Sample records for quantification accuracy precision

  1. Precision and accuracy of clinical quantification of myocardial blood flow by dynamic PET: A technical perspective.

    PubMed

    Moody, Jonathan B; Lee, Benjamin C; Corbett, James R; Ficaro, Edward P; Murthy, Venkatesh L

    2015-10-01

    A number of exciting advances in PET/CT technology and improvements in methodology have recently converged to enhance the feasibility of routine clinical quantification of myocardial blood flow and flow reserve. Recent promising clinical results are pointing toward an important role for myocardial blood flow in the care of patients. Absolute blood flow quantification can be a powerful clinical tool, but its utility will depend on maintaining precision and accuracy in the face of numerous potential sources of methodological errors. Here we review recent data and highlight the impact of PET instrumentation, image reconstruction, and quantification methods, and we emphasize (82)Rb cardiac PET which currently has the widest clinical application. It will be apparent that more data are needed, particularly in relation to newer PET technologies, as well as clinical standardization of PET protocols and methods. We provide recommendations for the methodological factors considered here. At present, myocardial flow reserve appears to be remarkably robust to various methodological errors; however, with greater attention to and more detailed understanding of these sources of error, the clinical benefits of stress-only blood flow measurement may eventually be more fully realized.

  2. Precise montaging and metric quantification of retinal surface area from ultra-widefield fundus photography and fluorescein angiography.

    PubMed

    Croft, Daniel E; van Hemert, Jano; Wykoff, Charles C; Clifton, David; Verhoek, Michael; Fleming, Alan; Brown, David M

    2014-01-01

    Accurate quantification of retinal surface area from ultra-widefield (UWF) images is challenging due to warping produced when the retina is projected onto a two-dimensional plane for analysis. By accounting for this, the authors sought to precisely montage and accurately quantify retinal surface area in square millimeters. Montages were created using Optos 200Tx (Optos, Dunfermline, U.K.) images taken at different gaze angles. A transformation projected the images to their correct location on a three-dimensional model. Area was quantified with spherical trigonometry. Warping, precision, and accuracy were assessed. Uncorrected, posterior pixels represented up to 79% greater surface area than peripheral pixels. Assessing precision, a standard region was quantified across 10 montages of the same eye (RSD: 0.7%; mean: 408.97 mm(2); range: 405.34-413.87 mm(2)). Assessing accuracy, 50 patients' disc areas were quantified (mean: 2.21 mm(2); SE: 0.06 mm(2)), and the results fell within the normative range. By accounting for warping inherent in UWF images, precise montaging and accurate quantification of retinal surface area in square millimeters were achieved. Copyright 2014, SLACK Incorporated.

  3. Bullet trajectory reconstruction - Methods, accuracy and precision.

    PubMed

    Mattijssen, Erwin J A T; Kerkhoff, Wim

    2016-05-01

    Based on the spatial relation between a primary and secondary bullet defect or on the shape and dimensions of the primary bullet defect, a bullet's trajectory prior to impact can be estimated for a shooting scene reconstruction. The accuracy and precision of the estimated trajectories will vary depending on variables such as, the applied method of reconstruction, the (true) angle of incidence, the properties of the target material and the properties of the bullet upon impact. This study focused on the accuracy and precision of estimated bullet trajectories when different variants of the probing method, ellipse method, and lead-in method are applied on bullet defects resulting from shots at various angles of incidence on drywall, MDF and sheet metal. The results show that in most situations the best performance (accuracy and precision) is seen when the probing method is applied. Only for the lowest angles of incidence the performance was better when either the ellipse or lead-in method was applied. The data provided in this paper can be used to select the appropriate method(s) for reconstruction and to correct for systematic errors (accuracy) and to provide a value of the precision, by means of a confidence interval of the specific measurement. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Improved precision and accuracy in quantifying plutonium isotope ratios by RIMS

    DOE PAGES

    Isselhardt, B. H.; Savina, M. R.; Kucher, A.; ...

    2015-09-01

    Resonance ionization mass spectrometry (RIMS) holds the promise of rapid, isobar-free quantification of actinide isotope ratios in as-received materials (i.e. not chemically purified). Recent progress in achieving this potential using two Pu test materials is presented. RIMS measurements were conducted multiple times over a period of two months on two different Pu solutions deposited on metal surfaces. Measurements were bracketed with a Pu isotopic standard, and yielded absolute accuracies of the measured 240Pu/ 239Pu ratios of 0.7% and 0.58%, with precisions (95% confidence intervals) of 1.49% and 0.91%. In conclusion, the minor isotope 238Pu was also quantified despite the presencemore » of a significant quantity of 238U in the samples.« less

  5. A Note on "Accuracy" and "Precision"

    ERIC Educational Resources Information Center

    Stallings, William M.; Gillmore, Gerald M.

    1971-01-01

    Advocates the use of precision" rather than accuracy" in defining reliability. These terms are consistently differentiated in certain sciences. Review of psychological and measurement literature reveals, however, interchangeable usage of the terms in defining reliability. (Author/GS)

  6. Hardware accuracy counters for application precision and quality feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Paula Rosa Piga, Leonardo; Majumdar, Abhinandan; Paul, Indrani

    Methods, devices, and systems for capturing an accuracy of an instruction executing on a processor. An instruction may be executed on the processor, and the accuracy of the instruction may be captured using a hardware counter circuit. The accuracy of the instruction may be captured by analyzing bits of at least one value of the instruction to determine a minimum or maximum precision datatype for representing the field, and determining whether to adjust a value of the hardware counter circuit accordingly. The representation may be output to a debugger or logfile for use by a developer, or may be outputmore » to a runtime or virtual machine to automatically adjust instruction precision or gating of portions of the processor datapath.« less

  7. Accuracy and Precision of Silicon Based Impression Media for Quantitative Areal Texture Analysis

    PubMed Central

    Goodall, Robert H.; Darras, Laurent P.; Purnell, Mark A.

    2015-01-01

    Areal surface texture analysis is becoming widespread across a diverse range of applications, from engineering to ecology. In many studies silicon based impression media are used to replicate surfaces, and the fidelity of replication defines the quality of data collected. However, while different investigators have used different impression media, the fidelity of surface replication has not been subjected to quantitative analysis based on areal texture data. Here we present the results of an analysis of the accuracy and precision with which different silicon based impression media of varying composition and viscosity replicate rough and smooth surfaces. Both accuracy and precision vary greatly between different media. High viscosity media tested show very low accuracy and precision, and most other compounds showed either the same pattern, or low accuracy and high precision, or low precision and high accuracy. Of the media tested, mid viscosity President Jet Regular Body and low viscosity President Jet Light Body (Coltène Whaledent) are the only compounds to show high levels of accuracy and precision on both surface types. Our results show that data acquired from different impression media are not comparable, supporting calls for greater standardisation of methods in areal texture analysis. PMID:25991505

  8. Accuracy and Precision of Radioactivity Quantification in Nuclear Medicine Images

    PubMed Central

    Frey, Eric C.; Humm, John L.; Ljungberg, Michael

    2012-01-01

    The ability to reliably quantify activity in nuclear medicine has a number of increasingly important applications. Dosimetry for targeted therapy treatment planning or for approval of new imaging agents requires accurate estimation of the activity in organs, tumors, or voxels at several imaging time points. Another important application is the use of quantitative metrics derived from images, such as the standard uptake value commonly used in positron emission tomography (PET), to diagnose and follow treatment of tumors. These measures require quantification of organ or tumor activities in nuclear medicine images. However, there are a number of physical, patient, and technical factors that limit the quantitative reliability of nuclear medicine images. There have been a large number of improvements in instrumentation, including the development of hybrid single-photon emission computed tomography/computed tomography and PET/computed tomography systems, and reconstruction methods, including the use of statistical iterative reconstruction methods, which have substantially improved the ability to obtain reliable quantitative information from planar, single-photon emission computed tomography, and PET images. PMID:22475429

  9. Accuracy assessment of BDS precision orbit determination and the influence analysis of site distribution

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Guo, Jiming; Li, Zhicai; Zhang, Peng; Wu, Junli; Song, Weiwei

    2017-04-01

    BDS precision orbit determination is a key content of the BDS application, but the inadequate ground stations and the poor distribution of the network are the main reasons for the low accuracy of BDS precise orbit determination. In this paper, the BDS precise orbit determination results are obtained by using the IGS MGEX stations and the Chinese national reference stations,the accuracy of orbit determination of GEO, IGSO and MEO is 10.3cm, 2.8cm and 3.2cm, and the radial accuracy is 1.6cm,1.9cm and 1.5cm.The influence of ground reference stations distribution on BDS precise orbit determination is studied. The results show that the Chinese national reference stations contribute significantly to the BDS orbit determination, the overlap precision of GEO/IGSO/MEO satellites were improved by 15.5%, 57.5% and 5.3% respectively after adding the Chinese stations.Finally, the results of ODOP(orbit distribution of precision) and SLR are verified. Key words: BDS precise orbit determination; accuracy assessment;Chinese national reference stations;reference stations distribution;orbit distribution of precision

  10. S-193 scatterometer backscattering cross section precision/accuracy for Skylab 2 and 3 missions

    NASA Technical Reports Server (NTRS)

    Krishen, K.; Pounds, D. J.

    1975-01-01

    Procedures for measuring the precision and accuracy with which the S-193 scatterometer measured the background cross section of ground scenes are described. Homogeneous ground sites were selected, and data from Skylab missions were analyzed. The precision was expressed as the standard deviation of the scatterometer-acquired backscattering cross section. In special cases, inference of the precision of measurement was made by considering the total range from the maximum to minimum of the backscatter measurements within a data segment, rather than the standard deviation. For Skylab 2 and 3 missions a precision better than 1.5 dB is indicated. This procedure indicates an accuracy of better than 3 dB for the Skylab 2 and 3 missions. The estimates of precision and accuracy given in this report are for backscattering cross sections from -28 to 18 dB. Outside this range the precision and accuracy decrease significantly.

  11. Accuracy and precision of 3 intraoral scanners and accuracy of conventional impressions: A novel in vivo analysis method.

    PubMed

    Nedelcu, R; Olsson, P; Nyström, I; Rydén, J; Thor, A

    2018-02-01

    To evaluate a novel methodology using industrial scanners as a reference, and assess in vivo accuracy of 3 intraoral scanners (IOS) and conventional impressions. Further, to evaluate IOS precision in vivo. Four reference-bodies were bonded to the buccal surfaces of upper premolars and incisors in five subjects. After three reference-scans, ATOS Core 80 (ATOS), subjects were scanned three times with three IOS systems: 3M True Definition (3M), CEREC Omnicam (OMNI) and Trios 3 (TRIOS). One conventional impression (IMPR) was taken, 3M Impregum Penta Soft, and poured models were digitized with laboratory scanner 3shape D1000 (D1000). Best-fit alignment of reference-bodies and 3D Compare Analysis was performed. Precision of ATOS and D1000 was assessed for quantitative evaluation and comparison. Accuracy of IOS and IMPR were analyzed using ATOS as reference. Precision of IOS was evaluated through intra-system comparison. Precision of ATOS reference scanner (mean 0.6 μm) and D1000 (mean 0.5 μm) was high. Pairwise multiple comparisons of reference-bodies located in different tooth positions displayed a statistically significant difference of accuracy between two scanner-groups: 3M and TRIOS, over OMNI (p value range 0.0001 to 0.0006). IMPR did not show any statistically significant difference to IOS. However, deviations of IOS and IMPR were within a similar magnitude. No statistical difference was found for IOS precision. The methodology can be used for assessing accuracy of IOS and IMPR in vivo in up to five units bilaterally from midline. 3M and TRIOS had a higher accuracy than OMNI. IMPR overlapped both groups. Intraoral scanners can be used as a replacement for conventional impressions when restoring up to ten units without extended edentulous spans. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Accuracy of Rhenium-188 SPECT/CT activity quantification for applications in radionuclide therapy using clinical reconstruction methods.

    PubMed

    Esquinas, Pedro L; Uribe, Carlos F; Gonzalez, M; Rodríguez-Rodríguez, Cristina; Häfeli, Urs O; Celler, Anna

    2017-07-20

    The main applications of 188 Re in radionuclide therapies include trans-arterial liver radioembolization and palliation of painful bone-metastases. In order to optimize 188 Re therapies, the accurate determination of radiation dose delivered to tumors and organs at risk is required. Single photon emission computed tomography (SPECT) can be used to perform such dosimetry calculations. However, the accuracy of dosimetry estimates strongly depends on the accuracy of activity quantification in 188 Re images. In this study, we performed a series of phantom experiments aiming to investigate the accuracy of activity quantification for 188 Re SPECT using high-energy and medium-energy collimators. Objects of different shapes and sizes were scanned in Air, non-radioactive water (Cold-water) and water with activity (Hot-water). The ordered subset expectation maximization algorithm with clinically available corrections (CT-based attenuation, triple-energy window (TEW) scatter and resolution recovery was used). For high activities, the dead-time corrections were applied. The accuracy of activity quantification was evaluated using the ratio of the reconstructed activity in each object to this object's true activity. Each object's activity was determined with three segmentation methods: a 1% fixed threshold (for cold background), a 40% fixed threshold and a CT-based segmentation. Additionally, the activity recovered in the entire phantom, as well as the average activity concentration of the phantom background were compared to their true values. Finally, Monte-Carlo simulations of a commercial [Formula: see text]-camera were performed to investigate the accuracy of the TEW method. Good quantification accuracy (errors  <10%) was achieved for the entire phantom, the hot-background activity concentration and for objects in cold background segmented with a 1% threshold. However, the accuracy of activity quantification for objects segmented with 40% threshold or CT-based methods

  13. Mineral element analyses of switchgrass biomass: comparison of the accuracy and precision of laboratories

    USDA-ARS?s Scientific Manuscript database

    Mineral concentration of plant biomass can affect its use in thermal conversion to energy. The objective of this study was to compare the precision and accuracy of university and private laboratories that conduct mineral analyses of plant biomass on a fee basis. Accuracy and precision of the laborat...

  14. Protein quantification using a cleavable reporter peptide.

    PubMed

    Duriez, Elodie; Trevisiol, Stephane; Domon, Bruno

    2015-02-06

    Peptide and protein quantification based on isotope dilution and mass spectrometry analysis are widely employed for the measurement of biomarkers and in system biology applications. The accuracy and reliability of such quantitative assays depend on the quality of the stable-isotope labeled standards. Although the quantification using stable-isotope labeled peptides is precise, the accuracy of the results can be severely biased by the purity of the internal standards, their stability and formulation, and the determination of their concentration. Here we describe a rapid and cost-efficient method to recalibrate stable isotope labeled peptides in a single LC-MS analysis. The method is based on the equimolar release of a protein reference peptide (used as surrogate for the protein of interest) and a universal reporter peptide during the trypsinization of a concatenated polypeptide standard. The quality and accuracy of data generated with such concatenated polypeptide standards are highlighted by the quantification of two clinically important proteins in urine samples and compared with results obtained with conventional stable isotope labeled reference peptides. Furthermore, the application of the UCRP standards in complex samples is described.

  15. Influence of Waveform Characteristics on LiDAR Ranging Accuracy and Precision

    PubMed Central

    Yang, Bingwei; Xie, Xinhao; Li, Duan

    2018-01-01

    Time of flight (TOF) based light detection and ranging (LiDAR) is a technology for calculating distance between start/stop signals of time of flight. In lab-built LiDAR, two ranging systems for measuring flying time between start/stop signals include time-to-digital converter (TDC) that counts time between trigger signals and analog-to-digital converter (ADC) that processes the sampled start/stop pulses waveform for time estimation. We study the influence of waveform characteristics on range accuracy and precision of two kinds of ranging system. Comparing waveform based ranging (WR) with analog discrete return system based ranging (AR), a peak detection method (WR-PK) shows the best ranging performance because of less execution time, high ranging accuracy, and stable precision. Based on a novel statistic mathematical method maximal information coefficient (MIC), WR-PK precision has a high linear relationship with the received pulse width standard deviation. Thus keeping the received pulse width of measuring a constant distance as stable as possible can improve ranging precision. PMID:29642639

  16. Commissioning Procedures for Mechanical Precision and Accuracy in a Dedicated LINAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballesteros-Zebadua, P.; Larrga-Gutierrez, J. M.; Garcia-Garduno, O. A.

    2008-08-11

    Mechanical precision measurements are fundamental procedures for the commissioning of a dedicated LINAC. At our Radioneurosurgery Unit, these procedures can be suitable as quality assurance routines that allow the verification of the equipment geometrical accuracy and precision. In this work mechanical tests were performed for gantry and table rotation, obtaining mean associated uncertainties of 0.3 mm and 0.71 mm, respectively. Using an anthropomorphic phantom and a series of localized surface markers, isocenter accuracy showed to be smaller than 0.86 mm for radiosurgery procedures and 0.95 mm for fractionated treatments with mask. All uncertainties were below tolerances. The highest contribution tomore » mechanical variations is due to table rotation, so it is important to correct variations using a localization frame with printed overlays. Mechanical precision knowledge would allow to consider the statistical errors in the treatment planning volume margins.« less

  17. A Comparative Study of Precise Point Positioning (PPP) Accuracy Using Online Services

    NASA Astrophysics Data System (ADS)

    Malinowski, Marcin; Kwiecień, Janusz

    2016-12-01

    Precise Point Positioning (PPP) is a technique used to determine the position of receiver antenna without communication with the reference station. It may be an alternative solution to differential measurements, where maintaining a connection with a single RTK station or a regional network of reference stations RTN is necessary. This situation is especially common in areas with poorly developed infrastructure of ground stations. A lot of research conducted so far on the use of the PPP technique has been concerned about the development of entire day observation sessions. However, this paper presents the results of a comparative analysis of accuracy of absolute determination of position from observations which last between 1 to 7 hours with the use of four permanent services which execute calculations with PPP technique such as: Automatic Precise Positioning Service (APPS), Canadian Spatial Reference System Precise Point Positioning (CSRS-PPP), GNSS Analysis and Positioning Software (GAPS) and magicPPP - Precise Point Positioning Solution (magicGNSS). On the basis of acquired results of measurements, it can be concluded that at least two-hour long measurements allow acquiring an absolute position with an accuracy of 2-4 cm. An evaluation of the impact on the accuracy of simultaneous positioning of three points test network on the change of the horizontal distance and the relative height difference between measured triangle vertices was also conducted. Distances and relative height differences between points of the triangular test network measured with a laser station Leica TDRA6000 were adopted as references. The analyses of results show that at least two hours long measurement sessions can be used to determine the horizontal distance or the difference in height with an accuracy of 1-2 cm. Rapid products employed in calculations conducted with PPP technique reached the accuracy of determining coordinates on a close level as in elaborations which employ Final products.

  18. Volumetric quantification of lung nodules in CT with iterative reconstruction (ASiR and MBIR).

    PubMed

    Chen, Baiyu; Barnhart, Huiman; Richard, Samuel; Robins, Marthony; Colsher, James; Samei, Ehsan

    2013-11-01

    Volume quantifications of lung nodules with multidetector computed tomography (CT) images provide useful information for monitoring nodule developments. The accuracy and precision of the volume quantification, however, can be impacted by imaging and reconstruction parameters. This study aimed to investigate the impact of iterative reconstruction algorithms on the accuracy and precision of volume quantification with dose and slice thickness as additional variables. Repeated CT images were acquired from an anthropomorphic chest phantom with synthetic nodules (9.5 and 4.8 mm) at six dose levels, and reconstructed with three reconstruction algorithms [filtered backprojection (FBP), adaptive statistical iterative reconstruction (ASiR), and model based iterative reconstruction (MBIR)] into three slice thicknesses. The nodule volumes were measured with two clinical software (A: Lung VCAR, B: iNtuition), and analyzed for accuracy and precision. Precision was found to be generally comparable between FBP and iterative reconstruction with no statistically significant difference noted for different dose levels, slice thickness, and segmentation software. Accuracy was found to be more variable. For large nodules, the accuracy was significantly different between ASiR and FBP for all slice thicknesses with both software, and significantly different between MBIR and FBP for 0.625 mm slice thickness with Software A and for all slice thicknesses with Software B. For small nodules, the accuracy was more similar between FBP and iterative reconstruction, with the exception of ASIR vs FBP at 1.25 mm with Software A and MBIR vs FBP at 0.625 mm with Software A. The systematic difference between the accuracy of FBP and iterative reconstructions highlights the importance of extending current segmentation software to accommodate the image characteristics of iterative reconstructions. In addition, a calibration process may help reduce the dependency of accuracy on reconstruction algorithms

  19. Characterizing Accuracy and Precision of Glucose Sensors and Meters

    PubMed Central

    2014-01-01

    There is need for a method to describe precision and accuracy of glucose measurement as a smooth continuous function of glucose level rather than as a step function for a few discrete ranges of glucose. We propose and illustrate a method to generate a “Glucose Precision Profile” showing absolute relative deviation (ARD) and /or %CV versus glucose level to better characterize measurement errors at any glucose level. We examine the relationship between glucose measured by test and comparator methods using linear regression. We examine bias by plotting deviation = (test – comparator method) versus glucose level. We compute the deviation, absolute deviation (AD), ARD, and standard deviation (SD) for each data pair. We utilize curve smoothing procedures to minimize the effects of random sampling variability to facilitate identification and display of the underlying relationships between ARD or %CV and glucose level. AD, ARD, SD, and %CV display smooth continuous relationships versus glucose level. Estimates of MARD and %CV are subject to relatively large errors in the hypoglycemic range due in part to a markedly nonlinear relationship with glucose level and in part to the limited number of observations in the hypoglycemic range. The curvilinear relationships of ARD and %CV versus glucose level are helpful when characterizing and comparing the precision and accuracy of glucose sensors and meters. PMID:25037194

  20. Accuracy and precision of loadsol® insole force-sensors for the quantification of ground reaction force-based biomechanical running parameters.

    PubMed

    Seiberl, Wolfgang; Jensen, Elisabeth; Merker, Josephine; Leitel, Marco; Schwirtz, Ansgar

    2018-05-29

    Force plates represent the "gold standard" in measuring running kinetics to predict performance or to identify the sources of running-related injuries. As these measurements are generally limited to laboratory analyses, wireless high-quality sensors for measuring in the field are needed. This work analysed the accuracy and precision of a new wireless insole forcesensor for quantifying running-related kinetic parameters. Vertical ground reaction force (GRF) was simultaneously measured with pit-mounted force plates (1 kHz) and loadsol ® sensors (100 Hz) under unshod forefoot and rearfoot running-step conditions. GRF data collections were repeated four times, each separated by 30 min treadmill running, to test influence of extended use. A repeated-measures ANOVA was used to identify differences between measurement devices. Additionally, mean bias and Bland-Altman limits of agreement (LoA) were calculated. We found a significant difference (p < .05) in ground contact time, peak force, and force rate, while there was no difference in parameters impulse, time to peak, and negative force rate. There was no influence of time point of measurement. The mean bias of ground contact time, impulse, peak force, and time to peak ranged between 0.6% and 3.4%, demonstrating high accuracy of loadsol ® devices for these parameters. For these same parameters, the LoA analysis showed that 95% of all measurement differences between insole and force plate measurements were less than 12%, demonstrating high precision of the sensors. However, highly dynamic behaviour of GRF, such as force rate, is not yet sufficiently resolved by the insole devices, which is likely explained by the low sampling rate.

  1. Students as Toolmakers: Refining the Results in the Accuracy and Precision of a Trigonometric Activity

    ERIC Educational Resources Information Center

    Igoe, D. P.; Parisi, A. V.; Wagner, S.

    2017-01-01

    Smartphones used as tools provide opportunities for the teaching of the concepts of accuracy and precision and the mathematical concept of arctan. The accuracy and precision of a trigonometric experiment using entirely mechanical tools is compared to one using electronic tools, such as a smartphone clinometer application and a laser pointer. This…

  2. StatSTEM: An efficient approach for accurate and precise model-based quantification of atomic resolution electron microscopy images.

    PubMed

    De Backer, A; van den Bos, K H W; Van den Broek, W; Sijbers, J; Van Aert, S

    2016-12-01

    An efficient model-based estimation algorithm is introduced to quantify the atomic column positions and intensities from atomic resolution (scanning) transmission electron microscopy ((S)TEM) images. This algorithm uses the least squares estimator on image segments containing individual columns fully accounting for overlap between neighbouring columns, enabling the analysis of a large field of view. For this algorithm, the accuracy and precision with which measurements for the atomic column positions and scattering cross-sections from annular dark field (ADF) STEM images can be estimated, has been investigated. The highest attainable precision is reached even for low dose images. Furthermore, the advantages of the model-based approach taking into account overlap between neighbouring columns are highlighted. This is done for the estimation of the distance between two neighbouring columns as a function of their distance and for the estimation of the scattering cross-section which is compared to the integrated intensity from a Voronoi cell. To provide end-users this well-established quantification method, a user friendly program, StatSTEM, is developed which is freely available under a GNU public license. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. [Precision and accuracy of "a pocket" pulse oximeter in Mexico City].

    PubMed

    Torre-Bouscoulet, Luis; Chávez-Plascencia, Elizabeth; Vázquez-García, Juan Carlos; Pérez-Padilla, Rogelio

    2006-01-01

    Pulse oximeters are frequently used in the clinical practice and we must known their precision and accuracy. The objective was to evaluate the precision and accuracy of a "pocket" pulse oximeter at an altitude of 2,240 m above sea level. We tested miniature pulse oximeters (Onyx 9,500, Nonin Finger Pulse Oximeter) in 96 patients sent to the pulmonary laboratory for an arterial blood sample. Patients were tested with 5 pulse oximeters placed in each of the fingers of the hand oposite to that used for the arterial puncture. The gold standard was the oxygen saturation of the arterial blood sample. Blood samples had SaO2 of 87.2 +/- 11.0 (between 42.2 and 97.9%). Pulse oximeters had a mean error of 0.28 +/- 3.1%. SaO2 = (1.204 x SpO2) - 17.45966 (r = 0.92, p < 0.0001). Intraclass correlation coefficient between each of five pulse oximeters against the arterial blood standard ranged between 0.87 and 0.99. HbCO (2.4 +/- 0.6) did not affect the accuracy. The miniature oximeter Nonin is precise and accurate at 2,240 m of altitude. The observed levels of HbCO did not affect the performance of the equipment. The oximeter good performance, small size and low cost enhances its clinical usefulness.

  4. Compositional Solution Space Quantification for Probabilistic Software Analysis

    NASA Technical Reports Server (NTRS)

    Borges, Mateus; Pasareanu, Corina S.; Filieri, Antonio; d'Amorim, Marcelo; Visser, Willem

    2014-01-01

    Probabilistic software analysis aims at quantifying how likely a target event is to occur during program execution. Current approaches rely on symbolic execution to identify the conditions to reach the target event and try to quantify the fraction of the input domain satisfying these conditions. Precise quantification is usually limited to linear constraints, while only approximate solutions can be provided in general through statistical approaches. However, statistical approaches may fail to converge to an acceptable accuracy within a reasonable time. We present a compositional statistical approach for the efficient quantification of solution spaces for arbitrarily complex constraints over bounded floating-point domains. The approach leverages interval constraint propagation to improve the accuracy of the estimation by focusing the sampling on the regions of the input domain containing the sought solutions. Preliminary experiments show significant improvement on previous approaches both in results accuracy and analysis time.

  5. The Plus or Minus Game--Teaching Estimation, Precision, and Accuracy

    ERIC Educational Resources Information Center

    Forringer, Edward R.; Forringer, Richard S.; Forringer, Daniel S.

    2016-01-01

    A quick survey of physics textbooks shows that many (Knight, Young, and Serway for example) cover estimation, significant digits, precision versus accuracy, and uncertainty in the first chapter. Estimation "Fermi" questions are so useful that there has been a column dedicated to them in "TPT" (Larry Weinstein's "Fermi…

  6. Accuracy and precision of occlusal contacts of stereolithographic casts mounted by digital interocclusal registrations.

    PubMed

    Krahenbuhl, Jason T; Cho, Seok-Hwan; Irelan, Jon; Bansal, Naveen K

    2016-08-01

    Little peer-reviewed information is available regarding the accuracy and precision of the occlusal contact reproduction of digitally mounted stereolithographic casts. The purpose of this in vitro study was to evaluate the accuracy and precision of occlusal contacts among stereolithographic casts mounted by digital occlusal registrations. Four complete anatomic dentoforms were arbitrarily mounted on a semi-adjustable articulator in maximal intercuspal position and served as the 4 different simulated patients (SP). A total of 60 digital impressions and digital interocclusal registrations were made with a digital intraoral scanner to fabricate 15 sets of mounted stereolithographic (SLA) definitive casts for each dentoform. After receiving a total of 60 SLA casts, polyvinyl siloxane (PVS) interocclusal records were made for each set. The occlusal contacts for each set of SLA casts were measured by recording the amount of light transmitted through the interocclusal records. To evaluate the accuracy between the SP and their respective SLA casts, the areas of actual contact (AC) and near contact (NC) were calculated. For precision analysis, the coefficient of variation (CoV) was used. The data was analyzed with t tests for accuracy and the McKay and Vangel test for precision (α=.05). The accuracy analysis showed a statistically significant difference between the SP and the SLA cast of each dentoform (P<.05). For the AC in all dentoforms, a significant increase was found in the areas of actual contact of SLA casts compared with the contacts present in the SP (P<.05). Conversely, for the NC in all dentoforms, a significant decrease was found in the occlusal contact areas of the SLA casts compared with the contacts in the SP (P<.05). The precision analysis demonstrated the different CoV values between AC (5.8 to 8.8%) and NC (21.4 to 44.6%) of digitally mounted SLA casts, indicating that the overall precision of the SLA cast was low. For the accuracy evaluation

  7. [Assessment of precision and accuracy of digital surface photogrammetry with the DSP 400 system].

    PubMed

    Krimmel, M; Kluba, S; Dietz, K; Reinert, S

    2005-03-01

    The objective of the present study was to evaluate the precision and accuracy of facial anthropometric measurements obtained through digital 3-D surface photogrammetry with the DSP 400 system in comparison to traditional 2-D photogrammetry. Fifty plaster casts of cleft infants were imaged and 21 standard anthropometric measurements were obtained. For precision assessment the measurements were performed twice in a subsample. Accuracy was determined by comparison of direct measurements and indirect 2-D and 3-D image measurements. Precision of digital surface photogrammetry was almost as good as direct anthropometry and clearly better than 2-D photogrammetry. Measurements derived from 3-D images showed better congruence to direct measurements than from 2-D photos. Digital surface photogrammetry with the DSP 400 system is sufficiently precise and accurate for craniofacial anthropometric examinations.

  8. Precision and accuracy of 3D lower extremity residua measurement systems

    NASA Astrophysics Data System (ADS)

    Commean, Paul K.; Smith, Kirk E.; Vannier, Michael W.; Hildebolt, Charles F.; Pilgram, Thomas K.

    1996-04-01

    Accurate and reproducible geometric measurement of lower extremity residua is required for custom prosthetic socket design. We compared spiral x-ray computed tomography (SXCT) and 3D optical surface scanning (OSS) with caliper measurements and evaluated the precision and accuracy of each system. Spiral volumetric CT scanned surface and subsurface information was used to make external and internal measurements, and finite element models (FEMs). SXCT and OSS were used to measure lower limb residuum geometry of 13 below knee (BK) adult amputees. Six markers were placed on each subject's BK residuum and corresponding plaster casts and distance measurements were taken to determine precision and accuracy for each system. Solid models were created from spiral CT scan data sets with the prosthesis in situ under different loads using p-version finite element analysis (FEA). Tissue properties of the residuum were estimated iteratively and compared with values taken from the biomechanics literature. The OSS and SXCT measurements were precise within 1% in vivo and 0.5% on plaster casts, and accuracy was within 3.5% in vivo and 1% on plaster casts compared with caliper measures. Three-dimensional optical surface and SXCT imaging systems are feasible for capturing the comprehensive 3D surface geometry of BK residua, and provide distance measurements statistically equivalent to calipers. In addition, SXCT can readily distinguish internal soft tissue and bony structure of the residuum. FEM can be applied to determine tissue material properties interactively using inverse methods.

  9. Measuring changes in Plasmodium falciparum transmission: Precision, accuracy and costs of metrics

    PubMed Central

    Tusting, Lucy S.; Bousema, Teun; Smith, David L.; Drakeley, Chris

    2016-01-01

    As malaria declines in parts of Africa and elsewhere, and as more countries move towards elimination, it is necessary to robustly evaluate the effect of interventions and control programmes on malaria transmission. To help guide the appropriate design of trials to evaluate transmission-reducing interventions, we review eleven metrics of malaria transmission, discussing their accuracy, precision, collection methods and costs, and presenting an overall critique. We also review the non-linear scaling relationships between five metrics of malaria transmission; the entomological inoculation rate, force of infection, sporozoite rate, parasite rate and the basic reproductive number, R0. Our review highlights that while the entomological inoculation rate is widely considered the gold standard metric of malaria transmission and may be necessary for measuring changes in transmission in highly endemic areas, it has limited precision and accuracy and more standardised methods for its collection are required. In areas of low transmission, parasite rate, sero-conversion rates and molecular metrics including MOI and mFOI may be most appropriate. When assessing a specific intervention, the most relevant effects will be detected by examining the metrics most directly affected by that intervention. Future work should aim to better quantify the precision and accuracy of malaria metrics and to improve methods for their collection. PMID:24480314

  10. S193 radiometer brightness temperature precision/accuracy for SL2 and SL3

    NASA Technical Reports Server (NTRS)

    Pounds, D. J.; Krishen, K.

    1975-01-01

    The precision and accuracy with which the S193 radiometer measured the brightness temperature of ground scenes is investigated. Estimates were derived from data collected during Skylab missions. Homogeneous ground sites were selected and S193 radiometer brightness temperature data analyzed. The precision was expressed as the standard deviation of the radiometer acquired brightness temperature. Precision was determined to be 2.40 K or better depending on mode and target temperature.

  11. Integrated multi-ISE arrays with improved sensitivity, accuracy and precision

    NASA Astrophysics Data System (ADS)

    Wang, Chunling; Yuan, Hongyan; Duan, Zhijuan; Xiao, Dan

    2017-03-01

    Increasing use of ion-selective electrodes (ISEs) in the biological and environmental fields has generated demand for high-sensitivity ISEs. However, improving the sensitivities of ISEs remains a challenge because of the limit of the Nernstian slope (59.2/n mV). Here, we present a universal ion detection method using an electronic integrated multi-electrode system (EIMES) that bypasses the Nernstian slope limit of 59.2/n mV, thereby enabling substantial enhancement of the sensitivity of ISEs. The results reveal that the response slope is greatly increased from 57.2 to 1711.3 mV, 57.3 to 564.7 mV and 57.7 to 576.2 mV by electronic integrated 30 Cl- electrodes, 10 F- electrodes and 10 glass pH electrodes, respectively. Thus, a tiny change in the ion concentration can be monitored, and correspondingly, the accuracy and precision are substantially improved. The EIMES is suited for all types of potentiometric sensors and may pave the way for monitoring of various ions with high accuracy and precision because of its high sensitivity.

  12. Accuracy in Dental Medicine, A New Way to Measure Trueness and Precision

    PubMed Central

    Ender, Andreas; Mehl, Albert

    2014-01-01

    Reference scanners are used in dental medicine to verify a lot of procedures. The main interest is to verify impression methods as they serve as a base for dental restorations. The current limitation of many reference scanners is the lack of accuracy scanning large objects like full dental arches, or the limited possibility to assess detailed tooth surfaces. A new reference scanner, based on focus variation scanning technique, was evaluated with regards to highest local and general accuracy. A specific scanning protocol was tested to scan original tooth surface from dental impressions. Also, different model materials were verified. The results showed a high scanning accuracy of the reference scanner with a mean deviation of 5.3 ± 1.1 µm for trueness and 1.6 ± 0.6 µm for precision in case of full arch scans. Current dental impression methods showed much higher deviations (trueness: 20.4 ± 2.2 µm, precision: 12.5 ± 2.5 µm) than the internal scanning accuracy of the reference scanner. Smaller objects like single tooth surface can be scanned with an even higher accuracy, enabling the system to assess erosive and abrasive tooth surface loss. The reference scanner can be used to measure differences for a lot of dental research fields. The different magnification levels combined with a high local and general accuracy can be used to assess changes of single teeth or restorations up to full arch changes. PMID:24836007

  13. Accuracy and precision evaluation of seven self-monitoring blood glucose systems.

    PubMed

    Kuo, Chih-Yi; Hsu, Cheng-Teng; Ho, Cheng-Shiao; Su, Ting-En; Wu, Ming-Hsun; Wang, Chau-Jong

    2011-05-01

    Self-monitoring blood glucose (SMBG) systems play a critical role in management of diabetes. SMBG systems should at least meet the minimal requirement of the World Health Organization's ISO 15197:2003. For tight glycemic control, a tighter accuracy requirement is needed. Seven SMBG systems were evaluated for accuracy and precision: Bionime Rightest(™) GM550 (Bionime Corp., Dali City, Taiwan), Accu-Chek(®) Performa (Roche Diagnostics, Indianapolis, IN), OneTouch(®) Ultra(®)2 (LifeScan Inc., Milpitas, CA), MediSense(®) Optium(™) Xceed (Abbott Diabetes Care Inc., Alameda, CA), Medisafe (TERUMO Corp., Tokyo, Japan), Fora(®) TD4227 (Taidac Technology Corp., Wugu Township, Taiwan), and Ascensia Contour(®) (Bayer HealthCare LLC, Mishawaka, IN). The 107 participants (44 men and 63 women) were between 23 and 91 years old. The analytical results of seven SMBG systems were compared with those of plasma analyzed with the hexokinase method (Olympus AU640, Olympus America Inc., Center Valley, PA). The imprecision of the seven blood glucose meters ranged from 1.1% to 4.7%. Three of the seven blood glucose meters (42.9%) fulfilled the minimum accuracy criteria of ISO 15197:2003. The mean absolute relative error value for each blood glucose meter was calculated and ranged from 6.5% to 12.0%. More than 40% of evaluated SMBG systems meet the minimal accuracy criteria requirement of ISO 15197:2003. However, considering tighter criteria for accuracy of ±15%, only the Bionime Rightest GM550 meets this requirement. Because SMBG systems play a critical role in management of diabetes, manufacturers have to strive to improve accuracy and precision and to ensure the good quality of blood glucose meters and test strips.

  14. Accuracy Assessment of Professional Grade Unmanned Systems for High Precision Airborne Mapping

    NASA Astrophysics Data System (ADS)

    Mostafa, M. M. R.

    2017-08-01

    Recently, sophisticated multi-sensor systems have been implemented on-board modern Unmanned Aerial Systems. This allows for producing a variety of mapping products for different mapping applications. The resulting accuracies match the traditional well engineered manned systems. This paper presents the results of a geometric accuracy assessment project for unmanned systems equipped with multi-sensor systems for direct georeferencing purposes. There are a number of parameters that either individually or collectively affect the quality and accuracy of a final airborne mapping product. This paper focuses on identifying and explaining these parameters and their mutual interaction and correlation. Accuracy Assessment of the final ground object positioning accuracy is presented through real-world 8 flight missions that were flown in Quebec, Canada. The achievable precision of map production is addressed in some detail.

  15. A Method for Assessing the Accuracy of a Photogrammetry System for Precision Deployable Structures

    NASA Technical Reports Server (NTRS)

    Moore, Ashley

    2005-01-01

    The measurement techniques used to validate analytical models of large deployable structures are an integral Part of the technology development process and must be precise and accurate. Photogrammetry and videogrammetry are viable, accurate, and unobtrusive methods for measuring such large Structures. Photogrammetry uses Software to determine the three-dimensional position of a target using camera images. Videogrammetry is based on the same principle, except a series of timed images are analyzed. This work addresses the accuracy of a digital photogrammetry system used for measurement of large, deployable space structures at JPL. First, photogrammetry tests are performed on a precision space truss test article, and the images are processed using Photomodeler software. The accuracy of the Photomodeler results is determined through, comparison with measurements of the test article taken by an external testing group using the VSTARS photogrammetry system. These two measurements are then compared with Australis photogrammetry software that simulates a measurement test to predict its accuracy. The software is then used to study how particular factors, such as camera resolution and placement, affect the system accuracy to help design the setup for the videogrammetry system that will offer the highest level of accuracy for measurement of deploying structures.

  16. Principles of operation, accuracy and precision of an Eye Surface Profiler.

    PubMed

    Iskander, D Robert; Wachel, Pawel; Simpson, Patrick N D; Consejo, Alejandra; Jesus, Danilo A

    2016-05-01

    To introduce a newly developed instrument for measuring the topography of the anterior eye, provide principles of its operation and to assess its accuracy and precision. The Eye Surface Profiler is a new technology based on Fourier transform profilometry for measuring the anterior eye surface encompassing the corneo-scleral area. Details of technical principles of operation are provided for the particular case of sequential double fringe projection. Technical limits of accuracy have been assessed for several key parameters such as the carrier frequency, image quantisation level, sensor size, carrier frequency inaccuracy, and level and type of noise. Further, results from both artificial test surfaces as well as real eyes are used to assess precision and accuracy of the device (here benchmarked against one of popular Placido disk videokeratoscopes). Technically, the Eye Surface Profiler accuracy can reach levels below 1 μm for a range of considered key parameters. For the unit tested and using calibrated artificial surfaces, the accuracy of measurement (in terms of RMS error) was below 10 μm for a central measurement area of 8 mm diameter and below 40 μm for an extended measurement area of 16 mm. In some cases, the error reached levels of up to 200 μm at the very periphery of the measured surface (up to 20 mm). The SimK estimates of the test surfaces from the Eye Surface Profiler were in close agreement with those from a Placido disk videokeratoscope with differences no greater than ±0.1 D. For real eyes, the benchmarked accuracy was within ±0.5D for both the spherical and cylindrical SimK components. The Eye Surface Profiler can successfully measure the topography of the entire anterior eye including the cornea, limbus and sclera. It has a great potential to become an optometry clinical tool that could substitute the currently used videokeratoscopes and provide a high quality corneo-scleral topography. © 2016 The Authors Ophthalmic & Physiological

  17. Quantification of anti-Leishmania antibodies in saliva of dogs.

    PubMed

    Cantos-Barreda, Ana; Escribano, Damián; Bernal, Luis J; Cerón, José J; Martínez-Subiela, Silvia

    2017-08-15

    Detection of serum anti-Leishmania antibodies by quantitative or qualitative techniques has been the most used method to diagnose Canine Leishmaniosis (CanL). Nevertheless, saliva may represent an alternative to blood because it is easy to collect, painless and non-invasive in comparison with serum. In this study, two time-resolved immunofluorometric assays (TR-IFMAs) for quantification of anti-Leishmania IgG2 and IgA antibodies in saliva were developed and validated and their ability to distinguish Leishmania-seronegative from seropositive dogs was evaluated. The analytical study was performed by evaluation of assay precision, sensitivity and accuracy. In addition, serum from 48 dogs (21 Leishmania-seropositive and 27 Leishmania-seronegative) were analyzed by TR-IFMAs. The assays were precise, with an intra- and inter-assay coefficients of variation lower than 11%, and showed high level of accuracy, as determined by linearity under dilution (R 2 =0.99) and recovery tests (>88.60%). Anti-Leishmania IgG2 antibodies in saliva were significantly higher in the seropositive group compared with the seronegative (p<0.0001), whereas no significant differences for anti-Leishmania IgA antibodies between both groups were observed. Furthermore, TR-IFMA for quantification of anti-Leishmania IgG2 antibodies in saliva showed higher differences between seropositive and seronegative dogs than the commercial assay used in serum. In conclusion, TR-IFMAs developed may be used to quantify anti-Leishmania IgG2 and IgA antibodies in canine saliva with an adequate precision, analytical sensitivity and accuracy. Quantification of anti-Leishmania IgG2 antibodies in saliva could be potentially used to evaluate the humoral response in CanL. However, IgA in saliva seemed not to have diagnostic value for this disease. For future studies, it would be desirable to evaluate the ability of the IgG2 assay to detect dogs with subclinical disease or with low antibody titers in serum and also to study

  18. Precision, accuracy, and efficiency of four tools for measuring soil bulk density or strength.

    Treesearch

    Richard E. Miller; John Hazard; Steven Howes

    2001-01-01

    Monitoring soil compaction is time consuming. A desire for speed and lower costs, however, must be balanced with the appropriate precision and accuracy required of the monitoring task. We compared three core samplers and a cone penetrometer for measuring soil compaction after clearcut harvest on a stone-free and a stony soil. Precision (i.e., consistency) of each tool...

  19. Effect of cleaning status on accuracy and precision of oxygen flowmeters of various ages.

    PubMed

    Fissekis, Stephanie; Hodgson, David S; Bello, Nora M

    2017-07-01

    To evaluate oxygen flowmeters for accuracy and precision, assess the effects of cleaning and assess conformity to the American Society for Testing Materials (ASTM) standards. Experimental study. The flow of oxygen flowmeters from 31 anesthesia machines aged 1-45 years was measured before and after cleaning using a volumetric flow analyzer set at 0.5, 1.0, 2.0, 3.0, and 4.0 L minute -1 . A general linear mixed models approach was used to assess flow accuracy and precision. Flowmeters 1 year of age delivered accurate mean oxygen flows at all settings regardless of cleaning status. Flowmeters ≥5 years of age underdelivered at flows of 3.0 and 4.0 L minute -1 . Flowmeters ≥12 years underdelivered at flows of 2.0, 3.0 and 4.0 L minute -1 prior to cleaning. There was no evidence of any beneficial effect of cleaning on accuracy of flowmeters 5-12 years of age (p > 0.22), but the accuracy of flowmeters ≥15 years of age was improved by cleaning (p < 0.05). Regardless of age, cleaning increased precision, decreasing flow variability by approximately 17%. Nine of 31 uncleaned flowmeters did not meet ASTM standards. After cleaning, a different set of nine flowmeters did not meet standards, including three that had met standards prior to cleaning. Older flowmeters were more likely to underdeliver oxygen, especially at higher flows. Regardless of age, cleaning decreased flow variability, improving precision. However, flowmeters still may fail to meet ASTM standards, regardless of cleaning status. Cleaning anesthesia machine oxygen flowmeters improved precision for all tested machines and partially corrected inaccuracies in flowmeters ≥15 years old. A notable proportion of flowmeters did not meet ASTM standards. Cleaning did not ensure that they subsequently conformed to ASTM standards. We recommend annual flow output validation to identify whether flowmeters are acceptable for continued clinical use. Copyright © 2017 Association of Veterinary Anaesthetists and American

  20. Accuracy and precision of two indirect methods for estimating canopy fuels

    Treesearch

    Abran Steele-Feldman; Elizabeth Reinhardt; Russell A. Parsons

    2006-01-01

    We compared the accuracy and precision of digital hemispherical photography and the LI-COR LAI-2000 plant canopy analyzer as predictors of canopy fuels. We collected data on 12 plots in western Montana under a variety of lighting and sky conditions, and used a variety of processing methods to compute estimates. Repeated measurements from each method displayed...

  1. Precision and accuracy of luminescence lifetime-based phosphor thermometry: A case study of Eu(III):YSZ

    NASA Astrophysics Data System (ADS)

    Heeg, B.; Jenkins, T. P.

    2013-09-01

    Laser induced phosphor thermometry as a reliable technique requires an analysis of factors controlling or contributing to the precision and accuracy of a measurement. In this paper, we discuss several critical design parameters in the development of luminescence lifetime-based phosphor thermometry instrumentation for use at elevated temperatures such as encountered in hot sections of gas turbine engines. As precision is predominantly governed by signal and background photon shot noise and detector noise, a brief summary is presented of how these noise contributions may affect the measurement. Accuracy, on the other hand, is governed by a range of effects including, but not limited to, detector response characteristics, laser-induced effects, the photo-physics of the sensor materials, and also the method of data reduction. The various possible outcomes of measurement precision and accuracy are discussed with luminescence lifetime measurements on Eu(III):YSZ sensor coatings.

  2. Precision and accuracy of manual water-level measurements taken in the Yucca Mountain area, Nye County, Nevada, 1988-90

    USGS Publications Warehouse

    Boucher, M.S.

    1994-01-01

    Water-level measurements have been made in deep boreholes in the Yucca Mountain area, Nye County, Nevada, since 1983 in support of the U.S. Department of Energy's Yucca Mountain Project, which is an evaluation of the area to determine its suitability as a potential storage area for high-level nuclear waste. Water-level measurements were taken either manually, using various water-level measuring equipment such as steel tapes, or they were taken continuously, using automated data recorders and pressure transducers. This report presents precision range and accuracy data established for manual water-level measurements taken in the Yucca Mountain area, 1988-90. Precision and accuracy ranges were determined for all phases of the water-level measuring process, and overall accuracy ranges are presented. Precision ranges were determined for three steel tapes using a total of 462 data points. Mean precision ranges of these three tapes ranged from 0.014 foot to 0.026 foot. A mean precision range of 0.093 foot was calculated for the multiconductor cable, using 72 data points. Mean accuracy values were calculated on the basis of calibrations of the steel tapes and the multiconductor cable against a reference steel tape. The mean accuracy values of the steel tapes ranged from 0.053 foot, based on three data points to 0.078, foot based on six data points. The mean accuracy of the multiconductor cable was O. 15 foot, based on six data points. Overall accuracy of the water-level measurements was calculated by taking the square root of the sum of the squares of the individual accuracy values. Overall accuracy was calculated to be 0.36 foot for water-level measurements taken with steel tapes, without accounting for the inaccuracy of borehole deviations from vertical. An overall accuracy of 0.36 foot for measurements made with steel tapes is considered satisfactory for this project.

  3. Accuracy or precision: Implications of sample design and methodology on abundance estimation

    USGS Publications Warehouse

    Kowalewski, Lucas K.; Chizinski, Christopher J.; Powell, Larkin A.; Pope, Kevin L.; Pegg, Mark A.

    2015-01-01

    Sampling by spatially replicated counts (point-count) is an increasingly popular method of estimating population size of organisms. Challenges exist when sampling by point-count method, and it is often impractical to sample entire area of interest and impossible to detect every individual present. Ecologists encounter logistical limitations that force them to sample either few large-sample units or many small sample-units, introducing biases to sample counts. We generated a computer environment and simulated sampling scenarios to test the role of number of samples, sample unit area, number of organisms, and distribution of organisms in the estimation of population sizes using N-mixture models. Many sample units of small area provided estimates that were consistently closer to true abundance than sample scenarios with few sample units of large area. However, sample scenarios with few sample units of large area provided more precise abundance estimates than abundance estimates derived from sample scenarios with many sample units of small area. It is important to consider accuracy and precision of abundance estimates during the sample design process with study goals and objectives fully recognized, although and with consequence, consideration of accuracy and precision of abundance estimates is often an afterthought that occurs during the data analysis process.

  4. Precision and Accuracy Parameters in Structured Light 3-D Scanning

    NASA Astrophysics Data System (ADS)

    Eiríksson, E. R.; Wilm, J.; Pedersen, D. B.; Aanæs, H.

    2016-04-01

    Structured light systems are popular in part because they can be constructed from off-the-shelf low cost components. In this paper we quantitatively show how common design parameters affect precision and accuracy in such systems, supplying a much needed guide for practitioners. Our quantitative measure is the established VDI/VDE 2634 (Part 2) guideline using precision made calibration artifacts. Experiments are performed on our own structured light setup, consisting of two cameras and a projector. We place our focus on the influence of calibration design parameters, the calibration procedure and encoding strategy and present our findings. Finally, we compare our setup to a state of the art metrology grade commercial scanner. Our results show that comparable, and in some cases better, results can be obtained using the parameter settings determined in this study.

  5. Relationship between accuracy and complexity when learning underarm precision throwing.

    PubMed

    Valle, Maria Stella; Lombardo, Luciano; Cioni, Matteo; Casabona, Antonino

    2018-06-12

    Learning precision ball throwing was mostly studied to explore the early rapid improvement of accuracy, with poor attention on possible adaptive processes occurring later when the rate of improvement is reduced. Here, we tried to demonstrate that the strategy to select angle, speed and height at ball release can be managed during the learning periods following the performance stabilization. To this aim, we used a multivariate linear model with angle, speed and height as predictors of changes in accuracy. Participants performed underarm throws of a tennis ball to hit a target on the floor, 3.42 m away. Two training sessions (S1, S2) and one retention test were executed. Performance accuracy increased over the S1 and stabilized during the S2, with a rate of changes along the throwing axis slower than along the orthogonal axis. However, both the axes contributed to the performance changes over the learning and consolidation time. A stable relationship between the accuracy and the release parameters was observed only during S2, with a good fraction of the performance variance explained by the combination of speed and height. All the variations were maintained during the retention test. Overall, accuracy improvements and reduction in throwing complexity at the ball release followed separate timing over the course of learning and consolidation.

  6. miR-MaGiC improves quantification accuracy for small RNA-seq.

    PubMed

    Russell, Pamela H; Vestal, Brian; Shi, Wen; Rudra, Pratyaydipta D; Dowell, Robin; Radcliffe, Richard; Saba, Laura; Kechris, Katerina

    2018-05-15

    Many tools have been developed to profile microRNA (miRNA) expression from small RNA-seq data. These tools must contend with several issues: the small size of miRNAs, the small number of unique miRNAs, the fact that similar miRNAs can be transcribed from multiple loci, and the presence of miRNA isoforms known as isomiRs. Methods failing to address these issues can return misleading information. We propose a novel quantification method designed to address these concerns. We present miR-MaGiC, a novel miRNA quantification method, implemented as a cross-platform tool in Java. miR-MaGiC performs stringent mapping to a core region of each miRNA and defines a meaningful set of target miRNA sequences by collapsing the miRNA space to "functional groups". We hypothesize that these two features, mapping stringency and collapsing, provide more optimal quantification to a more meaningful unit (i.e., miRNA family). We test miR-MaGiC and several published methods on 210 small RNA-seq libraries, evaluating each method's ability to accurately reflect global miRNA expression profiles. We define accuracy as total counts close to the total number of input reads originating from miRNAs. We find that miR-MaGiC, which incorporates both stringency and collapsing, provides the most accurate counts.

  7. Accuracy of complete-arch dental impressions: a new method of measuring trueness and precision.

    PubMed

    Ender, Andreas; Mehl, Albert

    2013-02-01

    A new approach to both 3-dimensional (3D) trueness and precision is necessary to assess the accuracy of intraoral digital impressions and compare them to conventionally acquired impressions. The purpose of this in vitro study was to evaluate whether a new reference scanner is capable of measuring conventional and digital intraoral complete-arch impressions for 3D accuracy. A steel reference dentate model was fabricated and measured with a reference scanner (digital reference model). Conventional impressions were made from the reference model, poured with Type IV dental stone, scanned with the reference scanner, and exported as digital models. Additionally, digital impressions of the reference model were made and the digital models were exported. Precision was measured by superimposing the digital models within each group. Superimposing the digital models on the digital reference model assessed the trueness of each impression method. Statistical significance was assessed with an independent sample t test (α=.05). The reference scanner delivered high accuracy over the entire dental arch with a precision of 1.6 ±0.6 µm and a trueness of 5.3 ±1.1 µm. Conventional impressions showed significantly higher precision (12.5 ±2.5 µm) and trueness values (20.4 ±2.2 µm) with small deviations in the second molar region (P<.001). Digital impressions were significantly less accurate with a precision of 32.4 ±9.6 µm and a trueness of 58.6 ±15.8µm (P<.001). More systematic deviations of the digital models were visible across the entire dental arch. The new reference scanner is capable of measuring the precision and trueness of both digital and conventional complete-arch impressions. The digital impression is less accurate and shows a different pattern of deviation than the conventional impression. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  8. Large format focal plane array integration with precision alignment, metrology and accuracy capabilities

    NASA Astrophysics Data System (ADS)

    Neumann, Jay; Parlato, Russell; Tracy, Gregory; Randolph, Max

    2015-09-01

    Focal plane alignment for large format arrays and faster optical systems require enhanced precision methodology and stability over temperature. The increase in focal plane array size continues to drive the alignment capability. Depending on the optical system, the focal plane flatness of less than 25μm (.001") is required over transition temperatures from ambient to cooled operating temperatures. The focal plane flatness requirement must also be maintained in airborne or launch vibration environments. This paper addresses the challenge of the detector integration into the focal plane module and housing assemblies, the methodology to reduce error terms during integration and the evaluation of thermal effects. The driving factors influencing the alignment accuracy include: datum transfers, material effects over temperature, alignment stability over test, adjustment precision and traceability to NIST standard. The FPA module design and alignment methodology reduces the error terms by minimizing the measurement transfers to the housing. In the design, the proper material selection requires matched coefficient of expansion materials minimizes both the physical shift over temperature as well as lowering the stress induced into the detector. When required, the co-registration of focal planes and filters can achieve submicron relative positioning by applying precision equipment, interferometry and piezoelectric positioning stages. All measurements and characterizations maintain traceability to NIST standards. The metrology characterizes the equipment's accuracy, repeatability and precision of the measurements.

  9. Influence of Co-57 and CT Transmission Measurements on the Quantification Accuracy and Partial Volume Effect of a Small Animal PET Scanner.

    PubMed

    Mannheim, Julia G; Schmid, Andreas M; Pichler, Bernd J

    2017-12-01

    Non-invasive in vivo positron emission tomography (PET) provides high detection sensitivity in the nano- to picomolar range and in addition to other advantages, the possibility to absolutely quantify the acquired data. The present study focuses on the comparison of transmission data acquired with an X-ray computed tomography (CT) scanner or a Co-57 source for the Inveon small animal PET scanner (Siemens Healthcare, Knoxville, TN, USA), as well as determines their influences on the quantification accuracy and partial volume effect (PVE). A special focus included the impact of the performed calibration on the quantification accuracy. Phantom measurements were carried out to determine the quantification accuracy, the influence of the object size on the quantification, and the PVE for different sphere sizes, along the field of view and for different contrast ratios. An influence of the emission activity on the Co-57 transmission measurements was discovered (deviations up to 24.06 % measured to true activity), whereas no influence of the emission activity on the CT attenuation correction was identified (deviations <3 % for measured to true activity). The quantification accuracy was substantially influenced by the applied calibration factor and by the object size. The PVE demonstrated a dependency on the sphere size, the position within the field of view, the reconstruction and correction algorithms and the count statistics. Depending on the reconstruction algorithm, only ∼30-40 % of the true activity within a small sphere could be resolved. The iterative 3D reconstruction algorithms uncovered substantially increased recovery values compared to the analytical and 2D iterative reconstruction algorithms (up to 70.46 % and 80.82 % recovery for the smallest and largest sphere using iterative 3D reconstruction algorithms). The transmission measurement (CT or Co-57 source) to correct for attenuation did not severely influence the PVE. The analysis of the quantification

  10. Multiple Reaction Monitoring Enables Precise Quantification of 97 Proteins in Dried Blood Spots*

    PubMed Central

    Chambers, Andrew G.; Percy, Andrew J.; Yang, Juncong; Borchers, Christoph H.

    2015-01-01

    The dried blood spot (DBS) methodology provides a minimally invasive approach to sample collection and enables room-temperature storage for most analytes. DBS samples have successfully been analyzed by liquid chromatography multiple reaction monitoring mass spectrometry (LC/MRM-MS) to quantify a large range of small molecule biomarkers and drugs; however, this strategy has only recently been explored for MS-based proteomics applications. Here we report the development of a highly multiplexed MRM assay to quantify endogenous proteins in human DBS samples. This assay uses matching stable isotope-labeled standard peptides for precise, relative quantification, and standard curves to characterize the analytical performance. A total of 169 peptides, corresponding to 97 proteins, were quantified in the final assay with an average linear dynamic range of 207-fold and an average R2 value of 0.987. The total range of this assay spanned almost 5 orders of magnitude from serum albumin (P02768) at 18.0 mg/ml down to cholinesterase (P06276) at 190 ng/ml. The average intra-assay and inter-assay precision for 6 biological samples ranged from 6.1–7.5% CV and 9.5–11.0% CV, respectively. The majority of peptide targets were stable after 154 days at storage temperatures from −20 °C to 37 °C. Furthermore, protein concentration ratios between matching DBS and whole blood samples were largely constant (<20% CV) across six biological samples. This assay represents the highest multiplexing yet achieved for targeted protein quantification in DBS samples and is suitable for biomedical research applications. PMID:26342038

  11. Spectropolarimetry with PEPSI at the LBT: accuracy vs. precision in magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Ilyin, Ilya; Strassmeier, Klaus G.; Woche, Manfred; Hofmann, Axel

    2009-04-01

    We present the design of the new PEPSI spectropolarimeter to be installed at the Large Binocular Telescope (LBT) in Arizona to measure the full set of Stokes parameters in spectral lines and outline its precision and the accuracy limiting factors.

  12. Pulse oximeter accuracy and precision affected by sensor location in cyanotic children.

    PubMed

    Sedaghat-Yazdi, Farshad; Torres, Adalberto; Fortuna, Randall; Geiss, Dale M

    2008-07-01

    Children's digits are often too small for proper attachment of oximeter sensors, necessitating sensor placement on the sole of the foot or palm of the hand. No study has determined what effect these sensor locations have on the accuracy and precision of this technology. The objective of this study was to assess the effect of sensor location on pulse oximeter accuracy (i.e., bias) and precision in critically ill children. Prospective, observational study with consecutive sampling. Tertiary care, pediatric intensive care unit. Fifty critically ill children, newborn to 2 yrs of age, with an indwelling arterial catheter. Forty-seven of 50 (94%) patients were postcardiac surgery. None. Co-oximeter-measured arterial oxygen saturation (Sao2) was compared with simultaneously obtained pulse oximetry saturations (Spo2). A total of 98 measurements were obtained, 48 measurements in the upper extremities (finger and palm) and 50 measurements in the lower extremities (toe and sole). The median Sao2 was 92% (66% to 100%). There was a significant difference in bias (i.e., average Spo2 - Sao2) and precision (+/-1 sd) when the sole and toe were compared (sole, 2.9 +/- 3.9 vs. toe, 1.6 +/- 2.2, p = .02) but no significant difference in bias and precision between the palm and the finger (palm, 1.4 +/- 3.2 vs. finger, 1.2 +/- 2.3, p = .99). There was a significant difference in bias +/- precision when the Sao2 was <90% compared with when Sao2 was >or=90% in the sole (6.0 +/- 5.7 vs. 1.8 +/- 2.1, p = .002) and palm (4.5 +/- 4.5 vs. 0.7 +/- 2.4, p = .006) but no significant difference in the finger (1.8 +/- 3.8 vs. 1.1 +/- 1.8, p = .95) or toe (1.9 +/- 2.9 vs. 1.6 +/- 1.9, p = .65). The Philips M1020A pulse oximeter and Nellcor MAX-N sensors were less accurate and precise when used on the sole of the foot or palm of the hand of a child with an Sao2 <90%.

  13. Accuracy of iodine quantification in dual-layer spectral CT: Influence of iterative reconstruction, patient habitus and tube parameters.

    PubMed

    Sauter, Andreas P; Kopp, Felix K; Münzel, Daniela; Dangelmaier, Julia; Renz, Martin; Renger, Bernhard; Braren, Rickmer; Fingerle, Alexander A; Rummeny, Ernst J; Noël, Peter B

    2018-05-01

    Evaluation of the influence of iterative reconstruction, tube settings and patient habitus on the accuracy of iodine quantification with dual-layer spectral CT (DL-CT). A CT abdomen phantom with different extension rings and four iodine inserts (1, 2, 5 and 10 mg/ml) was scanned on a DL-CT. The phantom was scanned with tube-voltages of 120 and 140 kVp and CTDI vol of 2.5, 5, 10 and 20 mGy. Reconstructions were performed for eight levels of iterative reconstruction (i0-i7). Diagnostic dose levels are classified depending on patient-size and radiation dose. Measurements of iodine concentration showed accurate and reliable results. Taking all CTDI vol -levels into account, the mean absolute percentage difference (MAPD) showed less accuracy for low CTDI vol -levels (2.5 mGy: 34.72%) than for high CTDI vol -levels (20 mGy: 5.89%). At diagnostic dose levels, accurate quantification of iodine was possible (MAPD 3.38%). Level of iterative reconstruction did not significantly influence iodine measurements. Iodine quantification worked more accurately at a tube voltage of 140 kVp. Phantom size had a considerable effect only at low-dose-levels; at diagnostic dose levels the effect of phantom size decreased (MAPD <5% for all phantom sizes). With DL-CT, even low iodine concentrations can be accurately quantified. Accuracies are higher when diagnostic radiation doses are employed. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Trace element analysis by EPMA in geosciences: detection limit, precision and accuracy

    NASA Astrophysics Data System (ADS)

    Batanova, V. G.; Sobolev, A. V.; Magnin, V.

    2018-01-01

    Use of the electron probe microanalyser (EPMA) for trace element analysis has increased over the last decade, mainly because of improved stability of spectrometers and the electron column when operated at high probe current; development of new large-area crystal monochromators and ultra-high count rate spectrometers; full integration of energy-dispersive / wavelength-dispersive X-ray spectrometry (EDS/WDS) signals; and the development of powerful software packages. For phases that are stable under a dense electron beam, the detection limit and precision can be decreased to the ppm level by using high acceleration voltage and beam current combined with long counting time. Data on 10 elements (Na, Al, P, Ca, Ti, Cr, Mn, Co, Ni, Zn) in olivine obtained on a JEOL JXA-8230 microprobe with tungsten filament show that the detection limit decreases proportionally to the square root of counting time and probe current. For all elements equal or heavier than phosphorus (Z = 15), the detection limit decreases with increasing accelerating voltage. The analytical precision for minor and trace elements analysed in olivine at 25 kV accelerating voltage and 900 nA beam current is 4 - 18 ppm (2 standard deviations of repeated measurements of the olivine reference sample) and is similar to the detection limit of corresponding elements. To analyse trace elements accurately requires careful estimation of background, and consideration of sample damage under the beam and secondary fluorescence from phase boundaries. The development and use of matrix reference samples with well-characterised trace elements of interest is important for monitoring and improving of the accuracy. An evaluation of the accuracy of trace element analyses in olivine has been made by comparing EPMA data for new reference samples with data obtained by different in-situ and bulk analytical methods in six different laboratories worldwide. For all elements, the measured concentrations in the olivine reference sample

  15. Sternal instability measured with radiostereometric analysis. A study of method feasibility, accuracy and precision.

    PubMed

    Vestergaard, Rikke Falsig; Søballe, Kjeld; Hasenkam, John Michael; Stilling, Maiken

    2018-05-18

    A small, but unstable, saw-gap may hinder bone-bridging and induce development of painful sternal dehiscence. We propose the use of Radiostereometric Analysis (RSA) for evaluation of sternal instability and present a method validation. Four bone analogs (phantoms) were sternotomized and tantalum beads were inserted in each half. The models were reunited with wire cerclage and placed in a radiolucent separation device. Stereoradiographs (n = 48) of the phantoms in 3 positions were recorded at 4 imposed separation points. The accuracy and precision was compared statistically and presented as translations along the 3 orthogonal axes. 7 sternotomized patients were evaluated for clinical RSA precision by double-examination stereoradiographs (n = 28). In the phantom study, we found no systematic error (p > 0.3) between the three phantom positions, and precision for evaluation of sternal separation was 0.02 mm. Phantom accuracy was mean 0.13 mm (SD 0.25). In the clinical study, we found a detection limit of 0.42 mm for sternal separation and of 2 mm for anterior-posterior dislocation of the sternal halves for the individual patient. RSA is a precise and low-dose image modality feasible for clinical evaluation of sternal stability in research. ClinicalTrials.gov Identifier: NCT02738437 , retrospectively registered.

  16. Ariadne's Thread: A Robust Software Solution Leading to Automated Absolute and Relative Quantification of SRM Data.

    PubMed

    Nasso, Sara; Goetze, Sandra; Martens, Lennart

    2015-09-04

    Selected reaction monitoring (SRM) MS is a highly selective and sensitive technique to quantify protein abundances in complex biological samples. To enhance the pace of SRM large studies, a validated, robust method to fully automate absolute quantification and to substitute for interactive evaluation would be valuable. To address this demand, we present Ariadne, a Matlab software. To quantify monitored targets, Ariadne exploits metadata imported from the transition lists, and targets can be filtered according to mProphet output. Signal processing and statistical learning approaches are combined to compute peptide quantifications. To robustly estimate absolute abundances, the external calibration curve method is applied, ensuring linearity over the measured dynamic range. Ariadne was benchmarked against mProphet and Skyline by comparing its quantification performance on three different dilution series, featuring either noisy/smooth traces without background or smooth traces with complex background. Results, evaluated as efficiency, linearity, accuracy, and precision of quantification, showed that Ariadne's performance is independent of data smoothness and complex background presence and that Ariadne outperforms mProphet on the noisier data set and improved 2-fold Skyline's accuracy and precision for the lowest abundant dilution with complex background. Remarkably, Ariadne could statistically distinguish from each other all different abundances, discriminating dilutions as low as 0.1 and 0.2 fmol. These results suggest that Ariadne offers reliable and automated analysis of large-scale SRM differential expression studies.

  17. Improved accuracy and precision of tracer kinetic parameters by joint fitting to variable flip angle and dynamic contrast enhanced MRI data.

    PubMed

    Dickie, Ben R; Banerji, Anita; Kershaw, Lucy E; McPartlin, Andrew; Choudhury, Ananya; West, Catharine M; Rose, Chris J

    2016-10-01

    To improve the accuracy and precision of tracer kinetic model parameter estimates for use in dynamic contrast enhanced (DCE) MRI studies of solid tumors. Quantitative DCE-MRI requires an estimate of precontrast T1 , which is obtained prior to fitting a tracer kinetic model. As T1 mapping and tracer kinetic signal models are both a function of precontrast T1 it was hypothesized that its joint estimation would improve the accuracy and precision of both precontrast T1 and tracer kinetic model parameters. Accuracy and/or precision of two-compartment exchange model (2CXM) parameters were evaluated for standard and joint fitting methods in well-controlled synthetic data and for 36 bladder cancer patients. Methods were compared under a number of experimental conditions. In synthetic data, joint estimation led to statistically significant improvements in the accuracy of estimated parameters in 30 of 42 conditions (improvements between 1.8% and 49%). Reduced accuracy was observed in 7 of the remaining 12 conditions. Significant improvements in precision were observed in 35 of 42 conditions (between 4.7% and 50%). In clinical data, significant improvements in precision were observed in 18 of 21 conditions (between 4.6% and 38%). Accuracy and precision of DCE-MRI parameter estimates are improved when signal models are fit jointly rather than sequentially. Magn Reson Med 76:1270-1281, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  18. Breast density quantification with cone-beam CT: A post-mortem study

    PubMed Central

    Johnson, Travis; Ding, Huanjun; Le, Huy Q.; Ducote, Justin L.; Molloi, Sabee

    2014-01-01

    Forty post-mortem breasts were imaged with a flat-panel based cone-beam x-ray CT system at 50 kVp. The feasibility of breast density quantification has been investigated using standard histogram thresholding and an automatic segmentation method based on the fuzzy c-means algorithm (FCM). The breasts were chemically decomposed into water, lipid, and protein immediately after image acquisition was completed. The percent fibroglandular volume (%FGV) from chemical analysis was used as the gold standard for breast density comparison. Both image-based segmentation techniques showed good precision in breast density quantification with high linear coefficients between the right and left breast of each pair. When comparing with the gold standard using %FGV from chemical analysis, Pearson’s r-values were estimated to be 0.983 and 0.968 for the FCM clustering and the histogram thresholding techniques, respectively. The standard error of the estimate (SEE) was also reduced from 3.92% to 2.45% by applying the automatic clustering technique. The results of the postmortem study suggested that breast tissue can be characterized in terms of water, lipid and protein contents with high accuracy by using chemical analysis, which offers a gold standard for breast density studies comparing different techniques. In the investigated image segmentation techniques, the FCM algorithm had high precision and accuracy in breast density quantification. In comparison to conventional histogram thresholding, it was more efficient and reduced inter-observer variation. PMID:24254317

  19. 13 Years of TOPEX/POSEIDON Precision Orbit Determination and the 10-fold Improvement in Expected Orbit Accuracy

    NASA Technical Reports Server (NTRS)

    Lemoine, F. G.; Zelensky, N. P.; Luthcke, S. B.; Rowlands, D. D.; Beckley, B. D.; Klosko, S. M.

    2006-01-01

    Launched in the summer of 1992, TOPEX/POSEIDON (T/P) was a joint mission between NASA and the Centre National d Etudes Spatiales (CNES), the French Space Agency, to make precise radar altimeter measurements of the ocean surface. After the remarkably successful 13-years of mapping the ocean surface T/P lost its ability to maneuver and was de-commissioned January 2006. T/P revolutionized the study of the Earth s oceans by vastly exceeding pre-launch estimates of surface height accuracy recoverable from radar altimeter measurements. The precision orbit lies at the heart of the altimeter measurement providing the reference frame from which the radar altimeter measurements are made. The expected quality of orbit knowledge had limited the measurement accuracy expectations of past altimeter missions, and still remains a major component in the error budget of all altimeter missions. This paper describes critical improvements made to the T/P orbit time series over the 13-years of precise orbit determination (POD) provided by the GSFC Space Geodesy Laboratory. The POD improvements from the pre-launch T/P expectation of radial orbit accuracy and Mission requirement of 13-cm to an expected accuracy of about 1.5-cm with today s latest orbits will be discussed. The latest orbits with 1.5 cm RMS radial accuracy represent a significant improvement to the 2.0-cm accuracy orbits currently available on the T/P Geophysical Data Record (GDR) altimeter product.

  20. A double sealing technique for increasing the precision of headspace-gas chromatographic analysis.

    PubMed

    Xie, Wei-Qi; Yu, Kong-Xian; Gong, Yi-Xian

    2018-01-19

    This paper investigates a new double sealing technique for increasing the precision of the headspace gas chromatographic method. The air leakage problem caused by the high pressure in the headspace vial during the headspace sampling process has a great impact to the measurement precision in the conventional headspace analysis (i.e., single sealing technique). The results (using ethanol solution as the model sample) show that the present technique is effective to minimize such a problem. The double sealing technique has an excellent measurement precision (RSD < 0.15%) and accuracy (recovery = 99.1%-100.6%) for the ethanol quantification. The detection precision of the present method was 10-20 times higher than that in earlier HS-GC work that use conventional single sealing technique. The present double sealing technique may open up a new avenue, and also serve as a general strategy for improving the performance (i.e., accuracy and precision) of headspace analysis of various volatile compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Christopher B., E-mail: Christopher.jackson@insel.ch; Gallati, Sabina, E-mail: sabina.gallati@insel.ch; Schaller, Andre, E-mail: andre.schaller@insel.ch

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Serial qPCR accurately determines fragmentation state of any given DNA sample. Black-Right-Pointing-Pointer Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. Black-Right-Pointing-Pointer Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. Black-Right-Pointing-Pointer Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serialmore » qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA ({lambda}{sub nDNA}) and mtDNA ({lambda}{sub mtDNA}) we present an approach to possibly correct

  2. The accuracy and precision of radiostereometric analysis in upper limb arthroplasty.

    PubMed

    Ten Brinke, Bart; Beumer, Annechien; Koenraadt, Koen L M; Eygendaal, Denise; Kraan, Gerald A; Mathijssen, Nina M C

    2017-06-01

    Background and purpose - Radiostereometric analysis (RSA) is an accurate method for measurement of early migration of implants. Since a relation has been shown between early migration and future loosening of total knee and hip prostheses, RSA plays an important role in the development and evaluation of prostheses. However, there have been few RSA studies of the upper limb, and the value of RSA of the upper limb is not yet clear. We therefore performed a systematic review to investigate the accuracy and precision of RSA of the upper limb. Patients and methods - PRISMA guidelines were followed and the protocol for this review was published online at PROSPERO under registration number CRD42016042014. A systematic search of the literature was performed in the databases Embase, Medline, Cochrane, Web of Science, Scopus, Cinahl, and Google Scholar on April 25, 2015 based on the keywords radiostereometric analysis, shoulder prosthesis, elbow prosthesis, wrist prosthesis, trapeziometacarpal joint prosthesis, humerus, ulna, radius, carpus. Articles concerning RSA for the analysis of early migration of prostheses of the upper limb were included. Quality assessment was performed using the MINORS score, Downs and Black checklist, and the ISO RSA Results - 23 studies were included. Precision values were in the 0.06-0.88 mm and 0.05-10.7° range for the shoulder, the 0.05-0.34 mm and 0.16-0.76° range for the elbow, and the 0.16-1.83 mm and 11-124° range for the TMC joint. Accuracy data from marker- and model-based RSA were not reported in the studies included. Interpretation - RSA is a highly precise method for measurement of early migration of orthopedic implants in the upper limb. However, the precision of rotation measurement is poor in some components. Challenges with RSA in the upper limb include the symmetrical shape of prostheses and the limited size of surrounding bone, leading to over-projection of the markers by the prosthesis. We recommend higher adherence to

  3. Broadband laser ranging precision and accuracy experiments with PDV benchmarking

    NASA Astrophysics Data System (ADS)

    Catenacci, Jared; Daykin, Ed; Howard, Marylesa; Lalone, Brandon; Miller, Kirk

    2017-06-01

    Broadband laser ranging (BLR) is a developmental diagnostic designed to measure the precise position of surfaces and particle clouds moving at velocities of several kilometers per second. Recent single stage gas gun experiments were conducted to quantify the precision and accuracy possible with a typical BLR system. For these experiments, the position of a mirrored projectile is measured relative to the location of a stationary optical flat (uncoated window) mounted within the gun catch tank. Projectile velocity is constrained to one-dimensional motion within the gun barrel. A collimating probe is aligned to be orthogonal to both the target window and the mirrored impactor surface. The probe is used to simultaneously measure the position and velocity with a BLR and conventional Photonic Doppler Velocimetry (PDV) system. Since there is a negligible lateral component to the target velocity, coupled with strong signal returns from a mirrored surface, integrating the PDV measurement provides a high fidelity distance measurement reference to which the BLR measurement may be compared.

  4. Accuracy, precision, usability, and cost of portable silver test methods for ceramic filter factories.

    PubMed

    Meade, Rhiana D; Murray, Anna L; Mittelman, Anjuliee M; Rayner, Justine; Lantagne, Daniele S

    2017-02-01

    Locally manufactured ceramic water filters are one effective household drinking water treatment technology. During manufacturing, silver nanoparticles or silver nitrate are applied to prevent microbiological growth within the filter and increase bacterial removal efficacy. Currently, there is no recommendation for manufacturers to test silver concentrations of application solutions or filtered water. We identified six commercially available silver test strips, kits, and meters, and evaluated them by: (1) measuring in quintuplicate six samples from 100 to 1,000 mg/L (application range) and six samples from 0.0 to 1.0 mg/L (effluent range) of silver nanoparticles and silver nitrate to determine accuracy and precision; (2) conducting volunteer testing to assess ease-of-use; and (3) comparing costs. We found no method accurately detected silver nanoparticles, and accuracy ranged from 4 to 91% measurement error for silver nitrate samples. Most methods were precise, but only one method could test both application and effluent concentration ranges of silver nitrate. Volunteers considered test strip methods easiest. The cost for 100 tests ranged from 36 to 1,600 USD. We found no currently available method accurately and precisely measured both silver types at reasonable cost and ease-of-use, thus these methods are not recommended to manufacturers. We recommend development of field-appropriate methods that accurately and precisely measure silver nanoparticle and silver nitrate concentrations.

  5. Sensitivity, accuracy, and precision issues in opto-electronic holography based on fiber optics and high-spatial- and high-digitial-resolution cameras

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Yokum, Jeffrey S.; Pryputniewicz, Ryszard J.

    2002-06-01

    Sensitivity, accuracy, and precision characteristics in quantitative optical metrology techniques, and specifically in optoelectronic holography based on fiber optics and high-spatial and high-digital resolution cameras, are discussed in this paper. It is shown that sensitivity, accuracy, and precision dependent on both, the effective determination of optical phase and the effective characterization of the illumination-observation conditions. Sensitivity, accuracy, and precision are investigated with the aid of National Institute of Standards and Technology (NIST) traceable gages, demonstrating the applicability of quantitative optical metrology techniques to satisfy constantly increasing needs for the study and development of emerging technologies.

  6. Accuracy and precision of smartphone applications and commercially available motion sensors in multiple sclerosis

    PubMed Central

    Balto, Julia M; Kinnett-Hopkins, Dominique L

    2016-01-01

    Background There is increased interest in the application of smartphone applications and wearable motion sensors among multiple sclerosis (MS) patients. Objective This study examined the accuracy and precision of common smartphone applications and motion sensors for measuring steps taken by MS patients while walking on a treadmill. Methods Forty-five MS patients (Expanded Disability Status Scale (EDSS) = 1.0–5.0) underwent two 500-step walking trials at comfortable walking speed on a treadmill. Participants wore five motion sensors: the Digi-Walker SW-200 pedometer (Yamax), the UP2 and UP Move (Jawbone), and the Flex and One (Fitbit). The smartphone applications were Health (Apple), Health Mate (Withings), and Moves (ProtoGeo Oy). Results The Fitbit One had the best absolute (mean = 490.6 steps, 95% confidence interval (CI) = 485.6–495.5 steps) and relative accuracy (1.9% error), and absolute (SD = 16.4) and relative precision (coefficient of variation (CV) = 0.0), for the first 500-step walking trial; this was repeated with the second trial. Relative accuracy was correlated with slower walking speed for the first (rs = −.53) and second (rs = −.53) trials. Conclusion The results suggest that the waist-worn Fitbit One is the most precise and accurate sensor for measuring steps when walking on a treadmill, but future research is needed (testing the device across a broader range of disability, at different speeds, and in real-life walking conditions) before inclusion in clinical research and practice with MS patients. PMID:28607720

  7. Accuracy and precision of smartphone applications and commercially available motion sensors in multiple sclerosis.

    PubMed

    Balto, Julia M; Kinnett-Hopkins, Dominique L; Motl, Robert W

    2016-01-01

    There is increased interest in the application of smartphone applications and wearable motion sensors among multiple sclerosis (MS) patients. This study examined the accuracy and precision of common smartphone applications and motion sensors for measuring steps taken by MS patients while walking on a treadmill. Forty-five MS patients (Expanded Disability Status Scale (EDSS) = 1.0-5.0) underwent two 500-step walking trials at comfortable walking speed on a treadmill. Participants wore five motion sensors: the Digi-Walker SW-200 pedometer (Yamax), the UP2 and UP Move (Jawbone), and the Flex and One (Fitbit). The smartphone applications were Health (Apple), Health Mate (Withings), and Moves (ProtoGeo Oy). The Fitbit One had the best absolute (mean = 490.6 steps, 95% confidence interval (CI) = 485.6-495.5 steps) and relative accuracy (1.9% error), and absolute (SD = 16.4) and relative precision (coefficient of variation (CV) = 0.0), for the first 500-step walking trial; this was repeated with the second trial. Relative accuracy was correlated with slower walking speed for the first ( r s  =  -.53) and second ( r s  =  -.53) trials. The results suggest that the waist-worn Fitbit One is the most precise and accurate sensor for measuring steps when walking on a treadmill, but future research is needed (testing the device across a broader range of disability, at different speeds, and in real-life walking conditions) before inclusion in clinical research and practice with MS patients.

  8. Assessing accuracy and precision for field and laboratory data: a perspective in ecosystem restoration

    USGS Publications Warehouse

    Stapanian, Martin A.; Lewis, Timothy E; Palmer, Craig J.; Middlebrook Amos, Molly

    2016-01-01

    Unlike most laboratory studies, rigorous quality assurance/quality control (QA/QC) procedures may be lacking in ecosystem restoration (“ecorestoration”) projects, despite legislative mandates in the United States. This is due, in part, to ecorestoration specialists making the false assumption that some types of data (e.g. discrete variables such as species identification and abundance classes) are not subject to evaluations of data quality. Moreover, emergent behavior manifested by complex, adapting, and nonlinear organizations responsible for monitoring the success of ecorestoration projects tend to unconsciously minimize disorder, QA/QC being an activity perceived as creating disorder. We discuss similarities and differences in assessing precision and accuracy for field and laboratory data. Although the concepts for assessing precision and accuracy of ecorestoration field data are conceptually the same as laboratory data, the manner in which these data quality attributes are assessed is different. From a sample analysis perspective, a field crew is comparable to a laboratory instrument that requires regular “recalibration,” with results obtained by experts at the same plot treated as laboratory calibration standards. Unlike laboratory standards and reference materials, the “true” value for many field variables is commonly unknown. In the laboratory, specific QA/QC samples assess error for each aspect of the measurement process, whereas field revisits assess precision and accuracy of the entire data collection process following initial calibration. Rigorous QA/QC data in an ecorestoration project are essential for evaluating the success of a project, and they provide the only objective “legacy” of the dataset for potential legal challenges and future uses.

