Sample records for qualquer natureza iss

  1. ISS Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Laible, Michael R.

    2011-01-01

    The Microgravity performance assessment of the International Space Station (ISS) is comprised of a quasi-steady, structural dynamic and a vibro-acoustic analysis of the ISS assembly-complete vehicle configuration. The Boeing Houston (BHOU) Loads and Dynamics Team is responsible to verify compliance with the ISS System Specification (SSP 41000) and USOS Segment (SSP 41162) microgravity requirements. To verify the ISS environment, a series of accelerometers are on-board to monitor the current environment. This paper summarizes the results of the analysis that was performed for the Verification Analysis Cycle (VAC)-Assembly Complete (AC) and compares it to on-orbit acceleration values currently being reported. The analysis will include the predicted maximum and average environment on-board ISS during multiple activity scenarios

  2. ISS National Laboratory Education Project: Enhancing and Innovating the ISS as an Educational Venue

    NASA Technical Reports Server (NTRS)

    Melvin, Leland D.

    2011-01-01

    The vision is to develop the ISS National Laboratory Education Project (ISS NLE) as a national resource for Science, Technology, Engineering and Mathematics (STEM) education, utilizing the unique educational venue of the International Space Station per the NASA Congressional Authorization Act of 2005. The ISS NLE will serve as an educational resource which enables educational activities onboard the ISS and in the classroom. The ISS NLE will be accessible to educators and students from kindergarten to post-doctoral studies, at primary and secondary schools, colleges and universities. Additionally, the ISS NLE will provide ISS-related STEM education opportunities and resources for learners of all ages via informal educational institutions and venues Though U.S. Congressional direction emphasized the involvement of U.S. students, many ISS-based educational activities have international student and educator participation Over 31 million students around the world have participated in several ISS-related education activities.

  3. Analyzing an Aging ISS

    NASA Technical Reports Server (NTRS)

    Scharf, R.

    2014-01-01

    The ISS External Survey integrates the requirements for photographic and video imagery of the International Space Station (ISS) for the engineering, operations, and science communities. An extensive photographic survey was performed on all Space Shuttle flights to the ISS and continues to be performed daily, though on a level much reduced by the limited available imagery. The acquired video and photo imagery is used for both qualitative and quantitative assessments of external deposition and contamination, surface degradation, dynamic events, and MMOD strikes. Many of these assessments provide important information about ISS surfaces and structural integrity as the ISS ages. The imagery is also used to assess and verify the physical configuration of ISS structure, appendages, and components.

  4. ISS Local Environment Spectrometers (ISLES)

    NASA Technical Reports Server (NTRS)

    Krause, Linda Habash; Gilchrist, Brian E.

    2014-01-01

    In order to study the complex interactions between the space environment surrounding the ISS and the ISS surface materials, we propose to use lowcost, high-TRL plasma sensors on the ISS robotic arm to probe the ISS space environment. During many years of ISS operation, we have been able to condut effective (but not perfect) extravehicular activities (both human and robotic) within the perturbed local ISS space environment. Because of the complexity of the interaction between the ISS and the LEO space environment, there remain important questions, such as differential charging at solar panel junctions (the so-called "triple point" between conductor, dielectric, and space plasma), increased chemical contamination due to ISS surface charging and/or thruster activation, water dumps, etc, and "bootstrap" charging of insulating surfaces. Some compelling questions could synergistically draw upon a common sensor suite, which also leverages previous and current MSFC investments. Specific questions address ISS surface charging, plasma contactor plume expansion in a magnetized drifting plasma, and possible localized contamination effects across the ISS.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2001-08-20

    This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-105 mission from the Shuttle Orbiter Discovery after separating from the ISS. The STS-105 mission was the 11th ISS assembly flight and its goals were the rotation of the ISS Expedition Two crew with Expedition Three crew, and the delivery of supplies utilizing the Italian-built Multipurpose Logistic Module (MPLM) Leonardo. Aboard Leonardo were six resupply stowage racks, four resupply stowage supply platforms, and two new scientific experiment racks, EXPRESS (Expedite the Processing of Experiments to the Space Station) Racks 4 and 5, which added science capabilities to the ISS. Another payload was the Materials International Space Station Experiment (MISSE), which included materials and other types of space exposure experiments mounted on the exterior of the ISS.

  6. International Space Station (ISS)

    NASA Image and Video Library

    2005-06-09

    The STS-121 patch depicts the Space Shuttle docked with the International Space Station (ISS) in the foreground, overlaying the astronaut symbol with three gold columns and a gold star. The ISS is shown in the configuration that it was during the STS-121 mission. The background shows the nighttime Earth with a dawn breaking over the horizon. STS-121, ISS mission ULF1.1, was the final Shuttle Return to Flight test mission. This utilization and logistics flight delivered a multipurpose logistics module (MPLM) to the ISS with several thousand pounds of new supplies and experiments. In addition, some new orbital replacement units (ORUs) were delivered and stowed externally on the ISS on a special pallet. These ORUs are spares for critical machinery located on the outside of the ISS. During this mission the crew also carried out testing of Shuttle inspection and repair hardware, as well as evaluated operational techniques and concepts for conducting on-orbit inspection and repair.

  7. The Military Injury Severity Score (mISS): A better predictor of combat mortality than Injury Severity Score (ISS).

    PubMed

    Le, Tuan D; Orman, Jean A; Stockinger, Zsolt T; Spott, Mary Ann; West, Susan A; Mann-Salinas, Elizabeth A; Chung, Kevin K; Gross, Kirby R

    2016-07-01

    The Military Injury Severity Score (mISS) was developed to better predict mortality in complex combat injuries but has yet to be validated. US combat trauma data from Afghanistan and Iraq from January 1, 2003, to December 31, 2014, from the US Department of Defense Trauma Registry (DoDTR) were analyzed. Military ISS, a variation of the ISS, was calculated and compared with standard ISS scores.Receiver operating characteristic curve, area under the curve, and Hosmer-Lemeshow statistics were used to discriminate and calibrate between mISS and ISS. Wilcoxon-Mann-Whitney, t test and χ tests were used, and sensitivity and specificity calculated. Logistic regression was used to calculate the likelihood of mortality associated with levels of mISS and ISS overall. Thirty thousand three hundred sixty-four patients were analyzed. Most were male (96.8%). Median age was 24 years (interquartile range [IQR], 21-29 years). Battle injuries comprised 65.3%. Penetrating (39.5%) and blunt (54.2%) injury types and explosion (51%) and gunshot wound (15%) mechanisms predominated. Overall mortality was 6.0%.Median mISS and ISS were similar in survivors (5 [IQR, 2-10] vs. 5 [IQR, 2-10]) but different in nonsurvivors, 30 (IQR, 16-75) versus 24 (IQR, 9-23), respectively (p < 0.0001). Military ISS and ISS were discordant in 17.6% (n = 5,352), accounting for 56.2% (n = 1,016) of deaths. Among cases with discordant severity scores, the median difference between mISS and ISS was 9 (IQR, 7-16); range, 1 to 59. Military ISS and ISS shared 78% variability (R = 0.78).Area under the curve was higher in mISS than in ISS overall (0.82 vs. 0.79), for battle injury (0.79 vs. 0.76), non-battle injury (0.87 vs. 0.86), penetrating (0.81 vs. 0.77), blunt (0.77 vs. 0.75), explosion (0.81 vs. 0.78), and gunshot (0.79 vs. 0.73), all p < 0.0001. Higher mISS and ISS were associated with higher mortality. Compared with ISS, mISS had higher sensitivity (81.2 vs. 63.9) and slightly lower specificity (80.2 vs. 85

  8. International Space Station (ISS)

    NASA Image and Video Library

    2003-05-01

    Aboard the International Space Station (ISS), the Russian Lada greenhouse provides home to an experiment that investigates plant development and genetics. Space grown peas have dried and "gone to seed." The crew of the ISS will soon harvest the seeds. Eventually some will be replanted onboard the ISS, and some will be returned to Earth for further study.

  9. Thermal Design and Analysis of an ISS Science Payload - SAGE III on ISS

    NASA Technical Reports Server (NTRS)

    Liles, Kaitlin, A. K.; Amundsen, Ruth M.; Davis, Warren T.; Carrillo, Laurie Y.

    2017-01-01

    The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument is the fifth in a series of instruments developed for monitoring aerosols and gaseous constituents in the stratosphere and troposphere. SAGE III will be launched in the SpaceX Dragon vehicle in 2017 and mounted to an external stowage platform on the International Space Station (ISS) to begin its three-year mission. The SAGE III thermal team at NASA Langley Research Center (LaRC) worked with ISS thermal engineers to ensure that SAGE III, as an ISS payload, would meet requirements specific to ISS and the Dragon vehicle. This document presents an overview of the SAGE III thermal design and analysis efforts, focusing on aspects that are relevant for future ISS payload developers. This includes development of detailed and reduced Thermal Desktop (TD) models integrated with the ISS and launch vehicle models, definition of analysis cases necessary to verify thermal requirements considering all mission phases from launch through installation and operation on-orbit, and challenges associated with thermal hardware selection including heaters, multi-layer insulation (MLI) blankets, and thermal tapes.

  10. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    Tara Ruttley, International Space Station Program Scientist, talks about the benefits of conducting science experiments on ISS at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  11. iss009e23888

    NASA Image and Video Library

    2004-09-20

    ISS009-E-23888 (20 September 2004) --- Downtown Pittsburgh, with its swollen, muddy rivers, is featured in this image photographed from the International Space Station (ISS). Astronaut Edward M. (Mike) Fincke, Expedition 9 NASA ISS science officer and flight engineer, who is a native of Emsworth, captured this image with a digital camera at 5 p.m. on Monday, September 20, 2004.

  12. ISS General Resource Reel

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This video is a collection of computer animations and live footage showing the construction and assembly of the International Space Station (ISS). Computer animations show the following: (1) ISS fly around; (2) ISS over a sunrise seen from space; (3) the launch of the Zarya Control Module; (4) a Proton rocket launch; (5) the Space Shuttle docking with Zarya and attaching Zarya to the Unity Node; (6) the docking of the Service Module, Zarya, and Unity to Soyuz; (7) the Space Shuttle docking to ISS and installing the Z1 Truss segment and the Pressurized Mating Adapter (PMA); (8) Soyuz docking to the ISS; (9) the Transhab components; and (10) a complete ISS assembly. Live footage shows the construction of Zarya, the Proton rocket, Unity Node, PMA, Service Module, US Laboratory, Italian Multipurpose Logistics Module, US Airlock, and the US Habitation Module. STS-88 Mission Specialists Jerry Ross and James Newman are seen training in the Neutral Buoyancy Laboratory (NBL). The Expedition 1 crewmembers, William Shepherd, Yuri Gidzenko, and Sergei Krikalev, are shown training in the Black Sea and at Johnson Space Flight Center for water survival.

  13. International Space Station (ISS)

    NASA Image and Video Library

    1998-01-01

    This artist's digital concept depicts the completely assembled International Space Station (ISS) passing over Florida. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  14. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    A NASA Social participant asks a question to the astronauts onboard the International Space Station in a live downlink from the ISS at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  15. International Space Station (ISS)

    NASA Image and Video Library

    2001-05-14

    Astronaut James S. Voss, Expedition Two flight engineer, works with a series of cables on the EXPRESS Rack in the United State's Destiny laboratory on the International Space Station (ISS). The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the ISS. EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle.

  16. Analysis of ISS Plasma Interaction

    NASA Technical Reports Server (NTRS)

    Reddell, Brandon; Alred, John; Kramer, Leonard; Mikatarian, Ron; Minow, Joe; Koontz, Steve

    2006-01-01

    To date, the International Space Station (ISS) has been one of the largest objects flown in lower earth orbit (LEO). The ISS utilizes high voltage solar arrays (160V) that are negatively grounded leading to pressurized elements that can float negatively with respect to the plasma. Because laboratory measurements indicate a dielectric breakdown potential difference of 80V, arcing could occur on the ISS structure. To overcome the possibility of arcing and clamp the potential of the structure, two Plasma Contactor Units (PCUs) were designed, built, and flown. Also a limited amount of measurements of the floating potential for the present ISS configuration were made by a Floating Potential Probe (FPP), indicating a minimum potential of 24 Volts at the measurement location. A predictive tool, the ISS Plasma Interaction Model (PIM) has been developed accounting for the solar array electron collection, solar array mast wire and effective conductive area on the structure. The model has been used for predictions of the present ISS configuration. The conductive area has been inferred based on available floating potential measurements. Analysis of FPP and PCU data indicated distribution of the conductive area along the Russian segment of the ISS structure. A significant input to PIM is the plasma environment. The International Reference Ionosphere (IRI 2001) was initially used to obtain plasma temperature and density values. However, IRI provides mean parameters, leading to difficulties in interpretation of on-orbit data, especially at eclipse exit where maximum charging can occur. This limits our predicative capability. Satellite and Incoherent Scatter Radar (ISR) data of plasma parameters have also been collected. Approximately 130,000 electron temperature (Te) and density (Ne) pairs for typical ISS eclipse exit conditions have been extracted from the reduced Langmuir probe data flown aboard the NASA DE-2 satellite. Additionally, another 18,000 Te and Ne pairs of ISR data

  17. International Space Station (ISS)

    NASA Image and Video Library

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over Florida and the Bahamas. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating in the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  18. International Space Station (ISS)

    NASA Image and Video Library

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over the Straits of Gibraltar and the Mediterranean Sea. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  19. SAGE III-ISS

    Atmospheric Science Data Center

    2017-12-27

    SAGE III-ISS Data and Information Launched on February 19, 2017 on a SpaceX ... vertical profiles of the stratosphere and mesosphere. The data provided by SAGE III-ISS includes key components of atmospheric ... Additional Info:  Data Format: HDF4 or Big Endian/IEEE Binary SCAR-B Block:  ...

  20. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The International Space Station (ISS) Payload Operations Center (POC) at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is the world's primary science command post for the International Space Station (ISS), the most ambitious space research facility in human history. The Payload Operations team is responsible for managing all science research experiments aboard the Station. The center is also home for coordination of the mission-plarning work of variety of international sources, all science payload deliveries and retrieval, and payload training and safety programs for the Station crew and all ground personnel. Within the POC, critical payload information from the ISS is displayed on a dedicated workstation, reading both S-band (low data rate) and Ku-band (high data rate) signals from a variety of experiments and procedures operated by the ISS crew and their colleagues on Earth. The POC is the focal point for incorporating research and experiment requirements from all international partners into an integrated ISS payload mission plan. This photograph is an overall view of the MSFC Payload Operations Center displaying the flags of the countries participating the ISS. The flags at the left portray The United States, Canada, France, Switzerland, Netherlands, Japan, Brazil, and Sweden. The flags at the right portray The Russian Federation, Italy, Germany, Belgium, Spain, United Kingdom, Denmark, and Norway.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2000-02-01

    The International Space Station (ISS) Payload Operations Center (POC) at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is the world's primary science command post for the (ISS), the most ambitious space research facility in human history. The Payload Operations team is responsible for managing all science research experiments aboard the Station. The center is also home for coordination of the mission-plarning work of variety of international sources, all science payload deliveries and retrieval, and payload training and safety programs for the Station crew and all ground personnel. Within the POC, critical payload information from the ISS is displayed on a dedicated workstation, reading both S-band (low data rate) and Ku-band (high data rate) signals from a variety of experiments and procedures operated by the ISS crew and their colleagues on Earth. The POC is the focal point for incorporating research and experiment requirements from all international partners into an integrated ISS payload mission plan. This photograph is an overall view of the MSFC Payload Operations Center displaying the flags of the countries participating in the ISS. The flags at the left portray The United States, Canada, France, Switzerland, Netherlands, Japan, Brazil, and Sweden. The flags at the right portray The Russian Federation, Italy, Germany, Belgium, Spain, United Kingdom, Denmark, and Norway.

  2. International Space Station (ISS)

    NASA Image and Video Library

    2004-04-15

    Pictured is an artist's concept of the International Space Station (ISS) with solar panels fully deployed. In addition to the use of solar energy, the ISS will employ at least three types of propulsive support systems for its operation. The first type is to reboost the Station to correct orbital altitude to offset the effects of atmospheric and other drag forces. The second function is to maneuver the ISS to avoid collision with oribting bodies (space junk). The third is for attitude control to position the Station in the proper attitude for various experiments, temperature control, reboost, etc. The ISS, a gateway to permanent human presence in space, is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experimentation by cooperation of sixteen countries.

  3. International Space Station (ISS)

    NASA Image and Video Library

    1994-09-21

    Artist's concept of the final configuration of the International Space Station (ISS) Alpha. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experimentation.

  4. International Space Station (ISS)

    NASA Image and Video Library

    1994-04-20

    An artist's concept of a fully deployed International Space Station (ISS) Alpha. The ISS-A is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experiments.

  5. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    Marshall Porterfield, Life and Physical Sciences Division Director at NASA Headquarters, talks about the human body in microgravity and other life sciences at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. In the foreground is pictured Veggie, a container used for growing plants on the ISS. Photo Credit: (NASA/Carla Cioffi)

  6. International Space Station (ISS)

    NASA Image and Video Library

    1999-01-01

    The International Space Station (ISS) is an unparalleled international scientific and technological cooperative venture that will usher in a new era of human space exploration and research and provide benefits to people on Earth. On-Orbit assembly began on November 20, 1998, with the launch of the first ISS component, Zarya, on a Russian Proton rocket. The Space Shuttle followed on December 4, 1998, carrying the U.S.-built Unity cornecting Module. Sixteen nations are participating in the ISS program: the United States, Canada, Japan, Russia, Brazil, Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom. The ISS will include six laboratories and be four times larger and more capable than any previous space station. The United States provides two laboratories (United States Laboratory and Centrifuge Accommodation Module) and a habitation module. There will be two Russian research modules, one Japanese laboratory, referred to as the Japanese Experiment Module (JEM), and one European Space Agency (ESA) laboratory called the Columbus Orbital Facility (COF). The station's internal volume will be roughly equivalent to the passenger cabin volume of two 747 jets. Over five years, a total of more than 40 space flights by at least three different vehicles - the Space Shuttle, the Russian Proton Rocket, and the Russian Soyuz rocket - will bring together more than 100 different station components and the ISS crew. Astronauts will perform many spacewalks and use new robotics and other technologies to assemble ISS components in space.

  7. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-30

    Astronaut James S. Voss, Expedition Two flight engineer, performs an electronics task in the Russian Zvezda Service Module on the International Space Station (ISS). Zvezda is linked to the Russian-built Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity, the first U.S.-built component to the ISS. Zvezda (Russian word for star), the third component of the ISS and the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the station, providing living quarters, a life support system, electrical power distribution, a data processing system, a flight control system, and a propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  8. International Space Station (ISS)

    NASA Image and Video Library

    2000-09-08

    This is the insignia for STS-98, which marks a major milestone in assembly of the International Space Station (ISS). Atlantis' crew delivered the United States Laboratory, Destiny, to the ISS. Destiny will be the centerpiece of the ISS, a weightless laboratory where expedition crews will perform unprecedented research in the life sciences, materials sciences, Earth sciences, and microgravity sciences. The laboratory is also the nerve center of the Station, performing guidance, control, power distribution, and life support functions. With Destiny's arrival, the Station will begin to fulfill its promise of returning the benefits of space research to Earth's citizens. The crew patch depicts the Space Shuttle with Destiny held high above the payload bay just before its attachment to the ISS. Red and white stripes, with a deep blue field of white stars, border the Shuttle and Destiny to symbolize the continuing contribution of the United States to the ISS. The constellation Hercules, seen just below Destiny, captures the Shuttle and Station's team efforts in bringing the promise of orbital scientific research to life. The reflection of Earth in Destiny's window emphasizes the connection between space exploration and life on Earth.

  9. KSC ISS Logistics Support

    NASA Technical Reports Server (NTRS)

    Tellado, Joseph

    2014-01-01

    The presentation contains a status of KSC ISS Logistics Operations. It basically presents current top level ISS Logistics tasks being conducted at KSC, current International Partner activities, hardware processing flow focussing on late Stow operations, list of KSC Logistics POC's, and a backup list of Logistics launch site services. This presentation is being given at the annual International Space Station (ISS) Multi-lateral Logistics Maintenance Control Panel meeting to be held in Turin, Italy during the week of May 13-16. The presentatiuon content doesn't contain any potential lessons learned.

  10. International Space Station (ISS)

    NASA Image and Video Library

    2001-08-12

    In this photograph, Astronaut Susan Helms, Expedition Two flight engineer, is positioned near a large amount of water temporarily stored in the Unity Node aboard the International Space Station (ISS). Astronaut Helms accompanied the STS-105 crew back to Earth after having spent five months with two crewmates aboard the ISS. The 11th ISS assembly flight, the Space Shuttle Orbiter Discovery STS-105 mission was launched on August 10, 2001, and landed on August 22, 2001 at the Kennedy Space Center after the completion of the successful 12-day mission.

  11. International Space Station (ISS)

    NASA Image and Video Library

    1995-04-17

    International Cooperation Phase III: A Space Shuttle docked to the International Space Station (ISS) in this computer generated representation of the ISS in its completed and fully operational state with elements from the U.S., Europe, Canada, Japan, and Russia.

  12. International Space Station (ISS)

    NASA Image and Video Library

    2006-07-04

    Space Shuttle Discovery and its seven-member crew launched at 2:38 p.m. (EDT) to begin the two-day journey to the International Space Station (ISS) on the historic Return to Flight STS-121 mission. The shuttle made history as it was the first human-occupying spacecraft to launch on Independence Day. During its 12-day mission, this utilization and logistics flight delivered a multipurpose logistics module (MPLM) to the ISS with several thousand pounds of new supplies and experiments. In addition, some new orbital replacement units (ORUs) were delivered and stowed externally on the ISS on a special pallet. These ORUs are spares for critical machinery located on the outside of the ISS. During this mission the crew also carried out testing of Shuttle inspection and repair hardware, as well as evaluated operational techniques and concepts for conducting on-orbit inspection and repair.

  13. Holodeck-ISS Experience

    NASA Technical Reports Server (NTRS)

    Rainbolt, Phillip

    2016-01-01

    For the duration of my internship here at JSC for the summer 2016 session, the main project that I worked on dealt with hybrid reality simulations of the ISS. As an ER6 intern for the spacecraft software division, the main project that I worked alongside others was with regards to the Holodeck Virtual Reality Project, specifically with the ISS experience, with the use of the HTC Vive and controllers.

  14. Bubble-detector measurements of neutron radiation in the international space station: ISS-34 to ISS-37

    PubMed Central

    Smith, M. B.; Khulapko, S.; Andrews, H. R.; Arkhangelsky, V.; Ing, H.; Koslowksy, M. R.; Lewis, B. J.; Machrafi, R.; Nikolaev, I.; Shurshakov, V.

    2016-01-01

    Bubble detectors have been used to characterise the neutron dose and energy spectrum in several modules of the International Space Station (ISS) as part of an ongoing radiation survey. A series of experiments was performed during the ISS-34, ISS-35, ISS-36 and ISS-37 missions between December 2012 and October 2013. The Radi-N2 experiment, a repeat of the 2009 Radi-N investigation, included measurements in four modules of the US orbital segment: Columbus, the Japanese experiment module, the US laboratory and Node 2. The Radi-N2 dose and spectral measurements are not significantly different from the Radi-N results collected in the same ISS locations, despite the large difference in solar activity between 2009 and 2013. Parallel experiments using a second set of detectors in the Russian segment of the ISS included the first characterisation of the neutron spectrum inside the tissue-equivalent Matroshka-R phantom. These data suggest that the dose inside the phantom is ∼70 % of the dose at its surface, while the spectrum inside the phantom contains a larger fraction of high-energy neutrons than the spectrum outside the phantom. The phantom results are supported by Monte Carlo simulations that provide good agreement with the empirical data. PMID:25899609

  15. iss049e012018

    NASA Image and Video Library

    2016-09-27

    ISS049e012018 (09/27/2016) --- Expedition 49 crewmember Kate Rubins of NASA works with the airlock inside of Kibo, the Japanese Experiment Module. Rubins was installing the Robotics External Leak Locator (RELL), a technology demonstration designed to locate external ISS ammonia (NH3) leaks.

  16. International Space Station (ISS)

    NASA Image and Video Library

    1994-07-20

    An artist's conception of what the final configuration of the International Space Station (ISS) will look like when it is fully built and deployed. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experimentation.

  17. iss003e8406

    NASA Image and Video Library

    2001-12-12

    ISS003-E-8406 (12 December 2001) --- Astronauts Frank L. Culbertson, Jr. (left), Expedition Three mission commander, and Daniel W. Bursch, Expedition Four flight engineer, work in the Zvezda Service Module on the International Space Station (ISS). The image was taken with a digital still camera.

  18. International Space Station (ISS)

    NASA Image and Video Library

    2006-07-08

    Astronaut Michael E. Fossum, STS-121 mission specialist, used a digital still camera to expose a photo of his helmet visor during a session of extravehicular activity (EVA) while Space Shuttle Discovery was docked with the International Space Station (ISS). Also visible in the visor reflections are fellow space walker Piers J. Sellers, mission specialist, Earth's horizon, and a station solar array. During its 12-day mission, this utilization and logistics flight delivered a multipurpose logistics module (MPLM) to the ISS with several thousand pounds of new supplies and experiments. In addition, some new orbital replacement units (ORUs) were delivered and stowed externally on the ISS on a special pallet. These ORUs are spares for critical machinery located on the outside of the ISS. During this mission the crew also carried out testing of Shuttle inspection and repair hardware, as well as evaluated operational techniques and concepts for conducting on-orbit inspection and repair.

  19. iss050e057428

    NASA Image and Video Library

    2017-03-15

    iss050e057428 (03/15/2017) --- NASA astronaut Shane Kimbrough removes a storage locker in the Minus Eighty-degree Laboratory Freezer for ISS (MELFI) to store samples from an experiment. MELFI is a cold storage unit that maintains experiment samples at ultra-cold temperatures throughout a mission.

  20. ISS Plasma Interaction: Measurements and Modeling

    NASA Technical Reports Server (NTRS)

    Barsamian, H.; Mikatarian, R.; Alred, J.; Minow, J.; Koontz, S.

    2004-01-01

    Ionospheric plasma interaction effects on the International Space Station are discussed in the following paper. The large structure and high voltage arrays of the ISS represent a complex system interacting with LEO plasma. Discharge current measurements made by the Plasma Contactor Units and potential measurements made by the Floating Potential Probe delineate charging and magnetic induction effects on the ISS. Based on theoretical and physical understanding of the interaction phenomena, a model of ISS plasma interaction has been developed. The model includes magnetic induction effects, interaction of the high voltage solar arrays with ionospheric plasma, and accounts for other conductive areas on the ISS. Based on these phenomena, the Plasma Interaction Model has been developed. Limited verification of the model has been performed by comparison of Floating Potential Probe measurement data to simulations. The ISS plasma interaction model will be further tested and verified as measurements from the Floating Potential Measurement Unit become available, and construction of the ISS continues.

  1. International Space Station (ISS)

    NASA Image and Video Library

    1994-12-16

    Artist's concept of the International Space Station (ISS) Alpha deployed and operational. This figure also includes the docking procedures for the Space Shuttle (shown with cargo bay open). The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experimentation.

  2. Bubble-detector measurements of neutron radiation in the international space station: ISS-34 to ISS-37.

    PubMed

    Smith, M B; Khulapko, S; Andrews, H R; Arkhangelsky, V; Ing, H; Koslowksy, M R; Lewis, B J; Machrafi, R; Nikolaev, I; Shurshakov, V

    2016-02-01

    Bubble detectors have been used to characterise the neutron dose and energy spectrum in several modules of the International Space Station (ISS) as part of an ongoing radiation survey. A series of experiments was performed during the ISS-34, ISS-35, ISS-36 and ISS-37 missions between December 2012 and October 2013. The Radi-N2 experiment, a repeat of the 2009 Radi-N investigation, included measurements in four modules of the US orbital segment: Columbus, the Japanese experiment module, the US laboratory and Node 2. The Radi-N2 dose and spectral measurements are not significantly different from the Radi-N results collected in the same ISS locations, despite the large difference in solar activity between 2009 and 2013. Parallel experiments using a second set of detectors in the Russian segment of the ISS included the first characterisation of the neutron spectrum inside the tissue-equivalent Matroshka-R phantom. These data suggest that the dose inside the phantom is ∼70% of the dose at its surface, while the spectrum inside the phantom contains a larger fraction of high-energy neutrons than the spectrum outside the phantom. The phantom results are supported by Monte Carlo simulations that provide good agreement with the empirical data. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. STS-106 ISS Overview Briefing

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Dwayne Brown, NASA Public Affairs, introduces Bob Cabana of NASA, Mikhail Sinelshikov of PKA, Vasily Tsibliev of GCTC, Steve Mozes of CSA, Ian Pryke of ESA, and Masaaki Komatsu of NASDA. Each man gives an overview of the status of the International Space Station (ISS), including details on the current configuration, future missions and what they will bring to the ISS, and each space agency's contribution to the ISS. They then answer questions from the press.

  4. Gidzenko at ISS hatch

    NASA Image and Video Library

    2001-02-10

    ISS01-E-5325 (10 February 2001) --- Cosmonaut Yuri P. Gidzenko, Expedition One Soyuz commander, stands near the hatch leading from the Unity node into the newly attached Destiny laboratory aboard the International Space Station (ISS). The picture was recorded with a digital still camera on the day the hatch was initially opened.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-01

    One of the astronauts aboard the Space Shuttle Discovery took this photograph, from the aft flight deck of the Discovery, of the International Space Station (ISS) in orbit. The photo was taken after separation of the orbiter Discovery from the ISS after several days of joint activities and an important crew exchange.

  6. iss048e045888

    NASA Image and Video Library

    2016-07-29

    iss048e045888 (07/29/2016) --- The visual scope looking down at the Pirs docking compartment on the Russian segment of the International Space Station. Currently seen docked to Pirs is the ISS Progress 64 cargo craft, which delivered over 3 tons of food, fuel and supplies to the crew of Expedition 48

  7. iss009e26364

    NASA Image and Video Library

    2004-10-01

    ISS009-E-26364 (1 October 2004) --- Mount Saint Helens, Washington, is featured in this image photographed by an Expedition 9 crewmember on the International Space Station (ISS). The USGS has been monitoring Mount Saint Helens closely since last Thursday, when the volcano began to belch steam and swarms of tiny earthquakes were first recorded.

  8. International Space Station (ISS)

    NASA Image and Video Library

    2001-09-16

    Aboard the International Space Station (ISS), Cosmonaut and Expedition Three flight engineer Vladimir N. Dezhurov, representing Rosaviakosmos, talks with flight controllers from the Zvezda Service Module. Russian-built Zvezda is linked to the Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the Station, providing living quarters, a life support system, electrical power distribution, a data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  9. International Space Station (ISS)

    NASA Image and Video Library

    2002-03-25

    Cosmonaut Yury I. Onufrienko, Expedition Four mission commander, uses a communication system in the Russian Zvezda Service Module on the International Space Station (ISS). The Zvezda is linked to the Russian-built Functional Cargo Block (FGB) or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the station, providing living quarters, a life support system, electrical power distribution, a data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  10. ISS As A National Lab

    NASA Image and Video Library

    2017-07-17

    In an effort to expand the research opportunities of this unparalleled platform, the International Space Station was designated as a U.S. National Laboratory in 2005 by Congress, enabling space research and development access to a broad range of commercial, academic, and government users. Now, this unique microgravity research platform is available to U.S. researchers from small companies, research institutions, Fortune 500 companies, government agencies, and others, all interested in leveraging microgravity to solve complex problems on Earth. Get more research news and updates on Twitter at: https://twitter.com/ISS_Research HD download link: https://archive.org/details/jsc2017m000681_ISS As A National Lab _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  11. ISS Plasma Environment: Status of CCMC Products for ISS Mission Ops

    NASA Technical Reports Server (NTRS)

    Minow, Joseph

    2010-01-01

    ISS Program currently using FPMU Ne, Te in-situ measurements to support operations and anomaly investigations. Working to acquire alternative data sources if FPMU is not available. Work is progressing on CCMC tools for low Earth orbit ionosphere characterization. Validation against FPMU data required before model output can be used for ISS operational support. MSFC plans to continue comparing CTIP output during FPMU campaigns. Results to date have been useful in identifying ionospheric origins of high latitude charging environments.

  12. ISS Utilization for Exploration-Class Missions

    NASA Technical Reports Server (NTRS)

    FIncke, R.; Davis-Street, J.; Korth, D.

    2006-01-01

    Exercise countermeasures are the most commonly utilized approach for maintaining the health and performance of astronauts during spaceflight missions. However, International Space Station (ISS) exercise countermeasure hardware reliability and prescriptions are not at a point of departure to support exploration-class missions. The JSC Exercise Countermeasures Project (ECP) plans to use ISS as a research and hardware evaluation platform to define and validate improved exercise hardware, prescriptions, and monitoring strategies to support crewmember operations on the Moon and Mars. The ECP will partner with JSC's Space Medicine Division to standardize elements of ISS exercise prescriptions to better understand their efficacy and to propose modified prescriptions for implementation that may be used in the crew exploration vehicle and/or lunar habitat. In addition, evaluations of the ISS treadmill harness will be conducted to define and improve fit and function, and assess the next generation medical monitoring devices such as the portable unit for metabolic analysis and the muscle atrophy research and exercise system for completion of periodic fitness evaluations during lunar and Mars travel. Finally, biomechanical data from ISS crew exercise sessions will be obtained to better understand loading and restraint systems, and identify the physiologic requirements during ISS extravehicular activities that may be analogous to extended excursions from the lunar habitat. It is essential to optimize exercise prescriptions, hardware, and monitoring strategies for exploration initiatives using ISS as a platform before the planned retirement of the Shuttle in 2010 and the declining NASA emphasis on ISS to maximize knowledge before embarking on travel to the Moon and Mars.

  13. International Space Station (ISS)

    NASA Image and Video Library

    2003-05-03

    Expedition Seven photographed the Soyez TMA-1 Capsule through a window of the International Space Station (ISS) as it departed for Earth. Aboard were Expedition Six crew members, astronauts Kerneth D. Bowersox and Donald R. Pettit, and cosmonaut Nikolai M. Budarin. Expedition Six served a 5 and 1/2 month stay aboard the ISS, the longest stay to date.

  14. Modeling International Space Station (ISS) Floating Potentials

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Gardner, Barbara

    2002-01-01

    The floating potential of the International Space Station (ISS) as a function of the electron current collection of its high voltage solar array panels is derived analytically. Based on Floating Potential Probe (FPP) measurements of the ISS potential and ambient plasma characteristics, it is shown that the ISS floating potential is a strong function of the electron temperature of the surrounding plasma. While the ISS floating potential has so far not attained the pre-flight predicted highly negative values, it is shown that for future mission builds, ISS must continue to provide two-fault tolerant arc-hazard protection for astronauts on EVA.

  15. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e308288 - iss042e309536). Shows Earth views taken from a window aboard the International Space Station (ISS).

  16. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2014-09-29

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss041e37762 - iss041e39788). Shows Earth and aurora views. Partial views of ISS in and out of view.

  17. iss012e23442

    NASA Image and Video Library

    2005-12-02

    ISS012-E-23442 (2 Dec. 2005) --- The coastal region in Somalia, south of the capital of Mogadishu (out of frame), is featured in this image photographed during normal conditions by an Expedition 12 crewmember on the International Space Station. An image captured during the Expedition 14 mission (ISS014-E-13848) shows the same coastal region with contrasting wet conditions.

  18. International Space Station (ISS)

    NASA Image and Video Library

    2000-09-01

    This image of the International Space Station (ISS) was taken during the STS-106 mission. The ISS component nearest the camera is the U.S. built Node 1 or Unity module, which cornected with the Russian built Functional Cargo Block (FGB) or Zarya. The FGB was linked with the Service Module or Zvezda. On the far end is the Russian Progress supply ship.

  19. International Space Station (ISS)

    NASA Image and Video Library

    2000-01-01

    This diagram shows the flow of recyclable resources in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water and oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection / suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.

  20. International Space Station (ISS)

    NASA Image and Video Library

    2000-01-01

    This diagram shows the flow of water recovery and management in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection/ suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2001-12-12

    Astronauts Frank L. Culbertson, Jr. (left), Expedition Three mission commander, and Daniel W. Bursch, Expedition Four flight engineer, work in the Russian Zvezda Service Module on the International Space Station (ISS). Zvezda is linked to the Russian built Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the Station, providing living quarters, a life support system, electrical power distribution, a data processing system, a flight control system, and a propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000 pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  2. International Space Station (ISS)

    NASA Image and Video Library

    2001-06-08

    Astronaut Susan J. Helms, Expedition Two flight engineer, mounts a video camera onto a bracket in the Russian Zarya or Functional Cargo Block (FGB) of the International Space Station (ISS). Launched by a Russian Proton rocket from the Baikonu Cosmodrome on November 20, 1998, the Unites States-funded and Russian-built Zarya was the first element of the ISS, followed by the U.S. Unity Node.

  3. ISS Utilization Potential for 2011-2020 and Beyond

    NASA Astrophysics Data System (ADS)

    Askew, R.; Chabrow, J.; Nakagawa, R.

    The US concept for a permanent human presence in space as directed by President Ronald Reagan in 1984 was called Space Station Freedom. This was the precursor to the International Space Station (ISS) that now orbits the earth. The first element of the ISS, Zarya, was launched November 20, 1998. The launch of STS-133 provides the final component of the assembly, the Multi-Purpose Logistics Module (MPLM). During the assembly the ISS was utilized to the extent possible for the conduct of scientific research and technology development, and for the development of enhancements to the ISS capabilities. These activities have resulted in a significant database of lessons learned regarding operations, both of the ISS platform as well as in the conduct of research. For the coming decade utilization of the ISS will be impacted by how these lessons learned are used to improve operations. Access to the ISS and to its capabilities will determine the types of projects that can use the ISS. Perhaps the most critical limitation is the funds that must be invested by potential users of the ISS. This paper examines the elements that have been identified as impediments to utilization of the ISS by both basic researchers and by the private sector over the past decade and provides an assessment of which of these are likely to be satisfactorily altered and on what time scale.

  4. The Situational Awareness Sensor Suite for the ISS (SASSI): A Mission Concept to Investigate ISS Charging and Wake Effects

    NASA Technical Reports Server (NTRS)

    Krause, L. Habash; Minow, J. I.; Coffey, V. N.; Gilchrist, Brian E.; Hoegy, W. R.

    2014-01-01

    The complex interaction between the International Space Station (ISS) and the surrounding plasma environment often generates unpredictable environmental situations that affect operations. Examples of affected systems include extravehicular activity (EVA) safety, solar panel efficiency, and scientific instrument integrity. Models and heuristically-derived best practices are well-suited for routine operations, but when it comes to unusual or anomalous events or situations, especially those driven by space weather, there is no substitute for real-time monitoring. Space environment data collected in real-time (or near-real time) can be used operationally for both real-time alarms and data sources in assimilative models to predict environmental conditions important for operational planning. Fixed space weather instruments mounted to the ISS can be used for monitoring the ambient space environment, but knowing whether or not (or to what extent) the ISS affects the measurements themselves requires adequate space situational awareness (SSA) local to the ISS. This paper presents a mission concept to use a suite of plasma instruments mounted at the end of the ISS robotic arm to systematically explore the interaction between the Space Station structure and its surrounding environment. The Situational Awareness Sensor Suite for the ISS (SASSI) would be deployed and operated on the ISS Express Logistics Carrier (ELC) for long-term "survey mode" observations and the Space Station Remote Manipulator System (SSRMS) for short-term "campaign mode" observations. Specific areas of investigation include: 1) ISS frame and surface charging during perturbations of the local ISS space environment, 2) calibration of the ISS Floating Point Measurement Unit (FPMU), 3) long baseline measurements of ambient ionospheric electric potential structures, 4) electromotive force-induced currents within large structures moving through a magnetized plasma, and 5) wake-induced ion waves in both

  5. Early Communication System (ECOMM) for ISS

    NASA Technical Reports Server (NTRS)

    Gaylor, Kent; Tu, Kwei

    1999-01-01

    The International Space Station (ISS) Early Communications System (ECOMM) was a Johnson Space Center (JSC) Avionic Systems Division (ASD) in-house developed communication system to provide early communications between the ISS and the Mission Control Center-Houston (MCC-H). This system allows for low rate commands (link rate of 6 kbps) to be transmitted through the Tracking and Data Relay Satellite System (TDRSS) from MCC-H to the ISS using TDRSS's S-band Single Access Forward (SSA/) link service. This system also allows for low rate telemetry (link rate of 20.48 kbps) to be transmitted from ISS to MCC-H through the TDRSS using TDRSS's S-band Single Access Return (SSAR) link service. In addition this system supports a JSC developed Onboard Communications Adapter (OCA) that allows for a two-way data exchange of 128 kbps between MCC-H and the ISS through TDRSS. This OCA data can be digital video/audio (two-way videoconference), and/or file transfers, and/or "white board". The key components of the system, the data formats used by the system to insure compatibility with the future ISS S-Band System, as well as how other vehicles may be able to use this system for their needs are discussed in this paper.

