estimation. Within the group of patients, it was observed that those who were closer to the BTP profile had better physical health, and less hopelessness (p<.05). This measurement may favor interventions related to a balanced profile. Results are discussed in relation to contribution of time perspective in the assessment, treatment and quality of life of people with SMI.

  14. Primary Teachers' Representational Practices: From Competency to Fluency

    ERIC Educational Resources Information Center

    Nichols, Kim; Stevenson, Michael; Hedberg, John; Gillies, Robyn Margaret

    2016-01-01

    Eighteen primary teachers across three conditions (Representational Fluency, Representational Agency, Comparison) received two days of training around an inquiry unit on plate tectonics replete with representations. The Representational Agency group also received training around the semiotic and material affordances of representations while the…

  15. A Hybrid Constraint Representation and Reasoning Framework

    NASA Technical Reports Server (NTRS)

    Golden, Keith; Pang, Wan-Lin

    2003-01-01

    This paper introduces JNET, a novel constraint representation and reasoning framework that supports procedural constraints and constraint attachments, providing a flexible way of integrating the constraint reasoner with a run- time software environment. Attachments in JNET are constraints over arbitrary Java objects, which are defined using Java code, at runtime, with no changes to the JNET source code.

  16. Relation of exact Gaussian basis methods to the dephasing representation: Theory and application to time-resolved electronic spectra

    NASA Astrophysics Data System (ADS)

    Sulc, Miroslav; Hernandez, Henar; Martinez, Todd J.; Vanicek, Jiri

    2014-03-01

    We recently showed that the Dephasing Representation (DR) provides an efficient tool for computing ultrafast electronic spectra and that cellularization yields further acceleration [M. Šulc and J. Vaníček, Mol. Phys. 110, 945 (2012)]. Here we focus on increasing its accuracy by first implementing an exact Gaussian basis method (GBM) combining the accuracy of quantum dynamics and efficiency of classical dynamics. The DR is then derived together with ten other methods for computing time-resolved spectra with intermediate accuracy and efficiency. These include the Gaussian DR (GDR), an exact generalization of the DR, in which trajectories are replaced by communicating frozen Gaussians evolving classically with an average Hamiltonian. The methods are tested numerically on time correlation functions and time-resolved stimulated emission spectra in the harmonic potential, pyrazine S0 /S1 model, and quartic oscillator. Both the GBM and the GDR are shown to increase the accuracy of the DR. Surprisingly, in chaotic systems the GDR can outperform the presumably more accurate GBM, in which the two bases evolve separately. This research was supported by the Swiss NSF Grant No. 200021_124936/1 and NCCR Molecular Ultrafast Science & Technology (MUST), and by the EPFL.

  17. Self-representation of children suffering from congenital heart disease and maternal competence

    PubMed Central

    Perricone, Giovanna; Polizzi, Concetta; De Luca, Francesco

    2013-01-01

    Child development may be subject to forms of motor, physical, cognitive and self-representation impairments when complex congenital heart disease (CHD) occurs. In some cases, inadequacy of both self-representation as well as the family system are displayed. It seems to be important to search the likely internal and external resources of the CHD child, and the possible connections among such resources, which may help him/her to manage his/her own risk condition. The research project inquires the possible resources related to the self-representation and self-esteem levels of the CHD child, and those related to maternal self-perception as competent mothers. A group of 25 children (mean age = 10.2; SD=1.8) suffering from specific forms of CHD, and a group made up of their relative mothers (mean age = 38.2; SD=5) were studied. The tools used were the Human Figure Drawing, to investigate child body-related self-representation; the TMA scale (Self-esteem Multidimensional Test), to investigate the child's self-esteem; and the Q-sort questionnaire, to assess how mothers perceived their maternal competence. Data concerning the likely correlations between the child's self-representation and the maternal role competence show [that] positive correlations between some indicators of maternal competence, specific aspects of CHD children's self-representation (mothers' emotional coping and children's self-image adequacy) and self-esteem (mothers' emotional scaffolding and children's self-esteem at an emotional level). By detecting the occurrence of specific correlations among resources of both child and mother, the study provides cardiologists with information that is useful for building a relationship with the families concerned, which would seem to enhance the quality of the process of the cure itself. PMID:23667730

  18. Illness representations, coping, and illness outcomes in people with cancer: a systematic review and meta-analysis.

    PubMed

    Richardson, Emma M; Schüz, Natalie; Sanderson, Kristy; Scott, Jennifer L; Schüz, Benjamin

    2017-06-01

    Cancer is associated with negative health and emotional outcomes in those affected by it, suggesting the need to better understand the psychosocial determinants of illness outcomes and coping. The common sense model is the leading psychological model of self-regulation in the face of illness and assumes that subjective illness representations explain how people attempt to cope with illness. This systematic review and meta-analysis examines the associations of the common sense model's illness representation dimensions with health and coping outcomes in people with cancer. A systematic literature search located 54 studies fulfilling the inclusion criteria, with 38 providing sufficient data for meta-analysis. A narrative review of the remaining studies was also conducted. Random-effects models revealed small to moderate effect sizes (Fisher Z) for the relations between illness representations and coping behaviors (in particular between control perceptions, problem-focused coping, and cognitive reappraisal) and moderate to large effect sizes between illness representations and illness outcomes (in particular between identity, consequences, emotional representations, and psychological distress). The narrative review of studies with insufficient data provided similar results. The results indicate how illness representations relate to illness outcomes in people with cancer. However, more high-quality studies are needed to examine causal effects of illness representations on coping and outcomes. High heterogeneity indicates potential moderators of the relationships between illness representations and health and coping outcomes, including diagnostic, prognostic, and treatment-related variables. This review can inform the design of interventions to improve coping strategies and mental health outcomes in people with cancer. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Design of broadband time-domain impedance boundary conditions using the oscillatory-diffusive representation of acoustical models.

    PubMed

    Monteghetti, Florian; Matignon, Denis; Piot, Estelle; Pascal, Lucas

    2016-09-01

    A methodology to design broadband time-domain impedance boundary conditions (TDIBCs) from the analysis of acoustical models is presented. The derived TDIBCs are recast exclusively as first-order differential equations, well-suited for high-order numerical simulations. Broadband approximations are yielded from an elementary linear least squares optimization that is, for most models, independent of the absorbing material geometry. This methodology relies on a mathematical technique referred to as the oscillatory-diffusive (or poles and cuts) representation, and is applied to a wide range of acoustical models, drawn from duct acoustics and outdoor sound propagation, which covers perforates, semi-infinite ground layers, as well as cavities filled with a porous medium. It is shown that each of these impedance models leads to a different TDIBC. Comparison with existing numerical models, such as multi-pole or extended Helmholtz resonator, provides insights into their suitability. Additionally, the broadly-applicable fractional polynomial impedance models are analyzed using fractional calculus.

  20. The role of memory representation in the vigilance decrement

    PubMed Central

    CAGGIANO, DANIEL M.; PARASURAMAN, RAJA

    2005-01-01

    Working memory load is critically important for the overall level of performance on vigilance tasks. However, its role in a key aspect of vigilance—sensitivity decrement over time—is unclear. We used a dual-task procedure in which either a spatial or a nonspatial working memory task was performed simultaneously with a spatial vigilance task for 20 min. Sensitivity in the vigilance task declined over time when the concurrent task involved spatial working memory. In contrast, there was no sensitivity decrement with a nonspatial working memory task. The results provide the first evidence of a specific role for working memory representation in vigilance decrement. The findings are also consistent with a multiple resource theory in which separate resources for memory representation and cognitive control operations are differentially susceptible to depletion over time, depending on the demands of the task at hand. PMID:15732706

  1. A Novel Cylindrical Representation for Characterizing Intrinsic Properties of Protein Sequences.

    PubMed

    Yu, Jia-Feng; Dou, Xiang-Hua; Wang, Hong-Bo; Sun, Xiao; Zhao, Hui-Ying; Wang, Ji-Hua

    2015-06-22

    The composition and sequence order of amino acid residues are the two most important characteristics to describe a protein sequence. Graphical representations facilitate visualization of biological sequences and produce biologically useful numerical descriptors. In this paper, we propose a novel cylindrical representation by placing the 20 amino acid residue types in a circle and sequence positions along the z axis. This representation allows visualization of the composition and sequence order of amino acids at the same time. Ten numerical descriptors and one weighted numerical descriptor have been developed to quantitatively describe intrinsic properties of protein sequences on the basis of the cylindrical model. Their applications to similarity/dissimilarity analysis of nine ND5 proteins indicated that these numerical descriptors are more effective than several classical numerical matrices. Thus, the cylindrical representation obtained here provides a new useful tool for visualizing and charactering protein sequences. An online server is available at http://biophy.dzu.edu.cn:8080/CNumD/input.jsp .

  2. Teaching quality: High school students' autonomy and competence.

    PubMed

    León, Jaime; Medina-Garrido, Elena; Ortega, Miriam

    2018-05-01

    How teachers manage class learning and interact with students affects students’ motivation and engagement. However, it could be that the effect of students’ representation of teaching quality on the students’ motivation varies between classes. Students from 90 classes participated in the study. We used multilevel random structural equation modeling to analyze whether the relationship of the students’ perception of teaching quality (as an indicator of the students’ mental representation) and students’ motivation varies between classes, and if this variability depends on the class assessment of teaching quality (as an indicator of teaching quality). The effect of teachers’ structure on the regression slope of student perception of student competence was .127. The effect of teachers’ autonomy support on the regression slope of student perception of student autonomy was .066. With this study we contribute a more detailed description of the relationship between teaching quality, competence and autonomy.

  3. Representational geometry: integrating cognition, computation, and the brain.

    PubMed

    Kriegeskorte, Nikolaus; Kievit, Rogier A

    2013-08-01

    The cognitive concept of representation plays a key role in theories of brain information processing. However, linking neuronal activity to representational content and cognitive theory remains challenging. Recent studies have characterized the representational geometry of neural population codes by means of representational distance matrices, enabling researchers to compare representations across stages of processing and to test cognitive and computational theories. Representational geometry provides a useful intermediate level of description, capturing both the information represented in a neuronal population code and the format in which it is represented. We review recent insights gained with this approach in perception, memory, cognition, and action. Analyses of representational geometry can compare representations between models and the brain, and promise to explain brain computation as transformation of representational similarity structure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Fractals, Fuzzy Sets And Image Representation

    NASA Astrophysics Data System (ADS)

    Dodds, D. R.

    1988-10-01

    This paper addresses some uses of fractals, fuzzy sets and image representation as it pertains to robotic grip planning and autonomous vehicle navigation AVN. The robot/vehicle is assumed to be equipped with multimodal sensors including ultrashort pulse imaging laser rangefinder. With a temporal resolution of 50 femtoseconds a time of flight laser rangefinder can resolve distances within approximately half an inch or 1.25 centimeters. (Fujimoto88)

  5. Young Children's Representations of Groups of Objects: The Relationship between Abstraction and Representation.

    ERIC Educational Resources Information Center

    Kato, Yasuhiko; Kamii, Constance; Ozaki, Kyoko; Nagahiro, Mariko

    2002-01-01

    Interviews 60 Japanese children between the ages of 3 and 7 years to investigate the relationship between levels of abstraction and representation. Indicates that abstraction and representation are closely related. Implies that educators need to focus more on the mental relationships children make because the meaning children can give to…

  6. Inscriptions Becoming Representations in Representational Practices

    ERIC Educational Resources Information Center

    Medina, Richard; Suthers, Daniel

    2013-01-01

    We analyze the interaction of 3 students working on mathematics problems over several days in a virtual math team. Our analysis traces out how successful collaboration in a later session is contingent upon the work of prior sessions and shows how the development of representational practices is an important aspect of these participants' problem…

  7. Refining Collective Coordinates and Improving Free Energy Representation in Variational Enhanced Sampling.

    PubMed

    Yang, Yi Isaac; Parrinello, Michele

    2018-06-12

    Collective variables are used often in many enhanced sampling methods, and their choice is a crucial factor in determining sampling efficiency. However, at times, searching for good collective variables can be challenging. In a recent paper, we combined time-lagged independent component analysis with well-tempered metadynamics in order to obtain improved collective variables from metadynamics runs that use lower quality collective variables [ McCarty, J.; Parrinello, M. J. Chem. Phys. 2017 , 147 , 204109 ]. In this work, we extend these ideas to variationally enhanced sampling. This leads to an efficient scheme that is able to make use of the many advantages of the variational scheme. We apply the method to alanine-3 in water. From an alanine-3 variationally enhanced sampling trajectory in which all the six dihedral angles are biased, we extract much better collective variables able to describe in exquisite detail the protein complex free energy surface in a low dimensional representation. The success of this investigation is helped by a more accurate way of calculating the correlation functions needed in the time-lagged independent component analysis and from the introduction of a new basis set to describe the dihedral angles arrangement.

  8. Role of multiple representations in physics problem solving

    NASA Astrophysics Data System (ADS)

    Maries, Alexandru

    This thesis explores the role of multiple representations in introductory physics students' problem solving performance through several investigations. Representations can help students focus on the conceptual aspects of physics and play a major role in effective problem solving. Diagrammatic representations can play a particularly important role in the initial stages of conceptual analysis and planning of the problem solution. Findings suggest that students who draw productive diagrams are more successful problem solvers even if their approach is primarily mathematical. Furthermore, students provided with a diagram of the physical situation presented in a problem sometimes exhibited deteriorated performance. Think-aloud interviews suggest that this deteriorated performance is in part due to reduced conceptual planning time which caused students to jump to the implementation stage without fully understanding the problem and planning problem solution. Another study investigated two interventions aimed at improving introductory students' representational consistency between mathematical and graphical representations and revealed that excessive scaffolding can have a detrimental effect. The detrimental effect was partly due to increased cognitive load brought on by the additional steps and instructions. Moreover, students who exhibited representational consistency also showed improved problem solving performance. The final investigation is centered on a problem solving task designed to provide information about the pedagogical content knowledge (PCK) of graduate student teaching assistants (TAs). In particular, the TAs identified what they considered to be the most common difficulties of introductory physics students related to graphical representations of kinematics concepts as they occur in the Test of Understanding Graphs in Kinematics (TUG-K). As an extension, the Force Concept Inventory (FCI) was also used to assess this aspect of PCK related to knowledge of

  9. Trend surface models in the representation and analysis of time factors in cancer mortality.

    PubMed

    Cislaghi, C; Negri, E; La Vecchia, C; Levi, F

    1990-01-01

    A method of graphic representation of time factors in cancer mortality is presented, based on different tonalities of grey applied to the surface of the matrix defined by various age-specific rates. It is illustrated using mortality data from cancers of the mouth or pharynx, oesophagus, larynx and lung in Italian and Swiss males. Progressively more complex regression surface equations are defined, on the basis of two independent variables (age and cohort) and a dependent one (each age-specific rate). General patterns of trends were thus identified, showing important similarities in cohort and period effects, but also noticeable differences in time-related factors in mortality from various neoplasms of the upper digestive and respiratory tract. For instance, there were declines in mortality from cancers of the mouth or pharynx in the oldest age groups, whereas rates were appreciably upwards at younger and middle age, particularly in Italy. Likewise, cancers of the oesophagus and, chiefly, of the larynx were substantially increasing, on a cohort basis, in oldest Italian males. Temporal pattern for laryngeal cancer in Italy was similar to that of lung cancer, thus suggesting that (cigarette) smoking has a greater impact on this cancer site as compared with alcohol. However, it is difficult to explain, on this basis alone, the totally diverging pattern for cancer of the larynx (downwards) and of the lung (upwards) observed among older Swiss males. These examples indicate that trend surface models are a useful summary guide to illustrate and understand the general patterns of age, period and cohort effects in cancer mortality.

  10. Is Mathematical Representation of Problems an Evidence-Based Strategy for Students with Mathematics Difficulties?

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Nelson, Gena; Pulles, Sandra M.; Kiss, Allyson J.; Houseworth, James

    2016-01-01

    The purpose of the present review was to evaluate the quality of the research and evidence base for representation of problems as a strategy to enhance the mathematical performance of students with learning disabilities and those at risk for mathematics difficulties. The authors evaluated 25 experimental and quasiexperimental studies according to…

  11. Noncoplanar VMAT for nasopharyngeal tumors: Plan quality versus treatment time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wild, Esther, E-mail: e.wild@dkfz.de; Bangert, Mark; Nill, Simeon

    Purpose: The authors investigated the potential of optimized noncoplanar irradiation trajectories for volumetric modulated arc therapy (VMAT) treatments of nasopharyngeal patients and studied the trade-off between treatment plan quality and delivery time in radiation therapy. Methods: For three nasopharyngeal patients, the authors generated treatment plans for nine different delivery scenarios using dedicated optimization methods. They compared these scenarios according to dose characteristics, number of beam directions, and estimated delivery times. In particular, the authors generated the following treatment plans: (1) a 4π plan, which is a not sequenced, fluence optimized plan that uses beam directions from approximately 1400 noncoplanar directionsmore » and marks a theoretical upper limit of the treatment plan quality, (2) a coplanar 2π plan with 72 coplanar beam directions as pendant to the noncoplanar 4π plan, (3) a coplanar VMAT plan, (4) a coplanar step and shoot (SnS) plan, (5) a beam angle optimized (BAO) coplanar SnS IMRT plan, (6) a noncoplanar BAO SnS plan, (7) a VMAT plan with rotated treatment couch, (8) a noncoplanar VMAT plan with an optimized great circle around the patient, and (9) a noncoplanar BAO VMAT plan with an arbitrary trajectory around the patient. Results: VMAT using optimized noncoplanar irradiation trajectories reduced the mean and maximum doses in organs at risk compared to coplanar VMAT plans by 19% on average while the target coverage remains constant. A coplanar BAO SnS plan was superior to coplanar SnS or VMAT; however, noncoplanar plans like a noncoplanar BAO SnS plan or noncoplanar VMAT yielded a better plan quality than the best coplanar 2π plan. The treatment plan quality of VMAT plans depended on the length of the trajectory. The delivery times of noncoplanar VMAT plans were estimated to be 6.5 min in average; 1.6 min longer than a coplanar plan but on average 2.8 min faster than a noncoplanar SnS plan with comparable

  12. Noncoplanar VMAT for nasopharyngeal tumors: Plan quality versus treatment time.

    PubMed

    Wild, Esther; Bangert, Mark; Nill, Simeon; Oelfke, Uwe

    2015-05-01

    The authors investigated the potential of optimized noncoplanar irradiation trajectories for volumetric modulated arc therapy (VMAT) treatments of nasopharyngeal patients and studied the trade-off between treatment plan quality and delivery time in radiation therapy. For three nasopharyngeal patients, the authors generated treatment plans for nine different delivery scenarios using dedicated optimization methods. They compared these scenarios according to dose characteristics, number of beam directions, and estimated delivery times. In particular, the authors generated the following treatment plans: (1) a 4π plan, which is a not sequenced, fluence optimized plan that uses beam directions from approximately 1400 noncoplanar directions and marks a theoretical upper limit of the treatment plan quality, (2) a coplanar 2π plan with 72 coplanar beam directions as pendant to the noncoplanar 4π plan, (3) a coplanar VMAT plan, (4) a coplanar step and shoot (SnS) plan, (5) a beam angle optimized (BAO) coplanar SnS IMRT plan, (6) a noncoplanar BAO SnS plan, (7) a VMAT plan with rotated treatment couch, (8) a noncoplanar VMAT plan with an optimized great circle around the patient, and (9) a noncoplanar BAO VMAT plan with an arbitrary trajectory around the patient. VMAT using optimized noncoplanar irradiation trajectories reduced the mean and maximum doses in organs at risk compared to coplanar VMAT plans by 19% on average while the target coverage remains constant. A coplanar BAO SnS plan was superior to coplanar SnS or VMAT; however, noncoplanar plans like a noncoplanar BAO SnS plan or noncoplanar VMAT yielded a better plan quality than the best coplanar 2π plan. The treatment plan quality of VMAT plans depended on the length of the trajectory. The delivery times of noncoplanar VMAT plans were estimated to be 6.5 min in average; 1.6 min longer than a coplanar plan but on average 2.8 min faster than a noncoplanar SnS plan with comparable treatment plan quality. The authors