  9. Accuracy and Precision of a Veterinary Neuronavigation System for Radiation Oncology Positioning

    PubMed Central

    Ballegeer, Elizabeth A.; Frey, Stephen; Sieffert, Rob

    2018-01-01

    Conformal radiation treatment plans such as IMRT and other radiosurgery techniques require very precise patient positioning, typically within a millimeter of error for best results. CT cone beam, real-time navigation, and infrared position sensors are potential options for success but rarely present in veterinary radiation centers. A neuronavigation system (Brainsight Vet, Rogue Research) was tested 22 times on a skull for positioning accuracy and precision analysis. The first 6 manipulations allowed the authors to become familiar with the system but were still included in the analyses. Overall, the targeting mean error in 3D was 1.437 mm with SD 1.242 mm. This system could be used for positioning for radiation therapy or radiosurgery. PMID:29666822

  10. Sex differences in accuracy and precision when judging time to arrival: data from two Internet studies.

    PubMed

    Sanders, Geoff; Sinclair, Kamila

    2011-12-01

    We report two Internet studies that investigated sex differences in the accuracy and precision of judging time to arrival. We used accuracy to mean the ability to match the actual time to arrival and precision to mean the consistency with which each participant made their judgments. Our task was presented as a computer game in which a toy UFO moved obliquely towards the participant through a virtual three-dimensional space on route to a docking station. The UFO disappeared before docking and participants pressed their space bar at the precise moment they thought the UFO would have docked. Study 1 showed it was possible to conduct quantitative studies of spatiotemporal judgments in virtual reality via the Internet and confirmed reports that men are more accurate because women underestimate, but found no difference in precision measured as intra-participant variation. Study 2 repeated Study 1 with five additional presentations of one condition to provide a better measure of precision. Again, men were more accurate than women but there were no sex differences in precision. However, within the coincidence-anticipation timing (CAT) literature, of those studies that report sex differences, a majority found that males are both more accurate and more precise than females. Noting that many CAT studies report no sex differences, we discuss appropriate interpretations of such null findings. While acknowledging that CAT performance may be influenced by experience we suggest that the sex difference may have originated among our ancestors with the evolutionary selection of men for hunting and women for gathering.

  11. Development of a Protein Standard Absolute Quantification (PSAQ™) assay for the quantification of Staphylococcus aureus enterotoxin A in serum.

    PubMed

    Adrait, Annie; Lebert, Dorothée; Trauchessec, Mathieu; Dupuis, Alain; Louwagie, Mathilde; Masselon, Christophe; Jaquinod, Michel; Chevalier, Benoît; Vandenesch, François; Garin, Jérôme; Bruley, Christophe; Brun, Virginie

    2012-06-06

    Enterotoxin A (SEA) is a staphylococcal virulence factor which is suspected to worsen septic shock prognosis. However, the presence of SEA in the blood of sepsis patients has never been demonstrated. We have developed a mass spectrometry-based assay for the targeted and absolute quantification of SEA in serum. To enhance sensitivity and specificity, we combined an immunoaffinity-based sample preparation with mass spectrometry analysis in the selected reaction monitoring (SRM) mode. Absolute quantification of SEA was performed using the PSAQ™ method (Protein Standard Absolute Quantification), which uses a full-length isotope-labeled SEA as internal standard. The lower limit of detection (LLOD) and lower limit of quantification (LLOQ) were estimated at 352pg/mL and 1057pg/mL, respectively. SEA recovery after immunocapture was determined to be 7.8±1.4%. Therefore, we assumed that less than 1femtomole of each SEA proteotypic peptide was injected on the liquid chromatography column before SRM analysis. From a 6-point titration experiment, quantification accuracy was determined to be 77% and precision at LLOQ was lower than 5%. With this sensitive PSAQ-SRM assay, we expect to contribute to decipher the pathophysiological role of SEA in severe sepsis. This article is part of a Special Issue entitled: Proteomics: The clinical link. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Analysis of precision and accuracy in a simple model of machine learning

    NASA Astrophysics Data System (ADS)

    Lee, Julian

    2017-12-01

    Machine learning is a procedure where a model for the world is constructed from a training set of examples. It is important that the model should capture relevant features of the training set, and at the same time make correct prediction for examples not included in the training set. I consider the polynomial regression, the simplest method of learning, and analyze the accuracy and precision for different levels of the model complexity.

  13. Accuracy, precision, and economic efficiency for three methods of thrips (Thysanoptera: Thripidae) population density assessment.

    PubMed

    Sutherland, Andrew M; Parrella, Michael P

    2011-08-01

    Western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), is a major horticultural pest and an important vector of plant viruses in many parts of the world. Methods for assessing thrips population density for pest management decision support are often inaccurate or imprecise due to thrips' positive thigmotaxis, small size, and naturally aggregated populations. Two established methods, flower tapping and an alcohol wash, were compared with a novel method, plant desiccation coupled with passive trapping, using accuracy, precision and economic efficiency as comparative variables. Observed accuracy was statistically similar and low (37.8-53.6%) for all three methods. Flower tapping was the least expensive method, in terms of person-hours, whereas the alcohol wash method was the most expensive. Precision, expressed by relative variation, depended on location within the greenhouse, location on greenhouse benches, and the sampling week, but it was generally highest for the flower tapping and desiccation methods. Economic efficiency, expressed by relative net precision, was highest for the flower tapping method and lowest for the alcohol wash method. Advantages and disadvantages are discussed for all three methods used. If relative density assessment methods such as these can all be assumed to accurately estimate a constant proportion of absolute density, then high precision becomes the methodological goal in terms of measuring insect population density, decision making for pest management, and pesticide efficacy assessments.

  14. Accuracy and precision of protein-ligand interaction kinetics determined from chemical shift titrations.

    PubMed

    Markin, Craig J; Spyracopoulos, Leo

    2012-12-01

    NMR-monitored chemical shift titrations for the study of weak protein-ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K ( D )) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the K ( D ) value of a 1:1 protein-ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125-138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of (1)H-(15)N 2D HSQC NMR spectra acquired using precise protein-ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (k ( off )). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, k ( off ) ~ 3,000 s(-1) in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for k ( off ) from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise k ( off ) values over a wide range, from 100 to 15,000 s(-1). The validity of line shape analysis for k ( off ) values approaching intermediate exchange (~100 s(-1)), may be facilitated by more accurate K ( D ) measurements

  15. Automated Gravimetric Calibration to Optimize the Accuracy and Precision of TECAN Freedom EVO Liquid Handler

    PubMed Central

    Bessemans, Laurent; Jully, Vanessa; de Raikem, Caroline; Albanese, Mathieu; Moniotte, Nicolas; Silversmet, Pascal; Lemoine, Dominique

    2016-01-01

    High-throughput screening technologies are increasingly integrated into the formulation development process of biopharmaceuticals. The performance of liquid handling systems is dependent on the ability to deliver accurate and precise volumes of specific reagents to ensure process quality. We have developed an automated gravimetric calibration procedure to adjust the accuracy and evaluate the precision of the TECAN Freedom EVO liquid handling system. Volumes from 3 to 900 µL using calibrated syringes and fixed tips were evaluated with various solutions, including aluminum hydroxide and phosphate adjuvants, β-casein, sucrose, sodium chloride, and phosphate-buffered saline. The methodology to set up liquid class pipetting parameters for each solution was to split the process in three steps: (1) screening of predefined liquid class, including different pipetting parameters; (2) adjustment of accuracy parameters based on a calibration curve; and (3) confirmation of the adjustment. The run of appropriate pipetting scripts, data acquisition, and reports until the creation of a new liquid class in EVOware was fully automated. The calibration and confirmation of the robotic system was simple, efficient, and precise and could accelerate data acquisition for a wide range of biopharmaceutical applications. PMID:26905719

  16. To address accuracy and precision using methods from analytical chemistry and computational physics.

    PubMed

    Kozmutza, Cornelia; Picó, Yolanda

    2009-04-01

    In this work the pesticides were determined by liquid chromatography-mass spectrometry (LC-MS). In present study the occurrence of imidacloprid in 343 samples of oranges, tangerines, date plum, and watermelons from Valencian Community (Spain) has been investigated. The nine additional pesticides were chosen as they have been recommended for orchard treatment together with imidacloprid. The Mulliken population analysis has been applied to present the charge distribution in imidacloprid. Partitioned energy terms and the virial ratios have been calculated for certain molecules entering in interaction. A new technique based on the comparison of the decomposed total energy terms at various configurations is demonstrated in this work. The interaction ability could be established correctly in the studied case. An attempt is also made in this work to address accuracy and precision. These quantities are well-known in experimental measurements. In case precise theoretical description is achieved for the contributing monomers and also for the interacting complex structure some properties of this latter system can be predicted to quite a good accuracy. Based on simple hypothetical considerations we estimate the impact of applying computations on reducing the amount of analytical work.

  17. Use of single-representative reverse-engineered surface-models for RSA does not affect measurement accuracy and precision.

    PubMed

    Seehaus, Frank; Schwarze, Michael; Flörkemeier, Thilo; von Lewinski, Gabriela; Kaptein, Bart L; Jakubowitz, Eike; Hurschler, Christof

    2016-05-01

    Implant migration can be accurately quantified by model-based Roentgen stereophotogrammetric analysis (RSA), using an implant surface model to locate the implant relative to the bone. In a clinical situation, a single reverse engineering (RE) model for each implant type and size is used. It is unclear to what extent the accuracy and precision of migration measurement is affected by implant manufacturing variability unaccounted for by a single representative model. Individual RE models were generated for five short-stem hip implants of the same type and size. Two phantom analyses and one clinical analysis were performed: "Accuracy-matched models": one stem was assessed, and the results from the original RE model were compared with randomly selected models. "Accuracy-random model": each of the five stems was assessed and analyzed using one randomly selected RE model. "Precision-clinical setting": implant migration was calculated for eight patients, and all five available RE models were applied to each case. For the two phantom experiments, the 95%CI of the bias ranged from -0.28 mm to 0.30 mm for translation and -2.3° to 2.5° for rotation. In the clinical setting, precision is less than 0.5 mm and 1.2° for translation and rotation, respectively, except for rotations about the proximodistal axis (<4.1°). High accuracy and precision of model-based RSA can be achieved and are not biased by using a single representative RE model. At least for implants similar in shape to the investigated short-stem, individual models are not necessary. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:903-910, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  18. Accuracy of Liver Fat Quantification With Advanced CT, MRI, and Ultrasound Techniques: Prospective Comparison With MR Spectroscopy.

    PubMed

    Kramer, Harald; Pickhardt, Perry J; Kliewer, Mark A; Hernando, Diego; Chen, Guang-Hong; Zagzebski, James A; Reeder, Scott B

    2017-01-01

    The purpose of this study was to prospectively evaluate the accuracy of proton-density fat-fraction, single- and dual-energy CT (SECT and DECT), gray-scale ultrasound (US), and US shear-wave elastography (US-SWE) in the quantification of hepatic steatosis with MR spectroscopy (MRS) as the reference standard. Fifty adults who did not have symptoms (23 men, 27 women; mean age, 57 ± 5 years; body mass index, 27 ± 5) underwent liver imaging with un-enhanced SECT, DECT, gray-scale US, US-SWE, proton-density fat-fraction MRI, and MRS for this prospective trial. MRS voxels for the reference standard were colocalized with all other modalities under investigation. For SECT (120 kVp), attenuation values were recorded. For rapid-switching DECT (80/140 kVp), monochromatic images (70-140 keV) and fat density-derived material decomposition images were reconstructed. For proton-density fat fraction MRI, a quantitative chemical shift-encoded method was used. For US, echogenicity was evaluated on a qualitative 0-3 scale. Quantitative US shear-wave velocities were also recorded. Data were analyzed by linear regression for each technique compared with MRS. There was excellent correlation between MRS and both proton-density fat-fraction MRI (r 2 = 0.992; slope, 0.974; intercept, -0.943) and SECT (r 2 = 0.856; slope, -0.559; intercept, 35.418). DECT fat attenuation had moderate correlation with MRS measurements (r 2 = 0.423; slope, 0.034; intercept, 8.459). There was good correlation between qualitative US echogenicity and MRS measurements with a weighted kappa value of 0.82. US-SWE velocity did not have reliable correlation with MRS measurements (r 2 = 0.004; slope, 0.069; intercept, 6.168). Quantitative MRI proton-density fat fraction and SECT fat attenuation have excellent linear correlation with MRS measurements and can serve as accurate noninvasive biomarkers for quantifying steatosis. Material decomposition with DECT does not improve the accuracy of fat quantification over

  19. Precision and accuracy of commonly used dental age estimation charts for the New Zealand population.

    PubMed

    Baylis, Stephanie; Bassed, Richard

    2017-08-01

    Little research has been undertaken for the New Zealand population in the field of dental age estimation. This research to date indicates there are differences in dental developmental rates between the New Zealand population and other global population groups, and within the New Zealand population itself. Dental age estimation methods range from dental development charts to complex biometric analysis. Dental development charts are not the most accurate method of dental age estimation, but are time saving in their use. They are an excellent screening tool, particularly for post-mortem identification purposes, and for assessing variation from population norms in living individuals. The aim of this study was to test the precision and accuracy of three dental development charts (Schour and Massler, Blenkin and Taylor, and the London Atlas), used to estimate dental age of a sample of New Zealand juveniles between the ages of 5 and 18 years old (n=875). Percentage 'best fit' to correct age category and to expected chart stage were calculated to determine which chart was the most precise for the sample. Chronological ages were compared to estimated dental ages using a two-tailed paired t-test (P<0.05) for each of the three methods. The mean differences between CA and DA were calculated to determine bias and the absolute mean differences were calculated to indicate accuracy. The results of this study show that while accuracy and precision were low for all charts tested against the New Zealand population sample, the Blenkin and Taylor Australian charts performed best overall. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Simultaneous digital quantification and fluorescence-based size characterization of massively parallel sequencing libraries.

    PubMed

    Laurie, Matthew T; Bertout, Jessica A; Taylor, Sean D; Burton, Joshua N; Shendure, Jay A; Bielas, Jason H

    2013-08-01

    Due to the high cost of failed runs and suboptimal data yields, quantification and determination of fragment size range are crucial steps in the library preparation process for massively parallel sequencing (or next-generation sequencing). Current library quality control methods commonly involve quantification using real-time quantitative PCR and size determination using gel or capillary electrophoresis. These methods are laborious and subject to a number of significant limitations that can make library calibration unreliable. Herein, we propose and test an alternative method for quality control of sequencing libraries using droplet digital PCR (ddPCR). By exploiting a correlation we have discovered between droplet fluorescence and amplicon size, we achieve the joint quantification and size determination of target DNA with a single ddPCR assay. We demonstrate the accuracy and precision of applying this method to the preparation of sequencing libraries.

  1. Accuracy assessment of the Precise Point Positioning method applied for surveys and tracking moving objects in GIS environment

    NASA Astrophysics Data System (ADS)

    Ilieva, Tamara; Gekov, Svetoslav

    2017-04-01

    The Precise Point Positioning (PPP) method gives the users the opportunity to determine point locations using a single GNSS receiver. The accuracy of the determined by PPP point locations is better in comparison to the standard point positioning, due to the precise satellite orbit and clock corrections that are developed and maintained by the International GNSS Service (IGS). The aim of our current research is the accuracy assessment of the PPP method applied for surveys and tracking moving objects in GIS environment. The PPP data is collected by using preliminary developed by us software application that allows different sets of attribute data for the measurements and their accuracy to be used. The results from the PPP measurements are directly compared within the geospatial database to different other sets of terrestrial data - measurements obtained by total stations, real time kinematic and static GNSS.

  2. Accuracy improvement techniques in Precise Point Positioning method using multiple GNSS constellations

    NASA Astrophysics Data System (ADS)

    Vasileios Psychas, Dimitrios; Delikaraoglou, Demitris

    2016-04-01

    The future Global Navigation Satellite Systems (GNSS), including modernized GPS, GLONASS, Galileo and BeiDou, offer three or more signal carriers for civilian use and much more redundant observables. The additional frequencies can significantly improve the capabilities of the traditional geodetic techniques based on GPS signals at two frequencies, especially with regard to the availability, accuracy, interoperability and integrity of high-precision GNSS applications. Furthermore, highly redundant measurements can allow for robust simultaneous estimation of static or mobile user states including more parameters such as real-time tropospheric biases and more reliable ambiguity resolution estimates. This paper presents an investigation and analysis of accuracy improvement techniques in the Precise Point Positioning (PPP) method using signals from the fully operational (GPS and GLONASS), as well as the emerging (Galileo and BeiDou) GNSS systems. The main aim was to determine the improvement in both the positioning accuracy achieved and the time convergence it takes to achieve geodetic-level (10 cm or less) accuracy. To this end, freely available observation data from the recent Multi-GNSS Experiment (MGEX) of the International GNSS Service, as well as the open source program RTKLIB were used. Following a brief background of the PPP technique and the scope of MGEX, the paper outlines the various observational scenarios that were used in order to test various data processing aspects of PPP solutions with multi-frequency, multi-constellation GNSS systems. Results from the processing of multi-GNSS observation data from selected permanent MGEX stations are presented and useful conclusions and recommendations for further research are drawn. As shown, data fusion from GPS, GLONASS, Galileo and BeiDou systems is becoming increasingly significant nowadays resulting in a position accuracy increase (mostly in the less favorable East direction) and a large reduction of convergence

  3. A multicenter study benchmarks software tools for label-free proteome quantification.

    PubMed

    Navarro, Pedro; Kuharev, Jörg; Gillet, Ludovic C; Bernhardt, Oliver M; MacLean, Brendan; Röst, Hannes L; Tate, Stephen A; Tsou, Chih-Chiang; Reiter, Lukas; Distler, Ute; Rosenberger, George; Perez-Riverol, Yasset; Nesvizhskii, Alexey I; Aebersold, Ruedi; Tenzer, Stefan

    2016-11-01

    Consistent and accurate quantification of proteins by mass spectrometry (MS)-based proteomics depends on the performance of instruments, acquisition methods and data analysis software. In collaboration with the software developers, we evaluated OpenSWATH, SWATH 2.0, Skyline, Spectronaut and DIA-Umpire, five of the most widely used software methods for processing data from sequential window acquisition of all theoretical fragment-ion spectra (SWATH)-MS, which uses data-independent acquisition (DIA) for label-free protein quantification. We analyzed high-complexity test data sets from hybrid proteome samples of defined quantitative composition acquired on two different MS instruments using different SWATH isolation-window setups. For consistent evaluation, we developed LFQbench, an R package, to calculate metrics of precision and accuracy in label-free quantitative MS and report the identification performance, robustness and specificity of each software tool. Our reference data sets enabled developers to improve their software tools. After optimization, all tools provided highly convergent identification and reliable quantification performance, underscoring their robustness for label-free quantitative proteomics.

  4. High precision quantification of human plasma proteins using the automated SISCAPA Immuno-MS workflow.

    PubMed

    Razavi, Morteza; Leigh Anderson, N; Pope, Matthew E; Yip, Richard; Pearson, Terry W

    2016-09-25

    Efficient robotic workflows for trypsin digestion of human plasma and subsequent antibody-mediated peptide enrichment (the SISCAPA method) were developed with the goal of improving assay precision and throughput for multiplexed protein biomarker quantification. First, an 'addition only' tryptic digestion protocol was simplified from classical methods, eliminating the need for sample cleanup, while improving reproducibility, scalability and cost. Second, methods were developed to allow multiplexed enrichment and quantification of peptide surrogates of protein biomarkers representing a very broad range of concentrations and widely different molecular masses in human plasma. The total workflow coefficients of variation (including the 3 sequential steps of digestion, SISCAPA peptide enrichment and mass spectrometric analysis) for 5 proteotypic peptides measured in 6 replicates of each of 6 different samples repeated over 6 days averaged 3.4% within-run and 4.3% across all runs. An experiment to identify sources of variation in the workflow demonstrated that MRM measurement and tryptic digestion steps each had average CVs of ∼2.7%. Because of the high purity of the peptide analytes enriched by antibody capture, the liquid chromatography step is minimized and in some cases eliminated altogether, enabling throughput levels consistent with requirements of large biomarker and clinical studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. ICan: An Optimized Ion-Current-Based Quantification Procedure with Enhanced Quantitative Accuracy and Sensitivity in Biomarker Discovery

    PubMed Central

    2015-01-01

    The rapidly expanding availability of high-resolution mass spectrometry has substantially enhanced the ion-current-based relative quantification techniques. Despite the increasing interest in ion-current-based methods, quantitative sensitivity, accuracy, and false discovery rate remain the major concerns; consequently, comprehensive evaluation and development in these regards are urgently needed. Here we describe an integrated, new procedure for data normalization and protein ratio estimation, termed ICan, for improved ion-current-based analysis of data generated by high-resolution mass spectrometry (MS). ICan achieved significantly better accuracy and precision, and lower false-positive rate for discovering altered proteins, over current popular pipelines. A spiked-in experiment was used to evaluate the performance of ICan to detect small changes. In this study E. coli extracts were spiked with moderate-abundance proteins from human plasma (MAP, enriched by IgY14-SuperMix procedure) at two different levels to set a small change of 1.5-fold. Forty-five (92%, with an average ratio of 1.71 ± 0.13) of 49 identified MAP protein (i.e., the true positives) and none of the reference proteins (1.0-fold) were determined as significantly altered proteins, with cutoff thresholds of ≥1.3-fold change and p ≤ 0.05. This is the first study to evaluate and prove competitive performance of the ion-current-based approach for assigning significance to proteins with small changes. By comparison, other methods showed remarkably inferior performance. ICan can be broadly applicable to reliable and sensitive proteomic survey of multiple biological samples with the use of high-resolution MS. Moreover, many key features evaluated and optimized here such as normalization, protein ratio determination, and statistical analyses are also valuable for data analysis by isotope-labeling methods. PMID:25285707

  6. Precision and accuracy of suggested maxillary and mandibular landmarks with cone-beam computed tomography for regional superimpositions: An in vitro study.

    PubMed

    Lemieux, Genevieve; Carey, Jason P; Flores-Mir, Carlos; Secanell, Marc; Hart, Adam; Lagravère, Manuel O

    2016-01-01

    Our objective was to identify and evaluate the accuracy and precision (intrarater and interrater reliabilities) of various anatomic landmarks for use in 3-dimensional maxillary and mandibular regional superimpositions. We used cone-beam computed tomography reconstructions of 10 human dried skulls to locate 10 landmarks in the maxilla and the mandible. Precision and accuracy were assessed with intrarater and interrater readings. Three examiners located these landmarks in the cone-beam computed tomography images 3 times with readings scheduled at 1-week intervals. Three-dimensional coordinates were determined (x, y, and z coordinates), and the intraclass correlation coefficient was computed to determine intrarater and interrater reliabilities, as well as the mean error difference and confidence intervals for each measurement. Bilateral mental foramina, bilateral infraorbital foramina, anterior nasal spine, incisive canal, and nasion showed the highest precision and accuracy in both intrarater and interrater reliabilities. Subspinale and bilateral lingulae had the lowest precision and accuracy in both intrarater and interrater reliabilities. When choosing the most accurate and precise landmarks for 3-dimensional cephalometric analysis or plane-derived maxillary and mandibular superimpositions, bilateral mental and infraorbital foramina, landmarks in the anterior region of the maxilla, and nasion appeared to be the best options of the analyzed landmarks. Caution is needed when using subspinale and bilateral lingulae because of their higher mean errors in location. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  7. Accuracy of 3D white light scanning of abutment teeth impressions: evaluation of trueness and precision.

    PubMed

    Jeon, Jin-Hun; Kim, Hae-Young; Kim, Ji-Hwan; Kim, Woong-Chul

    2014-12-01

    This study aimed to evaluate the accuracy of digitizing dental impressions of abutment teeth using a white light scanner and to compare the findings among teeth types. To assess precision, impressions of the canine, premolar, and molar prepared to receive all-ceramic crowns were repeatedly scanned to obtain five sets of 3-D data (STL files). Point clouds were compared and error sizes were measured (n=10 per type). Next, to evaluate trueness, impressions of teeth were rotated by 10°-20° and scanned. The obtained data were compared with the first set of data for precision assessment, and the error sizes were measured (n=5 per type). The Kruskal-Wallis test was performed to evaluate precision and trueness among three teeth types, and post-hoc comparisons were performed using the Mann-Whitney U test with Bonferroni correction (α=.05). Precision discrepancies for the canine, premolar, and molar were 3.7 µm, 3.2 µm, and 7.3 µm, respectively, indicating the poorest precision for the molar (P<.001). Trueness discrepancies for teeth types were 6.2 µm, 11.2 µm, and 21.8 µm, respectively, indicating the poorest trueness for the molar (P=.007). In respect to accuracy the molar showed the largest discrepancies compared with the canine and premolar. Digitizing of dental impressions of abutment teeth using a white light scanner was assessed to be a highly accurate method and provided discrepancy values in a clinically acceptable range. Further study is needed to improve digitizing performance of white light scanning in axial wall.

  8. Isotope ratios of trace elements in samples from human nutrition studies determined by TIMS and ICP-MS: precision and accuracy compared.

    PubMed

    Turnlund, Judith R; Keyes, William R

    2002-09-01

    Stable isotopes are used with increasing frequency to trace the metabolic fate of minerals in human nutrition studies. The precision of the analytical methods used must be sufficient to permit reliable measurement of low enrichments and the accuracy should permit comparisons between studies. Two methods most frequently used today are thermal ionization mass spectrometry (TIMS) and inductively coupled plasma mass spectrometry (ICP-MS). This study was conducted to compare the two methods. Multiple natural samples of copper, zinc, molybdenum, and magnesium were analyzed by both methods to compare their internal and external precision. Samples with a range of isotopic enrichments that were collected from human studies or prepared from standards were analyzed to compare their accuracy. TIMS was more precise and accurate than ICP-MS. However, the cost, ease, and speed of analysis were better for ICP-MS. Therefore, for most purposes, ICP-MS is the method of choice, but when the highest degrees of precision and accuracy are required and when enrichments are very low, TIMS is the method of choice.

  9. Number-Density Measurements of CO2 in Real Time with an Optical Frequency Comb for High Accuracy and Precision

    NASA Astrophysics Data System (ADS)

    Scholten, Sarah K.; Perrella, Christopher; Anstie, James D.; White, Richard T.; Al-Ashwal, Waddah; Hébert, Nicolas Bourbeau; Genest, Jérôme; Luiten, Andre N.

    2018-05-01

    Real-time and accurate measurements of gas properties are highly desirable for numerous real-world applications. Here, we use an optical-frequency comb to demonstrate absolute number-density and temperature measurements of a sample gas with state-of-the-art precision and accuracy. The technique is demonstrated by measuring the number density of 12C16O2 with an accuracy of better than 1% and a precision of 0.04% in a measurement and analysis cycle of less than 1 s. This technique is transferable to numerous molecular species, thus offering an avenue for near-universal gas concentration measurements.

  10. Improving Precision, Maintaining Accuracy, and Reducing Acquisition Time for Trace Elements in EPMA

    NASA Astrophysics Data System (ADS)

    Donovan, J.; Singer, J.; Armstrong, J. T.

    2016-12-01

    Trace element precision in electron probe micro analysis (EPMA) is limited by intrinsic random variation in the x-ray continuum. Traditionally we characterize background intensity by measuring on either side of the emission line and interpolating the intensity underneath the peak to obtain the net intensity. Alternatively, we can measure the background intensity at the on-peak spectrometer position using a number of standard materials that do not contain the element of interest. This so-called mean atomic number (MAN) background calibration (Donovan, et al., 2016) uses a set of standard measurements, covering an appropriate range of average atomic number, to iteratively estimate the continuum intensity for the unknown composition (and hence average atomic number). We will demonstrate that, at least for materials with a relatively simple matrix such as SiO2, TiO2, ZrSiO4, etc. where one may obtain a matrix matched standard for use in the so called "blank correction", we can obtain trace element accuracy comparable to traditional off-peak methods, and with improved precision, in about half the time. Donovan, Singer and Armstrong, A New EPMA Method for Fast Trace Element Analysis in Simple Matrices ", American Mineralogist, v101, p1839-1853, 2016 Figure 1. Uranium concentration line profiles from quantitative x-ray maps (20 keV, 100 nA, 5 um beam size and 4000 msec per pixel), for both off-peak and MAN background methods without (a), and with (b), the blank correction applied. We see precision significantly improved compared with traditional off-peak measurements while, in this case, the blank correction provides a small but discernable improvement in accuracy.

  11. Accuracy and precision of stream reach water surface slopes estimated in the field and from maps

    USGS Publications Warehouse

    Isaak, D.J.; Hubert, W.A.; Krueger, K.L.

    1999-01-01

    The accuracy and precision of five tools used to measure stream water surface slope (WSS) were evaluated. Water surface slopes estimated in the field with a clinometer or from topographic maps used in conjunction with a map wheel or geographic information system (GIS) were significantly higher than WSS estimated in the field with a surveying level (biases of 34, 41, and 53%, respectively). Accuracy of WSS estimates obtained with an Abney level did not differ from surveying level estimates, but conclusions regarding the accuracy of Abney levels and clinometers were weakened by intratool variability. The surveying level estimated WSS most precisely (coefficient of variation [CV] = 0.26%), followed by the GIS (CV = 1.87%), map wheel (CV = 6.18%), Abney level (CV = 13.68%), and clinometer (CV = 21.57%). Estimates of WSS measured in the field with an Abney level and estimated for the same reaches with a GIS used in conjunction with l:24,000-scale topographic maps were significantly correlated (r = 0.86), but there was a tendency for the GIS to overestimate WSS. Detailed accounts of the methods used to measure WSS and recommendations regarding the measurement of WSS are provided.

  12. Obtaining identical results with double precision global accuracy on different numbers of processors in parallel particle Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleveland, Mathew A., E-mail: cleveland7@llnl.gov; Brunner, Thomas A.; Gentile, Nicholas A.

    2013-10-15

    We describe and compare different approaches for achieving numerical reproducibility in photon Monte Carlo simulations. Reproducibility is desirable for code verification, testing, and debugging. Parallelism creates a unique problem for achieving reproducibility in Monte Carlo simulations because it changes the order in which values are summed. This is a numerical problem because double precision arithmetic is not associative. Parallel Monte Carlo, both domain replicated and decomposed simulations, will run their particles in a different order during different runs of the same simulation because the non-reproducibility of communication between processors. In addition, runs of the same simulation using different domain decompositionsmore » will also result in particles being simulated in a different order. In [1], a way of eliminating non-associative accumulations using integer tallies was described. This approach successfully achieves reproducibility at the cost of lost accuracy by rounding double precision numbers to fewer significant digits. This integer approach, and other extended and reduced precision reproducibility techniques, are described and compared in this work. Increased precision alone is not enough to ensure reproducibility of photon Monte Carlo simulations. Non-arbitrary precision approaches require a varying degree of rounding to achieve reproducibility. For the problems investigated in this work double precision global accuracy was achievable by using 100 bits of precision or greater on all unordered sums which where subsequently rounded to double precision at the end of every time-step.« less

  13. Accuracy and precision of estimating age of gray wolves by tooth wear

    USGS Publications Warehouse

    Gipson, P.S.; Ballard, W.B.; Nowak, R.M.; Mech, L.D.

    2000-01-01

    We evaluated the accuracy and precision of tooth wear for aging gray wolves (Canis lupus) from Alaska, Minnesota, and Ontario based on 47 known-age or known-minimum-age skulls. Estimates of age using tooth wear and a commercial cementum annuli-aging service were useful for wolves up to 14 years old. The precision of estimates from cementum annuli was greater than estimates from tooth wear, but tooth wear estimates are more applicable in the field. We tended to overestimate age by 1-2 years and occasionally by 3 or 4 years. The commercial service aged young wolves with cementum annuli to within ?? 1 year of actual age, but under estimated ages of wolves ???9 years old by 1-3 years. No differences were detected in tooth wear patterns for wild wolves from Alaska, Minnesota, and Ontario, nor between captive and wild wolves. Tooth wear was not appropriate for aging wolves with an underbite that prevented normal wear or severely broken and missing teeth.

  14. Digital PCR: A Sensitive and Precise Method for KIT D816V Quantification in Mastocytosis.

    PubMed

    Greiner, Georg; Gurbisz, Michael; Ratzinger, Franz; Witzeneder, Nadine; Simonitsch-Klupp, Ingrid; Mitterbauer-Hohendanner, Gerlinde; Mayerhofer, Matthias; Müllauer, Leonhard; Sperr, Wolfgang R; Valent, Peter; Hoermann, Gregor

    2018-03-01

    The analytically sensitive detection of KIT D816V in blood and bone marrow is important for diagnosing systemic mastocytosis (SM). Additionally, precise quantification of the KIT D816V variant allele fraction (VAF) is relevant clinically because it helps to predict multilineage involvement and prognosis in cases of advanced SM. Digital PCR (dPCR) is a promising new method for sensitive detection and accurate quantification of somatic mutations. We performed a validation study of dPCR for KIT D816V on 302 peripheral blood and bone marrow samples from 156 patients with mastocytosis for comparison with melting curve analysis after peptide nucleic acid-mediated PCR clamping (clamp-PCR) and allele-specific quantitative real-time PCR (qPCR). dPCR showed a limit of detection of 0.01% VAF with a mean CV of 8.5% and identified the mutation in 90% of patients compared with 70% for clamp-PCR ( P < 0.001). Moreover, dPCR for KIT D816V was highly concordant with qPCR without systematic deviation of results, and confirmed the clinical value of KIT D816V VAF measurements. Thus, patients with advanced SM showed a significantly higher KIT D816V VAF (median, 2.43%) compared with patients with indolent SM (median, 0.14%; P < 0.001). Moreover, dPCR confirmed the prognostic significance of a high KIT D816V VAF regarding survival ( P < 0.001). dPCR for KIT D816V provides a high degree of precision and sensitivity combined with the potential for interlaboratory standardization, which is crucial for the implementation of KIT D816V allele burden measurement. Thus, dPCR is suitable as a new method for KIT D816V testing in patients with mastocytosis. © 2017 American Association for Clinical Chemistry.

  15. A literature review of anthropometric studies of school students for ergonomics purposes: Are accuracy, precision and reliability being considered?

    PubMed

    Bravo, G; Bragança, S; Arezes, P M; Molenbroek, J F M; Castellucci, H I

    2018-05-22

    Despite offering many benefits, direct manual anthropometric measurement method can be problematic due to their vulnerability to measurement errors. The purpose of this literature review was to determine, whether or not the currently published anthropometric studies of school children, related to ergonomics, mentioned or evaluated the variables precision, reliability or accuracy in the direct manual measurement method. Two bibliographic databases, and the bibliographic references of all the selected papers were used for finding relevant published papers in the fields considered in this study. Forty-six (46) studies met the criteria previously defined for this literature review. However, only ten (10) studies mentioned at least one of the analyzed variables, and none has evaluated all of them. Only reliability was assessed by three papers. Moreover, in what regards the factors that affect precision, reliability and accuracy, the reviewed papers presented large differences. This was particularly clear in the instruments used for the measurements, which were not consistent throughout the studies. Additionally, it was also clear that there was a lack of information regarding the evaluators' training and procedures for anthropometric data collection, which are assumed to be the most important issues that affect precision, reliability and accuracy. Based on the review of the literature, it was possible to conclude that the considered anthropometric studies had not focused their attention to the analysis of precision, reliability and accuracy of the manual measurement methods. Hence, and with the aim of avoiding measurement errors and misleading data, anthropometric studies should put more efforts and care on testing measurement error and defining the procedures used to collect anthropometric data.

  16. Accuracy and Precision in Measurements of Biomass Oxidative Ratio and Carbon Oxidation State

    NASA Astrophysics Data System (ADS)

    Gallagher, M. E.; Masiello, C. A.; Randerson, J. T.; Chadwick, O. A.; Robertson, G. P.

    2007-12-01

    Ecosystem oxidative ratio (OR) is a critical parameter in the apportionment of anthropogenic CO2 between the terrestrial biosphere and ocean carbon reservoirs. OR is the ratio of O2 to CO2 in gas exchange fluxes between the terrestrial biosphere and atmosphere. Ecosystem OR is linearly related to biomass carbon oxidation state (Cox), a fundamental property of the earth system describing the bonding environment of carbon in molecules. Cox can range from -4 to +4 (CH4 to CO2). Variations in both Cox and OR are driven by photosynthesis, respiration, and decomposition. We are developing several techniques to accurately measure variations in ecosystem Cox and OR; these include elemental analysis, bomb calorimetry, and 13C nuclear magnetic resonance spectroscopy. A previous study, comparing the accuracy and precision of elemental analysis versus bomb calorimetry for pure chemicals, showed that elemental analysis-based measurements are more accurate, while calorimetry- based measurements yield more precise data. However, the limited biochemical range of natural samples makes it possible that calorimetry may ultimately prove most accurate, as well as most cost-effective. Here we examine more closely the accuracy of Cox and OR values generated by calorimetry on a large set of natural biomass samples collected from the Kellogg Biological Station-Long Term Ecological Research (KBS-LTER) site in Michigan.

  17. Assessment of cardiac fibrosis: a morphometric method comparison for collagen quantification.

    PubMed

    Schipke, Julia; Brandenberger, Christina; Rajces, Alexandra; Manninger, Martin; Alogna, Alessio; Post, Heiner; Mühlfeld, Christian

    2017-04-01

    Fibrotic remodeling of the heart is a frequent condition linked to various diseases and cardiac dysfunction. Collagen quantification is an important objective in cardiac fibrosis research; however, a variety of different histological methods are currently used that may differ in accuracy. Here, frequently applied collagen quantification techniques were compared. A porcine model of early stage heart failure with preserved ejection fraction was used as an example. Semiautomated threshold analyses were imprecise, mainly due to inclusion of noncollagen structures or failure to detect certain collagen deposits. In contrast, collagen assessment by automated image analysis and light microscopy (LM)-stereology was more sensitive. Depending on the quantification method, the amount of estimated collagen varied and influenced intergroup comparisons. PicroSirius Red, Masson's trichrome, and Azan staining protocols yielded similar results, whereas the measured collagen area increased with increasing section thickness. Whereas none of the LM-based methods showed significant differences between the groups, electron microscopy (EM)-stereology revealed a significant collagen increase between cardiomyocytes in the experimental group, but not at other localizations. In conclusion, in contrast to the staining protocol, section thickness and the quantification method being used directly influence the estimated collagen content and thus, possibly, intergroup comparisons. EM in combination with stereology is a precise and sensitive method for collagen quantification if certain prerequisites are considered. For subtle fibrotic alterations, consideration of collagen localization may be necessary. Among LM methods, LM-stereology and automated image analysis are appropriate to quantify fibrotic changes, the latter depending on careful control of algorithm and comparable section staining. NEW & NOTEWORTHY Direct comparison of frequently applied histological fibrosis assessment techniques

  18. Highly sensitive quantification for human plasma-targeted metabolomics using an amine derivatization reagent.

    PubMed

    Arashida, Naoko; Nishimoto, Rumi; Harada, Masashi; Shimbo, Kazutaka; Yamada, Naoyuki

    2017-02-15

    Amino acids and their related metabolites play important roles in various physiological processes and have consequently become biomarkers for diseases. However, accurate quantification methods have only been established for major compounds, such as amino acids and a limited number of target metabolites. We previously reported a highly sensitive high-throughput method for the simultaneous quantification of amines using 3-aminopyridyl-N-succinimidyl carbamate as a derivatization reagent combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Herein, we report the successful development of a practical and accurate LC-MS/MS method to analyze low concentrations of 40 physiological amines in 19 min. Thirty-five of these amines showed good linearity, limits of quantification, accuracy, precision, and recovery characteristics in plasma, with scheduled selected reaction monitoring acquisitions. Plasma samples from 10 healthy volunteers were evaluated using our newly developed method. The results revealed that 27 amines were detected in one of the samples, and that 24 of these compounds could be quantified. Notably, this new method successfully quantified metabolites with high accuracy across three orders of magnitude, with lowest and highest averaged concentrations of 31.7 nM (for spermine) and 18.3 μM (for α-aminobutyric acid), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Resolution and quantification accuracy enhancement of functional delay and sum beamforming for three-dimensional acoustic source identification with solid spherical arrays

    NASA Astrophysics Data System (ADS)

    Chu, Zhigang; Yang, Yang; Shen, Linbang

    2017-05-01

    Functional delay and sum (FDAS) is a novel beamforming algorithm introduced for the three-dimensional (3D) acoustic source identification with solid spherical microphone arrays. Being capable of offering significantly attenuated sidelobes with a fast speed, the algorithm promises to play an important role in interior acoustic source identification. However, it presents some intrinsic imperfections, specifically poor spatial resolution and low quantification accuracy. This paper focuses on conquering these imperfections by ridge detection (RD) and deconvolution approach for the mapping of acoustic sources (DAMAS). The suggested methods are referred to as FDAS+RD and FDAS+RD+DAMAS. Both computer simulations and experiments are utilized to validate their effects. Several interesting conclusions have emerged: (1) FDAS+RD and FDAS+RD+DAMAS both can dramatically ameliorate FDAS's spatial resolution and at the same time inherit its advantages. (2) Compared to the conventional DAMAS, FDAS+RD+DAMAS enjoys the same super spatial resolution, stronger sidelobe attenuation capability and more than two hundred times faster speed. (3) FDAS+RD+DAMAS can effectively conquer FDAS's low quantification accuracy. Whether the focus distance is equal to the distance from the source to the array center or not, it can quantify the source average pressure contribution accurately. This study will be of great significance to the accurate and quick localization and quantification of acoustic sources in cabin environments.

  20. Simultaneous quantification and semi-quantification of ginkgolic acids and their metabolites in rat plasma by UHPLC-LTQ-Orbitrap-MS and its application to pharmacokinetics study.

    PubMed

    Qian, Yiyun; Zhu, Zhenhua; Duan, Jin-Ao; Guo, Sheng; Shang, Erxin; Tao, Jinhua; Su, Shulan; Guo, Jianming

    2017-01-15

    A highly sensitive method using ultra-high-pressure liquid chromatography coupled with linear ion trap-Orbitrap tandem mass spectrometry (UHPLC-LTQ-Orbitrap-MS) has been developed and validated for the simultaneous identification and quantification of ginkgolic acids and semi-quantification of their metabolites in rat plasma. For the five selected ginkgolic acids, the method was found to be with good linearities (r>0.9991), good intra- and inter-day precisions (RSD<15%), and good accuracies (RE, from -10.33% to 4.92%) as well. Extraction recoveries, matrix effects and stabilities for rat plasm samples were within the required limits. The validated method was successfully applied to investigate the pharmacokinetics of the five ginkgolic acids in rat plasma after oral administration of 3 dosage groups (900mg/kg, 300mg/kg and 100mg/kg). Meanwhile, six metabolites of GA (15:1) and GA (17:1) were identified by comparison of MS data with reported values. The results of validation in terms of linear ranges, precisions and stabilities were established for semi-quantification of metabolites. The curves of relative changes of these metabolites during the metabolic process were constructed by plotting the peak area ratios of metabolites to salicylic acid (internal standard, IS), respectively. Double peaks were observed in all 3 dose groups. Different type of metabolites and different dosage of each metabolite both resulted in different T max . Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Feasibility and accuracy of dual-layer spectral detector computed tomography for quantification of gadolinium: a phantom study.

    PubMed

    van Hamersvelt, Robbert W; Willemink, Martin J; de Jong, Pim A; Milles, Julien; Vlassenbroek, Alain; Schilham, Arnold M R; Leiner, Tim

    2017-09-01

    The aim of this study was to evaluate the feasibility and accuracy of dual-layer spectral detector CT (SDCT) for the quantification of clinically encountered gadolinium concentrations. The cardiac chamber of an anthropomorphic thoracic phantom was equipped with 14 tubular inserts containing different gadolinium concentrations, ranging from 0 to 26.3 mg/mL (0.0, 0.1, 0.2, 0.4, 0.5, 1.0, 2.0, 3.0, 4.0, 5.1, 10.6, 15.7, 20.7 and 26.3 mg/mL). Images were acquired using a novel 64-detector row SDCT system at 120 and 140 kVp. Acquisitions were repeated five times to assess reproducibility. Regions of interest (ROIs) were drawn on three slices per insert. A spectral plot was extracted for every ROI and mean attenuation profiles were fitted to known attenuation profiles of water and pure gadolinium using in-house-developed software to calculate gadolinium concentrations. At both 120 and 140 kVp, excellent correlations between scan repetitions and true and measured gadolinium concentrations were found (R > 0.99, P < 0.001; ICCs > 0.99, CI 0.99-1.00). Relative mean measurement errors stayed below 10% down to 2.0 mg/mL true gadolinium concentration at 120 kVp and below 5% down to 1.0 mg/mL true gadolinium concentration at 140 kVp. SDCT allows for accurate quantification of gadolinium at both 120 and 140 kVp. Lowest measurement errors were found for 140 kVp acquisitions. • Gadolinium quantification may be useful in patients with contraindication to iodine. • Dual-layer spectral detector CT allows for overall accurate quantification of gadolinium. • Interscan variability of gadolinium quantification using SDCT material decomposition is excellent.

  2. HPLC Quantification of astaxanthin and canthaxanthin in Salmonidae eggs.

    PubMed

    Tzanova, Milena; Argirova, Mariana; Atanasov, Vasil

    2017-04-01

    Astaxanthin and canthaxanthin are naturally occurring antioxidants referred to as xanthophylls. They are used as food additives in fish farms to improve the organoleptic qualities of salmonid products and to prevent reproductive diseases. This study reports the development and single-laboratory validation of a rapid method for quantification of astaxanthin and canthaxanthin in eggs of rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis М.). An advantage of the proposed method is the perfect combination of selective extraction of the xanthophylls and analysis of the extract by high-performance liquid chromatography and photodiode array detection. The method validation was carried out in terms of linearity, accuracy, precision, recovery and limits of detection and quantification. The method was applied for simultaneous quantification of the two xanthophylls in eggs of rainbow trout and brook trout after their selective extraction. The results show that astaxanthin accumulations in salmonid fish eggs are larger than those of canthaxanthin. As the levels of these two xanthophylls affect fish fertility, this method can be used to improve the nutritional quality and to minimize the occurrence of the M74 syndrome in fish populations. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Quantification of neutral human milk oligosaccharides by graphitic carbon HPLC with tandem mass spectrometry

    PubMed Central

    Bao, Yuanwu; Chen, Ceng; Newburg, David S.

    2012-01-01

    Defining the biologic roles of human milk oligosaccharides (HMOS) requires an efficient, simple, reliable, and robust analytical method for simultaneous quantification of oligosaccharide profiles from multiple samples. The HMOS fraction of milk is a complex mixture of polar, highly branched, isomeric structures that contain no intrinsic facile chromophore, making their resolution and quantification challenging. A liquid chromatography-mass spectrometry (LC-MS) method was devised to resolve and quantify 11 major neutral oligosaccharides of human milk simultaneously. Crude HMOS fractions are reduced, resolved by porous graphitic carbon HPLC with a water/acetonitrile gradient, detected by mass spectrometric specific ion monitoring, and quantified. The HPLC separates isomers of identical molecular weights allowing 11 peaks to be fully resolved and quantified by monitoring mass to charge (m/z) ratios of the deprotonated negative ions. The standard curves for each of the 11 oligosaccharides is linear from 0.078 or 0.156 to 20 μg/mL (R2 > 0.998). Precision (CV) ranges from 1% to 9%. Accuracy is from 86% to 104%. This analytical technique provides sensitive, precise, accurate quantification for each of the 11 milk oligosaccharides and allows measurement of differences in milk oligosaccharide patterns between individuals and at different stages of lactation. PMID:23068043

  4. 'Bodily precision': a predictive coding account of individual differences in interoceptive accuracy.

    PubMed

    Ainley, Vivien; Apps, Matthew A J; Fotopoulou, Aikaterini; Tsakiris, Manos

    2016-11-19

    Individuals differ in their awareness of afferent information from within their bodies, which is typically assessed by a heartbeat perception measure of 'interoceptive accuracy' (IAcc). Neural and behavioural correlates of this trait have been investigated, but a theoretical explanation has yet to be presented. Building on recent models that describe interoception within the free energy/predictive coding framework, this paper applies similar principles to IAcc, proposing that individual differences in IAcc depend on 'precision' in interoceptive systems, i.e. the relative weight accorded to 'prior' representations and 'prediction errors' (that part of incoming interoceptive sensation not accounted for by priors), at various levels within the cortical hierarchy and between modalities. Attention has the effect of optimizing precision both within and between sensory modalities. Our central assumption is that people with high IAcc are able, with attention, to prioritize interoception over other sensory modalities and can thus adjust the relative precision of their interoceptive priors and prediction errors, where appropriate, given their personal history. This characterization explains key findings within the interoception literature; links results previously seen as unrelated or contradictory; and may have important implications for understanding cognitive, behavioural and psychopathological consequences of both high and low interoceptive awareness.This article is part of the themed issue 'Interoception beyond homeostasis: affect, cognition and mental health'. © 2016 The Author(s).

  5. Simultaneous quantification of withanolides in Withania somnifera by a validated high-performance thin-layer chromatographic method.

    PubMed

    Srivastava, Pooja; Tiwari, Neerja; Yadav, Akhilesh K; Kumar, Vijendra; Shanker, Karuna; Verma, Ram K; Gupta, Madan M; Gupta, Anil K; Khanuja, Suman P S

    2008-01-01

    This paper describes a sensitive, selective, specific, robust, and validated densitometric high-performance thin-layer chromatographic (HPTLC) method for the simultaneous determination of 3 key withanolides, namely, withaferin-A, 12-deoxywithastramonolide, and withanolide-A, in Ashwagandha (Withania somnifera) plant samples. The separation was performed on aluminum-backed silica gel 60F254 HPTLC plates using dichloromethane-methanol-acetone-diethyl ether (15 + 1 + 1 + 1, v/v/v/v) as the mobile phase. The withanolides were quantified by densitometry in the reflection/absorption mode at 230 nm. Precise and accurate quantification could be performed in the linear working concentration range of 66-330 ng/band with good correlation (r2 = 0.997, 0.999, and 0.996, respectively). The method was validated for recovery, precision, accuracy, robustness, limit of detection, limit of quantitation, and specificity according to International Conference on Harmonization guidelines. Specificity of quantification was confirmed using retention factor (Rf) values, UV-Vis spectral correlation, and electrospray ionization mass spectra of marker compounds in sample tracks.

  6. Accurate joint space quantification in knee osteoarthritis: a digital x-ray tomosynthesis phantom study

    NASA Astrophysics Data System (ADS)

    Sewell, Tanzania S.; Piacsek, Kelly L.; Heckel, Beth A.; Sabol, John M.

    2011-03-01

    The current imaging standard for diagnosis and monitoring of knee osteoarthritis (OA) is projection radiography. However radiographs may be insensitive to markers of early disease such as osteophytes and joint space narrowing (JSN). Relative to standard radiography, digital X-ray tomosynthesis (DTS) may provide improved visualization of the markers of knee OA without the interference of superimposed anatomy. DTS utilizes a series of low-dose projection images over an arc of +/-20 degrees to reconstruct tomographic images parallel to the detector. We propose that DTS can increase accuracy and precision in JSN quantification. The geometric accuracy of DTS was characterized by quantifying joint space width (JSW) as a function of knee flexion and position using physical and anthropomorphic phantoms. Using a commercially available digital X-ray system, projection and DTS images were acquired for a Lucite rod phantom with known gaps at various source-object-distances, and angles of flexion. Gap width, representative of JSW, was measured using a validated algorithm. Over an object-to-detector-distance range of 5-21cm, a 3.0mm gap width was reproducibly measured in the DTS images, independent of magnification. A simulated 0.50mm (+/-0.13) JSN was quantified accurately (95% CI 0.44-0.56mm) in the DTS images. Angling the rods to represent knee flexion, the minimum gap could be precisely determined from the DTS images and was independent of flexion angle. JSN quantification using DTS was insensitive to distance from patient barrier and flexion angle. Potential exists for the optimization of DTS for accurate radiographic quantification of knee OA independent of patient positioning.

  7. The Use of Scale-Dependent Precision to Increase Forecast Accuracy in Earth System Modelling

    NASA Astrophysics Data System (ADS)

    Thornes, Tobias; Duben, Peter; Palmer, Tim

    2016-04-01

    At the current pace of development, it may be decades before the 'exa-scale' computers needed to resolve individual convective clouds in weather and climate models become available to forecasters, and such machines will incur very high power demands. But the resolution could be improved today by switching to more efficient, 'inexact' hardware with which variables can be represented in 'reduced precision'. Currently, all numbers in our models are represented as double-precision floating points - each requiring 64 bits of memory - to minimise rounding errors, regardless of spatial scale. Yet observational and modelling constraints mean that values of atmospheric variables are inevitably known less precisely on smaller scales, suggesting that this may be a waste of computer resources. More accurate forecasts might therefore be obtained by taking a scale-selective approach whereby the precision of variables is gradually decreased at smaller spatial scales to optimise the overall efficiency of the model. To study the effect of reducing precision to different levels on multiple spatial scales, we here introduce a new model atmosphere developed by extending the Lorenz '96 idealised system to encompass three tiers of variables - which represent large-, medium- and small-scale features - for the first time. In this chaotic but computationally tractable system, the 'true' state can be defined by explicitly resolving all three tiers. The abilities of low resolution (single-tier) double-precision models and similar-cost high resolution (two-tier) models in mixed-precision to produce accurate forecasts of this 'truth' are compared. The high resolution models outperform the low resolution ones even when small-scale variables are resolved in half-precision (16 bits). This suggests that using scale-dependent levels of precision in more complicated real-world Earth System models could allow forecasts to be made at higher resolution and with improved accuracy. If adopted, this new

  8. Accuracy, Precision, Ease-Of-Use, and Cost of Methods to Test Ebola-Relevant Chlorine Solutions

    PubMed Central

    Wells, Emma; Wolfe, Marlene K.; Murray, Anna; Lantagne, Daniele

    2016-01-01

    To prevent transmission in Ebola Virus Disease (EVD) outbreaks, it is recommended to disinfect living things (hands and people) with 0.05% chlorine solution and non-living things (surfaces, personal protective equipment, dead bodies) with 0.5% chlorine solution. In the current West African EVD outbreak, these solutions (manufactured from calcium hypochlorite (HTH), sodium dichloroisocyanurate (NaDCC), and sodium hypochlorite (NaOCl)) have been widely used in both Ebola Treatment Unit and community settings. To ensure solution quality, testing is necessary, however test method appropriateness for these Ebola-relevant concentrations has not previously been evaluated. We identified fourteen commercially-available methods to test Ebola-relevant chlorine solution concentrations, including two titration methods, four DPD dilution methods, and six test strips. We assessed these methods by: 1) determining accuracy and precision by measuring in quintuplicate five different 0.05% and 0.5% chlorine solutions manufactured from NaDCC, HTH, and NaOCl; 2) conducting volunteer testing to assess ease-of-use; and, 3) determining costs. Accuracy was greatest in titration methods (reference-12.4% error compared to reference method), then DPD dilution methods (2.4–19% error), then test strips (5.2–48% error); precision followed this same trend. Two methods had an accuracy of <10% error across all five chlorine solutions with good precision: Hach digital titration for 0.05% and 0.5% solutions (recommended for contexts with trained personnel and financial resources), and Serim test strips for 0.05% solutions (recommended for contexts where rapid, inexpensive, and low-training burden testing is needed). Measurement error from test methods not including pH adjustment varied significantly across the five chlorine solutions, which had pH values 5–11. Volunteers found test strip easiest and titration hardest; costs per 100 tests were $14–37 for test strips and $33–609 for titration

  9. LAI-2000 Accuracy, Precision, and Application to Visual Estimation of Leaf Area Index of Loblolly Pine

    Treesearch

    Jason A. Gatch; Timothy B. Harrington; James P. Castleberry

    2002-01-01

    Leaf area index (LAI) is an important parameter of forest stand productivity that has been used to diagnose stand vigor and potential fertilizer response of southern pines. The LAI-2000 was tested for its ability to provide accurate and precise estimates of LAI of loblolly pine (Pinus taeda L.). To test instrument accuracy, regression was used to...

  10. Rapid Development and Validation of Improved Reversed-Phase High-performance Liquid Chromatography Method for the Quantification of Mangiferin, a Polyphenol Xanthone Glycoside in Mangifera indica

    PubMed Central

    Naveen, P.; Lingaraju, H. B.; Prasad, K. Shyam

    2017-01-01

    Mangiferin, a polyphenolic xanthone glycoside from Mangifera indica, is used as traditional medicine for the treatment of numerous diseases. The present study was aimed to develop and validate a reversed-phase high-performance liquid chromatography (RP-HPLC) method for the quantification of mangiferin from the bark extract of M. indica. RP-HPLC analysis was performed by isocratic elution with a low-pressure gradient using 0.1% formic acid: acetonitrile (87:13) as a mobile phase with a flow rate of 1.5 ml/min. The separation was done at 26°C using a Kinetex XB-C18 column as stationary phase and the detection wavelength at 256 nm. The proposed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification, and robustness by the International Conference on Harmonisation guidelines. In linearity, the excellent correlation coefficient more than 0.999 indicated good fitting of the curve and also good linearity. The intra- and inter-day precision showed < 1% of relative standard deviation of peak area indicated high reliability and reproducibility of the method. The recovery values at three different levels (50%, 100%, and 150%) of spiked samples were found to be 100.47, 100.89, and 100.99, respectively, and low standard deviation value < 1% shows high accuracy of the method. In robustness, the results remain unaffected by small variation in the analytical parameters, which shows the robustness of the method. Liquid chromatography–mass spectrometry analysis confirmed the presence of mangiferin with M/Z value of 421. The assay developed by HPLC method is a simple, rapid, and reliable for the determination of mangiferin from M. indica. SUMMARY The present study was intended to develop and validate an RP-HPLC method for the quantification of mangiferin from the bark extract of M. indica. The developed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification and robustness by International

  11. Rapid Development and Validation of Improved Reversed-Phase High-performance Liquid Chromatography Method for the Quantification of Mangiferin, a Polyphenol Xanthone Glycoside in Mangifera indica.

    PubMed

    Naveen, P; Lingaraju, H B; Prasad, K Shyam

    2017-01-01

    Mangiferin, a polyphenolic xanthone glycoside from Mangifera indica , is used as traditional medicine for the treatment of numerous diseases. The present study was aimed to develop and validate a reversed-phase high-performance liquid chromatography (RP-HPLC) method for the quantification of mangiferin from the bark extract of M. indica . RP-HPLC analysis was performed by isocratic elution with a low-pressure gradient using 0.1% formic acid: acetonitrile (87:13) as a mobile phase with a flow rate of 1.5 ml/min. The separation was done at 26°C using a Kinetex XB-C18 column as stationary phase and the detection wavelength at 256 nm. The proposed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification, and robustness by the International Conference on Harmonisation guidelines. In linearity, the excellent correlation coefficient more than 0.999 indicated good fitting of the curve and also good linearity. The intra- and inter-day precision showed < 1% of relative standard deviation of peak area indicated high reliability and reproducibility of the method. The recovery values at three different levels (50%, 100%, and 150%) of spiked samples were found to be 100.47, 100.89, and 100.99, respectively, and low standard deviation value < 1% shows high accuracy of the method. In robustness, the results remain unaffected by small variation in the analytical parameters, which shows the robustness of the method. Liquid chromatography-mass spectrometry analysis confirmed the presence of mangiferin with M/Z value of 421. The assay developed by HPLC method is a simple, rapid, and reliable for the determination of mangiferin from M. indica . The present study was intended to develop and validate an RP-HPLC method for the quantification of mangiferin from the bark extract of M. indica . The developed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification and robustness by International

  12. Accuracy Analysis of Precise Point Positioning of Compass Navigation System Applied to Crustal Motion Monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Yuebing

    2017-04-01

    Based on the observation data of Compass/GPSobserved at five stations, time span from July 1, 2014 to June 30, 2016. UsingPPP positioning model of the PANDA software developed by Wuhan University,Analyzedthe positioning accuracy of single system and Compass/GPS integrated resolving, and discussed the capability of Compass navigation system in crustal motion monitoring. The results showed that the positioning accuracy in the east-west directionof the Compass navigation system is lower than the north-south direction (the positioning accuracy de 3 times RMS), in general, the positioning accuracyin the horizontal direction is about 1 2cm and the vertical direction is about 5 6cm. The GPS positioning accuracy in the horizontal direction is better than 1cm and the vertical direction is about 1 2cm. The accuracy of Compass/GPS integrated resolving is quite to GPS. It is worth mentioning that although Compass navigation system precision point positioning accuracy is lower than GPS, two sets of velocity fields obtained by using the Nikolaidis (2002) model to analyze the Compass and GPS time series results respectively, the results showed that the maximum difference of the two sets of velocity field in horizontal directions is 1.8mm/a. The Compass navigation system can now be used to monitor the crustal movement of the large deformation area, based on the velocity field in horizontal direction.

  13. A multi-center study benchmarks software tools for label-free proteome quantification

    PubMed Central

    Gillet, Ludovic C; Bernhardt, Oliver M.; MacLean, Brendan; Röst, Hannes L.; Tate, Stephen A.; Tsou, Chih-Chiang; Reiter, Lukas; Distler, Ute; Rosenberger, George; Perez-Riverol, Yasset; Nesvizhskii, Alexey I.; Aebersold, Ruedi; Tenzer, Stefan

    2016-01-01

    The consistent and accurate quantification of proteins by mass spectrometry (MS)-based proteomics depends on the performance of instruments, acquisition methods and data analysis software. In collaboration with the software developers, we evaluated OpenSWATH, SWATH2.0, Skyline, Spectronaut and DIA-Umpire, five of the most widely used software methods for processing data from SWATH-MS (sequential window acquisition of all theoretical fragment ion spectra), a method that uses data-independent acquisition (DIA) for label-free protein quantification. We analyzed high-complexity test datasets from hybrid proteome samples of defined quantitative composition acquired on two different MS instruments using different SWATH isolation windows setups. For consistent evaluation we developed LFQbench, an R-package to calculate metrics of precision and accuracy in label-free quantitative MS, and report the identification performance, robustness and specificity of each software tool. Our reference datasets enabled developers to improve their software tools. After optimization, all tools provided highly convergent identification and reliable quantification performance, underscoring their robustness for label-free quantitative proteomics. PMID:27701404

  14. Fast microwave-assisted extraction of rotenone for its quantification in seeds of yam bean (Pachyrhizus sp.).

    PubMed

    Lautié, Emmanuelle; Rasse, Catherine; Rozet, Eric; Mourgues, Claire; Vanhelleputte, Jean-Paul; Quetin-Leclercq, Joëlle

    2013-02-01

    The aim of this study was to find if fast microwave-assisted extraction could be an alternative to the conventional Soxhlet extraction for the quantification of rotenone in yam bean seeds by SPE and HPLC-UV. For this purpose, an experimental design was used to determine the optimal conditions of the microwave extraction. Then the values of the quantification on three accessions from two different species of yam bean seeds were compared using the two different kinds of extraction. A microwave extraction of 11 min at 55°C using methanol/dichloromethane (50:50) allowed rotenone extraction either equivalently or more efficiently than the 8-h-Soxhlet extraction method and was less sensitive to moisture content. The selectivity, precision, trueness, accuracy, and limit of quantification of the method with microwave extraction were also demonstrated. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo

    NASA Astrophysics Data System (ADS)

    Li, Xingxing; Ge, Maorong; Dai, Xiaolei; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-06-01

    In this contribution, we present a GPS+GLONASS+BeiDou+Galileo four-system model to fully exploit the observations of all these four navigation satellite systems for real-time precise orbit determination, clock estimation and positioning. A rigorous multi-GNSS analysis is performed to achieve the best possible consistency by processing the observations from different GNSS together in one common parameter estimation procedure. Meanwhile, an efficient multi-GNSS real-time precise positioning service system is designed and demonstrated by using the multi-GNSS Experiment, BeiDou Experimental Tracking Network, and International GNSS Service networks including stations all over the world. The statistical analysis of the 6-h predicted orbits show that the radial and cross root mean square (RMS) values are smaller than 10 cm for BeiDou and Galileo, and smaller than 5 cm for both GLONASS and GPS satellites, respectively. The RMS values of the clock differences between real-time and batch-processed solutions for GPS satellites are about 0.10 ns, while the RMS values for BeiDou, Galileo and GLONASS are 0.13, 0.13 and 0.14 ns, respectively. The addition of the BeiDou, Galileo and GLONASS systems to the standard GPS-only processing, reduces the convergence time almost by 70 %, while the positioning accuracy is improved by about 25 %. Some outliers in the GPS-only solutions vanish when multi-GNSS observations are processed simultaneous. The availability and reliability of GPS precise positioning decrease dramatically as the elevation cutoff increases. However, the accuracy of multi-GNSS precise point positioning (PPP) is hardly decreased and few centimeter are still achievable in the horizontal components even with 40 elevation cutoff. At 30 and 40 elevation cutoffs, the availability rates of GPS-only solution drop significantly to only around 70 and 40 %, respectively. However, multi-GNSS PPP can provide precise position estimates continuously (availability rate is more than 99

  16. Mapping stream habitats with a global positioning system: Accuracy, precision, and comparison with traditional methods

    USGS Publications Warehouse

    Dauwalter, D.C.; Fisher, W.L.; Belt, K.C.

    2006-01-01

    We tested the precision and accuracy of the Trimble GeoXT??? global positioning system (GPS) handheld receiver on point and area features and compared estimates of stream habitat dimensions (e.g., lengths and areas of riffles and pools) that were made in three different Oklahoma streams using the GPS receiver and a tape measure. The precision of differentially corrected GPS (DGPS) points was not affected by the number of GPS position fixes (i.e., geographic location estimates) averaged per DGPS point. Horizontal error of points ranged from 0.03 to 2.77 m and did not differ with the number of position fixes per point. The error of area measurements ranged from 0.1% to 110.1% but decreased as the area increased. Again, error was independent of the number of position fixes averaged per polygon corner. The estimates of habitat lengths, widths, and areas did not differ when measured using two methods of data collection (GPS and a tape measure), nor did the differences among methods change at three stream sites with contrasting morphologies. Measuring features with a GPS receiver was up to 3.3 times faster on average than using a tape measure, although signal interference from high streambanks or overhanging vegetation occasionally limited satellite signal availability and prolonged measurements with a GPS receiver. There were also no differences in precision of habitat dimensions when mapped using a continuous versus a position fix average GPS data collection method. Despite there being some disadvantages to using the GPS in stream habitat studies, measuring stream habitats with a GPS resulted in spatially referenced data that allowed the assessment of relative habitat position and changes in habitats over time, and was often faster than using a tape measure. For most spatial scales of interest, the precision and accuracy of DGPS data are adequate and have logistical advantages when compared to traditional methods of measurement. ?? 2006 Springer Science+Business Media

  17. Accuracy and precision of flash glucose monitoring sensors inserted into the abdomen and upper thigh compared with the upper arm.

    PubMed

    Charleer, Sara; Mathieu, Chantal; Nobels, Frank; Gillard, Pieter

    2018-06-01

    Nowadays, most Belgian patients with type 1 diabetes use flash glucose monitoring (FreeStyle Libre [FSL]; Abbott Diabetes Care, Alameda, California) to check their glucose values, but some patients find the sensor on the upper arm too visible. The aim of the present study was to compare the accuracy and precision of FSL sensors when placed on different sites. A total of 23 adults with type 1 diabetes used three FSL sensors simultaneously for 14 days on the upper arm, abdomen and upper thigh. FSL measurements were compared with capillary blood glucose (BG) measurements obtained with a built-in FSL BG meter. The aggregated mean absolute relative difference was 11.8 ± 12.0%, 18.5 ± 18.4% and 12.3 ± 13.8% for the arm, abdomen (P = .002 vs arm) and thigh (P = .5 vs arm), respectively. Results of Clarke error grid analysis for the arm and thigh were similar (zone A: 84.9% vs 84.5%; P = .6), while less accuracy was seen for the abdomen (zone A: 69.4%; P = .01). Apart from the first day, the accuracy of FSL sensors on the arm and thigh was more stable across the 14-day wear duration than accuracy of sensors on the abdomen, which deteriorated mainly during week 2 (P < .0005). The aggregated precision absolute relative difference was markedly lower for the arm/thigh (10.9 ± 11.9%) compared with the arm/abdomen (20.9 ± 22.8%; P = .002). Our results indicate that the accuracy and precision of FSL sensors placed on the upper thigh are similar to the upper arm, whereas the abdomen performed unacceptably poorly. © 2018 John Wiley & Sons Ltd.

  18. Very high precision and accuracy analysis of triple isotopic ratios of water. A critical instrumentation comparison study.

    NASA Astrophysics Data System (ADS)

    Gkinis, Vasileios; Holme, Christian; Morris, Valerie; Thayer, Abigail Grace; Vaughn, Bruce; Kjaer, Helle Astrid; Vallelonga, Paul; Simonsen, Marius; Jensen, Camilla Marie; Svensson, Anders; Maffrezzoli, Niccolo; Vinther, Bo; Dallmayr, Remi

    2017-04-01

    We present a performance comparison study between two state of the art Cavity Ring Down Spectrometers (Picarro L2310-i, L2140-i). The comparison took place during the Continuous Flow Analysis (CFA) campaign for the measurement of the Renland ice core, over a period of three months. Instant and complete vaporisation of the ice core melt stream, as well as of in-house water reference materials is achieved by accurate control of microflows of liquid into a homemade calibration system by following simple principles of the Hagen-Poiseuille law. Both instruments share the same vaporisation unit in a configuration that minimises sample preparation discrepancies between the two analyses. We describe our SMOW-SLAP calibration and measurement protocols for such a CFA application and present quality control metrics acquired during the full period of the campaign on a daily basis. The results indicate an unprecedented performance for all 3 isotopic ratios (δ2H, δ17O, δ18O ) in terms of precision, accuracy and resolution. We also comment on the precision and accuracy of the second order excess parameters of HD16O and H217O over H218O (Dxs, Δ17O ). To our knowledge these are the first reported CFA measurements at this level of precision and accuracy for all three isotopic ratios. Differences on the performance of the two instruments are carefully assessed during the measurement and reported here. Our quality control protocols extend to the area of low water mixing ratios, a regime in which often atmospheric vapour measurements take place and Cavity Ring Down Analysers show a poorer performance due to the lower signal to noise ratios. We address such issues and propose calibration protocols from which water vapour isotopic analyses can benefit from.

  19. Sensitive quantification of apomorphine in human plasma using a LC-ESI-MS-MS method.

    PubMed

    Abe, Emuri; Alvarez, Jean-Claude

    2006-06-01

    An analytical method based on liquid chromatography coupled with ion trap mass spectrometry (MS) detection with electrospray ionization interface has been developed for the identification and quantification of apomorphine in human plasma. Apomorphine was isolated from 0.5 mL of plasma using a liquid-liquid extraction with diethyl ether and boldine as internal standard, with satisfactory extraction recoveries. Analytes were separated on a 5-microm C18 Highpurity (Thermohypersil) column (150 mm x 2.1 mm I.D.) maintained at 30 degrees C, coupled to a precolumn (C18, 5-microm, 10 mm x 2.0 mm I.D., Thermo). The elution was achieved isocratically with a mobile phase of 2 mM NH4COOH buffer pH 3.8/acetonitrile (50/50, vol/vol) at a flow rate of 200 microL per minute. Data were collected either in full-scan MS mode at m/z 150 to 500 or in full-scan tandem mass spectrometry mode, selecting the [M+H]ion at m/z 268.0 for apomorphine and m/z 328.0 for boldine. The most intense daughter ion of apomorphine (m/z 237.1) and boldine (m/z 297.0) were used for quantification. Retention times were 2.03 and 2.11 minutes for boldine and apomorphine, respectively. Calibration curves were linear in the 0.025 to 20 ng/mL range. The limits of detection and quantification were 0.010 ng/mL and 0.025 ng/mL, respectively. Accuracy and precision of the assay were measured by analyzing 54 quality control samples for 3 days. At concentrations of 0.075, 1.5, and 15 ng/mL, intraday precisions were less than 10.1%, 5.3%, and 3.8%, and interday precisions were less than 4.8%, 6.6%, and 6.5%, respectively. Accuracies were in the 99.5 to 104.2% range. An example of a patient who was given 6 mg of apomorphine subcutaneously is shown, with concentrations of 14.1 ng/mL after 30 minutes and 0.20 ng/mL after 6 hours. The method described enables the unambiguous identification and quantification of apomorphine with very good sensitivity using only 0.5 mL of sample, and is very convenient for therapeutic drug

  20. [Precision and accuracy of a dental spectrophotometer in gingival color measurement of maxillary anterior gingival].

    PubMed

    Du, Yang; Tan, Jian-guo; Chen, Li; Wang, Fang-ping; Tan, Yao; Zhou, Jian-feng

    2012-08-18

    To explore a gingival shade matching method and to evaluate the precision and accuracy of a dental spectrophotometer modified to be used in gingival color measurement. Crystaleye, a dental spectrophotometer (Olympus, Tokyo, Japan) with a custom shading cover was tested. For precision assessment, two experienced experimenters measured anterior maxillary incisors five times for each tooth. A total of 20 healthy gingival sites (attached gingiva, free gingiva and medial gingival papilla in anterior maxillary region) were measured,the Commission Internationale de I' Eclairage (CIE) color parameters (CIE L*a*b*) of which were analyzed using the supporting software. For accuracy assessment, a rectangular area of approximately 3 mm×3 mm was chosen in the attached gingival portion for spectral analysis. PR715 (SpectraScan;Photo Research Inc.,California, USA), a spectroradiometer, was utilized as standard control. Average color differences (ΔE) between the values from PR715 and Crystaleye were calculated. In precision assessment,ΔL* between the values in all the test sites and average values were from(0.28±0.16)to(0.78±0.57), with Δa*and Δb* from(0.28±0.15)to (0.87±0.65),from(0.19±0.09)to( 0.58±0.78), respectively. Average ΔE between values in all test sites and average values were from (0.62 ± 0.17) to (1.25 ± 0.98) CIELAB units, with a total average ΔE(0.90 ± 0.18). In accuracy assessment, ΔL* with control device were from(0.58±0.50)to(2.22±1.89),with Δa*and Δb* from(1.03±0.67)to(2.99±1.32),from(0.68±0.78)to(1.26±0.83), respectively. Average ΔE with the control device were from (2.44±0.82) to (3.51±1.03) CIELAB units, with a total average ΔE (2.96 ± 1.08). With appropriate modification, Crystaleye, the spectrophotometer, has demonstrated relative minor color variations that can be useful in gingival color measurement.

  1. Precision and accuracy in smFRET based structural studies—A benchmark study of the Fast-Nano-Positioning System

    NASA Astrophysics Data System (ADS)

    Nagy, Julia; Eilert, Tobias; Michaelis, Jens

    2018-03-01

    Modern hybrid structural analysis methods have opened new possibilities to analyze and resolve flexible protein complexes where conventional crystallographic methods have reached their limits. Here, the Fast-Nano-Positioning System (Fast-NPS), a Bayesian parameter estimation-based analysis method and software, is an interesting method since it allows for the localization of unknown fluorescent dye molecules attached to macromolecular complexes based on single-molecule Förster resonance energy transfer (smFRET) measurements. However, the precision, accuracy, and reliability of structural models derived from results based on such complex calculation schemes are oftentimes difficult to evaluate. Therefore, we present two proof-of-principle benchmark studies where we use smFRET data to localize supposedly unknown positions on a DNA as well as on a protein-nucleic acid complex. Since we use complexes where structural information is available, we can compare Fast-NPS localization to the existing structural data. In particular, we compare different dye models and discuss how both accuracy and precision can be optimized.

  2. Precision and Accuracy of a Digital Impression Scanner in Full-Arch Implant Rehabilitation.

    PubMed

    Pesce, Paolo; Pera, Francesco; Setti, Paolo; Menini, Maria

    To evaluate the accuracy and precision of a digital scanner used to scan four implants positioned according to an immediate loading implant protocol and to assess the accuracy of an aluminum framework fabricated from a digital impression. Five master casts reproducing different edentulous maxillae with four tilted implants were used. Four scan bodies were screwed onto the low-profile abutments, and a digital intraoral scanner was used to perform five digital impressions of each master cast. To assess trueness, a metal framework of the best digital impression was produced with computer-aided design/computer-assisted manufacture (CAD/CAM) technology and passive fit was assessed with the Sheffield test. Gaps between the frameworks and the implant analogs were measured with a stereomicroscope. To assess precision, three-dimensional (3D) point cloud processing software was used to measure the deviations between the five digital impressions of each cast by producing a color map. The deviation values were grouped in three classes, and differences were assessed between class 2 (representing lower discrepancies) and the assembled classes 1 and 3 (representing the higher negative and positive discrepancies, respectively). The frameworks showed a mean gap of < 30 μm (range: 2 to 47 μm). A statistically significant difference was found between the two groups by the 3D point cloud software, with higher frequencies of points in class 2 than in grouped classes 1 and 3 (P < .001). Within the limits of this in vitro study, it appears that a digital impression may represent a reliable method for fabricating full-arch implant frameworks with good passive fit when tilted implants are present.

  3. Assessment of xylem phenology: a first attempt to verify its accuracy and precision.

    PubMed

    Lupi, C; Rossi, S; Vieira, J; Morin, H; Deslauriers, A

    2014-01-01

    This manuscript aims to evaluate the precision and accuracy of current methodology for estimating xylem phenology and tracheid production in trees. Through a simple approach, sampling at two positions on the stem of co-dominant black spruce trees in two sites of the boreal forest of Quebec, we were able to quantify variability among sites, between trees and within a tree for different variables. We demonstrated that current methodology is accurate for the estimation of the onset of xylogenesis, while the accuracy for the evaluation of the ending of xylogenesis may be improved by sampling at multiple positions on the stem. The pattern of variability in different phenological variables and cell production allowed us to advance a novel hypothesis on the shift in the importance of various drivers of xylogenesis, from factors mainly varying at the level of site (e.g., climate) at the beginning of the growing season to factors varying at the level of individual trees (e.g., possibly genetic variability) at the end of the growing season.

  4. Sensor-Based Inspection of the Formation Accuracy in Ultra-Precision Grinding (UPG) of Aspheric Surface Considering the Chatter Vibration

    NASA Astrophysics Data System (ADS)

    Lei, Yao; Bai, Yue; Xu, Zhijun

    2018-06-01

    This paper proposes an experimental approach for monitoring and inspection of the formation accuracy in ultra-precision grinding (UPG) with respect to the chatter vibration. Two factors related to the grinding progress, the grinding speed of grinding wheel and spindle, and the oil pressure of the hydrostatic bearing are taken into account to determining the accuracy. In the meantime, a mathematical model of the radius deviation caused by the micro vibration is also established and applied in the experiments. The results show that the accuracy is sensitive to the vibration and the forming accuracy is much improved with proper processing parameters. It is found that the accuracy of aspheric surface can be less than 4 μm when the grinding speed is 1400 r/min and the wheel speed is 100 r/min with the oil pressure being 1.1 MPa.

  5. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy

    PubMed Central

    2017-01-01

    Unique Molecular Identifiers (UMIs) are random oligonucleotide barcodes that are increasingly used in high-throughput sequencing experiments. Through a UMI, identical copies arising from distinct molecules can be distinguished from those arising through PCR amplification of the same molecule. However, bioinformatic methods to leverage the information from UMIs have yet to be formalized. In particular, sequencing errors in the UMI sequence are often ignored or else resolved in an ad hoc manner. We show that errors in the UMI sequence are common and introduce network-based methods to account for these errors when identifying PCR duplicates. Using these methods, we demonstrate improved quantification accuracy both under simulated conditions and real iCLIP and single-cell RNA-seq data sets. Reproducibility between iCLIP replicates and single-cell RNA-seq clustering are both improved using our proposed network-based method, demonstrating the value of properly accounting for errors in UMIs. These methods are implemented in the open source UMI-tools software package. PMID:28100584

  6. Accuracy of Area at Risk Quantification by Cardiac Magnetic Resonance According to the Myocardial Infarction Territory.

    PubMed

    Fernández-Friera, Leticia; García-Ruiz, José Manuel; García-Álvarez, Ana; Fernández-Jiménez, Rodrigo; Sánchez-González, Javier; Rossello, Xavier; Gómez-Talavera, Sandra; López-Martín, Gonzalo J; Pizarro, Gonzalo; Fuster, Valentín; Ibáñez, Borja

    2017-05-01

    Area at risk (AAR) quantification is important to evaluate the efficacy of cardioprotective therapies. However, postinfarction AAR assessment could be influenced by the infarcted coronary territory. Our aim was to determine the accuracy of T 2 -weighted short tau triple-inversion recovery (T 2 W-STIR) cardiac magnetic resonance (CMR) imaging for accurate AAR quantification in anterior, lateral, and inferior myocardial infarctions. Acute reperfused myocardial infarction was experimentally induced in 12 pigs, with 40-minute occlusion of the left anterior descending (n = 4), left circumflex (n = 4), and right coronary arteries (n = 4). Perfusion CMR was performed during selective intracoronary gadolinium injection at the coronary occlusion site (in vivo criterion standard) and, additionally, a 7-day CMR, including T 2 W-STIR sequences, was performed. Finally, all animals were sacrificed and underwent postmortem Evans blue staining (classic criterion standard). The concordance between the CMR-based criterion standard and T 2 W-STIR to quantify AAR was high for anterior and inferior infarctions (r = 0.73; P = .001; mean error = 0.50%; limits = -12.68%-13.68% and r = 0.87; P = .001; mean error = -1.5%; limits = -8.0%-5.8%, respectively). Conversely, the correlation for the circumflex territories was poor (r = 0.21, P = .37), showing a higher mean error and wider limits of agreement. A strong correlation between pathology and the CMR-based criterion standard was observed (r = 0.84, P < .001; mean error = 0.91%; limits = -7.55%-9.37%). T 2 W-STIR CMR sequences are accurate to determine the AAR for anterior and inferior infarctions; however, their accuracy for lateral infarctions is poor. These findings may have important implications for the design and interpretation of clinical trials evaluating the effectiveness of cardioprotective therapies. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  7. Simple Quantification of Pentosidine in Human Urine and Plasma by High-Performance Liquid Chromatography

    PubMed Central

    Lee, Ji Sang; Chung, Yoon-Sok; Chang, Sun Young

    2017-01-01

    Pentosidine is an advanced glycation end-product (AGE) and fluorescent cross-link compound. A simple high-performance liquid chromatographic (HPLC) method was developed for the detection and quantification of pentosidine in human urine and plasma. The mobile phase used a gradient system to improve separation of pentosidine from endogenous peaks, and chromatograms were monitored by fluorescent detector set at excitation and emission wavelengths of 328 and 378 nm, respectively. The retention time for pentosidine was 24.3 min and the lower limits of quantification (LLOQ) in human urine and plasma were 1 nM. The intraday assay precisions (coefficients of variation) were generally low and found to be in the range of 5.19–7.49% and 4.96–8.78% for human urine and plasma, respectively. The corresponding values of the interday assay precisions were 9.45% and 4.27%. Accuracies (relative errors) ranged from 87.9% to 115%. Pentosidine was stable in a range of pH solutions, human urine, and plasma. In summary, this HPLC method can be applied in future preclinical and clinical evaluation of pentosidine in the diabetic patients. PMID:29181026

  8. The impact of targeting repetitive BamHI-W sequences on the sensitivity and precision of EBV DNA quantification.

    PubMed

    Sanosyan, Armen; Fayd'herbe de Maudave, Alexis; Bollore, Karine; Zimmermann, Valérie; Foulongne, Vincent; Van de Perre, Philippe; Tuaillon, Edouard

    2017-01-01

    Viral load monitoring and early Epstein-Barr virus (EBV) DNA detection are essential in routine laboratory testing, especially in preemptive management of Post-transplant Lymphoproliferative Disorder. Targeting the repetitive BamHI-W sequence was shown to increase the sensitivity of EBV DNA quantification, but the variability of BamHI-W reiterations was suggested to be a source of quantification bias. We aimed to assess the extent of variability associated with BamHI-W PCR and its impact on the sensitivity of EBV DNA quantification using the 1st WHO international standard, EBV strains and clinical samples. Repetitive BamHI-W- and LMP2 single- sequences were amplified by in-house qPCRs and BXLF-1 sequence by a commercial assay (EBV R-gene™, BioMerieux). Linearity and limits of detection of in-house methods were assessed. The impact of repeated versus single target sequences on EBV DNA quantification precision was tested on B95.8 and Raji cell lines, possessing 11 and 7 copies of the BamHI-W sequence, respectively, and on clinical samples. BamHI-W qPCR demonstrated a lower limit of detection compared to LMP2 qPCR (2.33 log10 versus 3.08 log10 IU/mL; P = 0.0002). BamHI-W qPCR underestimated the EBV DNA load on Raji strain which contained fewer BamHI-W copies than the WHO standard derived from the B95.8 EBV strain (mean bias: - 0.21 log10; 95% CI, -0.54 to 0.12). Comparison of BamHI-W qPCR versus LMP2 and BXLF-1 qPCR showed an acceptable variability between EBV DNA levels in clinical samples with the mean bias being within 0.5 log10 IU/mL EBV DNA, whereas a better quantitative concordance was observed between LMP2 and BXLF-1 assays. Targeting BamHI-W resulted to a higher sensitivity compared to LMP2 but the variable reiterations of BamHI-W segment are associated with higher quantification variability. BamHI-W can be considered for clinical and therapeutic monitoring to detect an early EBV DNA and a dynamic change in viral load.