  6. iss009e21116

    NASA Image and Video Library

    2004-09-01

    ISS009-E-21116 (1 Sept. 2004) -- Astronaut Edward M. (Mike) Fincke, aboard the International Space Station (ISS) at an altitude of about 230 miles, took this photo of Hurricane Frances early Sept. 1. Part of the large system is obscured by the portal. The Guantanimo Bay area of Cuba appears near frame's edge and part of Hispaniola is pictured near frame center. Sunglint alters the natural colors in this scene.

  7. International Space Station (ISS)

    NASA Image and Video Library

    2000-09-01

    This image of the International Space Station (ISS) was taken when Space Shuttle Atlantis (STS-106 mission) approached the ISS for docking. At the top is the Russian Progress supply ship that is linked with the Russian built Service Module or Zvezda. The Zvezda is cornected with the Russian built Functional Cargo Block (FGB) or Zarya. The U.S. built Node 1 or Unity module is seen at the bottom.

  8. iss047e066248

    NASA Image and Video Library

    2016-04-19

    ISS047e066248 (04/19/2016) --- NASA astronaut and Expedition 47 Flight Engineer Jeff Williams works with the Wet Lab RNA SmartCycler on-board the International Space Station. Wetlab RNA SmartCycler is a research platform for conducting real-time quantitative gene expression analysis aboard the ISS. The system enables spaceflight genomic studies involving a wide variety of biospecimen types in the unique microgravity environment of space.

  9. Evolution of the iss gene in Escherichia coli.

    PubMed

    Johnson, Timothy J; Wannemuehler, Yvonne M; Nolan, Lisa K

    2008-04-01

    The increased serum survival gene iss has long been recognized for its role in extraintestinal pathogenic Escherichia coli (ExPEC) virulence. iss has been identified as a distinguishing trait of avian ExPEC but not of human ExPEC. This gene has been localized to large virulence plasmids and shares strong similarities with the bor gene from bacteriophage lambda. Here, we demonstrate that three alleles of iss occur among E. coli isolates that appear to have evolved from a common lambda bor precursor. In addition to the occurrence of iss on the ColV/BM virulence plasmids, at least two iss alleles occur within the E. coli chromosome. One of these alleles (designated type 3) was found to occur in the genomes of all currently sequenced ExPEC strains on a similar prophage element that also harbors the Sit iron and manganese transport system. When the prevalence of the three iss types was examined among 487 E. coli isolates, the iss type 3 gene was found to occur at a high frequency among ExPEC isolates, irrespective of the host source. The plasmid-borne iss allele (designated type 1) was highly prevalent among avian pathogenic E. coli and neonatal meningitis-associated E. coli isolates but not among uropathogenic E. coli isolates. This study demonstrates the evolution of iss in E. coli and provides an additional tool for discriminating among E. coli pathotypes through the differentiation of the three iss allele types and bor.

  10. Biomedical Results of ISS Expeditions 1-12

    NASA Technical Reports Server (NTRS)

    Fogarty, Jennifer; Sams, Clarence F.

    2007-01-01

    A viewgraph presentation on biomedical data from International Space Station (ISS) Expeditions 1-12 is shown. The topics include: 1) ISS Expeditions 1-12; 2) Biomedical Data; 3) Physiological Assessments; 4) Bone Mineral Density; 5) Bone Mineral Density Recovery; 6) Orthostatic Tolerance; 7) Postural Stability Set of Sensory Organ Test 6; 8) Performance Assessment; 9) Aerobic Capacity of the Astronaut Corps; 10) Pre-flight Aerobic Fitness of ISS Astronauts; 11) In-flight and Post-flight Aerobic Capacity of the Astronaut Corps; and 12) ISS Functional Fitness Expeditions 1-12.

  11. International Space Station (ISS)

    NASA Image and Video Library

    2001-10-08

    The STS-108 crew members take a break from their training to pose for their preflight portrait. Astronauts Dominic L. Gorie right) and Mark E. Kelly, commander and pilot, respectively, are seated in front. In the rear are astronauts Linda M. Godwin and Daniel L. Tani, both mission specialists. The 12th flight to the International Space Station (ISS) and final flight of 2001, the STS-108 mission launched aboard the Space Shuttle Endeavour on December 5, 2001. They were accompanied to the ISS by the Expedition Four crew, which remained on board the orbital outpost for several months. The Expedition Three crew members returned home with the STS-108 astronauts. In addition to the Expedition crew exchange, STS-108 crew deployed the student project STARSHINE, and delivered 2.7 metric tons (3 tons) of equipment and supplies to the ISS.

  12. International Space Station (ISS)

    NASA Image and Video Library

    2006-07-09

    The STS-117 crew patch symbolizes the continued construction of the International Space Station (ISS) and our ongoing human presence in space. The ISS is shown orbiting high above the Earth. Gold is used to highlight the portion of the ISS that will be installed by the STS-117 crew. It consists of the second starboard truss section, S3 and S4, and a set of solar arrays. The names of the STS-117 crew are located above and below the orbiting outpost. The two gold astronaut office symbols, emanating from the 117 at the bottom of the patch, represent the concerted efforts of the shuttle and station programs toward the completion of the station. The orbiter and unfurled banner of red, white, and blue represent our Nation and renewed patriotism as we continue to explore the universe.

  13. Measurements of the neutron dose and energy spectrum on the International Space Station during expeditions ISS-16 to ISS-21.

    PubMed

    Smith, M B; Akatov, Yu; Andrews, H R; Arkhangelsky, V; Chernykh, I V; Ing, H; Khoshooniy, N; Lewis, B J; Machrafi, R; Nikolaev, I; Romanenko, R Y; Shurshakov, V; Thirsk, R B; Tomi, L

    2013-01-01

    As part of the international Matroshka-R and Radi-N experiments, bubble detectors have been used on board the ISS in order to characterise the neutron dose and the energy spectrum of neutrons. Experiments using bubble dosemeters inside a tissue-equivalent phantom were performed during the ISS-16, ISS-18 and ISS-19 expeditions. During the ISS-20 and ISS-21 missions, the bubble dosemeters were supplemented by a bubble-detector spectrometer, a set of six detectors that was used to determine the neutron energy spectrum at various locations inside the ISS. The temperature-compensated spectrometer set used is the first to be developed specifically for space applications and its development is described in this paper. Results of the dose measurements indicate that the dose received at two different depths inside the phantom is not significantly different, suggesting that bubble detectors worn by a person provide an accurate reading of the dose received inside the body. The energy spectra measured using the spectrometer are in good agreement with previous measurements and do not show a strong dependence on the precise location inside the station. To aid the understanding of the bubble-detector response to charged particles in the space environment, calculations have been performed using a Monte-Carlo code, together with data collected on the ISS. These calculations indicate that charged particles contribute <2% to the bubble count on the ISS, and can therefore be considered as negligible for bubble-detector measurements in space.

  14. ISS Expedition 45 / 46 Underwater Crew Training

    NASA Image and Video Library

    2015-02-03

    Underwater camera views of ISS Expedition 45 (Soyuz 42) crewmember Scott Kelly and ISS Expedition 46 (Soyuz 43) crewmember Kjell Lindgren during ISS Extravehicular Activity (EVA) Maintenance 9 Training (PMA/PMM Relocate) at JSC's Neutral Buoyancy Lab (NBL) Pool Deck at Sonny Carter Training Facility (SCTF). TIME magazine film crew filming activities.

  15. Optimal Propellant Maneuver Flight Demonstrations on ISS

    NASA Technical Reports Server (NTRS)

    Bhatt, Sagar; Bedrossian, Nazareth; Longacre, Kenneth; Nguyen, Louis

    2013-01-01

    In this paper, first ever flight demonstrations of Optimal Propellant Maneuver (OPM), a method of propulsive rotational state transition for spacecraft controlled using thrusters, is presented for the International Space Station (ISS). On August 1, 2012, two ISS reorientations of about 180deg each were performed using OPMs. These maneuvers were in preparation for the same-day launch and rendezvous of a Progress vehicle, also a first for ISS visiting vehicles. The first maneuver used 9.7 kg of propellant, whereas the second used 10.2 kg. Identical maneuvers performed without using OPMs would have used approximately 151.1kg and 150.9kg respectively. The OPM method is to use a pre-planned attitude command trajectory to accomplish a rotational state transition. The trajectory is designed to take advantage of the complete nonlinear system dynamics. The trajectory choice directly influences the cost of the maneuver, in this case, propellant. For example, while an eigenaxis maneuver is kinematically the shortest path between two orientations, following that path requires overcoming the nonlinear system dynamics, thereby increasing the cost of the maneuver. The eigenaxis path is used for ISS maneuvers using thrusters. By considering a longer angular path, the path dependence of the system dynamics can be exploited to reduce the cost. The benefits of OPM for the ISS include not only reduced lifetime propellant use, but also reduced loads, erosion, and contamination from thrusters due to fewer firings. Another advantage of the OPM is that it does not require ISS flight software modifications since it is a set of commands tailored to the specific attitude control architecture. The OPM takes advantage of the existing ISS control system architecture for propulsive rotation called USTO control mode1. USTO was originally developed to provide ISS Orbiter stack attitude control capability for a contingency tile-repair scenario, where the Orbiter is maneuvered using its robotic

  16. International Space Station (ISS)

    NASA Image and Video Library

    2003-10-25

    Aboard the International Space Station (ISS), European Space Agency astronaut Pedro Duque of Spain watches a water bubble float between a camera and himself. The bubble shows his reflection (reversed). Duque was launched aboard a Russian Soyuz TMA-3 spacecraft from the Baikonur Cosmodrome, Kazakhstan on October 18th, along with expedition-8 crew members Michael C. Foale, Mission Commander and NASA ISS Science Officer, and Cosmonaut Alexander Y. Kaleri, Soyuz Commander and flight engineer.

  17. ISS Payload Human Factors

    NASA Technical Reports Server (NTRS)

    Ellenberger, Richard; Duvall, Laura; Dory, Jonathan

    2016-01-01

    The ISS Payload Human Factors Implementation Team (HFIT) is the Payload Developer's resource for Human Factors. HFIT is the interface between Payload Developers and ISS Payload Human Factors requirements in SSP 57000. ? HFIT provides recommendations on how to meet the Human Factors requirements and guidelines early in the design process. HFIT coordinates with the Payload Developer and Astronaut Office to find low cost solutions to Human Factors challenges for hardware operability issues.

  18. Shuttle and ISS Food Systems Management

    NASA Technical Reports Server (NTRS)

    Kloeris, Vickie

    2000-01-01

    Russia and the U.S. provide the current International Space Station (ISS) food system. Each country contributes half of the food supply in their respective flight food packaging. All of the packaged flight food is stowed in Russian provided containers, which interface with the Service Module galley. Each country accepts the other's flight worthiness inspections and qualifications. Some of the food for the first ISS crew was launched to ISS inside the Service Module in July of 2000, and STS-106 in September 2000 delivered more food to the ISS. All subsequent food deliveries will be made by Progress, the Russian re-supply vehicle. The U.S. will ship their portion of food to Moscow for loading onto the Progress. Delivery schedules vary, but the goal is to maintain at least a 45-day supply onboard ISS at all times. The shelf life for ISS food must be at least one year, in order to accommodate the long delivery cycle and onboard storage. Preservation techniques utilized in the US food system include dehydration, thermo stabilization, intermediate moisture, and irradiation. Additional fresh fruits and vegetables will be sent with each Progress and Shuttle flights as permitted by volume allotments. There is limited refrigeration available on the Service Module to store fresh fruits and vegetables. Astronauts and cosmonauts eat half U.S. and half Russian food. Menu planning begins 1 year before a planned launch. The flight crews taste food in the U.S. and in Russia and rate the acceptability. A preliminary menu is planned, based on these ratings and the nutritional requirements. The preliminary menu is then evaluated by the crews while training in Russia. Inputs from this evaluation are used to finalize the menu and flight packaging is initiated. Flight food is delivered 6 weeks before launch. The current challenge for the food system is meeting the nutritional requirements, especially no more than 10 mg iron, and 3500 mg sodium. Experience from Shuttle[Mir also indicated

  19. SAGEIII-ISS L2 Lunar Data Release

    Atmospheric Science Data Center

    2018-01-12

    ... Space Station (SAGE III-ISS) Science Team and the NASA Langley Atmospheric Science Data Center (ASDC), announces the public ... Lunar Event Species Profiles (HDF-EOS) V5 (g3bssp)      doi: 10.5067/ISS/SAGEIII/LUNAR_HDF4_L2-V5.0 SAGE III/ISS L2 Lunar Event ...

  20. Utilizing ISS Camera Systems for Scientific Analysis of Lightning Characteristics and comparison with ISS-LIS and GLM

    NASA Astrophysics Data System (ADS)

    Schultz, C. J.; Lang, T. J.; Leake, S.; Runco, M.; Blakeslee, R. J.

    2017-12-01

    Video and still frame images from cameras aboard the International Space Station (ISS) are used to inspire, educate, and provide a unique vantage point from low-Earth orbit that is second to none; however, these cameras have overlooked capabilities for contributing to scientific analysis of the Earth and near-space environment. The goal of this project is to study how georeferenced video/images from available ISS camera systems can be useful for scientific analysis, using lightning properties as a demonstration. Camera images from the crew cameras and high definition video from the Chiba University Meteor Camera were combined with lightning data from the National Lightning Detection Network (NLDN), ISS-Lightning Imaging Sensor (ISS-LIS), the Geostationary Lightning Mapper (GLM) and lightning mapping arrays. These cameras provide significant spatial resolution advantages ( 10 times or better) over ISS-LIS and GLM, but with lower temporal resolution. Therefore, they can serve as a complementarity analysis tool for studying lightning and thunderstorm processes from space. Lightning sensor data, Visible Infrared Imaging Radiometer Suite (VIIRS) derived city light maps, and other geographic databases were combined with the ISS attitude and position data to reverse geolocate each image or frame. An open-source Python toolkit has been developed to assist with this effort. Next, the locations and sizes of all flashes in each frame or image were computed and compared with flash characteristics from all available lightning datasets. This allowed for characterization of cloud features that are below the 4-km and 8-km resolution of ISS-LIS and GLM which may reduce the light that reaches the ISS-LIS or GLM sensor. In the case of video, consecutive frames were overlaid to determine the rate of change of the light escaping cloud top. Characterization of the rate of change in geometry, more generally the radius, of light escaping cloud top was integrated with the NLDN, ISS-LIS and

  1. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e190769 - iss042e191096). Shows Earth views. Solar Array Wing (SAW) in foreground.

  2. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e330173 - iss042e331530). Shows Earth views. Solar Array Wing (SAW) in foreground.

  3. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e238532 - iss042e239150). Shows Earth views. Solar Array Wing (SAW) in foreground.

  4. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e177446 - iss042e178444 ). Shows Earth views. Solar Array Wing (SAW) in foreground.

  5. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e110489 - iss042e111902). Shows Earth views. Solar Array Wing (SAW) in foreground.

  6. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e212874 - iss042e213080). Shows Earth views. Solar Array Wing (SAW) in foreground.

  7. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e285752 - iss042e286830). Shows Earth views. Solar Array Wing (SAW) in foreground.

  8. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e116561 - iss042e117265). Shows Earth views. Solar Array Wing (SAW) in foreground.

  9. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (iss042e071550 - iss042e072050). Shows Earth views over Africa, Sinai, Saudi Arabia, Jordan and Israel.

  10. International Space Station (ISS)

    NASA Image and Video Library

    2001-12-15

    As seen through a window on the Space Shuttle Endeavor's aft flight deck, the International Space Station (ISS), with its newly-staffed crew of three, Expedition Four, is contrasted against a patch of the blue and white Earth. The Destiny laboratory is partially covered with shadows in the foreground. The photo was taken during the departure of the Earth-bound Endeavor, bringing to a close the STS-108 mission, the 12th Shuttle mission to visit the ISS.

  11. iss01e5117

    NASA Image and Video Library

    2000-12-01

    ISS01-E-5117 (December 2000) --- This westerly-looking view over north Harris County featuring Lake Houston and the Bush Intercontinental Airport was photographed with a digital still camera from the Earth-orbiting International Space Station (ISS). Parts of the 610 Loop, Interstate Highway 45, U.S. Highway 59 and the Sam Houston Toll Way can be easily delineated in the view. Part of the downtown area is just below center at left edge of the frame.

  12. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e260338 - iss042e261334). Shows night time Earth views taken from the Cupola module.

  13. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    s time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e207712 - iss042e209132 ). Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.

  14. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e203119 - iss042e203971). Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.

  15. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e334978 - iss042e335976). Shows Earth views. Solar Array Wing (SAW) comes into view.

  16. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e324104 - iss042e325631). Shows Earth views. Soyuz and Progress spacecrafts come into view.

  17. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows the Timeline Change Officer (TCO) at a work station. The TCO maintains the daily schedule of science activities and work assignments, and works with planners at Mission Control at Johnson Space Center in Houston, Texas, to ensure payload activities are accommodated in overall ISS plans and schedules.

  18. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows a Payload Rack Officer (PRO) at a work station. The PRO is linked by a computer to all payload racks aboard the ISS. The PRO monitors and configures the resources and environment for science experiments including EXPRESS Racks, multiple-payload racks designed for commercial payloads.

  19. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-01

    Pictured here is the Space Shuttle Orbiter Endeavour, STS-111 mission insignia. The International Space Station (ISS) recieved a new crew, Expedition Five, replacing Expedition Four after a record-setting 196 days in space, when STS-111 visited in June 2002. Three spacewalks enabled the STS-111 crew to accomplish additional mission objectives: the delivery and installation of a new platform for the ISS robotic arm, the Mobile Base System (MBS) which is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.

  20. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This is a view of the ECLSS and the Internal Thermal Control System (ITCS) Test Facility in building 4755, MSFC. In the foreground is the 3-module ECLSS simulator comprised of the U.S. Laboratory Module Simulator, Node 1 Simulator, and Node 3/Habitation Module Simulator. At center left is the ITCS Simulator. The main function of the ITCS is to control the temperature of equipment and hardware installed in a typical ISS Payload Rack.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This is a view of the ECLSS and the Internal Thermal Control System (ITCS) Test Facility in building 4755, MSFC. In the foreground is the 3-module ECLSS simulator comprised of the U.S. Laboratory Module Simulator, Node 1 Simulator, and Node 3/Habitation Module Simulator. On the left is the ITCS Simulator. The main function of the ITCS is to control the temperature of equipment and hardware installed in a typical ISS Payload Rack.

  2. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e210380 - iss042e211441). Shows Earth views. Solar Array Wing (SAW) in and out of view.

  3. Correlation of ISS Electric Potential Variations with Mission Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Minow, Joseph I.; Parker, Linda Neergaard

    2014-01-01

    Spacecraft charging on the International Space Station (ISS) is caused by a complex combination of the low Earth orbit plasma environment, space weather events, operations of the high voltage solar arrays, and changes in the ISS configuration and orbit parameters. Measurements of the ionospheric electron density and temperature along the ISS orbit and variations in the ISS electric potential are obtained from the Floating Potential Measurement Unit (FPMU) suite of four plasma instruments (two Langmuir probes, a Floating Potential Probe, and a Plasma Impedance Probe) on the ISS. These instruments provide a unique capability for monitoring the response of the ISS electric potential to variations in the space environment, changes in vehicle configuration, and operational solar array power manipulation. In particular, rapid variations in ISS potential during solar array operations on time scales of tens of milliseconds can be monitored due to the 128 Hz sample rate of the Floating Potential Probe providing an interesting insight into high voltage solar array interaction with the space plasma environment. Comparing the FPMU data with the ISS operations timeline and solar array data provides a means for correlating some of the more complex and interesting ISS electric potential variations with mission operations. In addition, recent extensions and improvements to the ISS data downlink capabilities have allowed more operating time for the FPMU than ever before. The FPMU was operated for over 200 days in 2013 resulting in the largest data set ever recorded in a single year for the ISS. In this paper we provide examples of a number of the more interesting ISS charging events observed during the 2013 operations including examples of rapid charging events due to solar array power operations, auroral charging events, and other charging behavior related to ISS mission operations.

  4. Correlation of ISS Electric Potential Variations with Mission Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Minow, Joseph I.; Parker, Linda Neergaard

    2014-01-01

    Spacecraft charging on the International Space Station (ISS) is caused by a complex mix of the low Earth orbit plasma environment, space weather events, operations of the high voltage solar arrays, and changes in the ISS configuration and orbit parameters. Measurements of the ionospheric electron density and temperature along the ISS orbit and variations in the ISS electric potential are obtained from the Floating Potential Measurement Unit (FPMU) suite of four plasma instruments (two Langmuir probes, a Floating Potential Probe, and a Plasma Impedance Probe) on the ISS. These instruments provide a unique capability for monitoring the response of the ISS electric potential to variations in the space environment, changes in vehicle configuration, and operational solar array power manipulation. In particular, rapid variations in ISS potential during solar array operations on time scales of tens of milliseconds can be monitored due to the 128 Hz sample rate of the Floating Potential Probe providing an interesting insight into high voltage solar array interaction with the space plasma environment. Comparing the FPMU data with the ISS operations timeline and solar array data provides a means for correlating some of the more complex and interesting ISS electric potential variations with mission operations. In addition, recent extensions and improvements to the ISS data downlink capabilities have allowed more operating time for the FPMU than ever before. The FPMU was operated for over 200 days in 2013 resulting in the largest data set ever recorded in a single year for the ISS. This presentation will provide examples of a number of the more interesting ISS charging events observed during the 2013 operations including examples of rapid charging events due to solar array power operations, auroral charging events, and other charging behavior related to ISS mission operations.

  5. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e211498 - iss042e212135). Shows Earth views. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground

  6. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e162807 - iss042e163936). Shows Earth views. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.

  7. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e193144 - iss042e194102). Shows Earth views. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.

  8. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e209133 - iss042e210379). Shows Earth views. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.

  9. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e215401 -iss042e215812). Shows Earth views. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.

  10. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e290689 - iss042e291289). Shows Earth views. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.

  11. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e249923 - iss042e250759). Shows Earth views. Space Station Remote Manipulator system (SSRMS) or Canadarm in foreground.

  12. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e170341 - iss042e171462). Shows Earth views. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.

  13. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e244330 - iss042e245101). Shows Earth views. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.

  14. Rapid ISS Power Availability Simulator

    NASA Technical Reports Server (NTRS)

    Downing, Nicholas

    2011-01-01

    The ISS (International Space Station) Power Resource Officers (PROs) needed a tool to automate the calculation of thousands of ISS power availability simulations used to generate power constraint matrices. Each matrix contains 864 cells, and each cell represents a single power simulation that must be run. The tools available to the flight controllers were very operator intensive and not conducive to rapidly running the thousands of simulations necessary to generate the power constraint data. SOLAR is a Java-based tool that leverages commercial-off-the-shelf software (Satellite Toolkit) and an existing in-house ISS EPS model (SPEED) to rapidly perform thousands of power availability simulations. SOLAR has a very modular architecture and consists of a series of plug-ins that are loosely coupled. The modular architecture of the software allows for the easy replacement of the ISS power system model simulator, re-use of the Satellite Toolkit integration code, and separation of the user interface from the core logic. Satellite Toolkit (STK) is used to generate ISS eclipse and insulation times, solar beta angle, position of the solar arrays over time, and the amount of shadowing on the solar arrays, which is then provided to SPEED to calculate power generation forecasts. The power planning turn-around time is reduced from three months to two weeks (83-percent decrease) using SOLAR, and the amount of PRO power planning support effort is reduced by an estimated 30 percent.

  15. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This is an exterior view of the U.S. Laboratory Module Simulator containing the ECLSS Internal Thermal Control System (ITCS) testing facility at MSFC. At the bottom right is the data acquisition and control computers (in the blue equipment racks) that monitor the testing in the facility. The ITCS simulator facility duplicates the function, operation, and troubleshooting problems of the ITCS. The main function of the ITCS is to control the temperature of equipment and hardware installed in a typical ISS Payload Rack.

  16. International Space Station (ISS)

    NASA Image and Video Library

    1997-06-01

    This Boeing photograph shows the Node 1, Unity module, Flight Article (at right) and the U.S. Laboratory module, Destiny, Flight Article for the International Space Station (ISS) being manufactured in the High Bay Clean Room of the Space Station Manufacturing Facility at the Marshall Space Flight Center. The Node 1, or Unity, serves as a cornecting passageway to Space Station modules. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The U.S. Laboratory (Destiny) module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The U.S. Laboratory/Destiny was launched aboard the orbiter Atlantis (STS-98 mission) on February 7, 2001. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  17. Expedition 24 Docks to ISS

    NASA Image and Video Library

    2010-06-17

    The Soyuz TMA-19 nears its docking with the International Space Station (ISS) as seen in the video monitor at Russian Mission Control Center in Korolev, Russia on Friday, June 18, 2010. The TMA-19 delivered the crew of Expedition 24 Soyuz Commander Fyodor Yurchikhin, and NASA Flight Engineers Doug Wheelock and Shannon Walker to the ISS. Photo Credit: (NASA/Carla Cioffi)

  18. Cold Stowage: An ISS Project

    NASA Technical Reports Server (NTRS)

    Hartley, Garen

    2018-01-01

    NASA's vision for humans pursuing deep space flight involves the collection of science in low earth orbit aboard the International Space Station (ISS). As a service to the science community, Johnson Space Center (JSC) has developed hardware and processes to preserve collected science on the ISS and transfer it safely back to the Principal Investigators. This hardware includes an array of freezers, refrigerators, and incubators. The Cold Stowage team is part of the International Space Station (ISS) program. JSC manages the operation, support and integration tasks provided by Jacobs Technology and the University of Alabama Birmingham (UAB). Cold Stowage provides controlled environments to meet temperature requirements during ascent, on-orbit operations and return, in relation to International Space Station Payload Science.

  19. International Space Station (ISS)

    NASA Image and Video Library

    2001-09-16

    The setting sun and the thin blue airglow line at Earth's horizon was captured by the International Space Station's (ISS) Expedition Three crewmembers with a digital camera. Some of the Station's components are silhouetted in the foreground. The crew was launched aboard the Space Shuttle Orbiter Discovery STS-105 mission, on August 10, 2001, replacing the Expedition Two crew. After marning the orbiting ISS for 128 consecutive days, the three returned to Earth on December 17, 2001, aboard the STS-108 mission Space Shuttle Orbiter Endeavour.

  20. International Space Station (ISS)

    NASA Image and Video Library

    2007-11-05

    Back dropped by the blueness of Earth is the International Space Station (ISS) as seen from Space Shuttle Discovery as the two spacecraft begin their relative separation. The latest configuration of the ISS includes the Italian-built U.S. Node 2, named Harmony, and the P6 truss segment installed over 11 days of cooperative work onboard the shuttle and station by the STS-120 and Expedition 16 crews. Undocking of the two spacecraft occurred at 4:32 a.m. (CST) on Nov. 5, 2007.

  1. Space Flight Resource Management for ISS Operations

    NASA Technical Reports Server (NTRS)

    Schmidt, Lacey L.; Slack, Kelley; Holland, Albert; Huning, Therese; O'Keefe, William; Sipes, Walter E.

    2010-01-01

    Although the astronaut training flow for the International Space Station (ISS) spans 2 years, each astronaut or cosmonaut often spends most of their training alone. Rarely is it operationally feasible for all six ISS crewmembers to train together, even more unlikely that crewmembers can practice living together before launch. Likewise, ISS Flight Controller training spans 18 months of learning to manage incredibly complex systems remotely in plug-and-play ground teams that have little to no exposure to crewmembers before a mission. How then do all of these people quickly become a team - a team that must respond flexibly yet decisively to a variety of situations? The answer implemented at NASA is Space Flight Resource Management (SFRM), the so-called "soft skills" or team performance skills. Based on Crew Resource Management, SFRM was developed first for shuttle astronauts and focused on managing human errors during time-critical events (Rogers, et al. 2002). Given the nature of life on ISS, the scope of SFRM for ISS broadened to include teamwork during prolonged and routine operations (O'Keefe, 2008). The ISS SFRM model resembles a star with one competency for each point: Communication, Cross-Culture, Teamwork, Decision Making, Team Care, Leadership/Followership, Conflict Management, and Situation Awareness. These eight competencies were developed with international participation by the Human Behavior and Performance Training Working Group. Over the last two years, these competencies have been used to build a multi-modal SFRM training flow for astronaut candidates and flight controllers that integrates team performance skills into the practice of technical skills. Preliminary results show trainee skill increases as the flow progresses; and participants find the training invaluable to performing well and staying healthy during ISS operations. Future development of SFRM training will aim to help support indirect handovers as ISS operations evolve further with the

  2. International Space Station (ISS) Risk Reduction Activities

    NASA Technical Reports Server (NTRS)

    Fodroci, Michael

    2011-01-01

    As the assembly of the ISS nears completion, it is worthwhile to step back and review some of the actions pursued by the Program in recent years to reduce risk and enhance the safety and health of ISS crewmembers, visitors, and space flight participants. While the ISS requirements and initial design were intended to provide the best practicable levels of safety, it is always possible to reduce risk -- given the determination and commitment to do so. The following is a summary of some of the steps taken by the ISS Program Manager, by our International Partners, by hardware and software designers, by operational specialists, and by safety personnel to continuously enhance the safety of the ISS. While decades of work went into developing the ISS requirements, there are many things in a Program like the ISS that can only be learned through actual operational experience. These risk reduction activities can be divided into roughly three categories: (1) Areas that were initially noncompliant which have subsequently been brought into compliance or near compliance (i.e., Micrometeoroid and Orbital Debris [MMOD] protection, acoustics) (2) Areas where initial design requirements were eventually considered inadequate and were subsequently augmented (i.e., Toxicity Level 4 materials, emergency hardware and procedures) (3) Areas where risks were initially underestimated, and have subsequently been addressed through additional mitigation (i.e., Extravehicular Activity [EVA] sharp edges, plasma shock hazards) Due to the hard work and cooperation of many parties working together across the span of nearly a decade, the ISS is now a safer and healthier environment for our crew, in many cases exceeding the risk reduction targets inherent in the intent of the original design. It will provide a safe and stable platform for utilization and discovery.

  3. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e103580 - iss042e104044). Shows night time Earth views. Solar Array Wing (SAW) and Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.

  4. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e196791 - iss042e197504). Shows Earth views. Day time views turn into night time views. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.

  5. ISS Expedition 6 Crew Patch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    JOHNSON SPACE CENTER, HOUSTON, TEXAS -- (ISS006-S-001) Revised -- The International Space Station (ISS) Expedition 6 crew patch depicts the Station orbiting the Earth on its mission of international cooperation and scientific research. The Earth is placed in the center of the patch to emphasize that work conducted aboard this orbiting laboratory is intended to improve life on our home planet. The shape of the Space Station's orbit symbolizes the role that experience gained from ISS will have on future exploration of our solar system and behond. The American and Russian flags encircling the Earth represent the native countries of the Expedition 6 crew members, which are just two of the many participant countries contributing to the ISS and committed to the peaceful exploration of space. The NASA insignia design for International Space Station missions is reserved for use by the crew members and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced.

  6. ISS Crew Transportation and Services Requirements Document

    NASA Technical Reports Server (NTRS)

    Lueders, Kathryn L. (Compiler)

    2015-01-01

    Under the guidance of processes provided by Crew Transportation Plan (CCT-PLN-1100), this document with its sister documents, Crew Transportation Technical Management Processes (CCT-PLN-1120), Crew Transportation Technical Standards and Design Evaluation Criteria (CCT-STD-1140), and Crew Transportation Operations Standards (CCT-STD-1150), and International Space Station (ISS) to Commercial Orbital Transportation Services Interface Requirements Document (SSP 50808), provides the basis for a National Aeronautics and Space Administration (NASA) certification for services to the ISS for the Commercial Provider. When NASA Crew Transportation System (CTS) certification is achieved for ISS transportation, the Commercial Provider will be eligible to provide services to and from the ISS during the services phase of the NASA Commercial Crew Program (CCP).

  7. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-01

    Huddled together in the Destiny laboratory of the International Space Station (ISS) are the Expedition Four crew (dark blue shirts), Expedition Five crew (medium blue shirts) and the STS-111 crew (green shirts). The Expedition Four crewmembers are, from front to back, Cosmonaut Ury I. Onufrienko, mission commander; and Astronauts Daniel W. Bursch and Carl E. Waltz, flight engineers. The ISS crewmembers are, from front to back, Astronauts Kerneth D. Cockrell, mission commander; Franklin R. Chang-Diaz, mission specialist; Paul S. Lockhart, pilot; and Philippe Perrin, mission specialist. Expedition Five crewmembers are, from front to back, Cosmonaut Valery G. Korzun, mission commander; Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. The ISS recieved a new crew, Expedition Five, replacing Expedition Four after a record-setting 196 days in space, when the Space Shuttle Orbiter Endeavour STS-111 mission visited in June 2002. Three spacewalks enabled the STS-111 crew to accomplish additional mission objectives: the delivery and installation of the Mobile Base System (MBS), which is an important part of the station's Mobile Servicing System allowing the robotic arm to travel the length of the station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.

  8. iss035-s-001

    NASA Image and Video Library

    2011-04-13

    ISS035-S-001 (April 2011) --- Emblazoned with a bold 35 for the 35th expedition to the International Space Station (ISS), this patch portrays a natural moonlit view of the Earth from the ISS at the moment of sunrise, one of the sixteen that occur each day at orbital velocity, with glowing bands of Earth's atmosphere dispersing the sun's bright light into primary colors. The Earth is depicted as it often appears from space, without recognizable coastlines or boundaries - just as the international endeavor of living and working together in space blurs technical and cultural boundaries between nations. The ISS is the unseen central figure of the image, since the view is from a window of the Space Station itself, commemorating full use of the Space Station as a long-duration dwelling from which humans can develop techniques and technologies to further explore. The crew points out, ?The arc of the Earth?s horizon with the sun?s arrows of light imply a bow shooting the imagination to Mars and the cosmos where our species may one day thrive.? The NASA insignia design for shuttle and space station flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, it will be publicly announced.

  9. ISS Expedition 42 Time Lapse Video of Earth

    NASA Image and Video Library

    2015-05-18

    This time lapse video taken during ISS Expedition 42 is assembled from JSC still photo collection (still photos iss042e218184 - iss042e219070 ). Shows night time views over Egypt, Sinai, Saudi Arabia, Jordan and Israel. Space Station Remote Manipulator System (SSRMS) or Canadarm in foreground.

  10. iss047e134605

    NASA Image and Video Library

    2016-05-30

    ISS047e134605 (05/30/2016) --- ESA (European Space Agency) astronaut Tim Peake uses hardware for the Vascular Echo experiment. As humans get older on Earth, arteries stiffen and this causes an increase in blood pressure (hypertension) and elevates the risk for cardiovascular disease. Recently, it has been observed that some crew members returning from the International Space Station (ISS) have much stiffer arteries than when they went into space. The results from studying these changes could provide insight into potential countermeasures to help maintain crew member health, and quality of life for everyone.

  11. International Space Station (ISS)

    NASA Image and Video Library

    2007-11-05

    Back dropped by the blackness of space and Earth's horizon is the International Space Station (ISS) as seen from Space Shuttle Discovery as the two spacecraft begin their relative separation. The latest configuration of the ISS includes the Italian-built U.S. Node 2, named Harmony, and the P6 truss segment installed over 11 days of cooperative work onboard the shuttle and station by the STS-120 and Expedition 16 crews. Undocking of the two spacecraft occurred at 4:32 a.m. (CST) on Nov. 5, 2007.

  12. ISS Expedition 43 Soyuz Rollout

    NASA Image and Video Library

    2015-04-06

    NASA TV (NTV) video file of ISS Expedition 43 Soyuz rollout to launch pad. Includes footage of the rollout by train; Rocket hoisted into upright position; interview with Bob Behnken, Chief of Astronaut Office; Dr. John Charles, chief of the International Science Office of NASA's Human Research Program , Johnson Space Center; and family and friends speaking with and saying goodbye to ISS Expedition 43 - 46 One Year crewmember Scott Kelly .

  13. Space Flight Resource Management for ISS Operations

    NASA Technical Reports Server (NTRS)

    Schmidt, Larry; Slack, Kelley; O'Keefe, William; Huning, Therese; Sipes, Walter; Holland, Albert

    2011-01-01

    This slide presentation reviews the International Space Station (ISS) Operations space flight resource management, which was adapted to the ISS from the shuttle processes. It covers crew training and behavior elements.

  14. International Space Station (ISS)

    NASA Image and Video Library

    2002-07-10

    This is a photo of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

  15. International Space Station (ISS)

    NASA Image and Video Library

    2002-07-10

    Expedition Five crewmember and flight engineer Peggy Whitson displays the progress of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

  16. iss014-s-001

    NASA Image and Video Library

    2006-05-01

    ISS014-S-001 (May 2006) --- This emblem embodies the past, present, and future of human space exploration. The Roman numeral XIV suspended above the Earth against the black background of space symbolizes the fourteenth expeditionary mission to the International Space Station (ISS). Elements of this symbol merge into a unified trajectory destined for the moon, Mars, and beyond, much as science and operations aboard the ISS today will pave the way for future missions to our celestial neighbors. The five stars honor the astronauts and cosmonauts of missions Apollo 1, Soyuz 1, Soyuz 11, Challenger, and Columbia, who gave their lives in the pursuit of knowledge and discovery. The NASA insignia for design for shuttle flights and station increments is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy which is not anticipated, it will be publicly announced.

  17. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-11

    This STS-98 mission photograph shows astronauts Thomas D. Jones (foreground) and Kerneth D. Cockrell floating inside the newly installed Laboratory aboard the International Space Station (ISS). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  18. International Space Station (ISS)

    NASA Image and Video Library

    2003-02-09

    This is the STS-115 insignia. This mission continued the assembly of the International Space Station (ISS) with the installation of the truss segments P3 and P4. Following the installation of the segments utilizing both the shuttle and the station robotic arms, a series of three space walks completed the final connections and prepared for the deployment of the station's second set of solar arrays. To reflect the primary mission of the flight, the patch depicts a solar panel as the main element. As the Space Shuttle Atlantis launches towards the ISS, its trail depicts the symbol of the Astronaut Office. The star burst, representing the power of the sun, rises over the Earth and shines on the solar panel. The shuttle flight number 115 is shown at the bottom of the patch, along with the ISS assembly designation 12A (the 12th American assembly mission). The blue Earth in the background reminds us of the importance of space exploration and research to all of Earth's inhabitants.

  19. International Space Station (ISS)

    NASA Image and Video Library

    1997-11-26

    This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), under construction in the Space Station manufacturing facility at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two end cones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  20. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-05

    Astronaut Joseph R. Tanner, STS-97 mission specialist, is seen during a session of Extravehicular Activity (EVA), performing work on the International Space Station (ISS). Part of the Remote Manipulator System (RMS) arm and a section of the newly deployed solar array panel are in the background. The primary objective of the STS-97 mission was the delivery, assembly, and activation of the U.S. electrical power system on board the ISS. The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-07

    Pictured here is the forward docking port on the International Space Station's (ISS) Destiny Laboratory as seen by one of the STS-111 crewmembers from the Space Shuttle Orbiter Endeavour just prior to docking. In June 2002, STS-111 provided the Space Station with a new crew, Expedition Five, replacing Expedition Four after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish additional mission objectives: the delivery and installation of a new platform for the ISS robotic arm, the Mobile Base System (MBS) which is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments form the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.

  2. iss031-s-001

    NASA Image and Video Library

    2011-08-12

    ISS031-S-001 (September 2011) --- Thin crescents along the horizons of Earth and its moon depict International Space Station (ISS) Expedition 31. The shape of the patch represents a view of our galaxy. The black background symbolizes the research into dark matter, one of the scientific objectives of Expedition 31. At the heart of the patch are Earth, its moon, Mars, and asteroids, the focus of current and future exploration. The ISS is shown in an orbit around Earth, with a collection of stars for the Expedition 30 and 31 crews. The small stars symbolize the visiting vehicles that will dock with the complex during this expedition. The NASA insignia design for shuttle and space station flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA and Its International Partners

  3. Statistical Evaluation of Utilization of the ISS

    NASA Technical Reports Server (NTRS)

    Andrews, Ross; Andrews, Alida

    2006-01-01

    PayLoad Utilization Modeler (PLUM) is a statistical-modeling computer program used to evaluate the effectiveness of utilization of the International Space Station (ISS) in terms of the number of research facilities that can be operated within a specified interval of time. PLUM is designed to balance the requirements of research facilities aboard the ISS against the resources available on the ISS. PLUM comprises three parts: an interface for the entry of data on constraints and on required and available resources, a database that stores these data as well as the program output, and a modeler. The modeler comprises two subparts: one that generates tens of thousands of random combinations of research facilities and another that calculates the usage of resources for each of those combinations. The results of these calculations are used to generate graphical and tabular reports to determine which facilities are most likely to be operable on the ISS, to identify which ISS resources are inadequate to satisfy the demands upon them, and to generate other data useful in allocation of and planning of resources.