  13. Ultrasonic Real-Time Quality Monitoring Of Aluminum Spot Weld Process

    NASA Astrophysics Data System (ADS)

    Perez Regalado, Waldo Josue

    The real-time ultrasonic spot weld monitoring system, introduced by our research group, has been designed for the unsupervised quality characterization of the spot welding process. It comprises the ultrasonic transducer (probe) built into one of the welding electrodes and an electronics hardware unit which gathers information from the transducer, performs real-time weld quality characterization and communicates with the robot programmable logic controller (PLC). The system has been fully developed for the inspection of spot welds manufactured in steel alloys, and has been mainly applied in the automotive industry. In recent years, a variety of materials have been introduced to the automotive industry. These include high strength steels, magnesium alloys, and aluminum alloys. Aluminum alloys have been of particular interest due to their high strength-to-weight ratio. Resistance spot welding requirements for aluminum vary greatly from those of steel. Additionally, the oxide film formed on the aluminum surface increases the heat generation between the copper electrodes and the aluminum plates leading to accelerated electrode deterioration. Preliminary studies showed that the real-time quality inspection system was not able to monitor spot welds manufactured with aluminum. The extensive experimental research, finite element modelling of the aluminum welding process and finite difference modeling of the acoustic wave propagation through the aluminum spot welds presented in this dissertation, revealed that the thermodynamics and hence the acoustic wave propagation through an aluminum and a steel spot weld differ significantly. For this reason, the hardware requirements and the algorithms developed to determine the welds quality from the ultrasonic data used on steel, no longer apply on aluminum spot welds. After updating the system and designing the required algorithms, parameters such as liquid nugget penetration and nugget diameter were available in the ultrasonic data

  14. Improving Low-dose Cardiac CT Images based on 3D Sparse Representation

    PubMed Central

    Shi, Luyao; Hu, Yining; Chen, Yang; Yin, Xindao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis

    2016-01-01

    Cardiac computed tomography (CCT) is a reliable and accurate tool for diagnosis of coronary artery diseases and is also frequently used in surgery guidance. Low-dose scans should be considered in order to alleviate the harm to patients caused by X-ray radiation. However, low dose CT (LDCT) images tend to be degraded by quantum noise and streak artifacts. In order to improve the cardiac LDCT image quality, a 3D sparse representation-based processing (3D SR) is proposed by exploiting the sparsity and regularity of 3D anatomical features in CCT. The proposed method was evaluated by a clinical study of 14 patients. The performance of the proposed method was compared to the 2D spares representation-based processing (2D SR) and the state-of-the-art noise reduction algorithm BM4D. The visual assessment, quantitative assessment and qualitative assessment results show that the proposed approach can lead to effective noise/artifact suppression and detail preservation. Compared to the other two tested methods, 3D SR method can obtain results with image quality most close to the reference standard dose CT (SDCT) images. PMID:26980176

  15. Improving Low-dose Cardiac CT Images based on 3D Sparse Representation

    NASA Astrophysics Data System (ADS)

    Shi, Luyao; Hu, Yining; Chen, Yang; Yin, Xindao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis

    2016-03-01

    Cardiac computed tomography (CCT) is a reliable and accurate tool for diagnosis of coronary artery diseases and is also frequently used in surgery guidance. Low-dose scans should be considered in order to alleviate the harm to patients caused by X-ray radiation. However, low dose CT (LDCT) images tend to be degraded by quantum noise and streak artifacts. In order to improve the cardiac LDCT image quality, a 3D sparse representation-based processing (3D SR) is proposed by exploiting the sparsity and regularity of 3D anatomical features in CCT. The proposed method was evaluated by a clinical study of 14 patients. The performance of the proposed method was compared to the 2D spares representation-based processing (2D SR) and the state-of-the-art noise reduction algorithm BM4D. The visual assessment, quantitative assessment and qualitative assessment results show that the proposed approach can lead to effective noise/artifact suppression and detail preservation. Compared to the other two tested methods, 3D SR method can obtain results with image quality most close to the reference standard dose CT (SDCT) images.

  16. Generative Representations for Computer-Automated Design Systems

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.

    2004-01-01

    With the increasing computational power of Computers, software design systems are progressing from being tools for architects and designers to express their ideas to tools capable of creating designs under human guidance. One of the main limitations for these computer-automated design programs is the representation with which they encode designs. If the representation cannot encode a certain design, then the design program cannot produce it. Similarly, a poor representation makes some types of designs extremely unlikely to be created. Here we define generative representations as those representations which can create and reuse organizational units within a design and argue that reuse is necessary for design systems to scale to more complex and interesting designs. To support our argument we describe GENRE, an evolutionary design program that uses both a generative and a non-generative representation, and compare the results of evolving designs with both types of representations.

  17. Spontaneous representations of small numbers of objects by rhesus macaques: examinations of content and format.

    PubMed

    Hauser, Marc D; Carey, Susan

    2003-12-01

    The project of comparative cognition benefits from common measures across species. We report here on five experiments using the violation of expectancy looking time measure with free-ranging rhesus macaques (Macaca mulatta), each designed to build on current knowledge concerning spontaneous representations of number. Each subject, tested in only one experimental condition, watched as eggplants were placed behind a screen one at a time, after which the screen was removed revealing an outcome that either matched or did not match the number placed there. Subjects looked longer at impossible than possible outcomes in 1+1=2 or 3, 1 small+1 small=1 big or 2 small, 2+1=2 or 3, and 2+1=3 or 4 conditions. They failed in 2+1+1=4 or 3 or 5 and in 1+1+1=2 or 3 conditions. This pattern of results closely matches that observed across several previous studies of human infants. The data allow us to test among four different proposals concerning the format and content of the mental representations underlying looking in these experiments. Object file representations are favored over: (i) low-level perceptual representations, (ii) representations of continuous variables such as volume or surface area, and (iii) analog magnitude representations of number. We conclude by considering exactly how the object tracking system revealed in these and other related experiments does and does not represent number, and how it might be one evolutionary precursor of the human specific system of number representations.

  18. Elementary students' multiple representations of their ideas about air

    NASA Astrophysics Data System (ADS)

    Gravel, Brian Edward

    This dissertation explores how students generate multiple external representations of their ideas about air, an "invisible" substance. External representations can serve a powerful role in placing students' ideas into the external world for reflection and abstraction. When provided the opportunity to represent their understandings of science in different ways, students generate increasingly coherent explanations of what they observe, including developing ideas about mechanisms that describe cause and effect. In this qualitative study, extended clinical interviews were conducted with twelve fifth-grade students from an urban public charter school. In study was designed to investigate students' ideas about air in the context of a linked-syringe device with the support of multiple representations. Students were given the opportunity to produce representations and to offer verbal explanations of the behavior of the syringes in a sequence of three interviews. In the first session, students were introduced to the linked-syringes, and they generated drawings to explain their thinking about air. In the second session, students created stop-motion animations of their explanations for air in the syringes. And in the final session, students built physical devices to demonstrate their ideas about air. Careful analysis of each individual student's trajectory through the microgenetic design and a cross-student analysis reveal that the process of generating multiple representations facilitates how students think and reason about air. Drawings served to organize elements of the linked-syringe problem, providing students with focal points on which to direct their reasoning as they generated more precise explanations. Stop-motion animation supported students' efforts to make sense of processes that change over time, such as compressing the air inside the syringes. And, the construction of physical artifacts prompted students to think about air as a substance, as the activity allowed

  19. Study of weld quality real-time monitoring system for auto-body assembly

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Li, Yong-Bing; Chen, Guan-Long

    2005-12-01

    Resistance spot welding (RSW) is widely used for the auto-body assembly in automotive industry. But RSW suffers from a major problem of inconsistent quality from weld to weld. The major problem is the complexity of the basic process that may involve material coatings, electrode force, electrode wear, fit up, etc. Therefore weld quality assurance is still a big challenge and goal. Electrode displacement has proved to be a particularly useful signal which correlates well with weld quality. This paper introduces a novel auto-body spot weld quality monitoring system which uses electrode displacement as the quality parameter. This system chooses the latest laser displacement sensor with high resolution to measure the real-time electrode displacement. It solves the interference problem of sensor mounting by designing special fixture, and can be successfully applied on the portable welding machine. It is capable of evaluating weld quality and making diagnosis of process variations such as surface asperities, shunting, worn electrode and weld expansion with real-time electrode displacement. As proved by application in the workshop, the monitoring system has good stability and reliability, and is qualified for monitoring weld quality in process.

  20. Maternal representations in the dreams of pregnant women: a prospective comparative study

    PubMed Central

    Lara-Carrasco, Jessica; Simard, Valérie; Saint-Onge, Kadia; Lamoureux-Tremblay, Vickie; Nielsen, Tore

    2013-01-01

    Dreams are thought to respond to self- and socially-relevant situations that evoke strong emotions and require rapid adaptation. First pregnancy is such a situation during which maternal mental representations (MMR) of the unborn baby, the self and significant others undergo remodeling. Some studies suggest that dreams during pregnancy contain more MMR and are more dysphoric, but such studies contain important methodological flaws. We assessed whether dreamed MMR, like waking MMR, change from the 7th month of pregnancy to birth, and whether pregnancy–related themes and non-pregnancy characteristics are also transformed. Sixty non-pregnant and 59 pregnant women (37 early and 22 late 3rd trimester) completed demographic and psychological questionnaires and 14-day home dream logs. Dream reports were blindly rated according to four dream categories: (1) Dreamed MMR, (2) Quality of baby/child representations, (3) Pregnancy-related themes, (4) Non-pregnancy characteristics. Controlling for age, relationship and employment status, education level and state anxiety, women in both pregnant groups reported more dreams depicting themselves as a mother or with babies/children than did non-pregnant women (all p = 0.006). Baby/child representations were less specific in the late 3rd than in the early 3rd trimester (p = 0.005) and than in non-pregnant women (p = 0.01). Pregnant groups also had more pregnancy, childbirth and fetus themes (all p = 0.01). Childbirth content was higher in late than in early 3rd trimester (p = 0.01). Pregnant groups had more morbid elements than did the non-pregnant group (all p < 0.05). Dreaming during pregnancy appears to reflect daytime processes of remodeling MMR of the woman as a mother and of her unborn baby, and parallels a decline in the quality of baby/child representations in the last stage of pregnancy. More frequent morbid content in late pregnancy suggests that the psychological challenges of pregnancy are reflected in a generally more

  1. ABJM Wilson loops in arbitrary representations

    NASA Astrophysics Data System (ADS)

    Hatsuda, Yasuyuki; Honda, Masazumi; Moriyama, Sanefumi; Okuyama, Kazumi

    2013-10-01

    We study vacuum expectation values (VEVs) of circular half BPS Wilson loops in arbitrary representations in ABJM theory. We find that those in hook representations are reduced to elementary integrations thanks to the Fermi gas formalism, which are accessible from the numerical studies similar to the partition function in the previous studies. For non-hook representations, we show that the VEVs in the grand canonical formalism can be exactly expressed as determinants of those in the hook representations. Using these facts, we can study the instanton effects of the VEVs in various representations. Our results are consistent with the worldsheet instanton effects studied from the topological string and a prescription to include the membrane instanton effects by shifting the chemical potential, which has been successful for the partition function.

  2. Multiple External Representations: Bridges or Barriers to Climate Literacy?

    NASA Astrophysics Data System (ADS)

    Holzer, M. A.

    2012-12-01

    The continuous barrage of science related headlines and other media sources warn us of the need to heed the imperative for a science literate society. Climate change, genetics, evolution are a few of the charged and complex scientific topics requiring public understanding of the science to fully grasp the enormous reach of these topics in our daily lives. For instance, our global climate is changing as evidenced by the analysis of Earth observing satellite data, in-situ data, and proxy data records. How we as a global society decide to address the needs associated with a changing climate are contingent upon having a population that understands how the climate system functions, and can therefore make informed decisions on how to mitigate the effects of climate change. Communication in science relies heavily on the use of multiple representations to support the claims presented. However, these multiple representations require spatial and temporal skills to interpret information portrayed in them, and how a person engages with complex text and the multiple representations varies with the level of expertise one has with the content area. For example, a climatologist will likely identify anomalous data more quickly than a novice when presented with a graph of temperature change over time. These representations are used throughout textbooks as well as popular reading materials such as newspapers and magazines without much consideration for how a reader engages with complex text, diagrams, images, and graphs. If the ability to read and interact with scientific text found in popular literature is perceived as a worthy goal of scientific literacy, then it is imperative that readers understand the relationship between multiple representations and the text while interacting with the science literature they are reading. For example, in climate related articles multiple representations not only support the content, but they are part of the content not to be overlooked by a

  3. Mental representation and motor imagery training

    PubMed Central

    Schack, Thomas; Essig, Kai; Frank, Cornelia; Koester, Dirk

    2014-01-01

    Research in sports, dance and rehabilitation has shown that basic action concepts (BACs) are fundamental building blocks of mental action representations. BACs are based on chunked body postures related to common functions for realizing action goals. In this paper, we outline issues in research methodology and an experimental method, the structural dimensional analysis of mental representation (SDA-M), to assess action-relevant representational structures that reflect the organization of BACs. The SDA-M reveals a strong relationship between cognitive representation and performance if complex actions are performed. We show how the SDA-M can improve motor imagery training and how it contributes to our understanding of coaching processes. The SDA-M capitalizes on the objective measurement of individual mental movement representations before training and the integration of these results into the motor imagery training. Such motor imagery training based on mental representations (MTMR) has been applied successfully in professional sports such as golf, volleyball, gymnastics, windsurfing, and recently in the rehabilitation of patients who have suffered a stroke. PMID:24904368

  4. State-Based Delay Representation and Its Transfer from a Game of Pong to Reaching and Tracking

    PubMed Central

    Leib, Raz; Pressman, Assaf; Simo, Lucia S.; Karniel, Amir

    2017-01-01

    Abstract To accurately estimate the state of the body, the nervous system needs to account for delays between signals from different sensory modalities. To investigate how such delays may be represented in the sensorimotor system, we asked human participants to play a virtual pong game in which the movement of the virtual paddle was delayed with respect to their hand movement. We tested the representation of this new mapping between the hand and the delayed paddle by examining transfer of adaptation to blind reaching and blind tracking tasks. These blind tasks enabled to capture the representation in feedforward mechanisms of movement control. A Time Representation of the delay is an estimation of the actual time lag between hand and paddle movements. A State Representation is a representation of delay using current state variables: the distance between the paddle and the ball originating from the delay may be considered as a spatial shift; the low sensitivity in the response of the paddle may be interpreted as a minifying gain; and the lag may be attributed to a mechanical resistance that influences paddle’s movement. We found that the effects of prolonged exposure to the delayed feedback transferred to blind reaching and tracking tasks and caused participants to exhibit hypermetric movements. These results, together with simulations of our representation models, suggest that delay is not represented based on time, but rather as a spatial gain change in visuomotor mapping. PMID:29379875

  5. Is color an intrinsic property of object representation?

    PubMed

    Naor-Raz, Galit; Tarr, Michael J; Kersten, Daniel

    2003-01-01

    The role of color in object representation was examined by using a variation of the Stroop paradigm in which observers named the displayed colors of objects or words. In experiment 1, colors of color-diagnostic objects were manipulated to be either typical or atypical of the object (eg a yellow banana versus a purple banana). A Stroop-like effect was obtained, with faster color-naming times for the typical as compared to the atypical condition. In experiment 2, naming colors on words specifying these same color-diagnostic objects reversed this pattern, with the typical condition producing longer response times than the atypical condition. In experiment 3, a blocked condition design that used the same words and colors as experiment 2 produced the standard Stroop-like facilitation for the typical condition. These results indicate that color is an intrinsic property of an object's representation at multiple levels. In experiment 4, we examined the specific level(s) at which color-shape associations arise by following the tasks used in experiments 1 and 2 with a lexical-decision task in which some items were conceptually related to items shown during color naming (eg banana/monkey). Priming for these associates was observed following color naming of words, but not pictures, providing further evidence that the color-shape associations responsible for the differing effects obtained in experiments 1 and 2 are due to the automatic activation of color-shape associations at different levels of representation.

  6. Spatially variant morphological restoration and skeleton representation.

    PubMed

    Bouaynaya, Nidhal; Charif-Chefchaouni, Mohammed; Schonfeld, Dan

    2006-11-01

    The theory of spatially variant (SV) mathematical morphology is used to extend and analyze two important image processing applications: morphological image restoration and skeleton representation of binary images. For morphological image restoration, we propose the SV alternating sequential filters and SV median filters. We establish the relation of SV median filters to the basic SV morphological operators (i.e., SV erosions and SV dilations). For skeleton representation, we present a general framework for the SV morphological skeleton representation of binary images. We study the properties of the SV morphological skeleton representation and derive conditions for its invertibility. We also develop an algorithm for the implementation of the SV morphological skeleton representation of binary images. The latter algorithm is based on the optimal construction of the SV structuring element mapping designed to minimize the cardinality of the SV morphological skeleton representation. Experimental results show the dramatic improvement in the performance of the SV morphological restoration and SV morphological skeleton representation algorithms in comparison to their translation-invariant counterparts.

  7. Identities of almost Stable Group Representations

    NASA Astrophysics Data System (ADS)

    Vovsi, S. M.; Khung Shon, Nguen

    1988-02-01

    It is proved that almost stable group representations over a field have a finite basis of identities. Moreover, a variety generated by an arbitrary almost stable representation is Specht and all of its subvarieties have a finite uniformly bounded basis rank. In particular, the identities of an arbitrary representation of a finite group are finitely based.Bibliography: 17 titles.

  8. Diversity, Inclusion, and Representation: It Is Time to Act.

    PubMed

    Lightfoote, Johnson B; Deville, Curtiland; Ma, Loralie D; Winkfield, Karen M; Macura, Katarzyna J

    2016-12-01

    Although the available pool of qualified underrepresented minority and women medical school graduates has expanded in recent decades, their representation in the radiological professions has improved only marginally. Recognizing this deficit in diversity, many professional medical societies, including the ACR, have incorporated these values as core elements of their missions and instituted programs that address previously identified barriers to a more diverse workforce. These barriers include insufficient exposure of underrepresented minorities and women to radiology and radiation oncology; misperception of these specialties as non-patient care and not community service; unconscious bias; and delayed preparation of candidates to compete successfully for residency positions. Critical success factors in expanding diversity and inclusion are well identified both outside and within the radiological professions; these are reviewed in the current communication. Radiology leaders are positioned to lead the profession in expanding the diversity and improving the inclusiveness of our professional workforce in service to an increasingly diverse society and patient population. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  9. Internal representations reveal cultural diversity in expectations of facial expressions of emotion.

    PubMed

    Jack, Rachael E; Caldara, Roberto; Schyns, Philippe G

    2012-02-01

    Facial expressions have long been considered the "universal language of emotion." Yet consistent cultural differences in the recognition of facial expressions contradict such notions (e.g., R. E. Jack, C. Blais, C. Scheepers, P. G. Schyns, & R. Caldara, 2009). Rather, culture--as an intricate system of social concepts and beliefs--could generate different expectations (i.e., internal representations) of facial expression signals. To investigate, they used a powerful psychophysical technique (reverse correlation) to estimate the observer-specific internal representations of the 6 basic facial expressions of emotion (i.e., happy, surprise, fear, disgust, anger, and sad) in two culturally distinct groups (i.e., Western Caucasian [WC] and East Asian [EA]). Using complementary statistical image analyses, cultural specificity was directly revealed in these representations. Specifically, whereas WC internal representations predominantly featured the eyebrows and mouth, EA internal representations showed a preference for expressive information in the eye region. Closer inspection of the EA observer preference revealed a surprising feature: changes of gaze direction, shown primarily among the EA group. For the first time, it is revealed directly that culture can finely shape the internal representations of common facial expressions of emotion, challenging notions of a biologically hardwired "universal language of emotion."