  9. The impact of targeting repetitive BamHI-W sequences on the sensitivity and precision of EBV DNA quantification

    PubMed Central

    Fayd’herbe de Maudave, Alexis; Bollore, Karine; Zimmermann, Valérie; Foulongne, Vincent; Van de Perre, Philippe; Tuaillon, Edouard

    2017-01-01

    Background Viral load monitoring and early Epstein-Barr virus (EBV) DNA detection are essential in routine laboratory testing, especially in preemptive management of Post-transplant Lymphoproliferative Disorder. Targeting the repetitive BamHI-W sequence was shown to increase the sensitivity of EBV DNA quantification, but the variability of BamHI-W reiterations was suggested to be a source of quantification bias. We aimed to assess the extent of variability associated with BamHI-W PCR and its impact on the sensitivity of EBV DNA quantification using the 1st WHO international standard, EBV strains and clinical samples. Methods Repetitive BamHI-W- and LMP2 single- sequences were amplified by in-house qPCRs and BXLF-1 sequence by a commercial assay (EBV R-gene™, BioMerieux). Linearity and limits of detection of in-house methods were assessed. The impact of repeated versus single target sequences on EBV DNA quantification precision was tested on B95.8 and Raji cell lines, possessing 11 and 7 copies of the BamHI-W sequence, respectively, and on clinical samples. Results BamHI-W qPCR demonstrated a lower limit of detection compared to LMP2 qPCR (2.33 log10 versus 3.08 log10 IU/mL; P = 0.0002). BamHI-W qPCR underestimated the EBV DNA load on Raji strain which contained fewer BamHI-W copies than the WHO standard derived from the B95.8 EBV strain (mean bias: - 0.21 log10; 95% CI, -0.54 to 0.12). Comparison of BamHI-W qPCR versus LMP2 and BXLF-1 qPCR showed an acceptable variability between EBV DNA levels in clinical samples with the mean bias being within 0.5 log10 IU/mL EBV DNA, whereas a better quantitative concordance was observed between LMP2 and BXLF-1 assays. Conclusions Targeting BamHI-W resulted to a higher sensitivity compared to LMP2 but the variable reiterations of BamHI-W segment are associated with higher quantification variability. BamHI-W can be considered for clinical and therapeutic monitoring to detect an early EBV DNA and a dynamic change in viral load

  10. Simultaneous quantification of flavonoids and triterpenoids in licorice using HPLC.

    PubMed

    Wang, Yuan-Chuen; Yang, Yi-Shan

    2007-05-01

    Numerous bioactive compounds are present in licorice (Glycyrrhizae Radix), including flavonoids and triterpenoids. In this study, a reversed-phase high-performance liquid chromatography (HPLC) method for simultaneous quantification of three flavonoids (liquiritin, liquiritigenin and isoliquiritigenin) and four triterpenoids (glycyrrhizin, 18alpha-glycyrrhetinic acid, 18beta-glycyrrhetinic acid and 18beta-glycyrrhetinic acid methyl ester) from licorice was developed, and further, to quantify these 7 compounds from 20 different licorice samples. Specifically, the reverse-phase HPLC was performed with a gradient mobile phase composed of 25 mM phosphate buffer (pH 2.5)-acetonitrile featuring gradient elution steps as follows: 0 min, 100:0; 10 min, 80:20; 50 min, 70:30; 73 min, 50:50; 110 min, 50:50; 125 min, 20:80; 140 min, 20:80, and peaks were detected at 254 nm. By using our technique, a rather good specificity was obtained regarding to the separation of these seven compounds. The regression coefficient for the linear equations for the seven compounds lay between 0.9978 and 0.9992. The limits of detection and quantification lay in the range of 0.044-0.084 and 0.13-0.25 microg/ml, respectively. The relative recovery rates for the seven compounds lay between 96.63+/-2.43 and 103.55+/-2.77%. Coefficient variation for intra-day and inter-day precisions lay in the range of 0.20-1.84 and 0.28-1.86%, respectively. Based upon our validation results, this analytical technique is a convenient method to simultaneous quantify numerous bioactive compounds derived from licorice, featuring good quantification parameters, accuracy and precision.

  11. Modeling qRT-PCR dynamics with application to cancer biomarker quantification.

    PubMed

    Chervoneva, Inna; Freydin, Boris; Hyslop, Terry; Waldman, Scott A

    2017-01-01

    Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is widely used for molecular diagnostics and evaluating prognosis in cancer. The utility of mRNA expression biomarkers relies heavily on the accuracy and precision of quantification, which is still challenging for low abundance transcripts. The critical step for quantification is accurate estimation of efficiency needed for computing a relative qRT-PCR expression. We propose a new approach to estimating qRT-PCR efficiency based on modeling dynamics of polymerase chain reaction amplification. In contrast, only models for fluorescence intensity as a function of polymerase chain reaction cycle have been used so far for quantification. The dynamics of qRT-PCR efficiency is modeled using an ordinary differential equation model, and the fitted ordinary differential equation model is used to obtain effective polymerase chain reaction efficiency estimates needed for efficiency-adjusted quantification. The proposed new qRT-PCR efficiency estimates were used to quantify GUCY2C (Guanylate Cyclase 2C) mRNA expression in the blood of colorectal cancer patients. Time to recurrence and GUCY2C expression ratios were analyzed in a joint model for survival and longitudinal outcomes. The joint model with GUCY2C quantified using the proposed polymerase chain reaction efficiency estimates provided clinically meaningful results for association between time to recurrence and longitudinal trends in GUCY2C expression.

  12. Impact of survey workflow on precision and accuracy of terrestrial LiDAR datasets

    NASA Astrophysics Data System (ADS)

    Gold, P. O.; Cowgill, E.; Kreylos, O.

    2009-12-01

    Ground-based LiDAR (Light Detection and Ranging) survey techniques are enabling remote visualization and quantitative analysis of geologic features at unprecedented levels of detail. For example, digital terrain models computed from LiDAR data have been used to measure displaced landforms along active faults and to quantify fault-surface roughness. But how accurately do terrestrial LiDAR data represent the true ground surface, and in particular, how internally consistent and precise are the mosaiced LiDAR datasets from which surface models are constructed? Addressing this question is essential for designing survey workflows that capture the necessary level of accuracy for a given project while minimizing survey time and equipment, which is essential for effective surveying of remote sites. To address this problem, we seek to define a metric that quantifies how scan registration error changes as a function of survey workflow. Specifically, we are using a Trimble GX3D laser scanner to conduct a series of experimental surveys to quantify how common variables in field workflows impact the precision of scan registration. Primary variables we are testing include 1) use of an independently measured network of control points to locate scanner and target positions, 2) the number of known-point locations used to place the scanner and point clouds in 3-D space, 3) the type of target used to measure distances between the scanner and the known points, and 4) setting up the scanner over a known point as opposed to resectioning of known points. Precision of the registered point cloud is quantified using Trimble Realworks software by automatic calculation of registration errors (errors between locations of the same known points in different scans). Accuracy of the registered cloud (i.e., its ground-truth) will be measured in subsequent experiments. To obtain an independent measure of scan-registration errors and to better visualize the effects of these errors on a registered point

  13. Development and validation of high-performance liquid chromatography and high-performance thin-layer chromatography methods for the quantification of khellin in Ammi visnaga seed

    PubMed Central

    Kamal, Abid; Khan, Washim; Ahmad, Sayeed; Ahmad, F. J.; Saleem, Kishwar

    2015-01-01

    Objective: The present study was used to design simple, accurate and sensitive reversed phase-high-performance liquid chromatography RP-HPLC and high-performance thin-layer chromatography (HPTLC) methods for the development of quantification of khellin present in the seeds of Ammi visnaga. Materials and Methods: RP-HPLC analysis was performed on a C18 column with methanol: Water (75: 25, v/v) as a mobile phase. The HPTLC method involved densitometric evaluation of khellin after resolving it on silica gel plate using ethyl acetate: Toluene: Formic acid (5.5:4.0:0.5, v/v/v) as a mobile phase. Results: The developed HPLC and HPTLC methods were validated for precision (interday, intraday and intersystem), robustness and accuracy, limit of detection and limit of quantification. The relationship between the concentration of standard solutions and the peak response was linear in both HPLC and HPTLC methods with the concentration range of 10–80 μg/mL in HPLC and 25–1,000 ng/spot in HPTLC for khellin. The % relative standard deviation values for method precision was found to be 0.63–1.97%, 0.62–2.05% in HPLC and HPTLC for khellin respectively. Accuracy of the method was checked by recovery studies conducted at three different concentration levels and the average percentage recovery was found to be 100.53% in HPLC and 100.08% in HPTLC for khellin. Conclusions: The developed HPLC and HPTLC methods for the quantification of khellin were found simple, precise, specific, sensitive and accurate which can be used for routine analysis and quality control of A. visnaga and several formulations containing it as an ingredient. PMID:26681890

  14. How training citizen scientists affects the accuracy and precision of phenological data

    NASA Astrophysics Data System (ADS)

    Feldman, Richard E.; Žemaitė, Irma; Miller-Rushing, Abraham J.

    2018-05-01

    Monitoring plant and animal phenology is a critical step to anticipating and predicting changes in species interactions and biodiversity. Because phenology necessarily involves frequent and repeated observations over time, citizen scientists have become a vital part of collecting phenological data. However, there is still concern over the accuracy and precision of citizen science data. It is possible that training citizen scientists can improve data quality though there are few comparisons of trained and untrained citizen scientists in the ability of each to accurately and precisely measure phenology. We assessed how three types of observers—experts, trained citizen scientists that make repeated observations, and untrained citizen scientists making once-per-year observations—differ in quantifying temporal change in flower and fruit abundance of American mountain ash trees (Sorbus americana Marsh.) and arthropods in Acadia National Park, Maine, USA. We found that trained more so than untrained citizen science observers over- or under-estimated abundances leading to precise but inaccurate characterizations of phenological patterns. Our results suggest a new type of bias induced by repeated observations: A type of learning takes place that reduces the independence of observations taken on different trees or different dates. Thus, in this and many other cases, having individuals make one-off observations of marked plants may produce data as good if not better than individuals making repeated observations. For citizen science programs related to phenology, our results underscore the importance of (a) attracting the most number of observers possible even if they only make one observation, (b) producing easy-to-use and informative data sheets, and (c) carefully planning effective training programs that are, perhaps, repeated at different points during the data collection period.

  15. How training citizen scientists affects the accuracy and precision of phenological data.

    PubMed

    Feldman, Richard E; Žemaitė, Irma; Miller-Rushing, Abraham J

    2018-05-07

    Monitoring plant and animal phenology is a critical step to anticipating and predicting changes in species interactions and biodiversity. Because phenology necessarily involves frequent and repeated observations over time, citizen scientists have become a vital part of collecting phenological data. However, there is still concern over the accuracy and precision of citizen science data. It is possible that training citizen scientists can improve data quality though there are few comparisons of trained and untrained citizen scientists in the ability of each to accurately and precisely measure phenology. We assessed how three types of observers-experts, trained citizen scientists that make repeated observations, and untrained citizen scientists making once-per-year observations-differ in quantifying temporal change in flower and fruit abundance of American mountain ash trees (Sorbus americana Marsh.) and arthropods in Acadia National Park, Maine, USA. We found that trained more so than untrained citizen science observers over- or under-estimated abundances leading to precise but inaccurate characterizations of phenological patterns. Our results suggest a new type of bias induced by repeated observations: A type of learning takes place that reduces the independence of observations taken on different trees or different dates. Thus, in this and many other cases, having individuals make one-off observations of marked plants may produce data as good if not better than individuals making repeated observations. For citizen science programs related to phenology, our results underscore the importance of (a) attracting the most number of observers possible even if they only make one observation, (b) producing easy-to-use and informative data sheets, and (c) carefully planning effective training programs that are, perhaps, repeated at different points during the data collection period.

  16. Evaluation of dry blood spot technique for quantification of an Anti-CD20 monoclonal antibody drug in human blood samples.

    PubMed

    Lin, Yong-Qing; Zhang, Yilu; Li, Connie; Li, Louis; Zhang, Kelley; Li, Shawn

    2012-01-01

    To evaluate the dried blood spot (DBS) technique in ELISA quantification of larger biomolecular drugs, an anti-CD20 monoclonal antibody drug was used as an example. A method for the quantification of the anti-CD20 drug in human DBS was developed and validated. The drug standard and quality control samples prepared in fresh human blood were spotted on DBS cards and then extracted. A luminescent ELISA was used for quantification of the drug from DBS samples. The assay range of the anti-CD20 drug standards in DBS was 100-2500ng/mL. The intra-assay precision (%CV) ranged from 0.4% to 10.1%, and the accuracy (%Recovery) ranged from 77.9% to 113.9%. The inter assay precision (%CV) ranged from 5.9% to 17.4%, and the accuracy ranged from 81.5% to 110.5%. The DBS samples diluted 500 and 50-fold yielded recovery of 88.7% and 90.7%, respectively. The preparation of DBS in higher and lower hematocrit (53% and 35%) conditions did not affect the recovery of the drug. Furthermore, the storage stability of the anti-CD20 drug on DBS cards was tested at various conditions. It was found that the anti-CD20 drug was stable for one week in DBS stored at room temperature. However, it was determined that the stability was compro]mised in DBS stored at high humidity, high temperature (55°C), and exposed to direct daylight for a week, as well as for samples stored at room temperature and high humidity conditions for a month. Stability did not change significantly in samples that underwent 3 freeze/thaw cycles. Our results demonstrated a successful use of DBS technique in ELISA quantification of an anti-CD20 monoclonal antibody drug in human blood. The stability data provides information regarding sample storage and shipping for future clinical studies. It is, therefore, concluded that the DBS technique is applicable in the quantification of other large biomolecule drugs or biomarkers. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Temporal Delineation and Quantification of Short Term Clustered Mining Seismicity

    NASA Astrophysics Data System (ADS)

    Woodward, Kyle; Wesseloo, Johan; Potvin, Yves

    2017-07-01

    The assessment of the temporal characteristics of seismicity is fundamental to understanding and quantifying the seismic hazard associated with mining, the effectiveness of strategies and tactics used to manage seismic hazard, and the relationship between seismicity and changes to the mining environment. This article aims to improve the accuracy and precision in which the temporal dimension of seismic responses can be quantified and delineated. We present a review and discussion on the occurrence of time-dependent mining seismicity with a specific focus on temporal modelling and the modified Omori law (MOL). This forms the basis for the development of a simple weighted metric that allows for the consistent temporal delineation and quantification of a seismic response. The optimisation of this metric allows for the selection of the most appropriate modelling interval given the temporal attributes of time-dependent mining seismicity. We evaluate the performance weighted metric for the modelling of a synthetic seismic dataset. This assessment shows that seismic responses can be quantified and delineated by the MOL, with reasonable accuracy and precision, when the modelling is optimised by evaluating the weighted MLE metric. Furthermore, this assessment highlights that decreased weighted MLE metric performance can be expected if there is a lack of contrast between the temporal characteristics of events associated with different processes.

  18. Evaluation of accuracy and precision of a smartphone based automated parasite egg counting system in comparison to the McMaster and Mini-FLOTAC methods.

    PubMed

    Scare, J A; Slusarewicz, P; Noel, M L; Wielgus, K M; Nielsen, M K

    2017-11-30

    Fecal egg counts are emphasized for guiding equine helminth parasite control regimens due to the rise of anthelmintic resistance. This, however, poses further challenges, since egg counting results are prone to issues such as operator dependency, method variability, equipment requirements, and time commitment. The use of image analysis software for performing fecal egg counts is promoted in recent studies to reduce the operator dependency associated with manual counts. In an attempt to remove operator dependency associated with current methods, we developed a diagnostic system that utilizes a smartphone and employs image analysis to generate automated egg counts. The aims of this study were (1) to determine precision of the first smartphone prototype, the modified McMaster and ImageJ; (2) to determine precision, accuracy, sensitivity, and specificity of the second smartphone prototype, the modified McMaster, and Mini-FLOTAC techniques. Repeated counts on fecal samples naturally infected with equine strongyle eggs were performed using each technique to evaluate precision. Triplicate counts on 36 egg count negative samples and 36 samples spiked with strongyle eggs at 5, 50, 500, and 1000 eggs per gram were performed using a second smartphone system prototype, Mini-FLOTAC, and McMaster to determine technique accuracy. Precision across the techniques was evaluated using the coefficient of variation. In regards to the first aim of the study, the McMaster technique performed with significantly less variance than the first smartphone prototype and ImageJ (p<0.0001). The smartphone and ImageJ performed with equal variance. In regards to the second aim of the study, the second smartphone system prototype had significantly better precision than the McMaster (p<0.0001) and Mini-FLOTAC (p<0.0001) methods, and the Mini-FLOTAC was significantly more precise than the McMaster (p=0.0228). Mean accuracies for the Mini-FLOTAC, McMaster, and smartphone system were 64.51%, 21.67%, and

  19. A strategy for absolute proteome quantification with mass spectrometry by hierarchical use of peptide-concatenated standards.

    PubMed

    Kito, Keiji; Okada, Mitsuhiro; Ishibashi, Yuko; Okada, Satoshi; Ito, Takashi

    2016-05-01

    The accurate and precise absolute abundance of proteins can be determined using mass spectrometry by spiking the sample with stable isotope-labeled standards. In this study, we developed a strategy of hierarchical use of peptide-concatenated standards (PCSs) to quantify more proteins over a wider dynamic range. Multiple primary PCSs were used for quantification of many target proteins. Unique "ID-tag peptides" were introduced into individual primary PCSs, allowing us to monitor the exact amounts of individual PCSs using a "secondary PCS" in which all "ID-tag peptides" were concatenated. Furthermore, we varied the copy number of the "ID-tag peptide" in each PCS according to a range of expression levels of target proteins. This strategy accomplished absolute quantification over a wider range than that of the measured ratios. The quantified abundance of budding yeast proteins showed a high reproducibility for replicate analyses and similar copy numbers per cell for ribosomal proteins, demonstrating the accuracy and precision of this strategy. A comparison with the absolute abundance of transcripts clearly indicated different post-transcriptional regulation of expression for specific functional groups. Thus, the approach presented here is a faithful method for the absolute quantification of proteomes and provides insights into biological mechanisms, including the regulation of expressed protein abundance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. SU-F-T-255: Accuracy and Precision of Dynamic Tracking Irradiation with VERO-4DRT System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, N; Takada, Y; Mizuno, T

    2016-06-15

    Purpose: The VERO-4DRT system is able to provide dynamic tracking irradiation (DTI) for the target with respiratory motion. This technique requires enough commissioning for clinical implementation. The purpose of this study is to make sure the accuracy and precision of DTI using VERO- 4DRT through commissioning from fundamental evaluation to end-to-end test. Method: We evaluated several contents for DTI commissioning: the accuracy of absorption dose at isocenter in DTI, the field size and penumbra of DTI, the accuracy of 4D modeling in DTI. All evaluations were performed by respiratory motion phantom (Quasar phantom). These contents were compared the results betweenmore » static irradiation and DTI. The shape of radiation field was set to square from 3 cm × 3 cm to 10 cm × 10 cm. The micro 3D chamber and Gafchromic EBT3 film were used for absorbed dose and relative dose distribution measurement, respectively. The sine and irregular shaped waves were used for demonstrative respiratory motion. The visicoil was implanted into the phantom for guidance of respiratory motion. The respiration patterns of frequency and motion amount were set to 10–15 BPM and 1–2 cm, respectively. Results: As the result of absorbed dose of DTI in comparison with static irradiation, the average dose error at isocenter was 0.5% even though various respiratory patterns were set on. As the result of relative dose distribution, the field size (set it on 50% dose line) was not significantly changed in all respiratory patterns. However, the penumbra was larger in greater respiratory motion (up to 4.1 mm). The 4D modeling coincidence between actual and created waves was within 1%. Conclusion: The DTI using VERO-4DRT can provide sufficient accuracy and precision in absorbed dose and distribution. However, the patientspecific quantitative internal margin corresponding respiratory motion should be taken into consideration with image guidance.« less

  1. Accuracy and precision of patient positioning for pelvic MR-only radiation therapy using digitally reconstructed radiographs

    NASA Astrophysics Data System (ADS)

    Kemppainen, R.; Vaara, T.; Joensuu, T.; Kiljunen, T.

    2018-03-01

    Background and Purpose. Magnetic resonance imaging (MRI) has in recent years emerged as an imaging modality to drive precise contouring of targets and organs at risk in external beam radiation therapy. Moreover, recent advances in MRI enable treatment of cancer without computed tomography (CT) simulation. A commercially available MR-only solution, MRCAT, offers a single-modality approach that provides density information for dose calculation and generation of positioning reference images. We evaluated the accuracy of patient positioning based on MRCAT digitally reconstructed radiographs (DRRs) by comparing to standard CT based workflow. Materials and Methods. Twenty consecutive prostate cancer patients being treated with external beam radiation therapy were included in the study. DRRs were generated for each patient based on the planning CT and MRCAT. The accuracy assessment was performed by manually registering the DRR images to planar kV setup images using bony landmarks. A Bayesian linear mixed effects model was used to separate systematic and random components (inter- and intra-observer variation) in the assessment. In addition, method agreement was assessed using a Bland-Altman analysis. Results. The systematic difference between MRCAT and CT based patient positioning, averaged over the study population, were found to be (mean [95% CI])  -0.49 [-0.85 to  -0.13] mm, 0.11 [-0.33 to  +0.57] mm and  -0.05 [-0.23 to  +0.36] mm in vertical, longitudinal and lateral directions, respectively. The increases in total random uncertainty were estimated to be below 0.5 mm for all directions, when using MR-only workflow instead of CT. Conclusions. The MRCAT pseudo-CT method provides clinically acceptable accuracy and precision for patient positioning for pelvic radiation therapy based on planar DRR images. Furthermore, due to the reduction of geometric uncertainty, compared to dual-modality workflow, the approach is likely to improve the total

  2. Accuracy assessment of Precise Point Positioning with multi-constellation GNSS data under ionospheric scintillation effects

    NASA Astrophysics Data System (ADS)

    Marques, Haroldo Antonio; Marques, Heloísa Alves Silva; Aquino, Marcio; Veettil, Sreeja Vadakke; Monico, João Francisco Galera

    2018-02-01

    GPS and GLONASS are currently the Global Navigation Satellite Systems (GNSS) with full operational capacity. The integration of GPS, GLONASS and future GNSS constellations can provide better accuracy and more reliability in geodetic positioning, in particular for kinematic Precise Point Positioning (PPP), where the satellite geometry is considered a limiting factor to achieve centimeter accuracy. The satellite geometry can change suddenly in kinematic positioning in urban areas or under conditions of strong atmospheric effects such as for instance ionospheric scintillation that may degrade satellite signal quality, causing cycle slips and even loss of lock. Scintillation is caused by small scale irregularities in the ionosphere and is characterized by rapid changes in amplitude and phase of the signal, which are more severe in equatorial and high latitudes geomagnetic regions. In this work, geodetic positioning through the PPP method was evaluated with integrated GPS and GLONASS data collected in the equatorial region under varied scintillation conditions. The GNSS data were processed in kinematic PPP mode and the analyses show accuracy improvements of up to 60% under conditions of strong scintillation when using multi-constellation data instead of GPS data alone. The concepts and analyses related to the ionospheric scintillation effects, the mathematical model involved in PPP with GPS and GLONASS data integration as well as accuracy assessment with data collected under ionospheric scintillation effects are presented.

  3. A refined methodology for modeling volume quantification performance in CT

    NASA Astrophysics Data System (ADS)

    Chen, Baiyu; Wilson, Joshua; Samei, Ehsan

    2014-03-01

    The utility of CT lung nodule volume quantification technique depends on the precision of the quantification. To enable the evaluation of quantification precision, we previously developed a mathematical model that related precision to image resolution and noise properties in uniform backgrounds in terms of an estimability index (e'). The e' was shown to predict empirical precision across 54 imaging and reconstruction protocols, but with different correlation qualities for FBP and iterative reconstruction (IR) due to the non-linearity of IR impacted by anatomical structure. To better account for the non-linearity of IR, this study aimed to refine the noise characterization of the model in the presence of textured backgrounds. Repeated scans of an anthropomorphic lung phantom were acquired. Subtracted images were used to measure the image quantum noise, which was then used to adjust the noise component of the e' calculation measured from a uniform region. In addition to the model refinement, the validation of the model was further extended to 2 nodule sizes (5 and 10 mm) and 2 segmentation algorithms. Results showed that the magnitude of IR's quantum noise was significantly higher in structured backgrounds than in uniform backgrounds (ASiR, 30-50%; MBIR, 100-200%). With the refined model, the correlation between e' values and empirical precision no longer depended on reconstruction algorithm. In conclusion, the model with refined noise characterization relfected the nonlinearity of iterative reconstruction in structured background, and further showed successful prediction of quantification precision across a variety of nodule sizes, dose levels, slice thickness, reconstruction algorithms, and segmentation software.

  4. Rapid capillary electrophoresis approach for the quantification of ewe milk adulteration with cow milk.

    PubMed

    Trimboli, Francesca; Morittu, Valeria Maria; Cicino, Caterina; Palmieri, Camillo; Britti, Domenico

    2017-10-13

    The substitution of ewe milk with more economic cow milk is a common fraud. Here we present a capillary electrophoresis method for the quantification of ewe milk in ovine/bovine milk mixtures, which allows for the rapid and inexpensive recognition of ewe milk adulteration with cow milk. We utilized a routine CE method for human blood and urine proteins analysis, which fulfilled the separation of skimmed milk proteins in alkaline buffer. Under this condition, ovine and bovine milk exhibited a recognizable and distinct CE protein profiles, with a specific ewe peak showing a reproducible migration zone in ovine/bovine mixtures. Based on ewe specific CE peak, we developed a method for ewe milk quantification in ovine/bovine skimmed milk mixtures, which showed good linearity, precision and accuracy, and a minimum amount of detectable fraudulent cow milk equal to 5%. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Accuracy and Precision of Three-Dimensional Low Dose CT Compared to Standard RSA in Acetabular Cups: An Experimental Study.

    PubMed

    Brodén, Cyrus; Olivecrona, Henrik; Maguire, Gerald Q; Noz, Marilyn E; Zeleznik, Michael P; Sköldenberg, Olof

    2016-01-01

    Background and Purpose. The gold standard for detection of implant wear and migration is currently radiostereometry (RSA). The purpose of this study is to compare a three-dimensional computed tomography technique (3D CT) to standard RSA as an alternative technique for measuring migration of acetabular cups in total hip arthroplasty. Materials and Methods. With tantalum beads, we marked one cemented and one uncemented cup and mounted these on a similarly marked pelvic model. A comparison was made between 3D CT and standard RSA for measuring migration. Twelve repeated stereoradiographs and CT scans with double examinations in each position and gradual migration of the implants were made. Precision and accuracy of the 3D CT were calculated. Results. The accuracy of the 3D CT ranged between 0.07 and 0.32 mm for translations and 0.21 and 0.82° for rotation. The precision ranged between 0.01 and 0.09 mm for translations and 0.06 and 0.29° for rotations, respectively. For standard RSA, the precision ranged between 0.04 and 0.09 mm for translations and 0.08 and 0.32° for rotations, respectively. There was no significant difference in precision between 3D CT and standard RSA. The effective radiation dose of the 3D CT method, comparable to RSA, was estimated to be 0.33 mSv. Interpretation. Low dose 3D CT is a comparable method to standard RSA in an experimental setting.

  6. A precise and accurate acupoint location obtained on the face using consistency matrix pointwise fusion method.

    PubMed

    Yanq, Xuming; Ye, Yijun; Xia, Yong; Wei, Xuanzhong; Wang, Zheyu; Ni, Hongmei; Zhu, Ying; Xu, Lingyu

    2015-02-01

    To develop a more precise and accurate method, and identified a procedure to measure whether an acupoint had been correctly located. On the face, we used an acupoint location from different acupuncture experts and obtained the most precise and accurate values of acupoint location based on the consistency information fusion algorithm, through a virtual simulation of the facial orientation coordinate system. Because of inconsistencies in each acupuncture expert's original data, the system error the general weight calculation. First, we corrected each expert of acupoint location system error itself, to obtain a rational quantification for each expert of acupuncture and moxibustion acupoint location consistent support degree, to obtain pointwise variable precision fusion results, to put every expert's acupuncture acupoint location fusion error enhanced to pointwise variable precision. Then, we more effectively used the measured characteristics of different acupuncture expert's acupoint location, to improve the measurement information utilization efficiency and acupuncture acupoint location precision and accuracy. Based on using the consistency matrix pointwise fusion method on the acupuncture experts' acupoint location values, each expert's acupoint location information could be calculated, and the most precise and accurate values of each expert's acupoint location could be obtained.

  7. Clarity™ digital PCR system: a novel platform for absolute quantification of nucleic acids.

    PubMed

    Low, Huiyu; Chan, Shun-Jie; Soo, Guo-Hao; Ling, Belinda; Tan, Eng-Lee

    2017-03-01

    In recent years, digital polymerase chain reaction (dPCR) has gained recognition in biomedical research as it provides a platform for precise and accurate quantification of nucleic acids without the need for a standard curve. However, this technology has not yet been widely adopted as compared to real-time quantitative PCR due to its more cumbersome workflow arising from the need to sub-divide a PCR sample into a large number of smaller partitions prior to thermal cycling to achieve zero or at least one copy of the target RNA/DNA per partition. A recently launched platform, the Clarity™ system from JN Medsys, simplifies dPCR workflow through the use of a novel chip-in-a-tube technology for sample partitioning. In this study, the performance of Clarity™ was evaluated through quantification of the single-copy human RNase P gene. The system demonstrated high precision and accuracy and also excellent linearity across a range of over 4 orders of magnitude for the absolute quantification of the target gene. Moreover, consistent DNA copy measurements were also attained using a panel of different probe- and dye-based master mixes, demonstrating the system's compatibility with commercial master mixes. The Clarity™ was then compared to the QX100™ droplet dPCR system from Bio-Rad using a set of DNA reference materials, and the copy number concentrations derived from both systems were found to be closely associated. Collectively, the results showed that Clarity™ is a reliable, robust and flexible platform for next-generation genetic analysis.

  8. Determination of lipophilic marine toxins in mussels. Quantification and confirmation criteria using high resolution mass spectrometry.

    PubMed

    Domènech, Albert; Cortés-Francisco, Nuria; Palacios, Oscar; Franco, José M; Riobó, Pilar; Llerena, José J; Vichi, Stefania; Caixach, Josep

    2014-02-07

    A multitoxin method has been developed for quantification and confirmation of lipophilic marine biotoxins in mussels by liquid chromatography coupled to high resolution mass spectrometry (HRMS), using an Orbitrap-Exactive HCD mass spectrometer. Okadaic acid (OA), yessotoxin, azaspiracid-1, gymnodimine, 13-desmethyl spirolide C, pectenotoxin-2 and Brevetoxin B were analyzed as representative compounds of each lipophilic toxin group. HRMS identification and confirmation criteria were established. Fragment and isotope ions and ion ratios were studied and evaluated for confirmation purpose. In depth characterization of full scan and fragmentation spectrum of the main toxins were carried out. Accuracy (trueness and precision), linearity, calibration curve check, limit of quantification (LOQ) and specificity were the parameters established for the method validation. The validation was performed at 0.5 times the current European Union permitted levels. The method performed very well for the parameters investigated. The trueness, expressed as recovery, ranged from 80% to 94%, the precision, expressed as intralaboratory reproducibility, ranged from 5% to 22% and the LOQs range from 0.9 to 4.8pg on column. Uncertainty of the method was also estimated for OA, using a certified reference material. A top-down approach considering two main contributions: those arising from the trueness studies and those coming from the precision's determination, was used. An overall expanded uncertainty of 38% was obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Precise Orbit Determination for ALOS

    NASA Technical Reports Server (NTRS)

    Nakamura, Ryo; Nakamura, Shinichi; Kudo, Nobuo; Katagiri, Seiji

    2007-01-01

    The Advanced Land Observing Satellite (ALOS) has been developed to contribute to the fields of mapping, precise regional land coverage observation, disaster monitoring, and resource surveying. Because the mounted sensors need high geometrical accuracy, precise orbit determination for ALOS is essential for satisfying the mission objectives. So ALOS mounts a GPS receiver and a Laser Reflector (LR) for Satellite Laser Ranging (SLR). This paper deals with the precise orbit determination experiments for ALOS using Global and High Accuracy Trajectory determination System (GUTS) and the evaluation of the orbit determination accuracy by SLR data. The results show that, even though the GPS receiver loses lock of GPS signals more frequently than expected, GPS-based orbit is consistent with SLR-based orbit. And considering the 1 sigma error, orbit determination accuracy of a few decimeters (peak-to-peak) was achieved.

  10. An accurate proteomic quantification method: fluorescence labeling absolute quantification (FLAQ) using multidimensional liquid chromatography and tandem mass spectrometry.

    PubMed

    Liu, Junyan; Liu, Yang; Gao, Mingxia; Zhang, Xiangmin

    2012-08-01

    A facile proteomic quantification method, fluorescent labeling absolute quantification (FLAQ), was developed. Instead of using MS for quantification, the FLAQ method is a chromatography-based quantification in combination with MS for identification. Multidimensional liquid chromatography (MDLC) with laser-induced fluorescence (LIF) detection with high accuracy and tandem MS system were employed for FLAQ. Several requirements should be met for fluorescent labeling in MS identification: Labeling completeness, minimum side-reactions, simple MS spectra, and no extra tandem MS fragmentations for structure elucidations. A fluorescence dye, 5-iodoacetamidofluorescein, was finally chosen to label proteins on all cysteine residues. The fluorescent dye was compatible with the process of the trypsin digestion and MALDI MS identification. Quantitative labeling was achieved with optimization of reacting conditions. A synthesized peptide and model proteins, BSA (35 cysteines), OVA (five cysteines), were used for verifying the completeness of labeling. Proteins were separated through MDLC and quantified based on fluorescent intensities, followed by MS identification. High accuracy (RSD% < 1.58) and wide linearity of quantification (1-10(5) ) were achieved by LIF detection. The limit of quantitation for the model protein was as low as 0.34 amol. Parts of proteins in human liver proteome were quantified and demonstrated using FLAQ. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Note: electronic circuit for two-way time transfer via a single coaxial cable with picosecond accuracy and precision.

    PubMed

    Prochazka, Ivan; Kodet, Jan; Panek, Petr

    2012-11-01

    We have designed, constructed, and tested the overall performance of the electronic circuit for the two-way time transfer between two timing devices over modest distances with sub-picosecond precision and a systematic error of a few picoseconds. The concept of the electronic circuit enables to carry out time tagging of pulses of interest in parallel to the comparison of the time scales of these timing devices. The key timing parameters of the circuit are: temperature change of the delay is below 100 fs/K, timing stability time deviation better than 8 fs for averaging time from minutes to hours, sub-picosecond time transfer precision, and a few picoseconds time transfer accuracy.

  12. A Contamination-Free Ultrahigh Precision Formation Flying Method for Micro-, Nano-, and Pico-Satellites with Nanometer Accuracy

    NASA Astrophysics Data System (ADS)

    Bae, Young K.

    2006-01-01

    Formation flying of clusters of micro-, nano- and pico-satellites has been recognized to be more affordable, robust and versatile than building a large monolithic satellite in implementing next generation space missions requiring large apertures or large sample collection areas and sophisticated earth imaging/monitoring. We propose a propellant free, thus contamination free, method that enables ultrahigh precision satellite formation flying with intersatellite distance accuracy of nm (10-9 m) at maximum estimated distances in the order of tens of km. The method is based on ultrahigh precision CW intracavity photon thrusters and tethers. The pushing-out force of the intracavity photon thruster and the pulling-in force of the tether tension between satellites form the basic force structure to stabilize crystalline-like structures of satellites and/or spacecrafts with a relative distance accuracy better than nm. The thrust of the photons can be amplified by up to tens of thousand times by bouncing them between two mirrors located separately on pairing satellites. For example, a 10 W photon thruster, suitable for micro-satellite applications, is theoretically capable of providing thrusts up to mN, and its weight and power consumption are estimated to be several kgs and tens of W, respectively. The dual usage of photon thruster as a precision laser source for the interferometric ranging system further simplifies the system architecture and minimizes the weight and power consumption. The present method does not require propellant, thus provides significant propulsion system mass savings, and is free from propellant exhaust contamination, ideal for missions that require large apertures composed of highly sensitive sensors. The system can be readily scaled down for the nano- and pico-satellite applications.

  13. Quantification of Kryptofix 2.2.2 in [18F]fluorine-labelled radiopharmaceuticals by rapid-resolution liquid chromatography.

    PubMed

    Lao, Yexing; Yang, Cuiping; Zou, Wei; Gan, Manquan; Chen, Ping; Su, Weiwei

    2012-05-01

    The cryptand Kryptofix 2.2.2 is used extensively as a phase-transfer reagent in the preparation of [18F]fluoride-labelled radiopharmaceuticals. However, it has considerable acute toxicity. The aim of this study was to develop and validate a method for rapid (within 1 min), specific and sensitive quantification of Kryptofix 2.2.2 at trace levels. Chromatographic separations were carried out by rapid-resolution liquid chromatography (Agilent ZORBAX SB-C18 rapid-resolution column, 2.1 × 30 mm, 3.5 μm). Tandem mass spectra were acquired using a triple quadrupole mass spectrometer equipped with an electrospray ionization interface. Quantitative mass spectrometric analysis was conducted in positive ion mode and multiple reaction monitoring mode for the m/z 377.3 → 114.1 transition for Kryptofix 2.2.2. The external standard method was used for quantification. The method met the precision and efficiency requirements for PET radiopharmaceuticals, providing satisfactory results for specificity, matrix effect, stability, linearity (0.5-100 ng/ml, r(2)=0.9975), precision (coefficient of variation < 5%), accuracy (relative error < ± 3%), sensitivity (lower limit of quantification=0.5 ng) and detection time (<1 min). Fluorodeoxyglucose (n=6) was analysed, and the Kryptofix 2.2.2 content was found to be well below the maximum permissible levels approved by the US Food and Drug Administration. The developed method has a short analysis time (<1 min) and high sensitivity (lower limit of quantification=0.5 ng/ml) and can be successfully applied to rapid quantification of Kryptofix 2.2.2 at trace levels in fluorodeoxyglucose. This method could also be applied to other [18F]fluorine-labelled radiopharmaceuticals that use Kryptofix 2.2.2 as a phase-transfer reagent.

  14. Quantification of short chain amines in aqueous matrices using liquid chromatography electrospray ionization tandem mass spectrometry.

    PubMed

    Viidanoja, Jyrki

    2017-01-13

    A new liquid chromatography-electrospray ionization-tandem Mass Spectrometry (LC-ESI-MS/MS) method was developed for the determination of more than 20 C 1 -C 6 alkyl and alkanolamines in aqueous matrices. The method employs Hydrophilic Interaction Liquid Chromatography Multiple Reaction Monitoring (HILIC-MRM) with a ZIC-pHILIC column and four stable isotope labeled amines as internal standards for signal normalization and quantification of the amines. The method was validated using a refinery process water sample that was obtained from a cooling cycle of crude oil distillation. The averaged within run precision, between run precision and accuracy were generally within 2-10%, 1-9% and 80-120%, respectively, depending on the analyte and concentration level. Selected aqueous process samples were analyzed with the method. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Molecular Approaches for High Throughput Detection and Quantification of Genetically Modified Crops: A Review

    PubMed Central

    Salisu, Ibrahim B.; Shahid, Ahmad A.; Yaqoob, Amina; Ali, Qurban; Bajwa, Kamran S.; Rao, Abdul Q.; Husnain, Tayyab

    2017-01-01

    As long as the genetically modified crops are gaining attention globally, their proper approval and commercialization need accurate and reliable diagnostic methods for the transgenic content. These diagnostic techniques are mainly divided into two major groups, i.e., identification of transgenic (1) DNA and (2) proteins from GMOs and their products. Conventional methods such as PCR (polymerase chain reaction) and enzyme-linked immunosorbent assay (ELISA) were routinely employed for DNA and protein based quantification respectively. Although, these Techniques (PCR and ELISA) are considered as significantly convenient and productive, but there is need for more advance technologies that allow for high throughput detection and the quantification of GM event as the production of more complex GMO is increasing day by day. Therefore, recent approaches like microarray, capillary gel electrophoresis, digital PCR and next generation sequencing are more promising due to their accuracy and precise detection of transgenic contents. The present article is a brief comparative study of all such detection techniques on the basis of their advent, feasibility, accuracy, and cost effectiveness. However, these emerging technologies have a lot to do with detection of a specific event, contamination of different events and determination of fusion as well as stacked gene protein are the critical issues to be addressed in future. PMID:29085378

  16. Lesion Quantification in Dual-Modality Mammotomography

    NASA Astrophysics Data System (ADS)

    Li, Heng; Zheng, Yibin; More, Mitali J.; Goodale, Patricia J.; Williams, Mark B.

    2007-02-01

    This paper describes a novel x-ray/SPECT dual modality breast imaging system that provides 3D structural and functional information. While only a limited number of views on one side of the breast can be acquired due to mechanical and time constraints, we developed a technique to compensate for the limited angle artifact in reconstruction images and accurately estimate both the lesion size and radioactivity concentration. Various angular sampling strategies were evaluated using both simulated and experimental data. It was demonstrated that quantification of lesion size to an accuracy of 10% and quantification of radioactivity to an accuracy of 20% are feasible from limited-angle data acquired with clinically practical dosage and acquisition time

  17. Quantification of genetically modified soybeans using a combination of a capillary-type real-time PCR system and a plasmid reference standard.

    PubMed

    Toyota, Akie; Akiyama, Hiroshi; Sugimura, Mitsunori; Watanabe, Takahiro; Kikuchi, Hiroyuki; Kanamori, Hisayuki; Hino, Akihiro; Esaka, Muneharu; Maitani, Tamio

    2006-04-01

    Because the labeling of grains and feed- and foodstuffs is mandatory if the genetically modified organism (GMO) content exceeds a certain level of approved genetically modified varieties in many countries, there is a need for a rapid and useful method of GMO quantification in food samples. In this study, a rapid detection system was developed for Roundup Ready Soybean (RRS) quantification using a combination of a capillary-type real-time PCR system, a LightCycler real-time PCR system, and plasmid DNA as the reference standard. In addition, we showed for the first time that the plasmid and genomic DNA should be similar in the established detection system because the PCR efficiencies of using plasmid DNA and using genomic DNA were not significantly different. The conversion factor (Cf) to calculate RRS content (%) was further determined from the average value analyzed in three laboratories. The accuracy and reproducibility of this system for RRS quantification at a level of 5.0% were within a range from 4.46 to 5.07% for RRS content and within a range from 2.0% to 7.0% for the relative standard deviation (RSD) value, respectively. This system rapidly monitored the labeling system and had allowable levels of accuracy and precision.

  18. Multitemporal Accuracy and Precision Assessment of Unmanned Aerial System Photogrammetry for Slope-Scale Snow Depth Maps in Alpine Terrain

    NASA Astrophysics Data System (ADS)

    Adams, Marc S.; Bühler, Yves; Fromm, Reinhard

    2017-12-01

    Reliable and timely information on the spatio-temporal distribution of snow in alpine terrain plays an important role for a wide range of applications. Unmanned aerial system (UAS) photogrammetry is increasingly applied to cost-efficiently map the snow depth at very high resolution with flexible applicability. However, crucial questions regarding quality and repeatability of this technique are still under discussion. Here we present a multitemporal accuracy and precision assessment of UAS photogrammetry for snow depth mapping on the slope-scale. We mapped a 0.12 km2 large snow-covered study site, located in a high-alpine valley in Western Austria. 12 UAS flights were performed to acquire imagery at 0.05 m ground sampling distance in visible (VIS) and near-infrared (NIR) wavelengths with a modified commercial, off-the-shelf sensor mounted on a custom-built fixed-wing UAS. The imagery was processed with structure-from-motion photogrammetry software to generate orthophotos, digital surface models (DSMs) and snow depth maps (SDMs). Accuracy of DSMs and SDMs were assessed with terrestrial laser scanning and manual snow depth probing, respectively. The results show that under good illumination conditions (study site in full sunlight), the DSMs and SDMs were acquired with an accuracy of ≤ 0.25 and ≤ 0.29 m (both at 1σ), respectively. In case of poorly illuminated snow surfaces (study site shadowed), the NIR imagery provided higher accuracy (0.19 m; 0.23 m) than VIS imagery (0.49 m; 0.37 m). The precision of the UASSDMs was 0.04 m for a small, stable area and below 0.33 m for the whole study site (both at 1σ).

  19. Optimetrics for Precise Navigation

    NASA Technical Reports Server (NTRS)

    Yang, Guangning; Heckler, Gregory; Gramling, Cheryl

    2017-01-01

    Optimetrics for Precise Navigation will be implemented on existing optical communication links. The ranging and Doppler measurements are conducted over communication data frame and clock. The measurement accuracy is two orders of magnitude better than TDRSS. It also has other advantages of: The high optical carrier frequency enables: (1) Immunity from ionosphere and interplanetary Plasma noise floor, which is a performance limitation for RF tracking; and (2) High antenna gain reduces terminal size and volume, enables high precision tracking in Cubesat, and in deep space smallsat. High Optical Pointing Precision provides: (a) spacecraft orientation, (b) Minimal additional hardware to implement Precise Optimetrics over optical comm link; and (c) Continuous optical carrier phase measurement will enable the system presented here to accept future optical frequency standard with much higher clock accuracy.

  20. Accuracy and precision of polyurethane dental arch models fabricated using a three-dimensional subtractive rapid prototyping method with an intraoral scanning technique

    PubMed Central

    Kim, Jae-Hong; Kim, Ki-Baek; Kim, Woong-Chul; Kim, Ji-Hwan

    2014-01-01

    Objective This study aimed to evaluate the accuracy and precision of polyurethane (PUT) dental arch models fabricated using a three-dimensional (3D) subtractive rapid prototyping (RP) method with an intraoral scanning technique by comparing linear measurements obtained from PUT models and conventional plaster models. Methods Ten plaster models were duplicated using a selected standard master model and conventional impression, and 10 PUT models were duplicated using the 3D subtractive RP technique with an oral scanner. Six linear measurements were evaluated in terms of x, y, and z-axes using a non-contact white light scanner. Accuracy was assessed using mean differences between two measurements, and precision was examined using four quantitative methods and the Bland-Altman graphical method. Repeatability was evaluated in terms of intra-examiner variability, and reproducibility was assessed in terms of inter-examiner and inter-method variability. Results The mean difference between plaster models and PUT models ranged from 0.07 mm to 0.33 mm. Relative measurement errors ranged from 2.2% to 7.6% and intraclass correlation coefficients ranged from 0.93 to 0.96, when comparing plaster models and PUT models. The Bland-Altman plot showed good agreement. Conclusions The accuracy and precision of PUT dental models for evaluating the performance of oral scanner and subtractive RP technology was acceptable. Because of the recent improvements in block material and computerized numeric control milling machines, the subtractive RP method may be a good choice for dental arch models. PMID:24696823

  1. Accuracy and precision of polyurethane dental arch models fabricated using a three-dimensional subtractive rapid prototyping method with an intraoral scanning technique.

    PubMed

    Kim, Jae-Hong; Kim, Ki-Baek; Kim, Woong-Chul; Kim, Ji-Hwan; Kim, Hae-Young

    2014-03-01

    This study aimed to evaluate the accuracy and precision of polyurethane (PUT) dental arch models fabricated using a three-dimensional (3D) subtractive rapid prototyping (RP) method with an intraoral scanning technique by comparing linear measurements obtained from PUT models and conventional plaster models. Ten plaster models were duplicated using a selected standard master model and conventional impression, and 10 PUT models were duplicated using the 3D subtractive RP technique with an oral scanner. Six linear measurements were evaluated in terms of x, y, and z-axes using a non-contact white light scanner. Accuracy was assessed using mean differences between two measurements, and precision was examined using four quantitative methods and the Bland-Altman graphical method. Repeatability was evaluated in terms of intra-examiner variability, and reproducibility was assessed in terms of inter-examiner and inter-method variability. The mean difference between plaster models and PUT models ranged from 0.07 mm to 0.33 mm. Relative measurement errors ranged from 2.2% to 7.6% and intraclass correlation coefficients ranged from 0.93 to 0.96, when comparing plaster models and PUT models. The Bland-Altman plot showed good agreement. The accuracy and precision of PUT dental models for evaluating the performance of oral scanner and subtractive RP technology was acceptable. Because of the recent improvements in block material and computerized numeric control milling machines, the subtractive RP method may be a good choice for dental arch models.

  2. LC-MS/MS quantification of next-generation biotherapeutics: a case study for an IgE binding Nanobody in cynomolgus monkey plasma.

    PubMed

    Sandra, Koen; Mortier, Kjell; Jorge, Lucie; Perez, Luis C; Sandra, Pat; Priem, Sofie; Poelmans, Sofie; Bouche, Marie-Paule

    2014-05-01

    Nanobodies(®) are therapeutic proteins derived from the smallest functional fragments of heavy chain-only antibodies. The development and validation of an LC-MS/MS-based method for the quantification of an IgE binding Nanobody in cynomolgus monkey plasma is presented. Nanobody quantification was performed making use of a proteotypic tryptic peptide chromatographically enriched prior to LC-MS/MS analysis. The validated LLOQ at 36 ng/ml was measured with an intra- and inter-assay precision and accuracy <20%. The required sensitivity could be obtained based on the selectivity of 2D LC combined with MS/MS. No analyte specific tools for affinity purification were used. Plasma samples originating from a PK/PD study were analyzed and compared with the results obtained with a traditional ligand-binding assay. Excellent correlations between the two techniques were obtained, and similar PK parameters were estimated. A 2D LC-MS/MS method was successfully developed and validated for the quantification of a next generation biotherapeutic.

  3. The impact of carbon-13 and deuterium on relative quantification of proteins using stable isotope diethyl labeling.

    PubMed

    Koehler, Christian J; Arntzen, Magnus Ø; Thiede, Bernd

    2015-05-15

    Stable isotopic labeling techniques are useful for quantitative proteomics. A cost-effective and convenient method for diethylation by reductive amination was established. The impact using either carbon-13 or deuterium on quantification accuracy and precision was investigated using diethylation. We established an effective approach for stable isotope labeling by diethylation of amino groups of peptides. The approach was validated using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and nanospray liquid chromatography/electrospray ionization (nanoLC/ESI)-ion trap/orbitrap for mass spectrometric analysis as well as MaxQuant for quantitative data analysis. Reaction conditions with low reagent costs, high yields and minor side reactions were established for diethylation. Furthermore, we showed that diethylation can be applied to up to sixplex labeling. For duplex experiments, we compared diethylation in the analysis of the proteome of HeLa cells using acetaldehyde-(13) C(2)/(12) C(2) and acetaldehyde-(2) H(4)/(1) H(4). Equal numbers of proteins could be identified and quantified; however, (13) C(4)/(12) C(4) -diethylation revealed a lower variance of quantitative peptide ratios within proteins resulting in a higher precision of quantified proteins and less falsely regulated proteins. The results were compared with dimethylation showing minor effects because of the lower number of deuteriums. The described approach for diethylation of primary amines is a cost-effective and accurate method for up to sixplex relative quantification of proteomes. (13) C(4)/(12) C(4) -diethylation enables duplex quantification based on chemical labeling without using deuterium which reduces identification of false-negatives and increases the quality of the quantification results. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Simultaneous acquisition sequence for improved hepatic pharmacokinetics quantification accuracy (SAHA) for dynamic contrast-enhanced MRI of liver.

    PubMed

    Ning, Jia; Sun, Yongliang; Xie, Sheng; Zhang, Bida; Huang, Feng; Koken, Peter; Smink, Jouke; Yuan, Chun; Chen, Huijun

    2018-05-01

    To propose a simultaneous acquisition sequence for improved hepatic pharmacokinetics quantification accuracy (SAHA) method for liver dynamic contrast-enhanced MRI. The proposed SAHA simultaneously acquired high temporal-resolution 2D images for vascular input function extraction using Cartesian sampling and 3D large-coverage high spatial-resolution liver dynamic contrast-enhanced images using golden angle stack-of-stars acquisition in an interleaved way. Simulations were conducted to investigate the accuracy of SAHA in pharmacokinetic analysis. A healthy volunteer and three patients with cirrhosis or hepatocellular carcinoma were included in the study to investigate the feasibility of SAHA in vivo. Simulation studies showed that SAHA can provide closer results to the true values and lower root mean square error of estimated pharmacokinetic parameters in all of the tested scenarios. The in vivo scans of subjects provided fair image quality of both 2D images for arterial input function and portal venous input function and 3D whole liver images. The in vivo fitting results showed that the perfusion parameters of healthy liver were significantly different from those of cirrhotic liver and HCC. The proposed SAHA can provide improved accuracy in pharmacokinetic modeling and is feasible in human liver dynamic contrast-enhanced MRI, suggesting that SAHA is a potential tool for liver dynamic contrast-enhanced MRI. Magn Reson Med 79:2629-2641, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  5. Quantification Bias Caused by Plasmid DNA Conformation in Quantitative Real-Time PCR Assay

    PubMed Central

    Lin, Chih-Hui; Chen, Yu-Chieh; Pan, Tzu-Ming

    2011-01-01

    Quantitative real-time PCR (qPCR) is the gold standard for the quantification of specific nucleic acid sequences. However, a serious concern has been revealed in a recent report: supercoiled plasmid standards cause significant over-estimation in qPCR quantification. In this study, we investigated the effect of plasmid DNA conformation on the quantification of DNA and the efficiency of qPCR. Our results suggest that plasmid DNA conformation has significant impact on the accuracy of absolute quantification by qPCR. DNA standard curves shifted significantly among plasmid standards with different DNA conformations. Moreover, the choice of DNA measurement method and plasmid DNA conformation may also contribute to the measurement error of DNA standard curves. Due to the multiple effects of plasmid DNA conformation on the accuracy of qPCR, efforts should be made to assure the highest consistency of plasmid standards for qPCR. Thus, we suggest that the conformation, preparation, quantification, purification, handling, and storage of standard plasmid DNA should be described and defined in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to assure the reproducibility and accuracy of qPCR absolute quantification. PMID:22194997

  6. Accuracy and Precision of a Surgical Navigation System: Effect of Camera and Patient Tracker Position and Number of Active Markers

    PubMed Central

    Gundle, Kenneth R.; White, Jedediah K.; Conrad, Ernest U.; Ching, Randal P.

    2017-01-01

    Introduction: Surgical navigation systems are increasingly used to aid resection and reconstruction of osseous malignancies. In the process of implementing image-based surgical navigation systems, there are numerous opportunities for error that may impact surgical outcome. This study aimed to examine modifiable sources of error in an idealized scenario, when using a bidirectional infrared surgical navigation system. Materials and Methods: Accuracy and precision were assessed using a computerized-numerical-controlled (CNC) machined grid with known distances between indentations while varying: 1) the distance from the grid to the navigation camera (range 150 to 247cm), 2) the distance from the grid to the patient tracker device (range 20 to 40cm), and 3) whether the minimum or maximum number of bidirectional infrared markers were actively functioning. For each scenario, distances between grid points were measured at 10-mm increments between 10 and 120mm, with twelve measurements made at each distance. The accuracy outcome was the root mean square (RMS) error between the navigation system distance and the actual grid distance. To assess precision, four indentations were recorded six times for each scenario while also varying the angle of the navigation system pointer. The outcome for precision testing was the standard deviation of the distance between each measured point to the mean three-dimensional coordinate of the six points for each cluster. Results: Univariate and multiple linear regression revealed that as the distance from the navigation camera to the grid increased, the RMS error increased (p<0.001). The RMS error also increased when not all infrared markers were actively tracking (p=0.03), and as the measured distance increased (p<0.001). In a multivariate model, these factors accounted for 58% of the overall variance in the RMS error. Standard deviations in repeated measures also increased when not all infrared markers were active (p<0.001), and as the

  7. Accuracy and Precision of a Surgical Navigation System: Effect of Camera and Patient Tracker Position and Number of Active Markers.

    PubMed

    Gundle, Kenneth R; White, Jedediah K; Conrad, Ernest U; Ching, Randal P

    2017-01-01

    Surgical navigation systems are increasingly used to aid resection and reconstruction of osseous malignancies. In the process of implementing image-based surgical navigation systems, there are numerous opportunities for error that may impact surgical outcome. This study aimed to examine modifiable sources of error in an idealized scenario, when using a bidirectional infrared surgical navigation system. Accuracy and precision were assessed using a computerized-numerical-controlled (CNC) machined grid with known distances between indentations while varying: 1) the distance from the grid to the navigation camera (range 150 to 247cm), 2) the distance from the grid to the patient tracker device (range 20 to 40cm), and 3) whether the minimum or maximum number of bidirectional infrared markers were actively functioning. For each scenario, distances between grid points were measured at 10-mm increments between 10 and 120mm, with twelve measurements made at each distance. The accuracy outcome was the root mean square (RMS) error between the navigation system distance and the actual grid distance. To assess precision, four indentations were recorded six times for each scenario while also varying the angle of the navigation system pointer. The outcome for precision testing was the standard deviation of the distance between each measured point to the mean three-dimensional coordinate of the six points for each cluster. Univariate and multiple linear regression revealed that as the distance from the navigation camera to the grid increased, the RMS error increased (p<0.001). The RMS error also increased when not all infrared markers were actively tracking (p=0.03), and as the measured distance increased (p<0.001). In a multivariate model, these factors accounted for 58% of the overall variance in the RMS error. Standard deviations in repeated measures also increased when not all infrared markers were active (p<0.001), and as the distance between navigation camera and physical

  8. Accuracy and precision of four value-added blood glucose meters: the Abbott Optium, the DDI Prodigy, the HDI True Track, and the HypoGuard Assure Pro.

    PubMed

    Sheffield, Catherine A; Kane, Michael P; Bakst, Gary; Busch, Robert S; Abelseth, Jill M; Hamilton, Robert A

    2009-09-01

    This study compared the accuracy and precision of four value-added glucose meters. Finger stick glucose measurements in diabetes patients were performed using the Abbott Diabetes Care (Alameda, CA) Optium, Diagnostic Devices, Inc. (Miami, FL) DDI Prodigy, Home Diagnostics, Inc. (Fort Lauderdale, FL) HDI True Track Smart System, and Arkray, USA (Minneapolis, MN) HypoGuard Assure Pro. Finger glucose measurements were compared with laboratory reference results. Accuracy was assessed by a Clarke error grid analysis (EGA), a Parkes EGA, and within 5%, 10%, 15%, and 20% of the laboratory value criteria (chi2 analysis). Meter precision was determined by calculating absolute mean differences in glucose values between duplicate samples (Kruskal-Wallis test). Finger sticks were obtained from 125 diabetes patients, of which 90.4% were Caucasian, 51.2% were female, 83.2% had type 2 diabetes, and average age of 59 years (SD 14 years). Mean venipuncture blood glucose was 151 mg/dL (SD +/-65 mg/dL; range, 58-474 mg/dL). Clinical accuracy by Clarke EGA was demonstrated in 94% of Optium, 82% of Prodigy, 61% of True Track, and 77% of the Assure Pro samples (P < 0.05 for Optium and True Track compared to all others). By Parkes EGA, the True Track was significantly less accurate than the other meters. Within 5% accuracy was achieved in 34%, 24%, 29%, and 13%, respectively (P < 0.05 for Optium, Prodigy, and Assure Pro compared to True Track). Within 10% accuracy was significantly greater for the Optium, Prodigy, and Assure Pro compared to True Track. Significantly more Optium results demonstrated within 15% and 20% accuracy compared to the other meter systems. The HDI True Track was significantly less precise than the other meter systems. The Abbott Optium was significantly more accurate than the other meter systems, whereas the HDI True Track was significantly less accurate and less precise compared to the other meter systems.

  9. Experimental assessment of precision and accuracy of radiostereometric analysis for the determination of polyethylene wear in a total hip replacement model.

    PubMed

    Bragdon, Charles R; Malchau, Henrik; Yuan, Xunhua; Perinchief, Rebecca; Kärrholm, Johan; Börlin, Niclas; Estok, Daniel M; Harris, William H

    2002-07-01

    The purpose of this study was to develop and test a phantom model based on actual total hip replacement (THR) components to simulate the true penetration of the femoral head resulting from polyethylene wear. This model was used to study both the accuracy and the precision of radiostereometric analysis, RSA, in measuring wear. We also used this model to evaluate optimum tantalum bead configuration for this particular cup design when used in a clinical setting. A physical model of a total hip replacement (a phantom) was constructed which could simulate progressive, three-dimensional (3-D) penetration of the femoral head into the polyethylene component of a THR. Using a coordinate measuring machine (CMM) the positioning of the femoral head using the phantom was measured to be accurate to within 7 microm. The accuracy and precision of an RSA analysis system was determined from five repeat examinations of the phantom using various experimental set-ups of the phantom. The accuracy of the radiostereometric analysis, in this optimal experimental set-up studied was 33 microm for the medial direction, 22 microm for the superior direction, 86 microm for the posterior direction and 55 microm for the resultant 3-D vector length. The corresponding precision at the 95% confidence interval of the test results for repositioning the phantom five times, measured 8.4 microm for the medial direction, 5.5 microm for the superior direction, 16.0 microm for the posterior direction, and 13.5 microm for the resultant 3-D vector length. This in vitro model is proposed as a useful tool for developing a standard for the evaluation of radiostereometric and other radiographic methods used to measure in vivo wear.

  10. Absolute quantification by droplet digital PCR versus analog real-time PCR

    PubMed Central

    Hindson, Christopher M; Chevillet, John R; Briggs, Hilary A; Gallichotte, Emily N; Ruf, Ingrid K; Hindson, Benjamin J; Vessella, Robert L; Tewari, Muneesh

    2014-01-01

    Nanoliter-sized droplet technology paired with digital PCR (ddPCR) holds promise for highly precise, absolute nucleic acid quantification. Our comparison of microRNA quantification by ddPCR and real-time PCR revealed greater precision (coefficients of variation decreased by 37–86%) and improved day-to-day reproducibility (by a factor of seven) of ddPCR but with comparable sensitivity. When we applied ddPCR to serum microRNA biomarker analysis, this translated to superior diagnostic performance for identifying individuals with cancer. PMID:23995387

  11. Improved Precision and Accuracy of Quantification of Rare Earth Element Abundances via Medium-Resolution LA-ICP-MS.

    PubMed

    Funderburg, Rebecca; Arevalo, Ricardo; Locmelis, Marek; Adachi, Tomoko

    2017-11-01

    Laser ablation ICP-MS enables streamlined, high-sensitivity measurements of rare earth element (REE) abundances in geological materials. However, many REE isotope mass stations are plagued by isobaric interferences, particularly from diatomic oxides and argides. In this study, we compare REE abundances quantitated from mass spectra collected with low-resolution (m/Δm = 300 at 5% peak height) and medium-resolution (m/Δm = 2500) mass discrimination. A wide array of geological samples was analyzed, including USGS and NIST glasses ranging from mafic to felsic in composition, with NIST 610 employed as the bracketing calibrating reference material. The medium-resolution REE analyses are shown to be significantly more accurate and precise (at the 95% confidence level) than low-resolution analyses, particularly in samples characterized by low (<μg/g levels) REE abundances. A list of preferred mass stations that are least susceptible to isobaric interferences is reported. These findings impact the reliability of REE abundances derived from LA-ICP-MS methods, particularly those relying on mass analyzers that do not offer tuneable mass-resolution and/or collision cell technologies that can reduce oxide and/or argide formation. Graphical Abstract ᅟ.

  12. Improved Precision and Accuracy of Quantification of Rare Earth Element Abundances via Medium-Resolution LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Funderburg, Rebecca; Arevalo, Ricardo; Locmelis, Marek; Adachi, Tomoko

    2017-07-01

    Laser ablation ICP-MS enables streamlined, high-sensitivity measurements of rare earth element (REE) abundances in geological materials. However, many REE isotope mass stations are plagued by isobaric interferences, particularly from diatomic oxides and argides. In this study, we compare REE abundances quantitated from mass spectra collected with low-resolution (m/Δm = 300 at 5% peak height) and medium-resolution (m/Δm = 2500) mass discrimination. A wide array of geological samples was analyzed, including USGS and NIST glasses ranging from mafic to felsic in composition, with NIST 610 employed as the bracketing calibrating reference material. The medium-resolution REE analyses are shown to be significantly more accurate and precise (at the 95% confidence level) than low-resolution analyses, particularly in samples characterized by low (<μg/g levels) REE abundances. A list of preferred mass stations that are least susceptible to isobaric interferences is reported. These findings impact the reliability of REE abundances derived from LA-ICP-MS methods, particularly those relying on mass analyzers that do not offer tuneable mass-resolution and/or collision cell technologies that can reduce oxide and/or argide formation.

  13. Precision and Accuracy of Analysis for Boron in ITP Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tovo, L.L.

    'Inductively Coupled Plasma Emission Spectroscopy (ICPES) has been used by the Analytical Development Section (ADS) to measure boron in catalytic tetraphenylboron decomposition studies performed by the Waste Processing Technology (WPT) section. Analysis of these samples is complicated due to the presence of high concentrations of sodium and organic compounds. Previously, we found signal suppression in samples analyzed "as received". We suspected that the suppression was due to the high organic concentration (up to 0.01 molar organic decomposition products) in the samples. When the samples were acid digested prior to analysis, the suppression was eliminated. The precision of the reported boronmore » concentration was estimated as 10 percent based on the known precision of the inorganic boron standard used for calibration and quality control check of the ICPES analysis. However, a precision better than 10 percent was needed to evaluate ITP process operating parameters. Therefore, the purpose of this work was (1) to measure, instead of estimating, the precision of the boron measurement on ITP samples and (2) to determine the optimum precision attainable with current instrumentation.'« less

  14. Improved DORIS accuracy for precise orbit determination and geodesy

    NASA Technical Reports Server (NTRS)

    Willis, Pascal; Jayles, Christian; Tavernier, Gilles

    2004-01-01

    In 2001 and 2002, 3 more DORIS satellites were launched. Since then, all DORIS results have been significantly improved. For precise orbit determination, 20 cm are now available in real-time with DIODE and 1.5 to 2 cm in post-processing. For geodesy, 1 cm precision can now be achieved regularly every week, making now DORIS an active part of a Global Observing System for Geodesy through the IDS.

  15. Optimized, Fast-Throughput UHPLC-DAD Based Method for Carotenoid Quantification in Spinach, Serum, Chylomicrons, and Feces.

    PubMed

    Eriksen, Jane N; Madsen, Pia L; Dragsted, Lars O; Arrigoni, Eva

    2017-02-01

    An improved UHPLC-DAD-based method was developed and validated for quantification of major carotenoids present in spinach, serum, chylomicrons, and feces. Separation was achieved with gradient elution within 12.5 min for six dietary carotenoids and the internal standard, echinenone. The proposed method provides, for all standard components, resolution > 1.1, linearity covering the target range (R > 0.99), LOQ < 0.035 mg/L, and intraday and interday RSDs < 2 and 10%, respectively. Suitability of the method was tested on biological matrices. Method precision (RSD%) for carotenoid quantification in serum, chylomicrons, and feces was below 10% for intra- and interday analysis, except for lycopene. Method accuracy was consistent with mean recoveries ranging from 78.8 to 96.9% and from 57.2 to 96.9% for all carotenoids, except for lycopene, in serum and feces, respectively. Additionally, an interlaboratory validation study on spinach at two institutions showed no significant differences in lutein or β-carotene content, when evaluated on four occasions.

  16. The accuracy, precision and sustainability of different techniques for tablet subdivision: breaking by hand and the use of tablet splitters or a kitchen knife.

    PubMed

    van Riet-Nales, Diana A; Doeve, Myrthe E; Nicia, Agnes E; Teerenstra, Steven; Notenboom, Kim; Hekster, Yechiel A; van den Bemt, Bart J F

    2014-05-15

    Tablets are frequently subdivided to lower the dose, to facilitate swallowing by e.g. children or older people or to save costs. Splitting devices are commonly used when hand breaking is difficult or painful. Three techniques for tablet subdivision were investigated: hand breaking, tablet splitter, kitchen knife. A best case drug (paracetamol), tablet (round, flat, uncoated, 500 mg) and operator (24-year student) were applied. Hundred tablets were subdivided by hand and by three devices of each of the following types: Fit & Healthy, Health Care Logistics, Lifetime, PillAid, PillTool, Pilomat tablet splitter; Blokker kitchen knife. The intra and inter device accuracy, precision and sustainability were investigated. The compliance to (adapted) regulatory requirements was investigated also. The accuracy and precision of hand broken tablets was 104/97% resp. 2.8/3.2% (one part per tablet considered; parts right/left side operator). The right/left accuracies of the splitting devices varied between 60 and 133%; the precisions 4.0 and 29.6%. The devices did not deteriorate over 100-fold use. Only hand broken tablets complied with all regulatory requirements. Health care professionals should realize that tablet splitting may result in inaccurate dosing. Authorities should undertake appropriate measures to assure good function of tablet splitters and, where feasible, to reduce the need for their use. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  17. The Accuracy and Precision of Flow Measurements Using Phase Contrast Techniques

    NASA Astrophysics Data System (ADS)

    Tang, Chao

    Quantitative volume flow rate measurements using the magnetic resonance imaging technique are studied in this dissertation because the volume flow rates have a special interest in the blood supply of the human body. The method of quantitative volume flow rate measurements is based on the phase contrast technique, which assumes a linear relationship between the phase and flow velocity of spins. By measuring the phase shift of nuclear spins and integrating velocity across the lumen of the vessel, we can determine the volume flow rate. The accuracy and precision of volume flow rate measurements obtained using the phase contrast technique are studied by computer simulations and experiments. The various factors studied include (1) the partial volume effect due to voxel dimensions and slice thickness relative to the vessel dimensions; (2) vessel angulation relative to the imaging plane; (3) intravoxel phase dispersion; (4) flow velocity relative to the magnitude of the flow encoding gradient. The partial volume effect is demonstrated to be the major obstacle to obtaining accurate flow measurements for both laminar and plug flow. Laminar flow can be measured more accurately than plug flow in the same condition. Both the experiment and simulation results for laminar flow show that, to obtain the accuracy of volume flow rate measurements to within 10%, at least 16 voxels are needed to cover the vessel lumen. The accuracy of flow measurements depends strongly on the relative intensity of signal from stationary tissues. A correction method is proposed to compensate for the partial volume effect. The correction method is based on a small phase shift approximation. After the correction, the errors due to the partial volume effect are compensated, allowing more accurate results to be obtained. An automatic program based on the correction method is developed and implemented on a Sun workstation. The correction method is applied to the simulation and experiment results. The

  18. Robotic-Arm Assisted Total Knee Arthroplasty Demonstrated Greater Accuracy and Precision to Plan Compared with Manual Techniques.

    PubMed

    Hampp, Emily L; Chughtai, Morad; Scholl, Laura Y; Sodhi, Nipun; Bhowmik-Stoker, Manoshi; Jacofsky, David J; Mont, Michael A

    2018-05-01

    This study determined if robotic-arm assisted total knee arthroplasty (RATKA) allows for more accurate and precise bone cuts and component position to plan compared with manual total knee arthroplasty (MTKA). Specifically, we assessed the following: (1) final bone cuts, (2) final component position, and (3) a potential learning curve for RATKA. On six cadaver specimens (12 knees), a MTKA and RATKA were performed on the left and right knees, respectively. Bone-cut and final-component positioning errors relative to preoperative plans were compared. Median errors and standard deviations (SDs) in the sagittal, coronal, and axial planes were compared. Median values of the absolute deviation from plan defined the accuracy to plan. SDs described the precision to plan. RATKA bone cuts were as or more accurate to plan based on nominal median values in 11 out of 12 measurements. RATKA bone cuts were more precise to plan in 8 out of 12 measurements ( p  ≤ 0.05). RATKA final component positions were as or more accurate to plan based on median values in five out of five measurements. RATKA final component positions were more precise to plan in four out of five measurements ( p  ≤ 0.05). Stacked error results from all cuts and implant positions for each specimen in procedural order showed that RATKA error was less than MTKA error. Although this study analyzed a small number of cadaver specimens, there were clear differences that separated these two groups. When compared with MTKA, RATKA demonstrated more accurate and precise bone cuts and implant positioning to plan. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  19. Rapid measurement of human milk macronutrients in the neonatal intensive care unit: accuracy and precision of fourier transform mid-infrared spectroscopy.

    PubMed

    Smilowitz, Jennifer T; Gho, Deborah S; Mirmiran, Majid; German, J Bruce; Underwood, Mark A

    2014-05-01

    Although it is well established that human milk varies widely in macronutrient content, it remains common for human milk fortification for premature infants to be based on historic mean values. As a result, those caring for premature infants often underestimate protein intake. Rapid precise measurement of human milk protein, fat, and lactose to allow individualized fortification has been proposed for decades but remains elusive due to technical challenges. This study aimed to evaluate the accuracy and precision of a Fourier transform (FT) mid-infrared (IR) spectroscope in the neonatal intensive care unit to measure human milk fat, total protein, lactose, and calculated energy compared with standard chemical analyses. One hundred sixteen breast milk samples across lactation stages from women who delivered at term (n = 69) and preterm (n = 5) were analyzed with the FT mid-IR spectroscope and with standard chemical methods. Ten of the samples were tested in replicate using the FT mid-IR spectroscope to determine repeatability. The agreement between the FT mid-IR spectroscope analysis and reference methods was high for protein and fat and moderate for lactose and energy. The intra-assay coefficients of variation for all outcomes were less than 3%. The FT mid-IR spectroscope demonstrated high accuracy in measurement of total protein and fat of preterm and term milk with high precision.

  20. A Prospective Multicenter Evaluation of the Accuracy of a Novel Implanted Continuous Glucose Sensor: PRECISE II.

    PubMed

    Christiansen, Mark P; Klaff, Leslie J; Brazg, Ronald; Chang, Anna R; Levy, Carol J; Lam, David; Denham, Douglas S; Atiee, George; Bode, Bruce W; Walters, Steven J; Kelley, Lynne; Bailey, Timothy S

    2018-03-01

    Persistent use of real-time continuous glucose monitoring (CGM) improves diabetes control in individuals with type 1 diabetes (T1D) and type 2 diabetes (T2D). PRECISE II was a nonrandomized, blinded, prospective, single-arm, multicenter study that evaluated the accuracy and safety of the implantable Eversense CGM system among adult participants with T1D and T2D (NCT02647905). The primary endpoint was the mean absolute relative difference (MARD) between paired Eversense and Yellow Springs Instrument (YSI) reference measurements through 90 days postinsertion for reference glucose values from 40 to 400 mg/dL. Additional endpoints included Clarke Error Grid analysis and sensor longevity. The primary safety endpoint was the incidence of device-related or sensor insertion/removal procedure-related serious adverse events (SAEs) through 90 days postinsertion. Ninety participants received the CGM system. The overall MARD value against reference glucose values was 8.8% (95% confidence interval: 8.1%-9.3%), which was significantly lower than the prespecified 20% performance goal for accuracy (P < 0.0001). Ninety-three percent of CGM values were within 20/20% of reference values over the total glucose range of 40-400 mg/dL. Clarke Error Grid analysis showed 99.3% of samples in the clinically acceptable error zones A (92.8%) and B (6.5%). Ninety-one percent of sensors were functional through day 90. One related SAE (1.1%) occurred during the study for removal of a sensor. The PRECISE II trial demonstrated that the Eversense CGM system provided accurate glucose readings through the intended 90-day sensor life with a favorable safety profile.

  1. Accuracy and precision of a custom camera-based system for 2D and 3D motion tracking during speech and nonspeech motor tasks

    PubMed Central

    Feng, Yongqiang; Max, Ludo

    2014-01-01

    Purpose Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories, and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and sub-millimeter accuracy. Method We examined the accuracy and precision of 2D and 3D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially-available computer software (APAS, Ariel Dynamics), and a custom calibration device. Results Overall mean error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3 vs. 6 mm diameter) was negligible at all frame rates for both 2D and 3D data. Conclusion Motion tracking with consumer-grade digital cameras and the APAS software can achieve sub-millimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes. PMID:24686484

  2. Evaluation of in vivo quantification accuracy of the Ingenuity-TF PET/MR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maus, Jens, E-mail: j.maus@hzdr.de; Schramm, Georg; Hofheinz, Frank

    2015-10-15

    of “true” events showed no relevant deviation over time, the linearity scans revealed a systematic error of 8%–11% (avg. 9%) for the range of singles rates present in the bladder scans. After correcting for this systematic bias caused by shortcomings of the manufacturers calibration procedure, the PET to well-counter ratio increased to 0.832 ± 0.064 (0.668 –0.941), P = 1.1 ⋅ 10{sup −10}. After compensating for truncation of the upper extremities in the MR-based attenuation maps, the ratio further improved to 0.871 ± 0.069 (0.693–0.992), P = 3.9 ⋅ 10{sup −8}. Conclusions: Our results show that the Philips PET/MR underestimates activity concentrations in the bladder by 17%, which is 7 percentage points (pp.) larger than in the previously investigated PET and PET/CT systems. We attribute this increased underestimation to remaining limitations of the MR-based attenuation correction. Our results suggest that only a 2 pp. larger underestimation of activity concentrations compared to PET/CT can be observed if compensation of attenuation truncation of the upper extremities is applied. Thus, quantification accuracy of the Philips Ingenuity-TF PET/MR can be considered acceptable for clinical purposes given the ±10% error margin in the EANM guidelines. The comparison of PET images from the bladder region with urine samples has proven a useful method. It might be interesting for evaluation and comparison of the in vivo quantitative accuracy of PET, PET/CT, and especially PET/MR systems from different manufacturers or in multicenter trials.« less

  3. Visual photometry: accuracy and precision

    NASA Astrophysics Data System (ADS)

    Whiting, Alan

    2018-01-01

    Visual photometry, estimation by eye of the brightness of stars, remains an important source of data even in the age of widespread precision instruments. However, the eye-brain system differs from electronic detectors and its results may be expected to differ in several respects. I examine a selection of well-observed variables from the AAVSO database to determine several internal characteristics of this data set. Visual estimates scatter around the fitted curves with a standard deviation of 0.14 to 0.34 magnitudes, most clustered in the 0.21-0.25 range. The variation of the scatter does not seem to correlate with color, type of variable, or depth or speed of variation of the star’s brightness. The scatter of an individual observer’s observations changes from star to star, in step with the overall scatter. The shape of the deviations from the fitted curve is non-Gaussian, with positive excess kurtosis (more outlying observations). These results have implications for use of visual data, as well as other citizen science efforts.

  4. Quantification of maltol in Korean ginseng (Panax ginseng) products by high-performance liquid chromatography-diode array detector

    PubMed Central

    Jeong, Hyun Cheol; Hong, Hee-Do; Kim, Young-Chan; Rhee, Young Kyoung; Choi, Sang Yoon; Kim, Kyung-Tack; Kim, Sung Soo; Lee, Young-Chul; Cho, Chang-Won

    2015-01-01

    Background: Maltol, as a type of phenolic compounds, is produced by the browning reaction during the high-temperature treatment of ginseng. Thus, maltol can be used as a marker for the quality control of various ginseng products manufactured by high-temperature treatment including red ginseng. For the quantification of maltol in Korean ginseng products, an effective high-performance liquid chromatography-diode array detector (HPLC-DAD) method was developed. Materials and Methods: The HPLC-DAD method for maltol quantification coupled with a liquid-liquid extraction (LLE) method was developed and validated in terms of linearity, precision, and accuracy. An HPLC separation was performed on a C18 column. Results: The LLE methods and HPLC running conditions for maltol quantification were optimized. The calibration curve of the maltol exhibited good linearity (R2 = 1.00). The limit of detection value of maltol was 0.26 μg/mL, and the limit of quantification value was 0.79 μg/mL. The relative standard deviations (RSDs) of the data of the intra- and inter-day experiments were <1.27% and 0.61%, respectively. The results of the recovery test were 101.35–101.75% with an RSD value of 0.21–1.65%. The developed method was applied successfully to quantify the maltol in three ginseng products manufactured by different methods. Conclusion: The results of validation demonstrated that the proposed HPLC-DAD method was useful for the quantification of maltol in various ginseng products. PMID:26246746

  5. Sensitive and selective liquid chromatography-tandem mass spectrometry method for the quantification of aniracetam in human plasma.

    PubMed

    Zhang, Jingjing; Liang, Jiabi; Tian, Yuan; Zhang, Zunjian; Chen, Yun

    2007-10-15

    A rapid, sensitive and selective LC-MS/MS method was developed and validated for the quantification of aniracetam in human plasma using estazolam as internal standard (IS). Following liquid-liquid extraction, the analytes were separated using a mobile phase of methanol-water (60:40, v/v) on a reverse phase C18 column and analyzed by a triple-quadrupole mass spectrometer in the selected reaction monitoring (SRM) mode using the respective [M+H]+ ions, m/z 220-->135 for aniracetam and m/z 295-->205 for the IS. The assay exhibited a linear dynamic range of 0.2-100 ng/mL for aniracetam in human plasma. The lower limit of quantification (LLOQ) was 0.2 ng/mL with a relative standard deviation of less than 15%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The validated LC-MS/MS method has been successfully applied to study the pharmacokinetics of aniracetam in healthy male Chinese volunteers.

  6. Metering error quantification under voltage and current waveform distortion

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Wang, Jia; Xie, Zhi; Zhang, Ran

    2017-09-01

    With integration of more and more renewable energies and distortion loads into power grid, the voltage and current waveform distortion results in metering error in the smart meters. Because of the negative effects on the metering accuracy and fairness, it is an important subject to study energy metering combined error. In this paper, after the comparing between metering theoretical value and real recorded value under different meter modes for linear and nonlinear loads, a quantification method of metering mode error is proposed under waveform distortion. Based on the metering and time-division multiplier principles, a quantification method of metering accuracy error is proposed also. Analyzing the mode error and accuracy error, a comprehensive error analysis method is presented which is suitable for new energy and nonlinear loads. The proposed method has been proved by simulation.

  7. Community-based Approaches to Improving Accuracy, Precision, and Reproducibility in U-Pb and U-Th Geochronology

    NASA Astrophysics Data System (ADS)

    McLean, N. M.; Condon, D. J.; Bowring, S. A.; Schoene, B.; Dutton, A.; Rubin, K. H.

    2015-12-01

    The last two decades have seen a grassroots effort by the international geochronology community to "calibrate Earth history through teamwork and cooperation," both as part of the EARTHTIME initiative and though several daughter projects with similar goals. Its mission originally challenged laboratories "to produce temporal constraints with uncertainties approaching 0.1% of the radioisotopic ages," but EARTHTIME has since exceeded its charge in many ways. Both the U-Pb and Ar-Ar chronometers first considered for high-precision timescale calibration now regularly produce dates at the sub-per mil level thanks to instrumentation, laboratory, and software advances. At the same time new isotope systems, including U-Th dating of carbonates, have developed comparable precision. But the larger, inter-related scientific challenges envisioned at EARTHTIME's inception remain - for instance, precisely calibrating the global geologic timescale, estimating rates of change around major climatic perturbations, and understanding evolutionary rates through time - and increasingly require that data from multiple geochronometers be combined. To solve these problems, the next two decades of uranium-daughter geochronology will require further advances in accuracy, precision, and reproducibility. The U-Th system has much in common with U-Pb, in that both parent and daughter isotopes are solids that can easily be weighed and dissolved in acid, and have well-characterized reference materials certified for isotopic composition and/or purity. For U-Pb, improving lab-to-lab reproducibility has entailed dissolving precisely weighed U and Pb metals of known purity and isotopic composition together to make gravimetric solutions, then using these to calibrate widely distributed tracers composed of artificial U and Pb isotopes. To mimic laboratory measurements, naturally occurring U and Pb isotopes were also mixed in proportions to mimic samples of three different ages, to be run as internal

  8. Accuracy of Satellite Optical Observations and Precise Orbit Determination

    NASA Astrophysics Data System (ADS)

    Shakun, L.; Koshkin, N.; Korobeynikova, E.; Strakhova, S.; Dragomiretsky, V.; Ryabov, A.; Melikyants, S.; Golubovskaya, T.; Terpan, S.