  4. International Space Station (ISS)

    NASA Image and Video Library

    2001-05-08

    This is the insignia for the STS-108 mission, which marked a major milestone in the assembly of the International Space Station (ISS) as the first designated Utilization Flight, UF-1. The crew of Endeavour delivered the Expedition Four crew to ISS and returned the Expedition Three crew to Earth. Endeavour launched with a Multi-Purpose Logistics Module (MPLM) that was berthed to the ISS and unloaded. The MPLM was returned to Endeavour for the trip home and used again on a later flight. The crew patch depicts Endeavour and the ISS in the configuration at the time of arrival and docking. The Station is shown viewed along the direction of flight as seen by the Shuttle crew during their final approach and docking along the X-axis. The three ribbons and stars on the left side of the patch signify the returning Expedition Three crew. The red, white and blue order of the ribbons represents the American commander for that mission. The three ribbons and stars on the right depict the arriving Expedition Four crew. The white, blue, and red order of the Expedition Four ribbon matches the color of the Russian flag and signifies that the commander of Expedition Four is a Russian cosmonaut. Each white star in the center of the patch represents the four Endeavour crew members. The names of the four astronauts who crewed Endeavour are shown along the top border of the patch. The three astronauts and three cosmonauts of the two expedition crews are shown on the chevron at the bottom of the patch.

  5. Battery Resistance Analysis of ISS Power System

    NASA Technical Reports Server (NTRS)

    Newstadt, Gregory E.

    2004-01-01

    The computer package, SPACE (Systems Power Analysis for Capability Evaluation) was created by the members of LT-9D to perform power analysis and modeling of the electrical power system on the International Space Station (ISS). Written in FORTRAN, SPACE comprises thousands of lines of code and has been used profficiently in analyzing missions to the ISS. LT-9D has also used its expertise recently to investigate the batteries onboard the Hubble telescope. During the summer of 2004, I worked with the members of LT-9D, under the care of Dave McKissock. Solar energy will power the ISS through eight solar arrays when the ISS is completed, although only two arrays are currently connected. During the majority of the periods of sunlight, the solar arrays provide enough energy for the ISS. However, rechargeable Nickel-Hydrogen batteries are used during eclipse periods or at other times when the solar arrays cannot be used (at docking for example, when the arrays are turned so that they will not be damaged by the Shuttle). Thirty-eight battery cells are connected in series, which make up an ORU (Orbital Replacement Unit). An ISS "battery" is composed of two ORUs. a great deal of time into finding the best way to represent them in SPACE. During my internship, I investigated the resistance of the ISS batteries. SPACE constructs plots of battery charge and discharge voltages vs. time using a constant current. To accommodate for a time-varying current, the voltages are adjusted using the formula, DeltaV = DeltaI * Cell Resistance. To enhance our model of the battery resistance, my research concentrated on several topics: investigating the resistance of a qualification unit battery (using data gathered by LORAL), comparing the resistance of the qualification unit to SPACE, looking at the internal resistance and wiring resistance, and examining the impact of possible recommended changes to SPACE. The ISS batteries have been found to be very difficult to model, and LT-9D has

  6. Preliminary Findings from the SHERE ISS Experiment

    NASA Technical Reports Server (NTRS)

    Hall, Nancy R.; McKinley, Gareth H.; Erni, Philipp; Soulages, Johannes; Magee, Kevin S.

    2009-01-01

    The Shear History Extensional Rheology Experiment (SHERE) is an International Space Station (ISS) glovebox experiment designed to study the effect of preshear on the transient evolution of the microstructure and viscoelastic tensile stresses for monodisperse dilute polymer solutions. The SHERE experiment hardware was launched on Shuttle Mission STS-120 (ISS Flight 10A) on October 22, 2007, and 20 fluid samples were launched on Shuttle Mission STS-123 (ISS Flight 10/A) on March 11, 2008. Astronaut Gregory Chamitoff performed experiments during Increment 17 on the ISS between June and September 2008. A summary of the ten year history of the hardware development, the experiment's science objectives, and Increment 17's flight operations are discussed in the paper. A brief summary of the preliminary science results is also discussed.

  7. Artist's Concept of International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Pictured is an artist's concept of the International Space Station (ISS) with solar panels fully deployed. In addition to the use of solar energy, the ISS will employ at least three types of propulsive support systems for its operation. The first type is to reboost the Station to correct orbital altitude to offset the effects of atmospheric and other drag forces. The second function is to maneuver the ISS to avoid collision with oribting bodies (space junk). The third is for attitude control to position the Station in the proper attitude for various experiments, temperature control, reboost, etc. The ISS, a gateway to permanent human presence in space, is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experimentation by cooperation of sixteen countries.

  8. ISS Expedition 42 / 43 Soyuz Rollout

    NASA Image and Video Library

    2014-11-26

    NASA TV (NTV) video file of ISS Expedition 42 / 43 Soyuz Spacecraft rollout on a train to the launch pad by the Baikonur Cosmodrome in Kazakhstan. Includes footage of the rollout, the rocket being raised to upright position and interviews with Astronaut Mike Fossum, ISS Assistant Director of Operations and Astronaut Sunita Williams.

  9. Environmental Effects on ISS Materials Aging (1998 to 2008)

    NASA Technical Reports Server (NTRS)

    Alred, John; Dasgupta, Rajib; Koontz, Steve; Soares, Carlos; Golden, John

    2009-01-01

    The performance of ISS spacecraft materials and systems on prolonged exposure to the low- Earth orbit (LEO) space flight are reported in this paper. In-flight data, flight crew observations, and the results of ground-based test and analysis directly supporting programmatic and operational decision-making are described. The space flight environments definitions (both natural and induced) used for ISS design, material selection, and verification testing are shown, in most cases, to be more severe than the actual flight environment accounting, in part, for the outstanding performance of ISS as a long mission duration spacecraft. No significant ISS material or system failures have been attributed to spacecraft-environments interactions. Nonetheless, ISS materials and systems performance data is contributing to our understanding of spacecraft material interactions with the spaceflight environment so as to reduce cost and risk for future spaceflight projects and programs. Orbital inclination (51.6 deg) and altitude (nominally near 360 km) determine the set of natural environment factors affecting the functional life of materials and systems on ISS. ISS operates in an electrically conducting environment (the F2 region of Earth s ionosphere) with well-defined fluxes of atomic oxygen, other charged and neutral ionospheric plasma species, solar UV, VUV, and x-ray radiation as well as galactic cosmic rays, trapped radiation, and solar cosmic rays. The LEO micrometeoroid and orbital debris environment is an especially important determinant of spacecraft design and operations. The magnitude of several environmental factors varies dramatically with latitude and longitude as ISS orbits the Earth. The high latitude orbital environment also exposes ISS to higher fluences of trapped energetic electrons, auroral electrons, solar cosmic rays, and galactic cosmic rays than would be the case in lower inclination orbits, largely as a result of the overall shape and magnitude of the

  10. Impact of Solar Array Position on ISS Vehicle Charging

    NASA Technical Reports Server (NTRS)

    Alred, John; Mikatarian, Ronald; Koontz, Steve

    2006-01-01

    The International Space Station (ISS), because of its large structure and high voltage solar arrays, has a complex plasma interaction with the ionosphere in low Earth orbit (LEO). This interaction of the ISS US Segment photovoltaic (PV) power system with the LEO ionospheric plasma produces floating potentials on conducting elements of the ISS structure relative to the local plasma environment. To control the ISS floating potentials, two Plasma Contactor Units (PCUs) are installed on the Z1 truss. Each PCU discharges accumulated electrons from the Space Station structure, thus reducing the potential difference between the ISS structure and the surrounding charged plasma environment. Operations of the PCUs were intended to keep the ISS floating potential to 40 Volts (Reference 1). Exposed dielectric surfaces overlying conducting structure on the Space Station will collect an opposite charge from the ionosphere as the ISS charges. In theory, when an Extravehicular Activity (EVA) crewmember is tethered to structure via the crew safety tether or when metallic surfaces of the Extravehicular Mobility Unit (EMU) come in contact with conducting metallic surfaces of the ISS, the EMU conducting components, including the perspiration-soaked crewmember inside, can become charged to the Space Station floating potential. The concern is the potential dielectric breakdown of anodized aluminum surfaces on the EMU producing an arc from the EMU to the ambient plasma, or nearby ISS structure. If the EMU arcs, an electrical current of an unknown magnitude and duration may conduct through the EVA crewmember, producing an unacceptable condition. This electrical current may be sufficient to startle or fatally shock the EVA crewmember (Reference 2). Hence, as currently defined by the EVA community, the ISS floating potential for all nominal and contingency EVA worksites and translation paths must have a magnitude less than 40 volts relative to the local ionosphere at all times during EVA

  11. Recombinant Iss as a potential vaccine for avian colibacillosis.

    PubMed

    Lynne, Aaron M; Kariyawasam, Subhashinie; Wannemuehler, Yvonne; Johnson, Timothy J; Johnson, Sara J; Sinha, Avanti S; Lynne, Dorie K; Moon, Harley W; Jordan, Dianna M; Logue, Catherine M; Foley, Steven L; Nolan, Lisa K

    2012-03-01

    Avian pathogenic Escherichia coli (APEC) cause colibacillosis, a disease which is responsible for significant losses in poultry. Control of colibacillosis is problematic due to the restricted availability of relevant antimicrobial agents and to the frequent failure of vaccines to protect against the diverse range of APEC serogroups causing disease in birds. Previously, we reported that the increased serum survival gene (iss) is strongly associated with APEC strains, but not with fecal commensal E. coli in birds, making iss and the outer membrane protein it encodes (Iss) candidate targets for colibacillosis control procedures. Preliminary studies in birds showed that their immunization with Iss fusion proteins protected against challenge with two of the more-commonly occurring APEC serogroups (O2 and O78). Here, the potential of an Iss-based vaccine was further examined by assessing its effectiveness against an additional and widely occurring APEC serogroup (O1) and its ability to evoke both a serum and mucosal antibody response in immunized birds. In addition, tissues of selected birds were subjected to histopathologic examination in an effort to better characterize the protective response afforded by immunization with this vaccine. Iss fusion proteins were administered intramuscularly to four groups of 2-wk-old broiler chickens. At 2 wk postimmunization, chickens were challenged with APEC strains of the O1, O2, or O78 serogroups. One week after challenge, chickens were euthanatized, necropsied, any lesions consistent with colibacillosis were scored, and tissues from these birds were taken aseptically. Sera were collected pre-immunization, postimmunization, and post-challenge, and antibody titers to Iss were determined by enzyme-linked immunosorbent assay (ELISA). Also, air sac washings were collected to determine the mucosal antibody response to Iss by ELISA. During the observation period following challenge, 3/12 nonimmunized chickens, 1/12 chickens immunized

  12. Application of IRTAM to Support ISS Program Safety

    NASA Technical Reports Server (NTRS)

    Hartman, William A.; Schmidl, William D.; Mikatarian, Ronald; Koontz, Steven; Galkin, Ivan

    2017-01-01

    The International Space Station (ISS) orbits near the F-peak of the ionosphere (approximately 400 km altitude). Generally, satellites orbiting at this altitude would have a floating potential (FP) of approximately -1 V due to the electron temperature (Te). However, the ISS has 8 large negatively grounded 160 V solar array wings (SAW) that collect a significant electron current from the ionosphere. This current drives the ISS FP much more negative during insolation and is highly dependent on the electron density (Ne). Also, due to the size of the ISS, magnetic inductance caused by the geomagnetic field produces a delta potential up to 40 V across the truss, possibly producing positive potentials. During Extravehicular Activity (EVA) the negative FP can lead to an arcing hazard when it exceeds -45.5 V, and the positive FP can produce a DC current high enough to stimulate the astronaut's muscles and also cause a hazard. Data collected from the Floating Potential Monitoring Unit (FPMU) have shown that the probability of either of these hazards occurring during times with quiet to moderately disturbed geomagnetic activity is low enough to no longer be considered a risk. However, a study of the ionosphere Ne during severe geomagnetic storm activity has shown that the Ne can be enhanced by a factor of 6 in the ISS orbit. As a result, the ISS Safety Review Panel (SRP) requires that ionospheric conditions be monitored using the FPMU in conjunction with the ISS Plasma Interaction Model (PIM) to determine if a severe geomagnetic storm could result in a plasma environment that could produce a hazard. A 'Real-Time' plasma hazard assessment process was developed to support ISS Program real-time decision making providing constraint relief information for EVAs planning and operations. This process incorporates 'real time' ionospheric conditions, ISS solar arrays' orientation, ISS flight attitude, and where the EVA will be performed on the ISS. This assessment requires real time

  13. ISS Hygiene Activities - Issues and Resolutions

    NASA Technical Reports Server (NTRS)

    Prokhorov, Kimberlee S.; Feldman, Brienne; Walker, Stephanie; Bruce, Rebekah

    2009-01-01

    Hygiene is something that is usually taken for granted by those of us on the Earth. The ability to perform hygiene satisfactorily during long duration space flight is crucial for the crew's ability to function. Besides preserving the basic health of the crew, crew members have expressed that the ability to clean up on-orbit is vital for mental health. Providing this functionality involves more than supplying hygiene items such as soap and toothpaste. On the International Space Station (ISS), the details on where and how to perform hygiene were left to the crew discretion for the first seventeen increments. Without clear guidance, the methods implemented on-orbit have resulted in some unintended consequences to the ISS environment. This paper will outline the issues encountered regarding hygiene activities on-board the ISS, and the lessons that have been learned in addressing those issues. Additionally, the paper will address the resolutions that have been put into place to protect the ISS environment while providing the crew sufficient means to perform hygiene.

  14. Orthostatic Intolerance After ISS and Space Shuttle Missions.

    PubMed

    Lee, Stuart M C; Feiveson, Alan H; Stein, Sydney; Stenger, Michael B; Platts, Steven H

    2015-12-01

    Cardiovascular deconditioning apparently progresses with flight duration, resulting in a greater incidence of orthostatic intolerance following long-duration missions. Therefore, we anticipated that the proportion of astronauts who could not complete an orthostatic tilt test (OTT) would be higher on landing day and the number of days to recover greater after International Space Station (ISS) than after Space Shuttle missions. There were 20 ISS and 65 Shuttle astronauts who participated in 10-min 80° head-up tilt tests 10 d before launch, on landing day (R+0), and 3 d after landing (R+3). Fisher's Exact Test was used to compare the ability of ISS and Shuttle astronauts to complete the OTT. Cox regression was used to identify cardiovascular parameters associated with OTT completion and mixed model analysis was used to compare the change and recovery rates between groups. The proportion of astronauts who completed the OTT on R+0 (2 of 6) was less in ISS than in Shuttle astronauts (52 of 65). On R+3, 13 of 15 and 19 of 19 of the ISS and Shuttle astronauts, respectively, completed the OTT. An index comprised of stroke volume and diastolic blood pressure provided a good prediction of OTT completion and was altered by spaceflight similarly for both astronaut groups, but recovery was slower in ISS than in Shuttle astronauts. The proportion of ISS astronauts who could not complete the OTT on R+0 was greater and the recovery rate slower after ISS compared to Shuttle missions. Thus, mission planners and crew surgeons should anticipate the need to tailor scheduled activities and level of medical support to accommodate protracted recovery after long-duration microgravity exposures.

  15. Characterization of monoclonal antibodies to avian Escherichia coli Iss.

    PubMed

    Lynne, Aaron M; Foley, Steven L; Nolan, Lisa K

    2006-09-01

    Colibacillosis accounts for annual multimillion dollar losses in the poultry industry, and control of this disease is hampered by limited understanding of the virulence mechanisms used by avian pathogenic Escherichia coli (APEC). Previous work in our laboratory has found that the presence of the increased serum survival gene (iss) is strongly associated with APEC but not commensal E. coli, making iss and the protein it encodes (Iss) candidate targets of colibacillosis-control procedures. Previously, we produced monoclonal antibodies (MAbs) against Iss to be used as a reagent in studies of APEC virulence and colibacillosis pathogenesis. Unfortunately, the utility of these MAbs was limited because these MAbs exhibited nonspecific binding. It was thought that the lack of specificity might be related to the fact that these MAbs were of the immunoglobulin M (IgM) isotype. In the present study, new MAbs were produced using a different immunization strategy in an effort to generate MAbs of a different isotype. Also, because Iss bears strong similarity to Bor, a lambda-derived protein that occurs commonly among E. coli, MAbs were assessed for their ability to distinguish Iss and Bor. For these studies, the bor gene from an APEC isolate was cloned into an expression vector. The fusion protein expressed from this construct was used to assess the potential of the anti-Iss MAbs produced in the past and present studies to distinguish Bor and Iss. The MAbs produced in this study were of the IgG1 isotype, which appeared to bind more specifically to Iss than previously generated antibodies in certain immunologic procedures. These results suggested that the MAbs generated in this study might prove superior to the previous MAbs as a reagent for study of APEC. However, both MAbs recognized recombinant Iss and Bor, suggesting that any results obtained using anti-Iss MAbs would need to be interpreted with this cross-reactivity in mind.

  16. ISS ECLSS Technology Evolution for Exploration

    NASA Technical Reports Server (NTRS)

    Carrasquillo, Robyn

    2005-01-01

    The baseline environmental control and life support systems (ECLSS) currently deployed on the International Space Station (ISS) and the regenerative oxygen generation and water early 1990's. While they are generally meeting, or exceeding requirements for supporting the ISS crew, lessons learned from hardware development and on orbit experience, together with advances in technology state of the art, and th&e unique requirements for future manned exploration missions prompt consideration of the next steps to be taken to evolve these technologies to improve robustness and reliability, enhance performance, and reduce resource requirements such as power and logistics upmass This paper discusses the current state of ISS ECLSS technology and identifies possible areas for evolutionary enhancement or improvement.

  17. ISS-RapidScat

    NASA Image and Video Library

    2014-01-22

    Artist rendering of NASA ISS-RapidScat instrument inset, which will launch to the International Space Station in 2014 to measure ocean surface wind speed and direction and help improve weather forecasts, including hurricane monitoring.

  18. Assessment of Ethanol Trends on the ISS

    NASA Technical Reports Server (NTRS)

    Perry, Jay; Carter, Layne; Kayatin, Matthew; Gazda, Daniel; McCoy, Torin; Limero, Thomas

    2016-01-01

    The International Space Station (ISS) Environmental Control and Life Support System (ECLSS) provides a working environment for six crewmembers through atmosphere revitalization and water recovery systems. In the last year, elevated ethanol levels have presented a unique challenge for the ISS ECLSS. Ethanol is monitored on the ISS by the Air Quality Monitor (AQM). The source of this increase is currently unknown. This paper documents the credible sources for the increased ethanol concentration, the monitoring provided by the AQM, and the impact on the atmosphere revitalization and water recovery systems.

  19. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    NASA Astronaut Don Pettit, speaks about his experience onboard the International Space Station at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  20. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. In this photograph, the life test area on the left of the MSFC ECLSS test facility is where various subsystems and components are tested to determine how long they can operate without failing and to identify components needing improvement. Equipment tested here includes the Carbon Dioxide Removal Assembly (CDRA), the Urine Processing Assembly (UPA), the mass spectrometer filament assemblies and sample pumps for the Major Constituent Analyzer (MCA). The Internal Thermal Control System (ITCS) simulator facility (in the module in the right) duplicates the function and operation of the ITCS in the ISS U.S. Laboratory Module, Destiny. This facility provides support for Destiny, including troubleshooting problems related to the ITCS.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This photograph shows the fifth generation Urine Processor Development Hardware. The Urine Processor Assembly (UPA) is a part of the Water Recovery System (WRS) on the ISS. It uses a chase change process called vapor compression distillation technology to remove contaminants from urine. The UPA accepts and processes pretreated crewmember urine to allow it to be processed along with other wastewaters in the Water Processor Assembly (WPA). The WPA removes free gas, organic, and nonorganic constituents before the water goes through a series of multifiltration beds for further purification. Product water quality is monitored primarily through conductivity measurements. Unacceptable water is sent back through the WPA for reprocessing. Clean water is sent to a storage tank.

  2. International Space Station (ISS)

    NASA Image and Video Library

    2006-12-09

    Against a black night sky, the Space Shuttle Discovery and its seven-member crew head toward Earth-orbit and a scheduled linkup with the International Space Station (ISS). Liftoff from the Kennedy Space Center's launch pad 39B occurred at 8:47 p.m. (EST) on Dec. 9, 2006 in what was the first evening shuttle launch since 2002. The primary mission objective was to deliver and install the P5 truss element. The P5 installation was conducted during the first of three space walks, and involved use of both the shuttle and station’s robotic arms. The remainder of the mission included a major reconfiguration and activation of the ISS electrical and thermal control systems, as well as delivery of Zvezda Service Module debris panels, which will increase ISS protection from potential impacts of micro-meteorites and orbital debris. Two major payloads developed at the Marshall Space Flight Center (MSFC) were also delivered to the Station. The Lab-On-A Chip Application Development Portable Test System (LOCAD-PTS) and the Water Delivery System, a vital component of the Station’s Oxygen Generation System.

  3. International Space Station (ISS)

    NASA Image and Video Library

    1998-11-01

    This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), in the Space Station manufacturing facility at the Marshall Space Flight Center, being readied for shipment to the Kennedy Space Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  4. International Space Station (ISS)

    NASA Image and Video Library

    1997-01-01

    In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  5. International Space Station (ISS)

    NASA Image and Video Library

    1997-11-01

    In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  6. International Space Station (ISS)

    NASA Image and Video Library

    2001-08-18

    Astronaut Patrick G. Forrester works with the the Materials International Space Station Experiment (MISSE) during extravehicular activity (EVA). MISSE would expose 750 material samples for about 18 months and collect information on how different materials weather the space environment The objective of MISSE is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components plarned for use on future spacecraft. The experiment was the first externally mounted experiment conducted on the International Space Station (ISS) and was installed on the outside of the ISS Quest Airlock. MISSE was launched on August 10, 2001 aboard the Space Shuttle Orbiter Discovery.

  7. International Space Station (ISS)

    NASA Image and Video Library

    2007-08-19

    Back dropped by the colorful Earth, the International Space Station (ISS) boasts its newest configuration upon the departure of Space Shuttle Endeavor and STS-118 mission. Days earlier, construction resumed on the ISS as STS-118 mission specialists and the Expedition 15 crew completed installation of the Starboard 5 (S-5) truss segment, removed a faulty Control Moment Gyroscope (CMG-3), installed a new CMG into the Z1 truss, relocated the S-band Antenna Sub-Assembly from the Port 6 (P6) to Port 1 (P1) truss, installed a new transponder on P1, retrieved the P6 transponder, and delivered roughly 5,000 pounds of supplies.

  8. International Space Station (ISS)

    NASA Image and Video Library

    2007-08-19

    Back dropped by the blue Earth, the International Space Station (ISS) boasts its newest configuration upon the departure of Space Shuttle Endeavor and STS-118 mission. Days earlier, construction resumed on the ISS as STS-118 mission specialists and the Expedition 15 crew completed installation of the Starboard 5 (S-5) truss segment, removed a faulty Control Moment Gyroscope (CMG-3), installed a new CMG into the Z1 truss, relocated the S-band Antenna Sub-Assembly from the Port 6 (P6) to Port 1 (P1) truss, installed a new transponder on P1, retrieved the P6 transponder, and delivered roughly 5,000 pounds of equipment and supplies.

  9. International Space Station (ISS)

    NASA Image and Video Library

    2001-12-01

    This is the official STS-110 crew portrait. In front, from the left, are astronauts Stephen N. Frick, pilot; Ellen Ochoa, flight engineer; and Michael J. Bloomfield, mission commander; In the back, from left, are astronauts Steven L. Smith, Rex J. Walheim, Jerry L. Ross and Lee M.E. Morin, all mission specialists. Launched aboard the Space Shuttle Orbiter Atlantis on April 8, 2002, the STS-110 mission crew prepared the International Space Station (ISS) for future space walks by installing and outfitting a 43-foot-long Starboard side S0 truss and preparing the Mobile Transporter. The mission served as the 8th ISS assembly flight.

  10. Space Weather Monitoring for ISS Geomagnetic Storm Studies

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Parker, Neergaard

    2013-01-01

    The International Space Station (ISS) space environments community utilizes near real time space weather data to support a variety of ISS engineering and science activities. The team has operated the Floating Potential Measurement Unit (FPMU) suite of plasma instruments (two Langmuir probes, a floating potential probe, and a plasma impedance probe) on ISS since 2006 to obtain in-situ measurements of plasma density and temperature along the ISS orbit and variations in ISS frame potential due to electrostatic current collection from the plasma environment (spacecraft charging) and inductive (vxB) effects from the vehicle motion across the Earth s magnetic field. An ongoing effort is to use FPMU for measuring the ionospheric response to geomagnetic storms at ISS altitudes and investigate auroral charging of the vehicle as it passes through regions of precipitating auroral electrons. This work is challenged by restrictions on FPMU operations that limit observation time to less than about a third of a year. As a result, FPMU campaigns ranging in length from a few days to a few weeks are typically scheduled weeks in advance for ISS engineering and payload science activities. In order to capture geomagnetic storm data under these terms, we monitor near real time space weather data from NASA, NOAA, and ESA sources to determine solar wind disturbance arrival times at Earth likely to be geoeffective (including coronal mass ejections and high speed streams associated with coronal holes) and activate the FPMU ahead of the storm onset. Using this technique we have successfully captured FPMU data during a number of geomagnetic storm periods including periods with ISS auroral charging. This presentation will describe the strategies and challenges in capturing FPMU data during geomagnetic storms, the near real time space weather resources utilized for monitoring the space weather environment, and provide examples of auroral charging data obtained during storm operations.

  11. ISS groups: are we speaking the same language?

    PubMed

    Rozenfeld, Michael; Radomislensky, Irina; Freedman, Laurence; Givon, Adi; Novikov, Iliya; Peleg, Kobi

    2014-10-01

    Despite ISS being a widely accepted tool for measuring injury severity, many researchers and practitioners use different partition of ISS into severity groups. The lack of uniformity in ISS use inhibits proper comparisons between different studies. Creation of ISS group boundaries based on single AIS value squares and their sums was proposed in 1988 during Major Trauma Study (MTOS) in the USA, but was not validated by analysis of large databases. A validation study analysing 316,944 patients in the Israeli National Trauma registry (INTR) and 249,150 patients in the American National Trauma Data Bases (NTDB). A binary algorithm (Classification and Regression Trees (CART)) was used to detect the most significantly different ISS groups and was also applied to original MTOS data. The division of ISS into groups by the CART algorithm was identical in both Trauma Registries and very similar to original division in the MTOS. For most samples, the recommended groups are 1-8, 9-14, 16-24 and 25-75, while in very large samples or in studies specifically targeting critical patients there is a possibility to divide the last group into 25-48 and 50-75 groups, with an option for further division into 50-66 and 75 groups. Using a statistical analysis of two very large databases of trauma patients, we have found that partitioning of ISS into groups based on their association with patient mortality enables us to establish clear cut-off points for these groups. We propose that the suggested partition of ISS into severity groups would be adopted as a standard in order to have a common language when discussing injury severity. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. Modeling Ionosphere Environments: Creating an ISS Electron Density Tool

    NASA Technical Reports Server (NTRS)

    Gurgew, Danielle N.; Minow, Joseph I.

    2011-01-01

    The International Space Station (ISS) maintains an altitude typically between 300 km and 400 km in low Earth orbit (LEO) which itself is situated in the Earth's ionosphere. The ionosphere is a region of partially ionized gas (plasma) formed by the photoionization of neutral atoms and molecules in the upper atmosphere of Earth. It is important to understand what electron density the spacecraft is/will be operating in because the ionized gas along the ISS orbit interacts with the electrical power system resulting in charging of the vehicle. One instrument that is already operational onboard the ISS with a goal of monitoring electron density, electron temperature, and ISS floating potential is the Floating Potential Measurement Unit (FPMU). Although this tool is a valuable addition to the ISS, there are limitations concerning the data collection periods. The FPMU uses the Ku band communication frequency to transmit data from orbit. Use of this band for FPMU data runs is often terminated due to necessary observation of higher priority Extravehicular Activities (EVAs) and other operations on ISS. Thus, large gaps are present in FPMU data. The purpose of this study is to solve the issue of missing environmental data by implementing a secondary electron density data source, derived from the COSMIC satellite constellation, to create a model of ISS orbital environments. Extrapolating data specific to ISS orbital altitudes, we model the ionospheric electron density along the ISS orbit track to supply a set of data when the FPMU is unavailable. This computer model also provides an additional new source of electron density data that is used to confirm FPMU is operating correctly and supplements the original environmental data taken by FPMU.

  13. Recent NASA research accomplishments aboard the ISS

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.; North, Regina M.

    2004-01-01

    The activation of the US Laboratory Module "Destiny" on the International Space Station (ISS) in February 2001 launched a new era in microgravity research. Destiny provides the environment to conduct long-term microgravity research utilizing human intervention to assess, report, and modify experiments real time. As the only available pressurized space platform, ISS maximizes today's scientific resources and substantially increases the opportunity to obtain much longed-for answers on the effects of microgravity and long-term exposure to space. In addition, it evokes unexpected questions and results while experiments are still being conducted, affording time for changes and further investigation. While building and outfitting the ISS is the main priority during the current ISS assembly phase, seven different space station crews have already spent more than 2000 crew hours on approximately 80 scientific investigations, technology development activities, and educational demonstrations. Published by Elsevier Ltd.

  14. ISS Asset Tracking Using SAW RFID Technology

    NASA Technical Reports Server (NTRS)

    Schellhase, Amy; Powers, Annie

    2004-01-01

    A team at the NASA Johnson Space Center (JSC) is undergoing final preparations to test Surface Acoustic Wave (SAW) Radio Frequency Identification (RFID) technology to track assets aboard the International Space Station (ISS). Currently, almost 10,000 U.S. items onboard the ISS are tracked within a database maintained by both the JSC ground teams and crew onboard the ISS. This barcode-based inventory management system has successfully tracked the location of 97% of the items onboard, but its accuracy is dependant on the crew to report hardware movements, taking valuable time away from science and other activities. With the addition of future modules, the volume of inventory to be tracked is expected to increase significantly. The first test of RFID technology on ISS, which will be conducted by the Expedition 16 crew later this year, will evaluate the ability of RFID technology to track consumable items. These consumables, which include office supplies and clothing, are regularly supplied to ISS and can be tagged on the ground. Automation will eliminate line-of-sight auditing requirements, directly saving crew time. This first step in automating an inventory tracking system will pave the way for future uses of RFID for inventory tracking in space. Not only are there immediate benefits for ISS applications, it is a crucial step to ensure efficient logistics support for future vehicles and exploration missions where resupplies are not readily available. Following a successful initial test, the team plans to execute additional tests for new technology, expanded operations concepts, and increased automation.

  15. Immune response to recombinant Escherichia coli Iss protein in poultry.

    PubMed

    Lynne, Aaron M; Foley, Steven L; Nolan, Lisa K

    2006-06-01

    Colibacillosis accounts for significant losses to the poultry industry, and control efforts are hampered by limited understanding of the mechanisms used by avian pathogenic Escherichia coli (APEC) to cause disease. We have found that the presence of the increased serum survival gene (iss) is strongly associated with APEC but not with commensal E. coli, making iss, and the protein it encodes (Iss), candidate targets of colibacillosis control procedures. To assess the potential of Iss to elicit a protective response in chickens against APEC challenge, Iss fusion proteins were produced and administered subcutaneously to four groups of 2-wk-old specific-pathogen-free leghorn chickens. At 4 wk postimmunization, birds were challenged with APEC from serogroups 02 and 078 via intramuscular injection. At 2 wk postchallenge, birds were necropsied, and lesions consistent with colibacillosis were scored. Also, sera were collected from the birds pre- and postimmunization, and antibody titers to Iss were determined. Immunized birds produced a humoral response to Iss, and they had significantly lower lesion scores than the unimmunized control birds following challenge with both APEC strains. Birds that received the smallest amount of immunogen had the lowest lesion scores. Although further study will be needed to confirm the value of Iss as an immunoprotective antigen, these preliminary data suggest that Iss may have the potential to elicit significant protection in birds against heterologous E. coli challenge.

  16. Li-Ion Battery for ISS

    NASA Technical Reports Server (NTRS)

    Dalton, Penni; Cohen, Fred

    2004-01-01

    The ISS currently uses Ni-H2 batteries in the main power system. Although Ni-H2 is a robust and reliable system, recent advances in battery technology have paved the way for future replacement batteries to be constructed using Li-ion technology. This technology will provide lower launch weight as well as increase ISS electric power system (EPS) efficiency. The result of incorporating this technology in future re-support hardware will be greater power availability and reduced program cost. the presentations of incorporating the new technology.

  17. High spatial resolution infrared camera as ISS external experiment

    NASA Astrophysics Data System (ADS)

    Eckehard, Lorenz; Frerker, Hap; Fitch, Robert Alan

    High spatial resolution infrared camera as ISS external experiment for monitoring global climate changes uses ISS internal and external resources (eg. data storage). The optical experiment will consist of an infrared camera for monitoring global climate changes from the ISS. This technology was evaluated by the German small satellite mission BIRD and further developed in different ESA projects. Compared to BIRD the presended instrument uses proven sensor advanced technologies (ISS external) and ISS on board processing and storage capabili-ties (internal). The instrument will be equipped with a serial interfaces for TM/TC and several relay commands for the power supply. For data processing and storage a mass memory is re-quired. The access to actual attitude data is highly desired to produce geo referenced maps-if possible by an on board processing.

  18. Recommendations on incurred sample stability (ISS) by GCC.

    PubMed

    Lowes, Steve; LeLacheur, Richard; Shoup, Ronald; Garofolo, Fabio; Dumont, Isabelle; Martinez, Suzanne; Zimmer, Jennifer; Caturla, Maria Cruz; Couerbe, Philippe; Awaiye, Kayode; Fatmi, Saadya; Farmen, Raymond; Sheldon, Curtis; Bower, Joseph; Fiscella, Michele; Fast, Douglas; Cape, Stephanie; Hulse, Jim; Kamerud, John; Zhang, Tee; Pasas-Farmer, Stephanie; Garofolo, Wei; Moussallie, Marc; Rocci, Mario; Allinson, John; Gouty, Dominique; Buonarati, Mike; Boudreau, Nadine; Pellerin, Brigitte; Lin, Jenny; Xu, Allan; Hayes, Roger; Bouhajib, Mohammed; Stipancic, Mary; Nicholson, Robert; Nehls, Corey; Warren, Mark; Karnik, Shane; Houghton, Richard; Stovold, Craig; Reuschel, Scott; Cojocaru, Laura; Marcelletti, John; Fang, Xinping; Smith, Ian; Watson, Andrea

    2014-09-01

    The topic of incurred sample stability (ISS) has generated considerable discussion within the bioanalytical community in recent years. The subject was an integral part of the seventh annual Workshop on Recent Issues in Bioanalysis (WRIB) held in Long Beach, CA, USA, in April 2013, and at the Global CRO Council for Bioanalysis (GCC) meeting preceding it. Discussion at both events focused on the use of incurred samples for ISS purposes in light of results from a recent GCC survey completed by member companies. This paper reports the consensus resulting from these discussions and serves as a useful reference for depicting ISS issues and concerns, summarizing the GCC survey results and providing helpful recommendations on ISS in the context of bioanalytical method development and application.

  19. Spheres: from Ground Development to ISS Operations

    NASA Technical Reports Server (NTRS)

    Katterhagen, A.

    2016-01-01

    SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) is an internal International Space Station (ISS) Facility that supports multiple investigations for the development of multi-spacecraft and robotic control algorithms. The SPHERES National Lab Facility aboard ISS is managed and operated by NASA Ames Research Center (ARC) at Moffett Field California. The SPHERES Facility on ISS consists of three self-contained eight-inch diameter free-floating satellites which perform the various flight algorithms and serve as a platform to support the integration of experimental hardware. SPHERES has served to mature the adaptability of control algorithms of future formation flight missions in microgravity (6 DOF (Degrees of Freedom) / long duration microgravity), demonstrate key close-proximity formation flight and rendezvous and docking maneuvers, understand fault diagnosis and recovery, improve the field of human telerobotic operation and control, and lessons learned on ISS have significant impact on ground robotics, mapping, localization, and sensing in three-dimensions - among several other areas of study.

  20. On-Orbit Propulsion System Performance of ISS Visiting Vehicles

    NASA Technical Reports Server (NTRS)

    Martin, Mary Regina M.; Swanson, Robert A.; Kamath, Ulhas P.; Hernandez, Francisco J.; Spencer, Victor

    2013-01-01

    The International Space Station (ISS) represents the culmination of over two decades of unprecedented global human endeavors to conceive, design, build and operate a research laboratory in space. Uninterrupted human presence in space since the inception of the ISS has been made possible by an international fleet of space vehicles facilitating crew rotation, delivery of science experiments and replenishment of propellants and supplies. On-orbit propulsion systems on both ISS and Visiting Vehicles are essential to the continuous operation of the ISS. This paper compares the ISS visiting vehicle propulsion systems by providing an overview of key design drivers, operational considerations and performance characteristics. Despite their differences in design, functionality, and purpose, all visiting vehicles must adhere to a common set of interface requirements along with safety and operational requirements. This paper addresses a wide variety of methods for satisfying these requirements and mitigating credible hazards anticipated during the on-orbit life of propulsion systems, as well as the seamless integration necessary for the continued operation of the ISS.

  1. ISS020-S-001A

    NASA Image and Video Library

    2009-02-27

    ISS020-S-001A (December 2008) --- The Expedition 20 patch symbolizes a new era in space exploration with the first six-person crew living and working onboard ISS and represents the significance of the ISS to the exploration goals of NASA and its international partners. The six gold stars signify the men and women of the crew. The astronaut symbol extends from the base of the patch to the star at the top to represent the international team, both on the ground and on orbit, that are working together to further our knowledge of living and working in space. The space station in the foreground represents where we are now and the important role it is playing towards meeting our exploration goals. The knowledge and expertise developed from these advancements will enable us to once again leave low earth orbit for the new challenges of establishing a permanent presence on the moon and then on to Mars. The blue, gray and red arcs represent our exploration goals as symbols of Earth, the moon and Mars. The NASA insignia design for ISS expedition crews is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, it will be publicly announced.

  2. ISS020-S-001B

    NASA Image and Video Library

    2009-02-27

    ISS020-S-001B (December 2008) --- The Expedition 20 patch symbolizes a new era in space exploration with the first six-person crew living and working onboard ISS and represents the significance of the ISS to the exploration goals of NASA and its international partners. The six gold stars signify the men and women of the crew. The astronaut symbol extends from the base of the patch to the star at the top to represent the international team, both on the ground and on orbit, that are working together to further our knowledge of living and working in space. The space station in the foreground represents where we are now and the important role it is playing towards meeting our exploration goals. The knowledge and expertise developed from these advancements will enable us to once again leave low earth orbit for the new challenges of establishing a permanent presence on the moon and then on to Mars. The blue, gray and red arcs represent our exploration goals as symbols of Earth, the moon and Mars. The NASA insignia design for ISS expedition crews is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, it will be publicly announced.

  3. Post-Shuttle EVA Operations on ISS

    NASA Technical Reports Server (NTRS)

    West, William; Witt, Vincent; Chullen, Cinda

    2010-01-01

    The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the One EVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more

  4. International Space Station (ISS)

    NASA Image and Video Library

    2001-08-01

    The STS-110 mission began the third and final phase of construction for the International Space Station (ISS) by delivering and installing the Starboard side S0 (S-zero) truss segment that was carried into orbit in the payload bay of the Space Shuttle Atlantis. The STS-110 crew patch is patterned after the cross section of the S0 truss, and encases the launch of the Shuttle Atlantis and a silhouette of the ISS as it will look following mission completion. The successfully installed S0 segment is highlighted in gold. The three prominent flames blasting from the shuttle emphasizes the first shuttle flight to use three Block II Main Engines.

  5. ISS Robotic Student Programming

    NASA Technical Reports Server (NTRS)

    Barlow, J.; Benavides, J.; Hanson, R.; Cortez, J.; Le Vasseur, D.; Soloway, D.; Oyadomari, K.

    2016-01-01

    The SPHERES facility is a set of three free-flying satellites launched in 2006. In addition to scientists and engineering, middle- and high-school students program the SPHERES during the annual Zero Robotics programming competition. Zero Robotics conducts virtual competitions via simulator and on SPHERES aboard the ISS, with students doing the programming. A web interface allows teams to submit code, receive results, collaborate, and compete in simulator-based initial rounds and semi-final rounds. The final round of each competition is conducted with SPHERES aboard the ISS. At the end of 2017 a new robotic platform called Astrobee will launch, providing new game elements and new ground support for even more student interaction.

  6. International Space Station (ISS)

    NASA Image and Video Library

    2001-08-17

    Backdropped by a sunrise, the newly installed Materials International Space Station Experiment (MISSE) is visible on this image. MISSE would expose 750 material samples for about 18 months and collect information on how different materials weather the space environment. The objective of MISSE is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components plarned for use on future spacecraft. The experiment was the first externally mounted experiment conducted on the International Space Station (ISS) and was installed on the outside of the ISS Quest Airlock during extravehicular activity (EVA) of the STS-105 mission. MISSE was launched on August 10, 2001 aboard the Space Shuttle Orbiter Discovery.