  10. An Accurate Projector Calibration Method Based on Polynomial Distortion Representation

    PubMed Central

    Liu, Miao; Sun, Changku; Huang, Shujun; Zhang, Zonghua

    2015-01-01

    In structure light measurement systems or 3D printing systems, the errors caused by optical distortion of a digital projector always affect the precision performance and cannot be ignored. Existing methods to calibrate the projection distortion rely on calibration plate and photogrammetry, so the calibration performance is largely affected by the quality of the plate and the imaging system. This paper proposes a new projector calibration approach that makes use of photodiodes to directly detect the light emitted from a digital projector. By analyzing the output sequence of the photoelectric module, the pixel coordinates can be accurately obtained by the curve fitting method. A polynomial distortion representation is employed to reduce the residuals of the traditional distortion representation model. Experimental results and performance evaluation show that the proposed calibration method is able to avoid most of the disadvantages in traditional methods and achieves a higher accuracy. This proposed method is also practically applicable to evaluate the geometric optical performance of other optical projection system. PMID:26492247

  11. A comparison of representations for discrete multi-criteria decision problems☆

    PubMed Central

    Gettinger, Johannes; Kiesling, Elmar; Stummer, Christian; Vetschera, Rudolf

    2013-01-01

    Discrete multi-criteria decision problems with numerous Pareto-efficient solution candidates place a significant cognitive burden on the decision maker. An interactive, aspiration-based search process that iteratively progresses toward the most preferred solution can alleviate this task. In this paper, we study three ways of representing such problems in a DSS, and compare them in a laboratory experiment using subjective and objective measures of the decision process as well as solution quality and problem understanding. In addition to an immediate user evaluation, we performed a re-evaluation several weeks later. Furthermore, we consider several levels of problem complexity and user characteristics. Results indicate that different problem representations have a considerable influence on search behavior, although long-term consistency appears to remain unaffected. We also found interesting discrepancies between subjective evaluations and objective measures. Conclusions from our experiments can help designers of DSS for large multi-criteria decision problems to fit problem representations to the goals of their system and the specific task at hand. PMID:24882912

  12. The Effect of Representations on Difficulty Perception and Learning of the Physical Concept of Pressure

    ERIC Educational Resources Information Center

    Corradi, David M. J.; De Jaegher, Christophe; Juarez-Collazo, Norma A.; Elen, Jan; Clarebout, Geraldine

    2013-01-01

    Previous research indicates that when learners divide their attention over different sources of information (representations), learners perceive the information as more difficult and have a harder time increasing their understanding. This can be overcome by integrating representations. In this research, using 85 participants, we hypothesized that…

  13. An investigation of spatial representation of pitch in individuals with congenital amusia.

    PubMed

    Lu, Xuejing; Sun, Yanan; Thompson, William Forde

    2017-09-01

    Spatial representation of pitch plays a central role in auditory processing. However, it is unknown whether impaired auditory processing is associated with impaired pitch-space mapping. Experiment 1 examined spatial representation of pitch in individuals with congenital amusia using a stimulus-response compatibility (SRC) task. For amusic and non-amusic participants, pitch classification was faster and more accurate when correct responses involved a physical action that was spatially congruent with the pitch height of the stimulus than when it was incongruent. However, this spatial representation of pitch was not as stable in amusic individuals, revealed by slower response times when compared with control individuals. One explanation is that the SRC effect in amusics reflects a linguistic association, requiring additional time to link pitch height and spatial location. To test this possibility, Experiment 2 employed a colour-classification task. Participants judged colour while ignoring a concurrent pitch by pressing one of two response keys positioned vertically to be congruent or incongruent with the pitch. The association between pitch and space was found in both groups, with comparable response times in the two groups, suggesting that amusic individuals are only slower to respond to tasks involving explicit judgments of pitch.

  14. Representations of the Extended Poincare Superalgebras in Four Dimensions

    NASA Astrophysics Data System (ADS)

    Griffis, John D.

    Eugene Wigner used the Poincare group to induce representations from the fundamental internal space-time symmetries of (special) relativistic quantum particles. Wigner's students spent considerable amount of time translating passages of this paper into more detailed and accessible papers and books. In 1975, R. Haag et al. investigated the possible extensions of the symmetries of relativistic quantum particles. They showed that the only consistent (super)symmetric extensions to the standard model of physics are obtained by using super charges to generate the odd part of a Lie superalgebra whose even part is generated by the Poincare group; this theory has become known as supersymmetry. In this paper, R. Haag et al. used a notation called supermultiplets to give the dimension of a representation and its multiplicity; this notation is described mathematically in chapter 5 of this thesis. By 1980 S. Ferrara et al. began classifying the representations of these algebras for dimensions greater than four, and in 1986 Strathdee published considerable work listing some representations for the Poincare superalgebra in any finite dimension. This work has been continued to date. We found the work of S. Ferrara et al. to be essential to our understanding extended supersymmetries. However, this paper was written using imprecise language meant for physicists, so it was far from trivial to understand the mathematical interpretation of this work. In this thesis, we provide a "translation" of the previous results (along with some other literature on the Extended Poincare Superalgebras) into a rigorous mathematical setting, which makes the subject more accessible to a larger audience. Having a mathematical model allows us to give explicit results and detailed proofs. Further, this model allows us to see beyond just the physical interpretation and it allows investigation by a purely mathematically adept audience. Our work was motivated by a paper written in 2012 by M. Chaichian et al

  15. Predefined Redundant Dictionary for Effective Depth Maps Representation

    NASA Astrophysics Data System (ADS)

    Sebai, Dorsaf; Chaieb, Faten; Ghorbel, Faouzi

    2016-01-01

    The multi-view video plus depth (MVD) video format consists of two components: texture and depth map, where a combination of these components enables a receiver to generate arbitrary virtual views. However, MVD presents a very voluminous video format that requires a compression process for storage and especially for transmission. Conventional codecs are perfectly efficient for texture images compression but not for intrinsic depth maps properties. Depth images indeed are characterized by areas of smoothly varying grey levels separated by sharp discontinuities at the position of object boundaries. Preserving these characteristics is important to enable high quality view synthesis at the receiver side. In this paper, sparse representation of depth maps is discussed. It is shown that a significant gain in sparsity is achieved when particular mixed dictionaries are used for approximating these types of images with greedy selection strategies. Experiments are conducted to confirm the effectiveness at producing sparse representations, and competitiveness, with respect to candidate state-of-art dictionaries. Finally, the resulting method is shown to be effective for depth maps compression and represents an advantage over the ongoing 3D high efficiency video coding compression standard, particularly at medium and high bitrates.

  16. Representational Competence in Chemistry: A Comparison between Students with Different Levels of Understanding of Basic Chemical Concepts and Chemical Representations

    ERIC Educational Resources Information Center

    Sim, Joong Hiong; Daniel, Esther Gnanamalar Sarojini

    2014-01-01

    Representational competence is defined as "skills in interpreting and using representations". This study attempted to compare students' of high, medium, and low levels of understanding of (1) basic chemical concepts, and (2) chemical representations, in their representational competence. A total of 411 Form 4 science students (mean age =…

  17. On Complex Networks Representation and Computation of Hydrologycal Quantities

    NASA Astrophysics Data System (ADS)

    Serafin, F.; Bancheri, M.; David, O.; Rigon, R.

    2017-12-01

    Water is our blue gold. Despite results of discovery-based science keep warning public opinion about the looming worldwide water crisis, water is still treated as a not worth taking resource. Could a different multi-scale perspective affect environmental decision-making more deeply? Can also a further pairing to a new graphical representation of processes interaction sway decision-making more effectively and public opinion consequently?This abstract introduces a complex networks driven way to represent catchments eco-hydrology and related flexible informatics to manage it. The representation is built upon mathematical category. A category is an algebraic structure that comprises "objects" linked by "arrows". It is an evolution of Petri Nets said Time Continuous Petri Nets (TCPN). It aims to display (water) budgets processes and catchment interactions using explicative and self-contained symbolism. The result improves readability of physical processes compared to current descriptions. The IT perspective hinges on the Object Modeling System (OMS) v3. The latter is a non-invasive flexible environmental modeling framework designed to support component-based model development. The implementation of a Directed Acyclic Graph (DAG) data structure, named Net3, has recently enhanced its flexibility. Net3 represents interacting systems as complex networks: vertices match up with any sort of time evolving quantity; edges correspond to their data (fluxes) interchange. It currently hosts JGrass-NewAge components, and those implementing travel time analysis of fluxes. Further bio-physical or management oriented components can be easily added.This talk introduces both graphical representation and related informatics exercising actual applications and examples.

  18. Beyond Natural Numbers: Negative Number Representation in Parietal Cortex

    PubMed Central

    Blair, Kristen P.; Rosenberg-Lee, Miriam; Tsang, Jessica M.; Schwartz, Daniel L.; Menon, Vinod

    2012-01-01

    Unlike natural numbers, negative numbers do not have natural physical referents. How does the brain represent such abstract mathematical concepts? Two competing hypotheses regarding representational systems for negative numbers are a rule-based model, in which symbolic rules are applied to negative numbers to translate them into positive numbers when assessing magnitudes, and an expanded magnitude model, in which negative numbers have a distinct magnitude representation. Using an event-related functional magnetic resonance imaging design, we examined brain responses in 22 adults while they performed magnitude comparisons of negative and positive numbers that were quantitatively near (difference <4) or far apart (difference >6). Reaction times (RTs) for negative numbers were slower than positive numbers, and both showed a distance effect whereby near pairs took longer to compare. A network of parietal, frontal, and occipital regions were differentially engaged by negative numbers. Specifically, compared to positive numbers, negative number processing resulted in greater activation bilaterally in intraparietal sulcus (IPS), middle frontal gyrus, and inferior lateral occipital cortex. Representational similarity analysis revealed that neural responses in the IPS were more differentiated among positive numbers than among negative numbers, and greater differentiation among negative numbers was associated with faster RTs. Our findings indicate that despite negative numbers engaging the IPS more strongly, the underlying neural representation are less distinct than that of positive numbers. We discuss our findings in the context of the two theoretical models of negative number processing and demonstrate how multivariate approaches can provide novel insights into abstract number representation. PMID:22363276

  19. Beyond natural numbers: negative number representation in parietal cortex.

    PubMed

    Blair, Kristen P; Rosenberg-Lee, Miriam; Tsang, Jessica M; Schwartz, Daniel L; Menon, Vinod

    2012-01-01

    Unlike natural numbers, negative numbers do not have natural physical referents. How does the brain represent such abstract mathematical concepts? Two competing hypotheses regarding representational systems for negative numbers are a rule-based model, in which symbolic rules are applied to negative numbers to translate them into positive numbers when assessing magnitudes, and an expanded magnitude model, in which negative numbers have a distinct magnitude representation. Using an event-related functional magnetic resonance imaging design, we examined brain responses in 22 adults while they performed magnitude comparisons of negative and positive numbers that were quantitatively near (difference <4) or far apart (difference >6). Reaction times (RTs) for negative numbers were slower than positive numbers, and both showed a distance effect whereby near pairs took longer to compare. A network of parietal, frontal, and occipital regions were differentially engaged by negative numbers. Specifically, compared to positive numbers, negative number processing resulted in greater activation bilaterally in intraparietal sulcus (IPS), middle frontal gyrus, and inferior lateral occipital cortex. Representational similarity analysis revealed that neural responses in the IPS were more differentiated among positive numbers than among negative numbers, and greater differentiation among negative numbers was associated with faster RTs. Our findings indicate that despite negative numbers engaging the IPS more strongly, the underlying neural representation are less distinct than that of positive numbers. We discuss our findings in the context of the two theoretical models of negative number processing and demonstrate how multivariate approaches can provide novel insights into abstract number representation.

  20. Representation of Fuzzy Symmetric Relations

    DTIC Science & Technology

    1986-03-19

    Std Z39-18 REPRESENTATION OF FUZZY SYMMETRIC RELATIONS L. Valverde Dept. de Matematiques i Estadistica Universitat Politecnica de Catalunya Avda...REPRESENTATION OF FUZZY SYMMETRIC RELATIONS L. "Valverde* Dept. de Matematiques i Estadistica Universitat Politecnica de Catalunya Avda. Diagonal, 649

  1. Multiple Scales of Representation along the Hippocampal Anteroposterior Axis in Humans.

    PubMed

    Brunec, Iva K; Bellana, Buddhika; Ozubko, Jason D; Man, Vincent; Robin, Jessica; Liu, Zhong-Xu; Grady, Cheryl; Rosenbaum, R Shayna; Winocur, Gordon; Barense, Morgan D; Moscovitch, Morris

    2018-06-13

    The ability to represent the world accurately relies on simultaneous coarse and fine-grained neural information coding, capturing both gist and detail of an experience. The longitudinal axis of the hippocampus may provide a gradient of representational granularity in spatial and episodic memory in rodents and humans [1-8]. Rodent place cells in the ventral hippocampus exhibit significantly larger place fields and greater autocorrelation than those in the dorsal hippocampus [1, 9-11], which may underlie a coarser and slower changing representation of space [10, 12]. Recent evidence suggests that properties of cellular dynamics in rodents can be captured with fMRI in humans during spatial navigation [13] and conceptual learning [14]. Similarly, mechanisms supporting granularity along the long axis may also be extrapolated to the scale of fMRI signal. Here, we provide the first evidence for separable scales of representation along the human hippocampal anteroposterior axis during navigation and rest by showing (1) greater similarity among voxel time courses and (2) higher temporal autocorrelation in anterior hippocampus (aHPC), relative to posterior hippocampus (pHPC), the human homologs of ventral and dorsal rodent hippocampus. aHPC voxels exhibited more similar activity at each time point and slower signal change over time than voxels in pHPC, consistent with place field organization in rodents. Importantly, similarity between voxels was related to navigational strategy and episodic memory. These findings provide evidence that the human hippocampus supports an anterior-to-posterior gradient of coarse-to-fine spatiotemporal representations, suggesting the existence of a cross-species mechanism, whereby lower neural similarity supports more complex coding of experience. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Factors influencing infants’ ability to update object representations in memory

    PubMed Central

    Moher, Mariko; Feigenson, Lisa

    2013-01-01

    Remembering persisting objects over occlusion is critical to representing a stable environment. Infants remember hidden objects at multiple locations and can update their representation of a hidden array when an object is added or subtracted. However, the factors influencing these updating abilities have received little systematic exploration. Here we examined the flexibility of infants’ ability to update object representations. We tested 11-month-olds in a looking-time task in which objects were added to or subtracted from two hidden arrays. Across five experiments, infants successfully updated their representations of hidden arrays when the updating occurred successively at one array before beginning at the other. But when updating required alternating between two arrays, infants failed. However, simply connecting the two arrays with a thin strip of foam-core led infants to succeed. Our results suggest that infants’ construal of an event strongly affects their ability to update memory representations of hidden objects. When construing an event as containing multiple updates to the same array, infants succeed, but when construing the event as requiring the revisiting and updating of previously attended arrays, infants fail. PMID:24049245

  3. NoGOA: predicting noisy GO annotations using evidences and sparse representation.

    PubMed

    Yu, Guoxian; Lu, Chang; Wang, Jun

    2017-07-21

    Gene Ontology (GO) is a community effort to represent functional features of gene products. GO annotations (GOA) provide functional associations between GO terms and gene products. Due to resources limitation, only a small portion of annotations are manually checked by curators, and the others are electronically inferred. Although quality control techniques have been applied to ensure the quality of annotations, the community consistently report that there are still considerable noisy (or incorrect) annotations. Given the wide application of annotations, however, how to identify noisy annotations is an important but yet seldom studied open problem. We introduce a novel approach called NoGOA to predict noisy annotations. NoGOA applies sparse representation on the gene-term association matrix to reduce the impact of noisy annotations, and takes advantage of sparse representation coefficients to measure the semantic similarity between genes. Secondly, it preliminarily predicts noisy annotations of a gene based on aggregated votes from semantic neighborhood genes of that gene. Next, NoGOA estimates the ratio of noisy annotations for each evidence code based on direct annotations in GOA files archived on different periods, and then weights entries of the association matrix via estimated ratios and propagates weights to ancestors of direct annotations using GO hierarchy. Finally, it integrates evidence-weighted association matrix and aggregated votes to predict noisy annotations. Experiments on archived GOA files of six model species (H. sapiens, A. thaliana, S. cerevisiae, G. gallus, B. Taurus and M. musculus) demonstrate that NoGOA achieves significantly better results than other related methods and removing noisy annotations improves the performance of gene function prediction. The comparative study justifies the effectiveness of integrating evidence codes with sparse representation for predicting noisy GO annotations. Codes and datasets are available at http://mlda.swu.edu.cn/codes.php?name=NoGOA .

  4. Forecasting air quality time series using deep learning.

    PubMed

    Freeman, Brian S; Taylor, Graham; Gharabaghi, Bahram; Thé, Jesse

    2018-04-13

    This paper presents one of the first applications of deep learning (DL) techniques to predict air pollution time series. Air quality management relies extensively on time series data captured at air monitoring stations as the basis of identifying population exposure to airborne pollutants and determining compliance with local ambient air standards. In this paper, 8 hr averaged surface ozone (O 3 ) concentrations were predicted using deep learning consisting of a recurrent neural network (RNN) with long short-term memory (LSTM). Hourly air quality and meteorological data were used to train and forecast values up to 72 hours with low error rates. The LSTM was able to forecast the duration of continuous O 3 exceedances as well. Prior to training the network, the dataset was reviewed for missing data and outliers. Missing data were imputed using a novel technique that averaged gaps less than eight time steps with incremental steps based on first-order differences of neighboring time periods. Data were then used to train decision trees to evaluate input feature importance over different time prediction horizons. The number of features used to train the LSTM model was reduced from 25 features to 5 features, resulting in improved accuracy as measured by Mean Absolute Error (MAE). Parameter sensitivity analysis identified look-back nodes associated with the RNN proved to be a significant source of error if not aligned with the prediction horizon. Overall, MAE's less than 2 were calculated for predictions out to 72 hours. Novel deep learning techniques were used to train an 8-hour averaged ozone forecast model. Missing data and outliers within the captured data set were replaced using a new imputation method that generated calculated values closer to the expected value based on the time and season. Decision trees were used to identify input variables with the greatest importance. The methods presented in this paper allow air managers to forecast long range air pollution

  5. Mask industry quality assessment

    NASA Astrophysics Data System (ADS)

    Strott, Al; Bassist, Larry

    1994-12-01

    Product quality and timely delivery are two of the most important parameters in determining the success of a mask manufacturing facility. Because of the sensitivity of this data, very little was known about industry performance in these areas until an assessment was authored and presented at the 1993 BACUS Symposium by Larry Regis of Intel Corporation, Neil Paulsen of Intel Corporation, and James A. Reynolds of Reynolds Consulting. This data has been updated and will be published and presented at this year's BACUS Symposium. Contributor identities will again remain protected by utilizing Arthur Andersen & Company to compile the submittals. Participation was consistent with last year's representation of over 75% of the total merchant and captive mask volume in the United States. The data compiled includes shipments, customer return rate, customer return reasons from 1988 through Q2, 1994, performance to schedule, plate survival yield, and throughput time (TPT).