    The monitoring of low-orbit space objects (LEO-objects) is performed in the Astronomical Observatory of Odessa I.I. Mechnikov National University (Ukraine) for many years. Decades-long archives of these observations are accessible within Ukrainian network of optical observers (UMOS). In this work, we give an example of orbit determination for the satellite with the 1500-km height of orbit based on angular observations in our observatory (Int. No. 086). For estimation of the measurement accuracy and accuracy of determination and propagation of satellite position, we analyze the observations of Ajisai satellite with the well-determined orbit. This allows making justified conclusions not only about random errors of separate measurements, but also to analyze the presence of systematic errors, including external ones to the measurement process. We have shown that the accuracy of one measurement has the standard deviation about 1 arcsec across the track and 1.4 arcsec along the track and systematical shifts in measurements of one track do not exceed 0.45 arcsec. Ajisai position in the interval of the orbit fitting is predicted with accuracy better than 30 m along the orbit and better than 10 m across the orbit for any its point.

  9. Antibiotic Resistome: Improving Detection and Quantification Accuracy for Comparative Metagenomics.

    PubMed

    Elbehery, Ali H A; Aziz, Ramy K; Siam, Rania

    2016-04-01

    The unprecedented rise of life-threatening antibiotic resistance (AR), combined with the unparalleled advances in DNA sequencing of genomes and metagenomes, has pushed the need for in silico detection of the resistance potential of clinical and environmental metagenomic samples through the quantification of AR genes (i.e., genes conferring antibiotic resistance). Therefore, determining an optimal methodology to quantitatively and accurately assess AR genes in a given environment is pivotal. Here, we optimized and improved existing AR detection methodologies from metagenomic datasets to properly consider AR-generating mutations in antibiotic target genes. Through comparative metagenomic analysis of previously published AR gene abundance in three publicly available metagenomes, we illustrate how mutation-generated resistance genes are either falsely assigned or neglected, which alters the detection and quantitation of the antibiotic resistome. In addition, we inspected factors influencing the outcome of AR gene quantification using metagenome simulation experiments, and identified that genome size, AR gene length, total number of metagenomics reads and selected sequencing platforms had pronounced effects on the level of detected AR. In conclusion, our proposed improvements in the current methodologies for accurate AR detection and resistome assessment show reliable results when tested on real and simulated metagenomic datasets.

  10. Quantification and application of a liquid chromatography-tandem mass spectrometric method for the determination of WKYMVm peptide in rat using solid-phase extraction.

    PubMed

    Lee, Byeong Ill; Park, Min-Ho; Heo, Soon Chul; Park, Yuri; Shin, Seok-Ho; Byeon, Jin-Ju; Kim, Jae Ho; Shin, Young G

    2018-03-01

    A liquid chromatographic-electrospray ionization-time-of-flight/mass spectrometric (LC-ESI-TOF/MS) method was developed and applied for the determination of WKYMVm peptide in rat plasma to support preclinical pharmacokinetics studies. The method consisted of micro-elution solid-phase extraction (SPE) for sample preparation and LC-ESI-TOF/MS in the positive ion mode for analysis. Phenanthroline (10 mg/mL) was added to rat blood immediately for plasma preparation followed by addition of trace amount of 2 m hydrogen chloride to plasma before SPE for stability of WKYMVm peptide. Then sample preparation using micro-elution SPE was performed with verapamil as an internal standard. A quadratic regression (weighted 1/concentration 2 ), with the equation y = ax 2  + bx + c was used to fit calibration curves over the concentration range of 3.02-2200 ng/mL for WKYMVm peptide. The quantification run met the acceptance criteria of ±25% accuracy and precision values. For quality control samples at 15, 165 and 1820 ng/mL from the quantification experiment, the within-run and the between-run accuracy ranged from 92.5 to 123.4% with precision values ≤15.1% for WKYMVm peptide from the nominal values. This novel LC-ESI-TOF/MS method was successfully applied to evaluate the pharmacokinetics of WKYMVm peptide in rat plasma. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Accuracy and precision of as-received implant torque wrenches.

    PubMed

    Britton-Vidal, Eduardo; Baker, Philip; Mettenburg, Donald; Pannu, Darshanjit S; Looney, Stephen W; Londono, Jimmy; Rueggeberg, Frederick A

    2014-10-01

    Previous implant torque evaluation did not determine if the target value fell within a confidence interval for the population mean of the test groups, disallowing determination of whether a specific type of wrench met a standardized goal value. The purpose of this study was to measure both the accuracy and precision of 2 different configurations (spring style and peak break) of as-received implant torque wrenches and compare the measured values to manufacturer-stated values. Ten wrenches from 4 manufacturers, representing a variety of torque-limiting mechanisms and specificity of use (with either a specific brand or universally with any brand of implant product). Drivers were placed into the wrench, and tightening torque was applied to reach predetermined values using a NIST-calibrated digital torque wrench. Five replications of measurement were made for each wrench and averaged to provide a single value from that instrument. The target torque value for each wrench brand was compared to the 95% confidence interval for the true population mean of measured values to see if it fell within the measured range. Only 1 wrench brand (Nobel Biocare) demonstrated the target torque value falling within the 95% confidence interval for the true population mean. For others, the targeted torque value fell above the 95% confidence interval (Straumann and Imtec) or below (Salvin Torq). Neither type of torque-limiting mechanism nor designation of a wrench to be used as a dedicated brand-only product or to be used as a universal product on many brands affected the ability of a wrench to deliver torque values where the true population mean included the target torque level. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. Dotette: Programmable, high-precision, plug-and-play droplet pipetting.

    PubMed

    Fan, Jinzhen; Men, Yongfan; Hao Tseng, Kuo; Ding, Yi; Ding, Yunfeng; Villarreal, Fernando; Tan, Cheemeng; Li, Baoqing; Pan, Tingrui

    2018-05-01

    Manual micropipettes are the most heavily used liquid handling devices in biological and chemical laboratories; however, they suffer from low precision for volumes under 1  μ l and inevitable human errors. For a manual device, the human errors introduced pose potential risks of failed experiments, inaccurate results, and financial costs. Meanwhile, low precision under 1  μ l can cause severe quantification errors and high heterogeneity of outcomes, becoming a bottleneck of reaction miniaturization for quantitative research in biochemical labs. Here, we report Dotette, a programmable, plug-and-play microfluidic pipetting device based on nanoliter liquid printing. With automated control, protocols designed on computers can be directly downloaded into Dotette, enabling programmable operation processes. Utilizing continuous nanoliter droplet dispensing, the precision of the volume control has been successfully improved from traditional 20%-50% to less than 5% in the range of 100 nl to 1000 nl. Such a highly automated, plug-and-play add-on to existing pipetting devices not only improves precise quantification in low-volume liquid handling and reduces chemical consumptions but also facilitates and automates a variety of biochemical and biological operations.

  13. Simultaneous enantioselective quantification of fluoxetine and norfluoxetine in human milk by direct sample injection using 2-dimensional liquid chromatography-tandem mass spectrometry.

    PubMed

    Alvim, Joel; Lopes, Bianca Rebelo; Cass, Quezia Bezerra

    2016-06-17

    A two-dimensional liquid chromatography system coupled to triple quadrupole tandem mass spectrometer (2D LC-MS/MS) was employed for the simultaneously quantification of fluoxetine (FLX) and norfluoxetine (NFLX) enantiomers in human milk by direct injection of samples. A restricted access media of bovine serum albumin octadecyl column (RAM-BSAC18) was used in the first dimension for the milk proteins depletion, while an antibiotic-based chiral column was used in the second dimension. The results herein described show good selectivity, extraction efficiency, accuracy, and precision with limits of quantification in the order of 7.5ngmL(-1)for the FLX enantiomers and 10.0ngmL(-1) for NFLX enantiomers. Furthermore, it represents a practical tool in terms of sustainability for the sample preparation of such a difficult matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Integrative analysis with ChIP-seq advances the limits of transcript quantification from RNA-seq

    PubMed Central

    Liu, Peng; Sanalkumar, Rajendran; Bresnick, Emery H.; Keleş, Sündüz; Dewey, Colin N.

    2016-01-01

    RNA-seq is currently the technology of choice for global measurement of transcript abundances in cells. Despite its successes, isoform-level quantification remains difficult because short RNA-seq reads are often compatible with multiple alternatively spliced isoforms. Existing methods rely heavily on uniquely mapping reads, which are not available for numerous isoforms that lack regions of unique sequence. To improve quantification accuracy in such difficult cases, we developed a novel computational method, prior-enhanced RSEM (pRSEM), which uses a complementary data type in addition to RNA-seq data. We found that ChIP-seq data of RNA polymerase II and histone modifications were particularly informative in this approach. In qRT-PCR validations, pRSEM was shown to be superior than competing methods in estimating relative isoform abundances within or across conditions. Data-driven simulations suggested that pRSEM has a greatly decreased false-positive rate at the expense of a small increase in false-negative rate. In aggregate, our study demonstrates that pRSEM transforms existing capacity to precisely estimate transcript abundances, especially at the isoform level. PMID:27405803

  15. Accuracy and Precision of Visual Stimulus Timing in PsychoPy: No Timing Errors in Standard Usage

    PubMed Central

    Garaizar, Pablo; Vadillo, Miguel A.

    2014-01-01

    In a recent report published in PLoS ONE, we found that the performance of PsychoPy degraded with very short timing intervals, suggesting that it might not be perfectly suitable for experiments requiring the presentation of very brief stimuli. The present study aims to provide an updated performance assessment for the most recent version of PsychoPy (v1.80) under different hardware/software conditions. Overall, the results show that PsychoPy can achieve high levels of precision and accuracy in the presentation of brief visual stimuli. Although occasional timing errors were found in very demanding benchmarking tests, there is no reason to think that they can pose any problem for standard experiments developed by researchers. PMID:25365382

  16. Comparing the accuracy (trueness and precision) of models of fixed dental prostheses fabricated by digital and conventional workflows.

    PubMed

    Sim, Ji-Young; Jang, Yeon; Kim, Woong-Chul; Kim, Hae-Young; Lee, Dong-Hwan; Kim, Ji-Hwan

    2018-03-31

    This study aimed to evaluate and compare the accuracy. A reference model was prepared with three prepared teeth for three types of restorations: single crown, 3-unit bridge, and inlay. Stone models were fabricated from conventional impressions. Digital impressions of the reference model were created using an intraoral scanner (digital models). Physical models were fabricated using a three-dimensional (3D) printer. Reference, stone, and 3D printed models were subsequently scanned using an industrial optical scanner; files were exported in a stereolithography file format. All datasets were superimposed using 3D analysis software to evaluate the accuracy of the complete arch and trueness of the preparations. One-way and two-way analyses of variance (ANOVA) were performed to compare the accuracy among the three model groups and evaluate the trueness among the three types of preparation. For the complete arch, significant intergroup differences in precision were observed for the three groups (p<.001). However, no significant difference in trueness was found between the stone and digital models (p>.05). 3D printed models had the poorest accuracy. A two-way ANOVA revealed significant differences in trueness among the model groups (p<.001) and types of preparation (p<.001). Digital models had smaller root mean square values of trueness of the complete arch and preparations than stone models. However, the accuracy of the complete arch and trueness of the preparations of 3D printed models were inferior to those of the other groups. Copyright © 2018 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  17. Development and validation of an automated and marker-free CT-based spatial analysis method (CTSA) for assessment of femoral hip implant migration: In vitro accuracy and precision comparable to that of radiostereometric analysis (RSA).

    PubMed

    Scheerlinck, Thierry; Polfliet, Mathias; Deklerck, Rudi; Van Gompel, Gert; Buls, Nico; Vandemeulebroucke, Jef

    2016-01-01

    We developed a marker-free automated CT-based spatial analysis (CTSA) method to detect stem-bone migration in consecutive CT datasets and assessed the accuracy and precision in vitro. Our aim was to demonstrate that in vitro accuracy and precision of CTSA is comparable to that of radiostereometric analysis (RSA). Stem and bone were segmented in 2 CT datasets and both were registered pairwise. The resulting rigid transformations were compared and transferred to an anatomically sound coordinate system, taking the stem as reference. This resulted in 3 translation parameters and 3 rotation parameters describing the relative amount of stem-bone displacement, and it allowed calculation of the point of maximal stem migration. Accuracy was evaluated in 39 comparisons by imposing known stem migration on a stem-bone model. Precision was estimated in 20 comparisons based on a zero-migration model, and in 5 patients without stem loosening. Limits of the 95% tolerance intervals (TIs) for accuracy did not exceed 0.28 mm for translations and 0.20° for rotations (largest standard deviation of the signed error (SD(SE)): 0.081 mm and 0.057°). In vitro, limits of the 95% TI for precision in a clinically relevant setting (8 comparisons) were below 0.09 mm and 0.14° (largest SD(SE): 0.012 mm and 0.020°). In patients, the precision was lower, but acceptable, and dependent on CT scan resolution. CTSA allows detection of stem-bone migration with an accuracy and precision comparable to that of RSA. It could be valuable for evaluation of subtle stem loosening in clinical practice.

  18. Clinical evaluation of the FreeStyle Precision Pro system.

    PubMed

    Brazg, Ronald; Hughes, Kristen; Martin, Pamela; Coard, Julie; Toffaletti, John; McDonnell, Elizabeth; Taylor, Elizabeth; Farrell, Lausanne; Patel, Mona; Ward, Jeanne; Chen, Ting; Alva, Shridhara; Ng, Ronald

    2013-06-05

    A new version of international standard (ISO 15197) and CLSI Guideline (POCT12) with more stringent accuracy criteria are near publication. We evaluated the glucose test performance of the FreeStyle Precision Pro system, a new blood glucose monitoring system (BGMS) designed to enhance accuracy for point-of-care testing (POCT). Precision, interference and system accuracy with 503 blood samples from capillary, venous and arterial sources were evaluated in a multicenter study. Study results were analyzed and presented in accordance with the specifications and recommendations of the final draft ISO 15197 and the new POCT12. The FreeStyle Precision Pro system demonstrated acceptable precision (CV <5%), no interference across a hematocrit range of 15-65%, and, except for xylose, no interference from 24 of 25 potentially interfering substances. It also met all accuracy criteria specified in the final draft ISO 15197 and POCT12, with 97.3-98.9% of the individual results of various blood sample types agreeing within ±12 mg/dl of the laboratory analyzer values at glucose concentrations <100mg/dl and within ±12.5% of the laboratory analyzer values at glucose concentrations ≥100 mg/dl. The FreeStyle Precision Pro system met the tighter accuracy requirements, providing a means for enhancing accuracy for point-of-care blood glucose monitoring. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. A method to enhance the measurement accuracy of Raman shift based on high precision calibration technique

    NASA Astrophysics Data System (ADS)

    Ding, Xiang; Li, Fei; Zhang, Jiyan; Liu, Wenli

    2016-10-01

    Raman spectrometers are usually calibrated periodically to ensure their measurement accuracy of Raman shift. A combination of a piece of monocrystalline silicon chip and a low pressure discharge lamp is proposed as a candidate for the reference standard of Raman shift. A high precision calibration technique is developed to accurately determine the standard value of the silicon's Raman shift around 520cm-1. The technique is described and illustrated by measuring a piece of silicon chip against three atomic spectral lines of a neon lamp. A commercial Raman spectrometer is employed and its error characteristics of Raman shift are investigated. Error sources are evaluated based on theoretical analysis and experiments, including the sample factor, the instrumental factor, the laser factor and random factors. Experimental results show that the expanded uncertainty of the silicon's Raman shift around 520cm-1 can acheive 0.3 cm-1 (k=2), which is more accurate than most of currently used reference materials. The results are validated by comparison measurement between three Raman spectrometers. It is proved that the technique can remarkably enhance the accuracy of Raman shift, making it possible to use the silicon and the lamp to calibrate Raman spectrometers.

  20. Sensitive and selective quantification of free and total malondialdehyde in plasma using UHPLC-HRMS.

    PubMed

    Mendonça, Rute; Gning, Ophélie; Di Cesaré, Claudia; Lachat, Laurence; Bennett, Nigel C; Helfenstein, Fabrice; Glauser, Gaétan

    2017-09-01

    Quantification of malondialdehyde (MDA) as a marker of lipid peroxidation is relevant for many research fields. We describe a new sensitive and selective method to measure free and total plasmatic MDA using derivatization with 2,4-dinitrophenylhydrazine (DNPH) and ultra-HPLC-high-resolution MS. Free and total MDA were extracted from minute sample amounts (10 μl) using acidic precipitation and alkaline hydrolysis followed by acidic precipitation, respectively. Derivatization was completed within 10 min at room temperature, and the excess DNPH discarded by liquid-liquid extraction. Quantification was achieved by internal standardization using dideuterated MDA as internal standard. The method's lowest limit of quantification was 100 nM and linearity spanned greater than three orders of magnitude. Intra- and inter-day precisions for total MDA were 2.9% and 3.0%, respectively, and those for free MDA were 12.8% and 24.9%, respectively. Accuracy was 101% and 107% at low and high concentrations, respectively. In human plasma, free MDA levels were 120 nM (SD 36.26) and total MDA levels were 6.7 μM (SD 0.46). In addition, we show the applicability of this method to measure MDA plasma levels from a variety of animal species, making it invaluable to scientists in various fields. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  1. Fine-resolution repeat topographic surveying of dryland landscapes using UAS-based structure-from-motion photogrammetry: Assessing accuracy and precision against traditional ground-based erosion measurements

    USGS Publications Warehouse

    Gillian, Jeffrey K.; Karl, Jason W.; Elaksher, Ahmed; Duniway, Michael C.

    2017-01-01

    Structure-from-motion (SfM) photogrammetry from unmanned aerial system (UAS) imagery is an emerging tool for repeat topographic surveying of dryland erosion. These methods are particularly appealing due to the ability to cover large landscapes compared to field methods and at reduced costs and finer spatial resolution compared to airborne laser scanning. Accuracy and precision of high-resolution digital terrain models (DTMs) derived from UAS imagery have been explored in many studies, typically by comparing image coordinates to surveyed check points or LiDAR datasets. In addition to traditional check points, this study compared 5 cm resolution DTMs derived from fixed-wing UAS imagery with a traditional ground-based method of measuring soil surface change called erosion bridges. We assessed accuracy by comparing the elevation values between DTMs and erosion bridges along thirty topographic transects each 6.1 m long. Comparisons occurred at two points in time (June 2014, February 2015) which enabled us to assess vertical accuracy with 3314 data points and vertical precision (i.e., repeatability) with 1657 data points. We found strong vertical agreement (accuracy) between the methods (RMSE 2.9 and 3.2 cm in June 2014 and February 2015, respectively) and high vertical precision for the DTMs (RMSE 2.8 cm). Our results from comparing SfM-generated DTMs to check points, and strong agreement with erosion bridge measurements suggests repeat UAS imagery and SfM processing could replace erosion bridges for a more synoptic landscape assessment of shifting soil surfaces for some studies. However, while collecting the UAS imagery and generating the SfM DTMs for this study was faster than collecting erosion bridge measurements, technical challenges related to the need for ground control networks and image processing requirements must be addressed before this technique could be applied effectively to large landscapes.

  2. Airborne Topographic Mapper Calibration Procedures and Accuracy Assessment

    NASA Technical Reports Server (NTRS)

    Martin, Chreston F.; Krabill, William B.; Manizade, Serdar S.; Russell, Rob L.; Sonntag, John G.; Swift, Robert N.; Yungel, James K.

    2012-01-01

    Description of NASA Airborn Topographic Mapper (ATM) lidar calibration procedures including analysis of the accuracy and consistancy of various ATM instrument parameters and the resulting influence on topographic elevation measurements. The ATM elevations measurements from a nominal operating altitude 500 to 750 m above the ice surface was found to be: Horizontal Accuracy 74 cm, Horizontal Precision 14 cm, Vertical Accuracy 6.6 cm, Vertical Precision 3 cm.

  3. High-performance Thin-layer Chromatographic-densitometric Quantification and Recovery of Bioactive Compounds for Identification of Elite Chemotypes of Gloriosa superba L. Collected from Sikkim Himalayas (India).

    PubMed

    Misra, Ankita; Shukla, Pushpendra Kumar; Kumar, Bhanu; Chand, Jai; Kushwaha, Poonam; Khalid, Md; Singh Rawat, Ajay Kumar; Srivastava, Sharad

    2017-10-01

    Gloriosa superba L. (Colchicaceae) is used as adjuvant therapy in gout for its potential antimitotic activity due to high colchicine(s) alkaloids. This study aimed to develop an easy, cheap, precise, and accurate high-performance thin-layer chromatographic (HPTLC) validated method for simultaneous quantification of bioactive alkaloids (colchicine and gloriosine) in G. superba L. and to identify its elite chemotype(s) from Sikkim Himalayas (India). The HPTLC chromatographic method was developed using mobile phase of chloroform: acetone: diethyl amine (5:4:1) at λ max of 350 nm. Five germplasms were collected from targeted region, and on morpho-anatomical inspection, no significant variation was observed among them. Quantification data reveal that content of colchicine ( R f : 0.72) and gloriosine ( R f : 0.61) varies from 0.035%-0.150% to 0.006%-0.032% (dry wt. basis). Linearity of method was obtained in the concentration range of 100-400 ng/spot of marker(s), exhibiting regression coefficient of 0.9987 (colchicine) and 0.9983 (gloriosine) with optimum recovery of 97.79 ± 3.86 and 100.023% ± 0.01%, respectively. Limit of detection and limit of quantification were analyzed, respectively, as 6.245, 18.926 and 8.024, 24.316 (ng). Two germplasms, namely NBG-27 and NBG-26, were found to be elite chemotype of both the markers. The developed method is validated in terms of accuracy, recovery, and precision studies as per the ICH guidelines (2005) and can be adopted for the simultaneous quantification of colchicine and gloriosine in phytopharmaceuticals. In addition, this study is relevant to explore the chemotypic variability in metabolite content for commercial and medicinal purposes. An easy, cheap, precise, and accurate high performance thin layer chromatographic (HPTLC) validated method for simultaneous quantification of bioactive alkaloids (colchicine and gloriosine) in G. superba L.Five germplasms were collected from targeted region, and on morpho anatomical

  4. Lowering the quantification limit of the QubitTM RNA HS assay using RNA spike-in.

    PubMed

    Li, Xin; Ben-Dov, Iddo Z; Mauro, Maurizio; Williams, Zev

    2015-05-06

    RNA quantification is often a prerequisite for most RNA analyses such as RNA sequencing. However, the relatively low sensitivity and large sample consumption of traditional RNA quantification methods such as UV spectrophotometry and even the much more sensitive fluorescence-based RNA quantification assays, such as the Qubit™ RNA HS Assay, are often inadequate for measuring minute levels of RNA isolated from limited cell and tissue samples and biofluids. Thus, there is a pressing need for a more sensitive method to reliably and robustly detect trace levels of RNA without interference from DNA. To improve the quantification limit of the Qubit™ RNA HS Assay, we spiked-in a known quantity of RNA to achieve the minimum reading required by the assay. Samples containing trace amounts of RNA were then added to the spike-in and measured as a reading increase over RNA spike-in baseline. We determined the accuracy and precision of reading increases between 1 and 20 pg/μL as well as RNA-specificity in this range, and compared to those of RiboGreen(®), another sensitive fluorescence-based RNA quantification assay. We then applied Qubit™ Assay with RNA spike-in to quantify plasma RNA samples. RNA spike-in improved the quantification limit of the Qubit™ RNA HS Assay 5-fold, from 25 pg/μL down to 5 pg/μL while maintaining high specificity to RNA. This enabled quantification of RNA with original concentration as low as 55.6 pg/μL compared to 250 pg/μL for the standard assay and decreased sample consumption from 5 to 1 ng. Plasma RNA samples that were not measurable by the Qubit™ RNA HS Assay were measurable by our modified method. The Qubit™ RNA HS Assay with RNA spike-in is able to quantify RNA with high specificity at 5-fold lower concentration and uses 5-fold less sample quantity than the standard Qubit™ Assay.

  5. Simultaneous quantification of 21 water soluble vitamin circulating forms in human plasma by liquid chromatography-mass spectrometry.

    PubMed

    Meisser Redeuil, Karine; Longet, Karin; Bénet, Sylvie; Munari, Caroline; Campos-Giménez, Esther

    2015-11-27

    This manuscript reports a validated analytical approach for the quantification of 21 water soluble vitamins and their main circulating forms in human plasma. Isotope dilution-based sample preparation consisted of protein precipitation using acidic methanol enriched with stable isotope labelled internal standards. Separation was achieved by reversed-phase liquid chromatography and detection performed by tandem mass spectrometry in positive electrospray ionization mode. Instrumental lower limits of detection and quantification reached <0.1-10nM and 0.2-25nM, respectively. Commercially available pooled human plasma was used to build matrix-matched calibration curves ranging 2-500, 5-1250, 20-5000 or 150-37500nM depending on the analyte. The overall performance of the method was considered adequate, with 2.8-20.9% and 5.2-20.0% intra and inter-day precision, respectively and averaged accuracy reaching 91-108%. Recovery experiments were also performed and reached in average 82%. This analytical approach was then applied for the quantification of circulating water soluble vitamins in human plasma single donor samples. The present report provides a sensitive and reliable approach for the quantification of water soluble vitamins and main circulating forms in human plasma. In the future, the application of this analytical approach will give more confidence to provide a comprehensive assessment of water soluble vitamins nutritional status and bioavailability studies in humans. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Precision Engineering - SRO 154.

    DTIC Science & Technology

    1986-01-01

    Operation The principle of interferometric displacement measurement devices is that if two identical, coherent, monochromatic light beams are directed...laser interferometric feedback to enhance the accuracy and precision of a lead screw stage. The precision translation stage was designed to produce...and the deepest was 22 micrometers (875 microinches). Figures 5, 6 and 7 are Nomarsky photomicrographs showing the begin- ning, middle and end of a

  7. Simultaneous quantification of coumarins, flavonoids and limonoids in Fructus Citri Sarcodactylis by high performance liquid chromatography coupled with diode array detector.

    PubMed

    Chu, Jun; Li, Song-Lin; Yin, Zhi-Qi; Ye, Wen-Cai; Zhang, Qing-Wen

    2012-07-01

    A high performance liquid chromatography coupled with diode array detector (HPLC-DAD) method was developed for simultaneous quantification of eleven major bioactive components including six coumarins, three flavonoids and two limonoids in Fructus Citri Sarcodactylis. The analysis was performed on a Cosmosil 5 C(18)-MS-II column (4.6 mm × 250 mm, 5 μm) with water-acetonitrile gradient elution. The method was validated in terms of linearity, sensitivity, precision, stability and accuracy. It was found that the calibration curves for all analytes showed good linearity (R(2)>0.9993) within the test ranges. The overall limit of detection (LOD) and limit of quantification (LOQ) were less than 3.0 and 10.2 ng. The relative standard deviations (RSDs) for intra- and inter-day repeatability were not more than 4.99% and 4.92%, respectively. The sample was stable for at least 48 h. The spike recoveries of eleven components were 95.1-104.9%. The established method was successfully applied to determine eleven components in three samples from different locations. The results showed that the newly developed HPLC-DAD method was linear, sensitive, precise and accurate, and could be used for quality control of Fructus Citri Sarcodactylis. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Dependence of quantitative accuracy of CT perfusion imaging on system parameters

    NASA Astrophysics Data System (ADS)

    Li, Ke; Chen, Guang-Hong

    2017-03-01

    Deconvolution is a popular method to calculate parametric perfusion parameters from four dimensional CT perfusion (CTP) source images. During the deconvolution process, the four dimensional space is squeezed into three-dimensional space by removing the temporal dimension, and a prior knowledge is often used to suppress noise associated with the process. These additional complexities confound the understanding about deconvolution-based CTP imaging system and how its quantitative accuracy depends on parameters and sub-operations involved in the image formation process. Meanwhile, there has been a strong clinical need in answering this question, as physicians often rely heavily on the quantitative values of perfusion parameters to make diagnostic decisions, particularly during an emergent clinical situation (e.g. diagnosis of acute ischemic stroke). The purpose of this work was to develop a theoretical framework that quantitatively relates the quantification accuracy of parametric perfusion parameters with CTP acquisition and post-processing parameters. This goal was achieved with the help of a cascaded systems analysis for deconvolution-based CTP imaging systems. Based on the cascaded systems analysis, the quantitative relationship between regularization strength, source image noise, arterial input function, and the quantification accuracy of perfusion parameters was established. The theory could potentially be used to guide developments of CTP imaging technology for better quantification accuracy and lower radiation dose.

  9. Development of a High-Performance Liquid Chromatography–Tandem Mass Spectrometry Method for the Identification and Quantification of CP-47,497, CP-47,497-C8 and JWH-250 in Mouse Brain

    PubMed Central

    Samano, Kimberly L.; Poklis, Justin L.; Lichtman, Aron H.; Poklis, Alphonse

    2014-01-01

    While Marijuana continues to be the most widely used illicit drug, abuse of synthetic cannabinoid (SCB) compounds in ‘Spice’ or ‘K2’ herbal incense products has emerged as a significant public health concern in many European countries and in the USA. Several of these SCBs have been declared Schedule I controlled substances but detection and quantification in biological samples remain a challenge. Therefore, we present a liquid chromatography–tandem mass spectrometry method after liquid–liquid extraction for the quantitation of CP-47,497, CP-47,497-C8 and JWH-250 in mouse brain. We report data for linearity, limit of quantification, accuracy/bias, precision, recovery, selectivity, carryover, matrix effects and stability experiments which were developed and fully validated based on Scientific Working Group for Forensic Toxicology guidelines for forensic toxicology method validation. Acceptable coefficients of variation for accuracy/bias, within- and between-run precision and selectivity were determined, with all values within ±15% of the target concentration. Validation experiments revealed degradation of CP-47, 497 and CP-47,497-C8 at different temperatures, and significant ion suppression was produced in brain for all compounds tested. The method was successfully applied to detect and quantify CP-47,497 in brains from mice demonstrating significant cannabimimetic behavioral effects as assessed by the classical tetrad paradigm. PMID:24816398

  10. Quantification of menadione from plasma and urine by a novel cysteamine-derivatization based UPLC-MS/MS method.

    PubMed

    Yuan, Teng-Fei; Wang, Shao-Ting; Li, Yan

    2017-09-15

    Menadione, as the crucial component of vitamin Ks, possessed significant nutritional and clinical values. However, there was still lack of favourable quantification strategies for it to date. For improvement, a novel cysteamine derivatization based UPLC-MS/MS method was presented in this work. The derivatizating reaction was proved non-toxic, easy-handling and high-efficient, which realized the MS detection of menadione under positive mode. Benefitting from the excellent sensitivity of the derivatizating product as well as the introduction of the stable isotope dilution technique, the quantification could be achieved in the range of 0.05-50.0ng/mL for plasma and urine matrixes with satisfied accuracy and precision. After analysis of the samples from healthy volunteers after oral administration of menadione sodium bisulfite tablets, the urinary free menadione was quantified for the very first time. We believe the progress in this work could largely promote the exploration of the metabolic mechanism of vitamin K in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Deep-Dive Targeted Quantification for Ultrasensitive Analysis of Proteins in Nondepleted Human Blood Plasma/Serum and Tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, Song; Shi, Tujin; Fillmore, Thomas L.

    Mass spectrometry-based targeted proteomics (e.g., selected reaction monitoring, SRM) is emerging as an attractive alternative to immunoassays for protein quantification. Recently we have made significant progress in SRM sensitivity for enabling quantification of low ng/mL to sub-ng/mL level proteins in nondepleted human blood plasma/serum without affinity enrichment. However, precise quantification of extremely low abundant but biologically important proteins (e.g., ≤100 pg/mL in blood plasma/serum) using targeted proteomics approaches still remains challenging. To address this need, we have developed an antibody-independent Deep-Dive SRM (DD-SRM) approach that capitalizes on multidimensional high-resolution reversed-phase liquid chromatography (LC) separation for target peptide enrichment combined withmore » precise selection of target peptide fractions of interest, significantly improving SRM sensitivity by ~5 orders of magnitude when compared to conventional LC-SRM. Application of DD-SRM to human serum and tissue has been demonstrated to enable precise quantification of endogenous proteins at ~10 pg/mL level in nondepleted serum and at <10 copies per cell level in tissue. Thus, DD-SRM holds great promise for precisely measuring extremely low abundance proteins or protein modifications, especially when high-quality antibody is not available.« less

  12. Pulse oximeter accuracy and precision at five different sensor locations in infants and children with cyanotic heart disease

    PubMed Central

    Das, Jyotirmoy; Aggarwal, Amit; Aggarwal, Naresh Kumar

    2010-01-01

    Since the invention of pulse oximetry by Takuo Aoyagi in the early 1970s, its use has expanded beyond the perioperative care into neonatal, paediatric and adult intensive care units (ICUs). Pulse oximetry is one of the most important advances in respiratory monitoring as its readings (SpO2) are used clinically as an indirect estimation of arterial oxygen saturation (SaO2). Sensors were placed frequently on the sole, palm, ear lobe or toes in addition to finger. On performing an extensive Medline search using the terms “accuracy of pulse oximetry” and “precision of pulse oximetry”, limited data were found in congenital heart disease patients in the immediate post-corrective stage. Also, there are no reports and comparative data of the reliability and precision of pulse oximetry when readings from five different sensor locations (viz. finger, palm, toe, sole and ear) are analysed simultaneously. To fill these lacunae of knowledge, we undertook the present study in 50 infants and children with cyanotic heart disease in the immediate post-corrective stage. PMID:21224970

  13. Pulse oximeter accuracy and precision at five different sensor locations in infants and children with cyanotic heart disease.

    PubMed

    Das, Jyotirmoy; Aggarwal, Amit; Aggarwal, Naresh Kumar

    2010-11-01

    Since the invention of pulse oximetry by Takuo Aoyagi in the early 1970s, its use has expanded beyond the perioperative care into neonatal, paediatric and adult intensive care units (ICUs). Pulse oximetry is one of the most important advances in respiratory monitoring as its readings (SpO(2)) are used clinically as an indirect estimation of arterial oxygen saturation (SaO(2)). Sensors were placed frequently on the sole, palm, ear lobe or toes in addition to finger. On performing an extensive Medline search using the terms "accuracy of pulse oximetry" and "precision of pulse oximetry", limited data were found in congenital heart disease patients in the immediate post-corrective stage. Also, there are no reports and comparative data of the reliability and precision of pulse oximetry when readings from five different sensor locations (viz. finger, palm, toe, sole and ear) are analysed simultaneously. To fill these lacunae of knowledge, we undertook the present study in 50 infants and children with cyanotic heart disease in the immediate post-corrective stage.

  14. Gaussian signal relaxation around spin echoes: Implications for precise reversible transverse relaxation quantification of pulmonary tissue at 1.5 and 3 Tesla.

    PubMed

    Zapp, Jascha; Domsch, Sebastian; Weingärtner, Sebastian; Schad, Lothar R

    2017-05-01

    To characterize the reversible transverse relaxation in pulmonary tissue and to study the benefit of a quadratic exponential (Gaussian) model over the commonly used linear exponential model for increased quantification precision. A point-resolved spectroscopy sequence was used for comprehensive sampling of the relaxation around spin echoes. Measurements were performed in an ex vivo tissue sample and in healthy volunteers at 1.5 Tesla (T) and 3 T. The goodness of fit using χred2 and the precision of the fitted relaxation time by means of its confidence interval were compared between the two relaxation models. The Gaussian model provides enhanced descriptions of pulmonary relaxation with lower χred2 by average factors of 4 ex vivo and 3 in volunteers. The Gaussian model indicates higher sensitivity to tissue structure alteration with increased precision of reversible transverse relaxation time measurements also by average factors of 4 ex vivo and 3 in volunteers. The mean relaxation times of the Gaussian model in volunteers are T2,G' = (1.97 ± 0.27) msec at 1.5 T and T2,G' = (0.83 ± 0.21) msec at 3 T. Pulmonary signal relaxation was found to be accurately modeled as Gaussian, providing a potential biomarker T2,G' with high sensitivity. Magn Reson Med 77:1938-1945, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  15. Comparison of machine learning and semi-quantification algorithms for (I123)FP-CIT classification: the beginning of the end for semi-quantification?

    PubMed

    Taylor, Jonathan Christopher; Fenner, John Wesley

    2017-11-29

    Semi-quantification methods are well established in the clinic for assisted reporting of (I123) Ioflupane images. Arguably, these are limited diagnostic tools. Recent research has demonstrated the potential for improved classification performance offered by machine learning algorithms. A direct comparison between methods is required to establish whether a move towards widespread clinical adoption of machine learning algorithms is justified. This study compared three machine learning algorithms with that of a range of semi-quantification methods, using the Parkinson's Progression Markers Initiative (PPMI) research database and a locally derived clinical database for validation. Machine learning algorithms were based on support vector machine classifiers with three different sets of features: Voxel intensities Principal components of image voxel intensities Striatal binding radios from the putamen and caudate. Semi-quantification methods were based on striatal binding ratios (SBRs) from both putamina, with and without consideration of the caudates. Normal limits for the SBRs were defined through four different methods: Minimum of age-matched controls Mean minus 1/1.5/2 standard deviations from age-matched controls Linear regression of normal patient data against age (minus 1/1.5/2 standard errors) Selection of the optimum operating point on the receiver operator characteristic curve from normal and abnormal training data Each machine learning and semi-quantification technique was evaluated with stratified, nested 10-fold cross-validation, repeated 10 times. The mean accuracy of the semi-quantitative methods for classification of local data into Parkinsonian and non-Parkinsonian groups varied from 0.78 to 0.87, contrasting with 0.89 to 0.95 for classifying PPMI data into healthy controls and Parkinson's disease groups. The machine learning algorithms gave mean accuracies between 0.88 to 0.92 and 0.95 to 0.97 for local and PPMI data respectively. Classification

  16. A rapid and accurate quantification method for real-time dynamic analysis of cellular lipids during microalgal fermentation processes in Chlorella protothecoides with low field nuclear magnetic resonance.

    PubMed

    Wang, Tao; Liu, Tingting; Wang, Zejian; Tian, Xiwei; Yang, Yi; Guo, Meijin; Chu, Ju; Zhuang, Yingping

    2016-05-01

    The rapid and real-time lipid determination can provide valuable information on process regulation and optimization in the algal lipid mass production. In this study, a rapid, accurate and precise quantification method of in vivo cellular lipids of Chlorella protothecoides using low field nuclear magnetic resonance (LF-NMR) was newly developed. LF-NMR was extremely sensitive to the algal lipids with the limits of the detection (LOD) of 0.0026g and 0.32g/L in dry lipid samples and algal broth, respectively, as well as limits of quantification (LOQ) of 0.0093g and 1.18g/L. Moreover, the LF-NMR signal was specifically proportional to the cellular lipids of C. protothecoides, thus the superior regression curves existing in a wide detection range from 0.02 to 0.42g for dry lipids and from 1.12 to 8.97gL(-1) of lipid concentration for in vivo lipid quantification were obtained with all R(2) higher than 0.99, irrespective of the lipid content and fatty acids profile variations. The accuracy of this novel method was further verified to be reliable by comparing lipid quantification results to those obtained by GC-MS. And the relative standard deviation (RSD) of LF-NMR results were smaller than 2%, suggesting the precision of this method. Finally, this method was successfully used in the on-line lipid monitoring during the algal lipid fermentation processes, making it possible for better understanding of the lipid accumulation mechanism and dynamic bioprocess control. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Accuracy of neuro-navigated cranial screw placement using optical surface imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jakubovic, Raphael; Gupta, Shuarya; Guha, Daipayan; Mainprize, Todd; Yang, Victor X. D.

    2017-02-01

    Cranial neurosurgical procedures are especially delicate considering that the surgeon must localize the subsurface anatomy with limited exposure and without the ability to see beyond the surface of the surgical field. Surgical accuracy is imperative as even minor surgical errors can cause major neurological deficits. Traditionally surgical precision was highly dependent on surgical skill. However, the introduction of intraoperative surgical navigation has shifted the paradigm to become the current standard of care for cranial neurosurgery. Intra-operative image guided navigation systems are currently used to allow the surgeon to visualize the three-dimensional subsurface anatomy using pre-acquired computed tomography (CT) or magnetic resonance (MR) images. The patient anatomy is fused to the pre-acquired images using various registration techniques and surgical tools are typically localized using optical tracking methods. Although these techniques positively impact complication rates, surgical accuracy is limited by the accuracy of the navigation system and as such quantification of surgical error is required. While many different measures of registration accuracy have been presented true navigation accuracy can only be quantified post-operatively by comparing a ground truth landmark to the intra-operative visualization. In this study we quantified the accuracy of cranial neurosurgical procedures using a novel optical surface imaging navigation system to visualize the three-dimensional anatomy of the surface anatomy. A tracked probe was placed on the screws of cranial fixation plates during surgery and the reported position of the centre of the screw was compared to the co-ordinates of the post-operative CT or MR images, thus quantifying cranial neurosurgical error.

  18. SU-E-J-03: Characterization of the Precision and Accuracy of a New, Preclinical, MRI-Guided Focused Ultrasound System for Image-Guided Interventions in Small-Bore, High-Field Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellens, N; Farahani, K

    2015-06-15

    Purpose: MRI-guided focused ultrasound (MRgFUS) has many potential and realized applications including controlled heating and localized drug delivery. The development of many of these applications requires extensive preclinical work, much of it in small animal models. The goal of this study is to characterize the spatial targeting accuracy and reproducibility of a preclinical high field MRgFUS system for thermal ablation and drug delivery applications. Methods: The RK300 (FUS Instruments, Toronto, Canada) is a motorized, 2-axis FUS positioning system suitable for small bore (72 mm), high-field MRI systems. The accuracy of the system was assessed in three ways. First, the precisionmore » of the system was assessed by sonicating regular grids of 5 mm squares on polystyrene plates and comparing the resulting focal dimples to the intended pattern, thereby assessing the reproducibility and precision of the motion control alone. Second, the targeting accuracy was assessed by imaging a polystyrene plate with randomly drilled holes and replicating the hole pattern by sonicating the observed hole locations on intact polystyrene plates and comparing the results. Third, the practicallyrealizable accuracy and precision were assessed by comparing the locations of transcranial, FUS-induced blood-brain-barrier disruption (BBBD) (observed through Gadolinium enhancement) to the intended targets in a retrospective analysis of animals sonicated for other experiments. Results: The evenly-spaced grids indicated that the precision was 0.11 +/− 0.05 mm. When image-guidance was included by targeting random locations, the accuracy was 0.5 +/− 0.2 mm. The effective accuracy in the four rodent brains assessed was 0.8 +/− 0.6 mm. In all cases, the error appeared normally distributed (p<0.05) in both orthogonal axes, though the left/right error was systematically greater than the superior/inferior error. Conclusions: The targeting accuracy of this device is sub-millimeter, suitable for

  19. EFFECT OF RADIATION DOSE LEVEL ON ACCURACY AND PRECISION OF MANUAL SIZE MEASUREMENTS IN CHEST TOMOSYNTHESIS EVALUATED USING SIMULATED PULMONARY NODULES

    PubMed Central

    Söderman, Christina; Johnsson, Åse Allansdotter; Vikgren, Jenny; Norrlund, Rauni Rossi; Molnar, David; Svalkvist, Angelica; Månsson, Lars Gunnar; Båth, Magnus

    2016-01-01

    The aim of the present study was to investigate the dependency of the accuracy and precision of nodule diameter measurements on the radiation dose level in chest tomosynthesis. Artificial ellipsoid-shaped nodules with known dimensions were inserted in clinical chest tomosynthesis images. Noise was added to the images in order to simulate radiation dose levels corresponding to effective doses for a standard-sized patient of 0.06 and 0.04 mSv. These levels were compared with the original dose level, corresponding to an effective dose of 0.12 mSv for a standard-sized patient. Four thoracic radiologists measured the longest diameter of the nodules. The study was restricted to nodules located in high-dose areas of the tomosynthesis projection radiographs. A significant decrease of the measurement accuracy and intraobserver variability was seen for the lowest dose level for a subset of the observers. No significant effect of dose level on the interobserver variability was found. The number of non-measurable small nodules (≤5 mm) was higher for the two lowest dose levels compared with the original dose level. In conclusion, for pulmonary nodules at positions in the lung corresponding to locations in high-dose areas of the projection radiographs, using a radiation dose level resulting in an effective dose of 0.06 mSv to a standard-sized patient may be possible in chest tomosynthesis without affecting the accuracy and precision of nodule diameter measurements to any large extent. However, an increasing number of non-measurable small nodules (≤5 mm) with decreasing radiation dose may raise some concerns regarding an applied general dose reduction for chest tomosynthesis examinations in the clinical praxis. PMID:26994093

  20. Accuracy and Precision of Noninvasive Blood Pressure in Normo-, Hyper-, and Hypotensive Standing and Anesthetized Adult Horses.

    PubMed

    Heliczer, N; Lorello, O; Casoni, D; Navas de Solis, C

    2016-05-01

    Blood pressure is relevant to the diagnosis and management of many medical, cardiovascular and critical diseases. The accuracy of many commonly used noninvasive blood pressure (NIBP) monitors and the accuracy of NIBP measurements in hypo- and hypertensive standing horses has not been determined. The objective of this study was to investigate the accuracy of an oscillometric BP monitor in standing horses before and during pharmacologically induced hyper- and hypotension and to compare results in standing and anesthetized horses. Eight standing mares from a research herd (SG) and eight anesthetized horses from a hospital population (AG). Prospective experimental and observational studies. Invasive blood pressure (IBP) and NIBP, corrected to heart level, were measured simultaneously. In the SG hyper- and hypotension were induced by administration of phenylephrine (3 μg/kg/min IV for 15 minutes) and acepromazine (0.05 mg/kg IV), respectively. In the AG NIBP and IBP were recorded during regular hospital procedures. There was a significant correlation between mean NIBP and IBP in standing (R = 0.88, P < .001) and anesthetized horses (R = 0.81, P < .001). The mean bias (lower, upper limit of agreement) was 16.4(-16.1, 48.9) mmHg for mean BP in the SG and 0.5(-22.3, 23.2) mmHg in the AG. The NIBP device was capable of identifying the increase and decrease in BP in all horses, but in the SG significant correlation between NIBP and IBP was only detected for the normotensive phase. While the evaluated oscillometric BP device allowed estimation of BP and adequately differentiated marked trends, the accuracy and precision were low in standing horses. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  1. Quantification of strontium in human serum by ICP-MS using alternate analyte-free matrix and its application to a pilot bioequivalence study of two strontium ranelate oral formulations in healthy Chinese subjects.

    PubMed

    Zhang, Dan; Wang, Xiaolin; Liu, Man; Zhang, Lina; Deng, Ming; Liu, Huichen

    2015-01-01

    A rapid, sensitive and accurate ICP-MS method using alternate analyte-free matrix for calibration standards preparation and a rapid direct dilution procedure for sample preparation was developed and validated for the quantification of exogenous strontium (Sr) from the drug in human serum. Serum was prepared by direct dilution (1:29, v/v) in an acidic solution consisting of nitric acid (0.1%) and germanium (Ge) added as internal standard (IS), to obtain simple and high-throughput preparation procedure with minimized matrix effect, and good repeatability. ICP-MS analysis was performed using collision cell technology (CCT) mode. Alternate matrix method by using distilled water as an alternate analyte-free matrix for the preparation of calibration standards (CS) was used to avoid the influence of endogenous Sr in serum on the quantification. The method was validated in terms of selectivity, carry-over, matrix effects, lower limit of quantification (LLOQ), linearity, precision and accuracy, and stability. Instrumental linearity was verified in the range of 1.00-500ng/mL, corresponding to a concentration range of 0.0300-15.0μg/mL in 50μL sample of serum matrix and alternate matrix. Intra- and inter-day precision as relative standard deviation (RSD) were less than 8.0% and accuracy as relative error (RE) was within ±3.0%. The method allowed a high sample throughput, and was sensitive and accurate enough for a pilot bioequivalence study in healthy male Chinese subjects following single oral administration of two strontium ranelate formulations containing 2g strontium ranelate. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. Video image analysis in the Australian meat industry - precision and accuracy of predicting lean meat yield in lamb carcasses.

    PubMed

    Hopkins, D L; Safari, E; Thompson, J M; Smith, C R

    2004-06-01

    A wide selection of lamb types of mixed sex (ewes and wethers) were slaughtered at a commercial abattoir and during this process images of 360 carcasses were obtained online using the VIAScan® system developed by Meat and Livestock Australia. Soft tissue depth at the GR site (thickness of tissue over the 12th rib 110 mm from the midline) was measured by an abattoir employee using the AUS-MEAT sheep probe (PGR). Another measure of this thickness was taken in the chiller using a GR knife (NGR). Each carcass was subsequently broken down to a range of trimmed boneless retail cuts and the lean meat yield determined. The current industry model for predicting meat yield uses hot carcass weight (HCW) and tissue depth at the GR site. A low level of accuracy and precision was found when HCW and PGR were used to predict lean meat yield (R(2)=0.19, r.s.d.=2.80%), which could be improved markedly when PGR was replaced by NGR (R(2)=0.41, r.s.d.=2.39%). If the GR measures were replaced by 8 VIAScan® measures then greater prediction accuracy could be achieved (R(2)=0.52, r.s.d.=2.17%). A similar result was achieved when the model was based on principal components (PCs) computed from the 8 VIAScan® measures (R(2)=0.52, r.s.d.=2.17%). The use of PCs also improved the stability of the model compared to a regression model based on HCW and NGR. The transportability of the models was tested by randomly dividing the data set and comparing coefficients and the level of accuracy and precision. Those models based on PCs were superior to those based on regression. It is demonstrated that with the appropriate modeling the VIAScan® system offers a workable method for predicting lean meat yield automatically.

  3. Integrative analysis with ChIP-seq advances the limits of transcript quantification from RNA-seq.

    PubMed

    Liu, Peng; Sanalkumar, Rajendran; Bresnick, Emery H; Keleş, Sündüz; Dewey, Colin N

    2016-08-01

    RNA-seq is currently the technology of choice for global measurement of transcript abundances in cells. Despite its successes, isoform-level quantification remains difficult because short RNA-seq reads are often compatible with multiple alternatively spliced isoforms. Existing methods rely heavily on uniquely mapping reads, which are not available for numerous isoforms that lack regions of unique sequence. To improve quantification accuracy in such difficult cases, we developed a novel computational method, prior-enhanced RSEM (pRSEM), which uses a complementary data type in addition to RNA-seq data. We found that ChIP-seq data of RNA polymerase II and histone modifications were particularly informative in this approach. In qRT-PCR validations, pRSEM was shown to be superior than competing methods in estimating relative isoform abundances within or across conditions. Data-driven simulations suggested that pRSEM has a greatly decreased false-positive rate at the expense of a small increase in false-negative rate. In aggregate, our study demonstrates that pRSEM transforms existing capacity to precisely estimate transcript abundances, especially at the isoform level. © 2016 Liu et al.; Published by Cold Spring Harbor Laboratory Press.

  4. [Reproducibility and accuracy in the morphometric and mechanical quantification of trabecular bone from 3 Tesla magnetic resonance images].

    PubMed

    Alberich-Bayarri, A; Martí-Bonmatí, L; Sanz-Requena, R; Sánchez-González, J; Hervás Briz, V; García-Martí, G; Pérez, M Á

    2014-01-01

    We used an animal model to analyze the reproducibility and accuracy of certain biomarkers of bone image quality in comparison to a gold standard of computed microtomography (μCT). We used magnetic resonance (MR) imaging and μCT to study the metaphyses of 5 sheep tibiae. The MR images (3 Teslas) were acquired with a T1-weighted gradient echo sequence and an isotropic spatial resolution of 180μm. The μCT images were acquired using a scanner with a spatial resolution of 7.5μm isotropic voxels. In the preparation of the images, we applied equalization, interpolation, and thresholding algorithms. In the quantitative analysis, we calculated the percentage of bone volume (BV/TV), the trabecular thickness (Tb.Th), the trabecular separation (Tb.Sp), the trabecular index (Tb.N), the 2D fractal dimension (D(2D)), the 3D fractal dimension (D(3D)), and the elastic module in the three spatial directions (Ex, Ey and Ez). The morphometric and mechanical quantification of trabecular bone by MR was very reproducible, with percentages of variation below 9% for all the parameters. Its accuracy compared to the gold standard (μCT) was high, with errors less than 15% for BV/TV, D(2D), D(3D), and E(app)x, E(app)y and E(app)z. Our experimental results in animals confirm that the parameters of BV/TV, D(2D), D(3D), and E(app)x, E(app)y and E(app)z obtained by MR have excellent reproducibility and accuracy and can be used as imaging biomarkers for the quality of trabecular bone. Copyright © 2013 SERAM. Published by Elsevier Espana. All rights reserved.

  5. Accuracy of iodine quantification using dual energy CT in latest generation dual source and dual layer CT.

    PubMed

    Pelgrim, Gert Jan; van Hamersvelt, Robbert W; Willemink, Martin J; Schmidt, Bernhard T; Flohr, Thomas; Schilham, Arnold; Milles, Julien; Oudkerk, Matthijs; Leiner, Tim; Vliegenthart, Rozemarijn

    2017-09-01

    To determine the accuracy of iodine quantification with dual energy computed tomography (DECT) in two high-end CT systems with different spectral imaging techniques. Five tubes with different iodine concentrations (0, 5, 10, 15, 20 mg/ml) were analysed in an anthropomorphic thoracic phantom. Adding two phantom rings simulated increased patient size. For third-generation dual source CT (DSCT), tube voltage combinations of 150Sn and 70, 80, 90, 100 kVp were analysed. For dual layer CT (DLCT), 120 and 140 kVp were used. Scans were repeated three times. Median normalized values and interquartile ranges (IQRs) were calculated for all kVp settings and phantom sizes. Correlation between measured and known iodine concentrations was excellent for both systems (R = 0.999-1.000, p < 0.0001). For DSCT, median measurement errors ranged from -0.5% (IQR -2.0, 2.0%) at 150Sn/70 kVp and -2.3% (IQR -4.0, -0.1%) at 150Sn/80 kVp to -4.0% (IQR -6.0, -2.8%) at 150Sn/90 kVp. For DLCT, median measurement errors ranged from -3.3% (IQR -4.9, -1.5%) at 140 kVp to -4.6% (IQR -6.0, -3.6%) at 120 kVp. Larger phantom sizes increased variability of iodine measurements (p < 0.05). Iodine concentration can be accurately quantified with state-of-the-art DECT systems from two vendors. The lowest absolute errors were found for DSCT using the 150Sn/70 kVp or 150Sn/80 kVp combinations, which was slightly more accurate than 140 kVp in DLCT. • High-end CT scanners allow accurate iodine quantification using different DECT techniques. • Lowest measurement error was found in scans with largest photon energy separation. • Dual-source CT quantified iodine slightly more accurately than dual layer CT.

  6. Combined quantification of paclitaxel, docetaxel and ritonavir in human feces and urine using LC-MS/MS.

    PubMed

    Hendrikx, Jeroen J M A; Rosing, Hilde; Schinkel, Alfred H; Schellens, Jan H M; Beijnen, Jos H

    2014-02-01

    A combined assay for the determination of paclitaxel, docetaxel and ritonavir in human feces and urine is described. The drugs were extracted from 200 μL urine or 50 mg feces followed by high-performance liquid chromatography analysis coupled with positive ionization electrospray tandem mass spectrometry. The validation program included calibration model, accuracy and precision, carry-over, dilution test, specificity and selectivity, matrix effect, recovery and stability. Acceptance criteria were according to US Food and Drug Administration guidelines on bioanalytical method validation. The validated range was 0.5-500 ng/mL for paclitaxel and docetaxel, 2-2000 ng/mL for ritonavir in urine, 2-2000 ng/mg for paclitaxel and docetaxel, and 8-8000 ng/mg for ritonavir in feces. Inter-assay accuracy and precision were tested for all analytes at four concentration levels and were within 8.5% and <10.2%, respectively, in both matrices. Recovery at three concentration levels was between 77 and 94% in feces samples and between 69 and 85% in urine samples. Method development, including feces homogenization and spiking blank urine samples, are discussed. We demonstrated that each of the applied drugs could be quantified successfully in urine and feces using the described assay. The method was successfully applied for quantification of the analytes in feces and urine samples of patients. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Simultaneous quantification of metronidazole, tinidazole, ornidazole and morinidazole in human saliva.

    PubMed

    Wang, Yongqing; Zhang, Peipei; Jiang, Ningling; Gong, Xiaojian; Meng, Ling; Wang, Dewang; Ou, Ning; Zhang, Haibo

    2012-06-15

    The aim of this study was to develop a rapid and sensitive method for the simultaneous quantification of metronidazole (MEZ), tinidazole (TNZ), ornidazole (ONZ) and morinidazole (MNZ) in human saliva. A reversed-phase high-performance liquid chromatography (HPLC) method with ultraviolet (UV) detection at 318 nm was carried out on a C18 column, using a mixture of potassium dihydrogen phosphate buffer, acetonitrile, and methanol (55:15:30, v/v/v) as a mobile phase with a flow rate of 1.0 ml/min. The saliva samples (100 μl) were firstly deproteinized by precipitation with methanol (400 μl), after which they were centrifuged and the supernatants were directly injected into the HPLC system. This method produced linear responses in the concentration ranges of 25.2-5040.0, 23.9-4790.0, 25.4-5080.0, 25.0-5000.0 ng/ml with detection limits of 6.0, 17.6, 10.0 and 11.3 ng/ml for MEZ, TNZ, ONZ and MNZ (S/N=3), respectively. The methods were validated in terms of intra- and inter-batch precision (within 7.3% and 9.1%, respectively), accuracy, linearity, recovery and stability. The study proved that HPLC is both sensitive and selective for the simultaneous quantification of MEZ, TNZ, ONZ and MNZ in human saliva using a single mobile phase. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Probing the accuracy and precision of Hirshfeld atom refinement with HARt interfaced with Olex2.

    PubMed

    Fugel, Malte; Jayatilaka, Dylan; Hupf, Emanuel; Overgaard, Jacob; Hathwar, Venkatesha R; Macchi, Piero; Turner, Michael J; Howard, Judith A K; Dolomanov, Oleg V; Puschmann, Horst; Iversen, Bo B; Bürgi, Hans-Beat; Grabowsky, Simon

    2018-01-01

    Hirshfeld atom refinement (HAR) is a novel X-ray structure refinement technique that employs aspherical atomic scattering factors obtained from stockholder partitioning of a theoretically determined tailor-made static electron density. HAR overcomes many of the known limitations of independent atom modelling (IAM), such as too short element-hydrogen distances, r ( X -H), or too large atomic displacement parameters (ADPs). This study probes the accuracy and precision of anisotropic hydrogen and non-hydrogen ADPs and of r ( X -H) values obtained from HAR. These quantities are compared and found to agree with those obtained from (i) accurate neutron diffraction data measured at the same temperatures as the X-ray data and (ii) multipole modelling (MM), an established alternative method for interpreting X-ray diffraction data with the help of aspherical atomic scattering factors. Results are presented for three chemically different systems: the aromatic hydro-carbon rubrene (orthorhombic 5,6,11,12-tetra-phenyl-tetracene), a co-crystal of zwitterionic betaine, imidazolium cations and picrate anions (BIPa), and the salt potassium hydrogen oxalate (KHOx). The non-hydrogen HAR-ADPs are as accurate and precise as the MM-ADPs. Both show excellent agreement with the neutron-based values and are superior to IAM-ADPs. The anisotropic hydrogen HAR-ADPs show a somewhat larger deviation from neutron-based values than the hydrogen SHADE-ADPs used in MM. Element-hydrogen bond lengths from HAR are in excellent agreement with those obtained from neutron diffraction experiments, although they are somewhat less precise. The residual density contour maps after HAR show fewer features than those after MM. Calculating the static electron density with the def2-TZVP basis set instead of the simpler def2-SVP one does not improve the refinement results significantly. All HARs were performed within the recently introduced HARt option implemented in the Olex2 program. They are easily launched

  9. Probing the accuracy and precision of Hirshfeld atom refinement with HARt interfaced with Olex2

    PubMed Central

    Fugel, Malte; Hathwar, Venkatesha R.; Turner, Michael J.; Howard, Judith A. K.

    2018-01-01

    Hirshfeld atom refinement (HAR) is a novel X-ray structure refinement technique that employs aspherical atomic scattering factors obtained from stockholder partitioning of a theoretically determined tailor-made static electron density. HAR overcomes many of the known limitations of independent atom modelling (IAM), such as too short element–hydrogen distances, r(X—H), or too large atomic displacement parameters (ADPs). This study probes the accuracy and precision of anisotropic hydrogen and non-hydrogen ADPs and of r(X—H) values obtained from HAR. These quantities are compared and found to agree with those obtained from (i) accurate neutron diffraction data measured at the same temperatures as the X-ray data and (ii) multipole modelling (MM), an established alternative method for interpreting X-ray diffraction data with the help of aspherical atomic scattering factors. Results are presented for three chemically different systems: the aromatic hydro­carbon rubrene (orthorhombic 5,6,11,12-tetra­phenyl­tetracene), a co-crystal of zwitterionic betaine, imidazolium cations and picrate anions (BIPa), and the salt potassium hydrogen oxalate (KHOx). The non-hydrogen HAR-ADPs are as accurate and precise as the MM-ADPs. Both show excellent agreement with the neutron-based values and are superior to IAM-ADPs. The anisotropic hydrogen HAR-ADPs show a somewhat larger deviation from neutron-based values than the hydrogen SHADE-ADPs used in MM. Element–hydrogen bond lengths from HAR are in excellent agreement with those obtained from neutron diffraction experiments, although they are somewhat less precise. The residual density contour maps after HAR show fewer features than those after MM. Calculating the static electron density with the def2-TZVP basis set instead of the simpler def2-SVP one does not improve the refinement results significantly. All HARs were performed within the recently introduced HARt option implemented in the Olex2 program. They are easily

  10. Quantification of Dynamic 11C-Phenytoin PET Studies.

    PubMed

    Mansor, Syahir; Boellaard, Ronald; Froklage, Femke E; Bakker, Esther D M; Yaqub, Maqsood; Voskuyl, Rob A; Schwarte, Lothar A; Verbeek, Joost; Windhorst, Albert D; Lammertsma, Adriaan

    2015-09-01

    The overexpression of P-glycoprotein (Pgp) is thought to be an important mechanism of pharmacoresistance in epilepsy. Recently, (11)C-phenytoin has been evaluated preclinically as a tracer for Pgp. The aim of the present study was to assess the optimal plasma kinetic model for quantification of (11)C-phenytoin studies in humans. Dynamic (11)C-phenytoin PET scans of 6 healthy volunteers with arterial sampling were acquired twice on the same day and analyzed using single- and 2-tissue-compartment models with and without a blood volume parameter. Global and regional test-retest (TRT) variability was determined for both plasma to tissue rate constant (K1) and volume of distribution (VT). According to the Akaike information criterion, the reversible single-tissue-compartment model with blood volume parameter was the preferred plasma input model. Mean TRT variability ranged from 1.5% to 16.9% for K1 and from 0.5% to 5.8% for VT. Larger volumes of interest showed better repeatabilities than smaller regions. A 45-min scan provided essentially the same K1 and VT values as a 60-min scan. A reversible single-tissue-compartment model with blood volume seems to be a good candidate model for quantification of dynamic (11)C-phenytoin studies. Scan duration may be reduced to 45 min without notable loss of accuracy and precision of both K1 and VT, although this still needs to be confirmed under pathologic conditions. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  11. High-performance thin-layer chromatography (HPTLC) for the simultaneous quantification of the cyclic lipopeptides Surfactin, Iturin A and Fengycin in culture samples of Bacillus species.

    PubMed

    Geissler, Mareen; Oellig, Claudia; Moss, Karin; Schwack, Wolfgang; Henkel, Marius; Hausmann, Rudolf

    2017-02-15

    A high-performance thin-layer chromatography method has been established for the identification and simultaneous quantification of the cyclic lipopeptides Surfactin, Iturin A and Fengycin in Bacillus culture samples. B. subtilis DSM 10 T , B. amyloliquefaciens DSM 7 T and B. methylotrophicus DSM 23117 were used as model strains. Culture samples indicated that a sample pretreatment is necessary in order to run HPTLC analyses. A threefold extraction of the cell-free broth with the solvent chloroform/methanol (2:1, v/v) gave best results, when all three lipopeptides were included in the analysis. For the mobile phase, a two-step development was considered most suitable. The first development is conducted with chloroform/methanol/water (65:25:4, v/v/v) over a migration distance of 60mm and the second development using butanol/ethanol/0.1% acetic acid (1:4:1, v/v/v) over a migration distance of 60mm, as well. The method was validated according to Validation of Analytical Procedures: Methodology (FDA Guidance) with respect to the parameters linearity, limit of detection (LOD), limit of quantification (LOQ), precision, accuracy and recovery rate. A linear range with R 2 >0.99 was obtained for all samples from 30ng/zone up to 600ng/zone. The results indicated that quantification of Surfactin has to be performed after the first development (hR F =44), while Fengycin is quantified after the second development (hR F =36, hR F range=20-40). For Iturin A, the results demonstrated that quantification is in favor after the first (hR F =19) development, but also possible after the second (hR F =59) development. LOD and LOQ for Surfactin and Iturin A after the first development, and Fengycin after the second development were determined to be 16ng/zone and 47ng/zone, 13ng/zone and 39ng/zone, and 27ng/zone and 82ng/zone, respectively. Results further revealed the highly accurate and precise character of the developed method with a good inter- and intraday reproducibility. For the

  12. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: A postmortem study

    PubMed Central

    Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q.; Ducote, Justin L.; Su, Min-Ying; Molloi, Sabee

    2013-01-01

    . Conclusions: The investigated CLIC method significantly increased the precision and accuracy of breast density quantification using breast MRI images by effectively correcting the bias field. It is expected that a fully automated computerized algorithm for breast density quantification may have great potential in clinical MRI applications. PMID:24320536

  13. Automation of a Nile red staining assay enables high throughput quantification of microalgal lipid production.

    PubMed

    Morschett, Holger; Wiechert, Wolfgang; Oldiges, Marco

    2016-02-09

    Within the context of microalgal lipid production for biofuels and bulk chemical applications, specialized higher throughput devices for small scale parallelized cultivation are expected to boost the time efficiency of phototrophic bioprocess development. However, the increasing number of possible experiments is directly coupled to the demand for lipid quantification protocols that enable reliably measuring large sets of samples within short time and that can deal with the reduced sample volume typically generated at screening scale. To meet these demands, a dye based assay was established using a liquid handling robot to provide reproducible high throughput quantification of lipids with minimized hands-on-time. Lipid production was monitored using the fluorescent dye Nile red with dimethyl sulfoxide as solvent facilitating dye permeation. The staining kinetics of cells at different concentrations and physiological states were investigated to successfully down-scale the assay to 96 well microtiter plates. Gravimetric calibration against a well-established extractive protocol enabled absolute quantification of intracellular lipids improving precision from ±8 to ±2 % on average. Implementation into an automated liquid handling platform allows for measuring up to 48 samples within 6.5 h, reducing hands-on-time to a third compared to manual operation. Moreover, it was shown that automation enhances accuracy and precision compared to manual preparation. It was revealed that established protocols relying on optical density or cell number for biomass adjustion prior to staining may suffer from errors due to significant changes of the cells' optical and physiological properties during cultivation. Alternatively, the biovolume was used as a measure for biomass concentration so that errors from morphological changes can be excluded. The newly established assay proved to be applicable for absolute quantification of algal lipids avoiding limitations of currently established

  14. Breast density quantification using magnetic resonance imaging (MRI) with bias field correction: a postmortem study.

    PubMed

    Ding, Huanjun; Johnson, Travis; Lin, Muqing; Le, Huy Q; Ducote, Justin L; Su, Min-Ying; Molloi, Sabee

    2013-12-01

    significantly increased the precision and accuracy of breast density quantification using breast MRI images by effectively correcting the bias field. It is expected that a fully automated computerized algorithm for breast density quantification may have great potential in clinical MRI applications.

  15. Improvement of VLBI EOP Accuracy and Precision

    NASA Technical Reports Server (NTRS)

    MacMillan, Daniel; Ma, Chopo

    2000-01-01

    In the CORE program, EOP measurements will be made with several different networks, each operating on a different day. It is essential that systematic differences between EOP derived by the different networks be minimized. Observed biases between the simultaneous CORE-A and NEOS-A sessions are about 60-130 micro(as) for PM, UT1 and nutation parameters. After removing biases, the observed rms differences are consistent with an increase in the formal precision of the measurements by factors ranging from 1.05 to 1.4. We discuss the possible sources of unmodeled error that account for these factors and the biases and the sensitivities of the network differences to modeling errors. We also discuss differences between VLBI and GPS PM measurements.

  16. Study on high-precision measurement of long radius of curvature

    NASA Astrophysics Data System (ADS)

    Wu, Dongcheng; Peng, Shijun; Gao, Songtao

    2016-09-01

    It is hard to get high-precision measurement of the radius of curvature (ROC), because of many factors that affect the measurement accuracy. For the measurement of long radius of curvature, some factors take more important position than others'. So, at first this paper makes some research about which factor is related to the long measurement distance, and also analyse the uncertain of the measurement accuracy. At second this article also study the influence about the support status and the adjust error about the cat's eye and confocal position. At last, a 1055micrometer radius of curvature convex is measured in high-precision laboratory. Experimental results show that the proper steady support (three-point support) can guarantee the high-precision measurement of radius of curvature. Through calibrating the gain of cat's eye and confocal position, is useful to ensure the precise position in order to increase the measurement accuracy. After finish all the above process, the high-precision long ROC measurement is realized.

  17. The bias, accuracy and precision of faecal egg count reduction test results in cattle using McMaster, Cornell-Wisconsin and FLOTAC egg counting methods.

    PubMed

    Levecke, B; Rinaldi, L; Charlier, J; Maurelli, M P; Bosco, A; Vercruysse, J; Cringoli, G

    2012-08-13

    The faecal egg count reduction test (FECRT) is the recommended method to monitor anthelmintic drug efficacy in cattle. There is a large variation in faecal egg count (FEC) methods applied to determine FECRT. However, it remains unclear whether FEC methods with an equal analytic sensitivity, but with different methodologies, result in equal FECRT results. We therefore, compared the bias, accuracy and precision of FECRT results for Cornell-Wisconsin (analytic sensitivity = 1 egg per gram faeces (EPG)), FLOTAC (analytic sensitivity = 1 EPG) and McMaster method (analytic sensitivity = 10 EPG) across four levels of egg excretion (1-49 EPG; 50-149 EPG; 150-299 EPG; 300-600 EPG). Finally, we assessed the sensitivity of the FEC methods to detect a truly reduced efficacy. To this end, two different criteria were used to define reduced efficacy based on FECR, including those described in the WAAVP guidelines (FECRT <95% and lower limit of 95%CI <90%) (Coles et al., 1992) and those proposed by El-Abdellati et al. (2010) (upper limit of 95%CI <95%). There was no significant difference in bias and accuracy of FECRT results across the three methods. FLOTAC provided the most precise FECRT results. Cornell-Wisconsin and McMaster gave similar imprecise results. FECRT were significantly underestimated when baseline FEC were low and drugs were more efficacious. For all FEC methods, precision and accuracy of the FECRT improved as egg excretion increased, this effect was greatest for McMaster and least for Cornell-Wisconsin. The sensitivity of the three methods to detect a truly reduced efficacy was high (>90%). Yet, the sensitivity of McMaster and Cornell-Wisconsin may drop when drugs only show sub-optimal efficacy. Overall, the study indicates that the precision of FECRT is affected by the methodology of FEC, and that the level of egg excretion should be considered in the final interpretation of the FECRT. However, more comprehensive studies are required to provide more insights into

  18. Technical Note: Millimeter precision in ultrasound based patient positioning: Experimental quantification of inherent technical limitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballhausen, Hendrik, E-mail: hendrik.ballhausen@med.uni-muenchen.de; Hieber, Sheila; Li, Minglun

    2014-08-15

    Purpose: To identify the relevant technical sources of error of a system based on three-dimensional ultrasound (3D US) for patient positioning in external beam radiotherapy. To quantify these sources of error in a controlled laboratory setting. To estimate the resulting end-to-end geometric precision of the intramodality protocol. Methods: Two identical free-hand 3D US systems at both the planning-CT and the treatment room were calibrated to the laboratory frame of reference. Every step of the calibration chain was repeated multiple times to estimate its contribution to overall systematic and random error. Optimal margins were computed given the identified and quantified systematicmore » and random errors. Results: In descending order of magnitude, the identified and quantified sources of error were: alignment of calibration phantom to laser marks 0.78 mm, alignment of lasers in treatment vs planning room 0.51 mm, calibration and tracking of 3D US probe 0.49 mm, alignment of stereoscopic infrared camera to calibration phantom 0.03 mm. Under ideal laboratory conditions, these errors are expected to limit ultrasound-based positioning to an accuracy of 1.05 mm radially. Conclusions: The investigated 3D ultrasound system achieves an intramodal accuracy of about 1 mm radially in a controlled laboratory setting. The identified systematic and random errors require an optimal clinical tumor volume to planning target volume margin of about 3 mm. These inherent technical limitations do not prevent clinical use, including hypofractionation or stereotactic body radiation therapy.« less

  19. EFFECT OF RADIATION DOSE LEVEL ON ACCURACY AND PRECISION OF MANUAL SIZE MEASUREMENTS IN CHEST TOMOSYNTHESIS EVALUATED USING SIMULATED PULMONARY NODULES.

    PubMed

    Söderman, Christina; Johnsson, Åse Allansdotter; Vikgren, Jenny; Norrlund, Rauni Rossi; Molnar, David; Svalkvist, Angelica; Månsson, Lars Gunnar; Båth, Magnus

    2016-06-01

    The aim of the present study was to investigate the dependency of the accuracy and precision of nodule diameter measurements on the radiation dose level in chest tomosynthesis. Artificial ellipsoid-shaped nodules with known dimensions were inserted in clinical chest tomosynthesis images. Noise was added to the images in order to simulate radiation dose levels corresponding to effective doses for a standard-sized patient of 0.06 and 0.04 mSv. These levels were compared with the original dose level, corresponding to an effective dose of 0.12 mSv for a standard-sized patient. Four thoracic radiologists measured the longest diameter of the nodules. The study was restricted to nodules located in high-dose areas of the tomosynthesis projection radiographs. A significant decrease of the measurement accuracy and intraobserver variability was seen for the lowest dose level for a subset of the observers. No significant effect of dose level on the interobserver variability was found. The number of non-measurable small nodules (≤5 mm) was higher for the two lowest dose levels compared with the original dose level. In conclusion, for pulmonary nodules at positions in the lung corresponding to locations in high-dose areas of the projection radiographs, using a radiation dose level resulting in an effective dose of 0.06 mSv to a standard-sized patient may be possible in chest tomosynthesis without affecting the accuracy and precision of nodule diameter measurements to any large extent. However, an increasing number of non-measurable small nodules (≤5 mm) with decreasing radiation dose may raise some concerns regarding an applied general dose reduction for chest tomosynthesis examinations in the clinical praxis. © The Author 2016. Published by Oxford University Press.

  20. Determination of statin drugs in hospital effluent with dispersive liquid-liquid microextraction and quantification by liquid chromatography.

    PubMed

    Martins, Ayrton F; Frank, Carla da S; Altissimo, Joseline; de Oliveira, Júlia A; da Silva, Daiane S; Reichert, Jaqueline F; Souza, Darliana M

    2017-08-24

    Statins are classified as being amongst the most prescribed agents for treating hypercholesterolaemia and preventing vascular diseases. In this study, a rapid and effective liquid chromatography method, assisted by diode array detection, was designed and validated for the simultaneous quantification of atorvastatin (ATO) and simvastatin (SIM) in hospital effluent samples. The solid phase extraction (SPE) of the analytes was optimized regarding sorbent material and pH, and the dispersive liquid-liquid microextraction (DLLME), in terms of pH, ionic strength, type and volume of extractor/dispersor solvents. The performance of both extraction procedures was evaluated in terms of linearity, quantification limits, accuracy (recovery %), precision and matrix effects for each analyte. The methods proved to be linear in the concentration range considered; the quantification limits were 0.45 µg L -1 for ATO and 0.75 µg L -1 for SIM; the matrix effect was almost absent in both methods and the average recoveries remained between 81.5-90.0%; and the RSD values were <20%. The validated methods were applied to the quantification of the statins in real samples of hospital effluent; the concentrations ranged from 18.8 µg L -1 to 35.3 µg L -1 for ATO, and from 30.3 µg L -1 to 38.5 µg L -1 for SIM. Since the calculated risk quotient was ≤192, the occurrence of ATO and SIM in hospital effluent poses a potential serious risk to human health and the aquatic ecosystem.

  1. Highly sensitive simultaneous quantification of estrogenic tamoxifen metabolites and steroid hormones by LC-MS/MS.

    PubMed

    Johänning, Janina; Heinkele, Georg; Precht, Jana C; Brauch, Hiltrud; Eichelbaum, Michel; Schwab, Matthias; Schroth, Werner; Mürdter, Thomas E

    2015-09-01

    Tamoxifen is a mainstay in the treatment of estrogen receptor-positive breast cancer and is metabolized to more than 30 different compounds. Little is known about in vivo concentrations of estrogenic metabolites E-metabolite E, Z-metabolite E, and bisphenol and their relevance for tamoxifen efficacy. Therefore, we developed a highly sensitive HPLC-ESI-MS/MS quantification method for tamoxifen metabolites bisphenol, E-metabolite E, and Z-metabolite E as well as for the sex steroid hormones estradiol, estrone, testosterone, androstenedione, and progesterone. Plasma samples were subjected to protein precipitation followed by solid phase extraction. Upon derivatization with 3-[(N-succinimide-1-yl)oxycarbonyl]-1-methylpyridinium iodide, all analytes were separated on a sub-2-μm column with a gradient of acetonitrile in water with 0.1 % of formic acid. Analytes were detected on a triple-quadrupole mass spectrometer with positive electrospray ionization in the multiple reaction monitoring mode. Our method demonstrated high sensitivity, accuracy, and precision. The lower limits of quantification were 12, 8, and 25 pM for bisphenol, E-metabolite E, and Z-metabolite E, respectively, and 4 pM for estradiol and estrogen, 50 pM for testosterone and androstenedione, and 25 pM for progesterone. The method was applied to plasma samples of postmenopausal patients taken at baseline and under tamoxifen therapy. Graphical Abstract Sample preparation and derivatization for highly sensitive quantification of estrogenic tamoxifen metabolites and steroid hormones by HPLC-MS/MS.

  2. Spot quantification in two dimensional gel electrophoresis image analysis: comparison of different approaches and presentation of a novel compound fitting algorithm

    PubMed Central

    2014-01-01

    Background Various computer-based methods exist for the detection and quantification of protein spots in two dimensional gel electrophoresis images. Area-based methods are commonly used for spot quantification: an area is assigned to each spot and the sum of the pixel intensities in that area, the so-called volume, is used a measure for spot signal. Other methods use the optical density, i.e. the intensity of the most intense pixel of a spot, or calculate the volume from the parameters of a fitted function. Results In this study we compare the performance of different spot quantification methods using synthetic and real data. We propose a ready-to-use algorithm for spot detection and quantification that uses fitting of two dimensional Gaussian function curves for the extraction of data from two dimensional gel electrophoresis (2-DE) images. The algorithm implements fitting using logical compounds and is computationally efficient. The applicability of the compound fitting algorithm was evaluated for various simulated data and compared with other quantification approaches. We provide evidence that even if an incorrect bell-shaped function is used, the fitting method is superior to other approaches, especially when spots overlap. Finally, we validated the method with experimental data of urea-based 2-DE of Aβ peptides andre-analyzed published data sets. Our methods showed higher precision and accuracy than other approaches when applied to exposure time series and standard gels. Conclusion Compound fitting as a quantification method for 2-DE spots shows several advantages over other approaches and could be combined with various spot detection methods. The algorithm was scripted in MATLAB (Mathworks) and is available as a supplemental file. PMID:24915860

  3. Advanced Technologies and Methodology for Automated Ultrasonic Testing Systems Quantification

    DOT National Transportation Integrated Search

    2011-04-29

    For automated ultrasonic testing (AUT) detection and sizing accuracy, this program developed a methodology for quantification of AUT systems, advancing and quantifying AUT systems imagecapture capabilities, quantifying the performance of multiple AUT...

  4. High-performance Thin-layer Chromatographic-densitometric Quantification and Recovery of Bioactive Compounds for Identification of Elite Chemotypes of Gloriosa superba L. Collected from Sikkim Himalayas (India)

    PubMed Central

    Misra, Ankita; Shukla, Pushpendra Kumar; Kumar, Bhanu; Chand, Jai; Kushwaha, Poonam; Khalid, Md.; Singh Rawat, Ajay Kumar; Srivastava, Sharad

    2017-01-01

    Background: Gloriosa superba L. (Colchicaceae) is used as adjuvant therapy in gout for its potential antimitotic activity due to high colchicine(s) alkaloids. Objective: This study aimed to develop an easy, cheap, precise, and accurate high-performance thin-layer chromatographic (HPTLC) validated method for simultaneous quantification of bioactive alkaloids (colchicine and gloriosine) in G. superba L. and to identify its elite chemotype(s) from Sikkim Himalayas (India). Methods: The HPTLC chromatographic method was developed using mobile phase of chloroform: acetone: diethyl amine (5:4:1) at λmax of 350 nm. Results: Five germplasms were collected from targeted region, and on morpho-anatomical inspection, no significant variation was observed among them. Quantification data reveal that content of colchicine (Rf: 0.72) and gloriosine (Rf: 0.61) varies from 0.035%–0.150% to 0.006%–0.032% (dry wt. basis). Linearity of method was obtained in the concentration range of 100–400 ng/spot of marker(s), exhibiting regression coefficient of 0.9987 (colchicine) and 0.9983 (gloriosine) with optimum recovery of 97.79 ± 3.86 and 100.023% ± 0.01%, respectively. Limit of detection and limit of quantification were analyzed, respectively, as 6.245, 18.926 and 8.024, 24.316 (ng). Two germplasms, namely NBG-27 and NBG-26, were found to be elite chemotype of both the markers. Conclusion: The developed method is validated in terms of accuracy, recovery, and precision studies as per the ICH guidelines (2005) and can be adopted for the simultaneous quantification of colchicine and gloriosine in phytopharmaceuticals. In addition, this study is relevant to explore the chemotypic variability in metabolite content for commercial and medicinal purposes. SUMMARY An easy, cheap, precise, and accurate high performance thin layer chromatographic (HPTLC) validated method for simultaneous quantification of bioactive alkaloids (colchicine and gloriosine) in G. superba L.Five germplasms were

  5. Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar.

    PubMed

    Barber, Zeb W; Babbitt, Wm Randall; Kaylor, Brant; Reibel, Randy R; Roos, Peter A

    2010-01-10

    As the bandwidth and linearity of frequency modulated continuous wave chirp ladar increase, the resulting range resolution, precisions, and accuracy are improved correspondingly. An analysis of a very broadband (several THz) and linear (<1 ppm) chirped ladar system based on active chirp linearization is presented. Residual chirp nonlinearity and material dispersion are analyzed as to their effect on the dynamic range, precision, and accuracy of the system. Measurement precision and accuracy approaching the part per billion level is predicted.

  6. Accuracy and precision of pseudo-continuous arterial spin labeling perfusion during baseline and hypercapnia: a head-to-head comparison with ¹⁵O H₂O positron emission tomography.

    PubMed

    Heijtel, D F R; Mutsaerts, H J M M; Bakker, E; Schober, P; Stevens, M F; Petersen, E T; van Berckel, B N M; Majoie, C B L M; Booij, J; van Osch, M J P; Vanbavel, E; Boellaard, R; Lammertsma, A A; Nederveen, A J

    2014-05-15

    Measurements of the cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) provide useful information about cerebrovascular condition and regional metabolism. Pseudo-continuous arterial spin labeling (pCASL) is a promising non-invasive MRI technique to quantitatively measure the CBF, whereas additional hypercapnic pCASL measurements are currently showing great promise to quantitatively assess the CVR. However, the introduction of pCASL at a larger scale awaits further evaluation of the exact accuracy and precision compared to the gold standard. (15)O H₂O positron emission tomography (PET) is currently regarded as the most accurate and precise method to quantitatively measure both CBF and CVR, though it is one of the more invasive methods as well. In this study we therefore assessed the accuracy and precision of quantitative pCASL-based CBF and CVR measurements by performing a head-to-head comparison with (15)O H₂O PET, based on quantitative CBF measurements during baseline and hypercapnia. We demonstrate that pCASL CBF imaging is accurate during both baseline and hypercapnia with respect to (15)O H₂O PET with a comparable precision. These results pave the way for quantitative usage of pCASL MRI in both clinical and research settings. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. In situ Biofilm Quantification in Bioelectrochemical Systems by using Optical Coherence Tomography.