  7. Capabilities, Calibration, and Impact of the ISS-RAD Fast Neutron Detector

    NASA Technical Reports Server (NTRS)

    Leitgab, Martin

    2015-01-01

    In the current NASA crew radiation health risk assessment framework, estimates for the neutron contributions to crew radiation exposure largely rely on simulated data with sizeable uncertainties due to the lack of experimental measurements inside the ISS. Integrated in the ISS-RAD instrument, the ISS-RAD Fast Neutron Detector (FND) will deploy to the ISS on one of the next cargo supply missions. Together with the ISS-RAD Charged Particle Detector, the FND will perform, for the first time, routine and precise direct neutron measurements inside the ISS between 0.5 and 80 MeV. The measurements will close the NASA Medical Operations Requirement to monitor neutrons inside the ISS and impact crew radiation health risk assessments by reducing uncertainties on the neutron contribution to crew exposure, enabling more efficient mission planning. The presentation will focus on the FND detection mechanism, calibration results and expectations about the FND's interaction with the mixed radiation field inside the ISS.

  8. Evaluating Bone Loss in ISS Astronauts.

    PubMed

    Sibonga, Jean D; Spector, Elisabeth R; Johnston, Smith L; Tarver, William J

    2015-12-01

    The measurement of bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA) is the Medical Assessment Test used at the NASA Johnson Space Center to evaluate whether prolonged exposure to spaceflight increases the risk for premature osteoporosis in International Space Station (ISS) astronauts. The DXA scans of crewmembers' BMD during the first decade of the ISS existence showed precipitous declines in BMD for the hip and spine after the typical 6-mo missions. However, a concern exists that skeletal integrity cannot be sufficiently assessed solely by DXA measurement of BMD. Consequently, use of relatively new research technologies is being proposed to NASA for risk surveillance and to enhance long-term management of skeletal health in long-duration astronauts. Sibonga JD, Spector ER, Johnston SL, Tarver WJ. Evaluating bone loss in ISS astronauts.

  9. Thermally-Constrained Fuel-Optimal ISS Maneuvers

    NASA Technical Reports Server (NTRS)

    Bhatt, Sagar; Svecz, Andrew; Alaniz, Abran; Jang, Jiann-Woei; Nguyen, Louis; Spanos, Pol

    2015-01-01

    Optimal Propellant Maneuvers (OPMs) are now being used to rotate the International Space Station (ISS) and have saved hundreds of kilograms of propellant over the last two years. The savings are achieved by commanding the ISS to follow a pre-planned attitude trajectory optimized to take advantage of environmental torques. The trajectory is obtained by solving an optimal control problem. Prior to use on orbit, OPM trajectories are screened to ensure a static sun vector (SSV) does not occur during the maneuver. The SSV is an indicator that the ISS hardware temperatures may exceed thermal limits, causing damage to the components. In this paper, thermally-constrained fuel-optimal trajectories are presented that avoid an SSV and can be used throughout the year while still reducing propellant consumption significantly.

  10. ISS ECLSS Technology Evolution for Exploration

    NASA Technical Reports Server (NTRS)

    Carrasquillo, Robyn L.

    2005-01-01

    The baseline environmental control and life support systems (ECLSS) currently deployed on the International Space Station (ISS) and the regenerative oxygen generation and water reclamation systems to be added in 2008 are based on technologies selected during the early 1990's. While they are generally meeting, or exceeding requirements for supporting the ISS crew, lessons learned from hardware development and on orbit experience, together with advances in technology state of the art, and the unique requirements for future manned exploration missions prompt consideration of the next steps to be taken to evolve these technologies to improve robustness and reliability, enhance performance, and reduce resource requirements such as power and logistics upmass. This paper discusses the current state of ISS ECLSS technology and identifies possible areas for evolutionary enhancement or improvement.

  11. Thermal Analysis of ISS Service Module Active TCS

    NASA Technical Reports Server (NTRS)

    Altov, Vladimir V.; Zaletaev, Sergey V.; Belyavskiy, Evgeniy P.

    2000-01-01

    ISS Service Module mission must begin in July 2000. The verification of design thermal requirements is mostly due to thermal analysis. The thermal analysis is enough difficult problem because of large number of ISS configurations that had to be investigated and various orbital environments. Besides the ISS structure has articulating parts such as solar arrays and radiators. The presence of articulating parts greatly increases computation times and requires accurate approach to organization of calculations. The varying geometry needs us to calculate the view factors several times during the orbit, while in static geometry case we need do it only once. In this paper we consider the thermal mathematical model of SM that includes the TCS and construction thermal models and discuss the results of calculations for ISS configurations 1R and 9Al. The analysis is based on solving the nodal heat balance equations for ISS structure by Kutta-Merson method and analytical solutions of heat transfer equations for TCS units. The computations were performed using thermal software TERM [1,2] that will be briefly described.

  12. Validating the Injury Severity Score (ISS) in different populations: ISS predicts mortality better among Hispanics and females.

    PubMed

    Bolorunduro, O B; Villegas, C; Oyetunji, T A; Haut, E R; Stevens, K A; Chang, D C; Cornwell, E E; Efron, D T; Haider, A H

    2011-03-01

    The Injury Severity Score (ISS) is the most commonly used measure of injury severity. The score has been shown to have excellent predictive capability for trauma mortality and has been validated in multiple data sets. However, the score has never been tested to see if its discriminatory ability is affected by differences in race and gender. This study is aimed at validating the ISS in men and women and in three different race/ethnic groups using a nationwide database. Retrospective analysis of patients age 18-64 y in the National Trauma Data Bank 7.0 with blunt trauma was performed. ISS was categorized as mild (<9,) moderate (9-15), severe (16-25), and profound (>25). Logistic regression was done to measure the relative odds of mortality associated with a change in ISS categories. The discriminatory ability was compared using the receiver operating characteristics curves (ROC). A P value testing the equality of the ROC curves was calculated. Age stratified analyses were also conducted. A total of 872,102 patients had complete data for the analysis on ethnicity, while 763,549 patients were included in the gender analysis. The overall mortality rate was 3.7%. ROC in Whites was 0.8617, in Blacks 0.8586, and in Hispanics 0.8869. Hispanics have a statistically significant higher ROC (P value < 0.001). Similar results were observed within each age category. ROC curves were also significantly higher in females than in males. The ISS possesses excellent discriminatory ability in all populations as indicated by the high ROCs. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. iss009e23808

    NASA Image and Video Library

    2004-09-20

    ISS009-E-23808 (20 September 2004) --- A fringing coral reef in the Red Sea is featured in this image photographed by an Expedition 9 crewmember on the International Space Station (ISS). The Sudanese coast of the Red Sea is a well known destination for divers due to clear water and abundance of coral reefs (or “shia’ab” in Arabic). According to NASA scientists studying the ISS imagery, reefs are formed primarily from precipitation of calcium carbonate by corals; massive reef structures are built over thousands of years of succeeding generations of coral. In the Red Sea, fringing reefs form on shallow shelves of less than 50 meters depth along the coastline. This photograph illustrates the intricate morphology of the reef system located along the coast between Port Sudan to the northwest and the Tokar River delta to the southeast. Close to shore, fringing reefs border the coastline. Farther offshore grows a larger, more complicated barrier reef structure. Different parts of the reef structure show up as variable shades of light blue. Deeper water channels (darker blue) define the boundaries for individual reefs within the greater barrier reef system. Such a complex pattern of reefs may translate into greater ecosystem diversity through a wide variety of local reef environments.

  14. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-16

    The International Space Station (ISS), with its newly attached U.S. Laboratory, Destiny, was photographed by a crew member aboard the Space Shuttle Orbiter Atlantis during a fly-around inspection after Atlantis separated from the Space Station. The Laboratory is shown in the foreground of this photograph. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  15. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-16

    With its new U.S. Laboratory, Destiny, contrasted over a blue and white Earth, the International Space Station (ISS) was photographed by one of the STS-98 crew members aboard the Space Shuttle Atlantis following separation of the Shuttle and Station. The Laboratory is shown at the lower right of the Station. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  16. iss024-s-001

    NASA Image and Video Library

    2010-01-04

    ISS024-S-001 (January 2010) --- Science and Exploration are the cornerstones of NASA?s mission onboard the International Space Station (ISS). This emblem signifies the dawn of a new era in our program?s history. With each new expedition, as we approach assembly complete, our focus shifts toward the research nature of this world-class facility. Prominently placed in the foreground, the ISS silhouette leads the horizon. Each ray of the sun represents the five international partner organizations that encompass this cooperative program. Expedition 24 is one of the first missions expanding to a crew of six. These crews, symbolized here as stars arranged in two groups of three, will launch on Soyuz vehicles. The unbroken flight track symbolizes our continuous human presence in space, representing all who have and will dedicate themselves as crew and citizens of the International Space Station. The NASA insignia design for shuttle flights and station increments is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced.

  17. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-01

    In this Space Shuttle STS-102 mission image, the Payload Equipment Restraint System H-Strap is shown at the left side of the U.S. Laboratory hatch and behind Astronaut James D. Weatherbee, mission specialist. PERS is an integrated modular system of components designed to assist the crew of the International Space Station (ISS) in restraining and carrying necessary payload equipment and tools in a microgravity environment. The Operations Development Group, Flight Projects Directorate at the Marshall Space Flight Center (MSFC), while providing operation support to the ISS Materials Science Research Facility (MSRF), recognized the need for an on-orbit restraint system to facilitate control of lose objects, payloads, and tools. The PERS is the offspring of that need and it helps the ISS crew manage tools and rack components that would otherwise float away in the near-zero gravity environment aboard the Space Station. The system combines Kevlar straps, mesh pockets, Velcro and a variety of cornecting devices into a portable, adjustable system. The system includes the Single Strap, the H-Strap, the Belly Pack, the Laptop Restraint Belt, and the Tool Page Case. The Single Strap and the H-Strap were flown on this mission. The PERS concept was developed by industrial design students at Auburn University and the MSFC Flight Projects Directorate.

  18. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    NASA Technical Reports Server (NTRS)

    Minow, Joseph; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    Today s presentation describes how real time space weather data is used by the International Space Station (ISS) space environments team to obtain data on auroral charging of the ISS vehicle and support ISS crew efforts to obtain auroral images from orbit. Topics covered include: Floating Potential Measurement Unit (FPMU), . Auroral charging of ISS, . Real ]time space weather monitoring resources, . Examples of ISS auroral charging captured from space weather events, . ISS crew observations of aurora.

  19. Design And Testing of The Floating Potential Probe For ISS

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry; Ferguson, Dale C.

    2001-01-01

    Flight 4A was an especially critical mission for the International Space Station (ISS). For the first time, the high voltage solar arrays generated significant amounts of power and long predicted environmental interactions (high negative floating potential and concomitant dielectric charging) became serious concerns. Furthermore, the same flight saw the Plasma Contacting Unit (PCU) deployed and put into operation to mitigate and control these effects. The ISS program office has recognized the critical need to verify, by direct measurement, that ISS does not charge to unacceptable levels. A Floating Potential Probe (FPP) was therefore deployed on ISS to measure ISS floating potential relative to the surrounding plasma and to measure relevant plasma parameters. The primary objective of FPP is to verify that ISS floating potential does not exceed the specified level of 40 volts with respect to the ambient. Since it is expected that in normal operations the PCU will maintain ISS within this specification, it is equivalent to say that the objective of FPP is to monitor the functionality of the PCU. In this paper, we report on the design and testing of the ISS FPP. In a separate paper, the operations and results obtained so far by the FPP will be presented.

  20. ISS 7A.1 Flight Control Team Photo in BFCR

    NASA Image and Video Library

    2001-08-17

    JSC2001-02225 (17 August 2001) --- The members of the STS-105/ISS 7A.1 Orbit 2 team pose for a group portrait in the International Space Station (ISS) flight control room (BFCR) in Houston’s Mission Control Center (MCC). Orbit 2 flight director Rick LaBrode (front right) holds the STS-105 mission logo, and Astronaut Joan E. Higginbotham, ISS spacecraft communicator (CAPCOM), holds the ISS 7A.1 mission logo.

  1. Moduli stabilization in stringy ISS models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, Yu; Nakayama, Yu; Yamazaki, Masahito

    2007-09-28

    We present a stringy realization of the ISS metastable SUSY breaking model with moduli stabilization. The mass moduli of the ISS model is stabilized by gauging of a U(1) symmetry and its D-term potential. The SUSY is broken both by F-terms and D-terms. It is possible to obtain de Sitter vacua with a vanishingly small cosmological constant by an appropriate fine-tuning of flux parameters.

  2. Status of ISS Water Management and Recovery

    NASA Technical Reports Server (NTRS)

    Carter, Layne; Wilson, Laura Labuda; Orozco, Nicole

    2012-01-01

    Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment, and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of May 2011, and describes the technical challenges encountered and lessons learned over the past year.

  3. Status of ISS Water Management and Recovery

    NASA Technical Reports Server (NTRS)

    Carter, Layne; Pruitt, Jennifer; Brown, Christopher A.; Bazley, Jesse; Gazda, Daniel; Schaezler, Ryan; Bankers, Lyndsey

    2016-01-01

    Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of May 2016 and describes the technical challenges encountered and lessons learned over the past year.

  4. Status of ISS Water Management and Recovery

    NASA Technical Reports Server (NTRS)

    Carter, Layne; Brown, Christopher; Orozco, Nicole

    2014-01-01

    Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment, and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of June 2013, and describes the technical challenges encountered and lessons learned over the past year.

  5. Status of ISS Water Management and Recovery

    NASA Technical Reports Server (NTRS)

    Carter, Layne; Tobias, Barry; Orozco, Nicole

    2012-01-01

    Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment, and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of June 2012, and describes the technical challenges encountered and lessons learned over the past year.

  6. Status of ISS Water Management and Recovery

    NASA Technical Reports Server (NTRS)

    Carter, Layne; Takada, Kevin; Gazda, Daniel; Brown, Christopher; Bazley, Jesse; Schaezler, Ryan; Bankers, Lyndsey

    2017-01-01

    Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of June 2017 and describes the technical challenges encountered and lessons learned over the past year.

  7. Status of ISS Water Management and Recovery

    NASA Technical Reports Server (NTRS)

    Carter, Layne; Pruitt, Jennifer; Brown, Christopher A.; Schaezler, Ryan; Bankers, Lyndsey

    2015-01-01

    Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment, and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of May 2015 and describes the technical challenges encountered and lessons learned over the past two years.

  8. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    Marshall Porterfield, Life and Physical Sciences Division Director at NASA Headquarters, talks about the human body in microgravity and other life sciences at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  9. ISS Ammonia Leak Detection Through X-Ray Fluorescence

    NASA Technical Reports Server (NTRS)

    Camp, Jordan; Barthelmy, Scott; Skinner, Gerry

    2013-01-01

    Ammonia leaks are a significant concern for the International Space Station (ISS). The ISS has external transport lines that direct liquid ammonia to radiator panels where the ammonia is cooled and then brought back to thermal control units. These transport lines and radiator panels are subject to stress from micrometeorites and temperature variations, and have developed small leaks. The ISS can accommodate these leaks at their present rate, but if the rate increased by a factor of ten, it could potentially deplete the ammonia supply and impact the proper functioning of the ISS thermal control system, causing a serious safety risk. A proposed ISS astrophysics instrument, the Lobster X-Ray Monitor, can be used to detect and localize ISS ammonia leaks. Based on the optical design of the eye of its namesake crustacean, the Lobster detector gives simultaneously large field of view and good position resolution. The leak detection principle is that the nitrogen in the leaking ammonia will be ionized by X-rays from the Sun, and then emit its own characteristic Xray signal. The Lobster instrument, nominally facing zenith for its astrophysics observations, can be periodically pointed towards the ISS radiator panels and some sections of the transport lines to detect and localize the characteristic X-rays from the ammonia leaks. Another possibility is to use the ISS robot arm to grab the Lobster instrument and scan it across the transport lines and radiator panels. In this case the leak detection can be made more sensitive by including a focused 100-microampere electron beam to stimulate X-ray emission from the leaking nitrogen. Laboratory studies have shown that either approach can be used to locate ammonia leaks at the level of 0.1 kg/day, a threshold rate of concern for the ISS. The Lobster instrument uses two main components: (1) a microchannel plate optic (also known as a Lobster optic) that focuses the X-rays and directs them to the focal plane, and (2) a CCD (charge

  10. Exterior view of the ISS taken during EVA-3

    NASA Image and Video Library

    2011-05-25

    ISS028-E-005416 (25 May 2011) --- The forward section of the space shuttle Endeavour is pictured with two components of the International Space Station (ISS) -- the Harmony node (left) and the European Space Agency's Columbus laboratory. Nine astronauts and cosmonauts continue to work inside the shirt-sleeve environment of the ISS and preparing for the final of four spacewalks on May 26.

  11. An Onboard ISS Virtual Reality Trainer

    NASA Technical Reports Server (NTRS)

    Miralles, Evelyn

    2013-01-01

    Prior to the retirement of the Space Shuttle, many exterior repairs on the International Space Station (ISS) were carried out by shuttle astronauts, trained on the ground and flown to the station to perform these repairs. After the retirement of the shuttle, this is no longer an available option. As such, the need for the ISS crew members to review scenarios while on flight, either for tasks they already trained or for contingency operations has become a very critical subject. In many situations, the time between the last session of Neutral Buoyancy Laboratory (NBL) training and an Extravehicular Activity (EVA) task might be 6 to 8 months. In order to help with training for contingency repairs and to maintain EVA proficiency while on flight, the Johnson Space Center Virtual Reality Lab (VRLab) designed an onboard immersive ISS Virtual Reality Trainer (VRT), incorporating a unique optical system and making use of the already successful Dynamic Onboard Ubiquitous Graphical (DOUG) graphics software, to assist crew members with current procedures and contingency EVAs while on flight. The VRT provides an immersive environment similar to the one experienced at the VRLab crew training facility at NASA Johnson Space Center. EVA tasks are critical for a mission since as time passes the crew members may lose proficiency on previously trained tasks. In addition, there is an increased need for unplanned contingency repairs to fix problems arising as the ISS ages. The need to train and re-train crew members for EVAs and contingency scenarios is crucial and extremely demanding. ISS crew members are now asked to perform EVA tasks for which they have not been trained and potentially have never seen before.

  12. Solidifying Small Satellite Access to Orbit via the International Space Station (ISS): Cyclops' Deployment of the Lonestar SmallSat from the ISS

    NASA Technical Reports Server (NTRS)

    Hershey, Matthew P.; Newswander, Daniel R.; Evernden, Brent A.

    2016-01-01

    On January 29, 2016, the Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS), known as "Cyclops" to the International Space Station (ISS) community, deployed Lonestar from the ISS. The deployment of Lonestar, a collaboration between Texas A&M University and the University of Texas at Austin, continued to showcase the simplicity and reliability of the Cyclops deployment system. Cyclops, a NASA-developed, dedicated 10-100 kg class ISS SmallSat deployment system, utilizes the Japanese airlock and robotic systems to seamlessly insert SmallSats into orbit. This paper will illustrate Cyclops' successful deployment of Lonestar from the ISS as well as outline its concept of operations, interfaces, requirements, and processes.

  13. NASA ISS Portable Fan Assembly Acoustics

    NASA Technical Reports Server (NTRS)

    Boone, Andrew; Allen, Christopher S.; Hess, Linda F.

    2018-01-01

    The Portable Fan Assembly (PFA) is a variable speed fan that can be used to provide additional ventilation inside International Space Station (ISS) modules as needed for crew comfort or for enhanced mixing of the ISS atmosphere. This fan can also be configured with a Shuttle era lithium hydroxide (LiOH) canister for CO2 removal in confined areas partially of fully isolated from the primary Environmental Control and Life Support System (ECLSS) on ISS which is responsible for CO2 removal. This report documents noise emission levels of the PFA at various speed settings and configurations. It also documents the acoustic attenuation effects realized when circulating air through the PFA inlet and outlet mufflers and when operating in its CO2 removal configuration (CRK) with a LiOH canister (sorbent bed) installed over the fan outlet.

  14. iss028e036707

    NASA Image and Video Library

    2011-09-02

    ISS028-E-036707 (2 Sept. 2011) --- Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 28 flight engineer, uses a computer in the Destiny laboratory of the International Space Station.

  15. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This photograph shows the development Water Processor located in two racks in the ECLSS test area at the Marshall Space Flight Center. Actual waste water, simulating Space Station waste, is generated and processed through the hardware to evaluate the performance of technologies in the flight Water Processor design.

  16. International Space Station (ISS)

    NASA Image and Video Library

    2007-06-08

    Headed toward Earth orbit and a link up with the International Space Station (ISS), the Space Shuttle Atlantis lifted off from Kennedy Space Center on June 8, 2007. Aboard were STS-117 astronauts James F. Reilly II, Steven R. Swanson, Patrick G. Forrester and John D. “Danny” Olivas, all mission specialists; Frederick W. (Rick) Sturckow, commander; Lee J. Archambault, pilot; and Clayton Anderson, mission specialist who joined the Expedition 15 crew. The crew members along with the Expedition 15 crew spent 8 days resuming construction on the ISS with the installation of the second and third starboard truss segments (S3 and S4) with Photovoltaic Radiator (PVR), and retracted the P6 starboard solar array wing and radiator for later use.

  17. International Space Station (ISS)

    NASA Image and Video Library

    2000-05-01

    This photograph depicts the International Space Station's (ISS) Joint Airlock Module undergoing exhaustive structural and systems testing in the Space Station manufacturing facility at the Marshall Space Flight Center (MSFC) prior to shipment to the Kennedy Space Center. The Airlock includes two sections. The larger equipment lock, on the left, will store spacesuits and associated gear and the narrower crewlock is on the right, from which the astronauts will exit into space for extravehicular activity. The airlock is 18 feet long and has a mass of about 13,500 pounds. It was launched to the station aboard the Space Shuttle orbiter Atlantis (STS-104 mission) on July 12, 2001. The MSFC is playing a primary role in NASA's development, manufacturing, and operations of the ISS.

  18. ISS SGANT Group Level Offloading Test Mechanism

    NASA Technical Reports Server (NTRS)

    Zhang, Xi-Lin

    2002-01-01

    The International Space Station (ISS) Space-to-Ground Antenna (SGANT) is used for ISS communication with earth through the Tracking and Data Relay Satellite (TDRSS). Due to the different speeds of travel between earth, ISS and TDRSS, a steerable SGANT was required on the ISS. The mechanical design of SGANT is an unbalanced mechanism with insufficient strength and driving torque to support and drive itself in a 1G environment. For ground testing, a specially designed offloading mechanism is required. Basically, the test mechanism must offload the SGANT in a two-axis operation, allowing the SGANT to move within a specific range, speed and acceleration; therefore the SGANT can move from elevation 0 to 90 deg and be tested at both the 0 and 90 deg positions. The load introduced by the test equipment should be less than 10.17 N-m (7.5 ft-lbf). The on-ground group level tracking test is quite challenging due to the unbalanced antenna mechanical design and tough specification requirements. This paper describes the detailed design, fabrication, and calibration of the test mechanism, and how the above requirements are met. The overall antenna is simplified to a mass model in order to facilitate the offloading mechanism design and analysis. An actual SGANT mass dummy was made to calibrate the system. This paper brings together the theoretical analysis and the industrial experience that were relied upon to meet the above-mentioned requirements for the ground test. The lessons learned during the calibration phase are extremely important for future double or multiple offloading system designs. The ISS SGANT QM and FM units passed their ground test and the SGANT/Boom fit check successfully, and the Flight Model (FM) was delivered to SSPF in April 1998. It is now installed on ISS and functioning well.

  19. A microbial survey of the International Space Station (ISS)

    PubMed Central

    Lang, Jenna M.; Coil, David A.; Neches, Russell Y.; Brown, Wendy E.; Cavalier, Darlene; Severance, Mark; Hampton-Marcell, Jarrad T.; Gilbert, Jack A.

    2017-01-01

    Background Modern advances in sequencing technology have enabled the census of microbial members of many natural ecosystems. Recently, attention is increasingly being paid to the microbial residents of human-made, built ecosystems, both private (homes) and public (subways, office buildings, and hospitals). Here, we report results of the characterization of the microbial ecology of a singular built environment, the International Space Station (ISS). This ISS sampling involved the collection and microbial analysis (via 16S rDNA PCR) of 15 surfaces sampled by swabs onboard the ISS. This sampling was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS). Learning more about the microbial inhabitants of the “buildings” in which we travel through space will take on increasing importance, as plans for human exploration continue, with the possibility of colonization of other planets and moons. Results Sterile swabs were used to sample 15 surfaces onboard the ISS. The sites sampled were designed to be analogous to samples collected for (1) the Wildlife of Our Homes project and (2) a study of cell phones and shoes that were concurrently being collected for another component of Project MERCCURI. Sequencing of the 16S rDNA genes amplified from DNA extracted from each swab was used to produce a census of the microbes present on each surface sampled. We compared the microbes found on the ISS swabs to those from both homes on Earth and data from the Human Microbiome Project. Conclusions While significantly different from homes on Earth and the Human Microbiome Project samples analyzed here, the microbial community composition on the ISS was more similar to home surfaces than to the human microbiome samples. The ISS surfaces are species-rich with 1,036–4,294 operational taxonomic units (OTUs per sample). There was no discernible biogeography of microbes on the 15 ISS surfaces, although this may be a reflection of the

  20. A microbial survey of the International Space Station (ISS).

    PubMed

    Lang, Jenna M; Coil, David A; Neches, Russell Y; Brown, Wendy E; Cavalier, Darlene; Severance, Mark; Hampton-Marcell, Jarrad T; Gilbert, Jack A; Eisen, Jonathan A

    2017-01-01

    Modern advances in sequencing technology have enabled the census of microbial members of many natural ecosystems. Recently, attention is increasingly being paid to the microbial residents of human-made, built ecosystems, both private (homes) and public (subways, office buildings, and hospitals). Here, we report results of the characterization of the microbial ecology of a singular built environment, the International Space Station (ISS). This ISS sampling involved the collection and microbial analysis (via 16S rDNA PCR) of 15 surfaces sampled by swabs onboard the ISS. This sampling was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS). Learning more about the microbial inhabitants of the "buildings" in which we travel through space will take on increasing importance, as plans for human exploration continue, with the possibility of colonization of other planets and moons. Sterile swabs were used to sample 15 surfaces onboard the ISS. The sites sampled were designed to be analogous to samples collected for (1) the Wildlife of Our Homes project and (2) a study of cell phones and shoes that were concurrently being collected for another component of Project MERCCURI. Sequencing of the 16S rDNA genes amplified from DNA extracted from each swab was used to produce a census of the microbes present on each surface sampled. We compared the microbes found on the ISS swabs to those from both homes on Earth and data from the Human Microbiome Project. While significantly different from homes on Earth and the Human Microbiome Project samples analyzed here, the microbial community composition on the ISS was more similar to home surfaces than to the human microbiome samples. The ISS surfaces are species-rich with 1,036-4,294 operational taxonomic units (OTUs per sample). There was no discernible biogeography of microbes on the 15 ISS surfaces, although this may be a reflection of the small sample size we were able to

  1. International Space Station (ISS) Airlock Crewlock Depressurization Methods

    NASA Technical Reports Server (NTRS)

    Williams, David E.; Leonard, Daniel J.; Booth, Valori J.; Russell, Matt

    2004-01-01

    The International Space Station (ISS) Airlock Crewlock can be depressurized via various methods. The ISS Airlock is divided into two major sections, the Equipment Lock and Crewlock. The Equipment Lock, as the name indicates, contains the equipment to support EVA activities including Extravehicular Maneuvering/Mobility Unit (EMU) maintenance and refurbishment. The Equipment Lock also contains basic life support equipment in order to support denitrogenzation protocols while the Airlock is isolated from the rest of the ISS. The Crewlock is the section of the Airlock that is depressurized to allow for Extravehicular Activity (EVA) crewmembers to exit the ISS for performance of EVAs. As opposed to the Equipment Lock, the Crewlock is quite simple and basically just contains lights and an assembly to provide services, oxygen, coolant, etc, to the EMUs. For operational flexibility, various methods were derived for Crewlock depressurization. Herein these various different methods of ISS Airlock Crewlock depressurization will be described including their performance, impacts, and risks associated with each method. Each of the different methods will be discussed with flight data, if it exists. Models will be applied to flight cases and to other methods that have not been used on-orbit at this time.

  2. ISS Has an Attitude! Determining ISS Attitude at the ISS Window Observational Research Facility (WORF) Using Landmarks

    NASA Technical Reports Server (NTRS)

    Runco, Susan K.; Pickard,Henry; Kowtha, Vijayanand; Jackson, Dan

    2011-01-01

    Universities and secondary schools can help solve a real issue for remote sensing from the ISS WORF through hands-on engineering and activities. Remote sensing technology is providing scientists with higher resolution, higher sensitivity sensors. Where is it pointing? - To take full advantage of these improved sensors, space platforms must provide commensurate improvements in attitude determination

  3. International Space Station (ISS) Anomalies Trending Study

    NASA Technical Reports Server (NTRS)

    Beil, Robert J.; Brady, Timothy K.; Foster, Delmar C.; Graber, Robert R.; Malin, Jane T.; Thornesbery, Carroll G.; Throop, David R.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) set out to utilize data mining and trending techniques to review the anomaly history of the International Space Station (ISS) and provide tools for discipline experts not involved with the ISS Program to search anomaly data to aid in identification of areas that may warrant further investigation. Additionally, the assessment team aimed to develop an approach and skillset for integrating data sets, with the intent of providing an enriched data set for discipline experts to investigate that is easier to navigate, particularly in light of ISS aging and the plan to extend its life into the late 2020s. This report contains the outcome of the NESC Assessment.

  4. Astronaut Susan Helms in the ISS Unity Node

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In this photograph, Astronaut Susan Helms, Expedition Two flight engineer, is positioned near a large amount of water temporarily stored in the Unity Node aboard the International Space Station (ISS). Astronaut Helms accompanied the STS-105 crew back to Earth after having spent five months with two crewmates aboard the ISS. The 11th ISS assembly flight, the Space Shuttle Orbiter Discovery STS-105 mission was launched on August 10, 2001, and landed on August 22, 2001 at the Kennedy Space Center after the completion of the successful 12-day mission.

  5. iss028e036705

    NASA Image and Video Library

    2011-09-02

    ISS028-E-036705 (2 Sept. 2011) --- Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 28 flight engineer, is pictured near a computer in the Destiny laboratory of the International Space Station.

  6. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-16

    The International Space Station (ISS), with the newly installed U.S. Laboratory, Destiny, is backdropped over clouds, water and land in South America. South Central Chile shows up at the bottom of the photograph. Just below the Destiny, the Chacao Charnel separates the large island of Chile from the mainland and connects the Gulf of Coronado on the Pacific side with the Gulf of Ancud, southwest of the city of Puerto Montt. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  7. International Space Station (ISS)

    NASA Image and Video Library

    2002-10-14

    Astronauts Piers J. Sellers (left ) and David A. Wolf work on the newly installed Starboard One (S1) truss to the International Space Station (ISS) during the STS-112 mission. The primary payloads of this mission, ISS Assembly Mission 9A, were the Integrated Truss Assembly S1 (S One), the starboard side thermal radiator truss, and the Crew Equipment Translation Aid (CETA) cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss was attached to the S0 (S Zero) truss, which was launched on April 8, 2002 aboard the STS-110, and flows 637 pounds of anhydrous ammonia through three heat-rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA cart was attached to the Mobil Transporter and will be used by assembly crews on later missions. Manufactured by the Boeing Company in Huntington Beach, California, the truss primary structure was transferred to the Marshall Space Flight Center in February 1999 for hardware installations and manufacturing acceptance testing. The launch of the STS-112 mission occurred on October 7, 2002, and its 11-day mission ended on October 18, 2002.

  8. International Space Station (ISS)

    NASA Image and Video Library

    2002-10-16

    This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-112 mission following separation from the Space Shuttle Orbiter Atlantis as the orbiter pulled away from the ISS. The primary payloads of this mission, International Space Station Assembly Mission 9A, were the Integrated Truss Assembly S1 (S-One), the Starboard Side Thermal Radiator Truss, and the Crew Equipment Translation Aid (CETA) cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss was attached to the S0 (S Zero) truss, which was launched on April 8, 2002 aboard the STS-110, and flows 637 pounds of anhydrous ammonia through three heat-rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA cart was attached to the Mobil Transporter and will be used by assembly crews on later missions. Manufactured by the Boeing Company in Huntington Beach, California, the truss primary structure was transferred to the Marshall Space Flight Center in February 1999 for hardware installations and manufacturing acceptance testing. The launch of the STS-112 mission occurred on October 7, 2002, and its 11-day mission ended on October 18, 2002.

  9. Long-Term International Space Station (ISS) Risk Reduction Activities

    NASA Astrophysics Data System (ADS)

    Fodroci, M. P.; Gafka, G. K.; Lutomski, M. G.; Maher, J. S.

    2012-01-01

    As the assembly of the ISS nears completion, it is worthwhile to step back and review some of the actions pursued by the Program in recent years to reduce risk and enhance the safety and health of ISS crewmembers, visitors, and space flight participants. While the initial ISS requirements and design were intended to provide the best practicable levels of safety, it is always possible to further reduce risk - given the determination, commitment, and resources to do so. The following is a summary of some of the steps taken by the ISS Program Manager, by our International Partners, by hardware and software designers, by operational specialists, and by safety personnel to continuously enhance the safety of the ISS, and to reduce risk to all crewmembers. While years of work went into the development of ISS requirements, there are many things associated with risk reduction in a Program like the ISS that can only be learned through actual operational experience. These risk reduction activities can be divided into roughly three categories: Areas that were initially noncompliant which have subsequently been brought into compliance or near compliance (i.e., Micrometeoroid and Orbital Debris [MMOD] protection, acoustics) Areas where initial design requirements were eventually considered inadequate and were subsequently augmented (i.e., Toxicity Hazard Level- 4 [THL] materials, emergency procedures, emergency equipment, control of drag-throughs) Areas where risks were initially underestimated, and have subsequently been addressed through additional mitigation (i.e., Extravehicular Activity [EVA] sharp edges, plasma shock hazards) Due to the hard work and cooperation of many parties working together across the span of more than a decade, the ISS is now a safer and healthier environment for our crew, in many cases exceeding the risk reduction targets inherent in the intent of the original design. It will provide a safe and stable platform for utilization and discovery for years

  10. Long-Term International Space Station (ISS) Risk Reduction Activities

    NASA Technical Reports Server (NTRS)

    Forroci, Michael P.; Gafka, George K.; Lutomski, Michael G.; Maher, Jacilyn S.

    2011-01-01

    As the assembly of the ISS nears completion, it is worthwhile to step back and review some of the actions pursued by the Program in recent years to reduce risk and enhance the safety and health of ISS crewmembers, visitors, and space flight participants. While the initial ISS requirements and design were intended to provide the best practicable levels of safety, it is always possible to further reduce risk given the determination, commitment, and resources to do so. The following is a summary of some of the steps taken by the ISS Program Manager, by our International Partners, by hardware and software designers, by operational specialists, and by safety personnel to continuously enhance the safety of the ISS, and to reduce risk to all crewmembers. While years of work went into the development of ISS requirements, there are many things associated with risk reduction in a Program like the ISS that can only be learned through actual operational experience. These risk reduction activities can be divided into roughly three categories: Areas that were initially noncompliant which have subsequently been brought into compliance or near compliance (i.e., Micrometeoroid and Orbital Debris [MMOD] protection, acoustics) Areas where initial design requirements were eventually considered inadequate and were subsequently augmented (i.e., Toxicity hazard level-4 materials, emergency procedures, emergency equipment, control of drag-throughs) Areas where risks were initially underestimated, and have subsequently been addressed through additional mitigation (i.e., Extravehicular Activity [EVA] sharp edges, plasma shock hazards). Due to the hard work and cooperation of many parties working together across the span of more than a decade, the ISS is now a safer and healthier environment for our crew, in many cases exceeding the risk reduction targets inherent in the intent of the original design. It will provide a safe and stable platform for utilization and discovery for years to come.

  11. iss055e035378

    NASA Image and Video Library

    2018-04-27

    iss055e035378 (April 27, 2018) --- NASA astronauts Drew Feustel (left) and Scott Tingle play guitar inside the Destiny laboratory module during an educational event with school districts in Aransas Pass, Texas.

  12. iss028e035566

    NASA Image and Video Library

    2011-08-31

    ISS028-E-035566 (31 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, works with Muscle Atrophy Research & Exercise System (MARES) hardware in the Columbus laboratory of the International Space Station.

  13. iss028e035603

    NASA Image and Video Library

    2011-08-31

    ISS028-E-035603 (31 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, works with Muscle Atrophy Research & Exercise System (MARES) hardware in the Columbus laboratory of the International Space Station.

  14. iss028e035301

    NASA Image and Video Library

    2011-08-31

    ISS028-E-035301 (31 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, works with Muscle Atrophy Research & Exercise System (MARES) hardware in the Columbus laboratory of the International Space Station.

  15. iss055e013731

    NASA Image and Video Library

    2018-04-07

    iss055e013731 (April 7, 2018) --- An Expedition 55 crew member aboard the International Space Station photographed a cloud formation over the Caspian Sea surrounded by the countries of Azerbaijan, Iran and Turkmenistan.

  16. iss055e009857

    NASA Image and Video Library

    2018-04-04

    iss055e009857 (April 4, 2018) --- The SpaceX Dragon resupply ship slowly approaches the International Space Station as the two spacecraft orbit over north-eastern China near the Mongolian and Russian borders.

  17. iss055e000039

    NASA Image and Video Library

    2018-02-28

    iss055e000039 (Feb. 28, 2018) --- A waxing gibbous moon was pictured above the Earth's limb as the International Space Station orbited over the southern Indian Ocean just southwest of the African continent.

  18. iss055e000034

    NASA Image and Video Library

    2018-02-28

    iss055e000034 (Feb. 28, 2018) --- A waxing gibbous moon was pictured above the Earth's limb as the International Space Station orbited over the southern Indian Ocean just southwest of the African continent.

  19. iss055e000030

    NASA Image and Video Library

    2018-02-28

    iss055e000030 (Feb. 28, 2018) --- A waxing gibbous moon was pictured above the Earth's limb as the International Space Station orbited over the southern Indian Ocean just southwest of the African continent.

  20. iss055e000043

    NASA Image and Video Library

    2018-02-28

    iss055e000043 (Feb. 28, 2018) --- A waxing gibbous moon was pictured above the Earth's limb as the International Space Station orbited over the southern Indian Ocean just southwest of the African continent.

  1. iss031e149757

    NASA Image and Video Library

    2012-06-28

    ISS031-E-149757 (28 June 2012) --- NASA astronaut Joe Acaba, Expedition 31 flight engineer, uses a computer while working with extravehicular activity (EVA) tools in the Quest airlock of the International Space Station.

  2. International Space Station (ISS)

    NASA Image and Video Library

    1995-04-17

    This computer generated scene of the International Space Station (ISS) represents the first addition of hardware following the completion of Phase II. The 8-A Phase shows the addition of the S-9 truss.

  3. SpeedyTime_7-Minus_Eighty_Degrees_Laboratory_Freezer_for_ ISS

    NASA Image and Video Library

    2017-08-23

    SpeedyTime 7 – Minus Eighty Degrees Laboratory Freezer for ISS Cutting-edge science is on the daily menu on board the International Space Station, but where do the astronauts store their lab results before they’re shipped back to Earth? In one of a dozen large freezers, of course: in this SpeedyTime segment, Expedition 52 flight engineer Jack Fischer shines a light on the MELFI, Minus Eighty Degrees Laboratory Freezer for ISS. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  4. International Space Station (ISS)

    NASA Image and Video Library

    2000-05-01

    The Joint Airlock Module for the International Space Station (ISS) awaits shipment to the Kennedy Space Center in the Space Station manufacturing facility at the Marshall Space Flight Center in Huntsville, Alabama. The Airlock includes two sections. The larger equipment lock on the left is where crews will change into and out of their spacesuits for extravehicular activities, and store spacesuits, batteries, power tools, and other supplies. The narrower crewlock from which the astronauts will exit into space for extravehicular activities, is on the right. The airlock is 18 feet long and has a mass of about 13,500 pounds. It was launched to the station aboard the Space Shuttle orbiter Atlantis (STS-104 mission) on July 12, 2001. The MSFC is playing a primary role in NASA's development, manufacturing, and operations of the ISS.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows the Operations Controllers (OC) at their work stations. The OC coordinates the configuration of resources to enable science operations, such as power, cooling, commanding, and the availability of items like tools and laboratory equipment.