  6. Developmental Specialization in the Right Intraparietal Sulcus for the Abstract Representation of Numerical Magnitude

    ERIC Educational Resources Information Center

    Holloway, Ian D.; Ansari, Daniel

    2010-01-01

    Because number is an abstract quality of a set, the way in which a number is externally represented does not change its quantitative meaning. In this study, we examined the development of the brain regions that support format-independent representation of numerical magnitude. We asked children and adults to perform both symbolic (Hindu-Arabic…

  7. Exploring the Structure of Spatial Representations

    PubMed Central

    Madl, Tamas; Franklin, Stan; Chen, Ke; Trappl, Robert; Montaldi, Daniela

    2016-01-01

    It has been suggested that the map-like representations that support human spatial memory are fragmented into sub-maps with local reference frames, rather than being unitary and global. However, the principles underlying the structure of these ‘cognitive maps’ are not well understood. We propose that the structure of the representations of navigation space arises from clustering within individual psychological spaces, i.e. from a process that groups together objects that are close in these spaces. Building on the ideas of representational geometry and similarity-based representations in cognitive science, we formulate methods for learning dissimilarity functions (metrics) characterizing participants’ psychological spaces. We show that these learned metrics, together with a probabilistic model of clustering based on the Bayesian cognition paradigm, allow prediction of participants’ cognitive map structures in advance. Apart from insights into spatial representation learning in human cognition, these methods could facilitate novel computational tools capable of using human-like spatial concepts. We also compare several features influencing spatial memory structure, including spatial distance, visual similarity and functional similarity, and report strong correlations between these dimensions and the grouping probability in participants’ spatial representations, providing further support for clustering in spatial memory. PMID:27347681

  8. Multiple Domains of Parental Secure Base Support During Childhood and Adolescence Contribute to Adolescents’ Representations of Attachment as a Secure Base Script

    PubMed Central

    Vaughn, Brian E.; Waters, Theodore E. A.; Steele, Ryan D.; Roisman, Glenn I.; Bost, Kelly K.; Truitt, Warren; Waters, Harriet S.; Booth-LaForce, Cathryn

    2016-01-01

    Although attachment theory claims that early attachment representations reflecting the quality of the child’s “lived experiences” are maintained across developmental transitions, evidence that has emerged over the last decade suggests that the association between early relationship quality and adolescents’ attachment representations is fairly modest in magnitude. We used aspects of parenting beyond sensitivity over childhood and adolescence and early security to predict adolescents’ scripted attachment representations. At age 18 years, 673 participants from the NICHD Study of Early Child Care and Youth Development (SECCYD) completed the Attachment Script Assessment (ASA) from which we derived an assessment of secure base script knowledge. Measures of secure base support from childhood through age 15 years (e.g., parental monitoring of child activity, father presence in the home) were selected as predictors and accounted for an additional 8% of the variance in secure base script knowledge scores above and beyond direct observations of sensitivity and early attachment status alone, suggesting that adolescents’ scripted attachment representations reflect multiple domains of parenting. Cognitive and demographic variables also significantly increased predicted variance in secure base script knowledge by 2% each. PMID:27032953

  9. Probing Lexical Representations: Simultaneous Modeling of Word and Reader Contributions to Multidimensional Lexical Representations

    ERIC Educational Resources Information Center

    Goodwin, Amanda P.; Gilbert, Jennifer K.; Cho, Sun-Joo; Kearns, Devin M.

    2014-01-01

    The current study models reader, item, and word contributions to the lexical representations of 39 morphologically complex words for 172 middle school students using a crossed random-effects item response model with multiple outcomes. We report 3 findings. First, results suggest that lexical representations can be characterized by separate but…

  10. Using Integer Manipulatives: Representational Determinism

    ERIC Educational Resources Information Center

    Bossé, Michael J.; Lynch-Davis, Kathleen; Adu-Gyamfi, Kwaku; Chandler, Kayla

    2016-01-01

    Teachers and students commonly use various concrete representations during mathematical instruction. These representations can be utilized to help students understand mathematical concepts and processes, increase flexibility of thinking, facilitate problem solving, and reduce anxiety while doing mathematics. Unfortunately, the manner in which some…

  11. 29 CFR 4003.6 - Representation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Relating to Labor (Continued) PENSION BENEFIT GUARANTY CORPORATION GENERAL RULES FOR ADMINISTRATIVE REVIEW OF AGENCY DECISIONS General Provisions § 4003.6 Representation. A person may file any document or... of attorney, signed by the person making the designation, which authorizes the representation and...

  12. Does Mother's Rather than Father's Attachment Representation Contribute to the Adolescent's Attachment Representation? Commentary on: "Maternal Adult Attachment Interview (AAI) Collected During Pregnancy Predicts Reflective Functioning in AAIs from their First-Born Children 17 Years Later"

    ERIC Educational Resources Information Center

    Spangler, Gottfried

    2016-01-01

    In this commentary, Spangler evaluates the Steele, Perez, Segal, and Steele report that arguede that reflective functioning in adolescence could not be predicted by quality of early infant attachment, but was associated with maternal (but not paternal) attachment representation, assessed before the adolescents' birth. Assuming that parental…

  13. Stress in Childhood and Adulthood: Effects on Marital Quality over Time

    ERIC Educational Resources Information Center

    Umberson, Debra; Williams, Kristi; Powers, Daniel A.; Liu, Hui; Needham, Belinda

    2005-01-01

    We work from a stress and life course perspective to consider how stress affects trajectories of change in marital quality over time. Specifically, we ask whether stress is more likely to undermine the quality of marital experiences at different points in the life course. In addition, we ask whether the effects of adult stress on marital quality…

  14. Completing the Physical Representation of Quantum Algorithms Provides a Quantitative Explanation of Their Computational Speedup

    NASA Astrophysics Data System (ADS)

    Castagnoli, Giuseppe

    2018-03-01

    The usual representation of quantum algorithms, limited to the process of solving the problem, is physically incomplete. We complete it in three steps: (i) extending the representation to the process of setting the problem, (ii) relativizing the extended representation to the problem solver to whom the problem setting must be concealed, and (iii) symmetrizing the relativized representation for time reversal to represent the reversibility of the underlying physical process. The third steps projects the input state of the representation, where the problem solver is completely ignorant of the setting and thus the solution of the problem, on one where she knows half solution (half of the information specifying it when the solution is an unstructured bit string). Completing the physical representation shows that the number of computation steps (oracle queries) required to solve any oracle problem in an optimal quantum way should be that of a classical algorithm endowed with the advanced knowledge of half solution.

  15. Quasiprobability Representations of Quantum Mechanics with Minimal Negativity

    NASA Astrophysics Data System (ADS)

    Zhu, Huangjun

    2016-09-01

    Quasiprobability representations, such as the Wigner function, play an important role in various research areas. The inevitable appearance of negativity in such representations is often regarded as a signature of nonclassicality, which has profound implications for quantum computation. However, little is known about the minimal negativity that is necessary in general quasiprobability representations. Here we focus on a natural class of quasiprobability representations that is distinguished by simplicity and economy. We introduce three measures of negativity concerning the representations of quantum states, unitary transformations, and quantum channels, respectively. Quite surprisingly, all three measures lead to the same representations with minimal negativity, which are in one-to-one correspondence with the elusive symmetric informationally complete measurements. In addition, most representations with minimal negativity are automatically covariant with respect to the Heisenberg-Weyl groups. Furthermore, our study reveals an interesting tradeoff between negativity and symmetry in quasiprobability representations.

  16. When the ringing in the ears gets unbearable: Illness representations, self-instructions and adjustment to tinnitus.

    PubMed

    Vollmann, Manja; Kalkouskaya, Natallia; Langguth, Berthold; Scharloo, Margreet

    2012-08-01

    Chronic tinnitus can severely impair a person's quality of life. The degree of impairment, however, is not closely related to tinnitus loudness. Applying the common sense model (CSM) of self-regulation of health and illness, this study investigated to what extent psychological factors, i.e. illness representations and positive/negative self-instructions, are associated with the degree of tinnitus-related complaints. In this cross-sectional study, 118 patients diagnosed with chronic tinnitus filled in questionnaires assessing illness representations (IPQ-R), positive and negative self-instructions (TRSS), and tinnitus-related complaints (TQ). The regression analysis yielded a number of significant associations between illness representations and tinnitus-related complaints, particularly for the IPQ-R dimensions identity, consequences, coherence, and emotional representations. With regard to self-instructions and tinnitus-related complaints, significant effects were found only for negative self-instructions. Moreover, multiple mediation analyses revealed that the effects of consequences and emotional representations on tinnitus-related complaints were (partially) due to the use of negative self-instructions. Psychological factors are strongly related to the extent of tinnitus-related complaints. The findings provide an indication of which aspects should be targeted in psychological and psychotherapeutic tinnitus treatment. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Braid group representation on quantum computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, Ryan Kasyfil, E-mail: kasyfilryan@gmail.com; Muchtadi-Alamsyah, Intan, E-mail: ntan@math.itb.ac.id

    2015-09-30

    There are many studies about topological representation of quantum computation recently. One of diagram representation of quantum computation is by using ZX-Calculus. In this paper we will make a diagrammatical scheme of Dense Coding. We also proved that ZX-Calculus diagram of maximally entangle state satisfies Yang-Baxter Equation and therefore, we can construct a Braid Group representation of set of maximally entangle state.

  18. Impossibility Theorem in Proportional Representation Problem

    NASA Astrophysics Data System (ADS)

    Karpov, Alexander

    2010-09-01

    The study examines general axiomatics of Balinski and Young and analyzes existed proportional representation methods using this approach. The second part of the paper provides new axiomatics based on rational choice models. New system of axioms is applied to study known proportional representation systems. It is shown that there is no proportional representation method satisfying a minimal set of the axioms (monotonicity and neutrality).

  19. Attitude Error Representations for Kalman Filtering

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The quaternion has the lowest dimensionality possible for a globally nonsingular attitude representation. The quaternion must obey a unit norm constraint, though, which has led to the development of an extended Kalman filter using a quaternion for the global attitude estimate and a three-component representation for attitude errors. We consider various attitude error representations for this Multiplicative Extended Kalman Filter and its second-order extension.

  20. Deep supervised dictionary learning for no-reference image quality assessment

    NASA Astrophysics Data System (ADS)

    Huang, Yuge; Liu, Xuesong; Tian, Xiang; Zhou, Fan; Chen, Yaowu; Jiang, Rongxin

    2018-03-01

    We propose a deep convolutional neural network (CNN) for general no-reference image quality assessment (NR-IQA), i.e., accurate prediction of image quality without a reference image. The proposed model consists of three components such as a local feature extractor that is a fully CNN, an encoding module with an inherent dictionary that aggregates local features to output a fixed-length global quality-aware image representation, and a regression module that maps the representation to an image quality score. Our model can be trained in an end-to-end manner, and all of the parameters, including the weights of the convolutional layers, the dictionary, and the regression weights, are simultaneously learned from the loss function. In addition, the model can predict quality scores for input images of arbitrary sizes in a single step. We tested our method on commonly used image quality databases and showed that its performance is comparable with that of state-of-the-art general-purpose NR-IQA algorithms.

  1. Irreducible representations of finitely generated nilpotent groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beloshapka, I V; Gorchinskiy, S O

    2016-01-31

    We prove that irreducible complex representations of finitely generated nilpotent groups are monomial if and only if they have finite weight, which was conjectured by Parshin. Note that we consider (possibly infinite-dimensional) representations without any topological structure. In addition, we prove that for certain induced representations, irreducibility is implied by Schur irreducibility. Both results are obtained in a more general form for representations over an arbitrary field. Bibliography: 21 titles.

  2. An Inventory for Measuring Student Teachers' Knowledge of Chemical Representations: Design, Validation, and Psychometric Analysis

    ERIC Educational Resources Information Center

    Taskin, V.; Bernholt, S.; Parchmann, I.

    2015-01-01

    Chemical representations play an important role in helping learners to understand chemical contents. Thus, dealing with chemical representations is a necessity for learning chemistry, but at the same time, it presents a great challenge to learners. Due to this great challenge, it is not surprising that numerous national and international studies…

  3. Quality and Quantity of Sorghum Hydroponic Fodder from Different Varieties and Harvest Time

    NASA Astrophysics Data System (ADS)

    Chrisdiana, R.

    2018-02-01

    This experiment was designed to compare different varieties and harvest time of sorghum hydroponic fodder based on nutrient content and biomass production. Experimental design for fodder productivity was completely randomized design with 2 x 3 factorial, i.e., sorghum varieties (KD 4 and Super-1) and time of harvesting the sorghum hydroponic fodder (8,12 and 16 d). Total biomass and DM production, were affected significantly (p<0.05) on harvest time. Total biomass and nutrient content were increased in longer harvest time. The nutrient content were increased with decreasing total value of DM. Super-1 varieties produce larger biomass and nutrient content higher than KD4 (p<0.05). Based on sorghum hidroponic fodder quality and quantity, sorghum hidroponic fodder with Super-1 varieties harvested at 12 d had a good quality of fodder and it can be alternative of technology providing quality forage and land saving with a short time planting period and continous production.

  4. Attitude Representations for Kalman Filtering

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The four-component quaternion has the lowest dimensionality possible for a globally nonsingular attitude representation, it represents the attitude matrix as a homogeneous quadratic function, and its dynamic propagation equation is bilinear in the quaternion and the angular velocity. The quaternion is required to obey a unit norm constraint, though, so Kalman filters often employ a quaternion for the global attitude estimate and a three-component representation for small errors about the estimate. We consider these mixed attitude representations for both a first-order Extended Kalman filter and a second-order filter, as well for quaternion-norm-preserving attitude propagation.

  5. Promoting Decimal Number Sense and Representational Fluency

    ERIC Educational Resources Information Center

    Suh, Jennifer M.; Johnston, Chris; Jamieson, Spencer; Mills, Michelle

    2008-01-01

    The abstract nature of mathematics requires the communication of mathematical ideas through multiple representations, such as words, symbols, pictures, objects, or actions. Building representational fluency involves using mathematical representations flexibly and being able to interpret and translate among these different models and mathematical…

  6. Body representation in patients after vascular brain injuries.

    PubMed

    Razmus, Magdalena

    2017-11-01

    Neuropsychological literature suggests that body representation is a multidimensional concept consisting of various types of representations. Previous studies have demonstrated dissociations between three types of body representation specified by the kind of data and processes, i.e. body schema, body structural description, and body semantics. The aim of the study was to describe the state of body representation in patients after vascular brain injuries and to provide evidence for the different types of body representation. The question about correlations between body representation deficits and neuropsychological dysfunctions was also investigated. Fifty patients after strokes and 50 control individuals participated in the study. They were examined with tasks referring to dynamic representation of body parts positions, topological body map, and lexical and semantic knowledge about the body. Data analysis showed that vascular brain injuries result in deficits of body representation, which may co-occur with cognitive dysfunctions, but the latter are a possible risk factor for body representation deficits rather than sufficient or imperative requisites for them. The study suggests that types of body representation may be separated on the basis not only of their content, but also of their relation with self. Principal component analysis revealed three factors, which explained over 66% of results variance. The factors, which may be interpreted as types or dimensions of mental model of a body, represent different degrees of connection with self. The results indicate another possibility of body representation types classification, which should be verified in future research.

  7. Risk factors for hospital re-presentation among older adults following fragility fractures: a systematic review and meta-analysis.

    PubMed

    Mathew, Saira A; Gane, Elise; Heesch, Kristiann C; McPhail, Steven M

    2016-09-12

    Older adults hospitalized with fragility fractures are at high risk of negative events that can culminate in re-presentations to hospital emergency departments or readmissions to hospital. This systematic review aimed to identify patient, clinical, or hospital-related factors that are identifiable at the index admission and that may be associated with re-presentations to hospital emergency departments or hospital readmissions in older adults following fragility fractures. Four electronic databases (PubMed, CINAHL, Embase, and Scopus) were searched. A suite of search terms identified peer-reviewed English-language articles that examined potential correlates of hospital re-presentation in older adults (mean age ≥ 65 years) who were discharged from hospital following treatment for fragility fractures. A three-stage screening process (titles, abstracts, full text) was conducted by two researchers independently. Participant characteristics, study design, potential correlates examined, analyses, and findings were extracted for studies included in the review. Quality and risk of bias were assessed with the Effective Public Health Practice Project Quality Assessment Tool. The strength of evidence was incorporated into a best evidence synthesis, and meta-analysis was conducted where effect pooling was possible. Eleven of 35 eligible studies were categorized as high quality studies. These studies reported that age, higher Cumulative Illness Rating scores, American Society of Anesthesiologists scores > 3, longer length of stay, male sex, cardiovascular disease, low post-operative hemoglobin, kidney disease, dementia and cancer were factors identified at the index admission that were predictive of subsequent re-presentation to hospital. Age was the only predictor for which pooling of effects across studies was possible: pooling was conducted for re-presentation ≤ 30 days (pooled OR, 1.27; 95 % CI, 1.14-1.43) and > 30 days (pooled OR, 1.23; 95 % CI, 1

  8. Multivariate pattern analysis of MEG and EEG: A comparison of representational structure in time and space.

    PubMed

    Cichy, Radoslaw Martin; Pantazis, Dimitrios

    2017-09-01

    Multivariate pattern analysis of magnetoencephalography (MEG) and electroencephalography (EEG) data can reveal the rapid neural dynamics underlying cognition. However, MEG and EEG have systematic differences in sampling neural activity. This poses the question to which degree such measurement differences consistently bias the results of multivariate analysis applied to MEG and EEG activation patterns. To investigate, we conducted a concurrent MEG/EEG study while participants viewed images of everyday objects. We applied multivariate classification analyses to MEG and EEG data, and compared the resulting time courses to each other, and to fMRI data for an independent evaluation in space. We found that both MEG and EEG revealed the millisecond spatio-temporal dynamics of visual processing with largely equivalent results. Beyond yielding convergent results, we found that MEG and EEG also captured partly unique aspects of visual representations. Those unique components emerged earlier in time for MEG than for EEG. Identifying the sources of those unique components with fMRI, we found the locus for both MEG and EEG in high-level visual cortex, and in addition for MEG in low-level visual cortex. Together, our results show that multivariate analyses of MEG and EEG data offer a convergent and complimentary view on neural processing, and motivate the wider adoption of these methods in both MEG and EEG research. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Dimensions of novelty: a social representation approach to new foods.

    PubMed

    Bäckström, A; Pirttilä-Backman, A-M; Tuorila, H

    2003-06-01

    Social representations of new foods were examined with a total of 44 subjects in nine focus groups. Each group was homogenous, defined by age, gender and educational background. Halfway through the interview, commercial packages of functional, genetically modified, organic, nutritionally modified and ethnic foods were presented as visual stimuli for discussion. Thematic and content analyses of the interview data showed that five dichotomies characterized the social representation: trust/distrust, safe/unsafe, natural/artificial, pleasure/necessity, and past/present. Many metaphors were used, with functional products being associated metaphorically with, for example, medicine and genetically modified products being associated with death and terrorism. Chronological references focused on the development of cuisine. The perceived unsafety of new foods was an important argument for women but not for men. The difference between age groups was in relating the discussion to either present time (young subjects) or past time (older subjects). Level of education affected the content of argumentation. In the context of new foods, social representations are formed to cope with the feeling of strangeness evoked by the novelties. They also have a role in cultural acceptance of new products by making them familiar. Overall, the results reflect the development of a new common sense in which popularized scientific notions are anchored in the process of urbanization.

  10. Simplified approach to the mixed time-averaging semiclassical initial value representation for the calculation of dense vibrational spectra

    NASA Astrophysics Data System (ADS)

    Buchholz, Max; Grossmann, Frank; Ceotto, Michele

    2018-03-01

    We present and test an approximate method for the semiclassical calculation of vibrational spectra. The approach is based on the mixed time-averaging semiclassical initial value representation method, which is simplified to a form that contains a filter to remove contributions from approximately harmonic environmental degrees of freedom. This filter comes at no additional numerical cost, and it has no negative effect on the accuracy of peaks from the anharmonic system of interest. The method is successfully tested for a model Hamiltonian and then applied to the study of the frequency shift of iodine in a krypton matrix. Using a hierarchic model with up to 108 normal modes included in the calculation, we show how the dynamical interaction between iodine and krypton yields results for the lowest excited iodine peaks that reproduce experimental findings to a high degree of accuracy.