    PubMed

    Molenaar, Sam D; Sleutels, Tom; Pereira, Joao; Iorio, Matteo; Borsje, Casper; Zamudio, Julian A; Fabregat-Santiago, Francisco; Buisman, Cees J N; Ter Heijne, Annemiek

    2018-04-25

    Detailed studies of microbial growth in bioelectrochemical systems (BESs) are required for their suitable design and operation. Here, we report the use of optical coherence tomography (OCT) as a tool for in situ and noninvasive quantification of biofilm growth on electrodes (bioanodes). An experimental platform is designed and described in which transparent electrodes are used to allow real-time, 3D biofilm imaging. The accuracy and precision of the developed method is assessed by relating the OCT results to well-established standards for biofilm quantification (chemical oxygen demand (COD) and total N content) and show high correspondence to these standards. Biofilm thickness observed by OCT ranged between 3 and 90 μm for experimental durations ranging from 1 to 24 days. This translated to growth yields between 38 and 42 mgCODbiomass  gCODacetate -1 at an anode potential of -0.35 V versus Ag/AgCl. Time-lapse observations of an experimental run performed in duplicate show high reproducibility in obtained microbial growth yield by the developed method. As such, we identify OCT as a powerful tool for conducting in-depth characterizations of microbial growth dynamics in BESs. Additionally, the presented platform allows concomitant application of this method with various optical and electrochemical techniques. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Adobe photoshop quantification (PSQ) rather than point-counting: A rapid and precise method for quantifying rock textural data and porosities

    NASA Astrophysics Data System (ADS)

    Zhang, Xuefeng; Liu, Bo; Wang, Jieqiong; Zhang, Zhe; Shi, Kaibo; Wu, Shuanglin

    2014-08-01

    Commonly used petrological quantification methods are visual estimation, counting, and image analyses. However, in this article, an Adobe Photoshop-based analyzing method (PSQ) is recommended for quantifying the rock textural data and porosities. Adobe Photoshop system provides versatile abilities in selecting an area of interest and the pixel number of a selection could be read and used to calculate its area percentage. Therefore, Adobe Photoshop could be used to rapidly quantify textural components, such as content of grains, cements, and porosities including total porosities and different genetic type porosities. This method was named as Adobe Photoshop Quantification (PSQ). The workflow of the PSQ method was introduced with the oolitic dolomite samples from the Triassic Feixianguan Formation, Northeastern Sichuan Basin, China, for example. And the method was tested by comparing with the Folk's and Shvetsov's "standard" diagrams. In both cases, there is a close agreement between the "standard" percentages and those determined by the PSQ method with really small counting errors and operator errors, small standard deviations and high confidence levels. The porosities quantified by PSQ were evaluated against those determined by the whole rock helium gas expansion method to test the specimen errors. Results have shown that the porosities quantified by the PSQ are well correlated to the porosities determined by the conventional helium gas expansion method. Generally small discrepancies (mostly ranging from -3% to 3%) are caused by microporosities which would cause systematic underestimation of 2% and/or by macroporosities causing underestimation or overestimation in different cases. Adobe Photoshop could be used to quantify rock textural components and porosities. This method has been tested to be precise and accurate. It is time saving compared with usual methods.

  9. SU-D-218-05: Material Quantification in Spectral X-Ray Imaging: Optimization and Validation.

    PubMed

    Nik, S J; Thing, R S; Watts, R; Meyer, J

    2012-06-01

    To develop and validate a multivariate statistical method to optimize scanning parameters for material quantification in spectral x-rayimaging. An optimization metric was constructed by extensively sampling the thickness space for the expected number of counts for m (two or three) materials. This resulted in an m-dimensional confidence region ofmaterial quantities, e.g. thicknesses. Minimization of the ellipsoidal confidence region leads to the optimization of energy bins. For the given spectrum, the minimum counts required for effective material separation can be determined by predicting the signal-to-noise ratio (SNR) of the quantification. A Monte Carlo (MC) simulation framework using BEAM was developed to validate the metric. Projection data of the m-materials was generated and material decomposition was performed for combinations of iodine, calcium and water by minimizing the z-score between the expected spectrum and binned measurements. The mean square error (MSE) and variance were calculated to measure the accuracy and precision of this approach, respectively. The minimum MSE corresponds to the optimal energy bins in the BEAM simulations. In the optimization metric, this is equivalent to the smallest confidence region. The SNR of the simulated images was also compared to the predictions from the metric. TheMSE was dominated by the variance for the given material combinations,which demonstrates accurate material quantifications. The BEAMsimulations revealed that the optimization of energy bins was accurate to within 1keV. The SNRs predicted by the optimization metric yielded satisfactory agreement but were expectedly higher for the BEAM simulations due to the inclusion of scattered radiation. The validation showed that the multivariate statistical method provides accurate material quantification, correct location of optimal energy bins and adequateprediction of image SNR. The BEAM code system is suitable for generating spectral x- ray imaging simulations.

  10. Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS[S

    PubMed Central

    Sánchez-Guijo, Alberto; Oji, Vinzenz; Hartmann, Michaela F.; Traupe, Heiko; Wudy, Stefan A.

    2015-01-01

    Steroids are primarily present in human fluids in their sulfated forms. Profiling of these compounds is important from both diagnostic and physiological points of view. Here, we present a novel method for the quantification of 11 intact steroid sulfates in human serum by LC-MS/MS. The compounds analyzed in our method, some of which are quantified for the first time in blood, include cholesterol sulfate, pregnenolone sulfate, 17-hydroxy-pregnenolone sulfate, 16-α-hydroxy-dehydroepiandrosterone sulfate, dehydroepiandrosterone sulfate, androstenediol sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and dihydrotestosterone sulfate. The assay was conceived to quantify sulfated steroids in a broad range of concentrations, requiring only 300 μl of serum. The method has been validated and its performance was studied at three quality controls, selected for each compound according to its physiological concentration. The assay showed good linearity (R2 > 0.99) and recovery for all the compounds, with limits of quantification ranging between 1 and 80 ng/ml. Averaged intra-day and between-day precisions (coefficient of variation) and accuracies (relative errors) were below 10%. The method has been successfully applied to study the sulfated steroidome in diseases such as steroid sulfatase deficiency, proving its diagnostic value. This is, to our best knowledge, the most comprehensive method available for the quantification of sulfated steroids in human blood. PMID:26239050

  11. Increasing the feasibility of minimally invasive procedures in type A aortic dissections: a framework for segmentation and quantification.

    PubMed

    Morariu, Cosmin Adrian; Terheiden, Tobias; Dohle, Daniel Sebastian; Tsagakis, Konstantinos; Pauli, Josef

    2016-02-01

    Our goal is to provide precise measurements of the aortic dimensions in case of dissection pathologies. Quantification of surface lengths and aortic radii/diameters together with the visualization of the dissection membrane represents crucial prerequisites for enabling minimally invasive treatment of type A dissections, which always also imply the ascending aorta. We seek a measure invariant to luminance and contrast for aortic outer wall segmentation. Therefore, we propose a 2D graph-based approach using phase congruency combined with additional features. Phase congruency is extended to 3D by designing a novel conic directional filter and adding a lowpass component to the 3D Log-Gabor filterbank for extracting the fine dissection membrane, which separates the true lumen from the false one within the aorta. The result of the outer wall segmentation is compared with manually annotated axial slices belonging to 11 CTA datasets. Quantitative assessment of our novel 2D/3D membrane extraction algorithms has been obtained for 10 datasets and reveals subvoxel accuracy in all cases. Aortic inner and outer surface lengths, determined within 2 cadaveric CT datasets, are validated against manual measurements performed by a vascular surgeon on excised aortas of the body donors. This contribution proposes a complete pipeline for segmentation and quantification of aortic dissections. Validation against ground truth of the 3D contour lengths quantification represents a significant step toward custom-designed stent-grafts.

  12. Multi-GNSS real-time precise orbit/clock/UPD products and precise positioning service at GFZ

    NASA Astrophysics Data System (ADS)

    Li, Xingxing; Ge, Maorong; Liu, Yang; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2016-04-01

    The rapid development of multi-constellation GNSSs (Global Navigation Satellite Systems, e.g., BeiDou, Galileo, GLONASS, GPS) and the IGS (International GNSS Service) Multi-GNSS Experiment (MGEX) bring great opportunities and challenges for real-time precise positioning service. In this contribution, we present a GPS+GLONASS+BeiDou+Galileo four-system model to fully exploit the observations of all these four navigation satellite systems for real-time precise orbit determination, clock estimation and positioning. A rigorous multi-GNSS analysis is performed to achieve the best possible consistency by processing the observations from different GNSS together in one common parameter estimation procedure. Meanwhile, an efficient multi-GNSS real-time precise positioning service system is designed and demonstrated by using the Multi-GNSS Experiment (MGEX) and International GNSS Service (IGS) data streams including stations all over the world. The addition of the BeiDou, Galileo and GLONASS systems to the standard GPS-only processing, reduces the convergence time almost by 70%, while the positioning accuracy is improved by about 25%. Some outliers in the GPS-only solutions vanish when multi-GNSS observations are processed simultaneous. The availability and reliability of GPS precise positioning decrease dramatically as the elevation cutoff increases. However, the accuracy of multi-GNSS precise point positioning (PPP) is hardly decreased and few centimeters are still achievable in the horizontal components even with 40° elevation cutoff.

  13. NiftyPET: a High-throughput Software Platform for High Quantitative Accuracy and Precision PET Imaging and Analysis.

    PubMed

    Markiewicz, Pawel J; Ehrhardt, Matthias J; Erlandsson, Kjell; Noonan, Philip J; Barnes, Anna; Schott, Jonathan M; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Ourselin, Sebastien

    2018-01-01

    We present a standalone, scalable and high-throughput software platform for PET image reconstruction and analysis. We focus on high fidelity modelling of the acquisition processes to provide high accuracy and precision quantitative imaging, especially for large axial field of view scanners. All the core routines are implemented using parallel computing available from within the Python package NiftyPET, enabling easy access, manipulation and visualisation of data at any processing stage. The pipeline of the platform starts from MR and raw PET input data and is divided into the following processing stages: (1) list-mode data processing; (2) accurate attenuation coefficient map generation; (3) detector normalisation; (4) exact forward and back projection between sinogram and image space; (5) estimation of reduced-variance random events; (6) high accuracy fully 3D estimation of scatter events; (7) voxel-based partial volume correction; (8) region- and voxel-level image analysis. We demonstrate the advantages of this platform using an amyloid brain scan where all the processing is executed from a single and uniform computational environment in Python. The high accuracy acquisition modelling is achieved through span-1 (no axial compression) ray tracing for true, random and scatter events. Furthermore, the platform offers uncertainty estimation of any image derived statistic to facilitate robust tracking of subtle physiological changes in longitudinal studies. The platform also supports the development of new reconstruction and analysis algorithms through restricting the axial field of view to any set of rings covering a region of interest and thus performing fully 3D reconstruction and corrections using real data significantly faster. All the software is available as open source with the accompanying wiki-page and test data.

  14. Development and validation of a bioanalytical LC-MS method for the quantification of GHRP-6 in human plasma.

    PubMed

    Gil, Jeovanis; Cabrales, Ania; Reyes, Osvaldo; Morera, Vivian; Betancourt, Lázaro; Sánchez, Aniel; García, Gerardo; Moya, Galina; Padrón, Gabriel; Besada, Vladimir; González, Luis Javier

    2012-02-23

    Growth hormone-releasing peptide 6 (GHRP-6, His-(DTrp)-Ala-Trp-(DPhe)-Lys-NH₂, MW=872.44 Da) is a potent growth hormone secretagogue that exhibits a cytoprotective effect, maintaining tissue viability during acute ischemia/reperfusion episodes in different organs like small bowel, liver and kidneys. In the present work a quantitative method to analyze GHRP-6 in human plasma was developed and fully validated following FDA guidelines. The method uses an internal standard (IS) of GHRP-6 with ¹³C-labeled Alanine for quantification. Sample processing includes a precipitation step with cold acetone to remove the most abundant plasma proteins, recovering the GHRP-6 peptide with a high yield. Quantification was achieved by LC-MS in positive full scan mode in a Q-Tof mass spectrometer. The sensitivity of the method was evaluated, establishing the lower limit of quantification at 5 ng/mL and a range for the calibration curve from 5 ng/mL to 50 ng/mL. A dilution integrity test was performed to analyze samples at higher concentration of GHRP-6. The validation process involved five calibration curves and the analysis of quality control samples to determine accuracy and precision. The calibration curves showed R² higher than 0.988. The stability of the analyte and its internal standard (IS) was demonstrated in all conditions the samples would experience in a real time analyses. This method was applied to the quantification of GHRP-6 in plasma from nine healthy volunteers participating in a phase I clinical trial. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Quantification of real thermal, catalytic, and hydrodeoxygenated bio-oils via comprehensive two-dimensional gas chromatography with mass spectrometry.

    PubMed

    Silva, Raquel V S; Tessarolo, Nathalia S; Pereira, Vinícius B; Ximenes, Vitor L; Mendes, Fábio L; de Almeida, Marlon B B; Azevedo, Débora A

    2017-03-01

    The elucidation of bio-oil composition is important to evaluate the processes of biomass conversion and its upgrading, and to suggest the proper use for each sample. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) is a widely applied analytical approach for bio-oil investigation due to the higher separation and resolution capacity from this technique. This work addresses the issue of analytical performance to assess the comprehensive characterization of real bio-oil samples via GC×GC-TOFMS. The approach was applied to the individual quantification of compounds of real thermal (PWT), catalytic process (CPO), and hydrodeoxygenation process (HDO) bio-oils. Quantification was performed with reliability using the analytical curves of oxygenated and hydrocarbon standards as well as the deuterated internal standards. The limit of quantification was set at 1ngµL -1 for major standards, except for hexanoic acid, which was set at 5ngµL -1 . The GC×GC-TOFMS method provided good precision (<10%) and excellent accuracy (recovery range of 70-130%) for the quantification of individual hydrocarbons and oxygenated compounds in real bio-oil samples. Sugars, furans, and alcohols appear as the major constituents of the PWT, CPO, and HDO samples, respectively. In order to obtain bio-oils with better quality, the catalytic pyrolysis process may be a better option than hydrogenation due to the effective reduction of oxygenated compound concentrations and the lower cost of the process, when hydrogen is not required to promote deoxygenation in the catalytic pyrolysis process. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A reliable and rapid tool for plasma quantification of 18 psychotropic drugs by ESI tandem mass spectrometry.

    PubMed

    Vecchione, Gennaro; Casetta, Bruno; Chiapparino, Antonella; Bertolino, Alessandro; Tomaiuolo, Michela; Cappucci, Filomena; Gatta, Raffaella; Margaglione, Maurizio; Grandone, Elvira

    2012-01-01

    A simple liquid chromatographic tandem mass spectrometry (LC-MS/MS) method has been developed for simultaneous analysis of 17 basic and one acid psychotropic drugs in human plasma. The method relies on a protein precipitation step for sample preparation and offers high sensitivity, wide linearity without interferences from endogenous matrix components. Chromatography was run on a reversed-phase column with an acetonitrile-H₂O mixture. The quantification of target compounds was performed in multiple reaction monitoring (MRM) and by switching the ionization polarity within the analytical run. A further sensitivity increase was obtained by implementing the functionality "scheduled multiple reaction monitoring" (sMRM) offered by the recent version of the software package managing the instrument. The overall injection interval was less than 5.5 min. Regression coefficients of the calibration curves and limits of quantification (LOQ) showed a good coverage of over-therapeutic, therapeutic and sub-therapeutic ranges. Recovery rates, measured as percentage of recovery of spiked plasma samples, were ≥ 94%. Precision and accuracy data have been satisfactory for a therapeutic drug monitoring (TDM) service as for managing plasma samples from patients receiving psycho-pharmacological treatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. A point of application study to determine the accuracy, precision and reliability of a low-cost balance plate for center of pressure measurement.

    PubMed

    Goble, Daniel J; Khan, Ehran; Baweja, Harsimran S; O'Connor, Shawn M

    2018-04-11

    Changes in postural sway measured via force plate center of pressure have been associated with many aspects of human motor ability. A previous study validated the accuracy and precision of a relatively new, low-cost and portable force plate called the Balance Tracking System (BTrackS). This work compared a laboratory-grade force plate versus BTrackS during human-like dynamic sway conditions generated by an inverted pendulum device. The present study sought to extend previous validation attempts for BTrackS using a more traditional point of application (POA) approach. Computer numerical control (CNC) guided application of ∼155 N of force was applied five times to each of 21 points on five different BTrackS Balance Plate (BBP) devices with a hex-nose plunger. Results showed excellent agreement (ICC > 0.999) between the POAs and measured COP by the BBP devices, as well as high accuracy (<1% average percent error) and precision (<0.1 cm average standard deviation of residuals). The ICC between BBP devices was exceptionally high (ICC > 0.999) providing evidence of almost perfect inter-device reliability. Taken together, these results provide an important, static corollary to the previously obtained dynamic COP results from inverted pendulum testing of the BBP. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Post-operative 3D CT feedback improves accuracy and precision in the learning curve of anatomic ACL femoral tunnel placement.

    PubMed

    Sirleo, Luigi; Innocenti, Massimo; Innocenti, Matteo; Civinini, Roberto; Carulli, Christian; Matassi, Fabrizio

    2018-02-01

    To evaluate the feedback from post-operative three-dimensional computed tomography (3D-CT) on femoral tunnel placement in the learning process, to obtain an anatomic anterior cruciate ligament (ACL) reconstruction. A series of 60 consecutive patients undergoing primary ACL reconstruction using autologous hamstrings single-bundle outside-in technique were prospectively included in the study. ACL reconstructions were performed by the same trainee-surgeon during his learning phase of anatomic ACL femoral tunnel placement. A CT scan with dedicated tunnel study was performed in all patients within 48 h after surgery. The data obtained from the CT scan were processed into a three-dimensional surface model, and a true medial view of the lateral femoral condyle was used for the femoral tunnel placement analysis. Two independent examiners analysed the tunnel placements. The centre of femoral tunnel was measured using a quadrant method as described by Bernard and Hertel. The coordinates measured were compared with anatomic coordinates values described in the literature [deep-to-shallow distance (X-axis) 28.5%; high-to-low distance (Y-axis) 35.2%]. Tunnel placement was evaluated in terms of accuracy and precision. After each ACL reconstruction, results were shown to the surgeon to receive an instant feedback in order to achieve accurate correction and improve tunnel placement for the next surgery. Complications and arthroscopic time were also recorded. Results were divided into three consecutive series (1, 2, 3) of 20 patients each. A trend to placing femoral tunnel slightly shallow in deep-to-shallow distance and slightly high in high-to-low distance was observed in the first and the second series. A progressive improvement in tunnel position was recorded from the first to second series and from the second to the third series. Both accuracy (+52.4%) and precision (+55.7%) increased from the first to the third series (p < 0.001). Arthroscopic time decreased from a mean of

  19. Optimized approaches for quantification of drug transporters in tissues and cells by MRM proteomics.

    PubMed

    Prasad, Bhagwat; Unadkat, Jashvant D

    2014-07-01

    Drug transporter expression in tissues (in vivo) usually differs from that in cell lines used to measure transporter activity (in vitro). Therefore, quantification of transporter expression in tissues and cell lines is important to develop scaling factor for in vitro to in vivo extrapolation (IVIVE) of transporter-mediated drug disposition. Since traditional immunoquantification methods are semiquantitative, targeted proteomics is now emerging as a superior method to quantify proteins, including membrane transporters. This superiority is derived from the selectivity, precision, accuracy, and speed of analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring (MRM) mode. Moreover, LC-MS/MS proteomics has broader applicability because it does not require selective antibodies for individual proteins. There are a number of recent research and review papers that discuss the use of LC-MS/MS for transporter quantification. Here, we have compiled from the literature various elements of MRM proteomics to provide a comprehensive systematic strategy to quantify drug transporters. This review emphasizes practical aspects and challenges in surrogate peptide selection, peptide qualification, peptide synthesis and characterization, membrane protein isolation, protein digestion, sample preparation, LC-MS/MS parameter optimization, method validation, and sample analysis. In particular, bioinformatic tools used in method development and sample analysis are discussed in detail. Various pre-analytical and analytical sources of variability that should be considered during transporter quantification are highlighted. All these steps are illustrated using P-glycoprotein (P-gp) as a case example. Greater use of quantitative transporter proteomics will lead to a better understanding of the role of drug transporters in drug disposition.

  20. Simple and accurate quantification of BTEX in ambient air by SPME and GC-MS.

    PubMed

    Baimatova, Nassiba; Kenessov, Bulat; Koziel, Jacek A; Carlsen, Lars; Bektassov, Marat; Demyanenko, Olga P

    2016-07-01

    Benzene, toluene, ethylbenzene and xylenes (BTEX) comprise one of the most ubiquitous and hazardous groups of ambient air pollutants of concern. Application of standard analytical methods for quantification of BTEX is limited by the complexity of sampling and sample preparation equipment, and budget requirements. Methods based on SPME represent simpler alternative, but still require complex calibration procedures. The objective of this research was to develop a simpler, low-budget, and accurate method for quantification of BTEX in ambient air based on SPME and GC-MS. Standard 20-mL headspace vials were used for field air sampling and calibration. To avoid challenges with obtaining and working with 'zero' air, slope factors of external standard calibration were determined using standard addition and inherently polluted lab air. For polydimethylsiloxane (PDMS) fiber, differences between the slope factors of calibration plots obtained using lab and outdoor air were below 14%. PDMS fiber provided higher precision during calibration while the use of Carboxen/PDMS fiber resulted in lower detection limits for benzene and toluene. To provide sufficient accuracy, the use of 20mL vials requires triplicate sampling and analysis. The method was successfully applied for analysis of 108 ambient air samples from Almaty, Kazakhstan. Average concentrations of benzene, toluene, ethylbenzene and o-xylene were 53, 57, 11 and 14µgm(-3), respectively. The developed method can be modified for further quantification of a wider range of volatile organic compounds in air. In addition, the new method is amenable to automation. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Verification of Bioanalytical Method for Quantification of Exogenous Insulin (Insulin Aspart) by the Analyser Advia Centaur® XP.

    PubMed

    Mihailov, Rossen; Stoeva, Dilyana; Pencheva, Blagovesta; Pentchev, Eugeni

    2018-03-01

    In a number of cases the monitoring of patients with type I diabetes mellitus requires measurement of the exogenous insulin levels. For the purpose of a clinical investigation of the efficacy of a medical device for application of exogenous insulin aspart, a verification of the method for measurement of this synthetic analogue of the hormone was needed. The information in the available medical literature for the measurement of the different exogenous insulin analogs is insufficient. Thus, verification was required to be in compliance with the active standards in Republic of Bulgaria. A manufactured method developed for ADVIA Centaur XP Immunoassay, Siemens Healthcare, was used which we verified using standard solutions and a patient serum pool by adding the appropriate quantity exogenous insulin aspart. The method was verified in accordance with the bioanalytical method verification criteria and regulatory requirements for using a standard method: CLIA chemiluminescence immunoassay ADVIA Centaur® XP. The following parameters are determined and monitored: intra-day precision and accuracy, inter-day precision and accuracy, limit of detection and lower limit of quantification, linearity, analytical recovery. The routine application of the method for measurement of immunoreactive insulin using the analyzer ADVIA Centaur® XP is directed to the measurement of endogenous insulin. The method is applicable for measuring different types of exogenous insulin, including insulin aspart.

  2. Precision injection molding of freeform optics

    NASA Astrophysics Data System (ADS)

    Fang, Fengzhou; Zhang, Nan; Zhang, Xiaodong

    2016-08-01

    Precision injection molding is the most efficient mass production technology for manufacturing plastic optics. Applications of plastic optics in field of imaging, illumination, and concentration demonstrate a variety of complex surface forms, developing from conventional plano and spherical surfaces to aspheric and freeform surfaces. It requires high optical quality with high form accuracy and lower residual stresses, which challenges both optical tool inserts machining and precision injection molding process. The present paper reviews recent progress in mold tool machining and precision injection molding, with more emphasis on precision injection molding. The challenges and future development trend are also discussed.

  3. Simultaneous quantification of five major active components in capsules of the traditional Chinese medicine ‘Shu-Jin-Zhi-Tong’ by high performance liquid chromatography

    PubMed Central

    Yang, Xing-Xin; Zhang, Xiao-Xia; Chang, Rui-Miao; Wang, Yan-Wei; Li, Xiao-Ni

    2011-01-01

    A simple and reliable high performance liquid chromatography (HPLC) method has been developed for the simultaneous quantification of five major bioactive components in ‘Shu-Jin-Zhi-Tong’ capsules (SJZTC), for the purposes of quality control of this commonly prescribed traditional Chinese medicine. Under the optimum conditions, excellent separation was achieved, and the assay was fully validated in terms of linearity, precision, repeatability, stability and accuracy. The validated method was applied successfully to the determination of the five compounds in SJZTC samples from different production batches. The HPLC method can be used as a valid analytical method to evaluate the intrinsic quality of SJZTC. PMID:29403711

  4. Two-stream Convolutional Neural Network for Methane Emissions Quantification

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ravikumar, A. P.; McGuire, M.; Bell, C.; Tchapmi, L. P.; Brandt, A. R.

    2017-12-01

    Methane, a key component of natural gas, has a 25x higher global warming potential than carbon dioxide on a 100-year basis. Accurately monitoring and mitigating methane emissions require cost-effective detection and quantification technologies. Optical gas imaging, one of the most commonly used leak detection technology, adopted by Environmental Protection Agency, cannot estimate leak-sizes. In this work, we harness advances in computer science to allow for rapid and automatic leak quantification. Particularly, we utilize two-stream deep Convolutional Networks (ConvNets) to estimate leak-size by capturing complementary spatial information from still plume frames, and temporal information from plume motion between frames. We build large leak datasets for training and evaluating purposes by collecting about 20 videos (i.e. 397,400 frames) of leaks. The videos were recorded at six distances from the source, covering 10 -60 ft. Leak sources included natural gas well-heads, separators, and tanks. All frames were labeled with a true leak size, which has eight levels ranging from 0 to 140 MCFH. Preliminary analysis shows that two-stream ConvNets provides significant accuracy advantage over single steam ConvNets. Spatial stream ConvNet can achieve an accuracy of 65.2%, by extracting important features, including texture, plume area, and pattern. Temporal stream, fed by the results of optical flow analysis, results in an accuracy of 58.3%. The integration of the two-stream ConvNets gives a combined accuracy of 77.6%. For future work, we will split the training and testing datasets in distinct ways in order to test the generalization of the algorithm for different leak sources. Several analytic metrics, including confusion matrix and visualization of key features, will be used to understand accuracy rates and occurrences of false positives. The quantification algorithm can help to find and fix super-emitters, and improve the cost-effectiveness of leak detection and repair

  5. SU-E-I-25: Quantification of Coronary Artery Cross-Sectional Area in CT Angiography Using Integrated Density: A Simulation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, T; Ding, H; Lipinski, J

    2015-06-15

    Purpose: To develop a physics-based model for accurate quantification of the cross-sectional area (CSA) of coronary arteries in CT angiography by measuring the integrated density to account for the partial volume effect. Methods: In this technique the integrated density of the object as compared with its local background is measured to account for the partial volume effect. Normal vessels were simulated as circles with diameters in the range of 0.1–3mm. Diseased vessels were simulated as 2, 3, and 4mm diameter vessels with 10–90% area stenosis, created by inserting circular plaques. A simplified two material model was used with the lumenmore » as 8mg/ml Iodine and background as lipid. The contrast-to-noise ratio between lumen and background was approximately 26. Linear fits to the known CSA were calculated. The precision and accuracy of the measurement were quantified using the root-mean-square fit deviations (RMSD) and errors to the known CSA (RMSE). Results compared to manual segmentation of the vessel lumen. To assess the impact of random variations, coefficients of variation (CV) from 10 simulations for each vessel were computed to determine reliability. Measurements with CVs less than 10% were considered reliable. Results: For normal vessels, the precision and accuracy of the integrated density technique were 0.12mm{sup 2} and 0.28mm{sup 2}, respectively. The corresponding results for manual segmentation were 0.27mm{sup 2} and 0.43mm{sup 2}. For diseased vessels, the precision and accuracy of the integrated density technique were 0.14mm{sup 2} and 0.19mm{sup 2}. Corresponding results for manual segmentation were 0.42mm{sup 2} and 0.71mm{sup 2}. Reliable CSAs were obtained for normal vessels with diameters larger than 1 mm and for diseased vessels with area as low as 1.26mm2. Conclusion: The CSA based on integrated density showed improved precision and accuracy as compared with manual segmentation in simulation. These results indicate the potential of

  6. Simultaneous quantification of monoamine neurotransmitters and their biogenic metabolites intracellularly and extracellularly in primary neuronal cell cultures and in sub-regions of guinea pig brain.

    PubMed

    Schou-Pedersen, Anne Marie V; Hansen, Stine N; Tveden-Nyborg, Pernille; Lykkesfeldt, Jens

    2016-08-15

    In the present paper, we describe a validated chromatographic method for the simultaneous quantification of monoamine neurotransmitters and their biogenic metabolites intracellularly and extracellularly in primary neuronal cell culture and in sub-regions of the guinea pig brain. Electrochemical detection provided limits of quantifications (LOQs) between 3.6 and 12nM. Within the linear range, obtained recoveries were from 90.9±9.9 to 120±14% and intra-day and inter-day precisions found to be less than 5.5% and 12%, respectively. The analytical method was applicable for quantification of intracellular and extracellular amounts of monoamine neurotransmitters and their metabolites in guinea pig frontal cortex and hippocampal primary neuronal cell cultures. Noradrenaline, dopamine and serotonin were found to be in a range from 0.31 to 1.7pmol per 2 million cells intracellularly, but only the biogenic metabolites could be detected extracellularly. Distinct differences in monoamine concentrations were observed when comparing concentrations in guinea pig frontal cortex and cerebellum tissue with higher amounts of dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid in frontal cortex, as compared to cerebellum. The chemical turnover in frontal cortex tissue of guinea pig was for serotonin successfully predicted from the turnover observed in the frontal cortex cell culture. In conclusion, the present analytical method shows high precision, accuracy and sensitivity and is broadly applicable to monoamine measurements in cell cultures as well as brain biopsies from animal models used in preclinical neurochemistry. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Precision and accuracy of age estimates obtained from anal fin spines, dorsal fin spines, and sagittal otoliths for known-age largemouth bass

    USGS Publications Warehouse

    Klein, Zachary B.; Bonvechio, Timothy F.; Bowen, Bryant R.; Quist, Michael C.

    2017-01-01

    Sagittal otoliths are the preferred aging structure for Micropterus spp. (black basses) in North America because of the accurate and precise results produced. Typically, fisheries managers are hesitant to use lethal aging techniques (e.g., otoliths) to age rare species, trophy-size fish, or when sampling in small impoundments where populations are small. Therefore, we sought to evaluate the precision and accuracy of 2 non-lethal aging structures (i.e., anal fin spines, dorsal fin spines) in comparison to that of sagittal otoliths from known-age Micropterus salmoides (Largemouth Bass; n = 87) collected from the Ocmulgee Public Fishing Area, GA. Sagittal otoliths exhibited the highest concordance with true ages of all structures evaluated (coefficient of variation = 1.2; percent agreement = 91.9). Similarly, the low coefficient of variation (0.0) and high between-reader agreement (100%) indicate that age estimates obtained from sagittal otoliths were the most precise. Relatively high agreement between readers for anal fin spines (84%) and dorsal fin spines (81%) suggested the structures were relatively precise. However, age estimates from anal fin spines and dorsal fin spines exhibited low concordance with true ages. Although use of sagittal otoliths is a lethal technique, this method will likely remain the standard for aging Largemouth Bass and other similar black bass species.

  8. Ultra-high Performance Liquid Chromatography Tandem Mass-Spectrometry for Simple and Simultaneous Quantification of Cannabinoids

    PubMed Central

    Jamwal, Rohitash; Topletz, Ariel R.; Ramratnam, Bharat; Akhlaghi, Fatemeh

    2017-01-01

    Cannabis is used widely in the United States, both recreationally and for medical purposes. Current methods for analysis of cannabinoids in human biological specimens rely on complex extraction process and lengthy analysis time. We established a rapid and simple assay for quantification of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), 11-hydroxy Δ9-tetrahydrocannabinol (11-OH THC) and 11-nor-9-carboxy-Δ9-tetrahydrocannbinol (THC-COOH) in human plasma by U-HPLC-MS/MS using Δ9-tetrahydrocannabinol-D3 as the internal standard. Chromatographic separation was achieved on an Acquity BEH C18 column using a gradient comprising of water (0.1% formic acid) and methanol (0.1% formic acid) over a 6 min run-time. Analytes from 200 µL plasma were extracted using acetonitrile (containing 1% formic acid and THC-D3). Mass spectrometry was performed in positive ionization mode, and total ion chromatogram was used for quantification of analytes. The assay was validated according to guidelines set forth by Food and Drug Administration of United States. An eight-point calibration curve was fitted with quadratic regression (r2>0.99) from 1.56 to 100 ng mL−1 and a lower limit of quantification (LLOQ) of 1.56 ng mL−1 was achieved. Accuracy and precision calculated from six calibration curves was between 85 to 115% while the mean extraction recovery was >90% for all the analytes. Several plasma phospholipids eluted after the analytes thus did not interfere with the assay. Bench-top, freeze-thaw, auto-sampler and short-term stability ranged from 92.7 to 106.8% of nominal values. Application of the method was evaluated by quantification of analytes in human plasma from six subjects. PMID:28192758

  9. Effect of Transcutaneous Electrode Temperature on Accuracy and Precision of Carbon Dioxide and Oxygen Measurements in the Preterm Infants.

    PubMed

    Jakubowicz, Jessica F; Bai, Shasha; Matlock, David N; Jones, Michelle L; Hu, Zhuopei; Proffitt, Betty; Courtney, Sherry E

    2018-05-01

    High electrode temperature during transcutaneous monitoring is associated with skin burns in extremely premature infants. We evaluated the accuracy and precision of CO 2 and O 2 measurements using lower transcutaneous electrode temperatures below 42°C. We enrolled 20 neonates. Two transcutaneous monitors were placed simultaneously on each neonate, with one electrode maintained at 42°C and the other randomized to temperatures of 38, 39, 40, 41, and 42°C. Arterial blood was collected twice at each temperature. At the time of arterial blood sampling, values for transcutaneously measured partial pressure of CO 2 (P tcCO 2 ) were not significantly different among test temperatures. There was no evidence of skin burning at any temperature. For P tcCO 2 , Bland-Altman analyses of all test temperatures versus 42°C showed good precision and low bias. Transcutaneously measured partial pressure of O 2 (P tcO 2 ) values trended arterial values but had large negative bias. Transcutaneous electrode temperatures as low as 38°C allow an assessment of P tcCO 2 as accurate as that with electrodes at 42°C. Copyright © 2018 by Daedalus Enterprises.

  10. Leveraging transcript quantification for fast computation of alternative splicing profiles.

    PubMed

    Alamancos, Gael P; Pagès, Amadís; Trincado, Juan L; Bellora, Nicolás; Eyras, Eduardo

    2015-09-01

    Alternative splicing plays an essential role in many cellular processes and bears major relevance in the understanding of multiple diseases, including cancer. High-throughput RNA sequencing allows genome-wide analyses of splicing across multiple conditions. However, the increasing number of available data sets represents a major challenge in terms of computation time and storage requirements. We describe SUPPA, a computational tool to calculate relative inclusion values of alternative splicing events, exploiting fast transcript quantification. SUPPA accuracy is comparable and sometimes superior to standard methods using simulated as well as real RNA-sequencing data compared with experimentally validated events. We assess the variability in terms of the choice of annotation and provide evidence that using complete transcripts rather than more transcripts per gene provides better estimates. Moreover, SUPPA coupled with de novo transcript reconstruction methods does not achieve accuracies as high as using quantification of known transcripts, but remains comparable to existing methods. Finally, we show that SUPPA is more than 1000 times faster than standard methods. Coupled with fast transcript quantification, SUPPA provides inclusion values at a much higher speed than existing methods without compromising accuracy, thereby facilitating the systematic splicing analysis of large data sets with limited computational resources. The software is implemented in Python 2.7 and is available under the MIT license at https://bitbucket.org/regulatorygenomicsupf/suppa. © 2015 Alamancos et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  11. Development and validation of a method for gefitinib quantification in dried blood spots using liquid chromatography-tandem mass spectrometry: Application to finger-prick clinical blood samples of patients with non-small cell lung cancer.

    PubMed

    Irie, Kei; Shobu, Saori; Hiratsuji, Seika; Yamasaki, Yuta; Nanjo, Shigeki; Kokan, Chiyuki; Hata, Akito; Kaji, Reiko; Masago, Katsuhiro; Fujita, Shiro; Okada, Yutaka; Katakami, Nobuyuki; Fukushima, Shoji

    2018-06-15

    A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of gefitinib in dried blood spots (DBSs). Gefitinib was extracted with methanol from DBS of 3 mm in diameter and detected using a triple quadrupole mass spectrometer. The method was validated by evaluating its precision, accuracy, selectivity, carryover, matrix effect, recovery, and stability. For clinical validation, paired finger-prick DBS and plasma concentrations were compared for 10 patients with non-small cell lung cancer (NSCLC) taking gefitinib. The calibration linear range was 37.5-2400 ng/mL (coefficient of determination [R 2 ] = 0.99), encompassing the therapeutic concentrations of gefitinib. The accuracy and precision were within 15% of the quality control (QC) concentrations of 80, 200, and 2000 ng/mL. The lower limit of quantification was determined to be 40 ng/mL. Gefitinib was stable in DBSs for up to 5 months at room temperature and -20 °C, and at 40 °C for 24 h. A good correlation was observed between the gefitinib levels measured by the DBS method and plasma concentrations (R 2  = 0.99). This method provides a simple, fast, and accurate approach to the quantitative analysis of gefitinib in finger-prick DBSs. The method would be useful for minimally invasive evaluation of the clinical gefitinib blood concentration. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. High throughput identification and quantification of 16 antipsychotics and 8 major metabolites in serum using ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Patteet, Lisbeth; Maudens, Kristof E; Sabbe, Bernard; Morrens, Manuel; De Doncker, Mireille; Neels, Hugo

    2014-02-15

    Therapeutic drug monitoring of antipsychotics is important for optimizing therapy, explaining adverse effects, non-response or poor compliance. We developed a UHPLC-MS/MS method for quantification of 16 commonly used and recently marketed antipsychotics and 8 metabolites in serum. After liquid-liquid extraction using methyl tert-butyl ether, analysis was performed on an Agilent Technologies 1290 Infinity LC system coupled with an Agilent Technologies 6460 Triple Quadrupole MS. Separation with a C18 column and gradient elution at 0.5 mL/min resulted in a 6-min run-time. Detection was performed in dynamic MRM, monitoring 3 ion transitions per compound. Isotope labeled internal standards were used for every compound, except for bromperidol and levosulpiride. Mean recovery was 86.8%. Matrix effects were -18.4 to +9.1%. Accuracy ranged between 91.3 and 107.0% at low, medium and high concentrations and between 76.2 and 113.9% at LLOQ. Within-run precision was <15% (CV), except for asenapine and hydroxy-iloperidone. Between-run precision was aberrant only for 7-hydroxy-N-desalkylquetiapine, asenapine and reduced haloperidol. No interferences were found. No problems of instability were observed, even for olanzapine. The method was successfully applied on patient samples. The liquid-liquid extraction and UHPLC-MS/MS technique allows robust target screening and quantification of 23 antipsychotics and metabolites. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS.

    PubMed

    Sánchez-Guijo, Alberto; Oji, Vinzenz; Hartmann, Michaela F; Traupe, Heiko; Wudy, Stefan A

    2015-09-01

    Steroids are primarily present in human fluids in their sulfated forms. Profiling of these compounds is important from both diagnostic and physiological points of view. Here, we present a novel method for the quantification of 11 intact steroid sulfates in human serum by LC-MS/MS. The compounds analyzed in our method, some of which are quantified for the first time in blood, include cholesterol sulfate, pregnenolone sulfate, 17-hydroxy-pregnenolone sulfate, 16-α-hydroxy-dehydroepiandrosterone sulfate, dehydroepiandrosterone sulfate, androstenediol sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and dihydrotestosterone sulfate. The assay was conceived to quantify sulfated steroids in a broad range of concentrations, requiring only 300 μl of serum. The method has been validated and its performance was studied at three quality controls, selected for each compound according to its physiological concentration. The assay showed good linearity (R(2) > 0.99) and recovery for all the compounds, with limits of quantification ranging between 1 and 80 ng/ml. Averaged intra-day and between-day precisions (coefficient of variation) and accuracies (relative errors) were below 10%. The method has been successfully applied to study the sulfated steroidome in diseases such as steroid sulfatase deficiency, proving its diagnostic value. This is, to our best knowledge, the most comprehensive method available for the quantification of sulfated steroids in human blood. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  14. Dynamical Coordination of Hand Intrinsic Muscles for Precision Grip in Diabetes Mellitus.

    PubMed

    Li, Ke; Wei, Na; Cheng, Mei; Hou, Xingguo; Song, Jun

    2018-03-12

    This study investigated the effects of diabetes mellitus (DM) on dynamical coordination of hand intrinsic muscles during precision grip. Precision grip was tested using a custom designed apparatus with stable and unstable loads, during which the surface electromyographic (sEMG) signals of the abductor pollicis brevis (APB) and first dorsal interosseous (FDI) were recorded simultaneously. Recurrence quantification analysis (RQA) was applied to quantify the dynamical structure of sEMG signals of the APB and FDI; and cross recurrence quantification analysis (CRQA) was used to assess the intermuscular coupling between the two intrinsic muscles. This study revealed that the DM altered the dynamical structure of muscle activation for the FDI and the dynamical intermuscular coordination between the APB and FDI during precision grip. A reinforced feedforward mechanism that compensates the loss of sensory feedbacks in DM may be responsible for the stronger intermuscular coupling between the APB and FDI muscles. Sensory deficits in DM remarkably decreased the capacity of online motor adjustment based on sensory feedback, rendering a lower adaptability to the uncertainty of environment. This study shed light on inherent dynamical properties underlying the intrinsic muscle activation and intermuscular coordination for precision grip and the effects of DM on hand sensorimotor function.

  15. Accuracy of 1H magnetic resonance spectroscopy for quantification of 2-hydroxyglutarate using linear combination and J-difference editing at 9.4T.

    PubMed

    Neuberger, Ulf; Kickingereder, Philipp; Helluy, Xavier; Fischer, Manuel; Bendszus, Martin; Heiland, Sabine

    2017-12-01

    Non-invasive detection of 2-hydroxyglutarate (2HG) by magnetic resonance spectroscopy is attractive since it is related to tumor metabolism. Here, we compare the detection accuracy of 2HG in a controlled phantom setting via widely used localized spectroscopy sequences quantified by linear combination of metabolite signals vs. a more complex approach applying a J-difference editing technique at 9.4T. Different phantoms, comprised out of a concentration series of 2HG and overlapping brain metabolites, were measured with an optimized point-resolved-spectroscopy sequence (PRESS) and an in-house developed J-difference editing sequence. The acquired spectra were post-processed with LCModel and a simulated metabolite set (PRESS) or with a quantification formula for J-difference editing. Linear regression analysis demonstrated a high correlation of real 2HG values with those measured with the PRESS method (adjusted R-squared: 0.700, p<0.001) as well as with those measured with the J-difference editing method (adjusted R-squared: 0.908, p<0.001). The regression model with the J-difference editing method however had a significantly higher explanatory value over the regression model with the PRESS method (p<0.0001). Moreover, with J-difference editing 2HG was discernible down to 1mM, whereas with the PRESS method 2HG values were not discernable below 2mM and with higher systematic errors, particularly in phantoms with high concentrations of N-acetyl-asparate (NAA) and glutamate (Glu). In summary, quantification of 2HG with linear combination of metabolite signals shows high systematic errors particularly at low 2HG concentration and high concentration of confounding metabolites such as NAA and Glu. In contrast, J-difference editing offers a more accurate quantification even at low 2HG concentrations, which outweighs the downsides of longer measurement time and more complex postprocessing. Copyright © 2017. Published by Elsevier GmbH.

  16. In situ sulfur isotope analysis of sulfide minerals by SIMS: Precision and accuracy, with application to thermometry of ~3.5Ga Pilbara cherts

    USGS Publications Warehouse

    Kozdon, R.; Kita, N.T.; Huberty, J.M.; Fournelle, J.H.; Johnson, C.A.; Valley, J.W.

    2010-01-01

    Secondary ion mass spectrometry (SIMS) measurement of sulfur isotope ratios is a potentially powerful technique for in situ studies in many areas of Earth and planetary science. Tests were performed to evaluate the accuracy and precision of sulfur isotope analysis by SIMS in a set of seven well-characterized, isotopically homogeneous natural sulfide standards. The spot-to-spot and grain-to-grain precision for δ34S is ± 0.3‰ for chalcopyrite and pyrrhotite, and ± 0.2‰ for pyrite (2SD) using a 1.6 nA primary beam that was focused to 10 µm diameter with a Gaussian-beam density distribution. Likewise, multiple δ34S measurements within single grains of sphalerite are within ± 0.3‰. However, between individual sphalerite grains, δ34S varies by up to 3.4‰ and the grain-to-grain precision is poor (± 1.7‰, n = 20). Measured values of δ34S correspond with analysis pit microstructures, ranging from smooth surfaces for grains with high δ34S values, to pronounced ripples and terraces in analysis pits from grains featuring low δ34S values. Electron backscatter diffraction (EBSD) shows that individual sphalerite grains are single crystals, whereas crystal orientation varies from grain-to-grain. The 3.4‰ variation in measured δ34S between individual grains of sphalerite is attributed to changes in instrumental bias caused by different crystal orientations with respect to the incident primary Cs+ beam. High δ34S values in sphalerite correlate to when the Cs+ beam is parallel to the set of directions , from [111] to [110], which are preferred directions for channeling and focusing in diamond-centered cubic crystals. Crystal orientation effects on instrumental bias were further detected in galena. However, as a result of the perfect cleavage along {100} crushed chips of galena are typically cube-shaped and likely to be preferentially oriented, thus crystal orientation effects on instrumental bias may be obscured. Test were made to improve the analytical

  17. 3D Printing of Preoperative Simulation Models of a Splenic Artery Aneurysm: Precision and Accuracy.

    PubMed

    Takao, Hidemasa; Amemiya, Shiori; Shibata, Eisuke; Ohtomo, Kuni

    2017-05-01

    Three-dimensional (3D) printing is attracting increasing attention in the medical field. This study aimed to apply 3D printing to the production of hollow splenic artery aneurysm models for use in the simulation of endovascular treatment, and to evaluate the precision and accuracy of the simulation model. From 3D computed tomography (CT) angiography data of a splenic artery aneurysm, 10 hollow models reproducing the vascular lumen were created using a fused deposition modeling-type desktop 3D printer. After filling with water, each model was scanned using T2-weighted magnetic resonance imaging for the evaluation of the lumen. All images were coregistered, binarized, and then combined to create an overlap map. The cross-sectional area of the splenic artery aneurysm and its standard deviation (SD) were calculated perpendicular to the x- and y-axes. Most voxels overlapped among the models. The cross-sectional areas were similar among the models, with SDs <0.05 cm 2 . The mean cross-sectional areas of the splenic artery aneurysm were slightly smaller than those calculated from the original mask images. The maximum mean cross-sectional areas calculated perpendicular to the x- and y-axes were 3.90 cm 2 (SD, 0.02) and 4.33 cm 2 (SD, 0.02), whereas those calculated from the original mask images were 4.14 cm 2 and 4.66 cm 2 , respectively. The mean cross-sectional areas of the afferent artery were, however, almost the same as those calculated from the original mask images. The results suggest that 3D simulation modeling of a visceral artery aneurysm using a fused deposition modeling-type desktop 3D printer and computed tomography angiography data is highly precise and accurate. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  18. An evaluation of the accuracy and precision of methane prediction equations for beef cattle fed high-forage and high-grain diets.

    PubMed

    Escobar-Bahamondes, P; Oba, M; Beauchemin, K A

    2017-01-01

    The study determined the performance of equations to predict enteric methane (CH4) from beef cattle fed forage- and grain-based diets. Many equations are available to predict CH4 from beef cattle and the predictions vary substantially among equations. The aims were to (1) construct a database of CH4 emissions for beef cattle from published literature, and (2) identify the most precise and accurate extant CH4 prediction models for beef cattle fed diets varying in forage content. The database was comprised of treatment means of CH4 production from in vivo beef studies published from 2000 to 2015. Criteria to include data in the database were as follows: animal description, intakes, diet composition and CH4 production. In all, 54 published equations that predict CH4 production from diet composition were evaluated. Precision and accuracy of the equations were evaluated using the concordance correlation coefficient (r c ), root mean square prediction error (RMSPE), model efficiency and analysis of errors. Equations were ranked using a combined index of the various statistical assessments based on principal component analysis. The final database contained 53 studies and 207 treatment means that were divided into two data sets: diets containing ⩾400 g/kg dry matter (DM) forage (n=116) and diets containing ⩽200 g/kg DM forage (n=42). Diets containing between ⩽400 and ⩾200 g/kg DM forage were not included in the analysis because of their limited numbers (n=6). Outliers, treatment means where feed was fed restrictively and diets with CH4 mitigation additives were omitted (n=43). Using the high-forage dataset the best-fit equations were the International Panel on Climate Change Tier 2 method, 3 equations for steers that considered gross energy intake (GEI) and body weight and an equation that considered dry matter intake and starch:neutral detergent fiber with r c ranging from 0.60 to 0.73 and RMSPE from 35.6 to 45.9 g/day. For the high-grain diets, the 5 best

  19. Single-frequency receivers as master permanent stations in GNSS networks: precision and accuracy of the positioning in mixed networks

    NASA Astrophysics Data System (ADS)

    Dabove, Paolo; Manzino, Ambrogio Maria

    2015-04-01

    The use of GPS/GNSS instruments is a common practice in the world at both a commercial and academic research level. Since last ten years, Continuous Operating Reference Stations (CORSs) networks were born in order to achieve the possibility to extend a precise positioning more than 15 km far from the master station. In this context, the Geomatics Research Group of DIATI at the Politecnico di Torino has carried out several experiments in order to evaluate the achievable precision obtainable with different GNSS receivers (geodetic and mass-market) and antennas if a CORSs network is considered. This work starts from the research above described, in particular focusing the attention on the usefulness of single frequency permanent stations in order to thicken the existing CORSs, especially for monitoring purposes. Two different types of CORSs network are available today in Italy: the first one is the so called "regional network" and the second one is the "national network", where the mean inter-station distances are about 25/30 and 50/70 km respectively. These distances are useful for many applications (e.g. mobile mapping) if geodetic instruments are considered but become less useful if mass-market instruments are used or if the inter-station distance between master and rover increases. In this context, some innovative GNSS networks were developed and tested, analyzing the performance of rover's positioning in terms of quality, accuracy and reliability both in real-time and post-processing approach. The use of single frequency GNSS receivers leads to have some limits, especially due to a limited baseline length, the possibility to obtain a correct fixing of the phase ambiguity for the network and to fix the phase ambiguity correctly also for the rover. These factors play a crucial role in order to reach a positioning with a good level of accuracy (as centimetric o better) in a short time and with an high reliability. The goal of this work is to investigate about the

  20. Practical quantification of necrosis in histological whole-slide images.

    PubMed

    Homeyer, André; Schenk, Andrea; Arlt, Janine; Dahmen, Uta; Dirsch, Olaf; Hahn, Horst K

    2013-06-01

    Since the histological quantification of necrosis is a common task in medical research and practice, we evaluate different image analysis methods for quantifying necrosis in whole-slide images. In a practical usage scenario, we assess the impact of different classification algorithms and feature sets on both accuracy and computation time. We show how a well-chosen combination of multiresolution features and an efficient postprocessing step enables the accurate quantification necrosis in gigapixel images in less than a minute. The results are general enough to be applied to other areas of histological image analysis as well. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Research on the impact factors of GRACE precise orbit determination by dynamic method

    NASA Astrophysics Data System (ADS)

    Guo, Nan-nan; Zhou, Xu-hua; Li, Kai; Wu, Bin

    2018-07-01

    With the successful use of GPS-only-based POD (precise orbit determination), more and more satellites carry onboard GPS receivers to support their orbit accuracy requirements. It provides continuous GPS observations in high precision, and becomes an indispensable way to obtain the orbit of LEO satellites. Precise orbit determination of LEO satellites plays an important role for the application of LEO satellites. Numerous factors should be considered in the POD processing. In this paper, several factors that impact precise orbit determination are analyzed, namely the satellite altitude, the time-variable earth's gravity field, the GPS satellite clock error and accelerometer observation. The GRACE satellites provide ideal platform to study the performance of factors for precise orbit determination using zero-difference GPS data. These factors are quantitatively analyzed on affecting the accuracy of dynamic orbit using GRACE observations from 2005 to 2011 by SHORDE software. The study indicates that: (1) with the altitude of the GRACE satellite is lowered from 480 km to 460 km in seven years, the 3D (three-dimension) position accuracy of GRACE satellite orbit is about 3˜4 cm based on long spans data; (2) the accelerometer data improves the 3D position accuracy of GRACE in about 1 cm; (3) the accuracy of zero-difference dynamic orbit is about 6 cm with the GPS satellite clock error products in 5 min sampling interval and can be raised to 4 cm, if the GPS satellite clock error products with 30 s sampling interval can be adopted. (4) the time-variable part of earth gravity field model improves the 3D position accuracy of GRACE in about 0.5˜1.5 cm. Based on this study, we quantitatively analyze the factors that affect precise orbit determination of LEO satellites. This study plays an important role to improve the accuracy of LEO satellites orbit determination.

  2. Comparison of viable plate count, turbidity measurement and real-time PCR for quantification of Porphyromonas gingivalis.

    PubMed

    Clais, S; Boulet, G; Van Kerckhoven, M; Lanckacker, E; Delputte, P; Maes, L; Cos, P

    2015-01-01

    The viable plate count (VPC) is considered as the reference method for bacterial enumeration in periodontal microbiology but shows some important limitations for anaerobic bacteria. As anaerobes such as Porphyromonas gingivalis are difficult to culture, VPC becomes time-consuming and less sensitive. Hence, efficient normalization of experimental data to bacterial cell count requires alternative rapid and reliable quantification methods. This study compared the performance of VPC with that of turbidity measurement and real-time PCR (qPCR) in an experimental context using highly concentrated bacterial suspensions. Our TaqMan-based qPCR assay for P. gingivalis 16S rRNA proved to be sensitive and specific. Turbidity measurements offer a fast method to assess P. gingivalis growth, but suffer from high variability and a limited dynamic range. VPC was very time-consuming and less repeatable than qPCR. Our study concludes that qPCR provides the most rapid and precise approach for P. gingivalis quantification. Although our data were gathered in a specific research context, we believe that our conclusions on the inferior performance of VPC and turbidity measurements in comparison to qPCR can be extended to other research and clinical settings and even to other difficult-to-culture micro-organisms. Various clinical and research settings require fast and reliable quantification of bacterial suspensions. The viable plate count method (VPC) is generally seen as 'the gold standard' for bacterial enumeration. However, VPC-based quantification of anaerobes such as Porphyromonas gingivalis is time-consuming due to their stringent growth requirements and shows poor repeatability. Comparison of VPC, turbidity measurement and TaqMan-based qPCR demonstrated that qPCR possesses important advantages regarding speed, accuracy and repeatability. © 2014 The Society for Applied Microbiology.

  3. System and method for high precision isotope ratio destructive analysis

    DOEpatents

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  4. RNA-Skim: a rapid method for RNA-Seq quantification at transcript level

    PubMed Central

    Zhang, Zhaojun; Wang, Wei

    2014-01-01

    Motivation: RNA-Seq technique has been demonstrated as a revolutionary means for exploring transcriptome because it provides deep coverage and base pair-level resolution. RNA-Seq quantification is proven to be an efficient alternative to Microarray technique in gene expression study, and it is a critical component in RNA-Seq differential expression analysis. Most existing RNA-Seq quantification tools require the alignments of fragments to either a genome or a transcriptome, entailing a time-consuming and intricate alignment step. To improve the performance of RNA-Seq quantification, an alignment-free method, Sailfish, has been recently proposed to quantify transcript abundances using all k-mers in the transcriptome, demonstrating the feasibility of designing an efficient alignment-free method for transcriptome quantification. Even though Sailfish is substantially faster than alternative alignment-dependent methods such as Cufflinks, using all k-mers in the transcriptome quantification impedes the scalability of the method. Results: We propose a novel RNA-Seq quantification method, RNA-Skim, which partitions the transcriptome into disjoint transcript clusters based on sequence similarity, and introduces the notion of sig-mers, which are a special type of k-mers uniquely associated with each cluster. We demonstrate that the sig-mer counts within a cluster are sufficient for estimating transcript abundances with accuracy comparable with any state-of-the-art method. This enables RNA-Skim to perform transcript quantification on each cluster independently, reducing a complex optimization problem into smaller optimization tasks that can be run in parallel. As a result, RNA-Skim uses <4% of the k-mers and <10% of the CPU time required by Sailfish. It is able to finish transcriptome quantification in <10 min per sample by using just a single thread on a commodity computer, which represents >100 speedup over the state-of-the-art alignment-based methods, while delivering

  5. Precision GPS ephemerides and baselines

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Based on the research, the area of precise ephemerides for GPS satellites, the following observations can be made pertaining to the status and future work needed regarding orbit accuracy. There are several aspects which need to be addressed in discussing determination of precise orbits, such as force models, kinematic models, measurement models, data reduction/estimation methods, etc. Although each one of these aspects was studied at CSR in research efforts, only points pertaining to the force modeling aspect are addressed.

  6. Absolute protein quantification of clinically relevant cytochrome P450 enzymes and UDP-glucuronosyltransferases by mass spectrometry-based targeted proteomics.

    PubMed

    Gröer, C; Busch, D; Patrzyk, M; Beyer, K; Busemann, A; Heidecke, C D; Drozdzik, M; Siegmund, W; Oswald, S

    2014-11-01

    Cytochrome P450 (CYP) enzymes and UDP-glucuronosyltransferases (UGT) are major determinants in the pharmacokinetics of most drugs on the market. To investigate their impact on intestinal and hepatic drug metabolism, we developed and validated quantification methods for nine CYP (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5) and four UGT enzymes (UGT1A1, UGT1A3, UGT2B7 and UGT2B15) that have been shown to be of clinical relevance in human drug metabolism. Protein quantification was performed by targeted proteomics using liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based determination of enzyme specific peptides after tryptic digestion using in each case stable isotope labelled peptides as internal standard. The chromatography of the respective peptides was performed with gradient elution using a reversed phase (C18) column (Ascentis(®) Express Peptide ES-C18, 100mm×2.1mm, 2.7μm) and 0.1% formic acid (FA) as well as acetonitrile with 0.1% FA as mobile phases at a flow rate of 300μl/min. The MS/MS detection of all peptides was done simultaneously with a scheduled multiple reaction monitoring (MRM) method in the positive mode by monitoring in each case three mass transitions per proteospecific peptide and the internal standard. The assays were validated according to current bioanalytical guidelines with respect to specificity, linearity (0.25-50nM), within-day and between-day accuracy and precision, digestion efficiency as well as stability. Finally, the developed method was successfully applied to determine the CYP and UGT protein amount in human liver and intestinal microsomes. The method was shown to possess sufficient specificity, sensitivity, accuracy, precision and stability to quantify clinically relevant human CYP and UGT enzymes. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Volumetric adsorptive microsampling-liquid chromatography tandem mass spectrometry assay for the simultaneous quantification of four antibiotics in human blood: Method development, validation and comparison with dried blood spot.

    PubMed

    Barco, Sebastiano; Castagnola, Elio; Moscatelli, Andrea; Rudge, James; Tripodi, Gino; Cangemi, Giuliana

    2017-10-25

    In this paper we show the development and validation of a volumetric absorptive microsampling (VAMS™)-LC-MS/MS method for the simultaneous quantification of four antibiotics: piperacillin-tazobactam, meropenem, linezolid and ceftazidime in 10μL human blood. The novel VAMS-LC-MS/MS method has been compared with a dried blood spot (DBS)-based method in terms of impact of hematocrit (HCT) on accuracy, reproducibility, recovery and matrix effect. Antibiotics were extracted from VAMS and DBS by protein precipitation with methanol after a re-hydration step at 37°C for 10min. LC-MS/MS was carried out on a Thermo Scientific™ TSQ Quantum™ Access MAX triple quadrupole coupled to an Accela ™UHPLC system. The VAMS-LC-MS/MS method is selective, precise and reproducible. In contrast to DBS, it allows an accurate quantification without any HCT influence. It has been applied to samples derived from pediatric patients under therapy. VAMS is a valid alternative sampling strategy for the quantification of antibiotics and is valuable in support of clinical PK/PD studies and consequently therapeutic drug monitoring (TDM) in pediatrics. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. 3D Reconstruction and Standardization of the Rat Vibrissal Cortex for Precise Registration of Single Neuron Morphology

    PubMed Central

    Egger, Robert; Narayanan, Rajeevan T.; Helmstaedter, Moritz; de Kock, Christiaan P. J.; Oberlaender, Marcel

    2012-01-01

    The three-dimensional (3D) structure of neural circuits is commonly studied by reconstructing individual or small groups of neurons in separate preparations. Investigation of structural organization principles or quantification of dendritic and axonal innervation thus requires integration of many reconstructed morphologies into a common reference frame. Here we present a standardized 3D model of the rat vibrissal cortex and introduce an automated registration tool that allows for precise placement of single neuron reconstructions. We (1) developed an automated image processing pipeline to reconstruct 3D anatomical landmarks, i.e., the barrels in Layer 4, the pia and white matter surfaces and the blood vessel pattern from high-resolution images, (2) quantified these landmarks in 12 different rats, (3) generated an average 3D model of the vibrissal cortex and (4) used rigid transformations and stepwise linear scaling to register 94 neuron morphologies, reconstructed from in vivo stainings, to the standardized cortex model. We find that anatomical landmarks vary substantially across the vibrissal cortex within an individual rat. In contrast, the 3D layout of the entire vibrissal cortex remains remarkably preserved across animals. This allows for precise registration of individual neuron reconstructions with approximately 30 µm accuracy. Our approach could be used to reconstruct and standardize other anatomically defined brain areas and may ultimately lead to a precise digital reference atlas of the rat brain. PMID:23284282

  9. Technical Report on the Modification of 3-Dimensional Non-contact Human Body Laser Scanner for the Measurement of Anthropometric Dimensions: Verification of its Accuracy and Precision.

    PubMed

    Jafari Roodbandi, Akram Sadat; Naderi, Hamid; Hashenmi-Nejad, Naser; Choobineh, Alireza; Baneshi, Mohammad Reza; Feyzi, Vafa

    2017-01-01

    Introduction: Three-dimensional (3D) scanners are widely used in medicine. One of the applications of 3D scanners is the acquisition of anthropometric dimensions for ergonomics and the creation of an anthropometry data bank. The aim of this study was to evaluate the precision and accuracy of a modified 3D scanner fabricated in this study. Methods: In this work, a 3D scan of the human body was obtained using DAVID Laser Scanner software and its calibration background, a linear low-power laser, and one advanced webcam. After the 3D scans were imported to the Geomagic software, 10 anthropometric dimensions of 10 subjects were obtained. The measurements of the 3D scanner were compared to the measurements of the same dimensions by a direct anthropometric method. The precision and accuracy of the measurements of the 3D scanner were then evaluated. The obtained data were analyzed using an independent sample t test with the SPSS software. Results: The minimum and maximum measurement differences from three consecutive scans by the 3D scanner were 0.03 mm and 18 mm, respectively. The differences between the measurements by the direct anthropometry method and the 3D scanner were not statistically significant. Therefore, the accuracy of the 3D scanner is acceptable. Conclusion: Future studies will need to focus on the improvement of the scanning speed and the quality of the scanned image.

  10. Technical Report on the Modification of 3-Dimensional Non-contact Human Body Laser Scanner for the Measurement of Anthropometric Dimensions: Verification of its Accuracy and Precision

    PubMed Central

    Jafari Roodbandi, Akram Sadat; Naderi, Hamid; Hashenmi-Nejad, Naser; Choobineh, Alireza; Baneshi, Mohammad Reza; Feyzi, Vafa

    2017-01-01

    Introduction: Three-dimensional (3D) scanners are widely used in medicine. One of the applications of 3D scanners is the acquisition of anthropometric dimensions for ergonomics and the creation of an anthropometry data bank. The aim of this study was to evaluate the precision and accuracy of a modified 3D scanner fabricated in this study. Methods: In this work, a 3D scan of the human body was obtained using DAVID Laser Scanner software and its calibration background, a linear low-power laser, and one advanced webcam. After the 3D scans were imported to the Geomagic software, 10 anthropometric dimensions of 10 subjects were obtained. The measurements of the 3D scanner were compared to the measurements of the same dimensions by a direct anthropometric method. The precision and accuracy of the measurements of the 3D scanner were then evaluated. The obtained data were analyzed using an independent sample t test with the SPSS software. Results: The minimum and maximum measurement differences from three consecutive scans by the 3D scanner were 0.03 mm and 18 mm, respectively. The differences between the measurements by the direct anthropometry method and the 3D scanner were not statistically significant. Therefore, the accuracy of the 3D scanner is acceptable. Conclusion: Future studies will need to focus on the improvement of the scanning speed and the quality of the scanned image. PMID:28912940

  11. Characterization of the relation between CT technical parameters and accuracy of quantification of lung attenuation on quantitative chest CT.

    PubMed

    Trotta, Brian M; Stolin, Alexander V; Williams, Mark B; Gay, Spencer B; Brody, Alan S; Altes, Talissa A

    2007-06-01

    The purpose of this study was to assess the compromise between CT technical parameters and the accuracy of CT quantification of lung attenuation. Materials that simulate water (0 H), healthy lung (-650 H), borderline emphysematous lung (-820 H), and severely emphysematous lung (-1,000 H) were placed at both the base and the apex of the lung of an anthropomorphic phantom and outside the phantom. Transaxial CT images through the samples were obtained while the effective tube current was varied from 440 to 10 mAs, kilovoltage from 140 to 80 kVp, and slice thickness from 0.625 to 10 mm. Mean +/- SD attenuation within the samples and the standard quantitative chest CT measurements, the percentage of pixels with attenuation less than -910 H and 15th percentile of attenuation, were computed. Outside the phantom, variations in CT parameters produced less than 2.0% error in all measurements. Within the anthropomorphic phantom at 30 mAs, error in measurements was much larger, ranging from zero to 200%. Below approximately 80 mAs, mean attenuation became increasingly biased. The effects were most pronounced at the apex of the lungs. Mean attenuation of the borderline emphysematous sample of apex decreased 55 H as the tube current was decreased from 300 to 30 mAs. Both the 15th percentile of attenuation and percentage of pixels with less than -910 H attenuation were more sensitive to variations in effective tube current than was mean attenuation. For example, the -820 H sample should have 0% of pixels less than -910 H, which was true at 400 mA. At 30 mA in the lung apex, however, the measurement was highly inaccurate, 51% of pixels being below this value. Decreased kilovoltage and slice thickness had analogous, but lesser, effects. The accuracy of quantitative chest CT is determined by the CT acquisition parameters. There can be significant decreases in accuracy at less than 80 mAs for thin slices in an anthropomorphic phantom, the most pronounced effects occurring in the lung

  12. Precision digital control systems

    NASA Astrophysics Data System (ADS)

    Vyskub, V. G.; Rozov, B. S.; Savelev, V. I.

    This book is concerned with the characteristics of digital control systems of great accuracy. A classification of such systems is considered along with aspects of stabilization, programmable control applications, digital tracking systems and servomechanisms, and precision systems for the control of a scanning laser beam. Other topics explored are related to systems of proportional control, linear devices and methods for increasing precision, approaches for further decreasing the response time in the case of high-speed operation, possibilities for the implementation of a logical control law, and methods for the study of precision digital control systems. A description is presented of precision automatic control systems which make use of electronic computers, taking into account the existing possibilities for an employment of computers in automatic control systems, approaches and studies required for including a computer in such control systems, and an analysis of the structure of automatic control systems with computers. Attention is also given to functional blocks in the considered systems.

  13. Precise Point Positioning Based on BDS and GPS Observations

    NASA Astrophysics Data System (ADS)

    Gao, ZhouZheng; Zhang, Hongping; Shen, Wenbin

    2014-05-01

    BeiDou Navigation Satellite System (BDS) has obtained the ability applying initial navigation and precise point services for the Asian-Pacific regions at the end of 2012 with the constellation of 5 Geostationary Earth Orbit (GEO), 5 Inclined Geosynchronous Orbit (IGSO) and 4 Medium Earth Orbit (MEO). Till 2020, it will consist with 5 GEO, 3 IGSO and 27 MEO, and apply global navigation service similar to GPS and GLONASS. As we known, GPS precise point positioning (PPP) is a powerful tool for crustal deformation monitoring, GPS meteorology, orbit determination of low earth orbit satellites, high accuracy kinematic positioning et al. However, it accuracy and convergence time are influenced by the quality of pseudo-range observations and the observing geometry between user and Global navigation satellites system (GNSS) satellites. Usually, it takes more than 30 minutes even hours to obtain centimeter level position accuracy for PPP while using GPS dual-frequency observations only. In recent years, many researches have been done to solve this problem. One of the approaches is smooth pseudo-range by carrier-phase observations to improve pseudo-range accuracy. By which can improve PPP initial position accuracy and shorten PPP convergence time. Another sachems is to change position dilution of precision (PDOP) with multi-GNSS observations. Now, BDS has the ability to service whole Asian-Pacific regions, which make it possible to use GPS and BDS for precise positioning. In addition, according to researches on GNSS PDOP distribution, BDS can improve PDOP obviously. Therefore, it necessary to do some researches on PPP performance using both GPS observations and BDS observations, especially in Asian-Pacific regions currently. In this paper, we focus on the influences of BDS to GPS PPP mainly in three terms including BDS PPP accuracy, PDOP improvement and convergence time of PPP based on GPS and BDS observations. Here, the GPS and BDS two-constellation data are collected from

  14. Cumulative detection probabilities and range accuracy of a pulsed Geiger-mode avalanche photodiode laser ranging system

    NASA Astrophysics Data System (ADS)

    Luo, Hanjun; Ouyang, Zhengbiao; Liu, Qiang; Chen, Zhiliang; Lu, Hualan

    2017-10-01

    Cumulative pulses detection with appropriate cumulative pulses number and threshold has the ability to improve the detection performance of the pulsed laser ranging system with GM-APD. In this paper, based on Poisson statistics and multi-pulses cumulative process, the cumulative detection probabilities and their influence factors are investigated. With the normalized probability distribution of each time bin, the theoretical model of the range accuracy and precision is established, and the factors limiting the range accuracy and precision are discussed. The results show that the cumulative pulses detection can produce higher target detection probability and lower false alarm probability. However, for a heavy noise level and extremely weak echo intensity, the false alarm suppression performance of the cumulative pulses detection deteriorates quickly. The range accuracy and precision is another important parameter evaluating the detection performance, the echo intensity and pulse width are main influence factors on the range accuracy and precision, and higher range accuracy and precision is acquired with stronger echo intensity and narrower echo pulse width, for 5-ns echo pulse width, when the echo intensity is larger than 10, the range accuracy and precision lower than 7.5 cm can be achieved.

  15. Scalable Methods for Uncertainty Quantification, Data Assimilation and Target Accuracy Assessment for Multi-Physics Advanced Simulation of Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Khuwaileh, Bassam

    High fidelity simulation of nuclear reactors entails large scale applications characterized with high dimensionality and tremendous complexity where various physics models are integrated in the form of coupled models (e.g. neutronic with thermal-hydraulic feedback). Each of the coupled modules represents a high fidelity formulation of the first principles governing the physics of interest. Therefore, new developments in high fidelity multi-physics simulation and the corresponding sensitivity/uncertainty quantification analysis are paramount to the development and competitiveness of reactors achieved through enhanced understanding of the design and safety margins. Accordingly, this dissertation introduces efficient and scalable algorithms for performing efficient Uncertainty Quantification (UQ), Data Assimilation (DA) and Target Accuracy Assessment (TAA) for large scale, multi-physics reactor design and safety problems. This dissertation builds upon previous efforts for adaptive core simulation and reduced order modeling algorithms and extends these efforts towards coupled multi-physics models with feedback. The core idea is to recast the reactor physics analysis in terms of reduced order models. This can be achieved via identifying the important/influential degrees of freedom (DoF) via the subspace analysis, such that the required analysis can be recast by considering the important DoF only. In this dissertation, efficient algorithms for lower dimensional subspace construction have been developed for single physics and multi-physics applications with feedback. Then the reduced subspace is used to solve realistic, large scale forward (UQ) and inverse problems (DA and TAA). Once the elite set of DoF is determined, the uncertainty/sensitivity/target accuracy assessment and data assimilation analysis can be performed accurately and efficiently for large scale, high dimensional multi-physics nuclear engineering applications. Hence, in this work a Karhunen-Loeve (KL

  16. An Improved Method of AGM for High Precision Geolocation of SAR Images

    NASA Astrophysics Data System (ADS)

    Zhou, G.; He, C.; Yue, T.; Huang, W.; Huang, Y.; Li, X.; Chen, Y.

    2018-05-01

    In order to take full advantage of SAR images, it is necessary to obtain the high precision location of the image. During the geometric correction process of images, to ensure the accuracy of image geometric correction and extract the effective mapping information from the images, precise image geolocation is important. This paper presents an improved analytical geolocation method (IAGM) that determine the high precision geolocation of each pixel in a digital SAR image. This method is based on analytical geolocation method (AGM) proposed by X. K. Yuan aiming at realizing the solution of RD model. Tests will be conducted using RADARSAT-2 SAR image. Comparing the predicted feature geolocation with the position as determined by high precision orthophoto, results indicate an accuracy of 50m is attainable with this method. Error sources will be analyzed and some recommendations about improving image location accuracy in future spaceborne SAR's will be given.

  17. Parsing and Quantification of Raw Orbitrap Mass Spectrometer Data Using RawQuant.

    PubMed

    Kovalchik, Kevin A; Moggridge, Sophie; Chen, David D Y; Morin, Gregg B; Hughes, Christopher S

    2018-06-01

    Effective analysis of protein samples by mass spectrometry (MS) requires careful selection and optimization of a range of experimental parameters. As the output from the primary detection device, the "raw" MS data file can be used to gauge the success of a given sample analysis. However, the closed-source nature of the standard raw MS file can complicate effective parsing of the data contained within. To ease and increase the range of analyses possible, the RawQuant tool was developed to enable parsing of raw MS files derived from Thermo Orbitrap instruments to yield meta and scan data in an openly readable text format. RawQuant can be commanded to export user-friendly files containing MS 1 , MS 2 , and MS 3 metadata as well as matrices of quantification values based on isobaric tagging approaches. In this study, the utility of RawQuant is demonstrated in several scenarios: (1) reanalysis of shotgun proteomics data for the identification of the human proteome, (2) reanalysis of experiments utilizing isobaric tagging for whole-proteome quantification, and (3) analysis of a novel bacterial proteome and synthetic peptide mixture for assessing quantification accuracy when using isobaric tags. Together, these analyses successfully demonstrate RawQuant for the efficient parsing and quantification of data from raw Thermo Orbitrap MS files acquired in a range of common proteomics experiments. In addition, the individual analyses using RawQuant highlights parametric considerations in the different experimental sets and suggests targetable areas to improve depth of coverage in identification-focused studies and quantification accuracy when using isobaric tags.

  18. Validation of a commercially available enzyme-linked immunoabsorbent assay for the quantification of human α-Synuclein in cerebrospinal fluid.

    PubMed

    Kruse, Niels; Mollenhauer, Brit

    2015-11-01

    The quantification of α-Synuclein in cerebrospinal fluid (CSF) as a biomarker has gained tremendous interest in the last years. Several commercially available immunoassays are emerging. We here describe the full validation of one commercially available ELISA assay for the quantification of α-Synuclein in human CSF (Covance alpha-Synuclein ELISA kit). The study was conducted within the BIOMARKAPD project in the European initiative Joint Program for Neurodegenerative Diseases (JPND). We investigated the effect of several pre-analytical and analytical confounders: i.e. (1) need for centrifugation of freshly drawn CSF, (2) sample stability, (3) delay of freezing, (4) volume of storage aliquots, (5) freeze/thaw cycles, (6) thawing conditions, (7) dilution linearity, (8) parallelism, (9) spike recovery, and (10) precision. None of these confounders influenced the levels of α-Synuclein in CSF significantly. We found a very high intra-assay precision. The inter-assay precision was lower than expected due to different performances of kit lots used. Overall the validated immunoassay is useful for the quantification of α-Synuclein in human CSF. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Parallel Reaction Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry

    PubMed Central

    Rauniyar, Navin

    2015-01-01

    The parallel reaction monitoring (PRM) assay has emerged as an alternative method of targeted quantification. The PRM assay is performed in a high resolution and high mass accuracy mode on a mass spectrometer. This review presents the features that make PRM a highly specific and selective method for targeted quantification using quadrupole-Orbitrap hybrid instruments. In addition, this review discusses the label-based and label-free methods of quantification that can be performed with the targeted approach. PMID:26633379

  20. Precision time distribution within a deep space communications complex

    NASA Technical Reports Server (NTRS)

    Curtright, J. B.

    1972-01-01

    The Precision Time Distribution System (PTDS) at the Golstone Deep Space Communications Complex is a practical application of existing technology to the solution of a local problem. The problem was to synchronize four station timing systems to a master source with a relative accuracy consistently and significantly better than 10 microseconds. The solution involved combining a precision timing source, an automatic error detection assembly and a microwave distribution network into an operational system. Upon activation of the completed PTDS two years ago, synchronization accuracy at Goldstone (two station relative) was improved by an order of magnitude. It is felt that the validation of the PTDS mechanization is now completed. Other facilities which have site dispersion and synchronization accuracy requirements similar to Goldstone may find the PTDS mechanization useful in solving their problem. At present, the two station relative synchronization accuracy at Goldstone is better than one microsecond.

  1. Adaptive polynomial chaos techniques for uncertainty quantification of a gas cooled fast reactor transient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perko, Z.; Gilli, L.; Lathouwers, D.

    2013-07-01

    Uncertainty quantification plays an increasingly important role in the nuclear community, especially with the rise of Best Estimate Plus Uncertainty methodologies. Sensitivity analysis, surrogate models, Monte Carlo sampling and several other techniques can be used to propagate input uncertainties. In recent years however polynomial chaos expansion has become a popular alternative providing high accuracy at affordable computational cost. This paper presents such polynomial chaos (PC) methods using adaptive sparse grids and adaptive basis set construction, together with an application to a Gas Cooled Fast Reactor transient. Comparison is made between a new sparse grid algorithm and the traditionally used techniquemore » proposed by Gerstner. An adaptive basis construction method is also introduced and is proved to be advantageous both from an accuracy and a computational point of view. As a demonstration the uncertainty quantification of a 50% loss of flow transient in the GFR2400 Gas Cooled Fast Reactor design was performed using the CATHARE code system. The results are compared to direct Monte Carlo sampling and show the superior convergence and high accuracy of the polynomial chaos expansion. Since PC techniques are easy to implement, they can offer an attractive alternative to traditional techniques for the uncertainty quantification of large scale problems. (authors)« less

  2. Precisely and Accurately Inferring Single-Molecule Rate Constants

    PubMed Central

    Kinz-Thompson, Colin D.; Bailey, Nevette A.; Gonzalez, Ruben L.

    2017-01-01

    The kinetics of biomolecular systems can be quantified by calculating the stochastic rate constants that govern the biomolecular state versus time trajectories (i.e., state trajectories) of individual biomolecules. To do so, the experimental signal versus time trajectories (i.e., signal trajectories) obtained from observing individual biomolecules are often idealized to generate state trajectories by methods such as thresholding or hidden Markov modeling. Here, we discuss approaches for idealizing signal trajectories and calculating stochastic rate constants from the resulting state trajectories. Importantly, we provide an analysis of how the finite length of signal trajectories restrict the precision of these approaches, and demonstrate how Bayesian inference-based versions of these approaches allow rigorous determination of this precision. Similarly, we provide an analysis of how the finite lengths and limited time resolutions of signal trajectories restrict the accuracy of these approaches, and describe methods that, by accounting for the effects of the finite length and limited time resolution of signal trajectories, substantially improve this accuracy. Collectively, therefore, the methods we consider here enable a rigorous assessment of the precision, and a significant enhancement of the accuracy, with which stochastic rate constants can be calculated from single-molecule signal trajectories. PMID:27793280

  3. Precision and Accuracy in PDV and VISAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrose, W. P.

    2017-08-22

    This is a technical report discussing our current level of understanding of a wide and varying distribution of uncertainties in velocity results from Photonic Doppler Velocimetry in its application to gas gun experiments. Using propagation of errors methods with statistical averaging of photon number fluctuation in the detected photocurrent and subsequent addition of electronic recording noise, we learn that the velocity uncertainty in VISAR can be written in closed form. For PDV, the non-linear frequency transform and peak fitting methods employed make propagation of errors estimates notoriously more difficult to write down in closed form expect in the limit ofmore » constant velocity and low time resolution (large analysis-window width). An alternative method of error propagation in PDV is to use Monte Carlo methods with a simulation of the time domain signal based on results from the spectral domain. A key problem for Monte Carlo estimation for an experiment is a correct estimate of that portion of the time-domain noise associated with the peak-fitting region-of-interesting in the spectral domain. Using short-time Fourier transformation spectral analysis and working with the phase dependent real and imaginary parts allows removal of amplitude-noise cross terms that invariably show up when working with correlation-based methods or FFT power spectra. Estimation of the noise associated with a given spectral region of interest is then possible. At this level of progress, we learn that Monte Carlo trials with random recording noise and initial (uncontrolled) phase yields velocity uncertainties that are not as large as those observed. In a search for additional noise sources, a speckleinterference modulation contribution with off axis rays was investigated, and was found to add a velocity variation beyond that from the recording noise (due to random interference between off axis rays), but in our experiments the speckle modulation precision was not as important as

  4. Quantitative Proteomics via High Resolution MS Quantification: Capabilities and Limitations

    PubMed Central

    Higgs, Richard E.; Butler, Jon P.; Han, Bomie; Knierman, Michael D.

    2013-01-01

    Recent improvements in the mass accuracy and resolution of mass spectrometers have led to renewed interest in label-free quantification using data from the primary mass spectrum (MS1) acquired from data-dependent proteomics experiments. The capacity for higher specificity quantification of peptides from samples enriched for proteins of biological interest offers distinct advantages for hypothesis generating experiments relative to immunoassay detection methods or prespecified peptide ions measured by multiple reaction monitoring (MRM) approaches. Here we describe an evaluation of different methods to post-process peptide level quantification information to support protein level inference. We characterize the methods by examining their ability to recover a known dilution of a standard protein in background matrices of varying complexity. Additionally, the MS1 quantification results are compared to a standard, targeted, MRM approach on the same samples under equivalent instrument conditions. We show the existence of multiple peptides with MS1 quantification sensitivity similar to the best MRM peptides for each of the background matrices studied. Based on these results we provide recommendations on preferred approaches to leveraging quantitative measurements of multiple peptides to improve protein level inference. PMID:23710359

  5. Systematic Comparison of Label-Free, Metabolic Labeling, and Isobaric Chemical Labeling for Quantitative Proteomics on LTQ Orbitrap Velos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhou; Adams, Rachel M; Chourey, Karuna

    2012-01-01

    A variety of quantitative proteomics methods have been developed, including label-free, metabolic labeling, and isobaric chemical labeling using iTRAQ or TMT. Here, these methods were compared in terms of the depth of proteome coverage, quantification accuracy, precision, and reproducibility using a high-performance hybrid mass spectrometer, LTQ Orbitrap Velos. Our results show that (1) the spectral counting method provides the deepest proteome coverage for identification, but its quantification performance is worse than labeling-based approaches, especially the quantification reproducibility; (2) metabolic labeling and isobaric chemical labeling are capable of accurate, precise, and reproducible quantification and provide deep proteome coverage for quantification. Isobaricmore » chemical labeling surpasses metabolic labeling in terms of quantification precision and reproducibility; (3) iTRAQ and TMT perform similarly in all aspects compared in the current study using a CID-HCD dual scan configuration. Based on the unique advantages of each method, we provide guidance for selection of the appropriate method for a quantitative proteomics study.« less

  6. Quantification of residual EDU (N-ethyl-N'-(dimethylaminopropyl) carbodiimide (EDC) hydrolyzed urea derivative) and other residual by LC-MS/MS.