  6. Characterizing ISS Charging Environments with On-Board Ionospheric Plasma Measurements

    NASA Technical Reports Server (NTRS)

    Minow, Jospeh I.; Craven, Paul D.; Coffey, Victoria N.; Schneider, Todd A.; Vaughn, Jason A.; Wright Jr, Kenneth; Parker, Paul D.; Mikatarian, Ronald R.; Kramer, Leonard; Hartman, William A.; hide

    2008-01-01

    Charging of the International Space Station (ISS) is dominated by interactions of the biased United States (US) 160 volt solar arrays with the relatively high density, low temperature plasma environment in low Earth orbit. Conducting surfaces on the vehicle structure charge negative relative to the ambient plasma environment because ISS structure is grounded to the negative end of the US solar arrays. Transient charging peaks reaching potentials of some tens of volts negative controlled by photovoltaic array current collection typically occur at orbital sunrise and sunset as well as near orbital noon. In addition, surface potentials across the vehicle structure vary due to an induced v x B (dot) L voltage generated by the high speed motion of the conducting structure across the Earth's magnetic field. Induced voltages in low Earth orbit are typically only approx.0.4 volts/meter but the approx.100 meter scale dimensions of the ISS yield maximum induced potential variations ofapprox.40 volts across the vehicle. Induced voltages are variable due to the orientation of the vehicle structure and orbital velocity vector with respect to the orientation of the Earth's magnetic field along the ISS orbit. In order to address the need to better understand the ISS spacecraft potential and plasma environments, NASA funded development and construction of the Floating Potential Measurement Unit (FPMU) which was deployed on an ISS starboard truss arm in August 2006. The suite of FPMU instruments includes two Langmuir probes, a plasma impedance probe, and a potential probe for use in in-situ monitoring of electron temperatures and densities and the vehicle potential relative to the plasma environment. This presentation will describe the use of the FPMU to better characterize interactions of the ISS with the space environment, changes in ISS charging as the vehicle configuration is modified during ISS construction, and contributions of FPMU vehicle potential and plasma environment

  7. iss031e143936

    NASA Image and Video Library

    2012-06-24

    ISS031-E-143936 (24 June 2012) --- NASA astronaut Joe Acaba, Expedition 31 flight engineer, watches a water bubble float freely between him and the camera, showing his image refracted, on the International Space Station.

  8. iss055e020372

    NASA Image and Video Library

    2018-04-10

    iss055e020372 (April 10, 2018) --- Reunion Island, a French region off the coast of Madagascar, was pictured by an Expedition 55 crew member as the International Space Station orbited over the Indian Ocean.

  9. iss051e029335

    NASA Image and Video Library

    2017-04-30

    iss051e029335 (April 30, 2017) --- European Space Agency astronaut Thomas Pesquet exercises on the Cycle Ergometer with Vibration Isolation and Stabilization System (CEVIS), the station’s exercise bike, inside the Destiny laboratory module.

  10. iss031e148737

    NASA Image and Video Library

    2012-06-27

    ISS031-E-148737 (27 June 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 31 flight engineer, poses for a photo with Robonaut 2 humanoid robot in the Destiny laboratory of the International Space Station.

  11. Upgrades to the ISS Water Recovery System

    NASA Technical Reports Server (NTRS)

    Pruitt, Jennifer M.; Carter, Layne; Bagdigian, Robert M.; Kayatin, Mattthew J.

    2015-01-01

    The ISS Water Recovery System (WRS) includes the Water Processor Assembly (WPA) and the Urine Processor Assembly (UPA). The WRS produces potable water from a combination of crew urine (first processed through the UPA), crew latent, and Sabatier product water. The WRS has been operational on ISS since November 2008, producing over 21,000 L of potable water during that time. Though the WRS has performed well during this time, several modifications have been identified to improve the overall system performance. These modifications can reduce resupply and improve overall system reliability, which is beneficial for the ongoing ISS mission as well as for future NASA manned missions. The following paper lists these modifications, how they improve WRS performance, and a status on the ongoing development effort.

  12. Integrating International Engineering Organizations For Successful ISS Operations

    NASA Technical Reports Server (NTRS)

    Blome, Elizabeth; Duggan, Matt; Patten, L.; Pieterek, Hhtrud

    2006-01-01

    The International Space Station (ISS) is a multinational orbiting space laboratory that is built in cooperation with 16 nations. The design and sustaining engineering expertise is spread worldwide. As the number of Partners with orbiting elements on the ISS grows, the challenge NASA is facing as the ISS integrator is to ensure that engineering expertise and data are accessible in a timely fashion to ensure ongoing operations and mission success. Integrating international engineering teams requires definition and agreement on common processes and responsibilities, joint training and the emergence of a unique engineering team culture. ISS engineers face daunting logistical and political challenges regarding data sharing requirements. To assure systematic information sharing and anomaly resolution of integrated anomalies, the ISS Partners are developing multi-lateral engineering interface procedures. Data sharing and individual responsibility are key aspects of this plan. This paper describes several examples of successful multilateral anomaly resolution. These successes were used to form the framework of the Partner to Partner engineering interface procedures, and this paper describes those currently documented multilateral engineering processes. Furthermore, it addresses the challenges experienced to date, and the forward work expected in establishing a successful working relationship with Partners as their hardware is launched.

  13. iss055e018690

    NASA Image and Video Library

    2018-04-11

    iss055e018690 (April 11, 2018) --- NASA astronaut Scott Tingle prepares video equipment for a series of education videos being recorded for the STEMonstration campaign which demonstrates scientific concepts in space for students and teachers.

  14. iss028e036517

    NASA Image and Video Library

    2011-09-02

    ISS028-E-036517 (2 Sept. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, conducts a session with the Binary Colloidal Alloy Test-5 (BCAT-5) in the Kibo laboratory of the International Space Station.

  15. iss028e036580

    NASA Image and Video Library

    2011-09-02

    ISS028-E-036580 (2 Sept. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, conducts a session with the Binary Colloidal Alloy Test-5 (BCAT-5) in the Kibo laboratory of the International Space Station.

  16. iss028e034978

    NASA Image and Video Library

    2011-08-30

    ISS028-E-034978 (30 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, performs in-flight maintenance on the Muscle Atrophy Research & Exercise System (MARES) in the Columbus laboratory of the International Space Station.

  17. iss028e034993

    NASA Image and Video Library

    2011-08-30

    ISS028-E-034993 (30 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, performs in-flight maintenance on the Muscle Atrophy Research & Exercise System (MARES) in the Columbus laboratory of the International Space Station.

  18. iss028e034980

    NASA Image and Video Library

    2011-08-30

    ISS028-E-034980 (30 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, performs in-flight maintenance on the Muscle Atrophy Research & Exercise System (MARES) in the Columbus laboratory of the International Space Station.

  19. iss028e035002

    NASA Image and Video Library

    2011-08-30

    ISS028-E-035002 (30 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, performs in-flight maintenance on the Muscle Atrophy Research & Exercise System (MARES) in the Columbus laboratory of the International Space Station.

  20. iss028e034984

    NASA Image and Video Library

    2011-08-30

    ISS028-E-034984 (30 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, performs in-flight maintenance on the Muscle Atrophy Research & Exercise System (MARES) in the Columbus laboratory of the International Space Station.

  1. iss028e034992

    NASA Image and Video Library

    2011-08-30

    ISS028-E-034992 (30 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, performs in-flight maintenance on the Muscle Atrophy Research & Exercise System (MARES) in the Columbus laboratory of the International Space Station.

  2. iss028e035617

    NASA Image and Video Library

    2011-08-31

    ISS028-E-035617 (31 Aug. 2011) --- Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 28 flight engineer, works with Muscle Atrophy Research & Exercise System (MARES) hardware in the Columbus laboratory of the International Space Station.

  3. iss028e026402

    NASA Image and Video Library

    2011-08-17

    ISS028-E-026402 (17 Aug. 2011) --- NASA astronaut Ron Garan, Expedition 28 flight engineer, works with the Combustion Integrated Rack (CIR) Fluids and Combustion Facility (FCF) in the Destiny laboratory of the International Space Station.

  4. iss028e026400

    NASA Image and Video Library

    2011-08-17

    ISS028-E-026400 (17 Aug. 2011) --- NASA astronaut Ron Garan, Expedition 28 flight engineer, works with the Combustion Integrated Rack (CIR) Fluids and Combustion Facility (FCF) in the Destiny laboratory of the International Space Station.

  5. The International Space Station (ISS) Education Accomplishments and Opportunities

    NASA Technical Reports Server (NTRS)

    Alleyne, Camille W.; Blue, Regina; Mayo, Susan

    2012-01-01

    The International Space Station (ISS) has the unique ability to capture the imaginations of both students and teachers worldwide and thus stands as an invaluable learning platform for the advancement of proficiency in research and development and education. The presence of humans on board ISS for the past ten years has provided a foundation for numerous educational activities aimed at capturing that interest and motivating study in the sciences, technology, engineering and mathematics (STEM) disciplines which will lead to an increase in quality of teachers, advancements in research and development, an increase in the global reputation for intellectual achievement, and an expanded ability to pursue unchartered avenues towards a brighter future. Over 41 million students around the world have participated in ISS-related activities since the year 2000. Projects such as the Amateur Radio on International Space Station (ARISS) and Earth Knowledge Acquired by Middle School Students (EarthKAM), among others, have allowed for global student, teacher, and public access to space through radio contacts with crewmembers and student image acquisition respectively. . With planned ISS operations at least until 2020, projects like the aforementioned and their accompanying educational materials will be available to enable increased STEM literacy around the world. Since the launch of the first ISS element, a wide range of student experiments and educational activities have been performed by each of the international partner agencies: National Aeronautics and Space Administration (NASA), Canadian Space Agency (CSA), European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA) and Russian Federal Space Agency (Roscosmos). Additionally, a number of non-participating countries, some under commercial agreements, have also participated in Station-related activities. Many of these programs still continue while others are being developed and added to the station crewmembers tasks

  6. Conducting On-orbit Gene Expression Analysis on ISS: WetLab-2

    NASA Technical Reports Server (NTRS)

    Parra, Macarena; Almeida, Eduardo; Boone, Travis; Jung, Jimmy; Lera, Matthew P.; Ricco, Antonio; Souza, Kenneth; Wu, Diana; Richey, C. Scott

    2013-01-01

    WetLab-2 will enable expanded genomic research on orbit by developing tools that support in situ sample collection, processing, and analysis on ISS. This capability will reduce the time-to-results for investigators and define new pathways for discovery on the ISS National Lab. The primary objective is to develop a research platform on ISS that will facilitate real-time quantitative gene expression analysis of biological samples collected on orbit. WetLab-2 will be capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on orbit. WetLab-2 will significantly expand the analytical capabilities onboard ISS and enhance science return from ISS.

  7. Utilizing ISS Camera Systems for Scientific Analysis of Lightning Characteristics and Comparison with ISS-LIS and GLM

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Lang, Timothy J.; Leake, Skye; Runco, Mario, Jr.; Blakeslee, Richard J.

    2017-01-01

    Video and still frame images from cameras aboard the International Space Station (ISS) are used to inspire, educate, and provide a unique vantage point from low-Earth orbit that is second to none; however, these cameras have overlooked capabilities for contributing to scientific analysis of the Earth and near-space environment. The goal of this project is to study how geo referenced video/images from available ISS camera systems can be useful for scientific analysis, using lightning properties as a demonstration.

  8. iss051e029147

    NASA Image and Video Library

    2017-04-29

    iss051e029147 (4/29/2017) --- Russian Cosmonaut Fyodor Yurchikhin prepares to eat some of the Chinese cabbage that was grown in the Veggie Plant Growth facility as part of the Veg-03 investigation. Credits: NASA

  9. iss031e140701

    NASA Image and Video Library

    2012-06-23

    ISS031-E-140701 (23 June 2012) --- Russian cosmonaut Sergei Revin, Expedition 31 flight engineer, works on the BTKh-26 KASKAD (Cascade) experiment in the Rassvet Mini-Research Module 1 (MRM-1) of the International Space Station.

  10. iss031e140699

    NASA Image and Video Library

    2012-06-23

    ISS031-E-140699 (23 June 2012) --- Russian cosmonaut Sergei Revin, Expedition 31 flight engineer, works on the BTKh-26 KASKAD (Cascade) experiment in the Rassvet Mini-Research Module 1 (MRM-1) of the International Space Station.

  11. iss031e143872

    NASA Image and Video Library

    2012-06-24

    ISS031-E-143872 (24 June 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 31 flight engineer, squeezes a water bubble out of his beverage container, showing his image refracted and reflected, on the International Space Station.

  12. iss055e012532

    NASA Image and Video Library

    2018-04-07

    iss055e012532 (April 7, 2018) --- Doha, the capital city of Qatar, was photographed by an Expedition 55 crew member aboard the International Space Station as it orbited over the northeastern coast of the Arabian Peninsula.

  13. Reuse International Space Station (ISS) Modules as Lunar Habitat

    NASA Technical Reports Server (NTRS)

    Miernik, Janie; Owens, James E.; Floyd, Brian A.; Strong, Janet; Sanford, Joseph

    2005-01-01

    NASA currently projects ending the ISS mission in approximately 2016, due primarily to the expense of re-boost and re-supply. Lunar outposts are expected to be in place in the same timeframe. In support of these mission goals, a scheme to reuse ISS modules on the moon has been identified. These modules could function as pressurized volumes for human habitation in a lunar vacuum as they have done in low-earth orbit. The ISS hull is structurally capable of withstanding a lunar landing because there is no atmospheric turbulence or friction. A compelling reason to send ISS modules to the moon is their large mass; a large portion of the ISS would survive re-entry if allowed to de-orbit to Earth. ISS debris could pose a serious risk to people or structures on Earth unless a controlled re-entry is performed. If a propulsive unit is devised to be attached to the ISS and control re-entry, a propulsion system could be used to propel the modules to the moon and land them there. ISS modules on the lunar surface would not require re-boost. Radiation protection can be attained by burying the module in lunar regolith. Power and a heat removal system would be required for the lunar modules which would need little support structure other than the lunar surface. With planetary mass surrounding the module, heat flux may be controlled by conductance. The remaining requirement is the re-supply of life-support expendables. There are raw materials on the moon to supplement these vital resources. The lunar maria is known to contain approximately 40% oxygen by mass in inorganic mineral compounds. Chemical conversion of moon rocks to release gaseous oxygen is known science. Recycling and cleaning of air and water are currently planned to be accomplished with ISS Environmental Control & Life Support Systems (ECLSS). By developing a Propulsion and Landing Module (PLM) to dock to the Common Berthing Mechanism (CBM), several identical PLMs could be produced to rescue and transfer the ISS

  14. Psychological Support Operations and the ISS One-Year Mission

    NASA Technical Reports Server (NTRS)

    Beven, G.; Vander Ark, S. T.; Holland, A. W.

    2016-01-01

    Since NASA began human presence on the International Space Station (ISS) in November 1998, crews have spent two to seven months onboard. In March 2015 NASA and Russia embarked on a new era of ISS utilization, with two of their crewmembers conducting a one-year mission onboard ISS. The mission has been useful for both research and mission operations to better understand the human, technological, mission management and staffing challenges that may be faced on missions beyond Low Earth Orbit. The work completed during the first 42 ISS missions provided the basis for the pre-flight, in-flight and post-flight work completed by NASA's Space Medicine Operations Division, while our Russian colleagues provided valuable insights from their long-duration mission experiences with missions lasting 10-14 months, which predated the ISS era. Space Medicine's Behavioral Health and Performance Group (BHP) provided pre-flight training, evaluation, and preparation as well as in-flight psychological support for the NASA crewmember. While the BHP team collaboratively planned for this mission with the help of all ISS international partners within the Human Behavior and Performance Working Group to leverage their collective expertise, the US and Russian BHP personnel were responsible for their respective crewmembers. The presentation will summarize the lessons and experience gained within the areas identified by this Working Group as being of primary importance for a one-year mission.

  15. iss055e013356

    NASA Image and Video Library

    2018-04-07

    iss055e013356 (April 7, 2018) --- The eastern-most portion of the Mediterranean Sea and portions of the countries of Turkey, Syria and Lebanon was photographed from the International Space Station by an Expedition 55 crew member.

  16. Correlation of ISS Electric Potential Variations with Mission Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Minow, Joseph I.; Parker, Linda Neergaard

    2014-01-01

    Orbiting approximately 400 km above the Earth, the International Space Station (ISS) is a unique research laboratory used to conduct ground-breaking science experiments in space. The ISS has eight Solar Array Wings (SAW), and each wing is 11.7 meters wide and 35.1 meters long. The SAWs are controlled individually to maximize power output, minimize stress to the ISS structure, and minimize interference with other ISS operations such as vehicle dockings and Extra-Vehicular Activities (EVA). The Solar Arrays are designed to operate at 160 Volts. These large, high power solar arrays are negatively grounded to the ISS and collect charged particles (predominately electrons) as they travel through the space plasma in the Earth's ionosphere. If not controlled, this collected charge causes floating potential variations which can result in arcing, causing injury to the crew during an EVA or damage to hardware [1]. The environmental catalysts for ISS floating potential variations include plasma density and temperature fluctuations and magnetic induction from the Earth's magnetic field. These alone are not enough to cause concern for ISS, but when they are coupled with the large positive potential on the solar arrays, floating potentials up to negative 95 Volts have been observed. Our goal is to differentiate the operationally induced fluctuations in floating potentials from the environmental causes. Differentiating will help to determine what charging can be controlled, and we can then design the proper operations controls for charge collection mitigation. Additionally, the knowledge of how high power solar arrays interact with the environment and what regulations or design techniques can be employed to minimize charging impacts can be applied to future programs.

  17. Unusual ISS Rate Signature

    NASA Technical Reports Server (NTRS)

    Laible, Michael R.

    2011-01-01

    On November 23, 2011 International Space Station Guidance, Navigation, and Control reported unusual pitch rate disturbance. These disturbances were an order of magnitude greater than nominal rates. The Loads and Dynamics team was asked to review and analyze current accelerometer data to investigate this disturbance. This paper will cover the investigation process under taken by the Loads and Dynamics group. It will detail the accelerometers used and analysis performed. The analysis included performing Frequency Fourier Transform of the data to identify the mode of interest. This frequency data is then reviewed with modal analysis of the ISS system model. Once this analysis is complete and the disturbance quantified, a forcing function was produced to replicate the disturbance. This allows the Loads and Dynamics team to report the load limit values for the 100's of interfaces on the ISS.

  18. International Space Station (ISS)

    NASA Image and Video Library

    1997-01-01

    This photograph, taken by the Boeing Company,shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  19. International Space Station (ISS)

    NASA Image and Video Library

    1997-01-01

    This photograph, taken by the Boeing Company, shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  20. Current ISS Exercise Countermeasures: Where are we now?

    NASA Technical Reports Server (NTRS)

    Hayes, J. C.; Loerch, L.; Davis-Street, J.; Haralson, Cortni; Sams, C.

    2006-01-01

    Current International Space Station (ISS) crew schedules include 1.5 h/d for completion of resistive exercise and 1 h/d of aerobic exercise , 6 d/wk. While ISS post flight decrements in muscle strength, bone m ineral density, and aerobic capacity improved in some crewmembers, de conditioning was still evident even with this volume of exercise. Res ults from early ISS expeditions show maximum loss in bone mineral density of the lumbar spine and pelvis in excess of 1.5% per month, with all crewmembers demonstrating significant bone loss in one or more re gions. Similarly, post flight muscle strength losses in the hamstring and quadriceps muscle groups exceeded 30% in the immediate post miss ion period in some crewmembers. Measures of aerobic capacity early in the mission show average decrements of 15%, but with onboard aerobic exercise capability, the crew has been able to "train up" over the co urse of the mission. These findings are highly variable among crewmem bers and appear to be correlated with availability and reliability of the inflight resistive exercise device (RED), cycle ergometer, and t readmill. This suite of hardware was installed on ISS with limited op erational evaluation in groundbased test beds. As a result, onorbit hardware constraints have resulted in inadequate physical stimulus, d econditioning, and increased risk for compromised performance during intra and extravehicular activities. These issues indicate that the c urrent ISS Countermeasures System reliability or validity are not ade quate for extendedduration exploration missions. Learning Objective: A better understanding of the status of ISS exercise countermeasures , their ability to protect physiologic systems, and recommendations for exploration exercise countermeasures.

  1. iss042e237320

    NASA Image and Video Library

    2015-02-09

    ISS042E237320 (02/09/2015) ---A weather observation image taken from the International Space Station tweeted out to social media fans by NASA astronaut Terry Virts. He added this comment: "Enormous #thunderstorm over the jungles of #Africa".

  2. iss055e074856

    NASA Image and Video Library

    2018-05-24

    iss055e074856 (May 24, 2018) --- The Orbital ATK space freighter is pictured as it slowly and methodically approaches the International Space Station before its capture with the Canadarm2 robotic arm to resupply the Expedition 55 crew.

  3. iss031e143875

    NASA Image and Video Library

    2012-06-24

    ISS031-E-143875 (24 June 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 31 flight engineer, watches a water bubble float freely between him and the camera, showing his image refracted and reflected, on the International Space Station.

  4. iss050e034428

    NASA Image and Video Library

    2017-01-18

    iss050e034428 (01/18/2017) --- This long exposure photo taken from the International Space Station as it orbits around the Earth provides a spectacular view of auroras, sparkling city lights and the stars filling the cosmos beyond.

  5. SPHERES: From Ground Development to Operations on ISS

    NASA Technical Reports Server (NTRS)

    Katterhagen, A.

    2015-01-01

    SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) is an internal International Space Station (ISS) Facility that supports multiple investigations for the development of multi-spacecraft and robotic control algorithms. The SPHERES Facility on ISS is managed and operated by the SPHERES National Lab Facility at NASA Ames Research Center (ARC) at Moffett Field California. The SPHERES Facility on ISS consists of three self-contained eight-inch diameter free-floating satellites which perform the various flight algorithms and serve as a platform to support the integration of experimental hardware. To help make science a reality on the ISS, the SPHERES ARC team supports a Guest Scientist Program (GSP). This program allows anyone with new science the possibility to interface with the SPHERES team and hardware. In addition to highlighting the available SPHERES hardware on ISS and on the ground, this presentation will also highlight ground support, facilities, and resources available to guest researchers. Investigations on the ISS evolve through four main phases: Strategic, Tactical, Operations, and Post Operations. The Strategic Phase encompasses early planning beginning with initial contact by the Principle Investigator (PI) and the SPHERES program who may work with the PI to assess what assistance the PI may need. Once the basic parameters are understood, the investigation moves to the Tactical Phase which involves more detailed planning, development, and testing. Depending on the nature of the investigation, the tactical phase may be split into the Lab Tactical Phase or the ISS Tactical Phase due to the difference in requirements for the two destinations. The Operations Phase is when the actual science is performed; this can be either in the lab, or on the ISS. The Post Operations Phase encompasses data analysis and distribution, and generation of summary status and reports. The SPHERES Operations and Engineering teams at ARC is composed of

  6. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    Expedition 33/34 astronauts onboard the International Space Station answer questions in a live downlink at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Seen from left to right are NASA astronauts Tom Marshburn, Kevin Ford and Canadian Space Agency (CSA) astronaut Chris Hadfield. Photo Credit: (NASA/Carla Cioffi)

  7. Detection of Iss and Bor on the surface of Escherichia coli.

    PubMed

    Lynne, A M; Skyberg, J A; Logue, C M; Nolan, L K

    2007-03-01

    To confirm the presence of Iss and Bor on the outer membrane of Escherichia coli using Western blots of outer membrane protein (OMP) preparations and fluorescence microscopy, and explore the use of fluorescence microscopy for the detection of avian pathogenic E. coli (APEC) and diagnosis of avian colibacillosis. Knockout mutants of iss and bor were created using a one-step recombination of target genes with PCR-generated antibiotic resistance cassettes. Anti-Iss monoclonal antibodies (Mabs) that cross-react with Bor protein were used to study the mutants relative to the wild-type organism. These Mabs were used as reagents to study OMP preparations of the mutants with Western blotting and intact E. coli cells with fluorescence microscopy. Iss and Bor were detected in Western blots of OMP preparations of the wild type. Also, Iss was detected on Deltabor mutants, and Bor was detected on Deltaiss mutants. Iss and Bor were also detected on the surface of the intact, wild-type cells and mutants using fluorescence microscopy. These results demonstrate that Bor and Iss are exposed on E. coli's outer membrane where they may be recognized by the host's immune system. To our knowledge, this is the first report confirming Iss' location in the outer membrane of an E. coli isolate. Such surface exposure has implications for the use of these Mabs for APEC detection and colibacillosis control.

  8. iss042e254702

    NASA Image and Video Library

    2015-02-12

    ISS042E254702 (02/12/2015) --- US Astronaut Terry Virts took this picture of the United States Gulf Coast on Feb. 12, 2015 while he was on the International Space Station. Virts is a Flight Engineer with Expedition 42.

  9. iss002e6675

    NASA Image and Video Library

    2001-05-15

    ISS002-E-6675 (15 May 2001) --- James S. Voss, Expedition Two flight engineer, wearing a safety harness, exercises on the Treadmill Vibration Isolation System (TVIS) equipment in the Zvezda Service Module. This image was taken with a digital still camera.

  10. iss051e038158

    NASA Image and Video Library

    2017-05-08

    iss051e038158 (5/8/2017) --- Chinese cabbage is grown in the Veggie facility on the International Space Station. The sprouts form in a low-maintenance foam pillow and are grown using a special light to help the plants thrive.

  11. SAGEIII-ISS Data Release

    Atmospheric Science Data Center

    2017-11-15

    ... data has historically been used by the World Meteorological Organization to inform their periodic assessments of ozone depletion. These new ... follow a monthly release schedule.   SAGE III-ISS information is provided in the V5 Release Notes , Data Products User's ...

  12. iss042e275153

    NASA Image and Video Library

    2015-02-15

    ISS042E275153 (02/15/2015) --- Expedition 42 Flight Engineer Terry Virts on the International Space Station tweeted his followers this earth observation image on Feb. 15, 2015. He commented that it was "Extensive #Africa desert of #Libya and #Chad".

  13. iss034e033850

    NASA Image and Video Library

    2013-01-23

    ISS034-E-033850 (23 Jan. 2013) --- Canadian Space Agency astronaut Chris Hadfield, Expedition 34 flight engineer, continues work to remove and replace the Service and Performance Checkout Unit (SPCU) Heat Exchanger inside the Quest airlock of the International Space Station.

  14. iss034e010622

    NASA Image and Video Library

    2012-12-31

    ISS034-E-010622 (31 Dec. 2012) --- Canadian Space Agency astronaut Chris Hadfield, Expedition 34 flight engineer, performs a periodic fitness evaluation on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.

  15. iss042e136099

    NASA Image and Video Library

    2015-01-15

    ISS042e136099 (Jan 15, 20105) -- Interior view of the Columbus European Laboratory taken during the crew's sleep period (main lights are turned off). The pink glow comes from the Vegetable Production System (Veggie) greenhouse, housed in the module.

  16. International Space Station (ISS) Emergency Mask (EM) Development

    NASA Technical Reports Server (NTRS)

    Toon, Katherine P.; Hahn, Jeffrey; Fowler, Michael; Young, Kevin

    2011-01-01

    The Emergency Mask (EM) is considered a secondary response emergency Personal Protective Equipment (PPE) designed to provide respiratory protection to the International Space Station (ISS) crewmembers in response to a post-fire event or ammonia leak. The EM is planned to be delivered to ISS in 2012 to replace the current air purifying respirator (APR) onboard ISS called the Ammonia Respirator (AR). The EM is a one ]size ]fits ]all model designed to fit any size crewmember, unlike the APR on ISS, and uses either two Fire Cartridges (FCs) or two Commercial Off-the-Shelf (COTS) 3M(Trademark). Ammonia Cartridges (ACs) to provide the crew with a minimum of 8 hours of respiratory protection with appropriate cartridge swap ]out. The EM is designed for a single exposure event, for either post ]fire or ammonia, and is a passive device that cannot help crewmembers who cannot breathe on their own. The EM fs primary and only seal is around the wearer fs neck to prevent a crewmember from inhaling contaminants. During the development of the ISS Emergency Mask, several design challenges were faced that focused around manufacturing a leak free mask. The description of those challenges are broadly discussed but focuses on one key design challenge area: bonding EPDM gasket material to Gore(Registered Trademark) fabric hood.

  17. The ISS as a platform for a fully simulated mars voyage

    NASA Astrophysics Data System (ADS)

    Narici, Livio; Reitz, Guenther

    2016-07-01

    The ISS can mimic the impact of microgravity, radiation, living and psychological conditions that astronauts will face during a deep space cruise, for example to Mars. This suggests the ISS as the most valuable "analogue" for deep space exploration. NASA has indeed suggested a 'full-up deep space simulation on last available ISS Mission: 6/7 crew for one year duration; full simulation of time delays & autonomous operations'. This idea should be pushed further. It is indeed conceivable to use the ISS as the final "analogue", performing a real 'dry-run' of a deep space mission (such as a mission to Mars), as close as reasonably possible to what will be the real voyage. This Mars ISS dry run (ISS4Mars) would last 500-800 days, mimicking most of the challenges which will be undertaken such as length, isolation, food provision, decision making, time delays, health monitoring diagnostic and therapeutic actions and more: not a collection of "single experiments", but a complete exploration simulation were all the pieces will come together for the first in space simulated Mars voyage. Most of these challenges are the same that those that will be encountered during a Moon voyage, with the most evident exceptions being the duration and the communication delay. At the time of the Mars ISS dry run all the science and technological challenges will have to be mostly solved by dedicated works. These solutions will be synergistically deployed in the dry run which will simulate all the different aspects of the voyage, the trip to Mars, the permanence on the planet and the return to Earth. During the dry run i) There will be no arrivals/departure of spacecrafts; 2) Proper communications delay with ground will be simulated; 3) Decision processes will migrate from Ground to ISS; 4) Permanence on Mars will be simulated. Mars ISS dry run will use just a portion of the ISS which will be totally isolated from the rest of the ISS, leaving to the other ISS portions the task to provide the

  18. ISS Logistics Hardware Disposition and Metrics Validation

    NASA Technical Reports Server (NTRS)

    Rogers, Toneka R.

    2010-01-01

    I was assigned to the Logistics Division of the International Space Station (ISS)/Spacecraft Processing Directorate. The Division consists of eight NASA engineers and specialists that oversee the logistics portion of the Checkout, Assembly, and Payload Processing Services (CAPPS) contract. Boeing, their sub-contractors and the Boeing Prime contract out of Johnson Space Center, provide the Integrated Logistics Support for the ISS activities at Kennedy Space Center. Essentially they ensure that spares are available to support flight hardware processing and the associated ground support equipment (GSE). Boeing maintains a Depot for electrical, mechanical and structural modifications and/or repair capability as required. My assigned task was to learn project management techniques utilized by NASA and its' contractors to provide an efficient and effective logistics support infrastructure to the ISS program. Within the Space Station Processing Facility (SSPF) I was exposed to Logistics support components, such as, the NASA Spacecraft Services Depot (NSSD) capabilities, Mission Processing tools, techniques and Warehouse support issues, required for integrating Space Station elements at the Kennedy Space Center. I also supported the identification of near-term ISS Hardware and Ground Support Equipment (GSE) candidates for excessing/disposition prior to October 2010; and the validation of several Logistics Metrics used by the contractor to measure logistics support effectiveness.

  19. iss048e026760

    NASA Image and Video Library

    2016-07-16

    ISS048e026760 (07/16/2016) --- NASA astronaut Jeff Williams (right) gets a haircut aboard the International Space Station from Russian cosmonaut Anatoly Ivanishin (left.) The electric razor includes a vacuum hose to keep the tiny hair follicles from floating away

  20. ISS Solar Array Wing

    NASA Image and Video Library

    2010-06-29

    ISS024-E-007103 (29 June 2010) --- Backdropped by a blue and white part of Earth and the blackness of space, International Space Station solar array panels are featured in this image photographed by an Expedition 24 crew member aboard the station.

  1. ISS seen during flyaround

    NASA Image and Video Library

    2001-02-16

    STS98-E-5310 (16 February 2001) --- Sporting an important new component in the Destiny laboratory (near center of frame), the International Space Station (ISS) is backdropped against the blackness of space following undocking. The photo was taken with a digital still camera.

  2. iss045e107821

    NASA Image and Video Library

    2015-11-12

    ISS045E107821 (11/13/2015) --- As night falls the astronauts and cosmonauts aboard the International Space Station prepare for sleep while also viewing the softening curvature of the Earth go by with lighted cities below them and sparkling stars above.

  3. iss028e035028

    NASA Image and Video Library

    2011-08-27

    ISS028-E-035028 (27 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, trims astronaut Ron Garan's hair in the Tranquility node of the International Space Station. Fossum used hair clippers fashioned with a vacuum device to garner freshly cut hair.

  4. iss028e035053

    NASA Image and Video Library

    2011-08-27

    ISS028-E-035053 (27 Aug. 2011) --- NASA astronaut Ron Garan, Expedition 28 flight engineer, trims astronaut Mike Fossum's hair in the Tranquility node of the International Space Station. Garan used hair clippers fashioned with a vacuum device to garner freshly cut hair.

  5. iss054e006869

    NASA Image and Video Library

    2017-12-27

    iss054e006869 (Dec. 27, 2017) --- This photograph taken by Expedition 54 crew members aboard the International Space Station reveals striking climate differences of Nepal and the Himalayan mountain range, including Mount Everest (left) and the Tibetan highlands of western China (right).

  6. iss030e028873

    NASA Image and Video Library

    2012-01-09

    ISS030-E-028873 (9 Jan. 2012) --- One of a series of photos of the moon and Earth?s atmosphere as seen from the International Space Station over a period of time that covered a number of orbits by the orbital outpost.

  7. iss030e028893

    NASA Image and Video Library

    2012-01-09

    ISS030-E-028893 (9 Jan. 2012) --- One of a series of photos of the moon and Earth?s atmosphere as seen from the International Space Station over a period of time that covered a number of orbits by the orbital outpost.

  8. iss030e028959

    NASA Image and Video Library

    2012-01-09

    ISS030-E-028859 (9 Jan. 2012) --- One of a series of photos of the moon and Earth?s atmosphere as seen from the International Space Station over a period of time that covered a number of orbits by the orbital outpost.

  9. iss030e028984

    NASA Image and Video Library

    2012-01-09

    ISS030-E-028984 (9 Jan. 2012) --- One of a series of photos of the moon and Earth?s atmosphere as seen from the International Space Station over a period of time that covered a number of orbits by the orbital outpost.

  10. iss030e028977

    NASA Image and Video Library

    2012-01-09

    ISS030-E-028977(9 Jan. 2012) --- One of a series of photos of the moon and Earth’s atmosphere as seen from the International Space Station over a period of time that covered a number of orbits by the orbital outpost.

  11. iss028e025963

    NASA Image and Video Library

    2011-08-18

    ISS028-E-025963 (18 Aug. 2011) --- Russian cosmonaut Andrey Borisenko, Expedition 28 commander, inspects a new growth experiment on the BIO-5 Rasteniya-2 (Plants-2) payload with its LADA-01 greenhouse in the Zvezda Service Module of the International Space Station.

  12. iss047e012492

    NASA Image and Video Library

    2016-03-21

    ISS047e012492 (03/21/2016) --- NASA astronaut Tim Kopra stows hardware from the OASIS experiment aboard the International Space Station. OASIS, which stands for Observation and Analysis of Smectic Islands In Space, studies the unique behavior of liquid crystals in microgravity.

  13. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-07

    In this image, STS-97 astronaut and mission specialist Carlos I. Noriega waves at a crew member inside Endeavor's cabin during the mission's final session of Extravehicular Activity (EVA). Launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000, the STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.

  14. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-04

    This video still depicts the recently deployed starboard and port solar arrays towering over the International Space Station (ISS). The video was recorded on STS-97's 65th orbit. Delivery, assembly, and activation of the solar arrays was the main mission objective of STS-97. The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics, and will provide the power necessary for the first ISS crews to live and work in the U.S. segment. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  15. STS-112 Onboard Photograph of ISS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This view of the International Space Station (ISS) was photographed by an STS-112 crew member aboard the Space Shuttle Atlantis during rendezvous and docking operations. Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three sessions of Extra Vehicular Activity (EVA). Its primary mission was to install the Starboard (S1) Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss, installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the railway on the ISS providing a mobile work platform for future extravehicular activities by astronauts.

  16. Processing ISS Images of Titan's Surface

    NASA Technical Reports Server (NTRS)

    Perry, Jason; McEwen, Alfred; Fussner, Stephanie; Turtle, Elizabeth; West, Robert; Porco, Carolyn; Knowles, Ben; Dawson, Doug

    2005-01-01

    One of the primary goals of the Cassini-Huygens mission, in orbit around Saturn since July 2004, is to understand the surface and atmosphere of Titan. Surface investigations are primarily accomplished with RADAR, the Visual and Infrared Mapping Spectrometer (VIMS), and the Imaging Science Subsystem (ISS) [1]. The latter two use methane "windows", regions in Titan's reflectance spectrum where its atmosphere is most transparent, to observe the surface. For VIMS, this produces clear views of the surface near 2 and 5 microns [2]. ISS uses a narrow continuum band filter (CB3) at 938 nanometers. While these methane windows provide our best views of the surface, the images produced are not as crisp as ISS images of satellites like Dione and Iapetus [3] due to the atmosphere. Given a reasonable estimate of contrast (approx.30%), the apparent resolution of features is approximately 5 pixels due to the effects of the atmosphere and the Modulation Transfer Function of the camera [1,4]. The atmospheric haze also reduces contrast, especially with increasing emission angles [5].

  17. Exercise Countermeasures on ISS: Summary and Future Directions.

    PubMed

    Loerch, Linda H

    2015-12-01

    The first decade of the International Space Station Program (ISS) yielded a wealth of knowledge regarding the health and performance of crewmembers living in microgravity for extended periods of time. The exercise countermeasures hardware suite evolved during the last decade to provide enhanced capabilities that were previously unavailable to support human spaceflight, resulting in attenuation of cardiovascular, muscle, and bone deconditioning. The ability to protect crew and complete mission tasks in the autonomous exploration environment will be a critical component of any decision to proceed with manned exploration initiatives.The next decade of ISS habitation promises to be a period of great scientific utilization that will yield both the tools and technologies required to safely explore the solar system. Leading countermeasure candidates for exploration class missions must be studied methodically on ISS over the next decade to ensure protocols and systems are highly efficient, effective, and validated. Lessons learned from the ISS experience to date are being applied to the future, and international cooperation enables us to maximize this exceptional research laboratory.

  18. ISS 7A.1 Flight Control Team Photo in BFCR

    NASA Image and Video Library

    2001-08-16

    JSC2001-02229 (16 August 2001) --- The members of the STS-105/ISS 7A.1 Orbit 1 team pose for a group portrait in the International Space Station (ISS) flight control room (BFCR) in Houston’s Mission Control Center (MCC). Flight director Mark Ferring is kneeling as he holds the Expedition Three mission logo. Astronaut Stephanie D. Wilson, ISS spacecraft communicator (CAPCOM), is standing behind Ferring.

  19. ISS and Space Environment Interactions in Event of Plasma Contactor Failure

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.; Munafo, Paul M. (Technical Monitor)

    2000-01-01

    The International Space Station (ISS), illustrated in Figure 1, will be the largest, highest power spacecraft placed in orbit. Because of this the design of the electrical power system diverged markedly from previous systems. The solar arrays will operate at 160 V and the power distribution voltage will be 120 V. The structure is grounded to the negative side of the solar arrays so under the right circumstances it is possible to drive the ISS potential very negative. A plasma contactor has been added to the ISS to provide control of the ISS structure potential relative to the ambient plasma. The ISS requirement is that the ISS structure not be greater than 40 V positive or negative of local plasma. What are the ramifications of operating large structures with such high voltage power systems? The application of a plasma contactor on ISS controls the potential between the structure and the local plasma, preventing degrading effects. It is conceivable that there can be situations where the plasma contactor might be non-functional. This might be due to lack of power, the need to turn it off during some of the build-up sequences, the loss of functionality for both plasma contactors before a replacement can be installed, and similar circumstances. A study was undertaken to understand how important it is to have the contactor functioning and how long it might be off before unacceptable degradation to ISS could occur.

  20. The ESA Laboratory Support Equipment for the ISS.

    PubMed

    Petrivelli, A

    2002-02-01

    The Laboratory Support Equipment (LSE) for the International Space Station (ISS) is a suite of general-purpose items that will be available onboard the Station either as self-standing facilities or as equipment that can be used at defined locations. Dedicated to supporting system maintenance and payload operations, some LSE items are derived from commercial equipment, while others have been specifically developed for the ISS. ESA is currently engaged in developing three pressurised facilities and one pointing mechanism that will become part of the LSE complement, namely: the Minus Eighty degree centigrade Laboratory Freezer for the ISS (MELFI), the Microgravity Science Glovebox (MSG), the cryogenic storage and quick/snap freezer system (Cryosystem), the external-payload pointing system (Hexapod).