  11. 4 CFR 28.113 - Contents of representation petitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 4 Accounts 1 2014-01-01 2013-01-01 true Contents of representation petitions. 28.113 Section 28... ACCOUNTABILITY OFFICE Special Procedures; Representation Proceedings § 28.113 Contents of representation petitions. (a) The contents of representation petitions filed under § 28.112(a)(1) (by a labor organization...

  12. 4 CFR 28.113 - Contents of representation petitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 4 Accounts 1 2011-01-01 2011-01-01 false Contents of representation petitions. 28.113 Section 28... ACCOUNTABILITY OFFICE Special Procedures; Representation Proceedings § 28.113 Contents of representation petitions. (a) The contents of representation petitions filed under § 28.112(a)(1) (by a labor organization...

  13. 4 CFR 28.113 - Contents of representation petitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 4 Accounts 1 2013-01-01 2013-01-01 false Contents of representation petitions. 28.113 Section 28... ACCOUNTABILITY OFFICE Special Procedures; Representation Proceedings § 28.113 Contents of representation petitions. (a) The contents of representation petitions filed under § 28.112(a)(1) (by a labor organization...

  14. 4 CFR 28.113 - Contents of representation petitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 4 Accounts 1 2012-01-01 2012-01-01 false Contents of representation petitions. 28.113 Section 28... ACCOUNTABILITY OFFICE Special Procedures; Representation Proceedings § 28.113 Contents of representation petitions. (a) The contents of representation petitions filed under § 28.112(a)(1) (by a labor organization...

  15. Symbolic Representation of Probabilistic Worlds

    ERIC Educational Resources Information Center

    Feldman, Jacob

    2012-01-01

    Symbolic representation of environmental variables is a ubiquitous and often debated component of cognitive science. Yet notwithstanding centuries of philosophical discussion, the efficacy, scope, and validity of such representation has rarely been given direct consideration from a mathematical point of view. This paper introduces a quantitative…

  16. Knowledge Representation: A Brief Review.

    ERIC Educational Resources Information Center

    Vickery, B. C.

    1986-01-01

    Reviews different structures and techniques of knowledge representation: structure of database records and files, data structures in computer programming, syntatic and semantic structure of natural language, knowledge representation in artificial intelligence, and models of human memory. A prototype expert system that makes use of some of these…

  17. Path-integral representation for the relativistic particle propagators and BFV quantization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fradkin, E.S.; Gitman, D.M.

    1991-11-15

    The path-integral representations for the propagators of scalar and spinor fields in an external electromagnetic field are derived. The Hamiltonian form of such expressions can be interpreted in the sense of Batalin-Fradkin-Vilkovisky quantization of one-particle theory. The Lagrangian representation as derived allows one to extract in a natural way the expressions for the corresponding gauge-invariant (reparametrization- and supergauge-invariant) actions for pointlike scalar and spinning particles. At the same time, the measure and ranges of integrations, admissible gauge conditions, and boundary conditions can be exactly established.

  18. Social representations of needlestick injuries.

    PubMed

    Lubenow, Juliana Almeida Marques; Moura, Maria Eliete Batista; Nunes, Benevina Maria Vilar Teixeira; Figueiredo, Maria do Livramento Fortes; Sales, Luís Carlos

    2012-01-01

    understand the Social Representations about needlestick injuries elaborated by Nursing Technicians and analyze how these representations influence their conducts. the data, obtained by interviews, were processed using ALCESTE software and their analysis was based on Serge Moscovici's Social Representations Theory. it was evidenced that, after the accident, these professionals take care of the affected area. Then, they report the accident, motivated by the fear of catching HIV and hepatitis. The different feelings experienced are due to this fear and the way they were forwarded by the institution, reflecting in the cause they attribute to their accident. it was verified that knowledge about the accident as a whole is very incipient in this professional group, demanding continuing education and greater emphasis on this subject in professional training. It is expected that this study draws public authorities and health institutions' attention to the problem and that it modifies Nursing Technicians' Social Representations about percutaneous exposure.

  19. Vietnamese Document Representation and Classification

    NASA Astrophysics Data System (ADS)

    Nguyen, Giang-Son; Gao, Xiaoying; Andreae, Peter

    Vietnamese is very different from English and little research has been done on Vietnamese document classification, or indeed, on any kind of Vietnamese language processing, and only a few small corpora are available for research. We created a large Vietnamese text corpus with about 18000 documents, and manually classified them based on different criteria such as topics and styles, giving several classification tasks of different difficulty levels. This paper introduces a new syllable-based document representation at the morphological level of the language for efficient classification. We tested the representation on our corpus with different classification tasks using six classification algorithms and two feature selection techniques. Our experiments show that the new representation is effective for Vietnamese categorization, and suggest that best performance can be achieved using syllable-pair document representation, an SVM with a polynomial kernel as the learning algorithm, and using Information gain and an external dictionary for feature selection.

  20. Exploring Middle School Students' Representational Competence in Science: Development and Verification of a Framework for Learning with Visual Representations

    NASA Astrophysics Data System (ADS)

    Tippett, Christine Diane

    Scientific knowledge is constructed and communicated through a range of forms in addition to verbal language. Maps, graphs, charts, diagrams, formulae, models, and drawings are just some of the ways in which science concepts can be represented. Representational competence---an aspect of visual literacy that focuses on the ability to interpret, transform, and produce visual representations---is a key component of science literacy and an essential part of science reading and writing. To date, however, most research has examined learning from representations rather than learning with representations. This dissertation consisted of three distinct projects that were related by a common focus on learning from visual representations as an important aspect of scientific literacy. The first project was the development of an exploratory framework that is proposed for use in investigations of students constructing and interpreting multimedia texts. The exploratory framework, which integrates cognition, metacognition, semiotics, and systemic functional linguistics, could eventually result in a model that might be used to guide classroom practice, leading to improved visual literacy, better comprehension of science concepts, and enhanced science literacy because it emphasizes distinct aspects of learning with representations that can be addressed though explicit instruction. The second project was a metasynthesis of the research that was previously conducted as part of the Explicit Literacy Instruction Embedded in Middle School Science project (Pacific CRYSTAL, http://www.educ.uvic.ca/pacificcrystal). Five overarching themes emerged from this case-to-case synthesis: the engaging and effective nature of multimedia genres, opportunities for differentiated instruction using multimodal strategies, opportunities for assessment, an emphasis on visual representations, and the robustness of some multimodal literacy strategies across content areas. The third project was a mixed

  1. Think spatial: the representation in mental rotation is nonvisual.

    PubMed

    Liesefeld, Heinrich R; Zimmer, Hubert D

    2013-01-01

    For mental rotation, introspection, theories, and interpretations of experimental results imply a certain type of mental representation, namely, visual mental images. Characteristics of the rotated representation can be examined by measuring the influence of stimulus characteristics on rotational speed. If the amount of a given type of information influences rotational speed, one can infer that it was contained in the rotated representation. In Experiment 1, rotational speed of university students (10 men, 11 women) was found to be influenced exclusively by the amount of represented orientation-dependent spatial-relational information but not by orientation-independent spatial-relational information, visual complexity, or the number of stimulus parts. As information in mental-rotation tasks is initially presented visually, this finding implies that at some point during each trial, orientation-dependent information is extracted from visual information. Searching for more direct evidence for this extraction, we recorded the EEG of another sample of university students (12 men, 12 women) during mental rotation of the same stimuli. In an early time window, the observed working memory load-dependent slow potentials were sensitive to the stimuli's visual complexity. Later, in contrast, slow potentials were sensitive to the amount of orientation-dependent information only. We conclude that only orientation-dependent information is contained in the rotated representation. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  2. Admission medical records made at night time have the same quality as day and evening time records.

    PubMed

    Amirian, Ilda; Mortensen, Jacob F; Rosenberg, Jacob; Gögenur, Ismail

    2014-07-01

    A thorough and accurate admission medical record is an important tool in ensuring patient safety during the hospital stay. Surgeons' performance might be affected during night shifts due to sleep deprivation. The aim of the study was to assess the quality of admission medical records during day, evening and night time. A total of 1,000 admission medical records were collected from 2009 to 2013 based equally on four diagnoses: mechanical bowel obstruction, appendicitis, gallstone disease and gastrointestinal bleeding. The records were reviewed for errors by a pre-defined checklist based on Danish standards for admission medical records. The time of dictation for the medical record was registered. A total of 1,183 errors were found in 778 admission medical records made during day- and evening time, and 322 errors in 222 admission medical records from night time shifts. No significant overall difference in error was found in the admission medical records when day and evening values were compared to night values. Subgroup analyses made for all four diagnoses showed no difference in day and evening values compared with night time values. Night time deterioration was not seen in the quality of the medical records.

  3. Analysis of graphic representation ability in oscillation phenomena

    NASA Astrophysics Data System (ADS)

    Dewi, A. R. C.; Putra, N. M. D.; Susilo

    2018-03-01

    This study aims to investigates how the ability of students to representation graphs of linear function and harmonic function in understanding of oscillation phenomena. Method of this research used mix methods with concurrent embedded design. The subjects were 35 students of class X MIA 3 SMA 1 Bae Kudus. Data collection through giving essays and interviews that lead to the ability to read and draw graphs in material of Hooke's law and oscillation characteristics. The results of study showed that most of the students had difficulty in drawing graph of linear function and harmonic function of deviation with time. Students’ difficulties in drawing the graph of linear function is the difficulty of analyzing the variable data needed in graph making, confusing the placement of variable data on the coordinate axis, the difficulty of determining the scale interval on each coordinate, and the variation of how to connect the dots forming the graph. Students’ difficulties in representing the graph of harmonic function is to determine the time interval of sine harmonic function, the difficulty to determine the initial deviation point of the drawing, the difficulty of finding the deviation equation of the case of oscillation characteristics and the confusion to different among the maximum deviation (amplitude) with the length of the spring caused the load.Complexity of the characteristic attributes of the oscillation phenomena graphs, students tend to show less well the ability of graphical representation of harmonic functions than the performance of the graphical representation of linear functions.

  4. Women and political representation.

    PubMed

    Rathod, P B

    1999-01-01

    A remarkable progress in women's participation in politics throughout the world was witnessed in the final decade of the 20th century. According to the Inter-Parliamentary Union report, there were only eight countries with no women in their legislatures in 1998. The number of women ministers at the cabinet level worldwide doubled in a decade, and the number of countries without any women ministers dropped from 93 to 48 during 1987-96. However, this progress is far from satisfactory. Political representation of women, minorities, and other social groups is still inadequate. This may be due to a complex combination of socioeconomic, cultural, and institutional factors. The view that women's political participation increases with social and economic development is supported by data from the Nordic countries, where there are higher proportions of women legislators than in less developed countries. While better levels of socioeconomic development, having a women-friendly political culture, and higher literacy are considered favorable factors for women's increased political representation, adopting one of the proportional representation systems (such as a party-list system, a single transferable vote system, or a mixed proportional system with multi-member constituencies) is the single factor most responsible for the higher representation of women.

  5. The influence of signal type on the internal auditory representation of a room

    NASA Astrophysics Data System (ADS)

    Teret, Elizabeth

    Currently, architectural acousticians make no real distinction between a room impulse response and the auditory system's internal representation of a room. With this lack of a good model for the auditory representation of a room, it is indirectly assumed that our internal representation of a room is independent of the sound source needed to make the room characteristics audible. The extent to which this assumption holds true is examined with perceptual tests. Listeners are presented with various pairs of signals (music, speech, and noise) convolved with synthesized impulse responses of different reverberation times. They are asked to adjust the reverberation of one of the signals to match the other. Analysis of the data show that the source signal significantly influences perceived reverberance. Listeners are less accurate when matching reverberation times of varied signals than they are with identical signals. Additional testing shows that perception of reverberation can be linked to the existence of transients in the signal.

  6. Spatial versus Tree Representations of Proximity Data.

    ERIC Educational Resources Information Center

    Pruzansky, Sandra; And Others

    1982-01-01

    Two-dimensional euclidean planes and additive trees are two of the most common representations of proximity data for multidimensional scaling. Guidelines for comparing these representations and discovering properties that could help identify which representation is more appropriate for a given data set are presented. (Author/JKS)

  7. Children's Visual Representations of Food and Meal Time: Towards an Understanding of Nutrition and Educational Practices

    ERIC Educational Resources Information Center

    Savoie-Zajc, Lorraine

    2005-01-01

    Within the broad perspective of school and social exclusion, this article pays attention to an important factor of exclusion: overweight and obesity in primary school children. An interdisciplinary research was conducted and aimed at the study of social representations and practices surrounding food which primary school children, their parents and…

  8. TEMPORAL SIGNATURES OF AIR QUALITY OBSERVATIONS AND MODEL OUTPUTS: DO TIME SERIES DECOMPOSITION METHODS CAPTURE RELEVANT TIME SCALES?

    EPA Science Inventory

    Time series decomposition methods were applied to meteorological and air quality data and their numerical model estimates. Decomposition techniques express a time series as the sum of a small number of independent modes which hypothetically represent identifiable forcings, thereb...

  9. The semantic representation of prejudice and stereotypes.

    PubMed

    Bhatia, Sudeep

    2017-07-01

    We use a theory of semantic representation to study prejudice and stereotyping. Particularly, we consider large datasets of newspaper articles published in the United States, and apply latent semantic analysis (LSA), a prominent model of human semantic memory, to these datasets to learn representations for common male and female, White, African American, and Latino names. LSA performs a singular value decomposition on word distribution statistics in order to recover word vector representations, and we find that our recovered representations display the types of biases observed in human participants using tasks such as the implicit association test. Importantly, these biases are strongest for vector representations with moderate dimensionality, and weaken or disappear for representations with very high or very low dimensionality. Moderate dimensional LSA models are also the best at learning race, ethnicity, and gender-based categories, suggesting that social category knowledge, acquired through dimensionality reduction on word distribution statistics, can facilitate prejudiced and stereotyped associations. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Spirituality, Self-Representations, and Attachment to Parents: A Longitudinal Study of Roman Catholic College Seminarians

    ERIC Educational Resources Information Center

    Reinert, Duane F.

    2005-01-01

    The author used an attachment theory framework to explore relationships between early attachment to parents and seminarians' later self-representations and relationship with God. Attachment to mother was a key variable in predicting seminarians' level of self-esteem and internalized shame as well as the quality of their relationship with God. This…

  11. Daytime Sleep Enhances Consolidation of the Spatial but Not Motoric Representation of Motor Sequence Memory

    PubMed Central

    Albouy, Geneviève; Fogel, Stuart; Pottiez, Hugo; Nguyen, Vo An; Ray, Laura; Lungu, Ovidiu; Carrier, Julie; Robertson, Edwin; Doyon, Julien

    2013-01-01

    Motor sequence learning is known to rely on more than a single process. As the skill develops with practice, two different representations of the sequence are formed: a goal representation built under spatial allocentric coordinates and a movement representation mediated through egocentric motor coordinates. This study aimed to explore the influence of daytime sleep (nap) on consolidation of these two representations. Through the manipulation of an explicit finger sequence learning task and a transfer protocol, we show that both allocentric (spatial) and egocentric (motor) representations of the sequence can be isolated after initial training. Our results also demonstrate that nap favors the emergence of offline gains in performance for the allocentric, but not the egocentric representation, even after accounting for fatigue effects. Furthermore, sleep-dependent gains in performance observed for the allocentric representation are correlated with spindle density during non-rapid eye movement (NREM) sleep of the post-training nap. In contrast, performance on the egocentric representation is only maintained, but not improved, regardless of the sleep/wake condition. These results suggest that motor sequence memory acquisition and consolidation involve distinct mechanisms that rely on sleep (and specifically, spindle) or simple passage of time, depending respectively on whether the sequence is performed under allocentric or egocentric coordinates. PMID:23300993

  12. Argumentation-Based Collaborative Inquiry in Science through Representational Work: Impact on Primary Students' Representational Fluency

    ERIC Educational Resources Information Center

    Nichols, Kim; Gillies, Robyn; Hedberg, John

    2016-01-01

    This study explored the impact of argumentation-promoting collaborative inquiry and representational work in science on primary students' representational fluency. Two hundred sixty-six year 6 students received instruction on natural disasters with a focus on collaborative inquiry. Students in the Comparison condition received only this…

  13. Time course of action representations evoked during sentence comprehension.

    PubMed

    Heard, Alison W; Masson, Michael E J; Bub, Daniel N

    2015-03-01

    The nature of hand-action representations evoked during language comprehension was investigated using a variant of the visual-world paradigm in which eye fixations were monitored while subjects viewed a screen displaying four hand postures and listened to sentences describing an actor using or lifting a manipulable object. Displayed postures were related to either a functional (using) or volumetric (lifting) interaction with an object that matched or did not match the object mentioned in the sentence. Subjects were instructed to select the hand posture that matched the action described in the sentence. Even before the manipulable object was mentioned in the sentence, some sentence contexts allowed subjects to infer the object's identity and the type of action performed with it and eye fixations immediately favored the corresponding hand posture. This effect was assumed to be the result of ongoing motor or perceptual imagery in which the action described in the sentence was mentally simulated. In addition, the hand posture related to the manipulable object mentioned in a sentence, but not related to the described action (e.g., a writing posture in the context of a sentence that describes lifting, but not using, a pencil), was favored over other hand postures not related to the object. This effect was attributed to motor resonance arising from conceptual processing of the manipulable object, without regard to the remainder of the sentence context. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Expression-invariant representations of faces.

    PubMed

    Bronstein, Alexander M; Bronstein, Michael M; Kimmel, Ron

    2007-01-01

    Addressed here is the problem of constructing and analyzing expression-invariant representations of human faces. We demonstrate and justify experimentally a simple geometric model that allows to describe facial expressions as isometric deformations of the facial surface. The main step in the construction of expression-invariant representation of a face involves embedding of the facial intrinsic geometric structure into some low-dimensional space. We study the influence of the embedding space geometry and dimensionality choice on the representation accuracy and argue that compared to its Euclidean counterpart, spherical embedding leads to notably smaller metric distortions. We experimentally support our claim showing that a smaller embedding error leads to better recognition.

  15. Representations of mechanical assembly sequences

    NASA Technical Reports Server (NTRS)

    Homem De Mello, Luiz S.; Sanderson, Arthur C.

    1991-01-01

    Five types of representations for assembly sequences are reviewed: the directed graph of feasible assembly sequences, the AND/OR graph of feasible assembly sequences, the set of establishment conditions, and two types of sets of precedence relationships. (precedence relationships between the establishment of one connection between parts and the establishment of another connection, and precedence relationships between the establishment of one connection and states of the assembly process). The mappings of one representation into the others are established. The correctness and completeness of these representations are established. The results presented are needed in the proof of correctness and completeness of algorithms for the generation of mechanical assembly sequences.

  16. [Visual representation of natural scenes in flicker changes].

    PubMed

    Nakashima, Ryoichi; Yokosawa, Kazuhiko

    2010-08-01

    Coherence theory in scene perception (Rensink, 2002) assumes the retention of volatile object representations on which attention is not focused. On the other hand, visual memory theory in scene perception (Hollingworth & Henderson, 2002) assumes that robust object representations are retained. In this study, we hypothesized that the difference between these two theories is derived from the difference of the experimental tasks that they are based on. In order to verify this hypothesis, we examined the properties of visual representation by using a change detection and memory task in a flicker paradigm. We measured the representations when participants were instructed to search for a change in a scene, and compared them with the intentional memory representations. The visual representations were retained in visual long-term memory even in the flicker paradigm, and were as robust as the intentional memory representations. However, the results indicate that the representations are unavailable for explicitly localizing a scene change, but are available for answering the recognition test. This suggests that coherence theory and visual memory theory are compatible.