    PubMed

    Lei, Q Paula; Lamb, David H; Shannon, Anthony G; Cai, Xinxing; Heller, Ronald K; Huang, Michael; Zablackis, Earl; Ryall, Robert; Cash, Patricia

    2004-12-25

    An LC-MS/MS method for determination of the break down product of N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) urea derivative, EDU, has been developed and validated for monitoring the residual coupling reagents. Results indicate that the method exhibits suitable specificity, sensitivity, precision, linearity and accuracy for quantification of residual EDU in the presence of meningococcal polysaccharide-diphtheria toxoid conjugate vaccine and other vaccine matrix compounds. The assay has been validated for a detection range of 10-100 ng/mL and then successfully transferred to quality control (QC) lab. This same method has also been applied to the determination of residual diaminohexane (DAH) in the presence of EDU. LC-MS/MS has proven to be useful as a quick and sensitive approach for simultaneous determination of multiple residual compounds in glycoconjugate vaccine samples.

  7. A Dynamic Precision Evaluation Method for the Star Sensor in the Stellar-Inertial Navigation System.

    PubMed

    Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang

    2017-06-28

    Integrating the advantages of INS (inertial navigation system) and the star sensor, the stellar-inertial navigation system has been used for a wide variety of applications. The star sensor is a high-precision attitude measurement instrument; therefore, determining how to validate its accuracy is critical in guaranteeing its practical precision. The dynamic precision evaluation of the star sensor is more difficult than a static precision evaluation because of dynamic reference values and other impacts. This paper proposes a dynamic precision verification method of star sensor with the aid of inertial navigation device to realize real-time attitude accuracy measurement. Based on the gold-standard reference generated by the star simulator, the altitude and azimuth angle errors of the star sensor are calculated for evaluation criteria. With the goal of diminishing the impacts of factors such as the sensors' drift and devices, the innovative aspect of this method is to employ static accuracy for comparison. If the dynamic results are as good as the static results, which have accuracy comparable to the single star sensor's precision, the practical precision of the star sensor is sufficiently high to meet the requirements of the system specification. The experiments demonstrate the feasibility and effectiveness of the proposed method.

  8. Are Currently Available Wearable Devices for Activity Tracking and Heart Rate Monitoring Accurate, Precise, and Medically Beneficial?

    PubMed Central

    El-Amrawy, Fatema

    2015-01-01

    Objectives The new wave of wireless technologies, fitness trackers, and body sensor devices can have great impact on healthcare systems and the quality of life. However, there have not been enough studies to prove the accuracy and precision of these trackers. The objective of this study was to evaluate the accuracy, precision, and overall performance of seventeen wearable devices currently available compared with direct observation of step counts and heart rate monitoring. Methods Each participant in this study used three accelerometers at a time, running the three corresponding applications of each tracker on an Android or iOS device simultaneously. Each participant was instructed to walk 200, 500, and 1,000 steps. Each set was repeated 40 times. Data was recorded after each trial, and the mean step count, standard deviation, accuracy, and precision were estimated for each tracker. Heart rate was measured by all trackers (if applicable), which support heart rate monitoring, and compared to a positive control, the Onyx Vantage 9590 professional clinical pulse oximeter. Results The accuracy of the tested products ranged between 79.8% and 99.1%, while the coefficient of variation (precision) ranged between 4% and 17.5%. MisFit Shine showed the highest accuracy and precision (along with Qualcomm Toq), while Samsung Gear 2 showed the lowest accuracy, and Jawbone UP showed the lowest precision. However, Xiaomi Mi band showed the best package compared to its price. Conclusions The accuracy and precision of the selected fitness trackers are reasonable and can indicate the average level of activity and thus average energy expenditure. PMID:26618039

  9. Are Currently Available Wearable Devices for Activity Tracking and Heart Rate Monitoring Accurate, Precise, and Medically Beneficial?

    PubMed

    El-Amrawy, Fatema; Nounou, Mohamed Ismail

    2015-10-01

    The new wave of wireless technologies, fitness trackers, and body sensor devices can have great impact on healthcare systems and the quality of life. However, there have not been enough studies to prove the accuracy and precision of these trackers. The objective of this study was to evaluate the accuracy, precision, and overall performance of seventeen wearable devices currently available compared with direct observation of step counts and heart rate monitoring. Each participant in this study used three accelerometers at a time, running the three corresponding applications of each tracker on an Android or iOS device simultaneously. Each participant was instructed to walk 200, 500, and 1,000 steps. Each set was repeated 40 times. Data was recorded after each trial, and the mean step count, standard deviation, accuracy, and precision were estimated for each tracker. Heart rate was measured by all trackers (if applicable), which support heart rate monitoring, and compared to a positive control, the Onyx Vantage 9590 professional clinical pulse oximeter. The accuracy of the tested products ranged between 79.8% and 99.1%, while the coefficient of variation (precision) ranged between 4% and 17.5%. MisFit Shine showed the highest accuracy and precision (along with Qualcomm Toq), while Samsung Gear 2 showed the lowest accuracy, and Jawbone UP showed the lowest precision. However, Xiaomi Mi band showed the best package compared to its price. The accuracy and precision of the selected fitness trackers are reasonable and can indicate the average level of activity and thus average energy expenditure.

  10. Different mathematical processing of absorption, ratio and derivative spectra for quantification of mixtures containing minor component: An application to the analysis of the recently co-formulated antidiabetic drugs; canagliflozin and metformin

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Mohamed, Dalia; Elshahed, Mona S.

    2018-01-01

    In the presented work several spectrophotometric methods were performed for the quantification of canagliflozin (CGZ) and metformin hydrochloride (MTF) simultaneously in their binary mixture. Two of these methods; response correlation (RC) and advanced balance point-spectrum subtraction (ABP-SS) were developed and introduced for the first time in this work, where the latter method (ABP-SS) was performed on both the zero order and the first derivative spectra of the drugs. Besides, two recently established methods; advanced amplitude modulation (AAM) and advanced absorbance subtraction (AAS) were also accomplished. All the proposed methods were validated in accordance to the ICH guidelines, where all methods were proved to be accurate and precise. Additionally, the linearity range, limit of detection and limit of quantification were determined and the selectivity was examined through the analysis of laboratory prepared mixtures and the combined dosage form of the drugs. The proposed methods were capable of determining the two drugs in the ratio present in the pharmaceutical formulation CGZ:MTF (1:17) without the requirement of any preliminary separation, further dilution or standard spiking. The results obtained by the proposed methods were in compliance with the reported chromatographic method when compared statistically, proving the absence of any significant difference in accuracy and precision between the proposed and reported methods.

  11. Effect of ionization suppression by trace impurities in mobile phase water on the accuracy of quantification by high-performance liquid chromatography/mass spectrometry.

    PubMed

    Herath, H M D R; Shaw, P N; Cabot, P; Hewavitharana, A K

    2010-06-15

    The high-performance liquid chromatography (HPLC) column is capable of enrichment/pre-concentration of trace impurities in the mobile phase during the column equilibration, prior to sample injection and elution. These impurities elute during gradient elution and result in significant chromatographic peaks. Three types of purified water were tested for their impurity levels, and hence their performances as mobile phase, in HPLC followed by total ion current (TIC) mode of MS. Two types of HPLC-grade water produced 3-4 significant peaks in solvent blanks while LC/MS-grade water produced no peaks (although peaks were produced by LC/MS-grade water also after a few days of standing). None of the three waters produced peaks in HPLC followed by UV-Vis detection. These peaks, if co-eluted with analyte, are capable of suppressing or enhancing the analyte signal in a MS detector. As it is not common practice to run solvent blanks in TIC mode, when quantification is commonly carried out using single ion monitoring (SIM) or single or multiple reaction monitoring (SRM or MRM), the effect of co-eluting impurities on the analyte signal and hence on the accuracy of the results is often unknown to the analyst. Running solvent blanks in TIC mode, regardless of the MS mode used for quantification, is essential in order to detect this problem and to take subsequent precautions. Copyright (c) 2010 John Wiley & Sons, Ltd.

  12. High-performance Thin-layer Chromatography Method Development, Validation, and Simultaneous Quantification of Four Compounds Identified in Standardized Extracts of Orthosiphon stamineus.

    PubMed

    Hashim, Suzana; Beh, Hooi Kheng; Hamil, Mohamad Shahrul Ridzuan; Ismail, Zhari; Majid, Amin Malik Shah Abdul

    2016-01-01

    Orthosiphon stamineus is a medicinal herb widely grown in Southeast Asia and tropical countries. It has been used traditionally as a diuretic, abdominal pain, kidney and bladder inflammation, gout, and hypertension. This study aims to develop and validate the high-performance thin layer chromatography (HPTLC) method for quantification of rosmarinic acid (RA), 3'-hydroxy-5,6,7,4'-tetramethoxyflavone (TMF), sinensitin (SIN) and eupatorin (EUP) found in ethanol, 50% ethanol and water extract of O. stamineus leaves. HPTLC method was conducted using an HPTLC system with a developed mobile phase system of toluene: ethyl acetate: formic acid (3:7:0.1) performed on precoated silica gel 60 F254 TLC plates. The method was validated based on linearity, accuracy, precision, limit of detection, limit of quantification (LOQ), and specificity, respectively. The detection of spots was observed at ultraviolet 254 nm and 366 nm. The linearity of RA, TMF, SIN, and EUP were obtained between 10 and 100 ng/spot with high correlation coefficient value (R 2 ) of more than 0.986. The limit of detection was found to be 122.47 ± 3.95 (RA), 43.38 ± 0.79 (SIN), 17.26 ± 1.16 (TMF), and 46.80 ± 1.33 ng/spot (EUP), respectively. Whereas the LOQ was found to be 376.44 ± 6.70 (RA), 131.45 ± 2.39 (SIN), 52.30 ± 2.01 (TMF), and 141.82 ± 1.58 ng/spot (EUP), respectively. The proposed method showed good linearity, precision, accuracy, and high sensitivity. Hence, it may be applied in a routine quantification of RA, SIN, TMF, and EUP found in ethanol, 50% of ethanol and water extract of O. stamineus leaves. HPTLC method provides rapid estimation of the marker compound for routine quality control analysis.The established HPTLC method is rapid for qualitative and quantitative fingerprinting of Orthosiphon stamineus extract used for commercial product.Four identified markers (RA, SIN, EUP and TMF) found in three a different type of O. stamineus extracts specifically ethanol, 50% ethanol and water

  13. Accuracy and Measurement Error of the Medial Clear Space of the Ankle.

    PubMed

    Metitiri, Ogheneochuko; Ghorbanhoseini, Mohammad; Zurakowski, David; Hochman, Mary G; Nazarian, Ara; Kwon, John Y

    2017-04-01

    Measurement of the medial clear space (MCS) is commonly used to assess deltoid ligament competency and mortise stability when managing ankle fractures. Lacking knowledge of the true anatomic width measured, previous studies have been unable to measure accuracy of measurement. The purpose of this study was to determine MCS measurement error and accuracy and any influencing factors. Using 3 normal transtibial ankle cadaver specimens, deltoid and syndesmotic ligaments were transected and the mortise widened and affixed at a width of 6 mm (specimen 1) and 4 mm (specimen 2). The mortise was left intact in specimen 3. Radiographs were obtained of each cadaver at varying degrees of rotation. Radiographs were randomized, and providers measured the MCS using a standardized technique. Lack of accuracy as well as lack of precision in measurement of the medial clear space compared to a known anatomic value was present for all 3 specimens tested. There were no significant differences in mean delta with regard to level of training for specimens 1 and 2; however, with specimen 3, staff physicians showed increased measurement accuracy compared with trainees. Accuracy and precision of MCS measurements are poor. Provider experience did not appear to influence accuracy and precision of measurements for the displaced mortise. This high degree of measurement error and lack of precision should be considered when deciding treatment options based on MCS measurements.

  14. Current position of high-resolution MS for drug quantification in clinical & forensic toxicology.

    PubMed

    Meyer, Markus R; Helfer, Andreas G; Maurer, Hans H

    2014-08-01

    This paper reviews high-resolution MS approaches published from January 2011 until March 2014 for the quantification of drugs (of abuse) and/or their metabolites in biosamples using LC-MS with time-of-flight or Orbitrap™ mass analyzers. Corresponding approaches are discussed including sample preparation and mass spectral settings. The advantages and limitations of high-resolution MS for drug quantification, as well as the demand for a certain resolution or a specific mass accuracy are also explored.

  15. pyQms enables universal and accurate quantification of mass spectrometry data.

    PubMed

    Leufken, Johannes; Niehues, Anna; Sarin, L Peter; Wessel, Florian; Hippler, Michael; Leidel, Sebastian A; Fufezan, Christian

    2017-10-01

    Quantitative mass spectrometry (MS) is a key technique in many research areas (1), including proteomics, metabolomics, glycomics, and lipidomics. Because all of the corresponding molecules can be described by chemical formulas, universal quantification tools are highly desirable. Here, we present pyQms, an open-source software for accurate quantification of all types of molecules measurable by MS. pyQms uses isotope pattern matching that offers an accurate quality assessment of all quantifications and the ability to directly incorporate mass spectrometer accuracy. pyQms is, due to its universal design, applicable to every research field, labeling strategy, and acquisition technique. This opens ultimate flexibility for researchers to design experiments employing innovative and hitherto unexplored labeling strategies. Importantly, pyQms performs very well to accurately quantify partially labeled proteomes in large scale and high throughput, the most challenging task for a quantification algorithm. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Quantification of cortisol in human eccrine sweat by liquid chromatography - tandem mass spectrometry.

    PubMed

    Jia, Min; Chew, Wade M; Feinstein, Yelena; Skeath, Perry; Sternberg, Esther M

    2016-03-21

    Cortisol has long been recognized as the "stress biomarker" in evaluating stress related disorders. Plasma, urine or saliva are the current source for cortisol analysis. The sampling of these biofluids is either invasive or has reliability problems that could lead to inaccurate results. Sweat has drawn increasing attention as a promising source for non-invasive stress analysis. A sensitive HPLC-MS/MS method was developed for the quantitation of cortisol ((11β)-11,17,21-trihydroxypregn-4-ene-3,20-dione) in human eccrine sweat. At least one unknown isomer that has previously not been reported and could potentially interfere with quantification was separated from cortisol with mixed mode RP HPLC. Detection of cortisol was carried out using atmospheric pressure chemical ionization (APCI) and selected reaction monitoring (SRM) in positive ion mode, using cortisol-9,11,12,12-D4 as internal standard. LOD and LOQ were estimated to be 0.04 ng ml(-1) and 0.1 ng ml(-1), respectively. Linear range of 0.10-25.00 ng ml(-1) was obtained. Intraday precision (2.5%-9.7%) and accuracy (0.5%-2.1%), interday precision (12.3%-18.7%) and accuracy (7.1%-15.1%) were achieved. This method has been successfully applied to the cortisol analysis of human eccrine sweat samples. This is the first demonstration that HPLC-MS/MS can be used for the sensitive and highly specific determination of cortisol in human eccrine sweat in the presence of at least one isomer that has similar hydrophobicity as cortisol. This study demonstrated that human eccrine sweat could be used as a promising source for non-invasive assessment of stress biomarkers such as cortisol and other steroid hormones.

  17. Accuracy Profiles for Analyzing Residual Solvents in Textiles by GC-MS.

    PubMed

    Bao, Qibei; Fu, Kejie; Ren, Qingqing; Zhong, Yingying; Qian, Dan

    2017-10-01

    Excess residual solvents (RSs) in clothes or other textiles could be toxic and pose risks to both humans and the environment. N,N-Dimethylformamide (DMF), N,N-dimethylacetamide (DMAc) and 1-methyl-2-pyrrolidinone (NMP) are important chemicals frequently used as solvents in the textile industry. Several organizations have proposed limiting DMF, DMAc and NMP in textiles, but an appropriate detection method has not been proposed. A sensitive GC-MS method for the quantification of DMF, DMAc and NMP in textiles was developed. After extraction with ethyl acetate, these RSs were separated on a DB-5MS capillary column. The oven temperature was increased from 50°C (held for 0.5 min) at 10°C/min to 120°C (held for 1 min). The method was fully validated according to the accuracy profile procedure, which is based on β-expectation tolerance intervals for the total measurement bias. Linearity was observed in the range of 0.5-10 mg/L for the solvents with limit of quantification values of 4.2, 3.5 and 2.5 mg/kg for DMF, DMAc and NMP, respectively. The repeatability and intermediate precision were <5.34% and 7.95% for DMF, 5.37% and 9.68% for DMAc, and 2.68% and 5.85% for NMP. The recoveries of DMF, DMAc and NMP were 91.2-106.3%, 89.5-97.7% and 85.6-101.3%, respectively. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. The neglected tool in the Bayesian ecologist's shed: a case study testing informative priors' effect on model accuracy

    PubMed Central

    Morris, William K; Vesk, Peter A; McCarthy, Michael A; Bunyavejchewin, Sarayudh; Baker, Patrick J

    2015-01-01

    Despite benefits for precision, ecologists rarely use informative priors. One reason that ecologists may prefer vague priors is the perception that informative priors reduce accuracy. To date, no ecological study has empirically evaluated data-derived informative priors' effects on precision and accuracy. To determine the impacts of priors, we evaluated mortality models for tree species using data from a forest dynamics plot in Thailand. Half the models used vague priors, and the remaining half had informative priors. We found precision was greater when using informative priors, but effects on accuracy were more variable. In some cases, prior information improved accuracy, while in others, it was reduced. On average, models with informative priors were no more or less accurate than models without. Our analyses provide a detailed case study on the simultaneous effect of prior information on precision and accuracy and demonstrate that when priors are specified appropriately, they lead to greater precision without systematically reducing model accuracy. PMID:25628867

  19. The neglected tool in the Bayesian ecologist's shed: a case study testing informative priors' effect on model accuracy.

    PubMed

    Morris, William K; Vesk, Peter A; McCarthy, Michael A; Bunyavejchewin, Sarayudh; Baker, Patrick J

    2015-01-01

    Despite benefits for precision, ecologists rarely use informative priors. One reason that ecologists may prefer vague priors is the perception that informative priors reduce accuracy. To date, no ecological study has empirically evaluated data-derived informative priors' effects on precision and accuracy. To determine the impacts of priors, we evaluated mortality models for tree species using data from a forest dynamics plot in Thailand. Half the models used vague priors, and the remaining half had informative priors. We found precision was greater when using informative priors, but effects on accuracy were more variable. In some cases, prior information improved accuracy, while in others, it was reduced. On average, models with informative priors were no more or less accurate than models without. Our analyses provide a detailed case study on the simultaneous effect of prior information on precision and accuracy and demonstrate that when priors are specified appropriately, they lead to greater precision without systematically reducing model accuracy.

  20. Application of high-precision two-way ranging to Galileo Earth-1 encounter navigation

    NASA Technical Reports Server (NTRS)

    Pollmeier, V. M.; Thurman, S. W.

    1992-01-01

    The application of precision two-way ranging to orbit determination with relatively short data arcs is investigated for the Galileo spacecraft's approach to its first Earth encounter (December 8, 1990). Analysis of previous S-band (2.3-GHz) ranging data acquired from Galileo indicated that under good signal conditions submeter precision and 10-m ranging accuracy were achieved. It is shown that ranging data of sufficient accuracy, when acquired from multiple stations, can sense the geocentric angular position of a distant spacecraft. A range data filtering technique, in which explicit modeling of range measurement bias parameters for each station pass is utilized, is shown to largely remove the systematic ground system calibration errors and transmission media effects from the Galileo range measurements, which would otherwise corrupt the angle-finding capabilities of the data. The accuracy of the Galileo orbit solutions obtained with S-band Doppler and precision ranging were found to be consistent with simple theoretical calculations, which predicted that angular accuracies of 0.26-0.34 microrad were achievable. In addition, the navigation accuracy achieved with precision ranging was marginally better than that obtained using delta-differenced one-way range (delta DOR), the principal data type that was previously used to obtain spacecraft angular position measurements operationally.

  1. Simultaneous quantification of Δ9-tetrahydrocannabinol, 11-hydroxy-Δ9-tetrahydrocannabinol, and 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid in human plasma using two-dimensional gas chromatography, cryofocusing, and electron impact-mass spectrometry

    PubMed Central

    Lowe, Ross H.; Karschner, Erin L.; Schwilke, Eugene W.; Barnes, Allan J.; Huestis, Marilyn A.

    2009-01-01

    A two-dimensional (2D) gas chromatography/electron impact-mass spectrometry (GC/EI-MS) method for simultaneous quantification of Δ9-tetrahydrocannabinol (THC), 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC), and 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid (THCCOOH) in human plasma was developed and validated. The method employs 2D capillary GC and cryofocusing for enhanced resolution and sensitivity. THC, 11-OH-THC, and THCCOOH were extracted by precipitation with acetonitrile followed by solid-phase extraction. GC separation of trimethylsilyl derivatives of analytes was accomplished with two capillary columns in series coupled via a pneumatic Deans switch system. Detection and quantification were accomplished with a bench-top single quadrupole mass spectrometer operated in electron impact-selected ion monitoring mode. Limits of quantification (LOQ) were 0.125, 0.25 and 0.125 ng/mL for THC, 11-OH-THC, and THCCOOH, respectively. Accuracy ranged from 86.0 to 113.0% for all analytes. Intra- and inter-assay precision, as percent relative standard deviation, was less than 14.1% for THC, 11-OH-THC, and THCCOOH. The method was successfully applied to quantification of THC and its 11-OH-THC and THCCOOH metabolites in plasma specimens following controlled administration of THC. PMID:17640656

  2. Validation and evaluation of an HPLC methodology for the quantification of the potent antimitotic compound (+)-discodermolide in the Caribbean marine sponge Discodermia dissoluta.

    PubMed

    Valderrama, Katherine; Castellanos, Leonardo; Zea, Sven

    2010-08-01

    The sponge Discodermia dissoluta is the source of the potent antimitotic compound (+)-discodermolide. The relatively abundant and shallow populations of this sponge in Santa Marta, Colombia, allow for studies to evaluate the natural and biotechnological supply options of (+)-discodermolide. In this work, an RP-HPLC-UV methodology for the quantification of (+)-discodermolide from sponge samples was tested and validated. Our protocol for extracting this compound from the sponge included lyophilization, exhaustive methanol extraction, partitioning using water and dichloromethane, purification of the organic fraction in RP-18 cartridges and then finally retrieving the (+)-discodermolide in the methanol-water (80:20 v/v) fraction. This fraction was injected into an HPLC system with an Xterra RP-18 column and a detection wavelength of 235 nm. The calibration curve was linear, making it possible to calculate the LODs and quantification in these experiments. The intra-day and inter-day precision showed relative standard deviations lower than 5%. The accuracy, determined as the percentage recovery, was 99.4%. Nine samples of the sponge from the Bahamas, Bonaire, Curaçao and Santa Marta had concentrations of (+)-discodermolide ranging from 5.3 to 29.3 microg/g(-1) of wet sponge. This methodology is quick and simple, allowing for the quantification in sponges from natural environments, in situ cultures or dissociated cells.

  3. The Influence of Motor Skills on Measurement Accuracy

    NASA Astrophysics Data System (ADS)

    Brychta, Petr; Sadílek, Marek; Brychta, Josef

    2016-10-01

    This innovative study trying to do interdisciplinary interface at first view different ways fields: kinantropology and mechanical engineering. A motor skill is described as an action which involves the movement of muscles in a body. Gross motor skills permit functions as a running, jumping, walking, punching, lifting and throwing a ball, maintaining a body balance, coordinating etc. Fine motor skills captures smaller neuromuscular actions, such as holding an object between the thumb and a finger. In mechanical inspection, the accuracy of measurement is most important aspect. The accuracy of measurement to some extent is also dependent upon the sense of sight or sense of touch associated with fine motor skills. It is therefore clear that the level of motor skills will affect the precision and accuracy of measurement in metrology. Aim of this study is literature review to find out fine motor skills level of individuals and determine the potential effect of different fine motor skill performance on precision and accuracy of mechanical engineering measuring.

  4. The Accuracy and Precision of Position and Orientation Tracking in the HTC Vive Virtual Reality System for Scientific Research

    PubMed Central

    Niehorster, Diederick C.; Li, Li; Lappe, Markus

    2017-01-01

    The advent of inexpensive consumer virtual reality equipment enables many more researchers to study perception with naturally moving observers. One such system, the HTC Vive, offers a large field-of-view, high-resolution head mounted display together with a room-scale tracking system for less than a thousand U.S. dollars. If the position and orientation tracking of this system is of sufficient accuracy and precision, it could be suitable for much research that is currently done with far more expensive systems. Here we present a quantitative test of the HTC Vive’s position and orientation tracking as well as its end-to-end system latency. We report that while the precision of the Vive’s tracking measurements is high and its system latency (22 ms) is low, its position and orientation measurements are provided in a coordinate system that is tilted with respect to the physical ground plane. Because large changes in offset were found whenever tracking was briefly lost, it cannot be corrected for with a one-time calibration procedure. We conclude that the varying offset between the virtual and the physical tracking space makes the HTC Vive at present unsuitable for scientific experiments that require accurate visual stimulation of self-motion through a virtual world. It may however be suited for other experiments that do not have this requirement. PMID:28567271

  5. The Accuracy and Precision of Position and Orientation Tracking in the HTC Vive Virtual Reality System for Scientific Research.

    PubMed

    Niehorster, Diederick C; Li, Li; Lappe, Markus

    2017-01-01

    The advent of inexpensive consumer virtual reality equipment enables many more researchers to study perception with naturally moving observers. One such system, the HTC Vive, offers a large field-of-view, high-resolution head mounted display together with a room-scale tracking system for less than a thousand U.S. dollars. If the position and orientation tracking of this system is of sufficient accuracy and precision, it could be suitable for much research that is currently done with far more expensive systems. Here we present a quantitative test of the HTC Vive's position and orientation tracking as well as its end-to-end system latency. We report that while the precision of the Vive's tracking measurements is high and its system latency (22 ms) is low, its position and orientation measurements are provided in a coordinate system that is tilted with respect to the physical ground plane. Because large changes in offset were found whenever tracking was briefly lost, it cannot be corrected for with a one-time calibration procedure. We conclude that the varying offset between the virtual and the physical tracking space makes the HTC Vive at present unsuitable for scientific experiments that require accurate visual stimulation of self-motion through a virtual world. It may however be suited for other experiments that do not have this requirement.

  6. High-precision arithmetic in mathematical physics

    DOE PAGES

    Bailey, David H.; Borwein, Jonathan M.

    2015-05-12

    For many scientific calculations, particularly those involving empirical data, IEEE 32-bit floating-point arithmetic produces results of sufficient accuracy, while for other applications IEEE 64-bit floating-point is more appropriate. But for some very demanding applications, even higher levels of precision are often required. Furthermore, this article discusses the challenge of high-precision computation, in the context of mathematical physics, and highlights what facilities are required to support future computation, in light of emerging developments in computer architecture.

  7. Accurate time delay technology in simulated test for high precision laser range finder

    NASA Astrophysics Data System (ADS)

    Chen, Zhibin; Xiao, Wenjian; Wang, Weiming; Xue, Mingxi

    2015-10-01

    With the continuous development of technology, the ranging accuracy of pulsed laser range finder (LRF) is higher and higher, so the maintenance demand of LRF is also rising. According to the dominant ideology of "time analog spatial distance" in simulated test for pulsed range finder, the key of distance simulation precision lies in the adjustable time delay. By analyzing and comparing the advantages and disadvantages of fiber and circuit delay, a method was proposed to improve the accuracy of the circuit delay without increasing the count frequency of the circuit. A high precision controllable delay circuit was designed by combining the internal delay circuit and external delay circuit which could compensate the delay error in real time. And then the circuit delay accuracy could be increased. The accuracy of the novel circuit delay methods proposed in this paper was actually measured by a high sampling rate oscilloscope actual measurement. The measurement result shows that the accuracy of the distance simulated by the circuit delay is increased from +/- 0.75m up to +/- 0.15m. The accuracy of the simulated distance is greatly improved in simulated test for high precision pulsed range finder.

  8. Diagnostic accuracy of MRI in the measurement of glenoid bone loss.

    PubMed

    Gyftopoulos, Soterios; Hasan, Saqib; Bencardino, Jenny; Mayo, Jason; Nayyar, Samir; Babb, James; Jazrawi, Laith

    2012-10-01

    The purpose of this study is to assess the accuracy of MRI quantification of glenoid bone loss and to compare the diagnostic accuracy of MRI to CT in the measurement of glenoid bone loss. MRI, CT, and 3D CT examinations of 18 cadaveric glenoids were obtained after the creation of defects along the anterior and anteroinferior glenoid. The defects were measured by three readers separately and blindly using the circle method. These measurements were compared with measurements made on digital photographic images of the cadaveric glenoids. Paired sample Student t tests were used to compare the imaging modalities. Concordance correlation coefficients were also calculated to measure interobserver agreement. Our data show that MRI could be used to accurately measure glenoid bone loss with a small margin of error (mean, 3.44%; range, 2.06-5.94%) in estimated percentage loss. MRI accuracy was similar to that of both CT and 3D CT for glenoid loss measurements in our study for the readers familiar with the circle method, with 1.3% as the maximum expected difference in accuracy of the percentage bone loss between the different modalities (95% confidence). Glenoid bone loss can be accurately measured on MRI using the circle method. The MRI quantification of glenoid bone loss compares favorably to measurements obtained using 3D CT and CT. The accuracy of the measurements correlates with the level of training, and a learning curve is expected before mastering this technique.

  9. Simultaneous Quantification of Syringic Acid and Kaempferol in Extracts of Bergenia Species Using Validated High-Performance Thin-Layer Chromatographic-Densitometric Method.

    PubMed

    Srivastava, Nishi; Srivastava, Amit; Srivastava, Sharad; Rawat, Ajay Kumar Singh; Khan, Abdul Rahman

    2016-03-01

    A rapid, sensitive, selective and robust quantitative densitometric high-performance thin-layer chromatographic method was developed and validated for separation and quantification of syringic acid (SYA) and kaempferol (KML) in the hydrolyzed extracts of Bergenia ciliata and Bergenia stracheyi. The separation was performed on silica gel 60F254 high-performance thin-layer chromatography plates using toluene : ethyl acetate : formic acid (5 : 4: 1, v/v/v) as the mobile phase. The quantification of SYA and KML was carried out using a densitometric reflection/absorption mode at 290 nm. A dense spot of SYA and KML appeared on the developed plate at a retention factor value of 0.61 ± 0.02 and 0.70 ± 0.01. A precise and accurate quantification was performed using linear regression analysis by plotting the peak area vs concentration 100-600 ng/band (correlation coefficient: r = 0.997, regression coefficient: R(2) = 0.996) for SYA and 100-600 ng/band (correlation coefficient: r = 0.995, regression coefficient: R(2) = 0.991) for KML. The developed method was validated in terms of accuracy, recovery and inter- and intraday study as per International Conference on Harmonisation guidelines. The limit of detection and limit of quantification of SYA and KML were determined, respectively, as 91.63, 142.26 and 277.67, 431.09 ng. The statistical data analysis showed that the method is reproducible and selective for the estimation of SYA and KML in extracts of B. ciliata and B. stracheyi. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Phylogenetic Quantification of Intra-tumour Heterogeneity

    PubMed Central

    Schwarz, Roland F.; Trinh, Anne; Sipos, Botond; Brenton, James D.; Goldman, Nick; Markowetz, Florian

    2014-01-01

    Intra-tumour genetic heterogeneity is the result of ongoing evolutionary change within each cancer. The expansion of genetically distinct sub-clonal populations may explain the emergence of drug resistance, and if so, would have prognostic and predictive utility. However, methods for objectively quantifying tumour heterogeneity have been missing and are particularly difficult to establish in cancers where predominant copy number variation prevents accurate phylogenetic reconstruction owing to horizontal dependencies caused by long and cascading genomic rearrangements. To address these challenges, we present MEDICC, a method for phylogenetic reconstruction and heterogeneity quantification based on a Minimum Event Distance for Intra-tumour Copy-number Comparisons. Using a transducer-based pairwise comparison function, we determine optimal phasing of major and minor alleles, as well as evolutionary distances between samples, and are able to reconstruct ancestral genomes. Rigorous simulations and an extensive clinical study show the power of our method, which outperforms state-of-the-art competitors in reconstruction accuracy, and additionally allows unbiased numerical quantification of tumour heterogeneity. Accurate quantification and evolutionary inference are essential to understand the functional consequences of tumour heterogeneity. The MEDICC algorithms are independent of the experimental techniques used and are applicable to both next-generation sequencing and array CGH data. PMID:24743184

  11. Accurate proteome-wide protein quantification from high-resolution 15N mass spectra

    PubMed Central

    2011-01-01

    In quantitative mass spectrometry-based proteomics, the metabolic incorporation of a single source of 15N-labeled nitrogen has many advantages over using stable isotope-labeled amino acids. However, the lack of a robust computational framework for analyzing the resulting spectra has impeded wide use of this approach. We have addressed this challenge by introducing a new computational methodology for analyzing 15N spectra in which quantification is integrated with identification. Application of this method to an Escherichia coli growth transition reveals significant improvement in quantification accuracy over previous methods. PMID:22182234

  12. Quantification of Efficiency of Beneficiation of Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Trigwell, Steve; Lane, John; Captain, James; Weis, Kyle; Quinn, Jacqueline; Watanabe, Fumiya

    2011-01-01

    Electrostatic beneficiation of lunar regolith is being researched at Kennedy Space Center to enhance the ilmenite concentration of the regolith for the production of oxygen in in-situ resource utilization on the lunar surface. Ilmenite enrichment of up to 200% was achieved using lunar simulants. For the most accurate quantification of the regolith particles, standard petrographic methods are typically followed, but in order to optimize the process, many hundreds of samples were generated in this study that made the standard analysis methods time prohibitive. In the current studies, X-ray photoelectron spectroscopy (XPS) and Secondary Electron microscopy/Energy Dispersive Spectroscopy (SEM/EDS) were used that could automatically, and quickly, analyze many separated fractions of lunar simulant. In order to test the accuracy of the quantification, test mixture samples of known quantities of ilmenite (2, 5, 10, and 20 wt%) in silica (pure quartz powder), were analyzed by XPS and EDS. The results showed that quantification for low concentrations of ilmenite in silica could be accurately achieved by both XPS and EDS, knowing the limitations of the techniques. 1

  13. Method development and validation for simultaneous quantification of 15 drugs of abuse and prescription drugs and 7 of their metabolites in whole blood relevant in the context of driving under the influence of drugs--usefulness of multi-analyte calibration.

    PubMed

    Steuer, Andrea E; Forss, Anna-Maria; Dally, Annika M; Kraemer, Thomas

    2014-11-01

    In the context of driving under the influence of drugs (DUID), not only common drugs of abuse may have an influence, but also medications with similar mechanisms of action. Simultaneous quantification of a variety of drugs and medications relevant in this context allows faster and more effective analyses. Therefore, multi-analyte approaches have gained more and more popularity in recent years. Usually, calibration curves for such procedures contain a mixture of all analytes, which might lead to mutual interferences. In this study we investigated whether the use of such mixtures leads to reliable results for authentic samples containing only one or two analytes. Five hundred microliters of whole blood were extracted by routine solid-phase extraction (SPE, HCX). Analysis was performed on an ABSciex 3200 QTrap instrument with ESI+ in scheduled MRM mode. The method was fully validated according to international guidelines including selectivity, recovery, matrix effects, accuracy and precision, stabilities, and limit of quantification. The selected SPE provided recoveries >60% for all analytes except 6-monoacetylmorphine (MAM) with coefficients of variation (CV) below 15% or 20% for quality controls (QC) LOW and HIGH, respectively. Ion suppression >30% was found for benzoylecgonine, hydrocodone, hydromorphone, MDA, oxycodone, and oxymorphone at QC LOW, however CVs were always below 10% (n=6 different whole blood samples). Accuracy and precision criteria were fulfilled for all analytes except for MAM. Systematic investigation of accuracy determined for QC MED in a multi-analyte mixture compared to samples containing only single analytes revealed no relevant differences for any analyte, indicating that a multi-analyte calibration is suitable for the presented method. Comparison of approximately 60 samples to a former GC-MS method showed good correlation. The newly validated method was successfully applied to more than 1600 routine samples and 3 proficiency tests

  14. freeQuant: A Mass Spectrometry Label-Free Quantification Software Tool for Complex Proteome Analysis.

    PubMed

    Deng, Ning; Li, Zhenye; Pan, Chao; Duan, Huilong

    2015-01-01

    Study of complex proteome brings forward higher request for the quantification method using mass spectrometry technology. In this paper, we present a mass spectrometry label-free quantification tool for complex proteomes, called freeQuant, which integrated quantification with functional analysis effectively. freeQuant consists of two well-integrated modules: label-free quantification and functional analysis with biomedical knowledge. freeQuant supports label-free quantitative analysis which makes full use of tandem mass spectrometry (MS/MS) spectral count, protein sequence length, shared peptides, and ion intensity. It adopts spectral count for quantitative analysis and builds a new method for shared peptides to accurately evaluate abundance of isoforms. For proteins with low abundance, MS/MS total ion count coupled with spectral count is included to ensure accurate protein quantification. Furthermore, freeQuant supports the large-scale functional annotations for complex proteomes. Mitochondrial proteomes from the mouse heart, the mouse liver, and the human heart were used to evaluate the usability and performance of freeQuant. The evaluation showed that the quantitative algorithms implemented in freeQuant can improve accuracy of quantification with better dynamic range.

  15. Simultaneous quantification and identification of flavonoids, lignans, coumarin and amides in leaves of Zanthoxylum armatum using UPLC-DAD-ESI-QTOF-MS/MS.

    PubMed

    Bhatt, Vinod; Sharma, Sushila; Kumar, Neeraj; Sharma, Upendra; Singh, Bikram

    2017-01-05

    The current study presents isolation and characterization of twelve compounds including catechin (1), isovitexin (2), hesperidin (3), psoralin (4), eudesmin (5), kobusin (6), fargesin (7), sesamin (8), asarinin (9), planispine-A (10), α-sanshool (11) and vitexin (12), from the leaves of Zanthoxylum armatum. Further, two rapid and simple ultra performance liquid chromatography-diode array detection (UPLC-DAD) methods were developed for the simultaneous quantitative determination of isolated compounds from Z. armatum leaves. These analytical methods were validated for linearity, precision, accuracy, limit of detection (LOD) and limit of quantification (LOQ). The LOD and LOQ were in the range of 0.06-0.21μg/mL and 0.19-0.69μg/mL, respectively. The validated method was linear (R 2 ≥0.9906), precise in terms of peak area (intra-day RSDs <3.8% and inter-day RSDs <2.7%), and accurate (109.6-92.5%). This is the first report on the isolation and quantification of 1, 2, 4 and 12 in Z. armatum and 3 in Zanthoxylum genus. The methods: were successfully applied to assess the quality of samples collected from different locations of Himachal Pradesh during summer and winter season. The results demonstrated that flavonoids and furofuran lignans were the major constituents in Z. armatum leaves. The developed methods: were further applied for tandem electrospray ionization-mass spectrometry (UPLC-DAD-ESI-MS/MS) and total eighteen compounds were identified including phenolic acid, flavonoids, furofuran lignans, coumarin and isobutyl amides. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Abbreviation definition identification based on automatic precision estimates.

    PubMed

    Sohn, Sunghwan; Comeau, Donald C; Kim, Won; Wilbur, W John

    2008-09-25

    The rapid growth of biomedical literature presents challenges for automatic text processing, and one of the challenges is abbreviation identification. The presence of unrecognized abbreviations in text hinders indexing algorithms and adversely affects information retrieval and extraction. Automatic abbreviation definition identification can help resolve these issues. However, abbreviations and their definitions identified by an automatic process are of uncertain validity. Due to the size of databases such as MEDLINE only a small fraction of abbreviation-definition pairs can be examined manually. An automatic way to estimate the accuracy of abbreviation-definition pairs extracted from text is needed. In this paper we propose an abbreviation definition identification algorithm that employs a variety of strategies to identify the most probable abbreviation definition. In addition our algorithm produces an accuracy estimate, pseudo-precision, for each strategy without using a human-judged gold standard. The pseudo-precisions determine the order in which the algorithm applies the strategies in seeking to identify the definition of an abbreviation. On the Medstract corpus our algorithm produced 97% precision and 85% recall which is higher than previously reported results. We also annotated 1250 randomly selected MEDLINE records as a gold standard. On this set we achieved 96.5% precision and 83.2% recall. This compares favourably with the well known Schwartz and Hearst algorithm. We developed an algorithm for abbreviation identification that uses a variety of strategies to identify the most probable definition for an abbreviation and also produces an estimated accuracy of the result. This process is purely automatic.

  17. Superior accuracy of model-based radiostereometric analysis for measurement of polyethylene wear

    PubMed Central

    Stilling, M.; Kold, S.; de Raedt, S.; Andersen, N. T.; Rahbek, O.; Søballe, K.

    2012-01-01

    Objectives The accuracy and precision of two new methods of model-based radiostereometric analysis (RSA) were hypothesised to be superior to a plain radiograph method in the assessment of polyethylene (PE) wear. Methods A phantom device was constructed to simulate three-dimensional (3D) PE wear. Images were obtained consecutively for each simulated wear position for each modality. Three commercially available packages were evaluated: model-based RSA using laser-scanned cup models (MB-RSA), model-based RSA using computer-generated elementary geometrical shape models (EGS-RSA), and PolyWare. Precision (95% repeatability limits) and accuracy (Root Mean Square Errors) for two-dimensional (2D) and 3D wear measurements were assessed. Results The precision for 2D wear measures was 0.078 mm, 0.102 mm, and 0.076 mm for EGS-RSA, MB-RSA, and PolyWare, respectively. For the 3D wear measures the precision was 0.185 mm, 0.189 mm, and 0.244 mm for EGS-RSA, MB-RSA, and PolyWare respectively. Repeatability was similar for all methods within the same dimension, when compared between 2D and 3D (all p > 0.28). For the 2D RSA methods, accuracy was below 0.055 mm and at least 0.335 mm for PolyWare. For 3D measurements, accuracy was 0.1 mm, 0.2 mm, and 0.3 mm for EGS-RSA, MB-RSA and PolyWare respectively. PolyWare was less accurate compared with RSA methods (p = 0.036). No difference was observed between the RSA methods (p = 0.10). Conclusions For all methods, precision and accuracy were better in 2D, with RSA methods being superior in accuracy. Although less accurate and precise, 3D RSA defines the clinically relevant wear pattern (multidirectional). PolyWare is a good and low-cost alternative to RSA, despite being less accurate and requiring a larger sample size. PMID:23610688

  18. Performance of search strategies to retrieve systematic reviews of diagnostic test accuracy from the Cochrane Library.

    PubMed

    Huang, Yuansheng; Yang, Zhirong; Wang, Jing; Zhuo, Lin; Li, Zhixia; Zhan, Siyan

    2016-05-06

    To compare the performance of search strategies to retrieve systematic reviews of diagnostic test accuracy from The Cochrane Library. Databases of CDSR and DARE in the Cochrane Library were searched for systematic reviews of diagnostic test accuracy published between 2008 and 2012 through nine search strategies. Each strategy consists of one group or combination of groups of searching filters about diagnostic test accuracy. Four groups of diagnostic filters were used. The Strategy combing all the filters was used as the reference to determine the sensitivity, precision, and the sensitivity x precision product for another eight Strategies. The reference Strategy retrieved 8029 records, of which 832 were eligible. The strategy only composed of MeSH terms about "accuracy measures" achieved the highest values in both precision (69.71%) and product (52.45%) with a moderate sensitivity (75.24%). The combination of MeSH terms and free text words about "accuracy measures" contributed little to increasing the sensitivity. Strategies composed of filters about "diagnosis" had similar sensitivity but lower precision and product to those composed of filters about "accuracy measures". MeSH term "exp'diagnosis' " achieved the lowest precision (9.78%) and product (7.91%), while its hyponym retrieved only half the number of records at the expense of missing 53 target articles. The precision was negatively correlated with sensitivities among the nine strategies. Compared to the filters about "diagnosis", the filters about "accuracy measures" achieved similar sensitivities but higher precision. When combining both terms, sensitivity of the strategy was enhanced obviously. The combination of MeSH terms and free text words about the same concept seemed to be meaningless for enhancing sensitivity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Simultaneous Quantification of Dexpanthenol and Resorcinol from Hair Care Formulation Using Liquid Chromatography: Method Development and Validation.

    PubMed

    De, Amit Kumar; Chowdhury, Partha Pratim; Chattapadhyay, Shyamaprasad

    2016-01-01

    The current study presents the simultaneous quantification of dexpanthenol and resorcinol from marketed hair care formulation. Dexpanthenol is often present as an active ingredient in personal care products for its beautifying and invigorating properties and restorative and smoothing properties. On the other hand resorcinol is mainly prescribed for the treatment of seborrheic dermatitis of scalp. The toxic side effects of resorcinol limit its use in dermatological preparations. Therefore an accurate quantification technique for the simultaneous estimation of these two components can be helpful for the formulation industries for the accurate analysis of their product quality. In the current study a high performance liquid chromatographic technique has been developed using a C18 column and a mobile phase consisting of phosphate buffer of pH = 2.8 following a gradient elution. The mobile phase flow rate was 0.6 mL per minute and the detection wavelength was 210 nm for dexpanthenol and 280 nm for resorcinol. The linearity study was carried out using five solutions having concentrations ranging between 10.34 μg·mL(-1) and 82.69 μg·mL(-1) (r (2) = 0.999) for resorcinol and 10.44 μg·mL(-1) and 83.50 μg·mL(-1) (r (2) = 0.998) for dexpanthenol. The method has been validated as per ICH Q2(R1) guidelines. The ease of single step sample preparation, accuracy, and precision (intraday and interday) study presents the method suitable for the simultaneous quantification of dexpanthenol and resorcinol from any personal care product and dermatological preparations containing these two ingredients.

  20. Simultaneous Quantification of Dexpanthenol and Resorcinol from Hair Care Formulation Using Liquid Chromatography: Method Development and Validation

    PubMed Central

    De, Amit Kumar; Chowdhury, Partha Pratim; Chattapadhyay, Shyamaprasad

    2016-01-01

    The current study presents the simultaneous quantification of dexpanthenol and resorcinol from marketed hair care formulation. Dexpanthenol is often present as an active ingredient in personal care products for its beautifying and invigorating properties and restorative and smoothing properties. On the other hand resorcinol is mainly prescribed for the treatment of seborrheic dermatitis of scalp. The toxic side effects of resorcinol limit its use in dermatological preparations. Therefore an accurate quantification technique for the simultaneous estimation of these two components can be helpful for the formulation industries for the accurate analysis of their product quality. In the current study a high performance liquid chromatographic technique has been developed using a C18 column and a mobile phase consisting of phosphate buffer of pH = 2.8 following a gradient elution. The mobile phase flow rate was 0.6 mL per minute and the detection wavelength was 210 nm for dexpanthenol and 280 nm for resorcinol. The linearity study was carried out using five solutions having concentrations ranging between 10.34 μg·mL−1 and 82.69 μg·mL−1 (r 2 = 0.999) for resorcinol and 10.44 μg·mL−1 and 83.50 μg·mL−1 (r 2 = 0.998) for dexpanthenol. The method has been validated as per ICH Q2(R1) guidelines. The ease of single step sample preparation, accuracy, and precision (intraday and interday) study presents the method suitable for the simultaneous quantification of dexpanthenol and resorcinol from any personal care product and dermatological preparations containing these two ingredients. PMID:27042377

  1. The microcomputer scientific software series 4: testing prediction accuracy.

    Treesearch

    H. Michael Rauscher

    1986-01-01

    A computer program, ATEST, is described in this combination user's guide / programmer's manual. ATEST provides users with an efficient and convenient tool to test the accuracy of predictors. As input ATEST requires observed-predicted data pairs. The output reports the two components of accuracy, bias and precision.

  2. Ultra precision machining

    NASA Astrophysics Data System (ADS)

    Debra, Daniel B.; Hesselink, Lambertus; Binford, Thomas

    1990-05-01

    There are a number of fields that require or can use to advantage very high precision in machining. For example, further development of high energy lasers and x ray astronomy depend critically on the manufacture of light weight reflecting metal optical components. To fabricate these optical components with machine tools they will be made of metal with mirror quality surface finish. By mirror quality surface finish, it is meant that the dimensions tolerances on the order of 0.02 microns and surface roughness of 0.07. These accuracy targets fall in the category of ultra precision machining. They cannot be achieved by a simple extension of conventional machining processes and techniques. They require single crystal diamond tools, special attention to vibration isolation, special isolation of machine metrology, and on line correction of imperfection in the motion of the machine carriages on their way.

  3. Detection and quantification of beef and pork materials in meat products by duplex droplet digital PCR.

    PubMed

    Cai, Yicun; He, Yuping; Lv, Rong; Chen, Hongchao; Wang, Qiang; Pan, Liangwen

    2017-01-01

    Meat products often consist of meat from multiple animal species, and inaccurate food product adulteration and mislabeling can negatively affect consumers. Therefore, a cost-effective and reliable method for identification and quantification of animal species in meat products is required. In this study, we developed a duplex droplet digital PCR (dddPCR) detection and quantification system to simultaneously identify and quantify the source of meat in samples containing a mixture of beef (Bos taurus) and pork (Sus scrofa) in a single digital PCR reaction tube. Mixed meat samples of known composition were used to test the accuracy and applicability of this method. The limit of detection (LOD) and the limit of quantification (LOQ) of this detection and quantification system were also identified. We conclude that our dddPCR detection and quantification system is suitable for quality control and routine analyses of meat products.

  4. Quantification of metronidazole in human plasma using a highly sensitive and rugged LC-MS/MS method for a bioequivalence study.

    PubMed

    Vanol, Pravin G; Sanyal, Mallika; Shah, Priyanka A; Shrivastav, Pranav S

    2018-03-23

    A highly sensitive, selective and rugged method has been described for the quantification of metronidazole (MTZ) in human plasma by liquid chromatography-tandem mass spectrometry using metronidazole-d4 as the internal standard (IS). The analyte and the IS were extracted from 100 μL plasma by liquid-liquid extraction. The clear samples obtained were chromatographed on an ACE C 18 (100 × 4.6 mm, 5 μm) column using acetonitrile and 10.0 mm ammonium formate in water, pH 4.00 (80:20, v/v) as the mobile phase. A triple quadrupole mass spectrometer system equipped with turbo ion spray source and operated in multiple reaction monitoring mode was used for the detection and quantification of MTZ. The calibration range was established from 0.01 to 10.0 μg/mL. The results of validation testing for precision and accuracy, selectivity, matrix effects, recovery and stability complied with current bioanalytical guidelines. A run time of 3.0 min permitted analysis of more than 300 samples in a day. The method was applied to a bioequivalence study with 250 mg MTZ tablet formulation in 24 healthy Indian males. Copyright © 2018 John Wiley & Sons, Ltd.

  5. Measuring the bias, precision, accuracy, and validity of self-reported height and weight in assessing overweight and obesity status among adolescents using a surveillance system.

    PubMed

    Pérez, Adriana; Gabriel, Kelley; Nehme, Eileen K; Mandell, Dorothy J; Hoelscher, Deanna M

    2015-07-27

    Evidence regarding bias, precision, and accuracy in adolescent self-reported height and weight across demographic subpopulations is lacking. The bias, precision, and accuracy of adolescent self-reported height and weight across subpopulations were examined using a large, diverse and representative sample of adolescents. A second objective was to develop correction equations for self-reported height and weight to provide more accurate estimates of body mass index (BMI) and weight status. A total of 24,221 students from 8th and 11th grade in Texas participated in the School Physical Activity and Nutrition (SPAN) surveillance system in years 2000-2002 and 2004-2005. To assess bias, the differences between the self-reported and objective measures, for height and weight were estimated. To assess precision and accuracy, the Lin's concordance correlation coefficient was used. BMI was estimated for self-reported and objective measures. The prevalence of students' weight status was estimated using self-reported and objective measures; absolute (bias) and relative error (relative bias) were assessed subsequently. Correction equations for sex and race/ethnicity subpopulations were developed to estimate objective measures of height, weight and BMI from self-reported measures using weighted linear regression. Sensitivity, specificity and positive predictive values of weight status classification using self-reported measures and correction equations are assessed by sex and grade. Students in 8th- and 11th-grade overestimated their height from 0.68cm (White girls) to 2.02 cm (African-American boys), and underestimated their weight from 0.4 kg (Hispanic girls) to 0.98 kg (African-American girls). The differences in self-reported versus objectively-measured height and weight resulted in underestimation of BMI ranging from -0.23 kg/m2 (White boys) to -0.7 kg/m2 (African-American girls). The sensitivity of self-reported measures to classify weight status as obese was 70.8% and 81

  6. QUANTIFICATION OF GLYCYRRHIZIN BIOMARKER IN GLYCYRRHIZA GLABRA RHIZOME AND BABY HERBAL FORMULATIONS BY VALIDATED RP-HPTLC METHODS

    PubMed Central

    Alam, Prawez; Foudah, Ahmed I.; Zaatout, Hala H.; T, Kamal Y; Abdel-Kader, Maged S.

    2017-01-01

    Background: A simple and sensitive thin-layer chromatographic method has been established for quantification of glycyrrhizin in Glycyrrhiza glabra rhizome and baby herbal formulations by validated Reverse Phase HPTLC method. Materials and Methods: RP-HPTLC Method was carried out using glass coated with RP-18 silica gel 60 F254S HPTLC plates using methanol-water (7: 3 v/v) as mobile phase. Results: The developed plate was scanned and quantified densitometrically at 256 nm. Glycyrrhizin peaks from Glycyrrhiza glabra rhizome and baby herbal formulations were identified by comparing their single spot at Rf = 0.63 ± 0.01. Linear regression analysis revealed a good linear relationship between peak area and amount of glycyrrhizin in the range of 2000-7000 ng/band. Conclusion: The method was validated, in accordance with ICH guidelines for precision, accuracy, and robustness. The proposed method will be useful to enumerate the therapeutic dose of glycyrrhizin in herbal formulations as well as in bulk drug. PMID:28573236

  7. Separation and quantification of monoclonal-antibody aggregates by hollow-fiber-flow field-flow fractionation.

    PubMed

    Fukuda, Jun; Iwura, Takafumi; Yanagihara, Shigehiro; Kano, Kenji

    2014-10-01

    Hollow-fiber-flow field-flow fractionation (HF5) separates protein molecules on the basis of the difference in the diffusion coefficient, and can evaluate the aggregation ratio of proteins. However, HF5 is still a minor technique because information on the separation conditions is limited. We examined in detail the effect of different settings, including the main-flow rate, the cross-flow rate, the focus point, the injection amount, and the ionic strength of the mobile phase, on fractographic characteristics. On the basis of the results, we proposed optimized conditions of the HF5 method for quantification of monoclonal antibody in sample solutions. The HF5 method was qualified regarding the precision, accuracy, linearity of the main peak, and quantitation limit. In addition, the HF5 method was applied to non-heated Mab A and heat-induced-antibody-aggregate-containing samples to evaluate the aggregation ratio and the distribution extent. The separation performance was comparable with or better than that of conventional methods including analytical ultracentrifugation-sedimentation velocity and asymmetric-flow field-flow fractionation.

  8. Normal Databases for the Relative Quantification of Myocardial Perfusion

    PubMed Central

    Rubeaux, Mathieu; Xu, Yuan; Germano, Guido; Berman, Daniel S.; Slomka, Piotr J.

    2016-01-01

    Purpose of review Myocardial perfusion imaging (MPI) with SPECT is performed clinically worldwide to detect and monitor coronary artery disease (CAD). MPI allows an objective quantification of myocardial perfusion at stress and rest. This established technique relies on normal databases to compare patient scans against reference normal limits. In this review, we aim to introduce the process of MPI quantification with normal databases and describe the associated perfusion quantitative measures that are used. Recent findings New equipment and new software reconstruction algorithms have been introduced which require the development of new normal limits. The appearance and regional count variations of normal MPI scan may differ between these new scanners and standard Anger cameras. Therefore, these new systems may require the determination of new normal limits to achieve optimal accuracy in relative myocardial perfusion quantification. Accurate diagnostic and prognostic results rivaling those obtained by expert readers can be obtained by this widely used technique. Summary Throughout this review, we emphasize the importance of the different normal databases and the need for specific databases relative to distinct imaging procedures. use of appropriate normal limits allows optimal quantification of MPI by taking into account subtle image differences due to the hardware and software used, and the population studied. PMID:28138354

  9. Good quantification practices of flavours and fragrances by mass spectrometry.

    PubMed

    Begnaud, Frédéric; Chaintreau, Alain

    2016-10-28

    Over the past 15 years, chromatographic techniques with mass spectrometric detection have been increasingly used to monitor the rapidly expanded list of regulated flavour and fragrance ingredients. This trend entails a need for good quantification practices suitable for complex media, especially for multi-analytes. In this article, we present experimental precautions needed to perform the analyses and ways to process the data according to the most recent approaches. This notably includes the identification of analytes during their quantification and method validation, when applied to real matrices, based on accuracy profiles. A brief survey of application studies based on such practices is given.This article is part of the themed issue 'Quantitative mass spectrometry'. © 2016 The Authors.

  10. GPS-based precision orbit determination - A Topex flight experiment

    NASA Technical Reports Server (NTRS)

    Melbourne, William G.; Davis, Edgar S.

    1988-01-01

    Plans for a Topex/Poseiden flight experiment to test the accuracy of using GPS data for precision orbit determination of earth satellites are presented. It is expected that the GPS-based precision orbit determination will provide subdecimeter accuracies in the radial component of the Topex orbit when the extant gravity model is tuned for wavelengths longer than about 1000 kms. The concept, design, flight receiver, antenna system, ground processing, and data processing of GPS are examined. Also, an accurate quasi-geometric orbit determination approach called nondynamic or reduced dynamic tracking which relies on the use of the pseudorange and the carrier phase measurements to reduce orbit errors arising from mismodeled dynamics is discussed.

  11. Spectral performance of a whole-body research photon counting detector CT: quantitative accuracy in derived image sets

    NASA Astrophysics Data System (ADS)

    Leng, Shuai; Zhou, Wei; Yu, Zhicong; Halaweish, Ahmed; Krauss, Bernhard; Schmidt, Bernhard; Yu, Lifeng; Kappler, Steffen; McCollough, Cynthia

    2017-09-01

    Photon-counting computed tomography (PCCT) uses a photon counting detector to count individual photons and allocate them to specific energy bins by comparing photon energy to preset thresholds. This enables simultaneous multi-energy CT with a single source and detector. Phantom studies were performed to assess the spectral performance of a research PCCT scanner by assessing the accuracy of derived images sets. Specifically, we assessed the accuracy of iodine quantification in iodine map images and of CT number accuracy in virtual monoenergetic images (VMI). Vials containing iodine with five known concentrations were scanned on the PCCT scanner after being placed in phantoms representing the attenuation of different size patients. For comparison, the same vials and phantoms were also scanned on 2nd and 3rd generation dual-source, dual-energy scanners. After material decomposition, iodine maps were generated, from which iodine concentration was measured for each vial and phantom size and compared with the known concentration. Additionally, VMIs were generated and CT number accuracy was compared to the reference standard, which was calculated based on known iodine concentration and attenuation coefficients at each keV obtained from the U.S. National Institute of Standards and Technology (NIST). Results showed accurate iodine quantification (root mean square error of 0.5 mgI/cc) and accurate CT number of VMIs (percentage error of 8.9%) using the PCCT scanner. The overall performance of the PCCT scanner, in terms of iodine quantification and VMI CT number accuracy, was comparable to that of EID-based dual-source, dual-energy scanners.

  12. Quantification of mevalonate-5-phosphate using UPLC-MS/MS for determination of mevalonate kinase activity.

    PubMed

    Reitzle, Lukas; Maier, Barbara; Stojanov, Silvia; Teupser, Daniel; Muntau, Ania C; Vogeser, Michael; Gersting, Søren W

    2015-08-01

    Mevalonate kinase deficiency, a rare autosomal recessive autoinflammatory disease, is caused by mutations in the MVK gene encoding mevalonate kinase (MK). MK catalyzes the phosphorylation of mevalonic acid to mevalonate-5-phosphate (MVAP) in the pathway of isoprenoid and sterol synthesis. The disease phenotype correlates with residual activity ranging from <0.5% for mevalonic aciduria to 1-7% for the milder hyperimmunoglobulinemia D and periodic fever syndrome (HIDS). Hence, assessment of loss-of-function requires high accuracy measurements. We describe a method using isotope dilution UPLC-MS/MS for precise and sensitive determination of MK activity. Wild-type MK and the variant V261A, which is associated with HIDS, were recombinantly expressed in Escherichia coli. Enzyme activity was determined by formation of MVAP over time quantified by isotope dilution UPLC-MS/MS. The method was validated according to the FDA Guidance for Bioanalytical Method Validation. Sensitivity for detection of MAVP by UPLC-MS/MS was improved by derivatization with butanol-HCl (LLOQ, 5.0 fmol) and the method was linear from 0.5 to 250 μmol/L (R(2) > 0.99) with a precision of ≥ 89% and an accuracy of ± 2.7%. The imprecision of the activity assay, including the enzymatic reaction and the UPLC-MS/MS quantification, was 8.3%. The variant V261A showed a significantly decreased activity of 53.1%. Accurate determination of MK activity was enabled by sensitive and reproducible detection of MVAP using UPLC-MS/MS. The novel method may improve molecular characterization of MVK mutations, provide robust genotype-phenotype correlations, and accelerate compound screening for drug candidates restoring variant MK activity. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  13. Development of an indirect competitive enzyme-linked immunosorbent assay applied to the Botrytis cinerea quantification in tissues of postharvest fruits

    PubMed Central

    2011-01-01

    Background Botrytis cinerea is a phytopathogenic fungus responsible for the disease known as gray mold, which causes substantial losses of fruits at postharvest. This fungus is present often as latent infection and an apparently healthy fruit can deteriorate suddenly due to the development of this infection. For this reason, rapid and sensitive methods are necessary for its detection and quantification. This article describes the development of an indirect competitive enzyme-linked immunosorbent assay (ELISA) for quantification of B. cinerea in apple (Red Delicious), table grape (pink Moscatel), and pear (William's) tissues. Results The method was based in the competition for the binding site of monoclonal antibodies between B. cinerea antigens present in fruit tissues and B. cinerea purified antigens immobilized by a crosslinking agent onto the surface of the microtiter plates. The method was validated considering parameters such as selectivity, linearity, precision, accuracy and sensibility. The calculated detection limit was 0.97 μg mL-1 B. cinerea antigens. The immobilized antigen was perfectly stable for at least 4 months assuring the reproducibility of the assay. The fungus was detected and quantified in any of the fruits tested when the rot was not visible yet. Results were compared with a DNA quantification method and these studies showed good correlation. Conclusions The developed method allowed detects the presence of B. cinerea in asymptomatic fruits and provides the advantages of low cost, easy operation, and short analysis time determination for its possible application in the phytosanitary programs of the fruit industry worldwide. PMID:21970317

  14. Presentation Accuracy of the Web Revisited: Animation Methods in the HTML5 Era

    PubMed Central

    Garaizar, Pablo; Vadillo, Miguel A.; López-de-Ipiña, Diego

    2014-01-01

    Using the Web to run behavioural and social experiments quickly and efficiently has become increasingly popular in recent years, but there is some controversy about the suitability of using the Web for these objectives. Several studies have analysed the accuracy and precision of different web technologies in order to determine their limitations. This paper updates the extant evidence about presentation accuracy and precision of the Web and extends the study of the accuracy and precision in the presentation of multimedia stimuli to HTML5-based solutions, which were previously untested. The accuracy and precision in the presentation of visual content in classic web technologies is acceptable for use in online experiments, although some results suggest that these technologies should be used with caution in certain circumstances. Declarative animations based on CSS are the best alternative when animation intervals are above 50 milliseconds. The performance of procedural web technologies based on the HTML5 standard is similar to that of previous web technologies. These technologies are being progressively adopted by the scientific community and have promising futures, which makes their use advisable to utilizing more obsolete technologies. PMID:25302791

  15. Presentation accuracy of the web revisited: animation methods in the HTML5 era.

    PubMed

    Garaizar, Pablo; Vadillo, Miguel A; López-de-Ipiña, Diego

    2014-01-01

    Using the Web to run behavioural and social experiments quickly and efficiently has become increasingly popular in recent years, but there is some controversy about the suitability of using the Web for these objectives. Several studies have analysed the accuracy and precision of different web technologies in order to determine their limitations. This paper updates the extant evidence about presentation accuracy and precision of the Web and extends the study of the accuracy and precision in the presentation of multimedia stimuli to HTML5-based solutions, which were previously untested. The accuracy and precision in the presentation of visual content in classic web technologies is acceptable for use in online experiments, although some results suggest that these technologies should be used with caution in certain circumstances. Declarative animations based on CSS are the best alternative when animation intervals are above 50 milliseconds. The performance of procedural web technologies based on the HTML5 standard is similar to that of previous web technologies. These technologies are being progressively adopted by the scientific community and have promising futures, which makes their use advisable to utilizing more obsolete technologies.

  16. Dual mobility hip arthroplasty wear measurement: Experimental accuracy assessment using radiostereometric analysis (RSA).

    PubMed

    Pineau, V; Lebel, B; Gouzy, S; Dutheil, J-J; Vielpeau, C

    2010-10-01

    The use of dual mobility cups is an effective method to prevent dislocations. However, the specific design of these implants can raise the suspicion of increased wear and subsequent periprosthetic osteolysis. Using radiostereometric analysis (RSA), migration of the femoral head inside the cup of a dual mobility implant can be defined to apprehend polyethylene wear rate. The study aimed to establish the precision of RSA measurement of femoral head migration in the cup of a dual mobility implant, and its intra- and interobserver variability. A total hip prosthesis phantom was implanted and placed under weight loading conditions in a simulator. Model-based RSA measurement of implant penetration involved specially machined polyethylene liners with increasing concentric wear (no wear, then 0.25, 0.5 and 0.75mm). Three examiners, blinded to the level of wear, analyzed (10 times) the radiostereometric films of the four liners. There was one experienced, one trained, and one inexperienced examiner. Statistical analysis measured the accuracy, precision, and intra- and interobserver variability by calculating Root Mean Square Error (RMSE), Concordance Correlation Coefficient (CCC), Intra Class correlation Coefficient (ICC), and Bland-Altman plots. Our protocol, that used a simple geometric model rather than the manufacturer's CAD files, showed precision of 0.072mm and accuracy of 0.034mm, comparable with machining tolerances with low variability. Correlation between wear measurement and true value was excellent with a CCC of 0.9772. Intraobserver reproducibility was very good with an ICC of 0.9856, 0.9883 and 0.9842, respectively for examiners 1, 2 and 3. Interobserver reproducibility was excellent with a CCC of 0.9818 between examiners 2 and 1, and 0.9713 between examiners 3 and 1. Quantification of wear is indispensable for the surveillance of dual mobility implants. This in vitro study validates our measurement method. Our results, and comparison with other studies using

  17. Improving Weather Forecasts Through Reduced Precision Data Assimilation

    NASA Astrophysics Data System (ADS)

    Hatfield, Samuel; Düben, Peter; Palmer, Tim

    2017-04-01

    We present a new approach for improving the efficiency of data assimilation, by trading numerical precision for computational speed. Future supercomputers will allow a greater choice of precision, so that models can use a level of precision that is commensurate with the model uncertainty. Previous studies have already indicated that the quality of climate and weather forecasts is not significantly degraded when using a precision less than double precision [1,2], but so far these studies have not considered data assimilation. Data assimilation is inherently uncertain due to the use of relatively long assimilation windows, noisy observations and imperfect models. Thus, the larger rounding errors incurred from reducing precision may be within the tolerance of the system. Lower precision arithmetic is cheaper, and so by reducing precision in ensemble data assimilation, we can redistribute computational resources towards, for example, a larger ensemble size. Because larger ensembles provide a better estimate of the underlying distribution and are less reliant on covariance inflation and localisation, lowering precision could actually allow us to improve the accuracy of weather forecasts. We will present results on how lowering numerical precision affects the performance of an ensemble data assimilation system, consisting of the Lorenz '96 toy atmospheric model and the ensemble square root filter. We run the system at half precision (using an emulation tool), and compare the results with simulations at single and double precision. We estimate that half precision assimilation with a larger ensemble can reduce assimilation error by 30%, with respect to double precision assimilation with a smaller ensemble, for no extra computational cost. This results in around half a day extra of skillful weather forecasts, if the error-doubling characteristics of the Lorenz '96 model are mapped to those of the real atmosphere. Additionally, we investigate the sensitivity of these results

  18. Simultaneous quantification of fentanyl, sufentanil, cefazolin, doxapram and keto-doxapram in plasma using liquid chromatography - tandem mass spectrometry.

    PubMed

    Flint, Robert B; Bahmany, Soma; van der Nagel, Bart C H; Koch, Birgit C P

    2018-05-16

    A simple and specific UPLC-MS/MS method was developed and validated for simultaneous quantification of fentanyl, sufentanil, cefazolin, doxapram and its active metabolite keto-doxapram. The internal standard was fentanyl-d5 for all analytes. Chromatographic separation was achieved with a reversed phase Acquity UPLC HSS T3 column with a run-time of only 5.0 minutes per injected sample. Gradient elution was performed with a mobile phase consisting of ammonium acetate, formic acid in Milli-Q ultrapure water or in methanol with a total flow rate of 0.4 mL minute -1 . A plasma volume of only 50 μL was required to achieve both adequate accuracy and precision. Calibration curves of all 5 analytes were linear. All analytes were stable for at least 48 hours in the autosampler. The method was validated according to US Food and Drug Administration guidelines. This method allows quantification of fentanyl, sufentanil, cefazolin, doxapram and keto-doxapram, which serves purposes for research, as well as therapeutic drug monitoring, if applicable. The strength of this method is the combination of a small sample volume, a short run-time, a deuterated internal standard, an easy sample preparation method and the ability to simultaneously quantify all analytes in one run. This article is protected by copyright. All rights reserved.

  19. Precision and accuracy in measuring absence from work as a basis for calculating productivity costs in The Netherlands.

    PubMed

    Severens, J L; Mulder, J; Laheij, R J; Verbeek, A L

    2000-07-01

    The impact of disease on the ability of a person to perform work should be part of an economic evaluation when a societal viewpoint is used for the analysis. This impact is reflected by calculating productivity costs. Measurement of these costs is often performed retrospectively. The purpose of our study was to study precision and accuracy of a retrospective self-administered questionnaire on sick leave. Employees of a company were asked to indicate the number of days absent from work due to illness during the past 2 weeks, 4 weeks, 2 months, 6 months, and the past 12 months. The percentage of respondents with an absolute difference of a maximum of respectively 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 or more days between reported, and company-registered absence due to illness was determined. Besides this, the proportional difference was calculated. A systematic difference was tested with a signed rank test. Of the reported data, 95% matched the registered data perfectly when the recall period was limited to 2 and 4 weeks. This percentage decreased to 87%, 57%, and 51% for 2 months, 6 months, and 12 months. The weighted mean proportional differences for the recall periods were respectively 32.9, 35.2, 45.3, 34.9, and 113.6%. No systematic positive or negative difference was found between registered and reported sick leave. The results suggest that the recall period for retrospective measurement of sick leave is limited according to the precision level, which seems to be appropriate for the subject and the purpose of the study. We recommend using a recall period of no more than 2 months.

  20. Quantification of the total amount of black cohosh cycloartanoids by integration of one specific 1H NMR signal.

    PubMed

    Çiçek, Serhat Sezai; Girreser, Ulrich; Zidorn, Christian

    2018-06-05

    Quantitative analysis is an important field in the quality control of medicinal plants, aiming to determine the amount of pharmacologically active constituents in complex matrices. Often biological effects of herbal drugs are not restricted to single compounds, but are rather caused by a number of often biogenetically related plant metabolites. Depending on the complexity of the analyzed plant extract, conflicts between accuracy, such as total content assays using photometric or colorimetric methods, and comprehensiveness, e.g. quantification of one or a few lead compounds can occur. In this study, we present a qHNMR approach determining the total amount of cycloartanoids in black cohosh (Actaea racemosa) rhizomes. Perdeuterated methanol containing 1,2,4,5-tetrachloro-3-nitrobenzene as an internal standard was used for extraction. Amounts of cycloartanoids were then measured by integrating 1 H NMR signals of all cycloartenoids' H-19 exo protons. Due to their unusually low chemical shifts, these signals are well separated from all remaining signals in crude extracts. Thus, accurate (recovery rates of 99.5-102.5%) and precise (relative standard deviations below 2.5%) quantification of cycloartanoids was accomplished. To the best of our knowledge, this is the first example of a quantification of the total amount of a pharmacologically relevant compound class by integration of one 1 H NMR signal characteristic for all members of this particular compound class. Additionally, we propose a new term and unit for the evaluation of medicinal plants and herbal medicinal products: the "specific partial amount of substance" of pharmacologically active constituents, indicated in mmol/g. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Identification and quantification of VOCs by proton transfer reaction time of flight mass spectrometry: An experimental workflow for the optimization of specificity, sensitivity, and accuracy

    PubMed Central

    Hanna, George B.

    2018-01-01

    Abstract Proton transfer reaction time of flight mass spectrometry (PTR‐ToF‐MS) is a direct injection MS technique, allowing for the sensitive and real‐time detection, identification, and quantification of volatile organic compounds. When aiming to employ PTR‐ToF‐MS for targeted volatile organic compound analysis, some methodological questions must be addressed, such as the need to correctly identify product ions, or evaluating the quantitation accuracy. This work proposes a workflow for PTR‐ToF‐MS method development, addressing the main issues affecting the reliable identification and quantification of target compounds. We determined the fragmentation patterns of 13 selected compounds (aldehydes, fatty acids, phenols). Experiments were conducted under breath‐relevant conditions (100% humid air), and within an extended range of reduced electric field values (E/N = 48–144 Td), obtained by changing drift tube voltage. Reactivity was inspected using H3O+, NO+, and O2 + as primary ions. The results show that a relatively low (<90 Td) E/N often permits to reduce fragmentation enhancing sensitivity and identification capabilities, particularly in the case of aldehydes using NO+, where a 4‐fold increase in sensitivity is obtained by means of drift voltage reduction. We developed a novel calibration methodology, relying on diffusion tubes used as gravimetric standards. For each of the tested compounds, it was possible to define suitable conditions whereby experimental error, defined as difference between gravimetric measurements and calculated concentrations, was 8% or lower. PMID:29336521

  2. Precision CW laser automatic tracking system investigated

    NASA Technical Reports Server (NTRS)

    Lang, K. T.; Lucy, R. F.; Mcgann, E. J.; Peters, C. J.

    1966-01-01

    Precision laser tracker capable of tracking a low acceleration target to an accuracy of about 20 microradians rms is being constructed and tested. This laser tracking has the advantage of discriminating against other optical sources and the capability of simultaneously measuring range.

  3. Accuracy and precision of glucose monitoring are relevant to treatment decision-making and clinical outcome in hospitalized patients with diabetes.

    PubMed

    Voulgari, Christina; Tentolouris, Nicholas

    2011-07-01

    The accuracy and precision of three blood glucose meters (BGMs) were evaluated in 600 hospitalized patients with type 1 (n = 200) or type 2 (n = 400) diabetes. Capillary blood glucose values were analyzed with Accu-Chek(®) Aviva [Roche (Hellas) S.A., Maroussi, Greece], Precision-Xceed(®) [Abbott Laboratories (Hellas) S.A., Alimos, Greece], and Glucocard X-Sensor(®) (Menarini Diagnostics S.A., Argyroupolis, Greece). At the same time plasma glucose was analyzed using the World Health Organization's glucose oxidase method. Median plasma glucose values (141.2 [range, 13-553] mg/dL) were significantly different from that produced by the BGMs (P < 0.001). The Accu-Chek Aviva underestimated hypoglycemia (plasma glucose ≤55 mg/dL) by a mean difference of 4.1 mg/dL (95% confidence interval [CI] 0-28 mg/dL), and the Precision-Xceed did so by a mean difference of 6.2 mg/dL (95% CI 0-29 mg/dL); the same was true for the Glucocard X-Sensor by a mean difference of 9.1 mg/dL (CI 0-57 mg/dL) (P < 0.001 for all BGMs). Hyperglycemia (plasma glucose ≥250 mg/dL) was overestimated with the Accu-Chek Aviva and the Precision-Xceed by a mean difference of 4.8 mg/dL (95% CI 0-41 mg/dL) and 10.4 mg/dL (CI 0-92 mg/dL), respectively; the same was true for the Glucocard X-Sensor by a mean difference of 20.3 mg/dL (95% CI 0-100 mg/dL) (P < 0.001 for all BGMs). Asymptomatic hypoglycemia was detected in 28% of type 1 and in 18% of type 2 diabetes patients. In all cases, the BGMs were unreliable in sensing hypoglycemia. Multivariate linear regression analysis demonstrated that low blood pressure and hematocrit significantly affected glucose measurements obtained with all three BGMs (P < 0.05). In hospitalized diabetes patients, all three frequently used BGMs undersensed hypoglycemia and oversensed hyperglycemia to some extent. Patients and caregivers should be aware of these restrictions of the BGMs.

  4. Development and validation of a gas chromatography/ion trap-mass spectrometry method for simultaneous quantification of cocaine and its metabolites benzoylecgonine and norcocaine: application to the study of cocaine metabolism in human primary cultured renal cells.

    PubMed

    Valente, Maria João; Carvalho, Félix; Bastos, M Lourdes; Carvalho, Márcia; de Pinho, Paula Guedes

    2010-11-15

    Acute renal failure is a common finding in cocaine abusers. While cocaine metabolism may contribute to its nephrotoxic mechanisms, its pharmacokinetics in kidney cells is hitherto to be clarified. Primary cultures of human proximal tubular cells (HPTCs) provide a well-characterized in vitro model, phenotypically representative of HPTCs in vivo. Thus, the present work describes the first sensitive gas chromatography/ion trap-mass spectrometry (GC/IT-MS) method for measurement of cocaine and its metabolites benzoylecgonine (BE) and norcocaine (NCOC) using a primary culture of HPTCs as cellular matrix, following solid phase extraction (SPE) and derivatization with N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA). The application of this methodology also enables the identification of two other cocaine metabolites: ecgonine methyl ester (EME) and anhydroecgonine methyl ester (AEME). The validation of the method was performed through the evaluation of selectivity, linearity, precision and accuracy, limit of detection (LOD), and limit of quantification (LOQ). Its applicability was demonstrated through the quantification of cocaine, BE and NCOC in primary cultured HPTCs after incubation, at physiological conditions, with 1 mM cocaine for 72 h. The developed GC/IT-MS method was found to be linear (r² > 0.99). The intra-day precision varied between 3.6% and 13.5% and the values of accuracy between 92.7% and 111.9%. The LOD values for cocaine, BE and NCOC were 0.97±0.09, 0.40±0.04 and 20.89±1.81 ng/mL, respectively, and 3.24±0.30, 1.34±0.14 and 69.62±6.05 ng/mL as LOQ values. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Accuracy of five intraoral scanners compared to indirect digitalization.

    PubMed

    Güth, Jan-Frederik; Runkel, Cornelius; Beuer, Florian; Stimmelmayr, Michael; Edelhoff, Daniel; Keul, Christine

    2017-06-01

    Direct and indirect digitalization offer two options for computer-aided design (CAD)/ computer-aided manufacturing (CAM)-generated restorations. The aim of this study was to evaluate the accuracy of different intraoral scanners and compare them to the process of indirect digitalization. A titanium testing model was directly digitized 12 times with each intraoral scanner: (1) CS 3500 (CS), (2) Zfx Intrascan (ZFX), (3) CEREC AC Bluecam (BLU), (4) CEREC AC Omnicam (OC) and (5) True Definition (TD). As control, 12 polyether impressions were taken and the referring plaster casts were digitized indirectly with the D-810 laboratory scanner (CON). The accuracy (trueness/precision) of the datasets was evaluated by an analysing software (Geomagic Qualify 12.1) using a "best fit alignment" of the datasets with a highly accurate reference dataset of the testing model, received from industrial computed tomography. Direct digitalization using the TD showed the significant highest overall "trueness", followed by CS. Both performed better than CON. BLU, ZFX and OC showed higher differences from the reference dataset than CON. Regarding the overall "precision", the CS 3500 intraoral scanner and the True Definition showed the best performance. CON, BLU and OC resulted in significantly higher precision than ZFX did. Within the limitations of this in vitro study, the accuracy of the ascertained datasets was dependent on the scanning system. The direct digitalization was not superior to indirect digitalization for all tested systems. Regarding the accuracy, all tested intraoral scanning technologies seem to be able to reproduce a single quadrant within clinical acceptable accuracy. However, differences were detected between the tested systems.

  6. Overlay accuracy fundamentals

    NASA Astrophysics Data System (ADS)

    Kandel, Daniel; Levinski, Vladimir; Sapiens, Noam; Cohen, Guy; Amit, Eran; Klein, Dana; Vakshtein, Irina

    2012-03-01

    Currently, the performance of overlay metrology is evaluated mainly based on random error contributions such as precision and TIS variability. With the expected shrinkage of the overlay metrology budget to < 0.5nm, it becomes crucial to include also systematic error contributions which affect the accuracy of the metrology. Here we discuss fundamental aspects of overlay accuracy and a methodology to improve accuracy significantly. We identify overlay mark imperfections and their interaction with the metrology technology, as the main source of overlay inaccuracy. The most important type of mark imperfection is mark asymmetry. Overlay mark asymmetry leads to a geometrical ambiguity in the definition of overlay, which can be ~1nm or less. It is shown theoretically and in simulations that the metrology may enhance the effect of overlay mark asymmetry significantly and lead to metrology inaccuracy ~10nm, much larger than the geometrical ambiguity. The analysis is carried out for two different overlay metrology technologies: Imaging overlay and DBO (1st order diffraction based overlay). It is demonstrated that the sensitivity of DBO to overlay mark asymmetry is larger than the sensitivity of imaging overlay. Finally, we show that a recently developed measurement quality metric serves as a valuable tool for improving overlay metrology accuracy. Simulation results demonstrate that the accuracy of imaging overlay can be improved significantly by recipe setup optimized using the quality metric. We conclude that imaging overlay metrology, complemented by appropriate use of measurement quality metric, results in optimal overlay accuracy.

  7. Quantitative CT: technique dependence of volume estimation on pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Chen, Baiyu; Barnhart, Huiman; Richard, Samuel; Colsher, James; Amurao, Maxwell; Samei, Ehsan

    2012-03-01

    Current estimation of lung nodule size typically relies on uni- or bi-dimensional techniques. While new three-dimensional volume estimation techniques using MDCT have improved size estimation of nodules with irregular shapes, the effect of acquisition and reconstruction parameters on accuracy (bias) and precision (variance) of the new techniques has not been fully investigated. To characterize the volume estimation performance dependence on these parameters, an anthropomorphic chest phantom containing synthetic nodules was scanned and reconstructed with protocols across various acquisition and reconstruction parameters. Nodule volumes were estimated by a clinical lung analysis software package, LungVCAR. Precision and accuracy of the volume assessment were calculated across the nodules and compared between protocols via a generalized estimating equation analysis. Results showed that the precision and accuracy of nodule volume quantifications were dependent on slice thickness, with different dependences for different nodule characteristics. Other parameters including kVp, pitch, and reconstruction kernel had lower impact. Determining these technique dependences enables better volume quantification via protocol optimization and highlights the importance of consistent imaging parameters in sequential examinations.

  8. Quantification of endocrine disruptors and pesticides in water by gas chromatography-tandem mass spectrometry. Method validation using weighted linear regression schemes.

    PubMed

    Mansilha, C; Melo, A; Rebelo, H; Ferreira, I M P L V O; Pinho, O; Domingues, V; Pinho, C; Gameiro, P

    2010-10-22

    A multi-residue methodology based on a solid phase extraction followed by gas chromatography-tandem mass spectrometry was developed for trace analysis of 32 compounds in water matrices, including estrogens and several pesticides from different chemical families, some of them with endocrine disrupting properties. Matrix standard calibration solutions were prepared by adding known amounts of the analytes to a residue-free sample to compensate matrix-induced chromatographic response enhancement observed for certain pesticides. Validation was done mainly according to the International Conference on Harmonisation recommendations, as well as some European and American validation guidelines with specifications for pesticides analysis and/or GC-MS methodology. As the assumption of homoscedasticity was not met for analytical data, weighted least squares linear regression procedure was applied as a simple and effective way to counteract the greater influence of the greater concentrations on the fitted regression line, improving accuracy at the lower end of the calibration curve. The method was considered validated for 31 compounds after consistent evaluation of the key analytical parameters: specificity, linearity, limit of detection and quantification, range, precision, accuracy, extraction efficiency, stability and robustness. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. HPLC-ELSD Quantification and Centrifugal Partition Chromatography Isolation of 8-O-Acetylharpagide from Oxera coronata (Lamiaceae).