  1. International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update

    NASA Technical Reports Server (NTRS)

    Hernandez-Pellerano, Amri; Iannello, Christopher J.; Garrett, Henry B.; Ging, Andrew T.; Katz, Ira; Keith, R. Lloyd; Minow, Joseph I.; Willis, Emily M.; Schneider, Todd A.; Whittlesey, Edward J.; hide

    2014-01-01

    The International Space Station (ISS) vehicle undergoes spacecraft charging as it interacts with Earth's ionosphere and magnetic field. The interaction can result in a large potential difference developing between the ISS metal chassis and the local ionosphere plasma environment. If an astronaut conducting extravehicular activities (EVA) is exposed to the potential difference, then a possible electrical shock hazard arises. The control of this hazard was addressed by a number of documents within the ISS Program (ISSP) including Catastrophic Safety Hazard for Astronauts on EVA (ISS-EVA-312-4A_revE). The safety hazard identified the risk for an astronaut to experience an electrical shock in the event an arc was generated on an extravehicular mobility unit (EMU) surface. A catastrophic safety hazard, by the ISS requirements, necessitates mitigation by a two-fault tolerant system of hazard controls. Traditionally, the plasma contactor units (PCUs) on the ISS have been used to limit the charging and serve as a "ground strap" between the ISS structure and the surrounding ionospheric plasma. In 2009, a previous NASA Engineering and Safety Center (NESC) team evaluated the PCU utilization plan (NESC Request #07-054-E) with the objective to assess whether leaving PCUs off during non-EVA time periods presented risk to the ISS through assembly completion. For this study, in situ measurements of ISS charging, covering the installation of three of the four photovoltaic arrays, and laboratory testing results provided key data to underpin the assessment. The conclusion stated, "there appears to be no significant risk of damage to critical equipment nor excessive ISS thermal coating damage as a result of eliminating PCU operations during non- EVA times." In 2013, the ISSP was presented with recommendations from Boeing Space Environments for the "Conditional" Marginalization of Plasma Hazard. These recommendations include a plan that would keep the PCUs off during EVAs when the

  2. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-07

    In this image, the five STS-97 crew members pose with the 3 members of the Expedition One crew onboard the International Space Station (ISS) for the first ever traditional onboard portrait taken in the Zvezda Service Module. On the front row, left to right, are astronauts Brent W. Jett, Jr., STS-97 commander; William M. Shepherd, Expedition One mission commander; and Joseph R. Tarner, STS-97 mission specialist. On the second row, from the left are Cosmonaut Sergei K. Krikalev, Expedition One flight engineer; astronaut Carlos I. Noriega, STS-97 mission specialist; cosmonaut Yuri P. Gidzenko, Expedition One Soyuz commander; and Michael J. Bloomfield, STS-97 pilot. Behind them is astronaut Marc Garneau, STS-97 mission specialist representing the Canadian Space Agency (CSA). The primary objective of the STS-97 mission was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  3. International Space Station (ISS)

    NASA Image and Video Library

    2001-01-01

    This is the STS-102 mission crew insignia. The central image on the crew patch depicts the International Space Station (ISS) in the build configuration that it had at the time of the arrival and docking of Discovery during the STS-102 mission, the first crew exchange flight to the Space Station. The station is shown along the direction of the flight as was seen by the shuttle crew during their final approach and docking, the so-called V-bar approach. The names of the shuttle crew members are depicted in gold around the top of the patch, and surnames of the Expedition crew members being exchanged are shown in the lower barner. The three ribbons swirling up to and around the station signify the rotation of these ISS crew members. The number 2 is for the Expedition 2 crew who flew up to the station, and the number 1 is for the Expedition 1 crew who then returned down to Earth. In conjunction with the face of the Lab module of the Station, these Expedition numbers create the shuttle mission number 102. Shown mated below the ISS is the Italian-built Multipurpose Logistics Module, Leonardo, that flew for the first time on this flight. The flags of the countries that were the major contributors to this effort, the United States, Russia, and Italy are also shown in the lower part of the patch. The build-sequence number of this flight in the overall station assembly sequence, 5A.1, is captured by the constellations in the background.

  4. The Floating Potential Probe (FPP) for ISS: Operations and Initial Results

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Hillard, G. Barry; Morton, Thomas L.

    2001-01-01

    In this paper we report early results from the Floating Potential Probe (FPP) recently installed on the International Space Station (ISS). The data show that FPP properly measures the electrical potential of ISS structure with respect to the plasma it is flying through. FPP Langmuir probe data seem to give accurate measurements of the ambient plasma density, and are generally consistent with the IRI-90 model. FPP data are used to judge the performance of the ISS Plasma Contacting Units (PCUs), and to evaluate the extent of ISS charging in the absence of the PCUs.

  5. Independent Assessment of Instrumentation for ISS On-Orbit NDE. Volume 1

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I

    2013-01-01

    International Space Station (ISS) Structural and Mechanical Systems Manager, requested that the NASA Engineering and Safety Center (NESC) provide a quantitative assessment of commercially available nondestructive evaluation (NDE) instruments for potential application to the ISS. This work supports risk mitigation as outlined in the ISS Integrated Risk Management Application (IRMA) Watch Item #4669, which addresses the requirement for structural integrity after an ISS pressure wall leak in the event of a penetration due to micrometeoroid or debris (MMOD) impact. This document contains the outcome of the NESC assessment.

  6. iss055e010992

    NASA Image and Video Library

    2018-04-04

    iss055e010992 (April 5, 2018) --- The SpaceX Dragon resupply ship is pictured just moments after Japan Aerospace Exploration Agency astronaut Norishige Kanai commanded the 57.7-foot-long Canadarm2 robotic arm to reach out and capture the commercial space freighter.

  7. iss019e013266

    NASA Image and Video Library

    2009-05-03

    ISS019-E-013266 (3 May 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, trims his hair in a crew compartment on the International Space Station, using hair clippers fashioned with a vacuum device to garner freshly cut hair.

  8. iss042e295288

    NASA Image and Video Library

    2015-02-27

    ISS042E295288 (03/02/2015) --- US Astronaut Terry Virts Flight Engineer of Expedition 42 on the International Space Station tweeted this Earth observation on Mar. 2, 2015 with the comment "The Earth completely changes colors at twilight. It's like a different planet".

  9. iss028e028794

    NASA Image and Video Library

    2011-08-22

    ISS028-E-028794 (18 Aug. 2011) --- Russian cosmonaut Andrey Borisenko, Expedition 28 commander, works with a new growth experiment on the BIO-5 Rasteniya-2 (Plants-2) payload with its LADA-01 greenhouse in the Zvezda Service Module of the International Space Station.

  10. iss028e050058

    NASA Image and Video Library

    2011-09-15

    ISS028-E-050058 (15 Sept. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, inspects a new growth experiment on the BIO-5 Rasteniya-2 (Plants-2) payload with its LADA-01 greenhouse in the Zvezda Service Module of the International Space Station.

  11. ISS Expedition 42 / 43 Crew Training Resource Reel (JSC-2641)

    NASA Image and Video Library

    2014-11-14

    Media resource reel of ISS Expedition 42 / 43 Crew training activities. Includes footage of crew photo shots with Samantha Cristoforetti, Anton Shkaplerov and Terry Virts; Routine shots with Virts, ISS Expedition 43 crewmember Scott Kelly, Cristoforetti, ISS Expedition 41 / 42 crewmember Barry Wilmore; and Shklaplerov; T-38 Operations with Virts; Routine operations with Cristoforetti, Shkaplerov and Virts; Neutral Buoyancy Lab (NBL) with Cristoforetti and Kelly; and Emergency Scenatios with Virts, Cristoforetti and Shkaplerov.

  12. Long-term results after in-situ split (ISS) liver resection.

    PubMed

    Lang, Sven A; Loss, Martin; Benseler, Volker; Glockzin, Gabriel; Schlitt, Hans J

    2015-04-01

    In-situ split (ISS) liver resection is a novel method to induce rapid hypertrophy of the contralateral liver lobe in patients at risk for postoperative liver failure due to insufficient liver remnant. So far, no data about oncological long-term survival after ISS liver resection is available. We retrospectively analyzed our patients treated with ISS liver resection at the Department of Surgery of the University of Regensburg, the first center worldwide to perform ISS. Between 2007 and 2014, ISS liver resection was performed in 16 patients. Two patients (12.5 %) were lost in early postoperative phase (90 days) and one was lost to follow-up. Thirteen patients with a follow-up period of more than 3 months were included into oncologically focused analyses. Median follow-up was 26.4 months (range 3.2-54.6). Seven patients had suffered from colorectal liver metastases (CRLM) and six from various other liver malignancies (non-CRLM). The ISS procedure had led to a median increase of 86.3 % of the left lateral liver lobe after a median of 9 days (range 4-28 days). Median disease-free survival (DFS) was 14.6 months and median overall survival (OS) was 41.7 months (26.4 months when including 90-days mortality). Three-year survival was calculated with 56.4 and 48.9 % when including perioperative mortality, respectively (CRLM 64.3 % vs. non-CRLM 50 %). ISS liver resection can provide long-term survival of selected patients with advanced liver malignancies that otherwise are not eligible for liver resection due to insufficient liver remnant.

  13. Service on demand for ISS users

    NASA Astrophysics Data System (ADS)

    Hüser, Detlev; Berg, Marco; Körtge, Nicole; Mildner, Wolfgang; Salmen, Frank; Strauch, Karsten

    2002-07-01

    Since the ISS started its operational phase, the need of logistics scenarios and solutions, supporting the utilisation of the station and its facilities, becomes increasingly important. Our contribution to this challenge is a SERVICE On DEMAND for ISS users, which offers a business friendly engineering and logistics support for the resupply of the station. Especially the utilisation by commercial and industrial users is supported and simplified by this service. Our industrial team, consisting of OHB-System and BEOS, provides experience and development support for space dedicated hard- and software elements, their transportation and operation. Furthermore, we operate as the interface between customer and the envisaged space authorities. Due to a variety of tailored service elements and the ongoing servicing, customers can concentrate on their payload content or mission objectives and don't have to deal with space-specific techniques and regulations. The SERVICE On DEMAND includes the following elements: ITR is our in-orbit platform service. ITR is a transport rack, used in the SPACEHAB logistics double module, for active and passive payloads on subrack- and drawer level of different standards. Due to its unique late access and early retrieval capability, ITR increases the flexibility concerning transport capabilities to and from the ISS. RIST is our multi-functional test facility for ISPR-based experiment drawer and locker payloads. The test program concentrates on physical and functional interface and performance testing at the payload developers site prior to the shipment to the integration and launch. The RIST service program comprises consulting, planning and engineering as well. The RIST test suitcase is planned to be available for lease or rent to users, too. AMTSS is an advanced multimedia terminal consulting service for communication with the space station scientific facilities, as part of the user home-base. This unique ISS multimedia kit combines

  14. International Space Station (ISS) Orbital Replaceable Unit (ORU) Wet Storage Risk Assessment

    NASA Technical Reports Server (NTRS)

    Squire, Michael D.; Rotter, Henry A.; Lee, Jason; Packham, Nigel; Brady, Timothy K.; Kelly, Robert; Ott, C. Mark

    2014-01-01

    The International Space Station (ISS) Program requested the NASA Engineering and Safety Center (NESC) to evaluate the risks posed by the practice of long-term wet storage of ISS Environmental Control and Life Support (ECLS) regeneration system orbital replacement units (ORUs). The ISS ECLS regeneration system removes water from urine and humidity condensate and converts it into potable water and oxygen. A total of 29 ORUs are in the ECLS system, each designed to be replaced by the ISS crew when necessary. The NESC assembled a team to review the ISS ECLS regeneration system and evaluate the potential for biofouling and corrosion. This document contains the outcome of the evaluation.

  15. iss042e300570

    NASA Image and Video Library

    2015-03-04

    ISS042E300570 (03/04/2015) --- NASA Astronaut Terry Virts on the International Space Station tweeted this sunny day Caribbean image out to his social media fans on Mar. 4, 2015 with this attached comment: "#Cuba is surrounded by some unbelievable beaches and blue-green waters".

  16. iss055e016074

    NASA Image and Video Library

    2018-04-06

    iss055e016074 (April 6, 2018) --- Expedition 55 Flight Engineer Drew Feustel of NASA is inside the Japanese Kibo laboratory module talking to dignitaries on Earth, including university officials, musicians and scientists, during an educational event that took place at Queen's University in Kingston, Ontario.

  17. iss031e150060

    NASA Image and Video Library

    2012-06-28

    ISS031-E-150060 (28 June 2012) --- In the Rassvet Mini-Research Module 1 (MRM-1), Russian cosmonaut Oleg Kononenko, Expedition 31 commander, adds the Soyuz TMA-03M patch to the growing collection of insignias representing crews who have worked on the International Space Station.

  18. iss031e150059

    NASA Image and Video Library

    2012-06-28

    ISS031-E-150059 (28 June 2012) --- In the Rassvet Mini-Research Module 1 (MRM-1), Russian cosmonaut Oleg Kononenko, Expedition 31 commander, adds the Soyuz TMA-03M patch to the growing collection of insignias representing crews who have worked on the International Space Station.

  19. iss055e005471

    NASA Image and Video Library

    2018-03-25

    iss055e005471 (March 25, 2018) --- This view of Cuba looks from east to west and reaches the cities of Santiago de Cuba on its west coast and Havana on its east coast. The sun's glint is reflected off the Caribbean Sea on Cuba's southern coast.

  20. iss053e180184

    NASA Image and Video Library

    2017-11-12

    iss053e180184 (Nov. 12, 2017) --- The islands of (from left) Abaiang, Tarawa and Maiana are part of the Gilbert Islands and make up part of the republic of Kiribati in the Pacific Ocean. Kiribati is comprised of a total of 33 coral atolls and isles.

  1. iss047e111084

    NASA Image and Video Library

    2016-05-10

    ISS047e111084 (05/10/2016) --- NASA astronaut Tim Kopra poses inside the cupola module onboard the International Space Station. Kopra, who was born in Austin, Texas, is the commander of Expedition 47 and previously served as a flight engineer during Expeditions 46 and 20.

  2. iss054e022072

    NASA Image and Video Library

    2018-01-12

    iss054e022072 (Jan. 12, 2018) --- The International Space Station orbits above the Falkland Islands off the coast of the southern-most portion of Argentina on the continent of South America. In the upper-right of the photograph is the docked Progress 68 cargo craft.

  3. iss042e136094

    NASA Image and Video Library

    2015-01-15

    ISS042e136094 (Jan 15, 2015) -- Interior view looking forward (FWD) in the Destiny U.S. Laboratory during the crew's sleep period, with the main lights turned off. The pink glow comes from the Vegetable Production System (Veggie) greenhouse, housed in the Columbus European Laboratory.

  4. iss028e034854

    NASA Image and Video Library

    2011-08-31

    ISS028-E-034854 (31 Aug. 2011) --- Russian cosmonaut Sergei Volkov, Expedition 28 flight engineer, checks the progress of a new growth experiment on the BIO-5 Rasteniya-2 (Plants-2) payload with its LADA-01 greenhouse in the Zvezda Service Module of the International Space Station.

  5. iss055e023770

    NASA Image and Video Library

    2018-04-14

    iss055e023770 (April 14, 2018) --- The southeast geography of the state of Massachusetts including Cape Cod Bay, Martha's Vineyard, Nantucket and the arm-shaped peninsula is clearly seen from the International Space Station as it orbited over the Atlantic coast of the United States.

  6. ISS And Space Environment Interactions Without Operating Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.; Ferguson, Dale; Suggs,Rob; McCollum, Matt

    2001-01-01

    The International Space Station (ISS) will be the largest, highest power spacecraft placed in orbit. Because of this the design of the electrical power system diverged markedly from previous systems. The solar arrays will operate at 160 V and the power distribution voltage will be 120 V. The structure is grounded to the negative side of the solar arrays so under the right circumstances it is possible to drive the ISS potential very negative. A plasma contactor has been added to the ISS to provide control of the ISS structure potential relative to the ambient plasma. The ISS requirement is that the ISS structure not be greater than 40 V positive or negative of local plasma. What are the ramifications of operating large structures with such high voltage power systems? The application of a plasma contactor on ISS controls the potential between the structure and the local plasma, preventing degrading effects. It is conceivable that there can be situations where the plasma contactor might be non-functional. This might be due to lack of power, the need to turn it off during some of the build-up sequences, the loss of functionality for both plasma contactors before a replacement can be installed, similar circumstances. A study was undertaken to understand how important it is to have the contactor functioning and how long it might be off before unacceptable degradation to ISS could occur. The details of interaction effects on spacecraft have not been addressed until driven by design. This was true for ISS. If the structure is allowed to float highly negative impinging ions can sputter exposed conductors which can degrade the primary surface and also generate contamination due to the sputtered material. Arcing has been known to occur on solar arrays that float negative of the ambient plasma. This can also generate electromagnetic interference and voltage transients. Much of the ISS structure and pressure module surfaces exposed to space is anodized aluminum. The anodization

  7. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-07

    In this image, planet Earth, some 235 statute miles away, forms the back drop for this photo of STS-97 astronaut and mission specialist Joseph R. Tanner, taken during the third of three space walks. The mission's goal was to perform the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  8. International Space Station (ISS)

    NASA Image and Video Library

    2007-02-09

    The STS-120 patch reflects the role of the mission in the future of the space program. The shuttle payload bay carries Node 2, Harmony, the doorway to the future international laboratory elements on the International Space Station (ISS). The star on the left represents the ISS; the red colored points represent the current location of the P6 solar array, furled and awaiting relocation when the crew arrives. During the mission, the crew will move P6 to its final home at the end of the port truss. The gold points represent the P6 solar array in its new location, unfurled and producing power for science and life support. On the right, the moon and Mars can be seen representing the future of NASA. The constellation Orion rises in the background, symbolizing NASA's new exploration vehicle. Through all, the shuttle rises up and away, leading the way to the future.

  9. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-07

    Backdropped against the blackness of space is the International Space Station (ISS), as viewed from the approching Space Shuttle Orbiter Endeavour, STS-111 mission, in June 2002. Expedition Five replaced Expedition Four crew after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm, and the task of unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.

  10. Innovations for ISS Plug-In Plan (IPiP) Operations

    NASA Technical Reports Server (NTRS)

    Moore, Kevin D.

    2013-01-01

    Limited resources and increasing requirements will continue to influence decisions on ISS. The ISS Plug-In Plan (IPiP) supports power and data for utilization, systems, and daily operations through the Electrical Power System (EPS) Secondary Power/Data Subsystem. Given the fluid launch schedule, the focus of the Plug-In Plan has evolved to anticipate future requirements by judicious development and delivery of power supplies, power strips, Alternating Current (AC) power inverters, along with innovative deployment strategies. A partnership of ISS Program Office, Engineering Directorate, Mission Operations, and International Partners poses unique solutions with existing on-board equipment and resources.

  11. Preventing Precipitation in the ISS Urine Processor

    NASA Technical Reports Server (NTRS)

    Muirhead, Dean; Carter, Layne; Williamson, Jill; Chambers, Antja

    2017-01-01

    The ISS Urine Processor Assembly (UPA) was initially designed to achieve 85% recovery of water from pretreated urine on ISS. Pretreated urine is comprised of crew urine treated with flush water, an oxidant (chromium trioxide), and an inorganic acid (sulfuric acid) to control microbial growth and inhibit precipitation. Unfortunately, initial operation of the UPA on ISS resulted in the precipitation of calcium sulfate at 85% recovery. This occurred because the calcium concentration in the crew urine was elevated in microgravity due to bone loss. The higher calcium concentration precipitated with sulfate from the pretreatment acid, resulting in a failure of the UPA due to the accumulation of solids in the Distillation Assembly. Since this failure, the UPA has been limited to a reduced recovery of water from urine to prevent calcium sulfate from reaching the solubility limit. NASA personnel have worked to identify a solution that would allow the UPA to return to a nominal recovery rate of 85%. This effort has culminated with the development of a pretreatment based on phosphoric acid instead of sulfuric acid. By eliminating the sulfate associated with the pretreatment, the brine can be concentrated to a much higher concentration before calcium sulfate reach the solubility limit. This paper summarizes the development of this pretreatment and the testing performed to verify its implementation on ISS.

  12. Use of Semi-Autonomous Tools for ISS Commanding and Monitoring

    NASA Technical Reports Server (NTRS)

    Brzezinski, Amy S.

    2014-01-01

    As the International Space Station (ISS) has moved into a utilization phase, operations have shifted to become more ground-based with fewer mission control personnel monitoring and commanding multiple ISS systems. This shift to fewer people monitoring more systems has prompted use of semi-autonomous console tools in the ISS Mission Control Center (MCC) to help flight controllers command and monitor the ISS. These console tools perform routine operational procedures while keeping the human operator "in the loop" to monitor and intervene when off-nominal events arise. Two such tools, the Pre-positioned Load (PPL) Loader and Automatic Operators Recorder Manager (AutoORM), are used by the ISS Communications RF Onboard Networks Utilization Specialist (CRONUS) flight control position. CRONUS is responsible for simultaneously commanding and monitoring the ISS Command & Data Handling (C&DH) and Communications and Tracking (C&T) systems. PPL Loader is used to uplink small pieces of frequently changed software data tables, called PPLs, to ISS computers to support different ISS operations. In order to uplink a PPL, a data load command must be built that contains multiple user-input fields. Next, a multiple step commanding and verification procedure must be performed to enable an onboard computer for software uplink, uplink the PPL, verify the PPL has incorporated correctly, and disable the computer for software uplink. PPL Loader provides different levels of automation in both building and uplinking these commands. In its manual mode, PPL Loader automatically builds the PPL data load commands but allows the flight controller to verify and save the commands for future uplink. In its auto mode, PPL Loader automatically builds the PPL data load commands for flight controller verification, but automatically performs the PPL uplink procedure by sending commands and performing verification checks while notifying CRONUS of procedure step completion. If an off-nominal condition

  13. Prediction, Measurement, and Control of Spacecraft Charging Hazards on the International Space Station(ISS)

    NASA Astrophysics Data System (ADS)

    Koontz, Steve; Alred, John; Ellison, Amy; Patton, Thomas; Minow, Joseph; Spetch, William

    2010-09-01

    Orbital inclination, 51.6 degrees, and altitude range, 300 to 400 km,(low-Earth orbit or LEO) determine the ISS spacecraft charging environment. Specific interactions of the ISS electrical power system and metallic structure with the Earth’s ionospheric plasma and the geomagnetic field dominate spacecraft charging processes for ISS. ISS also flies through auroral electron streams at high latitudes. In this paper, we report the character of ISS spacecraft charging processes in Earth’s ionosphere, the results of measurement and modelling of the subject charging processes, and the safety issues for ISS itself as well as for ISS interoperability with respect to extra vehicular activity(EVA) and visiting vehicle proximity operations.

  14. iss055e023899

    NASA Image and Video Library

    2018-04-15

    iss055e023899 (April 15, 2018) --- The United States island territory of Puerto Rico and the surrounding blue waters of the Caribbean Sea on its southern coast and the Atlantic Ocean on its northern coast were pictured by an Expedition 55 crew member aboard the International Space Station.

  15. iss038e053780

    NASA Image and Video Library

    2014-02-18

    ISS038-E-053780 (18 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, uses a Microbial Air Sampler to collect air samples in the Unity node of the International Space Station. These air samples will be incubated for five days and tested for signs of microbial contamination.

  16. iss055e036790

    NASA Image and Video Library

    2018-04-30

    iss055e036790 (April 30, 2018) --- NASA astronaut Drew Feustel conducts science operations inside the Multi-use Variable-g Platform Module which enables research into how small organisms such as fruit flies, flatworms, plants, fish, cells, protein crystals and many others adapt to different types of gravity scenarios.

  17. iss042e135486

    NASA Image and Video Library

    2015-01-10

    ISS042E135486 (01/10/2015) --- Just another sunny day in the Caribbean sea as viewed by astronauts aboard the International Space Station. This image was tweeted out by NASA astronaut Terry Virts as he captured the Earth observation of #Cuba and #Bahamas on Jan. 10, 2015.

  18. iss042e243192

    NASA Image and Video Library

    2015-02-11

    ISS042E243192 (02/11/2015) --- This huge Desert in northern Africa is an image tweeted by NASA astronaut Terry Virts on Feb. 11, 2015 from the International Space Station. He wanted to share with his Twitter fans the enormous size of the " Murzuq Desert #Libya #Africa".

  19. iss028e035074

    NASA Image and Video Library

    2011-08-27

    ISS028-E-035074 (27 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, trims the hair of Japan Aerospace Exploration Agency astronaut Satoshi Furukawa in the Tranquility node of the International Space Station. Fossum used hair clippers fashioned with a vacuum device to garner freshly cut hair.

  20. iss028e035073

    NASA Image and Video Library

    2011-08-27

    ISS028-E-035073 (27 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, trims the hair of Japan Aerospace Exploration Agency astronaut Satoshi Furukawa in the Tranquility node of the International Space Station. Fossum used hair clippers fashioned with a vacuum device to garner freshly cut hair.

  1. iss028e035071

    NASA Image and Video Library

    2011-08-27

    ISS028-E-035071 (27 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, trims the hair of Japan Aerospace Exploration Agency astronaut Satoshi Furukawa in the Tranquility node of the International Space Station. Fossum used hair clippers fashioned with a vacuum device to garner freshly cut hair.

  2. iss009e21540

    NASA Image and Video Library

    2004-09-05

    ISS009-E-21540 (5 September 2004) --- While Frances was moving destructively through Florida, another hurricane formed Sunday, September 5, in the central Atlantic. Quickly strengthening, Ivan was photographed at 10:27:46 (GMT) from the International Space Station, flying above Earth at an altitude of 235 miles.

  3. iss050e038054

    NASA Image and Video Library

    2017-02-03

    iss050e038054 (02/03/2017) --- NASA astronaut Shane Kimbrough is seen executing the SPHERES-HALO experiment aboard the International Space Station. The investigation uses two small, self-contained satellites (SPHERES) fitted with donut-like rings to test wireless power transfer and formation flight using electromagnetic fields.

  4. iss050e038043

    NASA Image and Video Library

    2017-02-03

    iss050e038043 (02/03/2017) --- NASA astronaut Shane Kimbrough is seen executing the SPHERES-HALO experiment aboard the International Space Station. The investigation uses two small, self-contained satellites (SPHERES) fitted with donut-like rings to test wireless power transfer and formation flight using electromagnetic fields.

  5. iss051e034021

    NASA Image and Video Library

    2017-05-02

    iss051e034021 (May 2, 2017) --- Astronaut Thomas Pesquet, of the European Space Agency (ESA), participates in the Fluidics experiment inside the Columbus laboratory module developed by ESA. Fluidics is exploring how liquids behave in spacecraft tanks and wave turbulence phenomena that occurs at the surface of liquids.

  6. iss050e037283

    NASA Image and Video Library

    2017-01-31

    iss050e037283 (01/31/2017) --- NASA astronaut Peggy Whitson removes the Multi-Purpose Experiment Platform (MPEP) from inside the Kibo airlock aboard the International Space Station. The airlock is used to deploy a number of scientific payloads from inside the station out into the vacuum of space.

  7. iss038e055240

    NASA Image and Video Library

    2014-02-24

    ISS038-E-055240 (24 Feb. 2014) --- In the International Space Station's Destiny laboratory, NASA astronaut Mike Hopkins, Expedition 38 flight engineer, sets up the Advanced Colloids Experiment (ACE) housed in the Light Microscopy Module (LMM) inside the Fluids Integrated Rack. ACE studies microscopic particles suspended in a liquid.

  8. Validation of the Intrinsic Spirituality Scale (ISS) with Muslims.

    PubMed

    Hodge, David R; Zidan, Tarek; Husain, Altaf

    2015-12-01

    This study validates an existing spirituality measure--the intrinsic spirituality scale (ISS)--for use with Muslims in the United States. A confirmatory factor analysis was conducted with a diverse sample of self-identified Muslims (N = 281). Validity and reliability were assessed along with criterion and concurrent validity. The measurement model fit the data well, normed χ2 = 2.50, CFI = 0.99, RMSEA = 0.07, and SRMR = 0.02. All 6 items that comprise the ISS demonstrated satisfactory levels of validity (λ > .70) and reliability (R2 > .50). The Cronbach's alpha obtained with the present sample was .93. Appropriate correlations with theoretically linked constructs demonstrated criterion and concurrent validity. The results suggest the ISS is a valid measure of spirituality in clinical settings with the rapidly growing Muslim population. The ISS may, for instance, provide an efficient screening tool to identify Muslims that are particularly likely to benefit from spiritually accommodative treatments. (c) 2015 APA, all rights reserved).

  9. Russian Earth Science Research Program on ISS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armand, N. A.; Tishchenko, Yu. G.

    1999-01-22

    Version of the Russian Earth Science Research Program on the Russian segment of ISS is proposed. The favorite tasks are selected, which may be solved with the use of space remote sensing methods and tools and which are worthwhile for realization. For solving these tasks the specialized device sets (submodules), corresponding to the specific of solved tasks, are working out. They would be specialized modules, transported to the ISS. Earth remote sensing research and ecological monitoring (high rates and large bodies transmitted from spaceborne information, comparatively stringent requirements to the period of its processing, etc.) cause rather high requirements tomore » the ground segment of receiving, processing, storing, and distribution of space information in the interests of the Earth natural resources investigation. Creation of the ground segment has required the development of the interdepartmental data receiving and processing center. Main directions of works within the framework of the ISS program are determined.« less

  10. Different AIS triplets: Different mortality predictions in identical ISS and NISS.

    PubMed

    Aharonson-Daniel, Limor; Giveon, Adi; Stein, Michael; Peleg, Kobi

    2006-09-01

    Previous studies demonstrated different mortality predictions for identical Injury Severity Scores (ISS) from different Abbreviated Injury Scale (AIS) triplets. This study elaborates in both scope and volume producing results of a larger magnitude, applicable to specific injury subgroups of blunt or penetrating, traumatic brain injury, various age groups, and replicated on NISS. All patients hospitalized after trauma at 10 hospitals, with ISS/NISS (new ISS) generated by two AIS triplets, excluding patients with isolated minor or moderate injuries to a single body region were studied. Patients were separated into two groups based on the different triplets. Inpatient-mortality rates were calculated for each triplet group. Odds ratios were calculated to estimate the risk of dying in one triplet group as compared with the other. The chi test determined whether the difference in mortality rate between the two groups was significantly different. Differences were further explored for various subgroups. There were 35,827 patients who had ISS/NISS scores generated by two different AIS triplets. Significant differences in death rates were noted between triplet groups forming identical ISS/NISS. Odds ratio for being in the second group (always containing the higher AIS score) ranged from 2.3 to 7.4. ISS and NISS that are formed by different AIS triplets have significantly different inpatient-mortality rates. The triplet with the higher AIS score has higher inpatient-mortality rates, overall and in several sub-populations of varying vulnerability. The comparison of populations and the interpretation of ISS/NISS based outcome data should take this important information into account and the components of AIS triplets creating each ISS and NISS should be reported.

  11. Automated ISS Flight Utilities

    NASA Technical Reports Server (NTRS)

    Offermann, Jan Tuzlic

    2016-01-01

    During my internship at NASA Johnson Space Center, I worked in the Space Radiation Analysis Group (SRAG), where I was tasked with a number of projects focused on the automation of tasks and activities related to the operation of the International Space Station (ISS). As I worked on a number of projects, I have written short sections below to give a description for each, followed by more general remarks on the internship experience. My first project is titled "General Exposure Representation EVADOSE", also known as "GEnEVADOSE". This project involved the design and development of a C++/ ROOT framework focused on radiation exposure for extravehicular activity (EVA) planning for the ISS. The utility helps mission managers plan EVAs by displaying information on the cumulative radiation doses that crew will receive during an EVA as a function of the egress time and duration of the activity. SRAG uses a utility called EVADOSE, employing a model of the space radiation environment in low Earth orbit to predict these doses, as while outside the ISS the astronauts will have less shielding from charged particles such as electrons and protons. However, EVADOSE output is cumbersome to work with, and prior to GEnEVADOSE, querying data and producing graphs of ISS trajectories and cumulative doses versus egress time required manual work in Microsoft Excel. GEnEVADOSE automates all this work, reading in EVADOSE output file(s) along with a plaintext file input by the user providing input parameters. GEnEVADOSE will output a text file containing all the necessary dosimetry for each proposed EVA egress time, for each specified EVADOSE file. It also plots cumulative dose versus egress time and the ISS trajectory, and displays all of this information in an auto-generated presentation made in LaTeX. New features have also been added, such as best-case scenarios (egress times corresponding to the least dose), interpolated curves for trajectories, and the ability to query any time in the

  12. Organization and Management of the International Space Station (ISS) Multilateral Medical Operations

    NASA Technical Reports Server (NTRS)

    Duncan, J. M.; Bogomolov, V. V.; Castrucci, F.; Koike, Y.; Comtois, J. M.; Sargsyan, A. E.

    2007-01-01

    The goal of this work is to review the principles, design, and function of the ISS multilateral medical authority and the medical support system of the ISS Program. Multilateral boards and panels provide operational framework, direct, and supervise the ISS joint medical operational activities. The Integrated Medical Group (IMG) provides front-line medical support of the crews. Results of ongoing activities are reviewed weekly by physician managers. A broader status review is conducted monthly to project the state of crew health and medical support for the following month. All boards, panels, and groups function effectively and without interruptions. Consensus prevails as the primary nature of decisions made by all ISS medical groups, including the ISS medical certification board. The sustained efforts of all partners have resulted in favorable medical outcomes of the initial fourteen long-duration expeditions. The medical support system appears to be mature and ready for further expansion of the roles of all Partners, and for the anticipated increase in the size of ISS crews.

  13. iss054e037647

    NASA Image and Video Library

    2018-02-08

    iss054e037647 (Feb. 8, 2018) --- NASA astronauts (from left) Joe Acaba, Mark Vande Hei and Scott Tingle talk to high school students and teachers who linked up to the International Space Station during a STEM (Science, Technology, Engineering and Mathematics) event from the Boise State University in Boise, Idaho.

  14. iss042e136080

    NASA Image and Video Library

    2015-01-15

    ISS042E136080 (01/15/2015) ---US astronaut Barry "Butch" Wilmore Expedition 42 Commander on the International Space Station juggles some bottles in microgravity while preparing to take an experiment reading in the micro5 dragon pink Columbus laboratory. This picture was taken by his fellow US astronaut Terry Virts.

  15. iss038e042125

    NASA Image and Video Library

    2014-02-06

    ISS038-E-042125 (6 Feb. 2014) --- A fresh apple floating freely near a window in the Cupola of the International Space Station is featured in this image photographed by an Expedition 38 crew member. The bright sun and the thin line of Earth's atmosphere provide the backdrop for the scene.

  16. iss054e012391

    NASA Image and Video Library

    2018-01-01

    iss054e012391 (Jan. 1, 2018) --- Despite the cloudiness during this nighttime photograph taken by Expedition 54 crew members aboard the International Space Station, the Caribbean islands of (from top left to bottom right) Puerto Rico, Cuba, Haiti and the Dominican Republic are seen from an altitude of 250 miles.

  17. iss038e054117

    NASA Image and Video Library

    2014-02-22

    ISS038-E-054117 (22 Feb. 2014) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, trims the hair of NASA astronaut Rick Mastracchio, flight engineer, in the Unity node of the International Space Station. Wakata used hair clippers fashioned with a vacuum device to garner freshly cut hair.

  18. iss038e054116

    NASA Image and Video Library

    2014-02-22

    ISS038-E-054116 (22 Feb. 2014) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, trims the hair of NASA astronaut Rick Mastracchio, flight engineer, in the Unity node of the International Space Station. Wakata used hair clippers fashioned with a vacuum device to garner freshly cut hair.

  19. iss042e292504

    NASA Image and Video Library

    2015-03-01

    ISS042E292504 (03/01/2015) --- US astronaut Terry Virts observed this scene from the International Space Station on Feb.1, 2015. He sent this image via Twitter with the remark, "The camera doesn't do it justice - floating in space, looking down on creation, seeing new color shades".

  20. iss042e230270

    NASA Image and Video Library

    2015-02-06

    ISS042E230270 (02/06/2015) --- US NASA astronaut Terry Virts, Expedition 42 flight engineer on the International Space Station tweeted this Earth observation on Feb. 6, 2015 and made this comment: " Looking back over middle America at twilight. I love the sun’s reflection off these rivers and lakes".

  1. iss053e235199

    NASA Image and Video Library

    2017-11-20

    iss053e235199 (Nov. 20, 2017) --- The Progress 68 (68P) cargo craft is pictured docked to the Pirs docking compartment. The 68P arrived at the International Space Station on Oct. 16, 2017, with food, fuel and supplies two days after launching from the Baikonur Cosmodrome in Kazakhstan.

  2. iss055e016051

    NASA Image and Video Library

    2018-04-11

    iss055e016051 (April 11, 2018) --- NASA astronaut and Flight Engineer Ricky Arnold works with the student-designed Genes in Space-5 experiment inside the Harmony module. The genetic research is helping scientists understand the relationship between DNA alterations and weakened immune systems possibly caused by living in space.

  3. iss042e215971

    NASA Image and Video Library

    2015-02-03

    ISS042E215971 (02/06/2015) --- NASA US Astronaut Terry Virts on Feb. 6, 2015 captured this Earth observation of Ireland, United Kingdom and Scandinavia on a moonlit night under an amazing and ever-changing aurora. Terry is a flight engineer on the international Space Station with Expedition 42.

  4. Independent Assessment of Instrumentation for ISS On-Orbit NDE. Volume 2; Appendices

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.

    2013-01-01

    International Space Station (ISS) Structural and Mechanical Systems Manager, requested that the NASA Engineering and Safety Center (NESC) provide a quantitative assessment of commercially available nondestructive evaluation (NDE) instruments for potential application to the ISS. This work supports risk mitigation as outlined in the ISS Integrated Risk Management Application (IRMA) Watch Item #4669, which addresses the requirement for structural integrity after an ISS pressure wall leak in the event of a penetration due to micrometeoroid or debris (MMOD) impact. This document contains the appendices the final report.

  5. Generalized Separation of an Object Jettisoned from the ISS

    NASA Technical Reports Server (NTRS)

    Bacon, Jack; Menkin, Evgeny

    2006-01-01

    The International Space Station (ISS) Program faces unprecedented logistics challenges in both upmass and downmass. Some items employed on the ISS exterior present significant technical issues for a controlled de-orbit on either the shuttle or an expendable supply vehicle. Such manifest problems arise due to structural degradation, insufficient containment of hazardous pressures or contents, excessive size, or some combination of all of these factors. In addition, the mounting hardware and other flight service equipment to manifest the returned equipment must itself be launched, competing with other upmass. EVA techniques and equipment to successfully contain and secure such problematic equipment result in numerous significant risks to the spacewalking crews and cost and schedule risks to the program. The ISS Program office has therefore developed a policy that advises the jettison of the most problematic objects. Such jettisoned items join a small family of nearly co-planar orbital debris objects that threaten the ISS on several timescales, besides threatening all satellites with perigee below the ISS orbit and the general human population on Earth. This analysis addresses the governing physics and the ensuing risks when an object is jettisoned. It is shown that there are four time domains which must be considered, each with its own inherent problems, and that a ballistic solution is usually possible that satsfies all constraints in all domains.

  6. [The importance of Injury Severity Score (ISS) in the management of thoracolumbar burst fracture].

    PubMed

    Rezende, Rodrigo; Avanzi, Osmar

    2009-02-01

    There are few publications which relate the injury severity score (ISS) to the thoracolumbar burst fractures. For that reason and for the frequency in which they occur, we have evaluated the severity of the trauma in these patients. We have evaluated 190 burst fractures in the spinal cord according to Denis, using the codes of Abbreviated Injury Scales (AIS) for the calculation of the ISS, which uses the three parts of the human body with major severity. These lesions are a squared number and the results are summed up. Among 190 cases evaluated, the median value of the ISS was 13 and the average was 14,4. Males presented a higher ISS than females. The young adult patients presented an average and a median value of the ISS higher than the old patients. The higher the ISS is, the longer the hospitalization period is, except for the patients with the ISS over 35. The fractures in thoracic level show the ISS higher than the rest. The ISS is directly related to surgical treatment and mortality. The ISS values which were found show that a less severe trauma can cause a burst thoracic or lumbar spinal cord fracture. The value of the ISS has not shown correlation to the sex and the fracture level, but it is proportional to the hospitalization period, the surgical treatment and the mortality rate. This result shows a value which is inversely proportional to the age of the patients.

  7. iss050e038462

    NASA Image and Video Library

    2017-02-03

    iss050e038462 (02/03/2017) --- A Russian Soyuz spacecraft can be seen in this image from the International Space Station as it passes over the American state of Florida surrounded by the blue waters of the Gulf of Mexico on the west side and the Atlantic Ocean on the other.

  8. iss055e024310

    NASA Image and Video Library

    2018-04-17

    iss055e024310 (April 17, 2018) --- NASA astronauts Drew Feustel and Scott Tingle are at work inside the U.S. Destiny laboratory module. Feustel works on routing and installing ethernet cables throughout the International Space Station. Tingle conducts research for the Metabolic Tracking experiment inside the lab module's Microgravity Science Glovebox.

  9. iss055e043245

    NASA Image and Video Library

    2018-04-30

    iss055e043245 (April 30, 2018) --- NASA astronaut Ricky Arnold transfers frozen biological samples from science freezers aboard the International Space Station to science freezers inside the SpaceX Dragon resupply ship. The research samples were returned to Earth aboard Dragon for retrieval by SpaceX engineers and analysis by NASA scientists.

  10. International Space Station (ISS)

    NASA Image and Video Library

    2001-09-17

    Enroute for docking, the 16-foot-long Russian docking compartment Pirs (the Russian word for pier) approaches the International Space Station (ISS). Pirs will provide a docking port for future Russian Soyuz or Progress craft, as well as an airlock for extravehicular activities. Pirs was launched September 14, 2001 from Baikonur in Russia.