  17. The conventionality of pictorial representation in interstellar messages

    NASA Astrophysics Data System (ADS)

    Vakoch, D. A.

    2000-06-01

    Pictorial messages have previously been advocated for interstellar communication because such messages are presumed to be capable of presenting information in a non-arbitrary and easily intelligible manner. In contrast to this view, pictorial messages actually represent information in a partially conventional way. This point is demonstrated by examining pictorial representations of human beings from a range of cultures. While such representations may be understood quite readily by individuals familiar with the conventions of a particular culture, to the uninitiated outsider, such representations can be unintelligible. In spite of the partially arbitrary nature of pictorial representation, we may be able to construct messages that would teach extraterrestrial intelligence (ETI) some of the conventions by which we view pictures. One such approach is to pair numerical information about geometrical objects with pictorial representations of the same objects. Problems of conventionality can also be addressed in part through use of (1) multiple representations of the same object, (2) contextual cues, (3) three- and four-dimensional representations and (4) non-visual representations.

  18. Scientific Representation and Science Learning

    ERIC Educational Resources Information Center

    Matta, Corrado

    2014-01-01

    In this article I examine three examples of philosophical theories of scientific representation with the aim of assessing which of these is a good candidate for a philosophical theory of scientific representation in science learning. The three candidate theories are Giere's intentional approach, Suárez's inferential approach and Lynch and…

  19. Cognition and procedure representational requirements for predictive human performance models

    NASA Technical Reports Server (NTRS)

    Corker, K.

    1992-01-01

    Models and modeling environments for human performance are becoming significant contributors to early system design and analysis procedures. Issues of levels of automation, physical environment, informational environment, and manning requirements are being addressed by such man/machine analysis systems. The research reported here investigates the close interaction between models of human cognition and models that described procedural performance. We describe a methodology for the decomposition of aircrew procedures that supports interaction with models of cognition on the basis of procedures observed; that serves to identify cockpit/avionics information sources and crew information requirements; and that provides the structure to support methods for function allocation among crew and aiding systems. Our approach is to develop an object-oriented, modular, executable software representation of the aircrew, the aircraft, and the procedures necessary to satisfy flight-phase goals. We then encode in a time-based language, taxonomies of the conceptual, relational, and procedural constraints among the cockpit avionics and control system and the aircrew. We have designed and implemented a goals/procedures hierarchic representation sufficient to describe procedural flow in the cockpit. We then execute the procedural representation in simulation software and calculate the values of the flight instruments, aircraft state variables and crew resources using the constraints available from the relationship taxonomies. The system provides a flexible, extensible, manipulative and executable representation of aircrew and procedures that is generally applicable to crew/procedure task-analysis. The representation supports developed methods of intent inference, and is extensible to include issues of information requirements and functional allocation. We are attempting to link the procedural representation to models of cognitive functions to establish several intent inference methods

  20. When Does Changing Representation Improve Problem-Solving Performance?

    NASA Technical Reports Server (NTRS)

    Holte, Robert; Zimmer, Robert; MacDonald, Alan

    1992-01-01

    The aim of changing representation is the improvement of problem-solving efficiency. For the most widely studied family of methods of change of representation it is shown that the value of a single parameter, called the expulsion factor, is critical in determining (1) whether the change of representation will improve or degrade problem-solving efficiency and (2) whether the solutions produced using the change of representation will or will not be exponentially longer than the shortest solution. A method of computing the expansion factor for a given change of representation is sketched in general and described in detail for homomorphic changes of representation. The results are illustrated with homomorphic decompositions of the Towers of Hanoi problem.

  1. Clients' Representations of Childhood Emotional Bonds with Parents, Social Support, and Formation of the Working Alliance.

    ERIC Educational Resources Information Center

    Mallinckrodt, Brent

    1991-01-01

    Collected survey data from 102 client-counselor dyads with regard to client and counselor third-session working alliance ratings, quality of clients' current social relationships, and clients' representations of care and overprotection in memories of childhood emotional bonds with parents. Social support was significant predictor of client-rated…

  2. Strategies for ensuring global consistency/comparability of water-quality data

    USGS Publications Warehouse

    Klein, J.M.

    1999-01-01

    In the past 20 years the water quality of the United States has improved remarkably-the waters are safer for drinking, swimming, and fishing. However, despite many accomplishments, it is still difficult to answer such basic questions as: 'How clean is the water?' and 'How is it changing over time?' These same questions exist on a global scale as well. In order to focus water-data issues in the United States, a national Intergovernmental Task Force on Monitoring Water Quality (ITFM) was initiated for public and private organizations, whereby key elements involved in data collection, analysis, storage, and management could be made consistent and comparable. The ITFM recommended and its members are implementing a nationwide strategy to improve water-quality monitoring, assessment, and reporting activities. The intent of this paper is to suggest that a voluntary effort be initiated to ensure the comparability and utility of hydrological data on a global basis. Consistent, long-term data sets that are comparable are necessary in order to formulate ideas regarding regional and global trends in water quantity and quality. The author recommends that a voluntary effort similar to the ITFM effort be utilized. The strategy proposed would involve voluntary representation from countries and international organizations (e.g. World Health Organization) involved in drinking-water assessments and/or ambient water-quality monitoring. Voluntary partnerships such as this will improve curability to reduce health risks and achieve a better return on public and private investments in monitoring, environmental protection, and natural resource management, and result in a collaborative process that will save millions of dollars.In this work it is suggested that a voluntary effort be initiated to ensure the comparability and utility of hydrological data on a global basis. The strategy proposed would involve voluntary representation from countries and international organizations involved in

  3. Perceptual Representation as a Mechanism of Lexical Ambiguity Resolution: An Investigation of Span and Processing Time

    ERIC Educational Resources Information Center

    Madden, Carol J.; Zwaan, Rolf A.

    2006-01-01

    In 2 experiments, the authors investigated the ability of high- and low-span comprehenders to construe subtle shades of meaning through perceptual representation. High- and low-span comprehenders responded to pictures that either matched or mismatched a target object's shape as implied by the preceding sentence context. At 750 ms after hearing the…

  4. Polar plot representation of time-resolved fluorescence.

    PubMed

    Eichorst, John Paul; Wen Teng, Kai; Clegg, Robert M

    2014-01-01

    Measuring changes in a molecule's fluorescence emission is a common technique to study complex biological systems such as cells and tissues. Although the steady-state fluorescence intensity is frequently used, measuring the average amount of time that a molecule spends in the excited state (the fluorescence lifetime) reveals more detailed information about its local environment. The lifetime is measured in the time domain by detecting directly the decay of fluorescence following excitation by short pulse of light. The lifetime can also be measured in the frequency domain by recording the phase and amplitude of oscillation in the emitted fluorescence of the sample in response to repetitively modulated excitation light. In either the time or frequency domain, the analysis of data to extract lifetimes can be computationally intensive. For example, a variety of iterative fitting algorithms already exist to determine lifetimes from samples that contain multiple fluorescing species. However, recently a method of analysis referred to as the polar plot (or phasor plot) is a graphical tool that projects the time-dependent features of the sample's fluorescence in either the time or frequency domain into the Cartesian plane to characterize the sample's lifetime. The coordinate transformations of the polar plot require only the raw data, and hence, there are no uncertainties from extensive corrections or time-consuming fitting in this analysis. In this chapter, the history and mathematical background of the polar plot will be presented along with examples that highlight how it can be used in both cuvette-based and imaging applications.

  5. Unpacking Exoplanet Detection Using Pedagogical Discipline Representations (PDRs)

    NASA Astrophysics Data System (ADS)

    Prather, Edward E.; Chambers, Timothy G.; Wallace, Colin Scott; Brissenden, Gina

    2017-01-01

    Successful educators know the importance of using multiple representations to teach the content of their disciplines. We have all seen the moments of epiphany that can be inspired when engaging with just the right representation of a difficult concept. The formal study of the cognitive impact of different representations on learners is now an active area of education research. The affordances of a particular representation are defined as the elements of disciplinary knowledge that students are able to access and reason about using that representation. Instructors with expert pedagogical content knowledge teach each topic using representations with complementary affordances, maximizing their students’ opportunity to develop fluency with all aspects of the topic. The work presented here examines how we have applied the theory of affordances to the development of pedagogical discipline representation (PDR) in an effort to provide access to, and help non-science-majors engage in expert-like reasoning about, general relativity as applied to detection of exoplanets. We define a pedagogical discipline representation (PDR) as a representation that has been uniquely tailored for the purpose of teaching a specific topic within a discipline. PDRs can be simplified versions of expert representations or can be highly contextualized with features that purposefully help unpack specific reasoning or concepts, and engage learners’ pre-existing mental models while promoting and enabling critical discourse. Examples of PDRs used for instruction and assessment will be provided along with preliminary results documenting the effectiveness of their use in the classroom.

  6. Explain the 'unexplainable': A qualitative enquiry of the representations of the caregivers of brain-injured people.

    PubMed

    Huet, Magali; Dany, Lionel; Apostolidis, Thémistoklis

    2016-04-01

    The aim of our research is to highlight the role of social representations of the traumatic brain-injured person in the adjustments made by caregivers in building and maintaining quality of care. Twenty-three semi-structured interviews were conducted with nursing assistants and medico-psychological assistants, working in a long-term care facility. The interviews were the subject of a thematic content analysis. The analysis shows the role of representations of the traumatic brain-injured person in the way caregivers explain behaviours and situations and in the orientation of their professional practices. In explaining the inexplicable, caregivers establish a more human relationship through individualized care.

  7. LR: Compact connectivity representation for triangle meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurung, T; Luffel, M; Lindstrom, P

    2011-01-28

    We propose LR (Laced Ring) - a simple data structure for representing the connectivity of manifold triangle meshes. LR provides the option to store on average either 1.08 references per triangle or 26.2 bits per triangle. Its construction, from an input mesh that supports constant-time adjacency queries, has linear space and time complexity, and involves ordering most vertices along a nearly-Hamiltonian cycle. LR is best suited for applications that process meshes with fixed connectivity, as any changes to the connectivity require the data structure to be rebuilt. We provide an implementation of the set of standard random-access, constant-time operators formore » traversing a mesh, and show that LR often saves both space and traversal time over competing representations.« less

  8. Building Hierarchical Representations for Oracle Character and Sketch Recognition.

    PubMed

    Jun Guo; Changhu Wang; Roman-Rangel, Edgar; Hongyang Chao; Yong Rui

    2016-01-01

    In this paper, we study oracle character recognition and general sketch recognition. First, a data set of oracle characters, which are the oldest hieroglyphs in China yet remain a part of modern Chinese characters, is collected for analysis. Second, typical visual representations in shape- and sketch-related works are evaluated. We analyze the problems suffered when addressing these representations and determine several representation design criteria. Based on the analysis, we propose a novel hierarchical representation that combines a Gabor-related low-level representation and a sparse-encoder-related mid-level representation. Extensive experiments show the effectiveness of the proposed representation in both oracle character recognition and general sketch recognition. The proposed representation is also complementary to convolutional neural network (CNN)-based models. We introduce a solution to combine the proposed representation with CNN-based models, and achieve better performances over both approaches. This solution has beaten humans at recognizing general sketches.

  9. Synthesis of atmospheric turbulence point spread functions by sparse and redundant representations

    NASA Astrophysics Data System (ADS)

    Hunt, Bobby R.; Iler, Amber L.; Bailey, Christopher A.; Rucci, Michael A.

    2018-02-01

    Atmospheric turbulence is a fundamental problem in imaging through long slant ranges, horizontal-range paths, or uplooking astronomical cases through the atmosphere. An essential characterization of atmospheric turbulence is the point spread function (PSF). Turbulence images can be simulated to study basic questions, such as image quality and image restoration, by synthesizing PSFs of desired properties. In this paper, we report on a method to synthesize PSFs of atmospheric turbulence. The method uses recent developments in sparse and redundant representations. From a training set of measured atmospheric PSFs, we construct a dictionary of "basis functions" that characterize the atmospheric turbulence PSFs. A PSF can be synthesized from this dictionary by a properly weighted combination of dictionary elements. We disclose an algorithm to synthesize PSFs from the dictionary. The algorithm can synthesize PSFs in three orders of magnitude less computing time than conventional wave optics propagation methods. The resulting PSFs are also shown to be statistically representative of the turbulence conditions that were used to construct the dictionary.

  10. In the right place at the right time: habitat representation in protected areas of South American Nothofagus-dominated plants after a dispersal constrained climate change scenario.

    PubMed

    Alarcón, Diego; Cavieres, Lohengrin A

    2015-01-01

    In order to assess the effects of climate change in temperate rainforest plants in southern South America in terms of habitat size, representation in protected areas, considering also if the expected impacts are similar for dominant trees and understory plant species, we used niche modeling constrained by species migration on 118 plant species, considering two groups of dominant trees and two groups of understory ferns. Representation in protected areas included Chilean national protected areas, private protected areas, and priority areas planned for future reserves, with two thresholds for minimum representation at the country level: 10% and 17%. With a 10% representation threshold, national protected areas currently represent only 50% of the assessed species. Private reserves are important since they increase up to 66% the species representation level. Besides, 97% of the evaluated species may achieve the minimum representation target only if the proposed priority areas were included. With the climate change scenario representation levels slightly increase to 53%, 69%, and 99%, respectively, to the categories previously mentioned. Thus, the current location of all the representation categories is useful for overcoming climate change by 2050. Climate change impacts on habitat size and representation of dominant trees in protected areas are not applicable to understory plants, highlighting the importance of assessing these effects with a larger number of species. Although climate change will modify the habitat size of plant species in South American temperate rainforests, it will have no significant impact in terms of the number of species adequately represented in Chile, where the implementation of the proposed reserves is vital to accomplish the present and future minimum representation. Our results also show the importance of using migration dispersal constraints to develop more realistic future habitat maps from climate change predictions.

  11. In the Right Place at the Right Time: Habitat Representation in Protected Areas of South American Nothofagus-Dominated Plants after a Dispersal Constrained Climate Change Scenario

    PubMed Central

    Alarcón, Diego; Cavieres, Lohengrin A.

    2015-01-01

    In order to assess the effects of climate change in temperate rainforest plants in southern South America in terms of habitat size, representation in protected areas, considering also if the expected impacts are similar for dominant trees and understory plant species, we used niche modeling constrained by species migration on 118 plant species, considering two groups of dominant trees and two groups of understory ferns. Representation in protected areas included Chilean national protected areas, private protected areas, and priority areas planned for future reserves, with two thresholds for minimum representation at the country level: 10% and 17%. With a 10% representation threshold, national protected areas currently represent only 50% of the assessed species. Private reserves are important since they increase up to 66% the species representation level. Besides, 97% of the evaluated species may achieve the minimum representation target only if the proposed priority areas were included. With the climate change scenario representation levels slightly increase to 53%, 69%, and 99%, respectively, to the categories previously mentioned. Thus, the current location of all the representation categories is useful for overcoming climate change by 2050. Climate change impacts on habitat size and representation of dominant trees in protected areas are not applicable to understory plants, highlighting the importance of assessing these effects with a larger number of species. Although climate change will modify the habitat size of plant species in South American temperate rainforests, it will have no significant impact in terms of the number of species adequately represented in Chile, where the implementation of the proposed reserves is vital to accomplish the present and future minimum representation. Our results also show the importance of using migration dispersal constraints to develop more realistic future habitat maps from climate change predictions. PMID:25786226

  12. The Representational Value of Hats

    ERIC Educational Resources Information Center

    Watson, Jane M.; Fitzallen, Noleine E.; Wilson, Karen G.; Creed, Julie F.

    2008-01-01

    The literature that is available on the topic of representations in mathematics is vast. One commonly discussed item is graphical representations. From the history of mathematics to modern uses of technology, a variety of graphical forms are available for middle school students to use to represent mathematical ideas. The ideas range from algebraic…

  13. High-quality slab-based intermixing method for fusion rendering of multiple medical objects.

    PubMed

    Kim, Dong-Joon; Kim, Bohyoung; Lee, Jeongjin; Shin, Juneseuk; Kim, Kyoung Won; Shin, Yeong-Gil

    2016-01-01

    The visualization of multiple 3D objects has been increasingly required for recent applications in medical fields. Due to the heterogeneity in data representation or data configuration, it is difficult to efficiently render multiple medical objects in high quality. In this paper, we present a novel intermixing scheme for fusion rendering of multiple medical objects while preserving the real-time performance. First, we present an in-slab visibility interpolation method for the representation of subdivided slabs. Second, we introduce virtual zSlab, which extends an infinitely thin boundary (such as polygonal objects) into a slab with a finite thickness. Finally, based on virtual zSlab and in-slab visibility interpolation, we propose a slab-based visibility intermixing method with the newly proposed rendering pipeline. Experimental results demonstrate that the proposed method delivers more effective multiple-object renderings in terms of rendering quality, compared to conventional approaches. And proposed intermixing scheme provides high-quality intermixing results for the visualization of intersecting and overlapping surfaces by resolving aliasing and z-fighting problems. Moreover, two case studies are presented that apply the proposed method to the real clinical applications. These case studies manifest that the proposed method has the outstanding advantages of the rendering independency and reusability. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Disciplinary Representation on Institutional Websites: Changing Knowledge, Changing Power?

    ERIC Educational Resources Information Center

    O'Connor, Kate; Yates, Lyn

    2014-01-01

    This paper analyses shifts in the representation of history and physics as named organisational units on Australian university websites over the last 15 years in the context of broader questions about the production of knowledge in contemporary times. It derives from a broader project concerned with disciplinarity, changing university contexts and…

  15. A network of spiking neurons for computing sparse representations in an energy-efficient way.

    PubMed

    Hu, Tao; Genkin, Alexander; Chklovskii, Dmitri B

    2012-11-01

    Computing sparse redundant representations is an important problem in both applied mathematics and neuroscience. In many applications, this problem must be solved in an energy-efficient way. Here, we propose a hybrid distributed algorithm (HDA), which solves this problem on a network of simple nodes communicating by low-bandwidth channels. HDA nodes perform both gradient-descent-like steps on analog internal variables and coordinate-descent-like steps via quantized external variables communicated to each other. Interestingly, the operation is equivalent to a network of integrate-and-fire neurons, suggesting that HDA may serve as a model of neural computation. We show that the numerical performance of HDA is on par with existing algorithms. In the asymptotic regime, the representation error of HDA decays with time, t, as 1/t. HDA is stable against time-varying noise; specifically, the representation error decays as 1/√t for gaussian white noise.

  16. Accurate metacognition for visual sensory memory representations.

    PubMed

    Vandenbroucke, Annelinde R E; Sligte, Ilja G; Barrett, Adam B; Seth, Anil K; Fahrenfort, Johannes J; Lamme, Victor A F

    2014-04-01

    The capacity to attend to multiple objects in the visual field is limited. However, introspectively, people feel that they see the whole visual world at once. Some scholars suggest that this introspective feeling is based on short-lived sensory memory representations, whereas others argue that the feeling of seeing more than can be attended to is illusory. Here, we investigated this phenomenon by combining objective memory performance with subjective confidence ratings during a change-detection task. This allowed us to compute a measure of metacognition--the degree of knowledge that subjects have about the correctness of their decisions--for different stages of memory. We show that subjects store more objects in sensory memory than they can attend to but, at the same time, have similar metacognition for sensory memory and working memory representations. This suggests that these subjective impressions are not an illusion but accurate reflections of the richness of visual perception.