    PubMed

    Remeur, Camille; Le Borgne, Erell; Gauthier, Léa; Grougnet, Raphaël; Deguin, Brigitte; Poullain, Cyril; Litaudon, Marc

    2017-05-01

    Iridoid glycosides possess highly functionalised monoterpenoid aglycon with several contiguous stereocentres. For the most common, they are often present in quantities reaching several percentage of the fresh plant weight, and thus they may be regarded as starting material for the synthesis of a number of new chiral and bioactive molecules. To quantify and to isolate 8-O-acetylharpagide (AH) from several extracts of Oxera coronata R.P.J. de Kok, a Lamiaceae species endemic to New Caledonia, using HPLC-ELSD (evaporative light scattering detector) and centrifugal partition chromatography (CPC). Oxera coronata produces high amounts of AH in leaves, twigs and fruits. Water and methanol extracts of these plant parts were prepared. The content of AH in each extract was quantified by HPLC-ELSD, using acetonitrile-water (+0.1% formic acid) gradient elution. The HPLC method was validated for precision, linearity, limit of detection (LOD), limit of quantification (LOQ) and accuracy. A ternary solvent system ethyl acetate/n-propanol/water (3:2:5, v/v/v) was selected and applied to recover the target compound using Spot CPC from the leaves aqueous extract. HPLC-ELSD analysis followed by CPC purification led to the efficient isolation of AH from O. coronata leaves aqueous extract. HPLC-ELSD has proven to be a well-adapted detection and quantification method for iridoid glycosides, while CPC confirmed to be an efficient technique for the isolation of polar compounds. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. [Development and validation of an HPLC method for the quantification of vitamin A in human milk. Its application to a rural population in Argentina].

    PubMed

    López, Laura B; Baroni, Andrea V; Rodríguez, Viviana G; Greco, Carola B; de Costa, Sara Macías; de Ferrer, Patricia Ronayne; Rodríguez de Pece, Silvia

    2005-06-01

    A methodology for the quantification of vitamin A in human milk was developed and validated. Vitamin A levels were assessed in 223 samples corresponding to the 5th, 6th and 7th postpartum months, obtained in the province of Santiago del Estero, Argentina. The samples (500 microL) were saponified with potassium hydroxide/ethanol, extracted with hexane, evaporated to dryness and reconstituted with methanol. A column RP-C18, a mobile phase methanol/water (91:9 v/v) and a fluorescence detector (lambda excitation 330 nm and lambda emition 470 nm) were used for the separation and quantification of vitamin A. The analytical parameters of linearity (r2: 0.9995), detection (0.010 microg/mL) and quantification (0.025 microg/mL) limits, precision of the method (relative standard deviation, RSD = 9.0% within a day and RSD = 8.9% among days) and accuracy (recovery = 83.8%) demonstrate that the developed method allows the quantification of vitamin A in an efficient way. The mean values + standard deviation (SD) obtained for the analyzed samples were 0.60 +/- 0.32; 0.65 +/- 0.33 and 0.61 +/- 0.26 microg/ mL for the 5th, 6th and 7th postpartum months, respectively. There were no significant differences among the three months studied and the values found were similar to those in the literature. Considering the whole population under study, 19.3% showed vitamin A levels less than 0.40 microg/mL, which represents a risk to the children in this group since at least 0.50 microg/mL are necessary to meet the infant daily needs.

  11. Performance Evaluation of Real-Time Precise Point Positioning Method

    NASA Astrophysics Data System (ADS)

    Alcay, Salih; Turgut, Muzeyyen

    2017-12-01

    Post-Processed Precise Point Positioning (PPP) is a well-known zero-difference positioning method which provides accurate and precise results. After the experimental tests, IGS Real Time Service (RTS) officially provided real time orbit and clock products for the GNSS community that allows real-time (RT) PPP applications. Different software packages can be used for RT-PPP. In this study, in order to evaluate the performance of RT-PPP, 3 IGS stations are used. Results, obtained by using BKG Ntrip Client (BNC) Software v2.12, are examined in terms of both accuracy and precision.

  12. Truss Assembly and Welding by Intelligent Precision Jigging Robots

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Dorsey, John T.; Doggett, William R.; Correll, Nikolaus

    2014-01-01

    This paper describes an Intelligent Precision Jigging Robot (IPJR) prototype that enables the precise alignment and welding of titanium space telescope optical benches. The IPJR, equipped with micron accuracy sensors and actuators, worked in tandem with a lower precision remote controlled manipulator. The combined system assembled and welded a 2 m truss from stock titanium components. The calibration of the IPJR, and the difference between the predicted and the truss dimensions as-built, identified additional sources of error that should be addressed in the next generation of IPJRs in 2D and 3D.

  13. Review on the progress of ultra-precision machining technologies

    NASA Astrophysics Data System (ADS)

    Yuan, Julong; Lyu, Binghai; Hang, Wei; Deng, Qianfa

    2017-06-01

    Ultra-precision machining technologies are the essential methods, to obtain the highest form accuracy and surface quality. As more research findings are published, such technologies now involve complicated systems engineering and been widely used in the production of components in various aerospace, national defense, optics, mechanics, electronics, and other high-tech applications. The conception, applications and history of ultra-precision machining are introduced in this article, and the developments of ultra-precision machining technologies, especially ultra-precision grinding, ultra-precision cutting and polishing are also reviewed. The current state and problems of this field in China are analyzed. Finally, the development trends of this field and the coping strategies employed in China to keep up with the trends are discussed.

  14. Myocardial blood flow quantification by Rb-82 cardiac PET/CT: A detailed reproducibility study between two semi-automatic analysis programs.

    PubMed

    Dunet, Vincent; Klein, Ran; Allenbach, Gilles; Renaud, Jennifer; deKemp, Robert A; Prior, John O

    2016-06-01

    Several analysis software packages for myocardial blood flow (MBF) quantification from cardiac PET studies exist, but they have not been compared using concordance analysis, which can characterize precision and bias separately. Reproducible measurements are needed for quantification to fully develop its clinical potential. Fifty-one patients underwent dynamic Rb-82 PET at rest and during adenosine stress. Data were processed with PMOD and FlowQuant (Lortie model). MBF and myocardial flow reserve (MFR) polar maps were quantified and analyzed using a 17-segment model. Comparisons used Pearson's correlation ρ (measuring precision), Bland and Altman limit-of-agreement and Lin's concordance correlation ρc = ρ·C b (C b measuring systematic bias). Lin's concordance and Pearson's correlation values were very similar, suggesting no systematic bias between software packages with an excellent precision ρ for MBF (ρ = 0.97, ρc = 0.96, C b = 0.99) and good precision for MFR (ρ = 0.83, ρc = 0.76, C b = 0.92). On a per-segment basis, no mean bias was observed on Bland-Altman plots, although PMOD provided slightly higher values than FlowQuant at higher MBF and MFR values (P < .0001). Concordance between software packages was excellent for MBF and MFR, despite higher values by PMOD at higher MBF values. Both software packages can be used interchangeably for quantification in daily practice of Rb-82 cardiac PET.

  15. Establishing the accuracy of asteroseismic mass and radius estimates of giant stars - I. Three eclipsing systems at [Fe/H] ˜ -0.3 and the need for a large high-precision sample

    NASA Astrophysics Data System (ADS)

    Brogaard, K.; Hansen, C. J.; Miglio, A.; Slumstrup, D.; Frandsen, S.; Jessen-Hansen, J.; Lund, M. N.; Bossini, D.; Thygesen, A.; Davies, G. R.; Chaplin, W. J.; Arentoft, T.; Bruntt, H.; Grundahl, F.; Handberg, R.

    2018-05-01

    We aim to establish and improve the accuracy level of asteroseismic estimates of mass, radius, and age of giant stars. This can be achieved by measuring independent, accurate, and precise masses, radii, effective temperatures and metallicities of long period eclipsing binary stars with a red giant component that displays solar-like oscillations. We measured precise properties of the three eclipsing binary systems KIC 7037405, KIC 9540226, and KIC 9970396 and estimated their ages be 5.3 ± 0.5, 3.1 ± 0.6, and 4.8 ± 0.5 Gyr. The measurements of the giant stars were compared to corresponding measurements of mass, radius, and age using asteroseismic scaling relations and grid modelling. We found that asteroseismic scaling relations without corrections to Δν systematically overestimate the masses of the three red giants by 11.7 per cent, 13.7 per cent, and 18.9 per cent, respectively. However, by applying theoretical correction factors fΔν according to Rodrigues et al. (2017), we reached general agreement between dynamical and asteroseismic mass estimates, and no indications of systematic differences at the precision level of the asteroseismic measurements. The larger sample investigated by Gaulme et al. (2016) showed a much more complicated situation, where some stars show agreement between the dynamical and corrected asteroseismic measures while others suggest significant overestimates of the asteroseismic measures. We found no simple explanation for this, but indications of several potential problems, some theoretical, others observational. Therefore, an extension of the present precision study to a larger sample of eclipsing systems is crucial for establishing and improving the accuracy of asteroseismology of giant stars.

  16. Precision Pointing Control System (PPCS) star tracker test

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Tests performed on the TRW precision star tracker are described. The unit tested was a two-axis gimballed star tracker designed to provide star LOS data to an accuracy of 1 to 2 sec. The tracker features a unique bearing system and utilizes thermal and mechanical symmetry techniques to achieve high precision which can be demonstrated in a one g environment. The test program included a laboratory evaluation of tracker functional operation, sensitivity, repeatibility, and thermal stability.

  17. Automatic computational labeling of glomerular textural boundaries

    NASA Astrophysics Data System (ADS)

    Ginley, Brandon; Tomaszewski, John E.; Sarder, Pinaki

    2017-03-01

    The glomerulus, a specialized bundle of capillaries, is the blood filtering unit of the kidney. Each human kidney contains about 1 million glomeruli. Structural damages in the glomerular micro-compartments give rise to several renal conditions; most severe of which is proteinuria, where excessive blood proteins flow freely to the urine. The sole way to confirm glomerular structural damage in renal pathology is by examining histopathological or immunofluorescence stained needle biopsies under a light microscope. However, this method is extremely tedious and time consuming, and requires manual scoring on the number and volume of structures. Computational quantification of equivalent features promises to greatly ease this manual burden. The largest obstacle to computational quantification of renal tissue is the ability to recognize complex glomerular textural boundaries automatically. Here we present a computational pipeline to accurately identify glomerular boundaries with high precision and accuracy. The computational pipeline employs an integrated approach composed of Gabor filtering, Gaussian blurring, statistical F-testing, and distance transform, and performs significantly better than standard Gabor based textural segmentation method. Our integrated approach provides mean accuracy/precision of 0.89/0.97 on n = 200Hematoxylin and Eosin (HE) glomerulus images, and mean 0.88/0.94 accuracy/precision on n = 200 Periodic Acid Schiff (PAS) glomerulus images. Respective accuracy/precision of the Gabor filter bank based method is 0.83/0.84 for HE and 0.78/0.8 for PAS. Our method will simplify computational partitioning of glomerular micro-compartments hidden within dense textural boundaries. Automatic quantification of glomeruli will streamline structural analysis in clinic, and can help realize real time diagnoses and interventions.

  18. Classification of LIDAR Data for Generating a High-Precision Roadway Map

    NASA Astrophysics Data System (ADS)

    Jeong, J.; Lee, I.

    2016-06-01

    Generating of a highly precise map grows up with development of autonomous driving vehicles. The highly precise map includes a precision of centimetres level unlike an existing commercial map with the precision of meters level. It is important to understand road environments and make a decision for autonomous driving since a robust localization is one of the critical challenges for the autonomous driving car. The one of source data is from a Lidar because it provides highly dense point cloud data with three dimensional position, intensities and ranges from the sensor to target. In this paper, we focus on how to segment point cloud data from a Lidar on a vehicle and classify objects on the road for the highly precise map. In particular, we propose the combination with a feature descriptor and a classification algorithm in machine learning. Objects can be distinguish by geometrical features based on a surface normal of each point. To achieve correct classification using limited point cloud data sets, a Support Vector Machine algorithm in machine learning are used. Final step is to evaluate accuracies of obtained results by comparing them to reference data The results show sufficient accuracy and it will be utilized to generate a highly precise road map.

  19. Validation protocol of analytical procedures for quantification of drugs in polymeric systems for parenteral administration: dexamethasone phosphate disodium microparticles.

    PubMed

    Martín-Sabroso, Cristina; Tavares-Fernandes, Daniel Filipe; Espada-García, Juan Ignacio; Torres-Suárez, Ana Isabel

    2013-12-15

    In this work a protocol to validate analytical procedures for the quantification of drug substances formulated in polymeric systems that comprise both drug entrapped into the polymeric matrix (assay:content test) and drug released from the systems (assay:dissolution test) is developed. This protocol is applied to the validation two isocratic HPLC analytical procedures for the analysis of dexamethasone phosphate disodium microparticles for parenteral administration. Preparation of authentic samples and artificially "spiked" and "unspiked" samples is described. Specificity (ability to quantify dexamethasone phosphate disodium in presence of constituents of the dissolution medium and other microparticle constituents), linearity, accuracy and precision are evaluated, in the range from 10 to 50 μg mL(-1) in the assay:content test procedure and from 0.25 to 10 μg mL(-1) in the assay:dissolution test procedure. The robustness of the analytical method to extract drug from microparticles is also assessed. The validation protocol developed allows us to conclude that both analytical methods are suitable for their intended purpose, but the lack of proportionality of the assay:dissolution analytical method should be taken into account. The validation protocol designed in this work could be applied to the validation of any analytical procedure for the quantification of drugs formulated in controlled release polymeric microparticles. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Development and validation of an ultra-performance liquid chromatography quadrupole time of flight mass spectrometry method for rapid quantification of free amino acids in human urine.

    PubMed

    Joyce, Richard; Kuziene, Viktorija; Zou, Xin; Wang, Xueting; Pullen, Frank; Loo, Ruey Leng

    2016-01-01

    An ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-qTOF-MS) method using hydrophilic interaction liquid chromatography was developed and validated for simultaneous quantification of 18 free amino acids in urine with a total acquisition time including the column re-equilibration of less than 18 min per sample. This method involves simple sample preparation steps which consisted of 15 times dilution with acetonitrile to give a final composition of 25 % aqueous and 75 % acetonitrile without the need of any derivatization. The dynamic range for our calibration curve is approximately two orders of magnitude (120-fold from the lowest calibration curve point) with good linearity (r (2) ≥ 0.995 for all amino acids). Good separation of all amino acids as well as good intra- and inter-day accuracy (<15 %) and precision (<15 %) were observed using three quality control samples at a concentration of low, medium and high range of the calibration curve. The limits of detection (LOD) and lower limit of quantification of our method were ranging from approximately 1-300 nM and 0.01-0.5 µM, respectively. The stability of amino acids in the prepared urine samples was found to be stable for 72 h at 4 °C, after one freeze thaw cycle and for up to 4 weeks at -80 °C. We have applied this method to quantify the content of 18 free amino acids in 646 urine samples from a dietary intervention study. We were able to quantify all 18 free amino acids in these urine samples, if they were present at a level above the LOD. We found our method to be reproducible (accuracy and precision were typically <10 % for QCL, QCM and QCH) and the relatively high sample throughput nature of this method potentially makes it a suitable alternative for the analysis of urine samples in clinical setting.

  1. Species identification and quantification in meat and meat products using droplet digital PCR (ddPCR).

    PubMed

    Floren, C; Wiedemann, I; Brenig, B; Schütz, E; Beck, J

    2015-04-15

    Species fraud and product mislabelling in processed food, albeit not being a direct health issue, often results in consumer distrust. Therefore methods for quantification of undeclared species are needed. Targeting mitochondrial DNA, e.g. CYTB gene, for species quantification is unsuitable, due to a fivefold inter-tissue variation in mtDNA content per cell resulting in either an under- (-70%) or overestimation (+160%) of species DNA contents. Here, we describe a reliable two-step droplet digital PCR (ddPCR) assay targeting the nuclear F2 gene for precise quantification of cattle, horse, and pig in processed meat products. The ddPCR assay is advantageous over qPCR showing a limit of quantification (LOQ) and detection (LOD) in different meat products of 0.01% and 0.001%, respectively. The specificity was verified in 14 different species. Hence, determining F2 in food by ddPCR can be recommended for quality assurance and control in production systems. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Variation of Static-PPP Positioning Accuracy Using GPS-Single Frequency Observations (Aswan, Egypt)

    NASA Astrophysics Data System (ADS)

    Farah, Ashraf

    2017-06-01

    Precise Point Positioning (PPP) is a technique used for position computation with a high accuracy using only one GNSS receiver. It depends on highly accurate satellite position and clock data rather than broadcast ephemeries. PPP precision varies based on positioning technique (static or kinematic), observations type (single or dual frequency) and the duration of collected observations. PPP-(dual frequency receivers) offers comparable accuracy to differential GPS. PPP-single frequency receivers has many applications such as infrastructure, hydrography and precision agriculture. PPP using low cost GPS single-frequency receivers is an area of great interest for millions of users in developing countries such as Egypt. This research presents a study for the variability of single frequency static GPS-PPP precision based on different observation durations.

  3. Simultaneous quantification of polymethoxylated flavones and coumarins in Fructus aurantii and Fructus aurantii immaturus using HPLC-ESI-MS/MS.

    PubMed

    Chen, Hai-Fang; Zhang, Wu-Gang; Yuan, Jin-Bin; Li, Yan-Gang; Yang, Shi-Lin; Yang, Wu-Liang

    2012-02-05

    The major lipid-soluble constituents in Fructus aurantii (zhiqiao) and Fructus aurantii immaturus (zhishi) are polymethoxylated flavones (PMFs) and coumarins. In the present study, a high-performance liquid chromatography with electrospray ionization tandem mass spectrometry method was developed to quantify PMFs (nobiletin, tangeretin, 5-hydroxy-6,7,8,4'-tetramethoxyflavone, and natsudaidai) and coumarins (marmin, meranzin hydrate, and auraptene) simultaneously. PMFs and coumarins were detected by electrospray ionization tandem mass spectrometry in positive ion mode and quantified with multiple reaction monitor. Samples were separated on a Diamonsil C₁₈ (150 mm × 4.6 mm, 5 μm) column using acetonitrile and formic acid-water solution as a mobile phase in gradient mode with a flow rate at 0.5 mL/min. All calibration curves showed good linearity (r² > 0.9977) within the test ranges. Variations of the intraday and interday precisions were less than 4.07%. The recoveries of the components were within the range of 95.79%-105.04% and the relative standard deviations were less than 3.82%. The method developed was validated with acceptable accuracy, precision, and extraction recoveries and can be applied for the identification and quantification of four PMFs and three coumarins in citrus herbs. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. High accuracy wavelength calibration for a scanning visible spectrometer.

    PubMed

    Scotti, Filippo; Bell, Ronald E

    2010-10-01

    Spectroscopic applications for plasma velocity measurements often require wavelength accuracies ≤0.2 Å. An automated calibration, which is stable over time and environmental conditions without the need to recalibrate after each grating movement, was developed for a scanning spectrometer to achieve high wavelength accuracy over the visible spectrum. This method fits all relevant spectrometer parameters using multiple calibration spectra. With a stepping-motor controlled sine drive, an accuracy of ∼0.25 Å has been demonstrated. With the addition of a high resolution (0.075 arc  sec) optical encoder on the grating stage, greater precision (∼0.005 Å) is possible, allowing absolute velocity measurements within ∼0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.

  5. Precision, accuracy, cross reactivity and comparability of serum indices measurement on Abbott Architect c8000, Beckman Coulter AU5800 and Roche Cobas 6000 c501 clinical chemistry analyzers.

    PubMed

    Nikolac Gabaj, Nora; Miler, Marijana; Vrtarić, Alen; Hemar, Marina; Filipi, Petra; Kocijančić, Marija; Šupak Smolčić, Vesna; Ćelap, Ivana; Šimundić, Ana-Maria

    2018-04-25

    The aim of our study was to perform verification of serum indices on three clinical chemistry platforms. This study was done on three analyzers: Abbott Architect c8000, Beckman Coulter AU5800 (BC) and Roche Cobas 6000 c501. The following analytical specifications were verified: precision (two patient samples), accuracy (sample with the highest concentration of interferent was serially diluted and measured values compared to theoretical values), comparability (120 patients samples) and cross reactivity (samples with increasing concentrations of interferent were divided in two aliquots and remaining interferents were added in each aliquot. Measurements were done before and after adding interferents). Best results for precision were obtained for the H index (0.72%-2.08%). Accuracy for the H index was acceptable for Cobas and BC, while on Architect, deviations in the high concentration range were observed (y=0.02 [0.01-0.07]+1.07 [1.06-1.08]x). All three analyzers showed acceptable results in evaluating accuracy of L index and unacceptable results for I index. The H index was comparable between BC and both, Architect (Cohen's κ [95% CI]=0.795 [0.692-0.898]) and Roche (Cohen's κ [95% CI]=0.825 [0.729-0.922]), while Roche and Architect were not comparable. The I index was not comparable between all analyzer combinations, while the L index was only comparable between Abbott and BC. Cross reactivity analysis mostly showed that serum indices measurement is affected when a combination of interferences is present. There is heterogeneity between analyzers in the hemolysis, icteria, lipemia (HIL) quality performance. Verification of serum indices in routine work is necessary to establish analytical specifications.

  6. Diode laser spectroscopy: precise spectral line shape measurements

    NASA Astrophysics Data System (ADS)

    Nadezhdinskii, A. I.

    1996-07-01

    When one speaks about modern trends in tunable diode laser spectroscopy (TDLS) one should mention that precise line shape measurements have become one of the most promising applications of diode lasers in high resolution molecular spectroscopy. Accuracy limitations of TDL spectrometers are considered in this paper, proving the ability to measure spectral line profile with precision better than 1%. A four parameter Voigt profile is used to fit the experimental spectrum, and the possibility of line shift measurements with an accuracy of 2 × 10 -5 cm -1 is shown. Test experiments demonstrate the error line intensity ratios to be less than 0.3% for the proposed approach. Differences between "soft" and "hard" models of line shape have been observed experimentally for the first time. Some observed resonance effects are considered with respect to collision adiabacity.

  7. Sensitive and rapid liquid chromatography/tandem mass spectrometric assay for the quantification of piperaquine in human plasma.

    PubMed

    Singhal, Puran; Gaur, Ashwani; Gautam, Anirudh; Varshney, Brijesh; Paliwal, Jyoti; Batra, Vijay

    2007-11-01

    A simple, sensitive and rapid liquid chromatography/tandem mass spectrometric (LC-MS/MS) method was developed and validated for quantification of piperaquine, an antimalarial drug, in human plasma using its structural analogue, piperazine bis chloroquinoline as internal standard (IS). The method involved a simple protein precipitation with methanol followed by rapid isocratic elution of analytes with 10mM ammonium acetate buffer/methanol/formic acid/ammonia solution (25/75/0.2/0.15, v/v) on Chromolith SpeedROD RP-18e reversed phase chromatographic column and quantification by mass spectrometry in the multiple reaction monitoring mode (MRM). The precursor to product ion transitions of m/z 535.3-->288.2 and m/z 409.1-->205.2 were used to measure the analyte and the IS, respectively. The assay exhibited a linear dynamic range of 1.0-250.2 ng/mL for piperaquine in plasma. The limit of detection (LOD) and lower limit of quantification (LLOQ) in plasma were 0.2 and 1.0 ng/mL, respectively. Acceptable precision and accuracy (+/-20% deviation for LLOQ standard and +/-15% deviation for other standards from the respective nominal concentration) were obtained for concentrations over the standard curve ranges. A run time of 2.5 min for a sample made it possible to achieve a throughput of more than 400 plasma samples analyzed per day. The validated method was successfully applied to analyze human plasma samples from phase-1 clinical studies. The mean pharmacokinetic parameters of piperaquine following 1000 mg oral dose: observed maximum plasma concentration (Cmax), time to maximum plasma concentration (Tmax) and elimination half-life (T1/2) were 46.1 ng/mL, 3.8h and 13 days, respectively.

  8. Target analyte quantification by isotope dilution LC-MS/MS directly referring to internal standard concentrations--validation for serum cortisol measurement.

    PubMed

    Maier, Barbara; Vogeser, Michael

    2013-04-01

    Isotope dilution LC-MS/MS methods used in the clinical laboratory typically involve multi-point external calibration in each analytical series. Our aim was to test the hypothesis that determination of target analyte concentrations directly derived from the relation of the target analyte peak area to the peak area of a corresponding stable isotope labelled internal standard compound [direct isotope dilution analysis (DIDA)] may be not inferior to conventional external calibration with respect to accuracy and reproducibility. Quality control samples and human serum pools were analysed in a comparative validation protocol for cortisol as an exemplary analyte by LC-MS/MS. Accuracy and reproducibility were compared between quantification either involving a six-point external calibration function, or a result calculation merely based on peak area ratios of unlabelled and labelled analyte. Both quantification approaches resulted in similar accuracy and reproducibility. For specified analytes, reliable analyte quantification directly derived from the ratio of peak areas of labelled and unlabelled analyte without the need for a time consuming multi-point calibration series is possible. This DIDA approach is of considerable practical importance for the application of LC-MS/MS in the clinical laboratory where short turnaround times often have high priority.

  9. Development of a Stability-Indicating Stereoselective Method for Quantification of the Enantiomer in the Drug Substance and Pharmaceutical Dosage Form of Rosuvastatin Calcium by an Enhanced Approach

    PubMed Central

    Rajendra Reddy, Gangireddy; Ravindra Reddy, Papammagari; Siva Jyothi, Polisetty

    2015-01-01

    A novel, simple, precise, and stability-indicating stereoselective method was developed and validated for the accurate quantification of the enantiomer in the drug substance and pharmaceutical dosage forms of Rosuvastatin Calcium. The method is capable of quantifying the enantiomer in the presence of other related substances. The chromatographic separation was achieved with an immobilized cellulose stationary phase (Chiralpak IB) 250 mm x 4.6 mm x 5.0 μm particle size column with a mobile phase containing a mixture of n-hexane, dichloromethane, 2-propanol, and trifluoroacetic acid in the ratio 82:10:8:0.2 (v/v/v/v). The eluted compounds were monitored at 243 nm and the run time was 18 min. Multivariate analysis and statistical tools were used to develop this highly robust method in a short span of time. The stability-indicating power of the method was established by subjecting Rosuvastatin Calcium to the stress conditions (forced degradation) of acid, base, oxidative, thermal, humidity, and photolytic degradation. Major degradation products were identified and found to be well-resolved from the enantiomer peak, proving the stability-indicating power of the method. The developed method was validated as per International Conference on Harmonization (ICH) guidelines with respect to specificity, limit of detection and limit of quantification, precision, linearity, accuracy, and robustness. The method exhibited consistent, high-quality recoveries (100 ± 10%) with a high precision for the enantiomer. Linear regression analysis revealed an excellent correlation between the peak responses and concentrations (r2 value of 0.9977) for the enantiomer. The method is sensitive enough to quantify the enantiomer above 0.04% and detect the enantiomer above 0.015% in Rosuvastatin Calcium. The stability tests were also performed on the drug substances as per ICH norms. PMID:26839815

  10. Precise GPS ephemerides from DMA and NGS tested by time transfer

    NASA Technical Reports Server (NTRS)

    Lewandowski, Wlodzimierz W.; Petit, Gerard; Thomas, Claudine

    1992-01-01

    It was shown that the use of the Defense Mapping Agency's (DMA) precise ephemerides brings a significant improvement to the accuracy of GPS time transfer. At present a new set of precise ephemerides produced by the National Geodetic Survey (NGS) has been made available to the timing community. This study demonstrates that both types of precise ephemerides improve long-distance GPS time transfer and remove the effects of Selective Availability (SA) degradation of broadcast ephemerides. The issue of overcoming SA is also discussed in terms of the routine availability of precise ephemerides.

  11. Localization and Quantification of Trace-gas Fugitive Emissions Using a Portable Optical Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Eric; Teng, Chu; van Kessel, Theodore

    We present a portable optical spectrometer for fugitive emissions monitoring of methane (CH4). The sensor operation is based on tunable diode laser absorption spectroscopy (TDLAS), using a 5 cm open path design, and targets the 2ν3 R(4) CH4 transition at 6057.1 cm-1 (1651 nm) to avoid cross-talk with common interfering atmospheric constituents. Sensitivity analysis indicates a normalized precision of 2.0 ppmv∙Hz-1/2, corresponding to a noise-equivalent absorption (NEA) of 4.4×10-6 Hz-1/2 and minimum detectible absorption (MDA) coefficient of αmin = 8.8×10-7 cm-1∙Hz-1/2. Our TDLAS sensor is deployed at the Methane Emissions Technology Evaluation Center (METEC) at Colorado State University (CSU) formore » initial demonstration of single-sensor based source localization and quantification of CH4 fugitive emissions. The TDLAS sensor is concurrently deployed with a customized chemi-resistive metal-oxide (MOX) sensor for accuracy benchmarking, demonstrating good visual correlation of the concentration time-series. Initial angle-of-arrival (AOA) results will be shown, and development towards source magnitude estimation will be described.« less

  12. Accuracy assessment with complex sampling designs

    Treesearch

    Raymond L. Czaplewski

    2010-01-01

    A reliable accuracy assessment of remotely sensed geospatial data requires a sufficiently large probability sample of expensive reference data. Complex sampling designs reduce cost or increase precision, especially with regional, continental and global projects. The General Restriction (GR) Estimator and the Recursive Restriction (RR) Estimator separate a complex...

  13. LC-MS/MS method for the quantification of almotriptan in dialysates: application to rat brain and blood microdialysis study.

    PubMed

    Nirogi, Ramakrishna; Ajjala, Devender Reddy; Kandikere, Vishwottam; Aleti, Raghupathi; Pantangi, Hanumanth Rao; Srikakolapu, Surya Rao; Benade, Vijay; Bhyrapuneni, Gopinadh; Vurimindi, Himabindu

    2013-01-01

    A sensitive LC-MS/MS method was developed and validated for the quantification of almotriptan in rat brain and blood dialysates. Almotriptan is a 5HT1B/1D receptor agonist used for the treatment of migraine pain. Method consists of rapid gradient elution program with 10mM ammonium formate (pH 3) and acetonitrile on a Xbridge column. The MRM transitions monitored were m/z 336.2-58.1 for almotriptan and m/z 448.2-285.3 for the IS. The assay was linear in the range of 0.1-20 ng/ml, with acceptable precision and accuracy along with adequate sensitivity. The between batch accuracy was in the range of 99.0-104.3% with precision in between 0.6% and 5.8%. Microdialysis is an important sampling technique, with the capability of capturing the concentrations of various analytes in different bio fluids, at a single time point. This method was applied to quantify brain and blood dialysate samples obtained from a microdialysis study of rats treated with almotriptan (10mg/kg, p.o.). In vivo recovery experiments were performed to correct the dialysate concentrations into extracellular concentrations. Mean peak dialysate concentrations of almotriptan were found to be 152 ± 78 and 7.4 ± 1.0 ng/ml in blood and prefrontal cortex, respectively. The brain penetration of almotriptan is characterized by the AUCbrain/AUCblood found to be 0.07 ± 0.05. The results revealed the importance of measuring the unbound almotriptan concentrations in the brain over the blood for understanding its PK/PD relationship. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Precise orbit determination based on raw GPS measurements

    NASA Astrophysics Data System (ADS)

    Zehentner, Norbert; Mayer-Gürr, Torsten

    2016-03-01

    Precise orbit determination is an essential part of the most scientific satellite missions. Highly accurate knowledge of the satellite position is used to geolocate measurements of the onboard sensors. For applications in the field of gravity field research, the position itself can be used as observation. In this context, kinematic orbits of low earth orbiters (LEO) are widely used, because they do not include a priori information about the gravity field. The limiting factor for the achievable accuracy of the gravity field through LEO positions is the orbit accuracy. We make use of raw global positioning system (GPS) observations to estimate the kinematic satellite positions. The method is based on the principles of precise point positioning. Systematic influences are reduced by modeling and correcting for all known error sources. Remaining effects such as the ionospheric influence on the signal propagation are either unknown or not known to a sufficient level of accuracy. These effects are modeled as unknown parameters in the estimation process. The redundancy in the adjustment is reduced; however, an improvement in orbit accuracy leads to a better gravity field estimation. This paper describes our orbit determination approach and its mathematical background. Some examples of real data applications highlight the feasibility of the orbit determination method based on raw GPS measurements. Its suitability for gravity field estimation is presented in a second step.

  15. Improving multi-GNSS ultra-rapid orbit determination for real-time precise point positioning

    NASA Astrophysics Data System (ADS)

    Li, Xingxing; Chen, Xinghan; Ge, Maorong; Schuh, Harald

    2018-03-01

    Currently, with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSS), the real-time positioning and navigation are undergoing dramatic changes with potential for a better performance. To provide more precise and reliable ultra-rapid orbits is critical for multi-GNSS real-time positioning, especially for the three merging constellations Beidou, Galileo and QZSS which are still under construction. In this contribution, we present a five-system precise orbit determination (POD) strategy to fully exploit the GPS + GLONASS + BDS + Galileo + QZSS observations from CDDIS + IGN + BKG archives for the realization of hourly five-constellation ultra-rapid orbit update. After adopting the optimized 2-day POD solution (updated every hour), the predicted orbit accuracy can be obviously improved for all the five satellite systems in comparison to the conventional 1-day POD solution (updated every 3 h). The orbit accuracy for the BDS IGSO satellites can be improved by about 80, 45 and 50% in the radial, cross and along directions, respectively, while the corresponding accuracy improvement for the BDS MEO satellites reaches about 50, 20 and 50% in the three directions, respectively. Furthermore, the multi-GNSS real-time precise point positioning (PPP) ambiguity resolution has been performed by using the improved precise satellite orbits. Numerous results indicate that combined GPS + BDS + GLONASS + Galileo (GCRE) kinematic PPP ambiguity resolution (AR) solutions can achieve the shortest time to first fix (TTFF) and highest positioning accuracy in all coordinate components. With the addition of the BDS, GLONASS and Galileo observations to the GPS-only processing, the GCRE PPP AR solution achieves the shortest average TTFF of 11 min with 7{°} cutoff elevation, while the TTFF of GPS-only, GR, GE and GC PPP AR solution is 28, 15, 20 and 17 min, respectively. As the cutoff elevation increases, the reliability and accuracy of GPS-only PPP AR solutions

  16. Quantification of Paclitaxel and Polyaspartate Paclitaxel Conjugate in Beagle Plasma: Application to a Pharmacokinetic Study.

    PubMed

    Gao, Yangyang; Chen, Junying; Zhang, Xiqian; Xie, Huiru; Wang, Yanran; Guo, Shuquan

    2017-03-01

    An LC-MS/MS method for the determination of polyaspartate paclitaxel conjugate (PASP-PTX) and paclitaxel (PTX) in dog plasma with cephalomannine (Internal Standard for PASP-PTX, IS-I) and clopidogrel bisulfate (Internal Standard for PTX, IS-II) as the internal standards was developed and validated. Plasma samples of PASP-PTX were extracted by ethyl acetate following the hydrolysis reaction, while protein precipitation was used for the extraction of PTX using acetonitrile. Analytes were separated by a CAPCELL PAK C18 MG II column using a gradient elution with the mobile phase (A) 5 mM ammonium containing 0.1% formic acid, and (B) acetonitrile. Quantification was performed by monitoring the m/z transitions of 286.2/105.0 for PASP-PTX, 264.2/83.0 for IS-I, 854.4/286.0 for PTX, and 322.1/184.1 for IS-II in the ESI positive mode. This method was validated in terms of specificity, linearity, precision, accuracy, and stability. The lower limit of quantification was 0.15 µg/mL for PASP-PTX and 0.01 µg/mL for PTX, and the calibration curves were linear over 0.15-300 µg/mL for PASP-PTX and over 0.01-10 µg/mL for PTX. The samples were stable under all the tested conditions. The method was successfully applied to study the pharmacokinetic profiles of PASP-PTX and PTX in beagles following intravenous administration of PASP-PTX. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Accurate quantification of chromosomal lesions via short tandem repeat analysis using minimal amounts of DNA

    PubMed Central

    Jann, Johann-Christoph; Nowak, Daniel; Nolte, Florian; Fey, Stephanie; Nowak, Verena; Obländer, Julia; Pressler, Jovita; Palme, Iris; Xanthopoulos, Christina; Fabarius, Alice; Platzbecker, Uwe; Giagounidis, Aristoteles; Götze, Katharina; Letsch, Anne; Haase, Detlef; Schlenk, Richard; Bug, Gesine; Lübbert, Michael; Ganser, Arnold; Germing, Ulrich; Haferlach, Claudia; Hofmann, Wolf-Karsten; Mossner, Maximilian

    2017-01-01

    Background Cytogenetic aberrations such as deletion of chromosome 5q (del(5q)) represent key elements in routine clinical diagnostics of haematological malignancies. Currently established methods such as metaphase cytogenetics, FISH or array-based approaches have limitations due to their dependency on viable cells, high costs or semi-quantitative nature. Importantly, they cannot be used on low abundance DNA. We therefore aimed to establish a robust and quantitative technique that overcomes these shortcomings. Methods For precise determination of del(5q) cell fractions, we developed an inexpensive multiplex-PCR assay requiring only nanograms of DNA that simultaneously measures allelic imbalances of 12 independent short tandem repeat markers. Results Application of this method to n=1142 samples from n=260 individuals revealed strong intermarker concordance (R²=0.77–0.97) and reproducibility (mean SD: 1.7%). Notably, the assay showed accurate quantification via standard curve assessment (R²>0.99) and high concordance with paired FISH measurements (R²=0.92) even with subnanogram amounts of DNA. Moreover, cytogenetic response was reliably confirmed in del(5q) patients with myelodysplastic syndromes treated with lenalidomide. While the assay demonstrated good diagnostic accuracy in receiver operating characteristic analysis (area under the curve: 0.97), we further observed robust correlation between bone marrow and peripheral blood samples (R²=0.79), suggesting its potential suitability for less-invasive clonal monitoring. Conclusions In conclusion, we present an adaptable tool for quantification of chromosomal aberrations, particularly in problematic samples, which should be easily applicable to further tumour entities. PMID:28600436

  18. Bile acid profiling and quantification in biofluids using ultra-performance liquid chromatography tandem mass spectrometry.

    PubMed

    Sarafian, Magali H; Lewis, Matthew R; Pechlivanis, Alexandros; Ralphs, Simon; McPhail, Mark J W; Patel, Vishal C; Dumas, Marc-Emmanuel; Holmes, Elaine; Nicholson, Jeremy K

    2015-10-06

    Bile acids are important end products of cholesterol metabolism. While they have been identified as key factors in lipid emulsification and absorption due to their detergent properties, bile acids have also been shown to act as signaling molecules and intermediates between the host and the gut microbiota. To further the investigation of bile acid functions in humans, an advanced platform for high throughput analysis is essential. Herein, we describe the development and application of a 15 min UPLC procedure for the separation of bile acid species from human biofluid samples requiring minimal sample preparation. High resolution time-of-flight mass spectrometry was applied for profiling applications, elucidating rich bile acid profiles in both normal and disease state plasma. In parallel, a second mode of detection was developed utilizing tandem mass spectrometry for sensitive and quantitative targeted analysis of 145 bile acid (BA) species including primary, secondary, and tertiary bile acids. The latter system was validated by testing the linearity (lower limit of quantification, LLOQ, 0.25-10 nM and upper limit of quantification, ULOQ, 2.5-5 μM), precision (≈6.5%), and accuracy (81.2-118.9%) on inter- and intraday analysis achieving good recovery of bile acids (serum/plasma 88% and urine 93%). The ultra performance liquid chromatography-mass spectrometry (UPLC-MS)/MS targeted method was successfully applied to plasma, serum, and urine samples in order to compare the bile acid pool compositional difference between preprandial and postprandial states, demonstrating the utility of such analysis on human biofluids.

  19. Ground control requirements for precision processing of ERTS images

    USGS Publications Warehouse

    Burger, Thomas C.

    1973-01-01

    With the successful flight of the ERTS-1 satellite, orbital height images are available for precision processing into products such as 1:1,000,000-scale photomaps and enlargements up to 1:250,000 scale. In order to maintain positional error below 100 meters, control points for the precision processing must be carefully selected, clearly definitive on photos in both X and Y. Coordinates of selected control points measured on existing ½ and 15-minute standard maps provide sufficient accuracy for any space imaging system thus far defined. This procedure references the points to accepted horizontal and vertical datums. Maps as small as 1:250,000 scale can be used as source material for coordinates, but to maintain the desired accuracy, maps of 1:100,000 and larger scale should be used when available.

  20. Interferon-alpha 2b quantification in inclusion bodies using reversed phase-ultra performance liquid chromatography (RP-UPLC).

    PubMed

    Cueto-Rojas, H F; Pérez, N O; Pérez-Sánchez, G; Ocampo-Juárez, I; Medina-Rivero, E

    2010-04-15

    Interferon-alpha 2b (IFN-alpha 2b) is a recombinant therapeutic cytokine produced as inclusion bodies using a strain of Escherichia coli as expression system. After fermentation and recovery, it is necessary to know the amount of recombinant IFN-alpha 2b, in order to determine the yield and the load for solubilization, and chromatographic protein purification steps. The present work details the validation of a new short run-time and fast sample-preparation method to quantify IFN-alpha 2b in inclusion bodies using Reversed Phase-Ultra Performance Liquid Chromatography (RP-UPLC). The developed method demonstrated an accuracy of 100.28%; the relative standard deviations for method precision, repeatability and inter-day precision tests were found to be 0.57%, 1.54% and 1.83%, respectively. Linearity of the method was assessed in the range of concentrations from 0.05 mg/mL to 0.5 mg/mL, the curve obtained had a determination coefficient (r(2)) of 0.9989. Detection and quantification limits were found to be 0.008 mg/mL and 0.025 mg/mL, respectively. The method also demonstrated robustness for changes in column temperature, and specificity against host proteins and other recombinant protein expressed in the same E. coli strain. Copyright 2010 Elsevier B.V. All rights reserved.

  1. An Assessment of Imaging Informatics for Precision Medicine in Cancer.

    PubMed

    Chennubhotla, C; Clarke, L P; Fedorov, A; Foran, D; Harris, G; Helton, E; Nordstrom, R; Prior, F; Rubin, D; Saltz, J H; Shalley, E; Sharma, A

    2017-08-01

    Objectives: Precision medicine requires the measurement, quantification, and cataloging of medical characteristics to identify the most effective medical intervention. However, the amount of available data exceeds our current capacity to extract meaningful information. We examine the informatics needs to achieve precision medicine from the perspective of quantitative imaging and oncology. Methods: The National Cancer Institute (NCI) organized several workshops on the topic of medical imaging and precision medicine. The observations and recommendations are summarized herein. Results: Recommendations include: use of standards in data collection and clinical correlates to promote interoperability; data sharing and validation of imaging tools; clinician's feedback in all phases of research and development; use of open-source architecture to encourage reproducibility and reusability; use of challenges which simulate real-world situations to incentivize innovation; partnership with industry to facilitate commercialization; and education in academic communities regarding the challenges involved with translation of technology from the research domain to clinical utility and the benefits of doing so. Conclusions: This article provides a survey of the role and priorities for imaging informatics to help advance quantitative imaging in the era of precision medicine. While these recommendations were drawn from oncology, they are relevant and applicable to other clinical domains where imaging aids precision medicine. Georg Thieme Verlag KG Stuttgart.

  2. The impact of 3D volume of interest definition on accuracy and precision of activity estimation in quantitative SPECT and planar processing methods

    NASA Astrophysics Data System (ADS)

    He, Bin; Frey, Eric C.

    2010-06-01

    Accurate and precise estimation of organ activities is essential for treatment planning in targeted radionuclide therapy. We have previously evaluated the impact of processing methodology, statistical noise and variability in activity distribution and anatomy on the accuracy and precision of organ activity estimates obtained with quantitative SPECT (QSPECT) and planar (QPlanar) processing. Another important factor impacting the accuracy and precision of organ activity estimates is accuracy of and variability in the definition of organ regions of interest (ROI) or volumes of interest (VOI). The goal of this work was thus to systematically study the effects of VOI definition on the reliability of activity estimates. To this end, we performed Monte Carlo simulation studies using randomly perturbed and shifted VOIs to assess the impact on organ activity estimates. The 3D NCAT phantom was used with activities that modeled clinically observed 111In ibritumomab tiuxetan distributions. In order to study the errors resulting from misdefinitions due to manual segmentation errors, VOIs of the liver and left kidney were first manually defined. Each control point was then randomly perturbed to one of the nearest or next-nearest voxels in three ways: with no, inward or outward directional bias, resulting in random perturbation, erosion or dilation, respectively, of the VOIs. In order to study the errors resulting from the misregistration of VOIs, as would happen, e.g. in the case where the VOIs were defined using a misregistered anatomical image, the reconstructed SPECT images or projections were shifted by amounts ranging from -1 to 1 voxels in increments of with 0.1 voxels in both the transaxial and axial directions. The activity estimates from the shifted reconstructions or projections were compared to those from the originals, and average errors were computed for the QSPECT and QPlanar methods, respectively. For misregistration, errors in organ activity estimations were

  3. Towards the GEOSAT Follow-On Precise Orbit Determination Goals of High Accuracy and Near-Real-Time Processing

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Zelensky, Nikita P.; Chinn, Douglas S.; Beckley, Brian D.; Lillibridge, John L.

    2006-01-01

    The US Navy's GEOSAT Follow-On spacecraft (GFO) primary mission objective is to map the oceans using a radar altimeter. Satellite laser ranging data, especially in combination with altimeter crossover data, offer the only means of determining high-quality precise orbits. Two tuned gravity models, PGS7727 and PGS7777b, were created at NASA GSFC for GFO that reduce the predicted radial orbit through degree 70 to 13.7 and 10.0 mm. A macromodel was developed to model the nonconservative forces and the SLR spacecraft measurement offset was adjusted to remove a mean bias. Using these improved models, satellite-ranging data, altimeter crossover data, and Doppler data are used to compute both daily medium precision orbits with a latency of less than 24 hours. Final precise orbits are also computed using these tracking data and exported with a latency of three to four weeks to NOAA for use on the GFO Geophysical Data Records (GDR s). The estimated orbit precision of the daily orbits is between 10 and 20 cm, whereas the precise orbits have a precision of 5 cm.

  4. IEEE-1588(Trademark) Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems

    DTIC Science & Technology

    2002-12-01

    34th Annual Precise Time and Time Interval (PTTI) Meeting 243 IEEE-1588™ STANDARD FOR A PRECISION CLOCK SYNCHRONIZATION PROTOCOL FOR... synchronization . 2. Cyclic-systems. In cyclic-systems, timing is periodic and is usually defined by the characteristics of a cyclic network or bus...incommensurate, timing schedules for each device are easily implemented. In addition, synchronization accuracy depends on the accuracy of the common

  5. Development and validation of a rapid turboflow LC-MS/MS method for the quantification of LSD and 2-oxo-3-hydroxy LSD in serum and urine samples of emergency toxicological cases.

    PubMed

    Dolder, Patrick C; Liechti, Matthias E; Rentsch, Katharina M

    2015-02-01

    Lysergic acid diethylamide (LSD) is a widely used recreational drug. The aim of the present study is to develop a quantitative turboflow LC-MS/MS method that can be used for rapid quantification of LSD and its main metabolite 2-oxo-3-hydroxy LSD (O-H-LSD) in serum and urine in emergency toxicological cases without time-consuming extraction steps. The method was developed on an ion-trap LC-MS/MS instrument coupled to a turbulent-flow extraction system. The validation data showed no significant matrix effects and no ion suppression has been observed in serum and urine. Mean intraday accuracy and precision for LSD were 101 and 6.84%, in urine samples and 97.40 and 5.89% in serum, respectively. For O-H-LSD, the respective values were 97.50 and 4.99% in urine and 107 and 4.70% in serum. Mean interday accuracy and precision for LSD were 100 and 8.26% in urine and 101 and 6.56% in serum, respectively. For O-H-LSD, the respective values were 101 and 8.11% in urine and 99.8 and 8.35% in serum, respectively. The lower limit of quantification for LSD was determined to be 0.1 ng/ml. LSD concentrations in serum were expected to be up to 8 ng/ml. 2-Oxo-3-hydroxy LSD concentrations in urine up to 250 ng/ml. The new method was accurate and precise in the range of expected serum and urine concentrations in patients with a suspected LSD intoxication. Until now, the method has been applied in five cases with suspected LSD intoxication where the intake of the drug has been verified four times with LSD concentrations in serum in the range of 1.80-14.70 ng/ml and once with a LSD concentration of 1.25 ng/ml in urine. In serum of two patients, the O-H-LSD concentration was determined to be 0.99 and 0.45 ng/ml. In the urine of a third patient, the O-H-LSD concentration was 9.70 ng/ml.

  6. Camera sensor arrangement for crop/weed detection accuracy in agronomic images.

    PubMed

    Romeo, Juan; Guerrero, José Miguel; Montalvo, Martín; Emmi, Luis; Guijarro, María; Gonzalez-de-Santos, Pablo; Pajares, Gonzalo

    2013-04-02

    In Precision Agriculture, images coming from camera-based sensors are commonly used for weed identification and crop line detection, either to apply specific treatments or for vehicle guidance purposes. Accuracy of identification and detection is an important issue to be addressed in image processing. There are two main types of parameters affecting the accuracy of the images, namely: (a) extrinsic, related to the sensor's positioning in the tractor; (b) intrinsic, related to the sensor specifications, such as CCD resolution, focal length or iris aperture, among others. Moreover, in agricultural applications, the uncontrolled illumination, existing in outdoor environments, is also an important factor affecting the image accuracy. This paper is exclusively focused on two main issues, always with the goal to achieve the highest image accuracy in Precision Agriculture applications, making the following two main contributions: (a) camera sensor arrangement, to adjust extrinsic parameters and (b) design of strategies for controlling the adverse illumination effects.

  7. The development and validation of an UHPLC-MS/MS method for the rapid quantification of the antiretroviral agent dapivirine in human plasma.

    PubMed

    Seserko, Lauren A; Emory, Joshua F; Hendrix, Craig W; Marzinke, Mark A

    2013-11-01

    Dapivirine is a non-nucleoside reverse transcriptase inhibitor designed to prevent HIV-1 viral replication and subsequent propagation. A sensitive method is required to quantify plasma concentrations to assess drug efficacy. Dapivirine-spiked plasma was combined with acetonitrile containing deuterated IS and was processed for analysis. The method has an analytical measuring range from 20 to 10,000 pg/ml. For the LLOQ, low, mid and high QCs, intra- and inter-assay precision (%CV) ranged from 5.58 to 13.89% and 5.23 to 13.36%, respectively, and intra- and inter-day accuracy (% deviation) ranged from -5.61 to 0.75% and -4.30 to 6.24%, respectively. A robust and sensitive LC-MS/MS assay for the high-throughput quantification of the antiretroviral drug dapivirine in human plasma was developed and validated following bioanalytical validation guidelines. The assay meets criteria for the analysis of samples from large research trials.

  8. Accuracy of a hexapod parallel robot kinematics based external fixator.

    PubMed

    Faschingbauer, Maximilian; Heuer, Hinrich J D; Seide, Klaus; Wendlandt, Robert; Münch, Matthias; Jürgens, Christian; Kirchner, Rainer

    2015-12-01

    Different hexapod-based external fixators are increasingly used to treat bone deformities and fractures. Accuracy has not been measured sufficiently for all models. An infrared tracking system was applied to measure positioning maneuvers with a motorized Precision Hexapod® fixator, detecting three-dimensional positions of reflective balls mounted in an L-arrangement on the fixator, simulating bone directions. By omitting one dimension of the coordinates, projections were simulated as if measured on standard radiographs. Accuracy was calculated as the absolute difference between targeted and measured positioning values. In 149 positioning maneuvers, the median values for positioning accuracy of translations and rotations (torsions/angulations) were below 0.3 mm and 0.2° with quartiles ranging from -0.5 mm to 0.5 mm and -1.0° to 0.9°, respectively. The experimental setup was found to be precise and reliable. It can be applied to compare different hexapod-based fixators. Accuracy of the investigated hexapod system was high. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Study on the position accuracy of a mechanical alignment system

    NASA Astrophysics Data System (ADS)

    Cai, Yimin

    In this thesis, we investigated the precision level and established the baseline achieved by a mechanical alignment system using datums and reference surfaces. The factors which affect the accuracy of mechanical alignment system were studied and methodology was developed to suppress these factors so as to reach its full potential precision. In order to characterize the mechanical alignment system quantitatively, a new optical position monitoring system by using quadrant detectors has been developed in this thesis, it can monitor multi-dimensional degrees of mechanical workpieces in real time with high precision. We studied the noise factors inside the system and optimized the optical system. Based on the fact that one of the major limiting noise factors is the shifting of the laser beam, a noise cancellation technique has been developed successfully to suppress this noise, the feasibility of an ultra high resolution (<20 A) for displacement monitoring has been demonstrated. Using the optical position monitoring system, repeatability experiment of the mechanical alignment system has been conducted on different kinds of samples including steel, aluminum, glass and plastics with the same size 100mm x 130mm. The alignment accuracy was studied quantitatively rather than qualitatively before. In a controlled environment, the alignment precision can be improved 5 folds by securing the datum without other means of help. The alignment accuracy of an aluminum workpiece having reference surface by milling is about 3 times better than by shearing. Also we have found that sample material can have fairly significant effect on the alignment precision of the system. Contamination trapped between the datum and reference surfaces in mechanical alignment system can cause errors of registration or reduce the level of manufacturing precision. In the thesis, artificial and natural dust particles were used to simulate the real situations and their effects on system precision have been

  10. HPLC-ESI-MS/MS validated method for simultaneous quantification of zopiclone and its metabolites, N-desmethyl zopiclone and zopiclone-N-oxide in human plasma.

    PubMed

    Mistri, Hiren N; Jangid, Arvind G; Pudage, Ashutosh; Shrivastav, Pranav

    2008-03-15

    A simple, selective and sensitive isocratic HPLC method with triple quadrupole mass spectrometry detection has been developed and validated for simultaneous quantification of zopiclone and its metabolites in human plasma. The analytes were extracted using solid phase extraction, separated on Symmetry shield RP8 column (150 mm x 4.6 mm i.d., 3.5 microm particle size) and detected by tandem mass spectrometry with a turbo ion spray interface. Metaxalone was used as an internal standard. The method had a chromatographic run time of 4.5 min and linear calibration curves over the concentration range of 0.5-150 ng/mL for both zopiclone and N-desmethyl zopiclone and 1-150 ng/mL for zopiclone-N-oxide. The intra-batch and inter-batch accuracy and precision evaluated at lower limit of quantification and quality control levels were within 89.5-109.1% and 3.0-14.7%, respectively, for all the analytes. The recoveries calculated for the analytes and internal standard were > or = 90% from spiked plasma samples. The validated method was successfully employed for a comparative bioavailability study after oral administration of 7.5 mg zopiclone (test and reference) to 16 healthy volunteers under fasted condition.

  11. Quantification of pericardial effusions by echocardiography and computed tomography.

    PubMed

    Leibowitz, David; Perlman, Gidon; Planer, David; Gilon, Dan; Berman, Philip; Bogot, Naama

    2011-01-15

    Echocardiography is a well-accepted tool for the diagnosis and quantification of pericardial effusion (PEff). Given the increasing use of computed tomographic (CT) scanning, more PEffs are being initially diagnosed by computed tomography. No study has compared quantification of PEff by computed tomography and echocardiography. The objective of this study was to assess the accuracy of quantification of PEff by 2-dimensional echocardiography and computed tomography compared to the amount of pericardial fluid drained at pericardiocentesis. We retrospectively reviewed an institutional database to identify patients who underwent chest computed tomography and echocardiography before percutaneous pericardiocentesis with documentation of the amount of fluid withdrawn. Digital 2-dimensional echocardiographic and CT images were retrieved and quantification of PEff volume was performed by applying the formula for the volume of a prolate ellipse, π × 4/3 × maximal long-axis dimension/2 × maximal transverse dimension/2 × maximal anteroposterior dimension/2, to the pericardial sac and to the heart. Nineteen patients meeting study qualifications were entered into the study. The amount of PEff drained was 200 to 1,700 ml (mean 674 ± 340). Echocardiographically calculated pericardial effusion volume correlated relatively well with PEff volume (r = 0.73, p <0.001, mean difference -41 ± 225 ml). There was only moderate correlation between CT volume quantification and actual volume drained (r = 0.4, p = 0.004, mean difference 158 ± 379 ml). In conclusion, echocardiography appears a more accurate imaging technique than computed tomography in quantitative assessment of nonloculated PEffs and should continue to be the primary imaging in these patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Microhartree precision in density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Gulans, Andris; Kozhevnikov, Anton; Draxl, Claudia

    2018-04-01

    To address ultimate precision in density functional theory calculations we employ the full-potential linearized augmented plane-wave + local-orbital (LAPW + lo) method and justify its usage as a benchmark method. LAPW + lo and two completely unrelated numerical approaches, the multiresolution analysis (MRA) and the linear combination of atomic orbitals, yield total energies of atoms with mean deviations of 0.9 and 0.2 μ Ha , respectively. Spectacular agreement with the MRA is reached also for total and atomization energies of the G2-1 set consisting of 55 molecules. With the example of α iron we demonstrate the capability of LAPW + lo to reach μ Ha /atom precision also for periodic systems, which allows also for the distinction between the numerical precision and the accuracy of a given functional.

  13. Precision aerial application for site-specific rice crop management

    USDA-ARS?s Scientific Manuscript database

    Precision agriculture includes different technologies that allow agricultural professional to use information management tools to optimize agriculture production. The new technologies allow aerial application applicators to improve application accuracy and efficiency, which saves time and money for...

  14. Straightforward rapid spectrophotometric quantification of total cyanogenic glycosides in fresh and processed cassava products.

    PubMed

    Tivana, Lucas Daniel; Da Cruz Francisco, Jose; Zelder, Felix; Bergenståhl, Bjorn; Dejmek, Petr

    2014-09-01

    In this study, we extend pioneering studies and demonstrate straightforward applicability of the corrin-based chemosensor, aquacyanocobyrinic acid (ACCA), for the instantaneous detection and rapid quantification of endogenous cyanide in fresh and processed cassava roots. Hydrolytically liberated endogenous cyanide from cyanogenic glycosides (CNp) reacts with ACCA to form dicyanocobyrinic acid (DCCA), accompanied by a change of colour from orange to violet. The method was successfully tested on various cassava samples containing between 6 and 200 mg equiv. HCN/kg as verified with isonicotinate/1,3-dimethylbarbiturate as an independent method. The affinity of ACCA sensor to cyanide is high, coordination occurs fast and the colorimetric response can therefore be instantaneously monitored with spectrophotometric methods. Direct applications of the sensor without need of extensive and laborious extraction processes are demonstrated in water-extracted samples, in acid-extracted samples, and directly on juice drops. ACCA showed high precision with a standard deviation (STDV) between 0.03 and 0.06 and high accuracy (93-96%). Overall, the ACCA procedure is straightforward, safe and easily performed. In a proof-of-concept study, rapid screening of ten samples within 20 min has been tested. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Identification and quantification of flavonoids and chromes in Baeckea frutescens by using HPLC coupled with diode-array detection and quadruple time-of-flight mass spectrometry.

    PubMed

    Jia, Bei-Xi; Huangfu, Qian-Qian; Ren, Feng-Xiao; Jia, Lu; Zhang, Yan-Bing; Liu, Hong-Min; Yang, Jie; Wang, Qiang

    2015-01-01

    This article marks the first report on high-performance liquid chromatography (HPLC) coupled with diode-array detection (DAD) and quadruple time-of-flight mass spectrometry (Q-TOF/MS) for the identification and quantification of main bioactive constituents in Baeckea frutescens. In total, 24 compounds were identified or tentatively characterised based on their retention behaviours, UV profiles and MS fragment information. Furthermore, a validated method with good linearity, sensitivity, precision, stability, repeatability and accuracy was successfully applied for simultaneous determination of five flavonoids and one chromone in different plant parts of B. frutescens collected at different harvest times, and their dynamic contents revealed the appropriate harvest times. The established HPLC-DAD-Q-TOF/MS using multi-bioactive markers was proved to be a validated strategy for the quality evaluation on both raw materials and related products of B. frutescens.

  16. Accuracy and precision of computer-assisted analysis of bone density via conventional and digital radiography in relation to dual-energy x-ray absorptiometry.

    PubMed

    Vaccaro, Calogero; Busetto, Roberto; Bernardini, Daniele; Anselmi, Carlo; Zotti, Alessandro

    2012-03-01

    To evaluate the precision and accuracy of assessing bone mineral density (BMD) by use of mean gray value (MGV) on digitalized and digital images of conventional and digital radiographs, respectively, of ex vivo bovine and equine bone specimens in relation to the gold-standard technique of dual-energy x-ray absorptiometry (DEXA). Left and right metatarsal bones from 11 beef cattle and right femurs from 2 horses. Bovine specimens were imaged by use of conventional radiography, whereas equine specimens were imaged by use of computed radiography (digital radiography). Each specimen was subsequently scanned by use of the same DEXA equipment. The BMD values resulting from each DEXA scan were paired with the MGVs obtained by use of software on the corresponding digitalized or digital radiographic image. The MGV analysis of digitalized and digital x-ray images was a precise (coefficient of variation, 0.1 and 0.09, respectively) and highly accurate method for assessing BMD, compared with DEXA (correlation coefficient, 0.910 and 0.937 for conventional and digital radiography, respectively). The high correlation between MGV and BMD indicated that MGV analysis may be a reliable alternative to DEXA in assessing radiographic bone density. This may provide a new, inexpensive, and readily available estimate of BMD.

  17. Reliable low precision simulations in land surface models

    NASA Astrophysics Data System (ADS)

    Dawson, Andrew; Düben, Peter D.; MacLeod, David A.; Palmer, Tim N.

    2017-12-01

    Weather and climate models must continue to increase in both resolution and complexity in order that forecasts become more accurate and reliable. Moving to lower numerical precision may be an essential tool for coping with the demand for ever increasing model complexity in addition to increasing computing resources. However, there have been some concerns in the weather and climate modelling community over the suitability of lower precision for climate models, particularly for representing processes that change very slowly over long time-scales. These processes are difficult to represent using low precision due to time increments being systematically rounded to zero. Idealised simulations are used to demonstrate that a model of deep soil heat diffusion that fails when run in single precision can be modified to work correctly using low precision, by splitting up the model into a small higher precision part and a low precision part. This strategy retains the computational benefits of reduced precision whilst preserving accuracy. This same technique is also applied to a full complexity land surface model, resulting in rounding errors that are significantly smaller than initial condition and parameter uncertainties. Although lower precision will present some problems for the weather and climate modelling community, many of the problems can likely be overcome using a straightforward and physically motivated application of reduced precision.

  18. Airborne Laser CO2 Column Measurements: Evaluation of Precision and Accuracy Under a Wide Range of Surface and Atmospheric Conditions

    NASA Astrophysics Data System (ADS)

    Browell, E. V.; Dobler, J. T.; Kooi, S. A.; Fenn, M. A.; Choi, Y.; Vay, S. A.; Harrison, F. W.; Moore, B.

    2011-12-01

    This paper discusses the latest flight test results of a multi-frequency intensity-modulated (IM) continuous-wave (CW) laser absorption spectrometer (LAS) that operates near 1.57 μm for remote CO2 column measurements. This IM-LAS system is under development for a future space-based mission to determine the global distribution of regional-scale CO2 sources and sinks, which is the objective of the NASA Active Sensing of CO2 Emissions during Nights, Days, and Seasons (ASCENDS) mission. A prototype of the ASCENDS system, called the Multi-frequency Fiber Laser Lidar (MFLL), has been flight tested in eleven airborne campaigns since May 2005. This paper compares the most recent results obtained during the 2010 and 2011 UC-12 and DC-8 flight tests, where MFLL remote CO2 column measurements were evaluated against airborne in situ CO2 profile measurements traceable to World Meteorological Organization standards. The major change to the MFLL system in 2011 was the implementation of several different IM modes, which could be quickly changed in flight, to directly compare the precision and accuracy of MFLL CO2 measurements in each mode. The different IM modes that were evaluated included "fixed" IM frequencies near 50, 200, and 500 kHz; frequencies changed in short time steps (Stepped); continuously swept frequencies (Swept); and a pseudo noise (PN) code. The Stepped, Swept, and PN modes were generated to evaluate the ability of these IM modes to desensitize MFLL CO2 column measurements to intervening optically thin aerosols/clouds. MFLL was flown on the NASA Langley UC-12 aircraft in May 2011 to evaluate the newly implemented IM modes and their impact on CO2 measurement precision and accuracy, and to determine which IM mode provided the greatest thin cloud rejection (TCR) for the CO2 column measurements. Within the current hardware limitations of the MFLL system, the "fixed" 50 kHz results produced similar SNR values to those found previously. The SNR decreased as expected

  19. Liquid chromatography-tandem mass spectrometry for the quantification of moxifloxacin, ciprofloxacin, daptomycin, caspofungin, and isavuconazole in human plasma.

    PubMed

    Hösl, Julian; Gessner, André; El-Najjar, Nahed

    2018-05-12

    A simple and precise ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for the simultaneous analysis of five anti-infective agents used to treat severe infections [three antibiotics (daptomycin, moxifloxacin, ciprofloxacin) and two antifungals (isavuconazole, caspofungin)] in human plasma. Sample preparation was based on protein precipitation with ice cold methanol. All five agents were analyzed with the corresponding isotopically labeled internal standards. All analytes were detected in multiple reactions monitoring (MRM) using API 4000 triple-quadrupole mass spectrometer with electrospray (ESI) source operating in positive mode. The calibration curves were linear over the selected ranges (r > 0.99). The method is precise and accurate with a total run time of 5.5 min. Accuracy of all target analytes ranged between 95.9-116.6%, measured with an imprecision of less than 10.8%. The lower limit of quantification was 1.25 mg/L for caspofungin, 0.3125 mg/L for isavuconazole, 3.125 mg/L for daptomycin, 0.075 mg/L for ciprofloxacin, and 0.1875 mg/L for moxifloxacin. The successful application of the method in patient samples proved its suitability for the medical surveillance of antimicrobial therapy in intensive care units as well as to other pharmacokinetic studies. Copyright © 2018. Published by Elsevier B.V.

  20. Fast method for simultaneous quantification of tamoxifen and metabolites in dried blood spots using an entry level LC-MS/MS system.

    PubMed

    Tré-Hardy, Marie; Capron, Arnaud; Antunes, Marina Venzon; Linden, Rafael; Wallemacq, Pierre

    2016-11-01

    The purpose of this study was to develop and validate a new liquid chromatography-tandem mass spectrometric (LC-MSMS) assay for the simultaneous quantification of tamoxifen (TAM) and its main therapeutically active metabolites, N-desmethyltamoxifen (NDT), 4-hydroxytamoxifen (4HT) and endoxifen (END) in dried blood spots. Ultrasound assisted methanolic extraction was used for TAM and metabolites extraction from dried blood spot. After evaporation and methanol reconstitution, the extract was injected into a LC-MSMS system. Reversed phase chromatography was performed on a C18 grafted column in gradient mode. TAM, metabolites, and internal standard (diazepam-d 5 ; IS) were identified in positive electrospray ionization mode using m/z transition of 372.5>72.1 (TAM); 374.23>58.10 (END); 358.27>58.10 (NDT); 388.23>44.80 (4HT) and 290.00>198.00 (IS). Total analytical run time was 6.5min. Assay was linear from 1 to 500ng/mL for all substances and presented intra and inter-assay precision and accuracy <15%. TAM, NDT, 4HT and END limits of quantification and detection were of 1 and 0.5ng/mL; 1 and 3ng/mL; 1.7 and 3ng/mL; 0.6 and 2ng/mL, respectively. Recovery ranged from 83.8 to 96.3% with matrix effect ranged from 4.3 to 29.8% for TAM and its metabolites. Hematocrit value ≤40% appeared to negatively influence accuracy of the method. In conclusion, the method described here is somewhat accessible, relatively fast, sensitive and selective with no interference. This assay might be used to investigate the level of TAM and its metabolites in DBS for therapeutic drug monitoring purposes. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  1. Measurements of experimental precision for trials with cowpea (Vigna unguiculata L. Walp.) genotypes.

    PubMed

    Teodoro, P E; Torres, F E; Santos, A D; Corrêa, A M; Nascimento, M; Barroso, L M A; Ceccon, G

    2016-05-09

    The aim of this study was to evaluate the suitability of statistics as experimental precision degree measures for trials with cowpea (Vigna unguiculata L. Walp.) genotypes. Cowpea genotype yields were evaluated in 29 trials conducted in Brazil between 2005 and 2012. The genotypes were evaluated with a randomized block design with four replications. Ten statistics that were estimated for each trial were compared using descriptive statistics, Pearson correlations, and path analysis. According to the class limits established, selective accuracy and F-test values for genotype, heritability, and the coefficient of determination adequately estimated the degree of experimental precision. Using these statistics, 86.21% of the trials had adequate experimental precision. Selective accuracy and the F-test values for genotype, heritability, and the coefficient of determination were directly related to each other, and were more suitable than the coefficient of variation and the least significant difference (by the Tukey test) to evaluate experimental precision in trials with cowpea genotypes.

  2. Real-Time Single Frequency Precise Point Positioning Using SBAS Corrections

    PubMed Central

    Li, Liang; Jia, Chun; Zhao, Lin; Cheng, Jianhua; Liu, Jianxu; Ding, Jicheng

    2016-01-01

    Real-time single frequency precise point positioning (PPP) is a promising technique for high-precision navigation with sub-meter or even centimeter-level accuracy because of its convenience and low cost. The navigation performance of single frequency PPP heavily depends on the real-time availability and quality of correction products for satellite orbits and satellite clocks. Satellite-based augmentation system (SBAS) provides the correction products in real-time, but they are intended to be used for wide area differential positioning at 1 meter level precision. By imposing the constraints for ionosphere error, we have developed a real-time single frequency PPP method by sufficiently utilizing SBAS correction products. The proposed PPP method are tested with static and kinematic data, respectively. The static experimental results show that the position accuracy of the proposed PPP method can reach decimeter level, and achieve an improvement of at least 30% when compared with the traditional SBAS method. The positioning convergence of the proposed PPP method can be achieved in 636 epochs at most in static mode. In the kinematic experiment, the position accuracy of the proposed PPP method can be improved by at least 20 cm relative to the SBAS method. Furthermore, it has revealed that the proposed PPP method can achieve decimeter level convergence within 500 s in the kinematic mode. PMID:27517930

  3. Quantification of Rifaximin in Tablets by Spectrophotometric Method Ecofriendly in Ultraviolet Region

    PubMed Central

    2016-01-01

    Rifaximin is an oral nonabsorbable antibiotic that acts locally in the gastrointestinal tract with minimal systemic adverse effects. It does not have spectrophotometric method ecofriendly in the ultraviolet region described in official compendiums and literature. The analytical techniques for determination of rifaximin reported in the literature require large amount of time to release results and are significantly onerous. Furthermore, they use toxic reagents both for the operator and environment and, therefore, cannot be considered environmentally friendly analytical techniques. The objective of this study was to develop and validate an ecofriendly spectrophotometric method in the ultraviolet region to quantify rifaximin in tablets. The method was validated, showing linearity, selectivity, precision, accuracy, and robustness. It was linear over the concentration range of 10–30 mg L−1 with correlation coefficients greater than 0.9999 and limits of detection and quantification of 1.39 and 4.22 mg L−1, respectively. The validated method is useful and applied for the routine quality control of rifaximin, since it is simple with inexpensive conditions and fast in the release of results, optimizes analysts and equipment, and uses environmentally friendly solvents, being considered a green method, which does not prejudice either the operator or the environment. PMID:27429835

  4. Optimizing Uas Image Acquisition and Geo-Registration for Precision Agriculture

    NASA Astrophysics Data System (ADS)

    Hearst, A. A.; Cherkauer, K. A.; Rainey, K. M.

    2014-12-01

    Unmanned Aircraft Systems (UASs) can acquire imagery of crop fields in various spectral bands, including the visible, near-infrared, and thermal portions of the spectrum. By combining techniques of computer vision, photogrammetry, and remote sensing, these images can be stitched into precise, geo-registered maps, which may have applications in precision agriculture and other industries. However, the utility of these maps will depend on their positional accuracy. Therefore, it is important to quantify positional accuracy and consider the tradeoffs between accuracy, field site setup, and the computational requirements for data processing and analysis. This will enable planning of data acquisition and processing to obtain the required accuracy for a given project. This study focuses on developing and evaluating methods for geo-registration of raw aerial frame photos acquired by a small fixed-wing UAS. This includes visual, multispectral, and thermal imagery at 3, 6, and 14 cm/pix resolutions, respectively. The study area is 10 hectares of soybean fields at the Agronomy Center for Research and Education (ACRE) at Purdue University. The dataset consists of imagery from 6 separate days of flights (surveys) and supporting ground measurements. The Direct Sensor Orientation (DiSO) and Integrated Sensor Orientation (InSO) methods for geo-registration are tested using 16 Ground Control Points (GCPs). Subsets of these GCPs are used to test for the effects of different numbers and spatial configurations of GCPs on positional accuracy. The horizontal and vertical Root Mean Squared Error (RMSE) is used as the primary metric of positional accuracy. Preliminary results from 1 of the 6 surveys show that the DiSO method (0 GCPs used) achieved an RMSE in the X, Y, and Z direction of 2.46 m, 1.04 m, and 1.91 m, respectively. InSO using 5 GCPs achieved an RMSE of 0.17 m, 0.13 m, and 0.44 m. InSO using 10 GCPs achieved an RMSE of 0.10 m, 0.09 m, and 0.12 m. Further analysis will identify

  5. Automated quantification of renal interstitial fibrosis for computer-aided diagnosis: A comprehensive tissue structure segmentation method.

    PubMed

    Tey, Wei Keat; Kuang, Ye Chow; Ooi, Melanie Po-Leen; Khoo, Joon Joon

    2018-03-01

    through knowledge-based rules employing colour space transformations and structural features extraction from the images. In particular, the renal glomerulus identification is based on a multiscale textural feature analysis and a support vector machine. The regions in the biopsy representing interstitial fibrosis are deduced through the elimination of non-interstitial fibrosis structures from the biopsy area. The experiments conducted evaluate the system in terms of quantification accuracy, intra- and inter-observer variability in visual quantification by pathologists, and the effect introduced by the automated quantification system on the pathologists' diagnosis. A 40-image ground truth dataset has been manually prepared by consulting an experienced pathologist for the validation of the segmentation algorithms. The results from experiments involving experienced pathologists have demonstrated an average error of 9 percentage points in quantification result between the automated system and the pathologists' visual evaluation. Experiments investigating the variability in pathologists involving samples from 70 kidney patients also proved the automated quantification error rate to be on par with the average intra-observer variability in pathologists' quantification. The accuracy of the proposed quantification system has been validated with the ground truth dataset and compared against the pathologists' quantification results. It has been shown that the correlation between different pathologists' estimation of interstitial fibrosis area has significantly improved, demonstrating the effectiveness of the quantification system as a diagnostic aide. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Simultaneous quantification of antibiotics in wastewater from pig farms by capillary electrophoresis.

    PubMed

    Díaz-Quiroz, Carlos A; Francisco Hernández-Chávez, J; Ulloa-Mercado, Gabriela; Gortáres-Moroyoqui, Pablo; Martínez-Macías, Rosario; Meza-Escalante, Edna; Serrano-Palacios, Denisse

    2018-06-15

    Pig farming is an important activity in the economic development of Mexico with millions of tons of meat produced annually. Antibiotics are used in therapeutic dose to prevent diseases, and sometimes as growth promoters. These compounds are not completely metabolized; they are carried into the environment in its active form at concentrations that could induce antibiotic resistance in bacteria, which could be transferred to human pathogens by horizontal gene transfer. The objective of this work was to develop methods of analysis for simultaneous quantification of the antibiotics Oxytetracycline (OXT), Chlortetracycline (CLT), Enrofloxacin (ENRO) and Ciprofloxacin (CIPRO) by field-amplified sampling injection in capillary zone electrophoresis (FASI-CZE). The method was validated by parameters of (1) linearity, obtaining a lineal range of 0.05 at 1 μg mL -1 for ENRO and CIPRO, and from 0.1 to 1 μg mL -1 for OXT and CLT; (2) precision, obtaining values <5% of standard deviation for CIPRO and ENRO and <10% of standard deviation for OXT and CLT; (3) accuracy, with recovery values from 93 to 115%; (4) selectivity, with values of resolution >2 for the all antibiotics tested. To prove the method, a sample of wastewater from a local pig farm was analyzed, detecting a concentration of 0.140 ± 0.009 for OXT. This concentration was higher than the minimal selective concentration, indicating the point in which resistance to a determined antibiotic could develop. The methods were validated with precision and sensitivity comparable to chromatographic methods, which can be used to analyze wastewater from pig farms directly. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Precision Attitude Determination for an Infrared Space Telescope

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.

    2008-01-01

    We have developed performance simulations for a precision attitude determination system using a focal plane star tracker on an infrared space telescope. The telescope is being designed for the Destiny mission to measure cosmologically distant supernovae as one of the candidate implementations for the Joint Dark Energy Mission. Repeat observations of the supernovae require attitude control at the level of 0.010 arcseconds (0.05 microradians) during integrations and at repeat intervals up to and over a year. While absolute accuracy is not required, the repoint precision is challenging. We have simulated the performance of a focal plane star tracker in a multidimensional parameter space, including pixel size, read noise, and readout rate. Systematic errors such as proper motion, velocity aberration, and parallax can be measured and compensated out. Our prediction is that a relative attitude determination accuracy of 0.001 to 0.002 arcseconds (0.005 to 0.010 microradians) will be achievable.

  8. Between simplicity and accuracy: Effect of adding modeling details on quarter vehicle model accuracy.

    PubMed

    Soong, Ming Foong; Ramli, Rahizar; Saifizul, Ahmad

    2017-01-01

    Quarter vehicle model is the simplest representation of a vehicle that belongs to lumped-mass vehicle models. It is widely used in vehicle and suspension analyses, particularly those related to ride dynamics. However, as much as its common adoption, it is also commonly accepted without quantification that this model is not as accurate as many higher-degree-of-freedom models due to its simplicity and limited degrees of freedom. This study investigates the trade-off between simplicity and accuracy within the context of quarter vehicle model by determining the effect of adding various modeling details on model accuracy. In the study, road input detail, tire detail, suspension stiffness detail and suspension damping detail were factored in, and several enhanced models were compared to the base model to assess the significance of these details. The results clearly indicated that these details do have effect on simulated vehicle response, but to various extents. In particular, road input detail and suspension damping detail have the most significance and are worth being added to quarter vehicle model, as the inclusion of these details changed the response quite fundamentally. Overall, when it comes to lumped-mass vehicle modeling, it is reasonable to say that model accuracy depends not just on the number of degrees of freedom employed, but also on the contributions from various modeling details.

  9. Between simplicity and accuracy: Effect of adding modeling details on quarter vehicle model accuracy

    PubMed Central

    2017-01-01

    Quarter vehicle model is the simplest representation of a vehicle that belongs to lumped-mass vehicle models. It is widely used in vehicle and suspension analyses, particularly those related to ride dynamics. However, as much as its common adoption, it is also commonly accepted without quantification that this model is not as accurate as many higher-degree-of-freedom models due to its simplicity and limited degrees of freedom. This study investigates the trade-off between simplicity and accuracy within the context of quarter vehicle model by determining the effect of adding various modeling details on model accuracy. In the study, road input detail, tire detail, suspension stiffness detail and suspension damping detail were factored in, and several enhanced models were compared to the base model to assess the significance of these details. The results clearly indicated that these details do have effect on simulated vehicle response, but to various extents. In particular, road input detail and suspension damping detail have the most significance and are worth being added to quarter vehicle model, as the inclusion of these details changed the response quite fundamentally. Overall, when it comes to lumped-mass vehicle modeling, it is reasonable to say that model accuracy depends not just on the number of degrees of freedom employed, but also on the contributions from various modeling details. PMID:28617819

  10. Is digital photography an accurate and precise method for measuring range of motion of the hip and knee?

    PubMed

    Russo, Russell R; Burn, Matthew B; Ismaily, Sabir K; Gerrie, Brayden J; Han, Shuyang; Alexander, Jerry; Lenherr, Christopher; Noble, Philip C; Harris, Joshua D; McCulloch, Patrick C

    2017-09-07

    Accurate measurements of knee and hip motion are required for management of musculoskeletal pathology. The purpose of this investigation was to compare three techniques for measuring motion at the hip and knee. The authors hypothesized that digital photography would be equivalent in accuracy and show higher precision compared to the other two techniques. Using infrared motion capture analysis as the reference standard, hip flexion/abduction/internal rotation/external rotation and knee flexion/extension were measured using visual estimation, goniometry, and photography on 10 fresh frozen cadavers. These measurements were performed by three physical therapists and three orthopaedic surgeons. Accuracy was defined by the difference from the reference standard, while precision was defined by the proportion of measurements within either 5° or 10°. Analysis of variance (ANOVA), t-tests, and chi-squared tests were used. Although two statistically significant differences were found in measurement accuracy between the three techniques, neither of these differences met clinical significance (difference of 1.4° for hip abduction and 1.7° for the knee extension). Precision of measurements was significantly higher for digital photography than: (i) visual estimation for hip abduction and knee extension, and (ii) goniometry for knee extension only. There was no clinically significant difference in measurement accuracy between the three techniques for hip and knee motion. Digital photography only showed higher precision for two joint motions (hip abduction and knee extension). Overall digital photography shows equivalent accuracy and near-equivalent precision to visual estimation and goniometry.

  11. Quantification of 4'-geranyloxyferulic acid, a new natural colon cancer chemopreventive agent, by HPLC-DAD in grapefruit skin extract.

    PubMed

    Genovese, S; Epifano, F; Carlucci, G; Marcotullio, M C; Curini, M; Locatelli, M

    2010-10-10

    Oxyprenylated natural products (isopentenyloxy-, geranyloxy- and the less spread farnesyloxy-compounds and their biosynthetic derivatives) represent a family of secondary metabolites that have been consider for years merely as biosynthetic intermediates of the most abundant C-prenylated derivatives. Many of the isolated oxyprenylated natural products were shown to exert in vitro and in vivo remarkable anti-cancer and anti-inflammatory effects. 4'-Geranyloxyferulic acid [3-(4'-geranyloxy-3'-methoxyphenyl)-2-trans-propenoic] has been discovered as a valuable chemopreventive agent of several types of cancer. After development of a high yield and "eco-friendly" synthetic scheme of this secondary metabolite, starting from cheap and non-toxic reagents and substrates, we developed a new HPLC-DAD method for its quantification in grapefruit skin extract. A preliminary study on C18 column showed the separation between GOFA and boropinic acid (having the same core but with an isopentenyloxy side chain), used as internal standard. The tested column were thermostated at 28+/-1 degrees C and the separation was achieved in gradient condition at a flow rate of 1 mL/min with a starting mobile phase of H(2)O:methanol (40:60, v/v, 1% formic acid). The limit of detection (LOD, S/N=3) was 0.5 microg/mL and the limit of quantification (LOQ, S/N=10) was 1 microg/mL. Matrix-matched standard curves showed linearity up to 75 microg/mL. In the analytical range the precision (RSD%) values were accuracy (bias%) between +/-12%. This method was used to evaluate for the first time the presence of this analyte in natural extract of grapefruit. In conclusion, this method showed LOQ values able to selective quantification of this analyte in grapefruit skin extract.

  12. Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers

    PubMed Central

    Sun, Ting; Xing, Fei; You, Zheng

    2013-01-01

    The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers. PMID:23567527

  13. Accuracy Performance Evaluation of Beidou Navigation Satellite System

    NASA Astrophysics Data System (ADS)

    Wang, W.; Hu, Y. N.