  11. iss053e210425

    NASA Image and Video Library

    2017-11-07

    iss053e210425 (Nov. 7, 2017) --- Flight Engineer Joe Acaba holds a children's book that he is reading from as part of the Story Time From Space program. Astronauts read aloud from a STEM-related children's book while being videotaped and demonstrate simple science concepts and experiments aboard the International Space Station.

  12. iss049e007067

    NASA Image and Video Library

    2016-09-19

    iss049e007067 (09/19/2016) --- Night views of the Earth from the International Space Station. This image is the southern Persian Gulf at night centered on Dubai and Abu Dhabi; east is at the top of the image with the coast of Iran to upper left and Muscat, Oman upper right.

  13. ISS Charging Hazards and Low Earth Orbit Space Weather Effects

    NASA Technical Reports Server (NTRS)

    Minow, Joseph; Parker, L.; Coffey, V.; Wright K.; Koontz, S.; Edwards, D.

    2008-01-01

    Current collection by high voltage solar arrays on the International Space Station (ISS) drives the vehicle to negative floating potentials in the low Earth orbit daytime plasma environment. Pre-flight predictions of ISS floating potentials Phi greater than |-100 V| suggested a risk for degradation of dielectric thermal control coatings on surfaces in the U.S. sector due to arcing and an electrical shock hazard to astronauts during extravehicular activity (EVA). However, hazard studies conducted by the ISS program have demonstrated that the thermal control material degradation risk is effectively mitigated during the lifetime of the ISS vehicle by a sufficiently large ion collection area present on the vehicle to balance current collection by the solar arrays. To date, crew risk during EVA has been mitigated by operating one of two plasma contactors during EVA to control the vehicle potential within Phi less than or equal to |-40 V| with a backup process requiring reorientation of the solar arrays into a configuration which places the current collection surfaces into wake. This operation minimizes current collection by the solar arrays should the plasma contactors fail. This paper presents an analysis of F-region electron density and temperature variations at low and midlatitudes generated by space weather events to determine what range of conditions represent charging threats to ISS. We first use historical ionospheric plasma measurements from spacecraft operating at altitudes relevant to the 51.6 degree inclination ISS orbit to provide an extensive database of F-region plasma conditions over a variety of solar cycle conditions. Then, the statistical results from the historical data are compared to more recent in-situ measurements from the Floating Potential Measurement Unit (FPMU) operating on ISS in a campaign mode since its installation in August, 2006.

  14. International Space Station (ISS) Low Pressure Intramodule Quick Disconnect Failures

    NASA Technical Reports Server (NTRS)

    Lewis, John F.; Harris, Danny; Link, Dwight; Morrison, Russel

    2004-01-01

    A failure of an ISS intermodule Quick Disconnect (QD) during protoflight vibration testing of ISS regenerative Environmental Control and Life Support (ECLS) hardware led to the discovery of QD design, manufacturing, and test flaws which can yield the male QD susceptible to failure of the secondary housing seal and inadequate housing assembly locking mechanisms. Discovery of this failure had large implications when considering that currently there are 399 similar units on orbit and approximately 1100 units on the ground integrated into flight hardware. Discovery of the nature of the failure required testing and analysis and implementation of a recovery plan requiring part screening and review of element level and project hazard analysis to determine if secondary seals are required. Implementation also involves coordination with the Nodes and MPLM project offices, Regenerative ECLS Project, ISS Payloads, JAXA, ESA, and ISS Logistics and Maintenance.

  15. Specifying the ISS Plasma Environment

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Diekmann, Anne; Neergaard, Linda; Bui, Them; Mikatarian, Ronald; Barsamian, Hagop; Koontz, Steven

    2002-01-01

    Quantifying the spacecraft charging risks and corresponding hazards for the International Space Station (ISS) requires a plasma environment specification describing the natural variability of ionospheric temperature (Te) and density (Ne). Empirical ionospheric specification and forecast models such as the International Reference Ionosphere (IN) model typically only provide estimates of long term (seasonal) mean Te and Ne values for the low Earth orbit environment. Knowledge of the Te and Ne variability as well as the likelihood of extreme deviations from the mean values are required to estimate both the magnitude and frequency of occurrence of potentially hazardous spacecraft charging environments for a given ISS construction stage and flight configuration. This paper describes the statistical analysis of historical ionospheric low Earth orbit plasma measurements used to estimate Ne, Te variability in the ISS flight environment. The statistical variability analysis of Ne and Te enables calculation of the expected frequency of occurrence of any particular values of Ne and Te, especially those that correspond to possibly hazardous spacecraft charging environments. The database used in the original analysis included measurements from the AE-C, AE-D, and DE-2 satellites. Recent work on the database has added additional satellites to the database and ground based incoherent scatter radar observations as well. Deviations of the data values from the IRI estimated Ne, Te parameters for each data point provide a statistical basis for modeling the deviations of the plasma environment from the IRI model output.

  16. ISS Expedition 43 Crew Departure from Russia

    NASA Image and Video Library

    2015-03-16

    NASA video file of ISS Expedition 43 crew departure from Russia on March 16, 2015 with crewmembers Scott Kelly, Gennady Padalka, and Mikhail Kornienko; and backupcrew Jeff Williams, Sergei Volkov and Alexie Ovchinin. Includes footage of crew and backup crew as the meet outside the Gagarin Cosmonaut Training Center (GCTC); ISS Expedition 42 crewmembers Elena Serova and Alexander Samokutyaev as they exits the GCTC; crew and backup crew with family, friends and officials as they walk to park, pose for photographs and offers short remarks; and finally the crew as they are leaving by bus.

  17. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-11

    STS-102 mission astronaut Susan J. Helms works outside the International Space Station (ISS) while holding onto a rigid umbilical and her feet anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Helms in tandem with James S. Voss (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  18. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-11

    STS-102 astronaut and mission specialist James S. Voss works outside Destiny, the U.S. Laboratory (shown in lower frame) on the International Space Station (ISS), while anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Voss in tandem with Susan Helms (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, the STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  19. iss028e048923

    NASA Image and Video Library

    2011-09-13

    ISS028-E-048923 (13 Sept. 2011) --- Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 28 flight engineer, works with the Fluid Physics Experiment Facility/Marangoni Surface (FPEF MS) Core hardware in the Kibo laboratory of the International Space Station. The Marangoni convection experiment in the FPEF examines fluid tension flow in micro-G.

  20. iss047e083584

    NASA Image and Video Library

    2016-04-27

    ISS047e083584 (04/27/2016) --- The DIWATA-1 satellite is deployed from outside of the Japanese Kibo modul. Intended to observe earth and monitor climate changes, this was the first microsatellite owned by the Philippine government that involved Filipino engineers in the development. It was a joint project between Philippine and Japanese universities.

  1. External view of ISS

    NASA Image and Video Library

    2014-09-02

    ISS040-E-123171 (2 Sept. 2014) --- A portion of the International Space Station’s Russian segment is pictured in this image photographed by an Expedition 40 crew member onboard the station. A portion of the "Georges Lemaitre" Automated Transfer Vehicle-5 (ATV-5) docked to the Zvezda Service Module is visible at right background.

  2. External view of ISS

    NASA Image and Video Library

    2014-09-02

    ISS040-E-123168 (2 Sept. 2014) --- A portion of the International Space Station’s Russian segment is pictured in this image photographed by an Expedition 40 crew member onboard the station. A portion of the "Georges Lemaitre" Automated Transfer Vehicle-5 (ATV-5) docked to the Zvezda Service Module is visible at right background.

  3. iss055e005323

    NASA Image and Video Library

    2018-03-25

    iss055e005323 (March 25, 2018) --- The International Space Station was orbiting above the Tasman Sea when an Expedition 55 crew member took this picture of New Zealand's North Island where the city of Auckland is located. The sun's glint over the South Pacific Ocean and the Tasman Sea clearly outlines the island nation.

  4. ISS 7A.1 Flight Control Team Photo in BFCR

    NASA Image and Video Library

    2001-08-16

    JSC2001-02227 (16 August 2001) --- The members of the STS-105/ISS 7A.1 Planning team pose for a group portrait in the International Space Station (ISS) flight control room (BFCR) in Houston’s Mission Control Center (MCC).

  5. SPACEHAB missions as pathfinders for ISS services development

    NASA Astrophysics Data System (ADS)

    Hamill, Doris; Jackson, Kenneth; Mirra, Carlo

    2003-01-01

    SPACEHAB, Inc. has established a commercial business model for providing access to space. The model, based on private initiative and investment, has offered "turn key" access to space including both launch and integration and operations services. Some features of this business model should be applied directly to providing service in the ISS era: offering packaged service at a fixed price; customer focus; private investment as the basis for offering services; and efficient and continually improving customer service. But International Space Station (ISS) will pose challenges that have not been pioneered in the STS era: a new base of customers must be developed; on-orbit hardware will be more difficult to modify; access to ISS is controlled by government space agencies. These problems will tax the ingenuity of those who wish to provide services in space on a commercial business model.

  6. International Space Station (ISS)

    NASA Image and Video Library

    2002-11-28

    The 16th American assembly flight and 112th overall American flight to the International Space Station (ISS), launched on November 23, 2002 from Kennedy's launch pad 39A aboard the Space Shuttle Orbiter Endeavor STS-113. Mission objectives included the delivery of the Expedition Six Crew to the ISS, the return of Expedition Five crew back to Earth, and the installation and activation of the Port 1 Integrated Truss Assembly (P1). The first major component installed on the left side of the Station, the P1 truss provides an additional three External Thermal Control System radiators. Weighing in at 27,506 pounds, the P1 truss is 45 feet (13.7 meters) long, 15 feet (4.6 meters) wide, and 13 feet (4 meters) high. Three space walks, aided by the use of the Robotic Manipulator Systems of both the Shuttle and the Station, were performed in the installation of P1. In this photograph, astronaut and mission specialist Michael E. Lopez-Alegria works on the newly installed P1 truss during the mission's second scheduled session of extravehicular activity.

  7. International Space Station (ISS)

    NASA Image and Video Library

    2000-06-08

    Five NASA astronauts and two cosmonauts representing the Russian Aviation and Space Agency take a break in training from their scheduled September 2000 visit to the International Space Station (ISS). Astronauts Terrence W. Wilcutt (right front), and Scott D. Altman (left front) are mission commander and pilot, respectively. On the back row (from the left) are mission specialists Boris V. Morukov, cosmonaut, along with astronauts Richard A. Mastracchio, Edward T. Lu, and Daniel C. Burbank, and cosmonaut Yuri I. Malenchenko. Morukov and Malenchenko represent the Russian Aviation and Space Agency. Launched aboard the Space Shuttle Atlantis on September 8, 2000 at 7:46 a.m. (CDT), the STS-106 crew successfully prepared the International Space Station (ISS) for occupancy. Acting as plumbers, movers, installers and electricians, they installed batteries, power converters, a toilet and a treadmill on the outpost. They also delivered more than 2,993 kilograms (6,600 pounds) of supplies. Lu and Malenchenko performed a space walk to connect power, and data and communications cables to the newly arrived Zvezda Service Module and the Station.

  8. Progress in Spacecraft Environment Interactions: International Space Station (ISS) Development and Operations

    NASA Technical Reports Server (NTRS)

    Koontz, Steve; Suggs, Robb; Schneider, Todd; Minow, Joe; Alred, John; Cooke, Bill; Mikatarian, Ron; Kramer, Leonard; Boeder, paul; Soares, Carlos

    2007-01-01

    The set of spacecraft interactions with the space flight environment that have produced the largest impacts on the design, verification, and operation of the International Space Station (ISS) Program during the May 2000 to May 2007 time frame are the focus of this paper. In-flight data, flight crew observations, and the results of ground-based test and analysis directly supporting programmatic and operational decision-making are reported as are the analysis and simulation efforts that have led to new knowledge and capabilities supporting current and future space explorations programs. The specific spacecraft-environment interactions that have had the greatest impact on ISS Program activities during the first several years of flight are: 1) spacecraft charging, 2) micrometeoroids and orbital debris effects, 3) ionizing radiation (both total dose to materials and single event effects [SEE] on avionics), 4) hypergolic rocket engine plume impingement effects, 5) venting/dumping of liquids, 6) spacecraft contamination effects, 7) neutral atmosphere and atomic oxygen effects, 8) satellite drag effects, and 9) solar ultraviolet effects. Orbital inclination (51.6deg) and altitude (nominally between 350 km and 460 km) determine the set of natural environment factors affecting the performance and reliability of materials and systems on ISS. ISS operates in the F2 region of Earth s ionosphere in well-defined fluxes of atomic oxygen, other ionospheric plasma species, solar UV, VUV, and x-ray radiation as well as galactic cosmic rays, trapped radiation, and solar cosmic rays. The micrometeoroid and orbital debris environment is an important determinant of spacecraft design and operations in any orbital inclination. The induced environment results from ISS interactions with the natural environment as well as environmental factors produced by ISS itself and visiting vehicles. Examples include ram-wake effects, hypergolic thruster plume impingement, materials out-gassing, venting

  9. iss028e032133

    NASA Image and Video Library

    2011-08-17

    ISS028-E-032133 (17 Aug. 2011) --- Russian cosmonaut Sergei Volkov, Expedition 28 flight engineer, is pictured in the Unity node of the International Space Station while filming an installment of the ?The Orbital Station. Life on Orbit? video, intended for a documentary film to be prepared by the Roscosmos TV studio for the ?Kultura? State TV channel.

  10. iss055e032444

    NASA Image and Video Library

    2018-04-25

    iss055e032444 (April 25, 2018) --- NASA astronaut Scott Tingle replaces a failed light bulb in a light to be used on a new external television camera group (ETVCG) that will be installed on an upcoming spacewalk. Parts from the old ETVCG, removed during a previous spacewalk, will be shipped back to Earth in Dragon for refurbishment.

  11. iss047e038968

    NASA Image and Video Library

    2016-04-05

    ISS047e038968 (04/05/2016) --- ESA (European Space Agency) astronaut Tim Peake operates the Muscle Atrophy Research and Exercise System (MARES) equipment inside the Columbus module. MARES is an ESA system that will be used for research on musculoskeletal, biomechanical, and neuromuscular human physiology to better understand the effects of microgravity on the muscular system.

  12. iss028e025736

    NASA Image and Video Library

    2011-08-15

    ISS028-E-025736 (15 Aug. 2011) --- Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 28 flight engineer, uses a computer to activate the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. Furukawa was preparing to conduct experiments with the Shear History Extensional Rheology Experiment (SHERE) hardware inside the MSG.

  13. iss028e025737

    NASA Image and Video Library

    2011-08-15

    ISS028-E-025737 (15 Aug. 2011) --- Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 28 flight engineer, uses a computer to activate the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. Furukawa was preparing to conduct experiments with the Shear History Extensional Rheology Experiment (SHERE) hardware inside the MSG.

  14. International Space Station (ISS)

    NASA Image and Video Library

    1995-07-11

    Artist's concept for Phase III of the International Space Station (ISS) as shown here in its completed and fully operational state with elements from the United States, Europe, Canada, Japan, and Russia. Sixteen countries are cooperating to provide a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experimentation.

  15. An Onboard ISS Virtual Reality Trainer

    NASA Technical Reports Server (NTRS)

    Miralles, Evelyn

    2013-01-01

    Prior to the retirement of the Space Shuttle, many exterior repairs on the International Space Station (ISS) were carried out by shuttle astronauts, trained on the ground and flown to the Station to perform these specific repairs. With the retirement of the shuttle, this is no longer an available option. As such, the need for ISS crew members to review scenarios while on flight, either for tasks they already trained for on the ground or for contingency operations has become a very critical issue. NASA astronauts prepare for Extra-Vehicular Activities (EVA) or Spacewalks through numerous training media, such as: self-study, part task training, underwater training in the Neutral Buoyancy Laboratory (NBL), hands-on hardware reviews and training at the Virtual Reality Laboratory (VRLab). In many situations, the time between the last session of a training and an EVA task might be 6 to 8 months. EVA tasks are critical for a mission and as time passes the crew members may lose proficiency on previously trained tasks and their options to refresh or learn a new skill while on flight are limited to reading training materials and watching videos. In addition, there is an increased need for unplanned contingency repairs to fix problems arising as the Station ages. In order to help the ISS crew members maintain EVA proficiency or train for contingency repairs during their mission, the Johnson Space Center's VRLab designed an immersive ISS Virtual Reality Trainer (VRT). The VRT incorporates a unique optical system that makes use of the already successful Dynamic On-board Ubiquitous Graphics (DOUG) software to assist crew members with procedure reviews and contingency EVAs while on board the Station. The need to train and re-train crew members for EVAs and contingency scenarios is crucial and extremely demanding. ISS crew members are now asked to perform EVA tasks for which they have not been trained and potentially have never seen before. The Virtual Reality Trainer (VRT

  16. Organization, Management and Function of International Space Station (ISS) Multilateral Medical Operations

    NASA Technical Reports Server (NTRS)

    Duncan, James M.; Bogomolov, V. V.; Castrucci, F.; Koike, Y.; Comtois, J. M.; Sargsyan, A. E.

    2007-01-01

    Long duration crews have inhabited the ISS since November of 2000. The favorable medical outcomes of its missions can be largely attributed to sustained collective efforts of all ISS Partners medical organizations. In-flight medical monitoring and support, although crucial, is just a component of the ISS system of Joint Medical Operations. The goal of this work is to review the principles, design, and function of the multilateral medical support of the ISS Program. The governing documents, which describe the relationships among all ISS partner medical organizations, were evaluated, followed by analysis of the roles, responsibilities, and decision-making processes of the ISS medical boards, panels, and working groups. The degree of integration of the medical support system was evaluated by reviewing the multiple levels of the status reviews and mission assurance activities carried out throughout the last six years. The Integrated Medical Group, consisting of physicians and other essential personnel in the mission control centers represents the front-line medical support of the ISS. Data from their day-to-day activities are presented weekly at the Space Medicine Operations Team (SMOT), where known or potential concerns are addressed by an international group of physicians. A broader status review is conducted monthly to project the state of crew health and medical support for the following month, and to determine measures to return to nominal state. Finally, a comprehensive readiness review is conducted during preparations for each ISS mission. The Multilateral Medical Policy Board (MMPB) issues medical policy decisions and oversees all health and medical matters. The Multilateral Space Medicine Board (MSMB) certifies crewmembers and visitors for training and space flight to the Station, and physicians to practice space medicine for the ISS. The Multilateral Medical Operations Panel (MMOP) develops medical requirements, defines and supervises implementation of

  17. Five Years of NASA Research on ISS: A Continuing Saga

    NASA Technical Reports Server (NTRS)

    Uri, John J.

    2005-01-01

    The first NASA experiments reached ISS in September 2000, a very modest beginning to what later became a more robust, diverse and overall highly successful research program, continuing essentially uninterrupted since March 2001. Along the way, several major challenges had to be overcome. First, there were delays in the initial construction of the station. Second, maintenance of the station exceeded earlier assumptions resulting in less crew time being available for research. Third, the lengthy interruption of Shuttle flights after the Columbia accident significantly, but temporarily, reduced the research traffic to and from ISS. And fourth, the Vision of Space Exploration as caused a refocusing of NASA's research efforts on ISS from a multi-disciplinary basic and applied science program to one dedicated to solving the critical questions to enable exploration missions. The principal factors that allowed these challenges to be overcome have been flexibility and cooperation. Flexibility on the part of the ISS Program to minimize impacts to research from delays and resource bottlenecks, flexibility on the part of researchers to adapt their research to changing environments, and flexibility to be able to use existing and planned facilities not only for their original basic science purpose but also for new applications. And cooperation not only between the ISS Program and the research community, but also among NASA and its International Partners to continually strive to optimize the research conducted aboard ISS. Once the challenges were overcome, the research program has been remarkably successful, with an expanding on-orbit capability. Over 80 investigations have been completed, many resulting in publications.

  18. Bone Metabolism on ISS Missions

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Heer, M. A.; Shackelford, L. C.; Zwart, S. R.

    2014-01-01

    Spaceflight-induced bone loss is associated with increased bone resorption (1, 2), and either unchanged or decreased rates of bone formation. Resistive exercise had been proposed as a countermeasure, and data from bed rest supported this concept (3). An interim resistive exercise device (iRED) was flown for early ISS crews. Unfortunately, the iRED provided no greater bone protection than on missions where only aerobic and muscular endurance exercises were available (4, 5). In 2008, the Advanced Resistive Exercise Device (ARED), a more robust device with much greater resistance capability, (6, 7) was launched to the ISS. Astronauts who had access to ARED, coupled with adequate energy intake and vitamin D status, returned from ISS missions with bone mineral densities virtually unchanged from preflight (7). Bone biochemical markers showed that while the resistive exercise and adequate energy consumption did not mitigate the increased bone resorption, bone formation was increased (7, 8). The typical drop in circulating parathyroid hormone did not occur in ARED crewmembers. In 2014, an updated look at the densitometry data was published. This study confirmed the initial findings with a much larger set of data. In 42 astronauts (33 male, 9 female), the bone mineral density response to flight was the same for men and women (9), and those with access to the ARED did not have the typical decrease in bone mineral density that was observed in early ISS crewmembers with access to the iRED (Figure 1) (7). Biochemical markers of bone formation and resorption responded similarly in men and women. These data are encouraging, and represent the first in-flight evidence in the history of human space flight that diet and exercise can maintain bone mineral density on long-duration missions. However, the maintenance of bone mineral density through bone remodeling, that is, increases in both resorption and formation, may yield a bone with strength characteristics different from those

  19. Evaluating the Medical Kit System for the International Space Station(ISS) - A Paradigm Revisited

    NASA Technical Reports Server (NTRS)

    Hailey, Melinda J.; Urbina, Michelle C.; Hughlett, Jessica L.; Gilmore, Stevan; Locke, James; Reyna, Baraquiel; Smith, Gwyn E.

    2010-01-01

    Medical capabilities aboard the International Space Station (ISS) have been packaged to help astronaut crew medical officers (CMO) mitigate both urgent and non-urgent medical issues during their 6-month expeditions. Two ISS crewmembers are designated as CMOs for each 3-crewmember mission and are typically not physicians. In addition, the ISS may have communication gaps of up to 45 minutes during each orbit, necessitating medical equipment that can be reliably operated autonomously during flight. The retirement of the space shuttle combined with ten years of manned ISS expeditions led the Space Medicine Division at the NASA Johnson Space Center to reassess the current ISS Medical Kit System. This reassessment led to the system being streamlined to meet future logistical considerations with current Russian space vehicles and future NASA/commercial space vehicle systems. Methods The JSC Space Medicine Division coordinated the development of requirements, fabrication of prototypes, and conducted usability testing for the new ISS Medical Kit System in concert with implementing updated versions of the ISS Medical Check List and associated in-flight software applications. The teams constructed a medical kit system with the flexibility for use on the ISS, and resupply on the Russian Progress space vehicle and future NASA/commercial space vehicles. Results Prototype systems were developed, reviewed, and tested for implementation. Completion of Preliminary and Critical Design Reviews resulted in a streamlined ISS Medical Kit System that is being used for training by ISS crews starting with Expedition 27 (June 2011). Conclusions The team will present the process for designing, developing, , implementing, and training with this new ISS Medical Kit System.

  20. Trending of Overboard Leakage of ISS Cabin Atmosphere

    NASA Technical Reports Server (NTRS)

    Schaezler, Ryan N.; Cook, Anthony J.; Leonard, Daniel J.; Ghariani, Ahmed

    2011-01-01

    The International Space Station (ISS) overboard leakage of cabin atmosphere is continually tracked to identify new or aggravated leaks and to provide information for planning of nitrogen supply to the ISS. The overboard leakage is difficult to trend with various atmosphere constituents being added and removed. Changes to nitrogen partial pressure is the nominal means of trending the overboard leakage. This paper summarizes the method of the overboard leakage trending and presents findings from the trending.

  1. MSFC ISS Resource Reel 2016

    NASA Image and Video Library

    2016-04-01

    International Space Station Resource Reel. This video describes shows the International Space Station components, such as the Destiny laboratory and the Quest Airlock, being manufactured at NASA's Marshall Space Flight Center in Huntsville, Ala. It provides manufacturing and ground testing video and in-flight video of key space station components: the Microgravity Science Glovebox, the Materials Science Research Facility, the Window Observational Research Facility, the Environmental Control Life Support System, and basic research racks. There is video of people working in Marshall's Payload Operations Integration Center where controllers operate experiments 24/7, 365 days a week. Various crews are shown conducting experiments on board the station. PAO Name:Jennifer Stanfield Phone Number:256-544-0034 Email Address: JENNIFER.STANFIELD@NASA.GOV Name/Title of Video: ISS Resource Reel Description: ISS Resource Reel Graphic Information: NASA PAO Name:Tracy McMahan Phone Number:256-544-1634 Email Address: tracy.mcmahan@nasa.gov

  2. Mid-Latitude Ionospheric Disturbances Due to Geomagnetic Storms at ISS Altitudes

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Willis, Emily M.; Parker, Linda Neergaard

    2014-01-01

    Spacecraft charging of the International Space Station (ISS) is dominated by the interaction of the high voltage US solar arrays with the F2-region ionospheric plasma environment. We are working to fully understand the charging behavior of the ISS solar arrays and determine how well future charging behavior can be predicted from in-situ measurements of plasma density and temperature. One aspect of this work is a need to characterize the magnitude of electron density and temperature variations that may be encountered at ISS orbital altitudes (approximately 400 km), the latitudes over which they occur, and the time periods for which the disturbances persist. We will present preliminary results from a study of ionospheric disturbances in the "mid-latitude" region defined as the approximately 30 - 60 degree extra-equatorial magnetic latitudes sampled by ISS. The study is focused on geomagnetic storm periods because they are well known drivers for disturbances in the high-latitude and mid-latitude ionospheric plasma. Changes in the F2 peak electron density obtained from ground based ionosonde records are compared to in-situ electron density and temperature measurements from the CHAMP and ISS spacecraft at altitudes near, or above, the F2 peak. Results from a number of geomagnetic storms will be presented and their potential impact on ISS charging will be discussed.

  3. Exploration-Related Research on ISS: Connecting Science Results to Future Missions

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.; Robinson, Julie A.; Sawin, Charles F.

    2005-01-01

    In January, 2004, the U.S. President announced The Vision for Space Exploration, and charged the National Aeronautics and Space Administration (NASA) with using the International Space Station (ISS) for research and technology targeted at supporting U.S. space exploration goals. This paper describes: What we have learned from the first four years of research on ISS relative to the exploration mission; The on-going research being conducted in this regard; and Our current understanding of the major exploration mission risks that the ISS can be used to address. Specifically, we discuss research carried out on the ISS to determine the mechanisms by which human health is affected on long-duration missions, and to develop countermeasures to protect humans from the space environment. These bioastronautics experiments are key enablers of future long duration human exploration missions. We also discuss how targeted technological developments can enable mission design trade studies. We discuss the relationship between the ultimate number of human test subjects available on the ISS to the quality and quantity of scientific insight that can be used to reduce health risks to future explorers. We discuss the results of NASA's efforts over the past year to realign the ISS research programs to support a product-driven portfolio that is directed towards reducing the major risks of exploration missions. The fundamental challenge to science on ISS is completing experiments that answer key questions in time to shape design decisions for future exploration. In this context, exploration relevant research must do more than be conceptually connected to design decisions - it must become a part of the mission design process.

  4. Evaluation of Human Research Facility Ultrasound With the ISS Video System

    NASA Technical Reports Server (NTRS)

    Melton, Shannon; Sargsyan, Ashot

    2003-01-01

    Most medical equipment on the International Space Station (ISS) is manifested as part of the U.S. or the Russian medical hardware systems. However, certain medical hardware is also available as part of the Human Research Facility. The HRF and the JSC Medical Operations Branch established a Memorandum of Agreement for joint use of certain medical hardware, including the HRF ultrasound system, the only diagnostic imaging device currently manifested to fly on ISS. The outcome of a medical contingency may be changed drastically, or an unnecessary evacuation may be prevented, if clinical decisions are supported by timely and objective diagnostic information. In many higher-probability medical scenarios, diagnostic ultrasound is a first-choice modality or provides significant diagnostic information. Accordingly, the Clinical Care Capability Development Project is evaluating the HRF ultrasound system for its utility in relevant clinical situations on board ISS. For effective management of these ultrasound-supported ISS medical scenarios, the resulting data should be available for viewing and interpretation on the ground, and bidirectional voice communication should be readily available to allow ground experts (sonographers, physicians) to provide guidance to the Crew Medical Officer. It may also be vitally important to have the capability of real-time guidance via video uplink to the CMO-operator during an exam to facilitate the diagnosis in a timely fashion. In this document, we strove to verify that the HRF ultrasound video output is compatible with the ISS video system, identify ISS video system field rates and resolutions that are acceptable for varying clinical scenaiios, and evaluate the HRF ultrasound video with a commercial, off-the-shelf video converter, and compare it with the ISS video system.

  5. Exploration Platform in the Earth-Moon Libration System Based on ISS

    NASA Technical Reports Server (NTRS)

    Raftery, Michael; Derechin, Alexander

    2012-01-01

    International Space Station (ISS) industry partners have been working for the past two years on concepts using ISS development methods and residual assets to support a broad range of exploration missions. These concepts have matured along with planning details for NASA's Space Launch System (SLS) and Multi-Purpose Crew Vehicle (MPCV) to allow serious consideration for a platform located in the Earth-Moon Libration (EML) system. This platform would provide a flexible basis for future exploration missions and would significantly reduce costs because it will enable re-use of expensive spacecraft and reduce the total number of launches needed to accomplish these missions. ISS provides a robust set of methods which can be used to test systems and capabilities needed for missions to the Moon, Mars, asteroids and other potential destinations. We will show how ISS can be used to reduce risk and improve operational flexibility for missions beyond low earth orbit through the development of a new Exploration Platform based in the EML system. The benefits of using the EML system as a gateway will be presented along with additional details of a lunar exploration mission concept. International cooperation is a critical enabler and ISS has already demonstrated successful management of a large multi-national technical endeavor. We will show how technology developed for ISS can be evolved and adapted to the new exploration challenge. New technology, such as electric propulsion and advanced life support systems can be tested and proven at ISS as part of an incremental development program. Finally, we will describe how the EML Platform could be built and deployed and how International access for crew and cargo could be provided.

  6. Mid-Latitude Ionospheric Disturbances Due to Geomagnetic Storms at ISS Altitudes

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Willis, Emily M.; Neergaard Parker, Linda

    2014-01-01

    Spacecraft charging of the International Space Station (ISS) is dominated by interaction of the US high voltage solar arrays with the F2-region ionosphere plasma environment. ISS solar array charging is enhanced in a high electron density environment due to the increased thermal electron currents to the edges of the solar cells. High electron temperature environments suppress charging due to formation of barrier potentials on the charged solar cell cover glass that restrict the charging currents to the cell edge [Mandell et al., 2003]. Environments responsible for strong solar array charging are therefore characterized by high electron densities and low electron temperatures. In support of the ISS space environmental effects engineering community, we are working to understand a number of features of solar array charging and to determine how well future charging behavior can be predicted from in-situ plasma density and temperature measurements. One aspect of this work is a need to characterize the magnitude of electron density and temperature variations that occur at ISS orbital altitudes (approximately 400 km) over time scales of days, the latitudes over which significant variations occur, and the time periods over which the disturbances persist once they start. This presentation provides examples of mid-latitude electron density and temperature disturbances at altitudes relevant to ISS using data sets and tools developed for our ISS plasma environment study. "Mid-latitude" is defined as the extra-tropical region between approx. 30 degrees to approx. 60 degrees magnetic latitude sampled by ISS over its 51.6 degree inclination orbit. We focus on geomagnetic storm periods because storms are well known drivers for disturbances in the ionospheric plasma environment.

  7. ISS Radiation Shielding and Acoustic Simulation Using an Immersive Environment

    NASA Technical Reports Server (NTRS)

    Verhage, Joshua E.; Sandridge, Chris A.; Qualls, Garry D.; Rizzi, Stephen A.

    2002-01-01

    The International Space Station Environment Simulator (ISSES) is a virtual reality application that uses high-performance computing, graphics, and audio rendering to simulate the radiation and acoustic environments of the International Space Station (ISS). This CAVE application allows the user to maneuver to different locations inside or outside of the ISS and interactively compute and display the radiation dose at a point. The directional dose data is displayed as a color-mapped sphere that indicates the relative levels of radiation from all directions about the center of the sphere. The noise environment is rendered in real time over headphones or speakers and includes non-spatial background noise, such as air-handling equipment, and spatial sounds associated with specific equipment racks, such as compressors or fans. Changes can be made to equipment rack locations that produce changes in both the radiation shielding and system noise. The ISSES application allows for interactive investigation and collaborative trade studies between radiation shielding and noise for crew safety and comfort.

  8. The First Decade of ISS Exercise: Lessons Learned on Expeditions 1-25.

    PubMed

    Hayes, Judith

    2015-12-01

    Long-duration spaceflight results in musculoskeletal, cardiorespiratory, and sensorimotor deconditioning. Historically, exercise has been used as a countermeasure to mitigate these deleterious effects that occur as a consequence of microgravity exposures. The International Space Station (ISS) exercise community describes their approaches, biomedical surveillance, and lessons learned in the development of exercise countermeasure modalities and prescriptions for maintaining health and performance among station crews. This report is focused on the first 10 yr of ISS defined as Expeditions 1-25 and includes only crewmembers with missions > 30 d on ISS for all 5 partner agencies (United States, Russia, Europe, Japan, and Canada). All 72 cosmonauts and astronauts participated in the ISS exercise countermeasures program. This Supplement presents a series of papers that provide an overview of the first decade of ISS exercise from a multidisciplinary, multinational perspective to evaluate the initial countermeasure program and record its operational limitations and challenges. In addition, we provide results from standardized medical evaluations before, during, and after each mission. Information presented in this context is intended to describe baseline conditions of the ISS exercise program. This paper offers an introduction to the subsequent series of manuscripts.

  9. Ambient mass density effects on the International Space Station (ISS) microgravity experiments

    NASA Technical Reports Server (NTRS)

    Smith, O. E.; Adelfang, S. I.; Smith, R. E.

    1996-01-01

    The Marshall engineering thermosphere model was specified by NASA to be used in the design, development and testing phases of the International Space Station (ISS). The mass density is the atmospheric parameter which most affects the ISS. Under simplifying assumptions, the critical ambient neutral density required to produce one micro-g on the ISS is estimated using an atmospheric drag acceleration equation. Examples are presented for the critical density versus altitude, and for the critical density that is exceeded at least once a month and once per orbit during periods of low and high solar activity. An analysis of the ISS orbital decay is presented.

  10. Using the ISS for Capacity Building in Developing Countries

    NASA Astrophysics Data System (ADS)

    Offiong, E.

    In 2010, it was agreed by partner nations, that the life of the International Space Station (ISS) be extended to at least 2020. This is to enable more utilization of the resources, both human and material, that have being invested in the building of the space station. Also, there is discussion for the participation of other nations in the utilization of the facility. This is in line with the Human Space Technology Initiative being developed by the United Nations Office for Outer Space Affairs (UNOOSA). This paper outlines the opportunities available for developing countries in the ISS. It shows the benefits of participation in the project. Such participation also comes with challenges for both existing partners and new entrants. The paper also shows how such partnership with existing partners can be worked out and other strategies for developing countries. The ISS is useful for space education, outreach and awareness. It contributes to scientific research and capacity building. It is also a medium for international cooperation and world peace. In the long-run, the extension of the life of the ISS and the inclusion of new partners, especially from developing countries, is for the benefit of humanity.

  11. International Space Station (ISS) Oxygen High Pressure Storage Management

    NASA Technical Reports Server (NTRS)

    Lewis, John R.; Dake, Jason; Cover, John; Leonard, Dan; Bohannon, Carl

    2004-01-01

    High pressure oxygen onboard the ISS provides support for Extra Vehicular Activities (EVA) and contingency metabolic support for the crew. This high pressure 02 is brought to the ISS by the Space Shuttle and is transferred using the Oxygen Recharge Compressor Assembly (ORCA). There are several drivers that must be considered in managing the available high pressure 02 on the ISS. The amount of O2 the Shuttle can fly up is driven by manifest mass limitations, launch slips, and on orbit Shuttle power requirements. The amount of 02 that is used from the ISS high pressure gas tanks (HPGT) is driven by the number of Shuttle docked and undocked EVAs, the type of EVA prebreath protocol that is used and contingency use of O2 for metabolic support. Also, the use of the ORCA must be managed to optimize its life on orbit and assure that it will be available to transfer the planned amount of O2 from the Shuttle. Management of this resource has required long range planning and coordination between Shuttle manifest on orbit plans. To further optimize the situation hardware options have been pursued.

  12. iss042e287843

    NASA Image and Video Library

    2015-02-22

    ISS042E287843 (02/22/2015) --- This Earth observation of North America was taken on Feb. 22, 2015 and tweeted out to social media fans of NASA astronaut Terry Virts who is on a 6 month Expedition of the International Space Station. Terry added this comment to his tweeted image: "#Sunset over the frozen Great Lakes and southern #Canada".

  13. iss028e032136

    NASA Image and Video Library

    2011-08-17

    ISS028-E-032136 (17 Aug. 2011) --- Russian cosmonaut Sergei Volkov, Expedition 28 flight engineer, is pictured floating freely in the Unity node of the International Space Station while filming an installment of the ?The Orbital Station. Life on Orbit? video, intended for a documentary film to be prepared by the Roscosmos TV studio for the ?Kultura? State TV channel.

  14. ISS/IDS Detector Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervera-Villanueva, A.

    2008-02-21

    This article summarises the results obtained by the detector working group of the 'International Scooping Study' (ISS) of a future neutrino oscillations facility. Special emphasis is put on far detectors, for which some of the main issues are identified. A detector R and D strategy in the context of the 'International Design Study' (IDS) for a neutrino factory is also presented.

  15. iss051e029016

    NASA Image and Video Library

    2017-04-28

    iss051e029016 (4/28/2017) --- Crew members on the International Space Station completed a new session of the Genes in Space 2 investigation. Spaceflight causes many changes to the human body, including alterations in DNA and a weakened immune system. This study uses a new technology to study DNA in space to try and safeguard crew health. Credits: NASA

  16. iss051e044502

    NASA Image and Video Library

    2017-05-17

    iss051e044502 (5/17/2017) --- Crew members on the International Space Station completed a new session of the Genes in Space 2 investigation. Spaceflight causes many changes to the human body, including alterations in DNA and a weakened immune system. This study uses a new technology to study DNA in space to try and safeguard crew health. Credits: NASA

  17. iss051e044497

    NASA Image and Video Library

    2017-05-17

    iss051e044497 (5/17/2017) --- Crew members on the International Space Station completed a new session of the Genes in Space 2 investigation. Spaceflight causes many changes to the human body, including alterations in DNA and a weakened immune system. This study uses a new technology to study DNA in space to try and safeguard crew health. Credits: NASA

  18. iss048e042023

    NASA Image and Video Library

    2016-07-20

    ISS048e042023 (07/20/2016) --- The SpaceX Dragon spacecraft arrives at the International Space Station with nearly 5,000 pounds of cargo. Instruments to perform the first-ever DNA sequencing in space, and the first international docking adapter for commercial crew spacecraft, are among the cargo of the SpaceX Commercial Resupply Services-9 (CRS-9) mission.

  19. iss009e21112

    NASA Image and Video Library

    2004-09-01

    ISS009-E-21112 (1 Sept. 2004) -- Astronaut Edward M. (Mike) Fincke, aboard the International Space Station at an altitude of about 230 miles, took this photo of Hurricane Frances early Sept. 1 as the storm was centered about 800 miles east-southeast of West Palm Beach, Florida. The sunglint factor effects the color of the water in this series of images.

  20. iss042e306480

    NASA Image and Video Library

    2015-03-07

    ISS042E306480 (03/07/2015) --- A meeting of the minds aboard the International Space Station on Mar. 7, 2015 with members of Expedition 42; astronauts US, Barry Wilmore (Commander) Top, Upside down, to the right cosmonaut Elena Serova, & ESA European Space Agency Samantha Cristoforetti. Bottom center US astronaut Terry Virts, top left cosmonauts Alexander Samokutyaev and Anton Shkaplerov.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2001-10-23

    Carrying out a flight program for the French Space Agency (CNES) under a commerial contract with the Russian Aviation and Space Agency, a Russian Soyuz spacecraft approaches the International Space Station (ISS) delivering a crew of three for an eight-day stay. Aboard the craft are Commander Victor Afanasyev, Flight Engineer Konstantin Kozeev, both representing Rosaviakosmos, and French Flight Engineer Claudie Haignere.

  2. iss042e237302

    NASA Image and Video Library

    2015-02-09

    ISS042E237302 (02/09/2015) --- Aboard the International Space Station on Feb. 9, 2015 NASA astronaut Terry Virts while viewing through the Cupola window captured this image of the African continent. Virts tweeted the photo to his many fans with the comment: "Sun glint on one of a thousand rivers in the heart of #Africa, this one in #Angola" .