  17. Withdrawal times and associated factors in colonoscopy: a quality assurance multicenter assessment.

    PubMed

    Overholt, Bergein F; Brooks-Belli, Linda; Grace, Michael; Rankin, Kristin; Harrell, Royce; Turyk, Mary; Rosenberg, Fred B; Barish, Robert W; Gilinsky, Norman H

    2010-04-01

    To evaluate the use and impact of the recommended withdrawal time of at least 6 minutes from the cecum in colonoscopy in multiple gastroenterology endoscopy ambulatory surgery centers serving a wide geographical area. An observational prospective multicenter quality assurance review was conducted in 49 ambulatory surgery centers in 17 states with 315 gastroenterologists. There was no intervention with this quality assessment program as care of patients and the routine of gastroenterologists continued as standard practice. Multivariable analysis was applied to the database to examine factors affecting withdrawal time and polyp detection. There were 15,955 consecutive qualified patients receiving colonoscopies in a designated 4-week period. Gastroenterologists with average withdrawal times of 6 minutes or more in patients with no polyps were 1.8 times more likely to detect 1 or more polyps and had a significantly higher rate (P<0.0001) of polyp detection in patients with findings of polyps compared to gastroenterologists with average withdrawal times of less than 6 minutes in patients with no polyps. For patients with no pathology, the mean time of withdrawal was 6.98 (SD=4.34) minutes and for patients with pathology mean time of withdrawal was 11.27 (SD=6.71) minutes. Strongest predictors of withdrawal time of 6 minutes or more were presence of carcinoma (3.7 times more likely than those with no pathology), adenoma (2.0 times more likely than those with no pathology), and number of polyps visualized (1.7 times more likely for each polyp). This quality assurance assessment from standard colonoscopy practices of 315 gastroenterologists in 49 endoscopic ambulatory surgery centers serving a wide geographical area provides support for the merits of a colonoscopy withdrawal time from the cecum of 6 minutes or more to improve the detection of polyps.

  18. Deep Direct Reinforcement Learning for Financial Signal Representation and Trading.

    PubMed

    Deng, Yue; Bao, Feng; Kong, Youyong; Ren, Zhiquan; Dai, Qionghai

    2017-03-01

    Can we train the computer to beat experienced traders for financial assert trading? In this paper, we try to address this challenge by introducing a recurrent deep neural network (NN) for real-time financial signal representation and trading. Our model is inspired by two biological-related learning concepts of deep learning (DL) and reinforcement learning (RL). In the framework, the DL part automatically senses the dynamic market condition for informative feature learning. Then, the RL module interacts with deep representations and makes trading decisions to accumulate the ultimate rewards in an unknown environment. The learning system is implemented in a complex NN that exhibits both the deep and recurrent structures. Hence, we propose a task-aware backpropagation through time method to cope with the gradient vanishing issue in deep training. The robustness of the neural system is verified on both the stock and the commodity future markets under broad testing conditions.

  19. Attachment Representations and Time Perspective in Adolescence

    ERIC Educational Resources Information Center

    Laghi, Fiorenzo; D'Alessio, Maria; Pallini, Susanna; Baiocco, Roberto

    2009-01-01

    This study examines the relationship between attachment to parents and peers, time perspective and psychological adjustment in adolescence. 2,665 adolescents (M age = 17.03 years, SD = 1.48) completed self-report measures about parent and peer attachment, time perspective, sympathy and self-determination. Subjects were divided into four groups…

  20. Natural language processing and the representation of clinical data.

    PubMed Central

    Sager, N; Lyman, M; Bucknall, C; Nhan, N; Tick, L J

    1994-01-01

    OBJECTIVE: Develop a representation of clinical observations and actions and a method of processing free-text patient documents to facilitate applications such as quality assurance. DESIGN: The Linguistic String Project (LSP) system of New York University utilizes syntactic analysis, augmented by a sublanguage grammar and an information structure that are specific to the clinical narrative, to map free-text documents into a database for querying. MEASUREMENTS: Information precision (I-P) and information recall (I-R) were measured for queries for the presence of 13 asthma-health-care quality assurance criteria in a database generated from 59 discharge letters. RESULTS: I-P, using counts of major errors only, was 95.7% for the 28-letter training set and 98.6% for the 31-letter test set. I-R, using counts of major omissions only, was 93.9% for the training set and 92.5% for the test set. PMID:7719796

  1. On Representations and Situated Tools.

    ERIC Educational Resources Information Center

    Moreno-Armella, Luis

    This paper suggests that the systems of representations that we use in mathematics have a cultural origin and concludes that the knowledge produced with the help of these systems of representation likewise has a cultural origin. This assertion forces a reformulation of the issue of objectivity in terms that differ from those inherited from…

  2. Representation and redistribution in federations.

    PubMed

    Dragu, Tiberiu; Rodden, Jonathan

    2011-05-24

    Many of the world's most populous democracies are political unions composed of states or provinces that are unequally represented in the national legislature. Scattered empirical studies, most of them focusing on the United States, have discovered that overrepresented states appear to receive larger shares of the national budget. Although this relationship is typically attributed to bargaining advantages associated with greater legislative representation, an important threat to empirical identification stems from the fact that the representation scheme was chosen by the provinces. Thus, it is possible that representation and fiscal transfers are both determined by other characteristics of the provinces in a specific country. To obtain an improved estimate of the relationship between representation and redistribution, we collect and analyze provincial-level data from nine federations over several decades, taking advantage of the historical process through which federations formed and expanded. Controlling for a variety of country- and province-level factors and using a variety of estimation techniques, we show that overrepresented provinces in political unions around the world are rather dramatically favored in the distribution of resources.

  3. Representation and redistribution in federations

    PubMed Central

    Dragu, Tiberiu; Rodden, Jonathan

    2011-01-01

    Many of the world's most populous democracies are political unions composed of states or provinces that are unequally represented in the national legislature. Scattered empirical studies, most of them focusing on the United States, have discovered that overrepresented states appear to receive larger shares of the national budget. Although this relationship is typically attributed to bargaining advantages associated with greater legislative representation, an important threat to empirical identification stems from the fact that the representation scheme was chosen by the provinces. Thus, it is possible that representation and fiscal transfers are both determined by other characteristics of the provinces in a specific country. To obtain an improved estimate of the relationship between representation and redistribution, we collect and analyze provincial-level data from nine federations over several decades, taking advantage of the historical process through which federations formed and expanded. Controlling for a variety of country- and province-level factors and using a variety of estimation techniques, we show that overrepresented provinces in political unions around the world are rather dramatically favored in the distribution of resources. PMID:21555553

  4. Integrating spatially explicit representations of landscape perceptions into land change research

    USGS Publications Warehouse

    Dorning, Monica; Van Berkel, Derek B.; Semmens, Darius J.

    2017-01-01

    Purpose of ReviewHuman perceptions of the landscape can influence land-use and land-management decisions. Recognizing the diversity of landscape perceptions across space and time is essential to understanding land change processes and emergent landscape patterns. We summarize the role of landscape perceptions in the land change process, demonstrate advances in quantifying and mapping landscape perceptions, and describe how these spatially explicit techniques have and may benefit land change research.Recent FindingsMapping landscape perceptions is becoming increasingly common, particularly in research focused on quantifying ecosystem services provision. Spatial representations of landscape perceptions, often measured in terms of landscape values and functions, provide an avenue for matching social and environmental data in land change studies. Integrating these data can provide new insights into land change processes, contribute to landscape planning strategies, and guide the design and implementation of land change models.SummaryChallenges remain in creating spatial representations of human perceptions. Maps must be accompanied by descriptions of whose perceptions are being represented and the validity and uncertainty of those representations across space. With these considerations, rapid advancements in mapping landscape perceptions hold great promise for improving representation of human dimensions in landscape ecology and land change research.

  5. Low-count PET image restoration using sparse representation

    NASA Astrophysics Data System (ADS)

    Li, Tao; Jiang, Changhui; Gao, Juan; Yang, Yongfeng; Liang, Dong; Liu, Xin; Zheng, Hairong; Hu, Zhanli

    2018-04-01

    In the field of positron emission tomography (PET), reconstructed images are often blurry and contain noise. These problems are primarily caused by the low resolution of projection data. Solving this problem by improving hardware is an expensive solution, and therefore, we attempted to develop a solution based on optimizing several related algorithms in both the reconstruction and image post-processing domains. As sparse technology is widely used, sparse prediction is increasingly applied to solve this problem. In this paper, we propose a new sparse method to process low-resolution PET images. Two dictionaries (D1 for low-resolution PET images and D2 for high-resolution PET images) are learned from a group real PET image data sets. Among these two dictionaries, D1 is used to obtain a sparse representation for each patch of the input PET image. Then, a high-resolution PET image is generated from this sparse representation using D2. Experimental results indicate that the proposed method exhibits a stable and superior ability to enhance image resolution and recover image details. Quantitatively, this method achieves better performance than traditional methods. This proposed strategy is a new and efficient approach for improving the quality of PET images.

  6. Ontological Representation of Light Wave Camera Data to Support Vision-Based AmI

    PubMed Central

    Serrano, Miguel Ángel; Gómez-Romero, Juan; Patricio, Miguel Ángel; García, Jesús; Molina, José Manuel

    2012-01-01

    Recent advances in technologies for capturing video data have opened a vast amount of new application areas in visual sensor networks. Among them, the incorporation of light wave cameras on Ambient Intelligence (AmI) environments provides more accurate tracking capabilities for activity recognition. Although the performance of tracking algorithms has quickly improved, symbolic models used to represent the resulting knowledge have not yet been adapted to smart environments. This lack of representation does not allow to take advantage of the semantic quality of the information provided by new sensors. This paper advocates for the introduction of a part-based representational level in cognitive-based systems in order to accurately represent the novel sensors' knowledge. The paper also reviews the theoretical and practical issues in part-whole relationships proposing a specific taxonomy for computer vision approaches. General part-based patterns for human body and transitive part-based representation and inference are incorporated to an ontology-based previous framework to enhance scene interpretation in the area of video-based AmI. The advantages and new features of the model are demonstrated in a Social Signal Processing (SSP) application for the elaboration of live market researches.

  7. Quality Control Circles: A Vehicle for Just-in-Time Implementation.

    ERIC Educational Resources Information Center

    Sepehri, Mehran

    1985-01-01

    Explains just-in-time (JIT) material flow and production, a method of production designed to eliminate waste. Discusses why quality control circles work so well with a JIT system, and describes how several companies have made JIT work for them. (CT)

  8. Structural dynamic model obtained from flight use with piloted simulation and handling qualities analysis

    NASA Technical Reports Server (NTRS)

    Powers, Bruce G.

    1996-01-01

    The ability to use flight data to determine an aircraft model with structural dynamic effects suitable for piloted simulation. and handling qualities analysis has been developed. This technique was demonstrated using SR-71 flight test data. For the SR-71 aircraft, the most significant structural response is the longitudinal first-bending mode. This mode was modeled as a second-order system, and the other higher order modes were modeled as a time delay. The distribution of the modal response at various fuselage locations was developed using a uniform beam solution, which can be calibrated using flight data. This approach was compared to the mode shape obtained from the ground vibration test, and the general form of the uniform beam solution was found to be a good representation of the mode shape in the areas of interest. To calibrate the solution, pitch-rate and normal-acceleration instrumentation is required for at least two locations. With the resulting structural model incorporated into the simulation, a good representation of the flight characteristics was provided for handling qualities analysis and piloted simulation.

  9. Secure Base Narrative Representations and Intimate Partner Violence: A Dyadic Perspective

    PubMed Central

    Karakurt, Gunnur; Silver, Kristin E.; Keiley, Margaret K.

    2015-01-01

    This study aimed to understand the relationship between secure base phenomena and dating violence among couples. Within a relationship, a secure base can be defined as a balancing act of proximity-seeking and exploration at various times and contexts with the assurance of a caregiver’s availability and responsiveness in emotionally distressing situations. Participants were 87 heterosexual couples. The Actor-Partner Interdependence Model was used to examine the relationship between each partner’s scores on secure base representational knowledge and intimate partner violence. Findings demonstrated that women’s secure base representational knowledge had a significant direct negative effect on the victimization of both men and women, while men’s secure base representational knowledge did not have any significant partner or actor effects. Therefore, findings suggest that women with insecure attachments may be more vulnerable to being both the victims and the perpetrators of PMID:27445432

  10. The Development of Father-Child Attachment: Associations between Adult Attachment Representations, Recollections of Childhood Experiences and Caregiving

    ERIC Educational Resources Information Center

    McFarland-Piazza, Laura; Hazen, Nancy; Jacobvitz, Deborah; Boyd-Soisson, Erin

    2012-01-01

    The association between fathers' adult attachment representations and their recollections of childhood experiences with their caregiving quality with their eight-month-old infants and with father-infant attachment classification was examined in a longitudinal study of 117 fathers and their infants. Sensitive caregiving was related to…

  11. Spacetime representation of topological phononics

    NASA Astrophysics Data System (ADS)

    Deymier, Pierre A.; Runge, Keith; Lucas, Pierre; Vasseur, Jérôme O.

    2018-05-01

    Non-conventional topology of elastic waves arises from breaking symmetry of phononic structures either intrinsically through internal resonances or extrinsically via application of external stimuli. We develop a spacetime representation based on twistor theory of an intrinsic topological elastic structure composed of a harmonic chain attached to a rigid substrate. Elastic waves in this structure obey the Klein–Gordon and Dirac equations and possesses spinorial character. We demonstrate the mapping between straight line trajectories of these elastic waves in spacetime and the twistor complex space. The twistor representation of these Dirac phonons is related to their topological and fermion-like properties. The second topological phononic structure is an extrinsic structure composed of a one-dimensional elastic medium subjected to a moving superlattice. We report an analogy between the elastic behavior of this time-dependent superlattice, the scalar quantum field theory and general relativity of two types of exotic particle excitations, namely temporal Dirac phonons and temporal ghost (tachyonic) phonons. These phonons live on separate sides of a two-dimensional frequency space and are delimited by ghost lines reminiscent of the conventional light cone. Both phonon types exhibit spinorial amplitudes that can be measured by mapping the particle behavior to the band structure of elastic waves.

  12. Similarity preserving low-rank representation for enhanced data representation and effective subspace learning.

    PubMed

    Zhang, Zhao; Yan, Shuicheng; Zhao, Mingbo

    2014-05-01

    Latent Low-Rank Representation (LatLRR) delivers robust and promising results for subspace recovery and feature extraction through mining the so-called hidden effects, but the locality of both similar principal and salient features cannot be preserved in the optimizations. To solve this issue for achieving enhanced performance, a boosted version of LatLRR, referred to as Regularized Low-Rank Representation (rLRR), is proposed through explicitly including an appropriate Laplacian regularization that can maximally preserve the similarity among local features. Resembling LatLRR, rLRR decomposes given data matrix from two directions by seeking a pair of low-rank matrices. But the similarities of principal and salient features can be effectively preserved by rLRR. As a result, the correlated features are well grouped and the robustness of representations is also enhanced. Based on the outputted bi-directional low-rank codes by rLRR, an unsupervised subspace learning framework termed Low-rank Similarity Preserving Projections (LSPP) is also derived for feature learning. The supervised extension of LSPP is also discussed for discriminant subspace learning. The validity of rLRR is examined by robust representation and decomposition of real images. Results demonstrated the superiority of our rLRR and LSPP in comparison to other related state-of-the-art algorithms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. "I remember when we stayed still and the computer still made lines": Young children's invented and conventional representations of motion

    NASA Astrophysics Data System (ADS)

    Kahn, Jason

    This dissertation concerns kindergarteners' and second graders' invented representations of motion, their interactions with conventional representations of motion built from the child's movement in front of a motion detector and using real-time graphing tools, and any changes in the invented representations that this interaction brings about. We have known for several decades that advanced learners (high school aged and beyond) struggle with physics concepts of motion and sometimes Cartesian graph-based representations of motion. Little has been known about how younger students approach the same concepts. In this study, eighteen children (10 kindergarteners and eight second graders) completed a three-hour clinical interview spread out evenly over three weeks. In the first and last interviews, the child was asked to produce external representations of movement and interpret conventional distance and time graphs of motion. In the second interview the children interacted with a motion detector and real-time graphing tools in a semi-self-directed format. Qualitative and quantitative results are presented and discussed. Qualitative data shows that children are adroit at representing motion and their productions are systematic and purposeful. Children produce drawings that both give context to the physical environment around them and also redescribe the drawn environment, meaning that they provide a potential audience with information otherwise imperceptible, by making certain implicit aspects more explicit. Second graders quickly appropriate the Cartesian graph during the intervention, though at times misinterpret the meaning associated with slope. Children correctly associate slope with direction, but at times misattribute sign of slope (positive or negative) and its corresponding direction (i.e. some children do not ascribe positive slope with motion away from a point of reference, but toward it). Kindergarteners showed a range of experiences during the intervention

  14. The Binary Representation of Rational Numbers.

    ERIC Educational Resources Information Center

    Schmalz, Rosemary

    1987-01-01

    Presented are the mathematical explanation of the algorithm for representing rational numbers in base two, paper-and-pencil methods for producing the representation, some patterns in these representations, and pseudocode for computer programs to explore these patterns. (MNS)

  15. 48 CFR 2009.570-4 - Representation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... type required by the organizational conflicts of interest representation provisions has previously been... ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Organizational Conflicts of Interest 2009.570-4 Representation... whether situations or relationships exist which may constitute organizational conflicts of interest with...

  16. The interaction of representation and reasoning.

    PubMed

    Bundy, Alan

    2013-09-08

    Automated reasoning is an enabling technology for many applications of informatics. These applications include verifying that a computer program meets its specification; enabling a robot to form a plan to achieve a task and answering questions by combining information from diverse sources, e.g. on the Internet, etc. How is automated reasoning possible? Firstly, knowledge of a domain must be stored in a computer, usually in the form of logical formulae. This knowledge might, for instance, have been entered manually, retrieved from the Internet or perceived in the environment via sensors, such as cameras. Secondly, rules of inference are applied to old knowledge to derive new knowledge. Automated reasoning techniques have been adapted from logic, a branch of mathematics that was originally designed to formalize the reasoning of humans, especially mathematicians. My special interest is in the way that representation and reasoning interact. Successful reasoning is dependent on appropriate representation of both knowledge and successful methods of reasoning. Failures of reasoning can suggest changes of representation. This process of representational change can also be automated. We will illustrate the automation of representational change by drawing on recent work in my research group.

  17. Biologically Plausible, Human-Scale Knowledge Representation.

    PubMed

    Crawford, Eric; Gingerich, Matthew; Eliasmith, Chris

    2016-05-01

    Several approaches to implementing symbol-like representations in neurally plausible models have been proposed. These approaches include binding through synchrony (Shastri & Ajjanagadde, ), "mesh" binding (van der Velde & de Kamps, ), and conjunctive binding (Smolensky, ). Recent theoretical work has suggested that most of these methods will not scale well, that is, that they cannot encode structured representations using any of the tens of thousands of terms in the adult lexicon without making implausible resource assumptions. Here, we empirically demonstrate that the biologically plausible structured representations employed in the Semantic Pointer Architecture (SPA) approach to modeling cognition (Eliasmith, ) do scale appropriately. Specifically, we construct a spiking neural network of about 2.5 million neurons that employs semantic pointers to successfully encode and decode the main lexical relations in WordNet, which has over 100,000 terms. In addition, we show that the same representations can be employed to construct recursively structured sentences consisting of arbitrary WordNet concepts, while preserving the original lexical structure. We argue that these results suggest that semantic pointers are uniquely well-suited to providing a biologically plausible account of the structured representations that underwrite human cognition. Copyright © 2015 Cognitive Science Society, Inc.