    2017-03-01

    Accuracy is one of the key elements of the regional Beidou Navigation Satellite System (BDS) performance standard. In this paper, we review the definition specification and evaluation standard of the BDS accuracy. Current accuracy of the regional BDS is analyzed through the ground measurements and compared with GPS in terms of dilution of precision (DOP), signal-in-space user range error (SIS URE), and positioning accuracy. The Positioning DOP (PDOP) map of BDS around Chinese mainland is compared with that of GPS. The GPS PDOP is between 1.0-2.0 and does not vary with the user latitude and longitude, while the BDS PDOP varies between 1.5-5.0, and increases as the user latitude increases, and as the user longitude apart from 118°. The accuracies of the broadcast orbits of BDS are assessed by taking the precise orbits from International GNSS Service (IGS) as the reference, and by making satellite laser ranging (SLR) residuals. The radial errors of the BDS inclined geosynchronous orbit (IGSO) and medium orbit (MEO) satellites broadcast orbits are at the 0.5m level, which are larger than those of GPS satellites at the 0.2m level. The SLR residuals of geosynchronous orbit (GEO) satellites are 65.0cm, which are larger than those of IGSO, and MEO satellites, at the 50.0cm level. The accuracy of broadcast clock offset parameters of BDS is computed by taking the clock measurements of Two-way Satellite Radio Time Frequency Transfer as the reference. Affected by the age of broadcast clock parameters, the error of the broadcast clock offset parameters of the MEO satellites is the largest, at the 0.80m level. Finally, measurements of the multi-GNSS (MGEX) receivers are used for positioning accuracy assessment of BDS and GPS. It is concluded that the positioning accuracy of regional BDS is better than 10m at the horizontal component and the vertical component. The combined positioning accuracy of both systems is better than one specific system.

  14. DOTD standards for GPS data collection accuracy : [tech summary].

    DOT National Transportation Integrated Search

    2015-09-01

    Positional data collection e orts performed by personnel and contractors of the Louisiana Department of Transportation and Development : (DOTD) requires a reliable and consistent measurement framework for ensuring accuracy and precision. Global Na...

  15. Direct qPCR quantification using the Quantifiler(®) Trio DNA quantification kit.

    PubMed

    Liu, Jason Yingjie

    2014-11-01

    The effectiveness of a direct quantification assay is essential to the adoption of the combined direct quantification/direct STR workflow. In this paper, the feasibility of using the Quantifiler(®) Trio DNA quantification kit for the direct quantification of forensic casework samples was investigated. Both low-level touch DNA samples and blood samples were collected on PE swabs and quantified directly. The increased sensitivity of the Quantifiler(®) Trio kit enabled the detection of less than 10pg of DNA in unprocessed touch samples and also minimizes the stochastic effect experienced by different targets in the same sample. The DNA quantity information obtained from a direct quantification assay using the Quantifiler(®) Trio kit can also be used to accurately estimate the optimal input DNA quantity for a direct STR amplification reaction. The correlation between the direct quantification results (Quantifiler(®) Trio kit) and the direct STR results (GlobalFiler™ PCR amplification kit(*)) for low-level touch DNA samples indicates that direct quantification using the Quantifiler(®) Trio DNA quantification kit is more reliable than the Quantifiler(®) Duo DNA quantification kit for predicting the STR results of unprocessed touch DNA samples containing less than 10pg of DNA. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Accurate Quantification of Cardiovascular Biomarkers in Serum Using Protein Standard Absolute Quantification (PSAQ™) and Selected Reaction Monitoring*

    PubMed Central

    Huillet, Céline; Adrait, Annie; Lebert, Dorothée; Picard, Guillaume; Trauchessec, Mathieu; Louwagie, Mathilde; Dupuis, Alain; Hittinger, Luc; Ghaleh, Bijan; Le Corvoisier, Philippe; Jaquinod, Michel; Garin, Jérôme; Bruley, Christophe; Brun, Virginie

    2012-01-01

    Development of new biomarkers needs to be significantly accelerated to improve diagnostic, prognostic, and toxicity monitoring as well as therapeutic follow-up. Biomarker evaluation is the main bottleneck in this development process. Selected Reaction Monitoring (SRM) combined with stable isotope dilution has emerged as a promising option to speed this step, particularly because of its multiplexing capacities. However, analytical variabilities because of upstream sample handling or incomplete trypsin digestion still need to be resolved. In 2007, we developed the PSAQ™ method (Protein Standard Absolute Quantification), which uses full-length isotope-labeled protein standards to quantify target proteins. In the present study we used clinically validated cardiovascular biomarkers (LDH-B, CKMB, myoglobin, and troponin I) to demonstrate that the combination of PSAQ and SRM (PSAQ-SRM) allows highly accurate biomarker quantification in serum samples. A multiplex PSAQ-SRM assay was used to quantify these biomarkers in clinical samples from myocardial infarction patients. Good correlation between PSAQ-SRM and ELISA assay results was found and demonstrated the consistency between these analytical approaches. Thus, PSAQ-SRM has the capacity to improve both accuracy and reproducibility in protein analysis. This will be a major contribution to efficient biomarker development strategies. PMID:22080464

  17. Rapid Identification and Quantification of Natural Antioxidants in the Seeds of Rhubarb from Different Habitats in China Using Accelerated Solvent Extraction and HPLC-DAD-ESI-MSn-DPPH Assay.

    PubMed

    Tan, Liang; Geng, Dan-dan; Hu, Feng-zu; Dong, Qi

    2016-01-01

    In this study, the 10 accessions of rhubarb seeds from different habitats in China were investigated. Lipids were removed using petroleum ether, and the effective components were then separated using accelerated solvent extraction with 80% aqueous methanol. An off-line 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging method was used as the marker to evaluate the total antioxidant capability of extracts. On-line high-performance liquid chromatography-diode-array detectors-electrospray ionization-tandem mass spectrometry (HPLC-DAD-ESI-MS(n)) and HPLC-DAD-DPPH assays were developed for rapid identification and quantification of individual free-radical scavengers in extracts of rhubarb seeds. Ten free-radical scavengers from methanolic extracts of the rhubarb seeds were screened, five of which were identified and quantitatively analyzed: epicatechin, myricetin, hyperoside, quercitrin and quercetin. All were identified in rhubarb seeds for the first time and can be regarded as the major potent antioxidants in rhubarb seeds due to representing most of the total free-radical scavenging activity. Preliminary analysis of structures was performed for another five antioxidants. Based on our validation results, the developed method can be used for rapid separation, convenient identification and quantification of the multiple antioxidative constituents in rhubarb seeds, featuring good quantification parameters, accuracy and precision. The results are important to clarify the material basis and therapeutic mechanism of rhubarb seeds. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. The Paradox of Abstraction: Precision Versus Concreteness.

    PubMed

    Iliev, Rumen; Axelrod, Robert

    2017-06-01

    We introduce a novel measure of abstractness based on the amount of information of a concept computed from its position in a semantic taxonomy. We refer to this measure as precision. We propose two alternative ways to measure precision, one based on the path length from a concept to the root of the taxonomic tree, and another one based on the number of direct and indirect descendants. Since more information implies greater processing load, we hypothesize that nouns higher in precision will have a processing disadvantage in a lexical decision task. We contrast precision to concreteness, a common measure of abstractness based on the proportion of sensory-based information associated with a concept. Since concreteness facilitates cognitive processing, we predict that while both concreteness and precision are measures of abstractness, they will have opposite effects on performance. In two studies we found empirical support for our hypothesis. Precision and concreteness had opposite effects on latency and accuracy in a lexical decision task, and these opposite effects were observable while controlling for word length, word frequency, affective content and semantic diversity. Our results support the view that concepts organization includes amodal semantic structures which are independent of sensory information. They also suggest that we should distinguish between sensory-based and amount-of-information-based abstractness.

  19. Accuracy and precision of Legionella isolation by US laboratories in the ELITE program pilot study.

    PubMed

    Lucas, Claressa E; Taylor, Thomas H; Fields, Barry S

    2011-10-01

    A pilot study for the Environmental Legionella Isolation Techniques Evaluation (ELITE) Program, a proficiency testing scheme for US laboratories that culture Legionella from environmental samples, was conducted September 1, 2008 through March 31, 2009. Participants (n=20) processed panels consisting of six sample types: pure and mixed positive, pure and mixed negative, pure and mixed variable. The majority (93%) of all samples (n=286) were correctly characterized, with 88.5% of samples positive for Legionella and 100% of negative samples identified correctly. Variable samples were incorrectly identified as negative in 36.9% of reports. For all samples reported positive (n=128), participants underestimated the cfu/ml by a mean of 1.25 logs with standard deviation of 0.78 logs, standard error of 0.07 logs, and a range of 3.57 logs compared to the CDC re-test value. Centering results around the interlaboratory mean yielded a standard deviation of 0.65 logs, standard error of 0.06 logs, and a range of 3.22 logs. Sampling protocol, treatment regimen, culture procedure, and laboratory experience did not significantly affect the accuracy or precision of reported concentrations. Qualitative and quantitative results from the ELITE pilot study were similar to reports from a corresponding proficiency testing scheme available in the European Union, indicating these results are probably valid for most environmental laboratories worldwide. The large enumeration error observed suggests that the need for remediation of a water system should not be determined solely by the concentration of Legionella observed in a sample since that value is likely to underestimate the true level of contamination. Published by Elsevier Ltd.

  20. Implementation of a smartphone as a wireless gyroscope application for the quantification of reflex response.

    PubMed

    LeMoyne, Robert; Mastroianni, Timothy

    2014-01-01

    The patellar tendon reflex constitutes a fundamental aspect of the conventional neurological evaluation. Dysfunctional characteristics of the reflex response can augment the diagnostic acuity of a clinician for subsequent referral to more advanced medical resources. The capacity to quantify the reflex response while alleviating the growing strain on specialized medical resources is a topic of interest. The quantification of the tendon reflex response has been successfully demonstrated with considerable accuracy and consistency through using a potential energy impact pendulum attached to a reflex hammer for evoking the tendon reflex with a smartphone, such as an iPhone, application representing a wireless accelerometer platform to quantify reflex response. Another sensor integrated into the smartphone, such as an iPhone, is the gyroscope, which measures rate of angular rotation. A smartphone application enables wireless transmission through Internet connectivity of the gyroscope signal recording of the reflex response as an email attachment. The smartphone wireless gyroscope application demonstrates considerable accuracy and consistency for the quantification of the tendon reflex response.

  1. Terbinafine quantification in human plasma by high-performance liquid chromatography coupled to electrospray tandem mass spectrometry: application to a bioequivalence study.

    PubMed

    de Oliveira, C H; Barrientos-Astigarraga, R E; de Moraes, M O; Bezerra, F A; de Moraes, M E; de Nucci, G

    2001-12-01

    A method based on liquid chromatography with positive ion electrospray ionization and tandem mass spectrometry is described for the determination of terbinafine in human plasma using naftifine as internal standard. The method has a chromatographic run time of 5 minutes and was linear in the range 1.0 to 2000 ng/mL. The limit of quantification was 1.0 ng/mL; the intraday precision was 3.6%, 3.8%, 3.5%, and 4.1%; and the intraday accuracy was -2.7%, 7.7%, 4.8%, and -2.7% for 5.0, 80.0, 250.0, and 1500.0 ng/mL, respectively. The interday precision was 4.9%, 1.7%, 2.4%, and 4.6% and the interday accuracy was 0.3%, 5.8%, 6.5%, and -1.4% for the same concentrations. This method was used in a bioequivalence study of two tablet formulations of terbinafine. Twenty-four healthy volunteers (both sexes) received a single oral dose of terbinafine (250 mg) in an open, randomized, two-period crossover study. The 90% CI of geometric mean ratios between Terbinafina (Medley S/A Indústria Farmacêutica, Campinas, Brazil) and Lamisil (Novartis Biociências S/A, São Paulo, Brazil) were 90.5% to 110.0% for C max, 92.2% to 108.1% for AUC last, and 91.3% to 107.5% for AUC 0-inf. Because the 90% CI for the above-mentioned parameters were included in the 80% to 125% interval proposed by the US FDA, the two formulations were considered bioequivalent in terms of rate and extent of absorption.

  2. Slow Off-Rate Modified Aptamer (SOMAmer) as a Novel Reagent in Immunoassay Development for Accurate Soluble Glypican-3 Quantification in Clinical Samples.

    PubMed

    Duo, Jia; Chiriac, Camelia; Huang, Richard Y-C; Mehl, John; Chen, Guodong; Tymiak, Adrienne; Sabbatini, Peter; Pillutla, Renuka; Zhang, Yan

    2018-04-17

    Accurate quantification of soluble glypican-3 in clinical samples using immunoassays is challenging, because of the lack of appropriate antibody reagents to provide a full spectrum measurement of all potential soluble glypican-3 fragments in vivo. Glypican-3 SOMAmer (slow off-rate modified aptamer) is a novel reagent that binds, with high affinity, to a far distinct epitope of glypican-3, when compared to all available antibody reagents generated in-house. This paper describes an integrated analytical approach to rational selection of key reagents based on molecular characterization by epitope mapping, with the focus on our work using a SOMAmer as a new reagent to address development challenges with traditional antibody reagents for the soluble glypican-3 immunoassay. A qualified SOMAmer-based assay was developed and used for soluble glypican-3 quantification in hepatocellular carcinoma (HCC) patient samples. The assay demonstrated good sensitivity, accuracy, and precision. Data correlated with those obtained using the traditional antibody-based assay were used to confirm the clinically relevant soluble glypican-3 forms in vivo. This result was reinforced by a liquid chromatography tandem mass spectrometry (LC-MS/MS) assay quantifying signature peptides generated from trypsin digestion. The work presented here offers an integrated strategy for qualifying aptamers as an alternative affinity platform for immunoassay reagents that can enable speedy assay development, especially when traditional antibody reagents cannot meet assay requirements.

  3. All-digital precision processing of ERTS images

    NASA Technical Reports Server (NTRS)

    Bernstein, R. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Digital techniques have been developed and used to apply precision-grade radiometric and geometric corrections to ERTS MSS and RBV scenes. Geometric accuracies sufficient for mapping at 1:250,000 scale have been demonstrated. Radiometric quality has been superior to ERTS NDPF precision products. A configuration analysis has shown that feasible, cost-effective all-digital systems for correcting ERTS data are easily obtainable. This report contains a summary of all results obtained during this study and includes: (1) radiometric and geometric correction techniques, (2) reseau detection, (3) GCP location, (4) resampling, (5) alternative configuration evaluations, and (6) error analysis.

  4. Automatic detection and quantification of pulmonary arterio-venous malformations in hereditary hemorrhagic telangiectasia

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Fortemps de Loneux, Thierry; Kouvahe, Amélé Florence; El Hajjam, Mostafa

    2017-03-01

    Hereditary hemorrhagic telangiectasia (HHT) is an autosomic dominant disorder, which is characterized by the development of multiple arterio-venous malformations in the skin, mucous membranes, and/or visceral organs. Pulmonary Arterio-Venous Malformation (PAVM) is an abnormal connection where feeding arteries shunt directly into draining veins with no intervening capillary bed. This condition may lead to paradoxical embolism and hemorrhagic complications. PAVMs patients should systematically be screened as the spontaneous complication rate is high, reaching almost 50%. Chest enhanced contrast CT scanner is the reference screening and follow-up examination. When performed by experienced operators as the prime treatment, percutaneous embolization of PAVMs is a safe, efficient and sustained therapy. The accuracy of PAVM detection and quantification of its progression over time is the key of embolotherapy success. In this paper, we propose an automatic method for PAVM detection and quantification relying on a modeling of vessel deformation, i.e. local caliber increase, based on mathematical morphology. The pulmonary field and vessels are first segmented using geodesic operators. The vessel caliber is estimated by means of a granulometric measure and the local caliber increase is detected by using a geodesic operator, the h-maxdomes. The detection sensitivity can be tuned up according to the choice of the h value which models the irregularity of the vessel caliber along its axis and the PAVM selection is performed according to a clinical criterion of >3 mm diameter of the feeding artery of the PAVM. The developed method was tested on a 20 patient dataset. A sensitivity study allowed choosing the irregularity parameter to maximize the true positive ratio reaching 85.4% in average. A specific false positive reduction procedure targeting the vessel trunks of the arterio-venous tree near mediastinum allows a precision increase from 13% to 67% with an average number of 1

  5. Strawberry: Fast and accurate genome-guided transcript reconstruction and quantification from RNA-Seq.

    PubMed

    Liu, Ruolin; Dickerson, Julie

    2017-11-01

    We propose a novel method and software tool, Strawberry, for transcript reconstruction and quantification from RNA-Seq data under the guidance of genome alignment and independent of gene annotation. Strawberry consists of two modules: assembly and quantification. The novelty of Strawberry is that the two modules use different optimization frameworks but utilize the same data graph structure, which allows a highly efficient, expandable and accurate algorithm for dealing large data. The assembly module parses aligned reads into splicing graphs, and uses network flow algorithms to select the most likely transcripts. The quantification module uses a latent class model to assign read counts from the nodes of splicing graphs to transcripts. Strawberry simultaneously estimates the transcript abundances and corrects for sequencing bias through an EM algorithm. Based on simulations, Strawberry outperforms Cufflinks and StringTie in terms of both assembly and quantification accuracies. Under the evaluation of a real data set, the estimated transcript expression by Strawberry has the highest correlation with Nanostring probe counts, an independent experiment measure for transcript expression. Strawberry is written in C++14, and is available as open source software at https://github.com/ruolin/strawberry under the MIT license.

  6. Simultaneous quantification of 25 active constituents in the total flavonoids extract from Herba Desmodii Styracifolii by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry.

    PubMed

    Guo, Panpan; Yan, Wenying; Han, Qingjie; Wang, Chunying; Zhang, Zijian

    2015-04-01

    A sensitive and selective high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry method has been developed and validated for the simultaneous determination of 25 active constituents, including 21 flavonoids and four phenolic acids in the total flavonoids extract from Herba Desmodii Styracifolii for the first time. Among the 25 compounds, seven compounds including caffeic acid, acacetin, genistein, genistin, diosmetin, diosmin and hesperidin were identified and quantified for the first time in Herba Desmodii Styracifolii. Chromatographic separation was accomplished on a ZORBAX SB-C18 (250 mm×4.6 mm, 5.0 μm) column using gradient elution of methanol and 0.1‰ acetic acid v/v at a flow rate of 1.0 mL/min. The identification and quantification of the analytes were achieved using negative electrospray ionization mass spectrometry in multiple-reaction monitoring mode. The method was fully validated in terms of limits of detection and quantification, linearity, precision and accuracy. The results indicated that the developed method is simple, rapid, specific and reliable. Furthermore, the developed method was successfully applied to quantify the 25 active components in six batches of total flavonoids extract from Herba Desmodii Styracifolii. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A high-precision Jacob's staff with improved spatial accuracy and laser sighting capability

    NASA Astrophysics Data System (ADS)

    Patacci, Marco

    2016-04-01

    A new Jacob's staff design incorporating a 3D positioning stage and a laser sighting stage is described. The first combines a compass and a circular spirit level on a movable bracket and the second introduces a laser able to slide vertically and rotate on a plane parallel to bedding. The new design allows greater precision in stratigraphic thickness measurement while restricting the cost and maintaining speed of measurement to levels similar to those of a traditional Jacob's staff. Greater precision is achieved as a result of: a) improved 3D positioning of the rod through the use of the integrated compass and spirit level holder; b) more accurate sighting of geological surfaces by tracing with height adjustable rotatable laser; c) reduced error when shifting the trace of the log laterally (i.e. away from the dip direction) within the trace of the laser plane, and d) improved measurement of bedding dip and direction necessary to orientate the Jacob's staff, using the rotatable laser. The new laser holder design can also be used to verify parallelism of a geological surface with structural dip by creating a visual planar datum in the field and thus allowing determination of surfaces which cut the bedding at an angle (e.g., clinoforms, levees, erosion surfaces, amalgamation surfaces, etc.). Stratigraphic thickness measurements and estimates of measurement uncertainty are valuable to many applications of sedimentology and stratigraphy at different scales (e.g., bed statistics, reconstruction of palaeotopographies, depositional processes at bed scale, architectural element analysis), especially when a quantitative approach is applied to the analysis of the data; the ability to collect larger data sets with improved precision will increase the quality of such studies.

  8. Quantification of paracetamol and 5-oxoproline in serum by capillary electrophoresis: Implication for clinical toxicology.

    PubMed

    Hložek, Tomáš; Křížek, Tomáš; Tůma, Petr; Bursová, Miroslava; Coufal, Pavel; Čabala, Radomír

    2017-10-25

    High anion gap metabolic acidosis frequently complicates acute paracetamol overdose and is generally attributed to lactic acidosis or compromised hepatic function. However, metabolic acidosis can also be caused by organic acid 5-oxoproline (pyroglutamic acid). Paracetamol's toxic intermediate, N-acetyl-p-benzoquinoneimine irreversibly binds to glutathione and its depletion leads to subsequent disruption of the gamma glutamyl cycle and an excessive 5-oxoproline generation. This is undoubtedly an underdiagnosed condition because measurement of serum 5-oxoproline level is not readily available. A simple, cost effective, and fast capillary electrophoresis method with diode array detection (DAD) for simultaneous measurement of both paracetamol (acetaminophen) and 5-oxoproline in serum was developed and validated. This method is highly suitable for clinical toxicology laboratory diagnostic, allowing rapid quantification of acidosis inducing organic acid 5-oxoproline present in cases of paracetamol overdose. The calibration dependence of the method was proved to be linear in the range of 1.3-250μgmL -1 , with adequate accuracy (96.4-107.8%) and precision (12.3%). LOQ equaled 1.3μgmL -1 for paracetamol and 4.9μgmL -1 for 5-oxoproline. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Semi-preparative HPLC preparation and HPTLC quantification of tetrahydroamentoflavone as marker in Semecarpus anacardium and its polyherbal formulations.

    PubMed

    Aravind, S G; Arimboor, Ranjith; Rangan, Meena; Madhavan, Soumya N; Arumughan, C

    2008-11-04

    Application of modern scientific knowledge coupled with sensitive analytical technique is important for the quality evaluation and standardization of polyherbal formulations. Semecarpus anacardium, an important medicinal plant with wide medicinal properties, is frequently used in a large number of traditional herbal preparations. Tetrahydroamentoflavone (THA), a major bioactive biflavonoid was selected as a chemical marker of S. anacardium and RP-semi-preparative HPLC conditions were optimized for the isolation of tetrahydroamentoflavone. HPTLC analytical method was developed for the fingerprinting of S. anacardium flavonoids and quantification of tetrahydroamentoflavone. The method was validated in terms of their linearity, LOD, LOQ, precision and accuracy and compared with RP-HPLC-DAD method. The methods were demonstrated for the chemical fingerprinting of S. anacardium plant parts and some commercial polyherbal formulations and the amount of tetrahydroamentoflavone was quantified. HPTLC analysis showed that S. anacardium seed contained approximately 10 g kg(-1) of tetrahydroamentoflavone. The methods were able to identify and quantify tetrahydroamentoflavone from complex mixtures of phytochemicals and could be extended to the marker-based standardization of polyherbal formulations, containing S. anacardium.

  10. Positioning accuracy in a registration-free CT-based navigation system

    NASA Astrophysics Data System (ADS)

    Brandenberger, D.; Birkfellner, W.; Baumann, B.; Messmer, P.; Huegli, R. W.; Regazzoni, P.; Jacob, A. L.

    2007-12-01

    In order to maintain overall navigation accuracy established by a calibration procedure in our CT-based registration-free navigation system, the CT scanner has to repeatedly generate identical volume images of a target at the same coordinates. We tested the positioning accuracy of the prototype of an advanced workplace for image-guided surgery (AWIGS) which features an operating table capable of direct patient transfer into a CT scanner. Volume images (N = 154) of a specialized phantom were analysed for translational shifting after various table translations. Variables included added weight and phantom position on the table. The navigation system's calibration accuracy was determined (bias 2.1 mm, precision ± 0.7 mm, N = 12). In repeated use, a bias of 3.0 mm and a precision of ± 0.9 mm (N = 10) were maintainable. Instances of translational image shifting were related to the table-to-CT scanner docking mechanism. A distance scaling error when altering the table's height was detected. Initial prototype problems visible in our study causing systematic errors were resolved by repeated system calibrations between interventions. We conclude that the accuracy achieved is sufficient for a wide range of clinical applications in surgery and interventional radiology.

  11. Low-cost precision rotary index calibration

    NASA Astrophysics Data System (ADS)

    Ng, T. W.; Lim, T. S.

    2005-08-01

    The traditional method for calibrating angular indexing repeatability of rotary axes on machine tools and measuring equipment is with a precision polygon (usually 12 sided) and an autocollimator or angular interferometer. Such a setup is typically expensive. Here, we propose a far more cost-effective approach that uses just a laser, diffractive optical element, and CCD camera. We show that significantly high accuracies can be achieved for angular index calibration.

  12. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms.

    PubMed

    Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan

    2015-08-14

    High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.

  13. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms

    PubMed Central

    Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan

    2015-01-01

    High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms. PMID:26287203

  14. Simultaneous Quantification of Seven Bioactive Flavonoids in Citri Reticulatae Pericarpium by Ultra-Fast Liquid Chromatography Coupled with Tandem Mass Spectrometry.

    PubMed

    Zhao, Lian-Hua; Zhao, Hong-Zheng; Zhao, Xue; Kong, Wei-Jun; Hu, Yi-Chen; Yang, Shi-Hai; Yang, Mei-Hua

    2016-05-01

    Citri Reticulatae Pericarpium (CRP) is a commonly-used traditional Chinese medicine with flavonoids as the major bioactive components. Nevertheless, the contents of the flavonoids in CRP of different sources may significantly vary affecting their therapeutic effects. Thus, the setting up of a reliable and comprehensive quality assessment method for flavonoids in CRP is necessary. To set up a rapid and sensitive ultra-fast liquid chromatography coupled with tandem mass spectrometry (UFLC-MS/MS) method for simultaneous quantification of seven bioactive flavonoids in CRP. A UFLC-MS/MS method coupled to ultrasound-assisted extraction was developed for simultaneous separation and quantification of seven flavonoids including hesperidin, neohesperidin, naringin, narirutin, tangeretin, nobiletin and sinensetin in 16 batches of CRP samples from different sources in China. The established method showed good linearity for all analytes with correlation coefficient (R) over 0.9980, together with satisfactory accuracy, precision and reproducibility. Furthermore, the recoveries at the three spiked levels were higher than 89.71% with relative standard deviations (RSDs) lower than 5.19%. The results indicated that the contents of seven bioactive flavonoids in CRP varied significantly among different sources. Among the samples under study, hesperidin showed the highest contents in 16 samples ranged from 27.50 to 86.30 mg/g, the contents of hesperidin in CRP-15 and CRP-9 were 27.50 and 86.30 mg/g, respectively, while, the amount of narirutin was too low to be measured in some samples. This study revealed that the developed UFLC-MS/MS method was simple, sensitive and reliable for simultaneous quantification of multi-components in CRP with potential perspective for quality control of complex matrices. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Accurate quantification of chromosomal lesions via short tandem repeat analysis using minimal amounts of DNA.

    PubMed

    Jann, Johann-Christoph; Nowak, Daniel; Nolte, Florian; Fey, Stephanie; Nowak, Verena; Obländer, Julia; Pressler, Jovita; Palme, Iris; Xanthopoulos, Christina; Fabarius, Alice; Platzbecker, Uwe; Giagounidis, Aristoteles; Götze, Katharina; Letsch, Anne; Haase, Detlef; Schlenk, Richard; Bug, Gesine; Lübbert, Michael; Ganser, Arnold; Germing, Ulrich; Haferlach, Claudia; Hofmann, Wolf-Karsten; Mossner, Maximilian

    2017-09-01

    Cytogenetic aberrations such as deletion of chromosome 5q (del(5q)) represent key elements in routine clinical diagnostics of haematological malignancies. Currently established methods such as metaphase cytogenetics, FISH or array-based approaches have limitations due to their dependency on viable cells, high costs or semi-quantitative nature. Importantly, they cannot be used on low abundance DNA. We therefore aimed to establish a robust and quantitative technique that overcomes these shortcomings. For precise determination of del(5q) cell fractions, we developed an inexpensive multiplex-PCR assay requiring only nanograms of DNA that simultaneously measures allelic imbalances of 12 independent short tandem repeat markers. Application of this method to n=1142 samples from n=260 individuals revealed strong intermarker concordance (R²=0.77-0.97) and reproducibility (mean SD: 1.7%). Notably, the assay showed accurate quantification via standard curve assessment (R²>0.99) and high concordance with paired FISH measurements (R²=0.92) even with subnanogram amounts of DNA. Moreover, cytogenetic response was reliably confirmed in del(5q) patients with myelodysplastic syndromes treated with lenalidomide. While the assay demonstrated good diagnostic accuracy in receiver operating characteristic analysis (area under the curve: 0.97), we further observed robust correlation between bone marrow and peripheral blood samples (R²=0.79), suggesting its potential suitability for less-invasive clonal monitoring. In conclusion, we present an adaptable tool for quantification of chromosomal aberrations, particularly in problematic samples, which should be easily applicable to further tumour entities. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Acceleration Disturbances onboard of Geodetic Precision Space Laboratories

    NASA Astrophysics Data System (ADS)

    Peterseim, Nadja; Jakob, Flury; Schlicht, Anja

    Bartlomiej Oszczak, b@dgps.pl University of Warmia and Mazury in Olsztyn, Poland, Olsztyn, Poland Olga Maciejczyk, omaciejczyk@gmail.com Poland In this paper there is presented the study on the parameters of the ASG-EUPOS real-time RTK service NAWGEO such as: accuracy, availability, integrity and continuity. Author's model is used for tests. These parameters enable determination of the quality of received information and practical applications of the service. Paper includes also the subject related to the NAWGEO service and algorithms used in determination of mentioned parameters. The results of accuracy and precision analyses and study on availability demonstrated that NAWGEO service enables a user a position determination with a few centimeters accuracy with high probability in any moment of time.

  17. Simultaneous extraction, identification and quantification of phenolic compounds in Eclipta prostrata using microwave-assisted extraction combined with HPLC-DAD-ESI-MS/MS.

    PubMed

    Fang, Xinsheng; Wang, Jianhua; Hao, Jifu; Li, Xueke; Guo, Ning

    2015-12-01

    A simple and rapid method was developed using microwave-assisted extraction (MAE) combined with HPLC-DAD-ESI-MS/MS for the simultaneous extraction, identification, and quantification of phenolic compounds in Eclipta prostrata, a common herb and vegetable in China. The optimized parameters of MAE were: employing 50% ethanol as solvent, microwave power 400 W, temperature 70 °C, ratio of liquid/solid 30 mL/g and extraction time 2 min. Compared to conventional extraction methods, the optimized MAE can avoid the degradation of the phenolic compounds and simultaneously obtained the highest yields of all components faster with less consumption of solvent and energy. Six phenolic acids, six flavonoid glycosides and one coumarin were firstly identified. The phenolic compounds were quantified by HPLC-DAD with good linearity, precision, and accuracy. The extract obtained by MAE showed significant antioxidant activity. The proposed method provides a valuable and green analytical methodology for the investigation of phenolic components in natural plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The development and validation of an UHPLC–MS/MS method for the rapid quantification of the antiretroviral agent dapivirine in human plasma

    PubMed Central

    Seserko, Lauren A; Emory, Joshua F; Hendrix, Craig W; Marzinke, Mark A

    2014-01-01

    Background Dapivirine is a non-nucleoside reverse transcriptase inhibitor designed to prevent HIV-1 viral replication and subsequent propagation. A sensitive method is required to quantify plasma concentrations to assess drug efficacy. Results Dapivirine-spiked plasma was combined with acetonitrile containing deuterated IS and was processed for analysis. The method has an analytical measuring range from 20 to 10,000 pg/ml. For the LLOQ, low, mid and high QCs, intra- and inter-assay precision (%CV) ranged from 5.58 to 13.89% and 5.23 to 13.36%, respectively, and intra- and inter-day accuracy (% deviation) ranged from -5.61 to 0.75% and -4.30 to 6.24%, respectively. Conclusion A robust and sensitive LC–MS/MS assay for the high-throughput quantification of the antiretroviral drug dapivirine in human plasma was developed and validated following bioanalytical validation guidelines. The assay meets criteria for the analysis of samples from large research trials. PMID:24256358

  19. Accuracy evaluation of intraoral optical impressions: A clinical study using a reference appliance.

    PubMed

    Atieh, Mohammad A; Ritter, André V; Ko, Ching-Chang; Duqum, Ibrahim

    2017-09-01

    Trueness and precision are used to evaluate the accuracy of intraoral optical impressions. Although the in vivo precision of intraoral optical impressions has been reported, in vivo trueness has not been evaluated because of limitations in the available protocols. The purpose of this clinical study was to compare the accuracy (trueness and precision) of optical and conventional impressions by using a novel study design. Five study participants consented and were enrolled. For each participant, optical and conventional (vinylsiloxanether) impressions of a custom-made intraoral Co-Cr alloy reference appliance fitted to the mandibular arch were obtained by 1 operator. Three-dimensional (3D) digital models were created for stone casts obtained from the conventional impression group and for the reference appliances by using a validated high-accuracy reference scanner. For the optical impression group, 3D digital models were obtained directly from the intraoral scans. The total mean trueness of each impression system was calculated by averaging the mean absolute deviations of the impression replicates from their 3D reference model for each participant, followed by averaging the obtained values across all participants. The total mean precision for each impression system was calculated by averaging the mean absolute deviations between all the impression replicas for each participant (10 pairs), followed by averaging the obtained values across all participants. Data were analyzed using repeated measures ANOVA (α=.05), first to assess whether a systematic difference in trueness or precision of replicate impressions could be found among participants and second to assess whether the mean trueness and precision values differed between the 2 impression systems. Statistically significant differences were found between the 2 impression systems for both mean trueness (P=.010) and mean precision (P=.007). Conventional impressions had higher accuracy with a mean trueness of 17.0

  20. Precision segmented reflectors for space applications

    NASA Technical Reports Server (NTRS)

    Lehman, David H.; Pawlik, Eugene V.; Meinel, Aden B.; Fichter, W. B.

    1990-01-01

    A project to develop precision segmented reflectors (PSRs) which operate at submillimeter wavelengths is described. The development of a light efficient means for the construction of large-aperture segmented reflecting space-based telescopes is the primary aim of the project. The 20-m Large Deployable Reflector (LDR) telescope is being developed for a survey mission, and it will make use of the reflector panels and materials, structures, and figure control being elaborated for the PSR. The surface accuracy of a 0.9-m PSR panel is shown to be 1.74-micron RMS, the goal of 100-micron RMS positioning accuracy has been achieved for a 4-m erectable structure. A voice-coil actuator for the figure control system architecture demonstrated 1-micron panel control accuracy in a 3-axis evaluation. The PSR technology is demonstrated to be of value for several NASA projects involving optical communications and interferometers as well as missions which make use of large-diameter segmented reflectors.

  1. Precision segmented reflectors for space applications

    NASA Astrophysics Data System (ADS)

    Lehman, David H.; Pawlik, Eugene V.; Meinel, Aden B.; Fichter, W. B.

    1990-08-01

    A project to develop precision segmented reflectors (PSRs) which operate at submillimeter wavelengths is described. The development of a light efficient means for the construction of large-aperture segmented reflecting space-based telescopes is the primary aim of the project. The 20-m Large Deployable Reflector (LDR) telescope is being developed for a survey mission, and it will make use of the reflector panels and materials, structures, and figure control being elaborated for the PSR. The surface accuracy of a 0.9-m PSR panel is shown to be 1.74-micron RMS, the goal of 100-micron RMS positioning accuracy has been achieved for a 4-m erectable structure. A voice-coil actuator for the figure control system architecture demonstrated 1-micron panel control accuracy in a 3-axis evaluation. The PSR technology is demonstrated to be of value for several NASA projects involving optical communications and interferometers as well as missions which make use of large-diameter segmented reflectors.

  2. Rapid Quantification of 25-Hydroxyvitamin D3 in Human Serum by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Qi, Yulin; Müller, Miriam; Stokes, Caroline S.; Volmer, Dietrich A.

    2018-04-01

    LC-MS/MS is widely utilized today for quantification of vitamin D in biological fluids. Mass spectrometric assays for vitamin D require very careful method optimization for precise and interference-free, accurate analyses however. Here, we explore chemical derivatization and matrix-assisted laser desorption/ionization (MALDI) as a rapid alternative for quantitative measurement of 25-hydroxyvitamin D3 in human serum, and compare it to results from LC-MS/MS. The method implemented an automated imaging step of each MALDI spot, to locate areas of high intensity, avoid sweet spot phenomena, and thus improve precision. There was no statistically significant difference in vitamin D quantification between the MALDI-MS/MS and LC-MS/MS: mean ± standard deviation for MALDI-MS—29.4 ± 10.3 ng/mL—versus LC-MS/MS—30.3 ± 11.2 ng/mL (P = 0.128)—for the sum of the 25-hydroxyvitamin D epimers. The MALDI-based assay avoided time-consuming chromatographic separation steps and was thus much faster than the LC-MS/MS assay. It also consumed less sample, required no organic solvents, and was readily automated. In this proof-of-concept study, MALDI-MS readily demonstrated its potential for mass spectrometric quantification of vitamin D compounds in biological fluids.

  3. Air Bearings Machined On Ultra Precision, Hydrostatic CNC-Lathe

    NASA Astrophysics Data System (ADS)

    Knol, Pierre H.; Szepesi, Denis; Deurwaarder, Jan M.

    1987-01-01

    Micromachining of precision elements requires an adequate machine concept to meet the high demand of surface finish, dimensional and shape accuracy. The Hembrug ultra precision lathes have been exclusively designed with hydrostatic principles for main spindle and guideways. This concept is to be explained with some major advantages of hydrostatics compared with aerostatics at universal micromachining applications. Hembrug has originally developed the conventional Mikroturn ultra precision facing lathes, for diamond turning of computer memory discs. This first generation of machines was followed by the advanced computer numerically controlled types for machining of complex precision workpieces. One of these parts, an aerostatic bearing component has been succesfully machined on the Super-Mikroturn CNC. A case study of airbearing machining confirms the statement that a good result of the micromachining does not depend on machine performance alone, but also on the technology applied.

  4. French Meteor Network for High Precision Orbits of Meteoroids

    NASA Technical Reports Server (NTRS)

    Atreya, P.; Vaubaillon, J.; Colas, F.; Bouley, S.; Gaillard, B.; Sauli, I.; Kwon, M. K.

    2011-01-01

    There is a lack of precise meteoroids orbit from video observations as most of the meteor stations use off-the-shelf CCD cameras. Few meteoroids orbit with precise semi-major axis are available using film photographic method. Precise orbits are necessary to compute the dust flux in the Earth s vicinity, and to estimate the ejection time of the meteoroids accurately by comparing them with the theoretical evolution model. We investigate the use of large CCD sensors to observe multi-station meteors and to compute precise orbit of these meteoroids. An ideal spatial and temporal resolution to get an accuracy to those similar of photographic plates are discussed. Various problems faced due to the use of large CCD, such as increasing the spatial and the temporal resolution at the same time and computational problems in finding the meteor position are illustrated.

  5. Theoretical limitations of quantification for noncompetitive sandwich immunoassays.

    PubMed

    Woolley, Christine F; Hayes, Mark A; Mahanti, Prasun; Douglass Gilman, S; Taylor, Tom

    2015-11-01

    Immunoassays exploit the highly selective interaction between antibodies and antigens to provide a vital method for biomolecule detection at low concentrations. Developers and practitioners of immunoassays have long known that non-specific binding often restricts immunoassay limits of quantification (LOQs). Aside from non-specific binding, most efforts by analytical chemists to reduce the LOQ for these techniques have focused on improving the signal amplification methods and minimizing the limitations of the detection system. However, with detection technology now capable of sensing single-fluorescence molecules, this approach is unlikely to lead to dramatic improvements in the future. Here, fundamental interactions based on the law of mass action are analytically connected to signal generation, replacing the four- and five-parameter fittings commercially used to approximate sigmoidal immunoassay curves and allowing quantitative consideration of non-specific binding and statistical limitations in order to understand the ultimate detection capabilities of immunoassays. The restrictions imposed on limits of quantification by instrumental noise, non-specific binding, and counting statistics are discussed based on equilibrium relations for a sandwich immunoassay. Understanding the maximal capabilities of immunoassays for each of these regimes can greatly assist in the development and evaluation of immunoassay platforms. While many studies suggest that single molecule detection is possible through immunoassay techniques, here, it is demonstrated that the fundamental limit of quantification (precision of 10 % or better) for an immunoassay is approximately 131 molecules and this limit is based on fundamental and unavoidable statistical limitations.

  6. Protein Quantification by Derivatization-Free High-Performance Liquid Chromatography of Aromatic Amino Acids

    PubMed Central

    Hesse, Almut

    2016-01-01

    Amino acid analysis is considered to be the gold standard for quantitative peptide and protein analysis. Here, we would like to propose a simple HPLC/UV method based on a reversed-phase separation of the aromatic amino acids tyrosine (Tyr), phenylalanine (Phe), and optionally tryptophan (Trp) without any derivatization. The hydrolysis of the proteins and peptides was performed by an accelerated microwave technique, which needs only 30 minutes. Two internal standard compounds, homotyrosine (HTyr) and 4-fluorophenylalanine (FPhe) were used for calibration. The limit of detection (LOD) was estimated to be 0.05 µM (~10 µg/L) for tyrosine and phenylalanine at 215 nm. The LOD for a protein determination was calculated to be below 16 mg/L (~300 ng BSA absolute). Aromatic amino acid analysis (AAAA) offers excellent accuracy and a precision of about 5% relative standard deviation, including the hydrolysis step. The method was validated with certified reference materials (CRM) of amino acids and of a pure protein (bovine serum albumin, BSA). AAAA can be used for the quantification of aromatic amino acids, isolated peptides or proteins, complex peptide or protein samples, such as serum or milk powder, and peptides or proteins immobilized on solid supports. PMID:27559481

  7. Ultrafast quantification of β-lactam antibiotics in human plasma using UPLC-MS/MS.

    PubMed

    Carlier, Mieke; Stove, Veronique; De Waele, Jan J; Verstraete, Alain G

    2015-01-26

    There is an increasing interest in monitoring plasma concentrations of β-lactam antibiotics. The objective of this work was to develop and validate a fast ultra-performance liquid chromatographic method with tandem mass spectrometric detection (UPLC-MS/MS) for simultaneous quantification of amoxicillin, cefuroxime, ceftazidime, meropenem and piperacillin with minimal turn around time. Sample clean-up included protein precipitation with acetonitrile containing 5 deuterated internal standards, and subsequent dilution of the supernatant with water after centrifugation. Runtime was only 2.5 min. Chromatographic separation was performed on a Waters Acquity UPLC system using a BEH C18 column (1.7 μm, 100 mm × 2.1 mm) applying a binary gradient elution of water and methanol both containing 0.1% formic acid and 2 mmol/L ammonium acetate on a Water TQD instrument in MRM mode. All compounds were detected in electrospray positive ion mode and could be quantified between 1 and 100 mg/L for amoxicillin and cefuroxime, between 0.5 and 80 mg/L for meropenem and ceftazidime, and between 1 and 150 mg/L for piperacillin. The method was validated in terms of precision, accuracy, linearity, matrix effect and recovery and has been compared to a previously published UPLC-MS/MS method. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Methane Leak Detection and Emissions Quantification with UAVs

    NASA Astrophysics Data System (ADS)

    Barchyn, T.; Fox, T. A.; Hugenholtz, C.

    2016-12-01

    Robust leak detection and emissions quantification algorithms are required to accurately monitor greenhouse gas emissions. Unmanned aerial vehicles (UAVs, `drones') could both reduce the cost and increase the accuracy of monitoring programs. However, aspects of the platform create unique challenges. UAVs typically collect large volumes of data that are close to source (due to limited range) and often lower quality (due to weight restrictions on sensors). Here we discuss algorithm development for (i) finding sources of unknown position (`leak detection') and (ii) quantifying emissions from a source of known position. We use data from a simulated leak and field study in Alberta, Canada. First, we detail a method for localizing a leak of unknown spatial location using iterative fits against a forward Gaussian plume model. We explore sources of uncertainty, both inherent to the method and operational. Results suggest this method is primarily constrained by accurate wind direction data, distance downwind from source, and the non-Gaussian shape of close range plumes. Second, we examine sources of uncertainty in quantifying emissions with the mass balance method. Results suggest precision is constrained by flux plane interpolation errors and time offsets between spatially adjacent measurements. Drones can provide data closer to the ground than piloted aircraft, but large portions of the plume are still unquantified. Together, we find that despite larger volumes of data, working with close range plumes as measured with UAVs is inherently difficult. We describe future efforts to mitigate these challenges and work towards more robust benchmarking for application in industrial and regulatory settings.

  9. Glass ceramic ZERODUR enabling nanometer precision

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Kunisch, Clemens; Nieder, Johannes; Westerhoff, Thomas

    2014-03-01

    The IC Lithography roadmap foresees manufacturing of devices with critical dimension of < 20 nm. Overlay specification of single digit nanometer asking for nanometer positioning accuracy requiring sub nanometer position measurement accuracy. The glass ceramic ZERODUR® is a well-established material in critical components of microlithography wafer stepper and offered with an extremely low coefficient of thermal expansion (CTE), the tightest tolerance available on market. SCHOTT is continuously improving manufacturing processes and it's method to measure and characterize the CTE behavior of ZERODUR® to full fill the ever tighter CTE specification for wafer stepper components. In this paper we present the ZERODUR® Lithography Roadmap on the CTE metrology and tolerance. Additionally, simulation calculations based on a physical model are presented predicting the long term CTE behavior of ZERODUR® components to optimize dimensional stability of precision positioning devices. CTE data of several low thermal expansion materials are compared regarding their temperature dependence between - 50°C and + 100°C. ZERODUR® TAILORED 22°C is full filling the tight CTE tolerance of +/- 10 ppb / K within the broadest temperature interval compared to all other materials of this investigation. The data presented in this paper explicitly demonstrates the capability of ZERODUR® to enable the nanometer precision required for future generation of lithography equipment and processes.

  10. Factors controlling precision and accuracy in isotope-ratio-monitoring mass spectrometry

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Hayes, J. M.

    1994-01-01

    The performance of systems in which picomole quantities of sample are mixed with a carrier gas and passed through an isotope-ratio mass spectrometer system was examined experimentally and theoretically. Two different mass spectrometers were used, both having electron-impact ion sources and Faraday cup collector systems. One had an accelerating potential of 10kV and accepted 0.2 mL of He/min, producing, under those conditions, a maximum efficiency of 1 CO2 molecular ion collected per 700 molecules introduced. Comparable figures for the second instrument were 3 kV, 0.5 mL of He/min, and 14000 molecules/ion. Signal pathways were adjusted so that response times were <200 ms. Sample-related ion currents appeared as peaks with widths of 3-30 s. Isotope ratios were determined by comparison to signals produced by standard gases. In spite of rapid variations in signals, observed levels of performance were within a factor of 2 of shot-noise limits. For the 10-kV instrument, sample requirements for standard deviations of 0.1 and 0.5% were 45 and 1.7 pmol, respectively. Comparable requirements for the 3-kV instrument were 900 and 36 pmol. Drifts in instrumental characteristics were adequately neutralized when standards were observed at 20-min intervals. For the 10-kV instrument, computed isotopic compositions were independent of sample size and signal strength over the ranges examined. Nonlinearities of <0.04%/V were observed for the 3-kV system. Procedures for observation and subtraction of background ion currents were examined experimentally and theoretically. For sample/ background ratios varying from >10 to 0.3, precision is expected and observed to decrease approximately 2-fold and to depend only weakly on the precision with which background ion currents have been measured.

  11. Is digital photography an accurate and precise method for measuring range of motion of the shoulder and elbow?

    PubMed

    Russo, Russell R; Burn, Matthew B; Ismaily, Sabir K; Gerrie, Brayden J; Han, Shuyang; Alexander, Jerry; Lenherr, Christopher; Noble, Philip C; Harris, Joshua D; McCulloch, Patrick C

    2018-03-01

    Accurate measurements of shoulder and elbow motion are required for the management of musculoskeletal pathology. The purpose of this investigation was to compare three techniques for measuring motion. The authors hypothesized that digital photography would be equivalent in accuracy and show higher precision compared to the other two techniques. Using infrared motion capture analysis as the reference standard, shoulder flexion/abduction/internal rotation/external rotation and elbow flexion/extension were measured using visual estimation, goniometry, and digital photography on 10 fresh frozen cadavers. These measurements were performed by three physical therapists and three orthopaedic surgeons. Accuracy was defined by the difference from the reference standard (motion capture analysis), while precision was defined by the proportion of measurements within the authors' definition of clinical significance (10° for all motions except for elbow extension where 5° was used). Analysis of variance (ANOVA), t-tests, and chi-squared tests were used. Although statistically significant differences were found in measurement accuracy between the three techniques, none of these differences met the authors' definition of clinical significance. Precision of the measurements was significantly higher for both digital photography (shoulder abduction [93% vs. 74%, p < 0.001], shoulder internal rotation [97% vs. 83%, p = 0.001], and elbow flexion [93% vs. 65%, p < 0.001]) and goniometry (shoulder abduction [92% vs. 74%, p < 0.001] and shoulder internal rotation [94% vs. 83%, p = 0.008]) than visual estimation. Digital photography was more precise than goniometry for measurements of elbow flexion only [93% vs. 76%, p < 0.001]. There was no clinically significant difference in measurement accuracy between the three techniques for shoulder and elbow motion. Digital photography showed higher measurement precision compared to visual estimation for shoulder abduction, shoulder

  12. High-accuracy deep-UV Ramsey-comb spectroscopy in krypton

    NASA Astrophysics Data System (ADS)

    Galtier, Sandrine; Altmann, Robert K.; Dreissen, Laura S.; Eikema, Kjeld S. E.

    2017-01-01

    In this paper, we present a detailed account of the first precision Ramsey-comb spectroscopy in the deep UV. We excite krypton in an atomic beam using pairs of frequency-comb laser pulses that have been amplified to the millijoule level and upconverted through frequency doubling in BBO crystals. The resulting phase-coherent deep-UV pulses at 212.55 nm are used in the Ramsey-comb method to excite the two-photon 4p^6 → 4p^5 5p [1/2 ]_0 transition. For the {}^{84}Kr isotope, we find a transition frequency of 2829833101679(103) kHz. The fractional accuracy of 3.7 × 10^{-11} is 34 times better than previous measurements, and also the isotope shifts are measured with improved accuracy. This demonstration shows the potential of Ramsey-comb excitation for precision spectroscopy at short wavelengths.

  13. High Precision 2-D Grating Groove Density Measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Ningxiao; McEntaffer, Randall; Tedesco, Ross

    2017-08-01

    Our research group at Penn State University is working on producing X-ray reflection gratings with high spectral resolving power and high diffraction efficiency. To estimate our fabrication accuracy, we apply a precise 2-D grating groove density measurement to plot groove density distributions of gratings on 6-inch wafers. In addition to plotting a fixed groove density distribution, this method is also sensitive to measuring the variation of the groove density simultaneously. This system can reach a measuring accuracy (ΔN/N) of 10-3. Here we present this groove density measurement and some applications.

  14. EVALUATION OF METRIC PRECISION FOR A RIPARIAN FOREST SURVEY

    EPA Science Inventory

    This paper evaluates the performance of a protocol to monitor riparian forests in western Oregon based on the quality of the data obtained from a recent field survey. Precision and accuracy are the criteria used to determine the quality of 19 field metrics. The field survey con...

  15. Feasibility of Ultrasound-Based Computational Fluid Dynamics as a Mitral Valve Regurgitation Quantification Technique: Comparison with 2-D and 3-D Proximal Isovelocity Surface Area-Based Methods.

    PubMed

    Jamil, Muhammad; Ahmad, Omar; Poh, Kian Keong; Yap, Choon Hwai

    2017-07-01

    Current Doppler echocardiography quantification of mitral regurgitation (MR) severity has shortcomings. Proximal isovelocity surface area (PISA)-based methods, for example, are unable to account for the fact that ultrasound Doppler can measure only one velocity component: toward or away from the transducer. In the present study, we used ultrasound-based computational fluid dynamics (Ub-CFD) to quantify mitral regurgitation and study its advantages and disadvantages compared with 2-D and 3-D PISA methods. For Ub-CFD, patient-specific mitral valve geometry and velocity data were obtained from clinical ultrasound followed by 3-D CFD simulations at an assumed flow rate. We then obtained the average ratio of the ultrasound Doppler velocities to CFD velocities in the flow convergence region, and scaled CFD flow rate with this ratio as the final measured flow rate. We evaluated Ub-CFD, 2-D PISA and 3-D PISA with an in vitro flow loop, which featured regurgitation flow through (i) a simplified flat plate with round orifice and (ii) a 3-D printed realistic mitral valve and regurgitation orifice. The Ub-CFD and 3-D PISA methods had higher precision than the 2-D PISA method. Ub-CFD had consistent accuracy under all conditions tested, whereas 2-D PISA had the lowest overall accuracy. In vitro investigations indicated that the accuracy of 2-D and 3-D PISA depended significantly on the choice of aliasing velocity. Evaluation of these techniques was also performed for two clinical cases, and the dependency of PISA on aliasing velocity was similarly observed. Ub-CFD was robustly accurate and precise and has promise for future translation to clinical practice. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. An optical lattice clock with accuracy and stability at the 10(-18) level.

    PubMed

    Bloom, B J; Nicholson, T L; Williams, J R; Campbell, S L; Bishof, M; Zhang, X; Zhang, W; Bromley, S L; Ye, J

    2014-02-06

    Progress in atomic, optical and quantum science has led to rapid improvements in atomic clocks. At the same time, atomic clock research has helped to advance the frontiers of science, affecting both fundamental and applied research. The ability to control quantum states of individual atoms and photons is central to quantum information science and precision measurement, and optical clocks based on single ions have achieved the lowest systematic uncertainty of any frequency standard. Although many-atom lattice clocks have shown advantages in measurement precision over trapped-ion clocks, their accuracy has remained 16 times worse. Here we demonstrate a many-atom system that achieves an accuracy of 6.4 × 10(-18), which is not only better than a single-ion-based clock, but also reduces the required measurement time by two orders of magnitude. By systematically evaluating all known sources of uncertainty, including in situ monitoring of the blackbody radiation environment, we improve the accuracy of optical lattice clocks by a factor of 22. This single clock has simultaneously achieved the best known performance in the key characteristics necessary for consideration as a primary standard-stability and accuracy. More stable and accurate atomic clocks will benefit a wide range of fields, such as the realization and distribution of SI units, the search for time variation of fundamental constants, clock-based geodesy and other precision tests of the fundamental laws of nature. This work also connects to the development of quantum sensors and many-body quantum state engineering (such as spin squeezing) to advance measurement precision beyond the standard quantum limit.

  17. Testing the accuracy of growth and yield models for southern hardwood forests

    Treesearch

    H. Michael Rauscher; Michael J. Young; Charles D. Webb; Daniel J. Robison

    2000-01-01

    The accuracy of ten growth and yield models for Southern Appalachian upland hardwood forests and southern bottomland forests was evaluated. In technical applications, accuracy is the composite of both bias (average error) and precision. Results indicate that GHAT, NATPIS, and a locally calibrated version of NETWIGS may be regarded as being operationally valid...

  18. Validation of the World Health Organization Enzyme-Linked Immunosorbent Assay for the Quantitation of Immunoglobulin G Serotype-Specific Anti-Pneumococcal Antibodies in Human Serum

    PubMed Central

    2017-01-01

    The World Health Organization (WHO) enzyme-linked immunosorbent assay (ELISA) guideline is currently accepted as the gold standard for the evaluation of immunoglobulin G (IgG) antibodies specific to pneumococcal capsular polysaccharide. We conducted validation of the WHO ELISA for 7 pneumococcal serotypes (4, 6B, 9V, 14, 18C, 19F, and 23F) by evaluating its specificity, precision (reproducibility and intermediate precision), accuracy, spiking recovery test, lower limit of quantification (LLOQ), and stability at the Ewha Center for Vaccine Evaluation and Study, Seoul, Korea. We found that the specificity, reproducibility, and intermediate precision were within acceptance ranges (reproducibility, coefficient of variability [CV] ≤ 15%; intermediate precision, CV ≤ 20%) for all serotypes. Comparisons between the provisional assignments of calibration sera and the results from this laboratory showed a high correlation > 94% for all 7 serotypes, supporting the accuracy of the ELISA. The spiking recovery test also fell within an acceptable range. The quantification limit, calculated using the LLOQ, for each of the serotypes was 0.05–0.093 μg/mL. The freeze-thaw stability and the short-term temperature stability were also within an acceptable range. In conclusion, we showed good performance using the standardized WHO ELISA for the evaluation of serotype-specific anti-pneumococcal IgG antibodies; the WHO ELISA can evaluate the immune response against pneumococcal vaccines with consistency and accuracy. PMID:28875600

  19. Relationship between resolution and accuracy of four intraoral scanners in complete-arch impressions

    PubMed Central

    Pascual-Moscardó, Agustín; Camps, Isabel

    2018-01-01

    Background The scanner does not measure the dental surface continually. Instead, it generates a point cloud, and these points are then joined to form the scanned object. This approximation will depend on the number of points generated (resolution), which can lead to low accuracy (trueness and precision) when fewer points are obtained. The purpose of this study is to determine the resolution of four intraoral digital imaging systems and to demonstrate the relationship between accuracy and resolution of the intraoral scanner in impressions of a complete dental arch. Material and Methods A master cast of the complete maxillary arch was prepared with different dental preparations. Using four digital impression systems, the cast was scanned inside of a black methacrylate box, obtaining a total of 40 digital impressions from each scanner. The resolution was obtained by dividing the number of points of each digital impression by the total surface area of the cast. Accuracy was evaluated using a three-dimensional measurement software, using the “best alignment” method of the casts with a highly faithful reference model obtained from an industrial scanner. Pearson correlation was used for statistical analysis of the data. Results Of the intraoral scanners, Omnicam is the system with the best resolution, with 79.82 points per mm2, followed by True Definition with 54.68 points per mm2, Trios with 41.21 points per mm2, and iTero with 34.20 points per mm2. However, the study found no relationship between resolution and accuracy of the study digital impression systems (P >0.05), except for Omnicam and its precision. Conclusions The resolution of the digital impression systems has no relationship with the accuracy they achieve in the impression of a complete dental arch. The study found that the Omnicam scanner is the system that obtains the best resolution, and that as the resolution increases, its precision increases. Key words:Trueness, precision, accuracy, resolution

  20. Improvement of Gaofen-3 Absolute Positioning Accuracy Based on Cross-Calibration

    PubMed Central

    Deng, Mingjun; Li, Jiansong

    2017-01-01

    The Chinese Gaofen-3 (GF-3) mission was launched in August 2016, equipped with a full polarimetric synthetic aperture radar (SAR) sensor in the C-band, with a resolution of up to 1 m. The absolute positioning accuracy of GF-3 is of great importance, and in-orbit geometric calibration is a key technology for improving absolute positioning accuracy. Conventional geometric calibration is used to accurately calibrate the geometric calibration parameters of the image (internal delay and azimuth shifts) using high-precision ground control data, which are highly dependent on the control data of the calibration field, but it remains costly and labor-intensive to monitor changes in GF-3’s geometric calibration parameters. Based on the positioning consistency constraint of the conjugate points, this study presents a geometric cross-calibration method for the rapid and accurate calibration of GF-3. The proposed method can accurately calibrate geometric calibration parameters without using corner reflectors and high-precision digital elevation models, thus improving absolute positioning accuracy of the GF-3 image. GF-3 images from multiple regions were collected to verify the absolute positioning accuracy after cross-calibration. The results show that this method can achieve a calibration accuracy as high as that achieved by the conventional field calibration method. PMID:29240675

  1. Direct liquid chromatography method for the simultaneous quantification of hydroxytyrosol and tyrosol in red wines.

    PubMed

    Piñeiro, Zulema; Cantos-Villar, Emma; Palma, Miguel; Puertas, Belen

    2011-11-09

    A validated HPLC method with fluorescence detection for the simultaneous quantification of hydroxytyrosol and tyrosol in red wines is described. Detection conditions for both compounds were optimized (excitation at 279 and 278 and emission at 631 and 598 nm for hydroxytyrosol and tyrosol, respectively). The validation of the analytical method was based on selectivity, linearity, robustness, detection and quantification limits, repeatability, and recovery. The detection and quantification limits in red wines were set at 0.023 and 0.076 mg L(-1) for hydroxytyrosol and at 0.007 and 0.024 mg L(-1) for tyrosol determination, respectively. Precision values, both within-day and between-day (n = 5), remained below 3% for both compounds. In addition, a fractional factorial experimental design was developed to analyze the influence of six different conditions on analysis. The final optimized HPLC-fluorescence method allowed the analysis of 30 nonpretreated Spanish red wines to evaluate their hydroxytyrosol and tyrosol contents.

  2. Precision enhancement of pavement roughness localization with connected vehicles

    NASA Astrophysics Data System (ADS)

    Bridgelall, R.; Huang, Y.; Zhang, Z.; Deng, F.

    2016-02-01

    Transportation agencies rely on the accurate localization and reporting of roadway anomalies that could pose serious hazards to the traveling public. However, the cost and technical limitations of present methods prevent their scaling to all roadways. Connected vehicles with on-board accelerometers and conventional geospatial position receivers offer an attractive alternative because of their potential to monitor all roadways in real-time. The conventional global positioning system is ubiquitous and essentially free to use but it produces impractically large position errors. This study evaluated the improvement in precision achievable by augmenting the conventional geo-fence system with a standard speed bump or an existing anomaly at a pre-determined position to establish a reference inertial marker. The speed sensor subsequently generates position tags for the remaining inertial samples by computing their path distances relative to the reference position. The error model and a case study using smartphones to emulate connected vehicles revealed that the precision in localization improves from tens of metres to sub-centimetre levels, and the accuracy of measuring localized roughness more than doubles. The research results demonstrate that transportation agencies will benefit from using the connected vehicle method to achieve precision and accuracy levels that are comparable to existing laser-based inertial profilers.

  3. Application of Quality by Design Approach to Bioanalysis: Development of a Method for Elvitegravir Quantification in Human Plasma.

    PubMed

    Baldelli, Sara; Marrubini, Giorgio; Cattaneo, Dario; Clementi, Emilio; Cerea, Matteo

    2017-10-01

    The application of Quality by Design (QbD) principles in clinical laboratories can help to develop an analytical method through a systematic approach, providing a significant advance over the traditional heuristic and empirical methodology. In this work, we applied for the first time the QbD concept in the development of a method for drug quantification in human plasma using elvitegravir as the test molecule. The goal of the study was to develop a fast and inexpensive quantification method, with precision and accuracy as requested by the European Medicines Agency guidelines on bioanalytical method validation. The method was divided into operative units, and for each unit critical variables affecting the results were identified. A risk analysis was performed to select critical process parameters that should be introduced in the design of experiments (DoEs). Different DoEs were used depending on the phase of advancement of the study. Protein precipitation and high-performance liquid chromatography-tandem mass spectrometry were selected as the techniques to be investigated. For every operative unit (sample preparation, chromatographic conditions, and detector settings), a model based on factors affecting the responses was developed and optimized. The obtained method was validated and clinically applied with success. To the best of our knowledge, this is the first investigation thoroughly addressing the application of QbD to the analysis of a drug in a biological matrix applied in a clinical laboratory. The extensive optimization process generated a robust method compliant with its intended use. The performance of the method is continuously monitored using control charts.

  4. Digital PCR Modeling for Maximal Sensitivity, Dynamic Range and Measurement Precision

    PubMed Central

    Majumdar, Nivedita; Wessel, Thomas; Marks, Jeffrey

    2015-01-01

    The great promise of digital PCR is the potential for unparalleled precision enabling accurate measurements for genetic quantification. A challenge associated with digital PCR experiments, when testing unknown samples, is to perform experiments at dilutions allowing the detection of one or more targets of interest at a desired level of precision. While theory states that optimal precision (Po) is achieved by targeting ~1.59 mean copies per partition (λ), and that dynamic range (R) includes the space spanning one positive (λL) to one negative (λU) result from the total number of partitions (n), these results are tempered for the practitioner seeking to construct digital PCR experiments in the laboratory. A mathematical framework is presented elucidating the relationships between precision, dynamic range, number of partitions, interrogated volume, and sensitivity in digital PCR. The impact that false reaction calls and volumetric variation have on sensitivity and precision is next considered. The resultant effects on sensitivity and precision are established via Monte Carlo simulations reflecting the real-world likelihood of encountering such scenarios in the laboratory. The simulations provide insight to the practitioner on how to adapt experimental loading concentrations to counteract any one of these conditions. The framework is augmented with a method of extending the dynamic range of digital PCR, with and without increasing n, via the use of dilutions. An example experiment demonstrating the capabilities of the framework is presented enabling detection across 3.33 logs of starting copy concentration. PMID:25806524

  5. Quantification of underivatised amino acids on dry blood spot, plasma, and urine by HPLC-ESI-MS/MS.

    PubMed

    Giordano, Giuseppe; Di Gangi, Iole Maria; Gucciardi, Antonina; Naturale, Mauro

    2012-01-01

    , accuracy, and precision. The fast run time, feasibility of high sample throughput, and small amount of sample required make this method very suitable for routine analysis in the clinical setting.

  6. HPLC-MRM relative quantification analysis of fatty acids based on a novel derivatization strategy.

    PubMed

    Cai, Tie; Ting, Hu; Xin-Xiang, Zhang; Jiang, Zhou; Jin-Lan, Zhang

    2014-12-07

    Fatty acids (FAs) are associated with a series of diseases including tumors, diabetes, and heart diseases. As potential biomarkers, FAs have attracted increasing attention from both biological researchers and the pharmaceutical industry. However, poor ionization efficiency, extreme diversity, strict dependence on internal standards and complicated multiple reaction monitoring (MRM) optimization protocols have challenged efforts to quantify FAs. In this work, a novel derivatization strategy based on 2,4-bis(diethylamino)-6-hydrazino-1,3,5-triazine was developed to enable quantification of FAs. The sensitivity of FA detection was significantly enhanced as a result of the derivatization procedure. FA quantities as low as 10 fg could be detected by high-performance liquid chromatography coupled with triple-quadrupole mass spectrometry. General MRM conditions were developed for any FA, which facilitated the quantification and extended the application of the method. The FA quantification strategy based on HPLC-MRM was carried out using deuterated derivatization reagents. "Heavy" derivatization reagents were used as internal standards (ISs) to minimize matrix effects. Prior to statistical analysis, amounts of each FA species were normalized by their corresponding IS, which guaranteed the accuracy and reliability of the method. FA changes in plasma induced by ageing were studied using this strategy. Several FA species were identified as potential ageing biomarkers. The sensitivity, accuracy, reliability, and full coverage of the method ensure that this strategy has strong potential for both biomarker discovery and lipidomic research.

  7. Proceedings of the Fourth Precise Time and Time Interval Planning Meeting

    NASA Technical Reports Server (NTRS)

    Acrivos, H. N. (Compiler); Wardrip, S. C. (Compiler)

    1972-01-01

    The proceedings of a conference on Precise Time and Time Interval Planning are presented. The subjects discussed include the following: (1) satellite timing techniques, precision frequency sources, and very long baseline interferometry, (2) frequency stabilities and communications, and (3) very low frequency and ultrahigh frequency propagation and use. Emphasis is placed on the accuracy of time discrimination obtained with time measuring equipment and specific applications of time measurement to military operations and civilian research projects.

  8. Laser-induced plasma characterization through self-absorption quantification

    NASA Astrophysics Data System (ADS)

    Hou, JiaJia; Zhang, Lei; Zhao, Yang; Yan, Xingyu; Ma, Weiguang; Dong, Lei; Yin, Wangbao; Xiao, Liantuan; Jia, Suotang

    2018-07-01

    A self-absorption quantification method is proposed to quantify the self-absorption degree of spectral lines, in which plasma characteristics including electron temperature, elemental concentration ratio, and absolute species number density can be deduced directly. Since there is no spectral intensity involved in the calculation, the analysis results are independent of the self-absorption effects and the additional spectral efficiency calibration is not required. In order to evaluate the practicality, the limitation for application and the precision of this method are also discussed. Experimental results of aluminum-lithium alloy prove that the proposed method is qualified to realize semi-quantitative measurements and fast plasma characteristics diagnostics.

  9. Recommendations for Improving Identification and Quantification in Non-Targeted, GC-MS-Based Metabolomic Profiling of Human Plasma

    PubMed Central

    Wang, Hanghang; Muehlbauer, Michael J.; O’Neal, Sara K.; Newgard, Christopher B.; Hauser, Elizabeth R.; Shah, Svati H.

    2017-01-01

    The field of metabolomics as applied to human disease and health is rapidly expanding. In recent efforts of metabolomics research, greater emphasis has been placed on quality control and method validation. In this study, we report an experience with quality control and a practical application of method validation. Specifically, we sought to identify and modify steps in gas chromatography-mass spectrometry (GC-MS)-based, non-targeted metabolomic profiling of human plasma that could influence metabolite identification and quantification. Our experimental design included two studies: (1) a limiting-dilution study, which investigated the effects of dilution on analyte identification and quantification; and (2) a concentration-specific study, which compared the optimal plasma extract volume established in the first study with the volume used in the current institutional protocol. We confirmed that contaminants, concentration, repeatability and intermediate precision are major factors influencing metabolite identification and quantification. In addition, we established methods for improved metabolite identification and quantification, which were summarized to provide recommendations for experimental design of GC-MS-based non-targeted profiling of human plasma. PMID:28841195

  10. THE MIRA–TITAN UNIVERSE: PRECISION PREDICTIONS FOR DARK ENERGY SURVEYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heitmann, Katrin; Habib, Salman; Biswas, Rahul

    2016-04-01

    Large-scale simulations of cosmic structure formation play an important role in interpreting cosmological observations at high precision. The simulations must cover a parameter range beyond the standard six cosmological parameters and need to be run at high mass and force resolution. A key simulation-based task is the generation of accurate theoretical predictions for observables using a finite number of simulation runs, via the method of emulation. Using a new sampling technique, we explore an eight-dimensional parameter space including massive neutrinos and a variable equation of state of dark energy. We construct trial emulators using two surrogate models (the linear powermore » spectrum and an approximate halo mass function). The new sampling method allows us to build precision emulators from just 26 cosmological models and to systematically increase the emulator accuracy by adding new sets of simulations in a prescribed way. Emulator fidelity can now be continuously improved as new observational data sets become available and higher accuracy is required. Finally, using one ΛCDM cosmology as an example, we study the demands imposed on a simulation campaign to achieve the required statistics and accuracy when building emulators for investigations of dark energy.« less

  11. The mira-titan universe. Precision predictions for dark energy surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heitmann, Katrin; Bingham, Derek; Lawrence, Earl

    2016-03-28

    Large-scale simulations of cosmic structure formation play an important role in interpreting cosmological observations at high precision. The simulations must cover a parameter range beyond the standard six cosmological parameters and need to be run at high mass and force resolution. A key simulation-based task is the generation of accurate theoretical predictions for observables using a finite number of simulation runs, via the method of emulation. Using a new sampling technique, we explore an eight-dimensional parameter space including massive neutrinos and a variable equation of state of dark energy. We construct trial emulators using two surrogate models (the linear powermore » spectrum and an approximate halo mass function). The new sampling method allows us to build precision emulators from just 26 cosmological models and to systematically increase the emulator accuracy by adding new sets of simulations in a prescribed way. Emulator fidelity can now be continuously improved as new observational data sets become available and higher accuracy is required. Finally, using one ΛCDM cosmology as an example, we study the demands imposed on a simulation campaign to achieve the required statistics and accuracy when building emulators for investigations of dark energy.« less

  12. Manufacture of ultra high precision aerostatic bearings based on glass guide

    NASA Astrophysics Data System (ADS)

    Guo, Meng; Dai, Yifan; Peng, Xiaoqiang; Tie, Guipeng; Lai, Tao

    2017-10-01

    The aerostatic guide in the traditional three-coordinate measuring machine and profilometer generally use metal or ceramics material. Limited by the guide processing precision, the measurement accuracy of these traditional instruments is around micro-meter level. By selection of optical materials as guide material, optical processing method and laser interference measurement can be introduced to the traditional aerostatic bearings manufacturing field. By using the large aperture wave-front interference measuring equipment , the shape and position error of the glass guide can be obtained in high accuracy and then it can be processed to 0.1μm or even better with the aid of Magnetorheological Finishing(MRF) and Computer Controlled Optical Surfacing (CCOS) process and other modern optical processing method, so the accuracy of aerostatic bearings can be fundamentally improved and ultra high precision coordinate measuring can be achieved. This paper introduces the fabrication and measurement process of the glass guide by K9 with 300mm measuring range, and its working surface accuracy is up to 0.1μm PV, the verticality and parallelism error between the two guide rail face is better than 2μm, and the straightness of the aerostatic bearings by this K9 glass guide is up to 40nm after error compensation.

  13. Quantification of silver nanoparticle uptake and distribution within individual human macrophages by FIB/SEM slice and view.

    PubMed

    Guehrs, Erik; Schneider, Michael; Günther, Christian M; Hessing, Piet; Heitz, Karen; Wittke, Doreen; López-Serrano Oliver, Ana; Jakubowski, Norbert; Plendl, Johanna; Eisebitt, Stefan; Haase, Andrea

    2017-03-21

    Quantification of nanoparticle (NP) uptake in cells or tissues is very important for safety assessment. Often, electron microscopy based approaches are used for this purpose, which allow imaging at very high resolution. However, precise quantification of NP numbers in cells and tissues remains challenging. The aim of this study was to present a novel approach, that combines precise quantification of NPs in individual cells together with high resolution imaging of their intracellular distribution based on focused ion beam/ scanning electron microscopy (FIB/SEM) slice and view approaches. We quantified cellular uptake of 75 nm diameter citrate stabilized silver NPs (Ag 75 Cit) into an individual human macrophage derived from monocytic THP-1 cells using a FIB/SEM slice and view approach. Cells were treated with 10 μg/ml for 24 h. We investigated a single cell and found in total 3138 ± 722 silver NPs inside this cell. Most of the silver NPs were located in large agglomerates, only a few were found in clusters of fewer than five NPs. Furthermore, we cross-checked our results by using inductively coupled plasma mass spectrometry and could confirm the FIB/SEM results. Our approach based on FIB/SEM slice and view is currently the only one that allows the quantification of the absolute dose of silver NPs in individual cells and at the same time to assess their intracellular distribution at high resolution. We therefore propose to use FIB/SEM slice and view to systematically analyse the cellular uptake of various NPs as a function of size, concentration and incubation time.

  14. A validated LC-MS/MS assay for simultaneous quantification of methotrexate and tofacitinib in rat plasma: application to a pharmacokinetic study.

    PubMed

    Sharma, Kuldeep; Giri, Kalpeshkumar; Dhiman, Vinay; Dixit, Abhishek; Zainuddin, Mohd; Mullangi, Ramesh

    2015-05-01

    A highly sensitive, specific and rapid LC-ESI-MS/MS method has been developed and validated for simultaneous quantification of methotrexate (MTX) and tofacitinib (TFB) in rat plasma (50 μL) using phenacetin as an internal standard (IS), as per the US Food and Drug Administration guidelines. After a solid-phase extraction procedure, the separation of the analytes and IS was performed on a Chromolith RP₁₈e column using an isocratic mobile phase of 5 m m ammonium acetate (pH 5.0) and acetonitrile at a ratio of 25:75 (v/v) using flow-gradient with a total run time of 3.5 min. The detection was performed in multiple reaction monitoring mode, using the transitions of m/z 455.2 → 308.3, m/z 313.2 → 149.2 and m/z 180.3 → 110.2 for MTX, TFB and IS, respectively. The calibration curves were linear over the range of 0.49-91.0 and 0.40-74.4 ng/mL for MTX and TFB, respectively. The intra- and interday accuracy and precision values for MTX and TFB were <15% at low quality control (QC), medium QC and high QC and <20% at lower limit of quantification. The validated assay was applied to derive the pharmacokinetic parameters for MTX and TFB post-dosing of MTX and TFB orally and intravenously to rats. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Liquid chromatography-mass spectrometry-based quantification of steroidal glycoalkaloids from Solanum xanthocarpum and effect of different extraction methods on their content.

    PubMed

    Paul, Atish T; Vir, Sanjay; Bhutani, K K

    2008-10-24

    A new liquid chromatography-mass spectrometry (LC-MS)-based method coupled with pressurized liquid extraction (PLE) as an efficient sample preparation technique has been developed for the quantification and fingerprint analysis of Solanum xanthocarpum. Optimum separations of the samples were achieved on a Waters MSC-18 XTerra column, using 0.5% (v/v) formic acid in water (A) and acetonitrile (ACN):2-propanol:formic acid (94.5:5:0.5, v/v/v) (B) as mobile phase. The separation was carried out using linear gradient elution with a flow rate of 1.0mL/min. The gradient was: 0min, 20% B; 14min, 30% B; 20min, 30% B; 27min, 60% B and the column was re-equilibrated to the initial condition (20% B) for 10min prior to next injection. The steroidal glycoalkaloids (SGAs) which are the major active constituents were isolated as pure compounds from the crude methanolic extract of S. xanthocarpum by preparative LC-MS and after characterization were used as external standards for the development and validation of the method. Extracts prepared by conventional Soxhlet extraction, PLE and ultrasonication were used for analysis. The method was validated for repeatability, precision (intra- and inter-day variation), accuracy (recovery) and sensitivity (limit of detection and limit of quantitation). The purpose of the work was to develop a validated method, which can be used for the quantification of SGAs in commercialized S. xanthocarpum products and the fingerprint analysis for their routine quality control.

  16. Parallel ultra high pressure liquid chromatography-mass spectrometry for the quantification of HIV protease inhibitors using dried spot sample collection format.

    PubMed

    Watanabe, Kyoko; Varesio, Emmanuel; Hopfgartner, Gérard

    2014-08-15

    An assay was developed and validated for the quantification of eight protease inhibitors (indinavir (IDV), ritonavir (RTV), lopinavir (LPV), saquinavir (SQV), amprenavir (APV), nelfinavir (NFV), atazanavir (AZV) and darunavir (DRV)) in dried plasma spots using parallel ultra-high performance liquid chromatography and mass spectrometry detection in the multiple reaction monitoring mode. For each analyte an isotopically labeled internal standard was used and the assay based on liquid-solid extraction the area response ratio (analyte/IS) was found to be linear; from 0.025 μg/ml to 20 μg/ml for IDV, SQV, DRV, AZV, LPV, from 0.025 μg/ml to 10 μg/ml for NFV, APV and from 0.025 μg/ml to 5 μg/ml for RTV using 15 μl of plasma spotted on filter paper placed in a sample tube. The total analysis time was of 4 min and inter-assay accuracies and precisions were in the range of 87.7-109% and 2.5-11.8%, respectively. On dried plasma spots all analytes were found to be stable for at least 7 days. Practicability of the assay to blood was also demonstrated. The sample drying process could be reduced to 5 min using a commercial microwave system without any analyte degradation. Together with quantification, confirmatory analysis was performed on representative clinical samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Localized 2D COSY sequences: Method and experimental evaluation for a whole metabolite quantification approach

    NASA Astrophysics Data System (ADS)

    Martel, Dimitri; Tse Ve Koon, K.; Le Fur, Yann; Ratiney, Hélène

    2015-11-01

    Two-dimensional spectroscopy offers the possibility to unambiguously distinguish metabolites by spreading out the multiplet structure of J-coupled spin systems into a second dimension. Quantification methods that perform parametric fitting of the 2D MRS signal have recently been proposed for resolved PRESS (JPRESS) but not explicitly for Localized Correlation Spectroscopy (LCOSY). Here, through a whole metabolite quantification approach, correlation spectroscopy quantification performances are studied. The ability to quantify metabolite relaxation constant times is studied for three localized 2D MRS sequences (LCOSY, LCTCOSY and the JPRESS) in vitro on preclinical MR systems. The issues encountered during implementation and quantification strategies are discussed with the help of the Fisher matrix formalism. The described parameterized models enable the computation of the lower bound for error variance - generally known as the Cramér Rao bounds (CRBs), a standard of precision - on the parameters estimated from these 2D MRS signal fittings. LCOSY has a theoretical net signal loss of two per unit of acquisition time compared to JPRESS. A rapid analysis could point that the relative CRBs of LCOSY compared to JPRESS (expressed as a percentage of the concentration values) should be doubled but we show that this is not necessarily true. Finally, the LCOSY quantification procedure has been applied on data acquired in vivo on a mouse brain.

  18. In vivo precision of conventional and digital methods of obtaining complete-arch dental impressions.

    PubMed

    Ender, Andreas; Attin, Thomas; Mehl, Albert

    2016-03-01

    Digital impression systems have undergone significant development in recent years, but few studies have investigated the accuracy of the technique in vivo, particularly compared with conventional impression techniques. The purpose of this in vivo study was to investigate the precision of conventional and digital methods for complete-arch impressions. Complete-arch impressions were obtained using 5 conventional (polyether, POE; vinylsiloxanether, VSE; direct scannable vinylsiloxanether, VSES; digitized scannable vinylsiloxanether, VSES-D; and irreversible hydrocolloid, ALG) and 7 digital (CEREC Bluecam, CER; CEREC Omnicam, OC; Cadent iTero, ITE; Lava COS, LAV; Lava True Definition Scanner, T-Def; 3Shape Trios, TRI; and 3Shape Trios Color, TRC) techniques. Impressions were made 3 times each in 5 participants (N=15). The impressions were then compared within and between the test groups. The cast surfaces were measured point-to-point using the signed nearest neighbor method. Precision was calculated from the (90%-10%)/2 percentile value. The precision ranged from 12.3 μm (VSE) to 167.2 μm (ALG), with the highest precision in the VSE and VSES groups. The deviation pattern varied distinctly according to the impression method. Conventional impressions showed the highest accuracy across the complete dental arch in all groups, except for the ALG group. Conventional and digital impression methods differ significantly in the complete-arch accuracy. Digital impression systems had higher local deviations within the complete arch cast; however, they achieve equal and higher precision than some conventional impression materials. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  19. Radio-frequency energy quantification in magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Alon, Leeor

    Mapping of radio frequency (RF) energy deposition has been challenging for 50+ years, especially, when scanning patients in the magnetic resonance imaging (MRI) environment. As result, electromagnetic simulation software is often used for estimating the specific absorption rate (SAR), the rate of RF energy deposition in tissue. The thesis work presents challenges associated with aligning information provided by electromagnetic simulation and MRI experiments. As result of the limitations of simulations, experimental methods for the quantification of SAR were established. A system for quantification of the total RF energy deposition was developed for parallel transmit MRI (a system that uses multiple antennas to excite and image the body). The system is capable of monitoring and predicting channel-by-channel RF energy deposition, whole body SAR and capable of tracking potential hardware failures that occur in the transmit chain and may cause the deposition of excessive energy into patients. Similarly, we demonstrated that local RF power deposition can be mapped and predicted for parallel transmit systems based on a series of MRI temperature mapping acquisitions. Resulting from the work, we developed tools for optimal reconstruction temperature maps from MRI acquisitions. The tools developed for temperature mapping paved the way for utilizing MRI as a diagnostic tool for evaluation of RF/microwave emitting device safety. Quantification of the RF energy was demonstrated for both MRI compatible and non-MRI-compatible devices (such as cell phones), while having the advantage of being noninvasive, of providing millimeter resolution and high accuracy.

  20. Taking the Measure of the Universe : Precision Astrometry with SIM PlanetQuest

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen C.; Shao, Michael; Tanner, Angelle M.; Allen, Ronald J.; Beichman, Charles A.; Boboltz, David; Catanzarite, Joseph H.; Chaboyer, Brian C.; Ciardi, David R.; Edberg, Stephen J.; hide

    2008-01-01

    Precision astrometry at microarcsecond accuracy has application to a wide range of astrophysical problems. This paper is a study of the science questions that can be addressed using an instrument with flexible scheduling that delivers parallaxes at about 4 microarcsec (microns)as) on targets as faint as V = 20, and differential accuracy of 0.6 (microns)as on bright targets. The science topics are drawn primarily from the Team Key Projects, selected in 2000, for the Space Interferometry Mission PlanetQuest (SIM PlanetQuest). We use the capabilities of this mission to illustrate the importance of the next level of astrometric precision in modern astrophysics. SIM PlanetQuest is currently in the detailed design phase, having completed in 2005 all of the enabling technologies needed for the flight instrument. It will be the first space-based long baseline Michelson interferometer designed for precision astrometry. SIM will contribute strongly to many astronomical fields including stellar and galactic astrophysics, planetary systems around nearby stars, and the study of quasar and AGN nuclei. Using differential astrometry SIM will search for planets with masses as small as an Earth orbiting in the 'habitable zone' around the nearest stars, and could discover many dozen if Earth-like planets are common. It will characterize the multiple-planet systems that are now known to exist, and it will be able to search for terrestrial planets around all of the candidate target stars in the Terrestrial Planet Finder and Darwin mission lists. It will be capable of detecting planets around young stars, thereby providing insights into how planetary systems are born and how they evolve with time. Precision astrometry allows the measurement of accurate dynamical masses for stars in binary systems. SIM will observe significant numbers of very high- and low-mass stars, providing stellar masses to 1%, the accuracy needed to challenge physical models. Using precision proper motion