  3. iss053e098185

    NASA Image and Video Library

    2017-10-12

    iss053e098185 (Oct. 12, 2017) --- Flight Engineer Paolo Nespoli works inside the Harmony module to configure the Combustion Integrated Rack and enable the Advanced Combustion Microgravity Experiment (ACME). The primary and secondary goals of ACME are the improved fuel efficiency and reduced pollutant production in practical combustion on Earth, and spacecraft fire prevention through innovative research focused on materials flammability.

  4. iss042e277380

    NASA Image and Video Library

    2015-02-16

    ISS042E277380 (02/16/2015) --- US Astronaut Terry Virts, Flight Engineer for Expedition 42 on the International Space Station Feb. 16, 2015 checks out his spacesuit in preparation for the upcoming Extracurricular Activity (EVA) or Spacewalk for installation of a new port. This port will be for the commercial spacecraft as well as other craft in the future.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2001-10-23

    Carrying out a flight program for the French Space Agency (CNES) under a commercial contract with the Russian Aviation and Space Agency, a Russian Soyuz spacecraft approaches the International Space Station (ISS), delivering a crew of three for an eight-day stay. Aboard the craft are Commander Victor Afanasyev, Flight Engineer Konstantin Kozeev, both representing Rosaviakosmos, and French Flight Engineer Claudie Haignere.

  6. ISS Commercial Cargo Service: Requirements and Constraints Summary

    NASA Technical Reports Server (NTRS)

    Thorn, Valin; Lemmons, Neil; Scheutz, Matt

    2005-01-01

    A viewgraph presentation describing the fundamental requirements and constraints necessary to begin the acquisition of an International Space Station commercial cargo service is presented. The topics include: 1) Background; 2) Philosophy; 3) Cargo Balance; 4) Cargo Types; 5) ICCS Flight Rate; 6) Late and Early Access; 7) Power to Payloads; 8) Mating Locatin Options; 9) ISS Docking and Berthing; 10) Vehicle Stay Time; 11) ISS Resource Availability; 12) Robotic and EVA Compatability; 13) Return Cargo; and 14) Key Requirements Summary.

  7. Official portrait of the ISS Expedition Five crewmembers

    NASA Image and Video Library

    2002-02-01

    ISS005-S-002 (February 2002) --- Cosmonaut Valeri G. Korzun (left), Expedition Five mission commander; astronaut Peggy A. Whitson and cosmonaut Sergei Y. Treschev, both flight engineers, attired in training versions of the shuttle launch and entry suit, pause from their training schedule for a crew portrait. The three will be launched to the International Space Station (ISS) in early spring of this year aboard the Space Shuttle Atlantis. Korzun and Treschev represent the Russian Aviation and Space Agency (Rosaviakosmos).

  8. Horowitz and Sturckow with the ISS logbook in Node 1

    NASA Image and Video Library

    2001-08-01

    ISS003-E-6185 (August 2001) --- Astronauts Frederick W. (Rick) Sturckow (left), STS-105 pilot, and Scott J. Horowitz, mission commander, add their names to the ship’s log of visitors in the Unity node on the International Space Station (ISS). This image was taken with a digital still camera.

  9. Barry and Forrester with the ISS logbook in Node 1

    NASA Image and Video Library

    2001-08-01

    ISS003-E-6188 (August 2001) --- Astronauts Daniel T. Barry (left) and Patrick G. Forrester, both STS-105 mission specialists, add their names to the list of International Space Station (ISS) visitors in the ship’s log in the Unity node. This image was taken with a digital still camera.

  10. Extravehicular Mobility Unit (EMU) / International Space Station (ISS) Coolant Loop Failure and Recovery

    NASA Technical Reports Server (NTRS)

    Lewis, John F.; Cole, Harold; Cronin, Gary; Gazda, Daniel B.; Steele, John

    2006-01-01

    Following the Colombia accident, the Extravehicular Mobility Units (EMU) onboard ISS were unused for several months. Upon startup, the units experienced a failure in the coolant system. This failure resulted in the loss of Extravehicular Activity (EVA) capability from the US segment of ISS. With limited on-orbit evidence, a team of chemists, engineers, metallurgists, and microbiologists were able to identify the cause of the failure and develop recovery hardware and procedures. As a result of this work, the ISS crew regained the capability to perform EVAs from the US segment of the ISS.

  11. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-05

    Aboard the Space Shuttle Orbiter Endeavour, the STS-111 mission was launched on June 5, 2002 at 5:22 pm EDT from Kennedy's launch pad. On board were the STS-111 and Expedition Five crew members. Astronauts Kenneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish mission objectives: the delivery and installation of a new platform for the ISS robotic arm, the Mobile Base System (MBS) which is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. Landing on June 19, 2002, the 14-day STS-111 mission was the 14th Shuttle mission to visit the ISS.

  12. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-01

    Backdropped against the blackness of space and the Earth's horizon, the Mobile Remote Base System (MBS) is moved by the Canadarm2 for installation on the International Space Station (ISS). Delivered by the STS-111 mission aboard the Space Shuttle Endeavour in June 2002, the MBS is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station, which is neccessary for future construction tasks. In addition, STS-111 delivered a new crew, Expedition Five, replacing Expedition Four after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish the delivery and installation of the MBS to the Mobile Transporter on the S0 (S-zero) truss, the replacement of a wrist roll joint on the Station's robotic arm, and the task of unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.

  13. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-11

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot; and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander; Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks. In this photograph, Astronaut Philippe Perrin, representing CNES, the French Space Agency, participates in the second scheduled EVA. During the space walk, Perrin and Chang-Diaz attached power, data, and video cables from the ISS to the MBS, and used a power wrench to complete the attachment of the MBS onto the Mobile Transporter (MT).

  14. ISS Training Best Practices and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Barshi, Immanuel; Dempsey, Donna L.

    2017-01-01

    Training our crew members for long duration exploration-class missions (LDEM) will have to be qualitatively and quantitatively different from current training practices. However, there is much to be learned from the extensive experience NASA has gained in training crew members for missions on board the International Space Station (ISS). Furthermore, the operational experience on board the ISS provides valuable feedback concerning training effectiveness. Keeping in mind the vast differences between current ISS crew training and training for LDEM, the needs of future crew members, and the demands of future missions, this ongoing study seeks to document current training practices and lessons learned. The goal of the study is to provide input to the design of future crew training that takes as much advantage as possible of what has already been learned and avoids as much as possible past inefficiencies. Results from this study will be presented upon its completion. By researching established training principles, examining future needs, and by using current practices in spaceflight training as test beds, this research project is mitigating program risks and generating templates and requirements to meet future training needs.

  15. ISS Training Best Practices and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Dempsey, Donna L.; Barshi, Immanuel

    2018-01-01

    Training our crew members for long-duration Deep Space Transport (DST) missions will have to be qualitatively and quantitatively different from current training practices. However, there is much to be learned from the extensive experience NASA has gained in training crew members for missions on board the International Space Station (ISS). Furthermore, the operational experience on board the ISS provides valuable feedback concerning training effectiveness. Keeping in mind the vast differences between current ISS crew training and training for DST missions, the needs of future crew members, and the demands of future missions, this ongoing study seeks to document current training practices and lessons learned. The goal of the study is to provide input to the design of future crew training that takes as much advantage as possible of what has already been learned and avoids as much as possible past inefficiencies. Results from this study will be presented upon its completion. By researching established training principles, examining future needs, and by using current practices in spaceflight training as test beds, this research project is mitigating program risks and generating templates and requirements to meet future training needs.

  16. GNSS-Reflectometry aboard ISS with GEROS: Investigation of atmospheric propagation effects

    NASA Astrophysics Data System (ADS)

    Zus, F.; Heise, S.; Wickert, J.; Semmling, M.

    2015-12-01

    GEROS-ISS (GNSS rEflectometry Radio Occultation and Scatterometry) is an ESA mission aboard the International Space Station (ISS). The main mission goals are the determination of the sea surface height and surface winds. Secondary goals are monitoring of land surface parameters and atmosphere sounding using GNSS radio occultation measurements. The international scientific study GARCA (GNSS-Reflectometry Assessment of Requirements and Consolidation of Retrieval Algorithms), funded by ESA, is part of the preparations for GEROS-ISS. Major goals of GARCA are the development of an end2end Simulator for the GEROS-ISS measurements (GEROS-SIM) and the evaluation of the error budget of the GNSS reflectometry measurements. In this presentation we introduce some of the GARCA activities to quantify the influence of the ionized and neutral atmosphere on the altimetric measurements, which is a major error source for GEROS-ISS. At first, we analyse, to which extend the standard linear combination of interferometric paths at different carrier frequencies can be used to correct for the ionospheric propagation effects. Second, we make use of the tangent-linear version of our ray-trace algorithm to propagate the uncertainty of the underlying refractivity profile into the uncertainty of the interferometric path. For comparison the sensitivity of the interferometric path with respect to the sea surface height is computed. Though our calculations are based on a number of simplifying assumptions (the Earth is a sphere, the atmosphere is spherically layered and the ISS and GNSS satellite orbits are circular) some general conclusions can be drawn. In essence, for elevation angles above -5° at the ISS the higher-order ionospheric errors and the uncertaintiy of the inteferometric path due to the uncertainty of the underlying refractivity profile are small enough to distinguish a sea surface height of ± 0.5 m.

  17. Evaluation of Revised International Staging System (R-ISS) for transplant-eligible multiple myeloma patients.

    PubMed

    González-Calle, Verónica; Slack, Abigail; Keane, Niamh; Luft, Susan; Pearce, Kathryn E; Ketterling, Rhett P; Jain, Tania; Chirackal, Sintosebastian; Reeder, Craig; Mikhael, Joseph; Noel, Pierre; Mayo, Angela; Adams, Roberta H; Ahmann, Gregory; Braggio, Esteban; Stewart, A Keith; Bergsagel, P Leif; Van Wier, Scott A; Fonseca, Rafael

    2018-04-06

    The International Myeloma Working Group has proposed the Revised International Staging System (R-ISS) for risk stratification of multiple myeloma (MM) patients. There are a limited number of studies that have validated this risk model in the autologous stem cell transplant (ASCT) setting. In this retrospective study, we evaluated the applicability and value for predicting survival of the R-ISS model in 134 MM patients treated with new agents and ASCT at the Mayo Clinic in Arizona and the University Hospital of Salamanca in Spain. The patients were reclassified at diagnosis according to the R-ISS: 44 patients (33%) had stage I, 75 (56%) had stage II, and 15 (11%) had stage III. After a median follow-up of 60 months, R-ISS assessed at diagnosis was an independent predictor for overall survival (OS) after ASCT, with median OS not reached, 111 and 37 months for R-ISS I, II and III, respectively (P < 0.001). We also found that patients belonging to R-ISS II and having high-risk chromosomal abnormalities (CA) had a significant shorter median OS than those with R-ISS II without CA: 70 vs. 111 months, respectively. Therefore, this study lends further support for the R-ISS as a reliable prognostic tool for estimating survival in transplant myeloma patients and suggests the importance of high-risk CA in the R-ISS II group.

  18. Productivity of Mizuna Cultivated in the Space Greenhouse Onboard the Russian Module of the Iss

    NASA Astrophysics Data System (ADS)

    Levinskikh, Margarita; Sychev, Vladimir; Podolsky, Igor; Bingham, Gail; Moukhamedieva, Lana

    As stipulated by the science program of research into the processes of growth, development, metabolism and reproduction of higher plants in microgravity in view of their potential use in advanced life support systems, five experiments on Mizuna plants (Brassica rapa var. nipponisica) were performed using the Lada space greenhouse onboard the ISS Russian Module (RM) during Expeditions ISS-5, 17 and 20-22. One of the goals of the experiments was to evaluate the productivity of Mizuna plants grown at different levels of ISS RM air contamination. Mizuna plants were cultivated for 31 - 36 days when exposed to continuous illumination. The root growing medium was made of Turface enriched with a controlled release fertilizer Osmocote. In the course of the flight experiments major parameters of plant cultivation, total level of ISS RM air contamination and plant microbiological status were measured. The grown plants were returned to Earth as fresh or frozen samples. After the three last vegetation cycles the plants were harvested, packed and frozen at -80 0C in the MELFI freezer on the ISS U.S. Module and later returned to Earth onboard Space Shuttle. It was found that the productivity and morphometric (e.g., plant height and mass, number of leaves) parameters of the plants grown in space did not differ from those seen in ground controls. The T coefficient, which represents the total contamination level of ISS air), was 4 (ISS-5), 22 (ISS-17), 55 (ISS-20), 22 (ISS-21) and 28 (ISS-22) versus the norm of no more than 5. In summary, a significant increase in the total contamination level of the ISS RM air did not reduce the productivity of the leaf vegetable plant used in the flight experiments.

  19. Controversies in the definition and treatment of idiopathic short stature (ISS).

    PubMed

    Pedicelli, Stefania; Peschiaroli, Emanuela; Violi, Enrica; Cianfarani, Stefano

    2009-01-01

    The term idiopathic short stature (ISS) refers to short children with no identifiable disorder of the growth hormone (GH)/insulin like growth factor (IGF) axis and no other endocrine, genetic or organ system disorder. This heterogeneous group of short children without GH deficiency (GHD) includes children with constitutional delay of growth and puberty, familial short stature, or both, as well as those with subtle cartilage and bone dysplasias. In rare cases, ISS is due to IGF molecular abnormalities. In this review we tackle the major challenges in the definition and treatment of ISS.

  20. iss056e009782

    NASA Image and Video Library

    2018-06-11

    iss056e009782 (June 11, 2018) --- Expedition 56 Flight Engineer Alexander Gerst of the European Space Agency (ESA) is seated in the Columbus laboratory module participating in the Grip study. Grip is an ESA-sponsored experiment that is researching how the nervous system adapts to microgravity. Observations may improve the design of safer space habitats and help patients on Earth with neurological diseases.

  1. iss047e137096

    NASA Image and Video Library

    2016-05-31

    ISS047e137096 (06/03/2016) --- This stunning Earth image taken from the International Space Station looks from Northwestern China on the bottom into eastern Kazakhstan. The large lake in Kazakhstan with golden sun glint is named Lake Balkhash. It is one of the largest lakes in Asia and is the 15th largest lake in the world. The lake is fed by 7 rivers.

  2. Food table on ISS

    NASA Image and Video Library

    2015-04-08

    ISS043E091650 (04/08/2015) --- A view of the food table located in the Russian Zvezda service module on the International Space Station taken by Expedition 43 Flight Engineer Scott Kelly. Assorted food, drink and condiment packets are visible. Kelly tweeted this image along with the comment: ""Looks messy, but it's functional. Our #food table on the @space station. What's for breakfast? #YearInSpace".

  3. iss050e053700

    NASA Image and Video Library

    2017-03-01

    iss050e053700 (03/01/2017) --- Shane Kimbrough of NASA (left), Thomas Pesquet of ESA (European Space Agency) (middle) and Peggy Whitson of NASA (right) juggle some of the newly arrived fruit aboard the International Space Station. The fresh food was delivered on SpaceX’s tenth commercial resupply mission along with more than 5,600 pounds of supplies, science experiments and vehicle hardware.

  4. International Space Station (ISS)

    NASA Image and Video Library

    2007-06-19

    Eight days of construction resumed on the International Space Station (ISS), as STS-117 astronauts and mission specialists and the Expedition 15 crew completed installation of the second and third starboard truss segments (S3 and S4). Back dropped by our colorful Earth, its newly expanded configuration is revealed as pilot Lee Archambault conducts a fly around upon departure from the station on June 19, 2007.

  5. iss055e035437

    NASA Image and Video Library

    2018-04-29

    iss055e035437 (April 29, 2018) --- The SpaceX Dragon resupply ship was gripped by the Canadarm2 robotic arm on April 27, 2018 in preparation for its detachment from the Harmony module and its release back to Earth for splashdown and retrieval in the Pacific Ocean. The coasts of Spain and Portugal are seen as the International Space Station orbited over the Atlantic Ocean.

  6. iss028e050184

    NASA Image and Video Library

    2011-09-15

    ISS028-E-050184 (15 Sept. 2011) --- This unique photographic angle, featuring the International Space Station?s Cupola and crew activity inside it, other hardware belonging to the station, city lights on Earth and airglow, was captured by one of the Expedition 28 crew members. The major urban area on the coast is Brisbane, Australia. The station was passing over an area southwest of Canberra.

  7. iss028e050185

    NASA Image and Video Library

    2011-09-15

    ISS028-E-050185 (15 Sept. 2011) --- This unique photographic angle, featuring the International Space Station?s Cupola and crew activity inside it, other hardware belonging to the station, city lights on Earth and airglow,was captured by one of the Expedition 28 crew members. The major urban area on the coast is Brisbane, Australia. The station was passing over an area southwest of Canberra.

  8. iss028e050186

    NASA Image and Video Library

    2011-09-15

    ISS028-E-050186 (15 Sept. 2011) --- This unique photographic angle, featuring the International Space Station?s Cupola and crew activity inside it, other hardware belonging to the station, city lights on Earth and airglow, was captured by one of the Expedition 28 crew members. The major urban area on the coast is Brisbane, Australia. The station was passing over an area southwest of Canberra.

  9. iss050e056553

    NASA Image and Video Library

    2017-03-09

    iss050e056553 (03/09/2017) --- NASA astronaut Peggy Whitson unloads spaceflight hardware delivered on SpaceX CRS-10 that was built as part of the NASA High School Students United with NASA to Create Hardware (HUNCH) program. Students in the HUNCH program receive valuable experience creating goods for NASA from hardware to the culinary arts, while NASA receives the creativity of the High School students.

  10. iss047e057822

    NASA Image and Video Library

    2016-04-14

    ISS047e057822 (04/14/2016) --- The Middle East is seen from 250 miles above in this photo from the International Space Station. Countries seen left to right along the Mediterranean coast include Egypt, Gaza, Saudi Arabia, Israel, Lebanon, Syria, and Turkey. The major waterways shown from left to right are the Nile River, Gulf of Suez, Gulf of Aqaba, and the Red Sea.

  11. International Space Station (ISS)

    NASA Image and Video Library

    2001-10-23

    A Russian Soyuz spacecraft undocks from the International Space Station (ISS) with its crew of three ending an eight-day stay. Aboard the craft are Commander Victor Afanasyev, Flight Engineer Konstantin Kozeev, both representing Rosaviakosmos, and French Flight Engineer Claudie Haignere. Their mission was to carry out a flight program for the French Space Agency (CNES) under a commercial contract with the Russian Aviation and Space Agency.

  12. International Space Station (ISS)

    NASA Image and Video Library

    2001-10-23

    A Russian Soyuz spacecraft departs from the International Space Station (ISS) with its crew of three ending an eight-day stay. Aboard the craft are Commander Victor Afanasyev, Flight Engineer Konstantin Kozeev, both representing Rosaviakosmos, and French Flight Engineer Claudie Haignere. Their mission was to carry out a flight program for the French Space Agency (CNES) under a commercial contract with the Russian Aviation and Space Agency.

  13. Post-Shuttle EVA Operations on ISS

    NASA Technical Reports Server (NTRS)

    West, Bill; Witt, Vincent; Chullen, Cinda

    2010-01-01

    The EVA hardware used to assemble and maintain the ISS was designed with the assumption that it would be returned to Earth on the Space Shuttle for ground processing, refurbishment, or failure investigation (if necessary). With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (EMU, Airlock Systems, EVA tools, and associated support equipment and consumables) to perform ISS EVAs until 2016 and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, NASA and the One EVA contractor team jointly initiated the EVA 2010 Project. Challenges were addressed to extend the operating life and certification of EVA hardware, secure the capability to launch EVA hardware safely on alternate launch vehicles, and protect EMU hardware operability on orbit for long durations.

  14. CATS Concludes Successful Mission on ISS

    Atmospheric Science Data Center

    2018-02-15

    ... instrument has ended its operations on the International Space Station (ISS), after a successful 33-month mission to measure clouds and ... and the "NASA's CATS Concludes Successful Mission on Space Station" article.   Read more ...

  15. A Hybrid Cadre Concept for International Space Station (ISS) Operations

    NASA Technical Reports Server (NTRS)

    Hagopian, Jeff; Mears, Teri

    2000-01-01

    The International Space Station (ISS) is a continuously operating on-orbit facility, with a ten to fifteen year lifetime. The staffing and rotation concepts defined and implemented for the ISS program must take into account the unique aspects associated with long duration mission operations. Innovative approaches to mission design and operations support must be developed and explored which address these unique aspects. Previous National Aeronautics and Space Administration (NASA) man-based space programs, with the exception of Skylab, dealt primarily with short duration missions with some amount of down time between missions; e.g., Shuttle, Spacelab, and Spacehab programs. The ISS Program on the other hand requires continuous support, with no down time between missions. ISS operations start with the first element launch and continue through the end of the program. It is this key difference between short and long duration missions that needs to be addressed by the participants in the ISS Program in effectively and efficiently staffing the positions responsible for mission design and operations. The primary drivers considered in the development of staffing and rotation concepts for the ISS Program are budget and responsiveness to change. However, the long duration aspects of the program necessitate that personal and social aspects also be considered when defining staffing concepts. To satisfy these needs, a Hybrid Cadre concept has been developed and implemented in the area of mission design and operations. The basic premise of the Hybrid Cadre concept is the definition of Increment-Independent and Increment-Dependent cadre personnel. This paper provides: definitions of the positions required to implement the concept, the rotation scheme that is applied to the individual positions, and a summary of the benefits and challenges associated with implementing the Hybrid Cadre concept.

  16. Service Life Extension of the ISS Propulsion System Elements

    NASA Technical Reports Server (NTRS)

    Kamath, Ulhas; Grant, Gregory; Kuznetsov, Sergei; Shaevich, Sergey; Spencer, Victor

    2015-01-01

    The International Space Station (ISS) is a result of international collaboration in building a sophisticated laboratory of an unprecedented scale in Low Earth Orbit. After a complex assembly sequence spanning over a decade, some of the early modules launched at the beginning of the program would reach the end of their certified lives, while the newer modules were just being commissioned into operation. To maximize the return on global investments in this one-of-a-kind orbiting platform that was initially conceived for a service life until 2016, it is essential for the cutting edge research on ISS to continue as long as the station can be sustained safely in orbit. ISS Program is assessing individual modules in detail to extend the service life of the ISS to 2024, and possibly to 2028. Without life extension, Functional Cargo Block (known by its Russian acronym as FGB) and the Service Module (SM), two of the early modules on the Russian Segment, would reach the end of their certified lives in 2013 and 2015 respectively. Both FGB and SM are critical for the propulsive function of the ISS. This paper describes the approach used for the service life extension of the FGB propulsion system. Also presented is an overview of the system description along with the process adopted for developing the life test plans based on considerations of system failure modes, fault tolerance and safety provisions. Tests and analyses performed, important findings and life estimates are summarized. Based on the life extension data, FGB propulsion system, in general, is considered ready for a service life until 2028.

  17. International Space Station (ISS) Anomalies Trending Study. Volume II; Appendices

    NASA Technical Reports Server (NTRS)

    Beil, Robert J.; Brady, Timothy K.; Foster, Delmar C.; Graber, Robert R.; Malin, Jane T.; Thornesbery, Carroll G.; Throop, David R.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) set out to utilize data mining and trending techniques to review the anomaly history of the International Space Station (ISS) and provide tools for discipline experts not involved with the ISS Program to search anomaly data to aid in identification of areas that may warrant further investigation. Additionally, the assessment team aimed to develop an approach and skillset for integrating data sets, with the intent of providing an enriched data set for discipline experts to investigate that is easier to navigate, particularly in light of ISS aging and the plan to extend its life into the late 2020s. This document contains the Appendices to the Volume I report.

  18. ISS Potable Water Quality for Expeditions 26 through 30

    NASA Technical Reports Server (NTRS)

    Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.; McCoy, J. Torin

    2012-01-01

    International Space Station (ISS) Expeditions 26-30 spanned a 16-month period beginning in November of 2010 wherein the final 3 flights of the Space Shuttle program finished ISS construction and delivered supplies to support the post-shuttle era of station operations. Expedition crews relied on several sources of potable water during this period, including water recovered from urine distillate and humidity condensate by the U.S. water processor, water regenerated from humidity condensate by the Russian water recovery system, and Russian ground-supplied potable water. Potable water samples collected during Expeditions 26-30 were returned on Shuttle flights STS-133 (ULF5), STS-134 (ULF6), and STS-135 (ULF7), as well as Soyuz flights 24-27. The chemical quality of the ISS potable water supplies continued to be verified by the Johnson Space Center s Water and Food Analytical Laboratory (WAFAL) via analyses of returned water samples. This paper presents the chemical analysis results for water samples returned from Expeditions 26-30 and discusses their compliance with ISS potable water standards. The presence or absence of dimethylsilanediol (DMSD) is specifically addressed, since DMSD was identified as the primary cause of the temporary rise and fall in total organic carbon of the U.S. product water that occurred in the summer of 2010.

  19. Space Shuttle drops down the SAA doses on ISS

    NASA Astrophysics Data System (ADS)

    Dachev, T. P.; Semkova, J.; Tomov, B.; Matviichuk, Yu.; Dimitrov, Pl.; Koleva, R.; Malchev, St.; Reitz, G.; Horneck, G.; De Angelis, G.; Häder, D.-P.; Petrov, V.; Shurshakov, V.; Benghin, V.; Chernykh, I.; Drobyshev, S.; Bankov, N. G.

    2011-06-01

    Long-term analysis of data from two radiation detection instruments on the International Space Station (ISS) shows that the docking of the Space Shuttle drops down the measured dose rates in the region of the South Atlantic Anomaly (SAA) by a factor of 1.5-3. Measurements either by the R3DE detector, which is outside the ISS at the EuTEF facility on the Columbus module behind a shielding of less than 0.45 g cm -2, and by the three detectors of the Liulin-5 particle telescope, which is inside the Russian PEARS module in the spherical tissue equivalent phantom behind much heavier shielding demonstrate that effect. Simultaneously the estimated averaged incident energies of the incoming protons rise up from about 30 to 45 MeV. The effect is explained by the additional shielding against the SAA 30-150 MeV protons, provided by the 78 tons Shuttle to the instruments inside and outside of the ISS. An additional reason is the ISS attitude change (performed for the Shuttle docking) leading to decreasing of dose rates in two of Liulin-5 detectors because of the East-West proton fluxes asymmetry in SAA. The Galactic Cosmic Rays dose rates are practically not affected.

  20. An Evidence-Based Approach To Exercise Prescriptions on ISS

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, Lori

    2009-01-01

    This presentation describes current exercise countermeasures and exercise equipment for astronauts onboard the ISS. Additionally, a strategy for evaluating evidence supporting spaceflight exercise is described and a new exercise prescription is proposed. The current exercise regimen is not fully effective as the ISS exercise hardware does not allow for sufficient exercise intensity, the exercise prescription is adequate and crew members are noncompliant with the prescription. New ISS hardware is proposed, Advanced Resistance Exercise Device (ARED), which allows additional exercises, is instrumented for data acquisition and offers improved loading. The new T2 hardware offers a better harness and subject loading system, is instrumented to allow ground reaction force data, and offers improved speed. A strategy for developing a spaceflight exercise prescription is described and involves identifying exercise training programs that have been shown to maximize adaptive benefits of people exercising in both 0 and 1 g environments. Exercise intensity emerged as an important factor in maintaining physiologic adaptations in the spaceflight environment and interval training is suggested. New ISS exercise hardware should allow for exercise at intensities high enough to elicit adaptive responses. Additionally, new exercise prescriptions should incorporate higher intensity exercises and seek to optimize intensity, duration and frequency for greater efficiency.

  1. The ISS Fluids and Combustion Facility: Experiment Accommodations Summary

    NASA Technical Reports Server (NTRS)

    Corban, Robert R.; Simons, Stephen N. (Technical Monitor)

    2001-01-01

    The International Space Station's (ISS's) Fluids and Combustion Facility (FCF) is in the process of final design and development activities to accommodate a wide range of experiments in the fields of combustion science and fluid physics. The FCF is being designed to provide potential experiments with well defined interfaces that can meet the experimenters requirements, provide the flexibility for on-orbit reconfiguration, and provide the maximum capability within the ISS resources and constraints. As a multi-disciplined facility, the FCF supports various experiments and scientific objectives, which will be developed in the future and are not completely defined at this time. Since developing experiments to be performed within FCF is a continuous process throughout the FCF's operational lifetime, each individual experiment must determine the best configuration of utilizing facility capabilities and resources with augmentation of specific experiment hardware. Configurations of potential experiments in the FCF has been on-going to better define the FCF interfaces and provide assurances that the FCF design will meet its design requirements. This paper provides a summary of ISS resources and FCF capabilities, which are available for potential ISS FCF users. Also, to better understand the utilization of the FCF a description of a various experiment layouts and associated operations in the FCF are provided.

  2. Signing ISS RS Handover Protocol

    NASA Image and Video Library

    2014-09-09

    ISS040-E-123948 (9 Sept. 2014) --- In the Zvezda Service Module, Russian cosmonaut Maxim Suraev (right), Expedition 41 commander, signs a ceremonial document as the new commander of the International Space Station following the traditional Change of Command Ceremony. Russian cosmonaut Alexander Skvortsov, Expedition 40 flight engineer, looks on.

  3. ATV-4 approach to ISS

    NASA Image and Video Library

    2013-06-15

    ISS036-E-008169 (15 June 2013) --- The European Space Agency's Automated Transfer Vehicle-4 (ATV-4) “Albert Einstein” approaches the International Space Station. The spacecraft went on to successfully dock to the orbital outpost at 2:07 GMT, June 15, 2013, following a ten-day period of free-flight.

  4. ATV-4 approach to ISS

    NASA Image and Video Library

    2013-06-15

    ISS036-E-008170 (15 June 2013) --- The European Space Agency's Automated Transfer Vehicle-4 (ATV-4) “Albert Einstein” approaches the International Space Station. The spacecraft went on to successfully dock to the orbital outpost at 2:07 GMT, June 15, 2013, following a ten-day period of free-flight.

  5. Expedition 24 Docks to ISS

    NASA Image and Video Library

    2010-06-17

    William Gerstenmaier, second from right, NASA Associate Administrator for Space Operations, speaks to the crew of Expedition 24 shortly after their arrival to the International Space Station (ISS) aboard their Soyuz TMA-19 on Friday, June 18, 2010 at Russian Mission Control in Korolev, Russia. Photo Credit: (NASA/Carla Cioffi)

  6. ISS-CREAM Thermal and Fluid System Design and Analysis

    NASA Technical Reports Server (NTRS)

    Thorpe, Rosemary S.

    2015-01-01

    Thermal and Fluids Analysis Workshop (TFAWS), Silver Spring MD NCTS 21070-15. The ISS-CREAM (Cosmic Ray Energetics And Mass for the International Space Station) payload is being developed by an international team and will provide significant cosmic ray characterization over a long time frame. Cold fluid provided by the ISS Exposed Facility (EF) is the primary means of cooling for 5 science instruments and over 7 electronics boxes. Thermal fluid integrated design and analysis was performed for CREAM using a Thermal Desktop model. This presentation will provide some specific design and modeling examples from the fluid cooling system, complex SCD (Silicon Charge Detector) and calorimeter hardware, and integrated payload and ISS level modeling. Features of Thermal Desktop such as CAD simplification, meshing of complex hardware, External References (Xrefs), and FloCAD modeling will be discussed.

  7. DSMC Simulations of Disturbance Torque to ISS During Airlock Depressurization

    NASA Technical Reports Server (NTRS)

    Lumpkin, F. E., III; Stewart, B. S.

    2015-01-01

    The primary attitude control system on the International Space Station (ISS) is part of the United States On-orbit Segment (USOS) and uses Control Moment Gyroscopes (CMG). The secondary system is part of the Russian On orbit Segment (RSOS) and uses a combination of gyroscopes and thrusters. Historically, events with significant disturbances such as the airlock depressurizations associated with extra-vehicular activity (EVA) have been performed using the RSOS attitude control system. This avoids excessive propulsive "de-saturations" of the CMGs. However, transfer of attitude control is labor intensive and requires significant propellant. Predictions employing NASA's DSMC Analysis Code (DAC) of the disturbance torque to the ISS for depressurization of the Pirs airlock on the RSOS will be presented [1]. These predictions were performed to assess the feasibility of using USOS control during these events. The ISS Pirs airlock is vented using a device known as a "T-vent" as shown in the inset in figure 1. By orienting two equal streams of gas in opposite directions, this device is intended to have no propulsive effect. However, disturbance force and torque to the ISS do occur due to plume impingement. The disturbance torque resulting from the Pirs depressurization during EVAs is estimated by using a loosely coupled CFD/DSMC technique [2]. CFD is used to simulate the flow field in the nozzle and the near field plume. DSMC is used to simulate the remaining flow field using the CFD results to create an in flow boundary to the DSMC simulation. Due to the highly continuum nature of flow field near the T-vent, two loosely coupled DSMC domains are employed. An 88.2 cubic meter inner domain contains the Pirs airlock and the T-vent. Inner domain results are used to create an in flow boundary for an outer domain containing the remaining portions of the ISS. Several orientations of the ISS solar arrays and radiators have been investigated to find cases that result in minimal

  8. An overview of NASA ISS human engineering and habitability: past, present, and future.

    PubMed

    Fitts, D; Architecture, B

    2000-09-01

    The International Space Station (ISS) is the first major NASA project to provide human engineering an equal system engineering an equal system engineering status to other disciplines. The incorporation and verification of hundreds of human engineering requirements applied across-the-board to the ISS has provided for a notably more habitable environment to support long duration spaceflight missions than might otherwise have been the case. As the ISS begins to be inhabited and become operational, much work remains in monitoring the effectiveness of the Station's built environment in supporting the range of activities required of a long-duration vehicle. With international partner participation, NASA's ISS Operational Habitability Assessment intends to carry human engineering and habitability considerations into the next phase of the ISS Program with constant attention to opportunities for cost-effective improvements that need to be and can be made to the on-orbit facility. Too, during its operations the ISS must be effectively used as an on-orbit laboratory to promote and expand human engineering/habitability awareness and knowledge to support the international space faring community with the data needed to develop future space vehicles for long-duration missions. As future space mission duration increases, the rise in importance of habitation issues make it imperative that lessons are captured from the experience of human engineering's incorporation into the ISS Program and applied to future NASA programmatic processes.

  9. Commercial investments in Combustion research aboard ISS

    NASA Astrophysics Data System (ADS)

    Schowengerdt, F. D.

    2000-01-01

    The Center for Commercial Applications of Combustion in Space (CCACS) at the Colorado School of Mines is working with a number of companies planning commercial combustion research to be done aboard the International Space Station (ISS). This research will be conducted in two major ISS facilities, SpaceDRUMS™ and the Fluids and Combustion Facility. SpaceDRUMS™, under development by Guigne Technologies, Ltd., of St. John's Newfoundland, is a containerless processing facility employing active acoustic sample positioning. It is capable of processing the large samples needed in commercial research and development with virtually complete vibration isolation from the space station. The Fluids and Combustion Facility (FCF), being developed by NASA-Glenn Research Center in Cleveland, is a general-purpose combustion furnace designed to accommodate a wide range of scientific experiments. SpaceDRUMS™ will be the first commercial hardware to be launched to ISS. Launch is currently scheduled for UF-1 in 2001. The CCACS research to be done in SpaceDRUMS™ includes combustion synthesis of glass-ceramics and porous materials. The FCF is currently scheduled to be launched to ISS aboard UF-3 in 2002. The CCACS research to be done in the FCF includes water mist fire suppression, catalytic combustion and flame synthesis of ceramic powders. The companies currently planning to be involved in the research include Guigne International, Ltd., Technology International, Inc., Coors Ceramics Company, TDA Research, Advanced Refractory Technologies, Inc., ADA Technologies, Inc., ITN Energy Systems, Inc., Innovative Scientific Solutions, Inc., Princeton Instruments, Inc., Environmental Engineering Concepts, Inc., and Solar Turbines, Inc. Together, these companies are currently investing almost $2 million in cash and in-kind annually toward the seven commercial projects within CCACS. Total private investment in CCACS research to date is over $7 million. .

  10. ISS Materials Research

    NASA Image and Video Library

    2017-01-09

    Deena Dombrosky (Zin Technologies Engineer) is shown here filling a Procter & Gamble (P & G) sample that will be used in ground-testing as NASA prepares for their experiment on the International Space Station (ISS). The sample particles are the size of the wavelength of light and they are dyed orange/pink to glow when illuminated with the laser light enabling a confocal microscope to produce 3D images. The P & G experiment will improve product stabilizers that extend product shelf life. This has the added advantage of leading to more compact environmentally friendly containers.

  11. iss042e288167

    NASA Image and Video Library

    2015-02-25

    ISS042E288167 (02/25?2015) --- Expedition 42 astronauts Terry Virts and Barry “Butch” Wilmore worked outside the International Space Station installing cables and equipment Feb. 25, 2015 for the second of three spacewalks to help ready the laboratory complex for dockings by commercial crew capsules. Virts reported a small amount of water in his space helmet, but NASA officials said he was never in any danger

  12. iss049e040733

    NASA Image and Video Library

    2016-10-19

    ISS049e040733 (10/19/2016) --- NASA astronaut Kate Rubins is pictured inside of the Soyuz MS-01 spacecraft while conducting routine spacesuit checks. Rubins, suited up in a Russian Sokol Launch and Entry suit, was conducting leak checks in advance of her upcoming landing along with Japanese astronaut Takuya Onishi and Russian cosmonaut Anatoly Ivanishin. The trio are scheduled to land Oct. 29, U.S. time.

  13. iss031e150065

    NASA Image and Video Library

    2012-06-28

    ISS031-E-150065 (28 June 2012) --- In the Rassvet Mini-Research Module 1 (MRM-1), Russian cosmonaut Oleg Kononenko (center), Expedition 31 commander; along with European Space Agency astronaut Andre Kuipers (left) and NASA astronaut Don Pettit, both flight engineers, pose for a photo after adding the Soyuz TMA-03M patch to the growing collection of insignias representing crews who have worked on the International Space Station.

  14. iss032e025361

    NASA Image and Video Library

    2012-09-05

    ISS032-E-025361 (5 Sept. 2012) --- Having doffed the outer layer of their Extravehicular Mobility Unit (EMU) spacesuits, Expedition 32 Flight Engineers Sunita Williams of NASA and Akihiko Hoshide of the Japan Aerospace Exploration Agency (JAXA) flex their muscles, celebrating success on their just-completed spacewalk, the second extravehicular activity for them in less than a week. They are still sporting their EMU thermal underwear in the Unity Node 1.

  15. iss049e028067

    NASA Image and Video Library

    2016-10-03

    ISS049e028067 (10/03/2016) --- Hurricane Matthew, a huge category 4 level storm, as seen from the International Space Station Oct. 3, 2016. Packing winds of 140 miles an hour as a Category 4 hurricane, Matthew passed over western Haiti and eastern Cuba Oct. 4 before charging north over the Bahamas Oct. 5 and potentially threatening the east coast of the United States later in the week.

  16. iss042e292508

    NASA Image and Video Library

    2015-03-01

    ISS042E292508 (03/01/2015) --- US astronaut Barry "Butch" Wilmore passes a cable to US astronaut Terry Virts during a spacewalk to install a new port for commercial spacecraft to dock to the International Space Station in the near future. Terry twitted this image on March 1, 2015 and remarked "Out on the P3 truss. #AstroButch handing me his cable to install on the new antenna. #spacewalk."

  17. Hair cuttime on ISS

    NASA Image and Video Library

    2015-03-22

    Caption: ISS043E044174 (03/22/2015) --- Its haircut time onboard the International Space Station as Expedition 43 Commander and NASA astronaut Terry Virts handles the scissors while ESA (European Space Agency) astronaut Samantha Cristoforetti holds the vacuum to immediately pull the fine hair strands into the safe container so they don't float away into the station. Hair trims are a regular occurrence during an astronaut's six month tour.

  18. iss038e024791

    NASA Image and Video Library

    2014-01-02

    ISS038-E-024791 (2 Jan. 2014) --- In the International Space Station's Kibo laboratory, NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, performs troubleshooting on the Biorack centrifuge for NanoRacks, a facility that provides lower-cost microgravity research facilities for small payloads utilizing a standardized "plug-and-play" interface. Mastracchio checked the three settings of the centrifuge, which is designed to simulate the gravity of Earth, the moon and Mars.

  19. iss042e236075

    NASA Image and Video Library

    2015-02-10

    ISS042E236075 (02/10/2015) --- Astronauts in space must exercise regularly to keep muscles from deteriorating. The busy schedule aboard the International Space Station has these regular periods worked in as NASA astronaut Terry Virts shows in this Tweet he sent out on Feb. 10, 2015 with the comment: "Periodic Fitness Evaluation- riding the bike with a heart rate monitor, EKG, and blood pressure machine hooked up".

  20. iss020e021811

    NASA Image and Video Library

    2009-07-18

    ISS020-E-021811 (18 July 2009) --- Astronaut Tim Kopra, STS-127 mission specialist converting to Expedition 20 flight engineer, is all smiles prior to donning his helmet and performing the final touches of suiting-up in the International Space Station's Quest airlock. He later joined astronaut Dave Wolf, STS-127 mission specialist, for the first of five scheduled sessions of extravehicular activity, requiring four different astronauts for the outside activities.