  18. The interaction of representation and reasoning

    PubMed Central

    Bundy, Alan

    2013-01-01

    Automated reasoning is an enabling technology for many applications of informatics. These applications include verifying that a computer program meets its specification; enabling a robot to form a plan to achieve a task and answering questions by combining information from diverse sources, e.g. on the Internet, etc. How is automated reasoning possible? Firstly, knowledge of a domain must be stored in a computer, usually in the form of logical formulae. This knowledge might, for instance, have been entered manually, retrieved from the Internet or perceived in the environment via sensors, such as cameras. Secondly, rules of inference are applied to old knowledge to derive new knowledge. Automated reasoning techniques have been adapted from logic, a branch of mathematics that was originally designed to formalize the reasoning of humans, especially mathematicians. My special interest is in the way that representation and reasoning interact. Successful reasoning is dependent on appropriate representation of both knowledge and successful methods of reasoning. Failures of reasoning can suggest changes of representation. This process of representational change can also be automated. We will illustrate the automation of representational change by drawing on recent work in my research group. PMID:24062623

  19. Changes in Self-Representations Following Psychoanalytic Psychotherapy for Young Adults: A Comparative Typology.

    PubMed

    Werbart, Andrzej; Brusell, Lars; Iggedal, Rebecka; Lavfors, Kristin; Widholm, Alexander

    2016-10-01

    Changes in dynamic psychological structures are often a treatment goal in psychotherapy. The present study aimed at creating a typology of self-representations among young women and men in psychoanalytic psychotherapy, to study longitudinal changes in self-representations, and to compare self-representations in the clinical sample with those of a nonclinical group. Twenty-five women and sixteen men were interviewed according to Blatt's Object Relations Inventory pretreatment, at termination, and at a 1.5-year follow-up. In the comparison group, eleven women and nine men were interviewed at baseline, 1.5 years, and three years later. Typologies of the 123 self-descriptions in the clinical group and 60 in the nonclinical group were constructed by means of ideal-type analysis for men and women separately. Clusters of self-representations could be depicted on a two-dimensional matrix with the axes Relatedness-Self-definition and Integration-Nonintegration. In most cases, the self-descriptions changed over time in terms of belonging to different ideal-type clusters. In the clinical group, there was a movement toward increased integration in self-representations, but above all toward a better balance between relatedness and self-definition. The changes continued after termination, paralleled by reduced symptoms, improved functioning, and higher developmental levels of representations. No corresponding tendency could be observed in the nonclinical group.

  20. The ARES High-level Intermediate Representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, Nicholas David

    The LLVM intermediate representation (IR) lacks semantic constructs for depicting common high-performance operations such as parallel and concurrent execution, communication and synchronization. Currently, representing such semantics in LLVM requires either extending the intermediate form (a signi cant undertaking) or the use of ad hoc indirect means such as encoding them as intrinsics and/or the use of metadata constructs. In this paper we discuss a work in progress to explore the design and implementation of a new compilation stage and associated high-level intermediate form that is placed between the abstract syntax tree and when it is lowered to LLVM's IR. Thismore » highlevel representation is a superset of LLVM IR and supports the direct representation of these common parallel computing constructs along with the infrastructure for supporting analysis and transformation passes on this representation.« less

  1. Identities, social representations and critical thinking

    NASA Astrophysics Data System (ADS)

    López-Facal, Ramón; Jiménez-Aleixandre, María Pilar

    2009-09-01

    This comment on L. Simonneaux and J. Simonneaux paper focuses on the role of identities in dealing with socio-scientific issues. We argue that there are two types of identities (social representations) influencing the students' positions: On the one hand their social representations of the bears' and wolves' identities as belonging to particular countries (Slovenia versus France for bears, France and Italy for wolves), in other words, as having national identities; on the other hand representations of their own identities as belonging to the field of agricultural practitioners, and so sharing this socio-professional identity with shepherds and breeders, as opposed to ecologists. We discuss how these representations of identities influenced students' reasoning and argumentation, blocking in some cases the evaluation of evidence. Implications for developing critical thinking and for dealing with SSI in the classrooms are outlined.

  2. A word in the hand: action, gesture and mental representation in humans and non-human primates

    PubMed Central

    Cartmill, Erica A.; Beilock, Sian; Goldin-Meadow, Susan

    2012-01-01

    The movements we make with our hands both reflect our mental processes and help to shape them. Our actions and gestures can affect our mental representations of actions and objects. In this paper, we explore the relationship between action, gesture and thought in both humans and non-human primates and discuss its role in the evolution of language. Human gesture (specifically representational gesture) may provide a unique link between action and mental representation. It is kinaesthetically close to action and is, at the same time, symbolic. Non-human primates use gesture frequently to communicate, and do so flexibly. However, their gestures mainly resemble incomplete actions and lack the representational elements that characterize much of human gesture. Differences in the mirror neuron system provide a potential explanation for non-human primates' lack of representational gestures; the monkey mirror system does not respond to representational gestures, while the human system does. In humans, gesture grounds mental representation in action, but there is no evidence for this link in other primates. We argue that gesture played an important role in the transition to symbolic thought and language in human evolution, following a cognitive leap that allowed gesture to incorporate representational elements. PMID:22106432

  3. Environment-friendly cycle time optimization and quality improvisation using Six Sigma.

    PubMed

    Deshpande, V S; Mungle, N P

    2008-07-01

    Healthy environment in any organization can make a difference in improving productivity and quality with low defect, lack of concentration, willingness to work, minimum accidental problems etc. Six Sigma is one of the more recent quality improvement initiatives to gain popularity and acceptance in many industries across the globe. It is an alternative to TQM to obtain minimum manufacturing defect, cycle time reduction, cost reduction, inventory reduction etc. Its use is increasingly widespread in many industries, in both manufacturing and service industries with many proponents of the approach claiming that it has developed beyond a quality control approach into a broader process improvement concept.

  4. Representation and presentation of requirements knowledge

    NASA Technical Reports Server (NTRS)

    Johnson, W. L.; Feather, Martin S.; Harris, David R.

    1992-01-01

    An approach to representation and presentation of knowledge used in the ARIES, an experimental requirements/specification environment, is described. The approach applies the notion of a representation architecture to the domain of software engineering and incorporates a strong coupling to a transformation system. It is characterized by a single highly expressive underlying representation, interfaced simultaneously to multiple presentations, each with notations of differing degrees of expressivity. This enables analysts to use multiple languages for describing systems and have these descriptions yield a single consistent model of the system.

  5. Death representation of caregivers in hospice.

    PubMed

    Andruccioli, Jessica; Russo, Maria Maffia; Bruschi, Angela; Pedrabissi, Luigi; Sarti, Donatella; Monterubbianesi, Maria Cristina; Rossi, Sabina; Rocconi, Sabina; Raffaeli, William

    2012-11-01

    In this study, we investigated caregiver's death representation in hospice. The results presented here are a further analysis of the data collected in our previous study, concerning the evaluation of the caregiver in hospice. The data analysis of 24 caregivers of patients hospitalized in Rimini Hospice (Italy) underlined that caregivers avoiding death representation of the patient admitted to hospice had fewer protective factors (52.3%) and more risk factors (47.7%) than caregivers nonavoiding (66.5% and 33.5%, respectively). Caregivers avoiding death representation, moreover, experienced a greater distress (58%) than those nonavoiding (42%).

  6. Representation

    DTIC Science & Technology

    2006-09-01

    two weeks to arrive. Source: http://beergame.mit.edu/ Permission Granted – MIT Supply Chain Forum 2005 Professor Sterman –Sloan School of...Management - MITSource: http://web.mit.edu/jsterman/www/ SDG /beergame.html Rules of Engagement The MIT Beer Game Simulation 04-04 Slide Number 10 Professor...Sterman –Sloan School of Management - MITSource: http://web.mit.edu/jsterman/www/ SDG /beergame.html What is the Significance of Representation

  7. A network of spiking neurons for computing sparse representations in an energy efficient way

    PubMed Central

    Hu, Tao; Genkin, Alexander; Chklovskii, Dmitri B.

    2013-01-01

    Computing sparse redundant representations is an important problem both in applied mathematics and neuroscience. In many applications, this problem must be solved in an energy efficient way. Here, we propose a hybrid distributed algorithm (HDA), which solves this problem on a network of simple nodes communicating via low-bandwidth channels. HDA nodes perform both gradient-descent-like steps on analog internal variables and coordinate-descent-like steps via quantized external variables communicated to each other. Interestingly, such operation is equivalent to a network of integrate-and-fire neurons, suggesting that HDA may serve as a model of neural computation. We compare the numerical performance of HDA with existing algorithms and show that in the asymptotic regime the representation error of HDA decays with time, t, as 1/t. We show that HDA is stable against time-varying noise, specifically, the representation error decays as 1/t for Gaussian white noise. PMID:22920853

  8. Fluctuation in Relationship Quality Over Time and Individual Well-being: Main, Mediated, and Moderated Effects

    PubMed Central

    Whitton, Sarah W.; Rhoades, Galena K.; Whisman, Mark A.

    2018-01-01

    This study examined how the degree of within-person variation (or temporal fluctuation) in relationship quality over time was associated with well-being (psychological distress and life satisfaction). A national sample of 18 to 34 year old men and women in unmarried, opposite-sex relationships completed six waves of surveys every four months (N = 748). Controlling for initial levels of and linear changes in relationship quality, greater temporal fluctuation in relationship quality over time was associated with increasing psychological distress and decreasing life satisfaction over time. Decreased confidence in one’s relationship partially mediated these associations. Moderation analyses revealed that the association between fluctuations in relationship quality and change in life satisfaction was stronger for women, participants cohabiting with their partners, and those with greater anxious attachment, whereas the association between fluctuations in relationship quality and change in psychological distress was stronger for people with greater avoidant attachment. PMID:24727811

  9. Social representations of female orgasm.

    PubMed

    Lavie-Ajayi, Maya; Joffe, Hélène

    2009-01-01

    This study examines women's social representations of female orgasm. Fifty semi-structured interviews were conducted with British women. The data were thematically analysed and compared with the content of female orgasm-related writing in two women's magazines over a 30-year period. The results indicate that orgasm is deemed the goal of sex with emphasis on its physiological dimension. However, the women and the magazines graft onto this scientifically driven representation the importance of relational and emotive aspects of orgasm. For the women, particularly those who experience themselves as having problems with orgasm, the scientifically driven representations induce feelings of failure, but are also resisted. The findings highlight the role played by the social context in women's subjective experience of their sexual health.

  10. Representational Distance Learning for Deep Neural Networks

    PubMed Central

    McClure, Patrick; Kriegeskorte, Nikolaus

    2016-01-01

    Deep neural networks (DNNs) provide useful models of visual representational transformations. We present a method that enables a DNN (student) to learn from the internal representational spaces of a reference model (teacher), which could be another DNN or, in the future, a biological brain. Representational spaces of the student and the teacher are characterized by representational distance matrices (RDMs). We propose representational distance learning (RDL), a stochastic gradient descent method that drives the RDMs of the student to approximate the RDMs of the teacher. We demonstrate that RDL is competitive with other transfer learning techniques for two publicly available benchmark computer vision datasets (MNIST and CIFAR-100), while allowing for architectural differences between student and teacher. By pulling the student's RDMs toward those of the teacher, RDL significantly improved visual classification performance when compared to baseline networks that did not use transfer learning. In the future, RDL may enable combined supervised training of deep neural networks using task constraints (e.g., images and category labels) and constraints from brain-activity measurements, so as to build models that replicate the internal representational spaces of biological brains. PMID:28082889

  11. Representational Distance Learning for Deep Neural Networks.

    PubMed

    McClure, Patrick; Kriegeskorte, Nikolaus

    2016-01-01

    Deep neural networks (DNNs) provide useful models of visual representational transformations. We present a method that enables a DNN (student) to learn from the internal representational spaces of a reference model (teacher), which could be another DNN or, in the future, a biological brain. Representational spaces of the student and the teacher are characterized by representational distance matrices (RDMs). We propose representational distance learning (RDL), a stochastic gradient descent method that drives the RDMs of the student to approximate the RDMs of the teacher. We demonstrate that RDL is competitive with other transfer learning techniques for two publicly available benchmark computer vision datasets (MNIST and CIFAR-100), while allowing for architectural differences between student and teacher. By pulling the student's RDMs toward those of the teacher, RDL significantly improved visual classification performance when compared to baseline networks that did not use transfer learning. In the future, RDL may enable combined supervised training of deep neural networks using task constraints (e.g., images and category labels) and constraints from brain-activity measurements, so as to build models that replicate the internal representational spaces of biological brains.

  12. Representations of Lancet or Phlebotome in Serbian Medieval Art.

    PubMed

    Pajić, Sanja; Jurišić, Vladimir

    2015-01-01

    The topic of this study are representations of lancet or phlebotome in frescoes and icons of Serbian medieval art. The very presence of this medical instrument in Serbian medieval art indicates its usage in Serbian medical practices of the time. Phlebotomy is one of the oldest forms of therapy, widely spread in medieval times. It is also mentioned in Serbian medical texts, such as Chilandar Medical CodexNo. 517 and Hodoch code, i.e. translations from Latin texts originating from Salerno-Montpellier school. Lancet or phlebotome is identified based on archaeological finds from the Roman period, while finds from the Middle Ages and especially from Byzantium have been scarce. Analyses of preserved frescoes and icons has shown that, in comparison to other medical instruments, lancet is indeed predominant in Serbian medieval art, and that it makes for over 80% of all the representations, while other instruments have been depicted to a far lesser degree. Examination of written records and art points to the conclusion that Serbian medieval medicine, both in theory and in practice, belonged entirely to European traditions of the period.

  13. Year of the Woman, Decade of the Man: trajectories of growth in women's state legislative representation.

    PubMed

    Paxton, Pamela; Painter, Matthew A; Hughes, Melanie M

    2009-03-01

    The expansion of women's political representation ranks among the most significant trends in American politics of the last 100 years. In this paper, we develop two longitudinal theories to explain patterns of growth and change in women's state legislative representation over time. Gender salience suggests that years in which women's absence from politics is problematized (e.g., 1992-the Year of the Woman) will demonstrate higher levels of growth. Political climate suggests that periods in which domestic issues are stressed (e.g., the 1990s) will produce higher levels of growth than periods in which international issues are stressed (e.g., post 9/11). Combinations of these two theories create four possible trajectories of growth in women's representation that may be observed over time. We use latent growth curve models to assess the four theoretical trajectories, using data on women's state legislative representation from 1982 to 2006. We find that while women achieved fleeting success in the Year of the Woman, further gains were limited in the remainder of the 1990s and average growth stalled completely after 2001. Our results show futher that gender salience and, to a lesser extent political, climate matter to growth and change in women's political power over time.

  14. Wavelet-Based Interpolation and Representation of Non-Uniformly Sampled Spacecraft Mission Data

    NASA Technical Reports Server (NTRS)

    Bose, Tamal

    2000-01-01

    A well-documented problem in the analysis of data collected by spacecraft instruments is the need for an accurate, efficient representation of the data set. The data may suffer from several problems, including additive noise, data dropouts, an irregularly-spaced sampling grid, and time-delayed sampling. These data irregularities render most traditional signal processing techniques unusable, and thus the data must be interpolated onto an even grid before scientific analysis techniques can be applied. In addition, the extremely large volume of data collected by scientific instrumentation presents many challenging problems in the area of compression, visualization, and analysis. Therefore, a representation of the data is needed which provides a structure which is conducive to these applications. Wavelet representations of data have already been shown to possess excellent characteristics for compression, data analysis, and imaging. The main goal of this project is to develop a new adaptive filtering algorithm for image restoration and compression. The algorithm should have low computational complexity and a fast convergence rate. This will make the algorithm suitable for real-time applications. The algorithm should be able to remove additive noise and reconstruct lost data samples from images.

  15. Measuring, Predicting and Visualizing Short-Term Change in Word Representation and Usage in VKontakte Social Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Ian B.; Arendt, Dustin L.; Bell, Eric B.

    Language in social media is extremely dynamic: new words emerge, trend and disappear, while the meaning of existing words can fluctuate over time. This work addresses several important tasks of visualizing and predicting short term text representation shift, i.e. the change in a word’s contextual semantics. We study the relationship between short-term concept drift and representation shift on a large social media corpus – VKontakte collected during the Russia-Ukraine crisis in 2014 – 2015. We visualize short-term representation shift for example keywords and build predictive models to forecast short-term shifts in meaning from previous meaning as well as from conceptmore » drift. We show that short-term representation shift can be accurately predicted up to several weeks in advance and that visualization provides insight into meaning change. Our approach can be used to explore and characterize specific aspects of the streaming corpus during crisis events and potentially improve other downstream classification tasks including real-time event forecasting in social media.« less

  16. Development of the Bonding Representations Inventory to Identify Student Misconceptions about Covalent and Ionic Bonding Representations

    ERIC Educational Resources Information Center

    Luxford, Cynthia J.; Bretz, Stacey Lowery

    2014-01-01

    Teachers use multiple representations to communicate the concepts of bonding, including Lewis structures, formulas, space-filling models, and 3D manipulatives. As students learn to interpret these multiple representations, they may develop misconceptions that can create problems in further learning of chemistry. Interviews were conducted with 28…

  17. Ventricular Fibrillation and Tachycardia detection from surface ECG using time-frequency representation images as input dataset for machine learning.

    PubMed

    Mjahad, A; Rosado-Muñoz, A; Bataller-Mompeán, M; Francés-Víllora, J V; Guerrero-Martínez, J F

    2017-04-01

    To safely select the proper therapy for Ventricullar Fibrillation (VF) is essential to distinct it correctly from Ventricular Tachycardia (VT) and other rhythms. Provided that the required therapy would not be the same, an erroneous detection might lead to serious injuries to the patient or even cause Ventricular Fibrillation (VF). The main novelty of this paper is the use of time-frequency (t-f) representation images as the direct input to the classifier. We hypothesize that this method allow to improve classification results as it allows to eliminate the typical feature selection and extraction stage, and its corresponding loss of information. The standard AHA and MIT-BIH databases were used for evaluation and comparison with other authors. Previous to t-f Pseudo Wigner-Ville (PWV) calculation, only a basic preprocessing for denoising and signal alignment is necessary. In order to check the validity of the method independently of the classifier, four different classifiers are used: Logistic Regression with L2 Regularization (L2 RLR), Adaptive Neural Network Classifier (ANNC), Support Vector Machine (SSVM), and Bagging classifier (BAGG). The main classification results for VF detection (including flutter episodes) are 95.56% sensitivity and 98.8% specificity, 88.80% sensitivity and 99.5% specificity for ventricular tachycardia (VT), 98.98% sensitivity and 97.7% specificity for normal sinus, and 96.87% sensitivity and 99.55% specificity for other rhythms. Results shows that using t-f data representations to feed classifiers provide superior performance values than the feature selection strategies used in previous works. It opens the door to be used in any other detection applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Models as Feedback: Developing Representational Competence in Chemistry

    ERIC Educational Resources Information Center

    Padalkar, Shamin; Hegarty, Mary

    2015-01-01

    Spatial information in science is often expressed through representations such as diagrams and models. Learning the strengths and limitations of these representations and how to relate them are important aspects of developing scientific understanding, referred to as "representational competence." Diagram translation is particularly…

  19. 48 CFR 2009.570-4 - Representation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Representation. 2009.570-4 Section 2009.570-4 Federal Acquisition Regulations System NUCLEAR REGULATORY COMMISSION COMPETITION AND ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Organizational Conflicts of Interest 2009.570-4 Representation...

  20. How Do Students Misunderstand Number Representations?

    ERIC Educational Resources Information Center

    Herman, Geoffrey L.; Zilles, Craig; Loui, Michael C.

    2011-01-01

    We used both student interviews and diagnostic testing to reveal students' misconceptions about number representations in computing systems. This article reveals that students who have passed an undergraduate level computer organization course still possess surprising misconceptions about positional notations, two's complement representation, and…